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Abstract

Approaches to developing clinically useful Bayesian risk pre-
diction models

Solon Karapanagiotis

Prediction of the presence of disease (diagnosis) or an event in the future course of disease (prognosis)

becomes increasingly important in the current era of personalised medicine. Both tasks (diagnosis

and prognosis) are supported using (risk) prediction models. Such models usually combine multiple

variables by using different statistical and/or machine learning approaches. Recent advances in prediction

models have improved diagnostic and prognostic accuracy, in some cases surpassing the performance

of clinicians. However, evidence is lacking that deployment of these models has improved care and

patient outcomes. That is, their clinical usefulness is debatable. One barrier to demonstrating such

improvement is the basis used to evaluate their performance. In this thesis, we explore methods for

developing (building and evaluating) risk prediction models, in an attempt to create clinically useful

models.

We start by introducing a few commonly used metrics to evaluate the predictive performance of

prediction models. We then show that a model with good predictive performance is not enough to

guarantee clinical usefulness. A well performing model can be clinically useless, and a poor model

valuable. Following recent line of work, we adopt a decision theoretic approach for model evaluation

that allows us to determine whether the model would change medical decisions and, if so, whether the

outcome of interest would improve as a result.

We then apply this approach to investigate the clinical usefulness of including information about

circulating tumour DNA (ctDNA) when predicting response to treatment in metastatic breast cancer.

ctDNA has been proposed as a promising approach to assess response to treatment. We show that

incorporating trajectories of circulating tumour DNA results in a clinically useful model and can improve

clinical decisions.

However, an inherit limitation to the decision theoretic approach (and related ones) is that model

building and evaluation are done independently. During training, the prediction model is agnostic of the

clinical consequences from its use. That is, the prediction model is agnostic of its (clinical) purpose,

e.g., which type of classification error is more costly (i.e., undesirable). We address this shortcoming by

introducing Tailored Bayes (TB), a novel Bayesian inference framework which “tailors” model fitting to
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optimise predictive performance with respect to unbalanced misclassification costs. In both simulated

and real-world applications, we find our approach to perform favourably in comparison to standard

Bayesian methods.

We then move to extend the framework to situations where a large number of (potentially irrelevant)

variables are measured. Such high-dimensional settings represent a ubiquitous challenge in modern

scientific research. We introduce a sparse TB framework for variable selection and find that TB favours

smaller models (with fewer variables) compared to standard Bayesian methods, whilst performing better

or no worse. This pattern was seen both in simulated and real data. In addition, we show the relative

importance of the variables changes when we consider unbalanced misclassification costs.
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Preface

Most of the work presented in this thesis will be published or it is being currently considered for

publication. Specifically:

• Parts of Chapter 1 and the vast majority of Chapter 3 are being reviewed and have been made

available as a pre-print, see Karapanagiotis et al. (2021).

• Chapter 4, being an extension of Chapter 3, will be subsequently submitted for publication.

• The work in Chapter 2 is self-contained and will be submitted to a scientific journal in due course.
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Chapter 1

Introduction

Abstract This work is concerned with model building and evaluation for binary out-

comes (risk prediction models). Our principal thesis is to move beyond standard approaches

and incorporate information on how a model will be used and the consequences of decisions

arising from its use when building and evaluating risk prediction models1.

In this chapter, we describe a few commonly used performance measures to evaluate

risk prediction models and we illustrate their main shortcoming: they are insensitive to

the consequences from using a model in clinical practice. They do not provide an answer

as to whether a model should be used in clinical practice. More importantly, they do not

tell us if using the model will enhance medical decision-making let alone improve health

outcomes of the targeted individuals. To overcome this shortcoming, we present an existing

model evaluation metric (the Net Benefit), which is sensitive to the clinical consequences.

Finally, in this chapter we advocate in favour of and motivate a Bayesian formalism on risk

prediction.

Outline We start by motivating our work (Section 1.1) and summarising traditional

performance measures for evaluating risk prediction models (Section 1.2). We then present

their main shortcoming using two toy examples (Section 1.3). That is, they do not reflect the

consequences of taking action based on the model’s output. We then rely on decision theory

and present a widely used approach to quantify the preferences of different consequences

(Section 1.4). Building upon these concepts we introduce a model evaluation metric (the

Net Benefit) that is sensitive to the clinical consequences (Section 1.5). In Section 1.6 we

motivate the use of the Bayesian paradigm. We finish in Section 1.7 with an overview of

the rest of the thesis.

1Throughout this dissertation I use “our/we” rather than “my/I” as a stylistic choice.
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1.1 Motivation

Risk prediction models are widely used in healthcare. They yield predictions for individuals at risk of

having a certain disease or condition (diagnostic setting) or experiencing a certain health event in the

future (prognostic setting). In the diagnostic setting, the probability that a particular disease is present

can be used, for example, to inform the referral of individuals for further testing, to initiate treatment,

or to reassure individuals that a serious cause for their symptoms is unlikely. In the prognostic setting,

predictions can be used for planning interventions based on the risk for developing a particular outcome

or state of health within a specific period. In both diagnostic and prognostic settings risk prediction

models are being developed, validated, implemented, and updated with the aim of assisting clinicians

and individuals in estimating probabilities and potentially guide their decision-making (Baumgartner

et al., 2017; Down et al., 2014; NICE, 2016, 2018). Risk prediction models are becoming increasingly

abundant in the medical literature (Bellou et al., 2019; Carrick et al., 2020; De Kat et al., 2019; de Munter

et al., 2017; Dijkland et al., 2020; Hou et al., 2019; Usher-Smith et al., 2016; Volkers et al., 2018), and

policymakers are increasingly recommending their use in clinical practice guidelines (Meschia et al.,

2014; NICE, 2016, 2018; Rabar et al., 2012). Three illustrative examples of prediction models currently

recommenced for use in clinical practice are QRISK2, EuroSCORE, and PREDICT.

QRISK2 estimates the 10-year probability (risk) of developing cardiovascular disease (CVD)

(coronary heart disease, stroke, or transient ischaemic attacks) based on age, sex, lifestyle factors (e.g.,

smoking status), blood-based biomarkers (e.g., total serum cholesterol) and pre-existing conditions

(e.g., rheumatoid arthritis) among others (Hippisley-Cox et al., 2008). QRISK2 has been validated in

multiple studies (Collins and Altman, 2010, 2012; Hippisley-Cox et al., 2014; Pike et al., 2016) and

is currently recommended by the National Institute for Health and Care Excellence (NICE) for use

in clinical practice. Specifically, the guidelines recommend that clinicians use QRISK2 to determine

whether to prescribe statins for primary prevention of CVD if a person’s CVD risk is 10% or more

(NICE, 2016).

Another widely used model is the European System for Cardiac Operative Risk Evaluation (Eu-

roSCORE) (Nashef et al., 1999; Roques et al., 2003). EuroSCORE is used for predicting the risk of

operative mortality in cardiac surgery patients taking into account risk factors encompassing patient-

related, cardiac and operation-related characteristics. It is recommended as a tool for weighing the risk

of surgery against the expected natural history of valvular heart disease and as a basis for decision-

making (Baumgartner et al., 2017). More specifically, the EuroSCORE is routinely used to guide

clinical decisions for cardiac patients undergoing aortic valve replacement (AVR). Cardiac patients

with severe symptomatic aortic stenosis are considered for surgical AVR (SAVR) or transcatheter aortic

valve implantation (TAVI). Published guidelines recommend TAVI over SAVR if a patient’s predicted

mortality risk is above 10% (Baumgartner et al., 2017). We revisit EuroSCORE in Chapter 3.

A third example is PREDICT which allows estimation of prognosis and the absolute benefits of

adjuvant therapy for women with invasive breast cancer (Wishart et al., 2010). Accurate prognosis is

crucial in clinical decision-making around adjuvant therapy in breast cancer. Adjuvant therapies, such as
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chemotherapy, are associated with serious side-effects and so are typically only in the patient’s interest

when there is non-negligible risk of mortality. PREDICT is based on clinical and pathological factors

such as age, tumour size, tumour grade, number of positive nodes, estrogen receptor (ER) status, human

epidermal growth factor receptor 2 (HER2) status, among others. It has been validated in many cohorts

(De Glas et al., 2016; Dos Reis et al., 2017; Karapanagiotis et al., 2018; Wishart et al., 2011), and is

currently recommended by the NICE to estimate prognosis and the benefits of adjuvant therapy (NICE,

2018).

A common feature of all these models is that probability estimates are based on combining informa-

tion from multiple predictors (or risk factors, or covariates) observed or measured from an individual.

They are typically constructed as regression models (or machine learning algorithms) by having multiple

predictors as inputs and a continuous risk estimate between 0 and 1 as output. In this work, we focus on

binary outcomes but some of the concepts can be easily extended to multi-category and time-to-event

outcomes2.

A first step before a model is recommended for use in clinical practice is its validation. The aim

of model validation is to evaluate (quantify) the model’s predictive performance in either resampled

(participant) data of the development data set (often referred to as internal validation) or in other,

independent participant data that were not used for developing the model (often referred to as external

validation) or a combination of the two (Altman and Royston, 2000; Moons et al., 2012).

Several performance measures (or metrics) have been proposed for model validation (Altman

and Royston, 2000; Steyerberg et al., 2011; Steyerberg and Vergouwe, 2014; Steyerberg et al., 2010).

Here, we divide them into the traditional (statistical) performance measures (Section 1.2) and (more

recent) measures that incorporate the clinical consequences of the predictions. We argue that traditional

measures do not capture the consequences of using the model in clinical practice and hence present a

distorted image of model validation. Two toy examples illustrate this (Section 1.3). As a result, we (and

others) advocate for measures that incorporate the clinical consequences of the predictions (Chatterjee

et al., 2016; Jung et al., 2020; Localio and Stack, 2015; Moons et al., 2015; Shah et al., 2019). We

present such a measure in Section 1.5, first proposed in the seminal work of Vickers and Elkin (2006).

The main concept behind it though had been derived previously by Pauker and Kassirer (1975) and

Gail and Pfeiffer (2005). The key idea is based on a decision-theoretic approach to quantify the value

provided by a model when considering the likely range of an individual’s risk and benefit preferences,

without the need for actually measuring these preferences for a particular individual (Section 1.4). As a

result, we can incorporate consequences of the predictions and, in theory, the method can tell us whether

a model is worth using at all or which of several alternative models should be used. Hence, it can be

used for model comparison as well.

Even though such measures allow the evaluation of clinical utility of a risk prediction model they

are inevitably and inherently (aggregate) summary measures. In clinical practice we need to obtain

2Additionally, sometimes continuous outcomes are often treated as binary for modelling purposes (e.g., blood pressure
thresholds, disease severity score thresholds, etc).
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individualised predictions and quantify our uncertainty for these predictions. Hence, in this work we

advocate in favour of a Bayesian formalism to quantify uncertainty in a principled and coherent way

(Section 1.6). Finally, Section 1.7 provides an overview and outline to the rest of the thesis.

1.2 Traditional performance measures

Many performance measures have been developed and proposed to evaluate risk prediction models.

Here, we group them based on two aspects that characterise the performance of a risk prediction model:

calibration and discrimination (Harrell, 2015; Steyerberg et al., 2019).

Calibration refers to the agreement between observed probabilities and predicted probabilities. A

model is well calibrated if, for every 100 individuals given a risk of x%, close to x will indeed have the

outcome of interest. For instance, if a 60% probability is predicted that the outcome will occur, then the

outcome should on average occur in every 60 out of 100 patients with predicted probabilities of 60%.

A few examples of calibration measures are the Hosmer-Lemeshow goodness-of-fit test (Hosmer and

Lemesbow, 1980), Cox’s intercept and slope approach (Cox, 1958) and the integrated calibration index

(ICI) (Austin and Steyerberg, 2019). The ICI, which we will be using later, is a numerical summary

of model calibration over the observed range of predicted probabilities (Table 1.1). It quantifies the

agreement between observed and predicted probabilities, with values closer to zero indicating better

performance. We refer to Huang et al. (2020) for more examples of calibration measures. Calibration

concerns the average risk in a population and a well-calibrated model may assist in, for example,

prevention decisions, but a miscalibrated model may lead to situations where an individual at high risk is

assigned a low predicted probability, and thus forgoes effective (preventive) intervention (Holmberg and

Vickers, 2013). However, a model that reliably predicts probabilities that are all between 40% and 60%

is not able to distinguish patients with the outcome from patients without the outcome. Such a model is

not able to separate risk estimates, and consequently, its discriminative ability is poor.

The performance measure that evaluates how well a model separates risk estimates is discrimination.

Discrimination quantifies how well the model can separate those who do and do not have the outcome

of interest. If the predicted values for cases are all higher than for non-cases, we say the model can

discriminate perfectly, even if the predicted risks do not match the proportion with the outcome (i.e., even

if the model has poor calibration). A prediction model can excellently distinguish patients with different

outcomes, if it predicts probabilities close to 100% for patients with the outcome and probabilities close

to 0% for patients without the outcome. Discrimination for binary outcomes is most often measured

by the receiver operating characteristic (ROC) curve (Fawcett, 2006). The ROC curve is a plot of true

positive rate (e.g., percentage of individuals correctly classified as having the outcome, or sensitivity)

versus false positive rate (e.g., percentage of individuals incorrectly classified as having the outcome,

or 1-specificity) evaluated at consecutive threshold values of the predicted probability (Table 1.1). The

area under the ROC curve (AUROC) is a summary of the ROC curve. It represents the probability

that an individual with the outcome has a higher predicted probability than an individual without the
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outcome for a random pair of individuals consisting of one with and one without the outcome (Hanley

and McNeil, 1982). A model that perfectly discriminates between individuals with and without an

outcome would have an AUROC of 1 (the theoretical maximum), whereas a model with no ability to

discriminate between such individuals would have an AUROC of 0.5.

It is recommended that risk prediction models are developed and validated using performance mea-

sures that capture both calibration and discrimination (Collins et al., 2015). However, both discrimination

and calibration are statistical properties characterizing the performance of a prediction model, but neither

captures the clinical consequences of a particular level of discrimination or degree of miscalibration. In

other words, a model with good discrimination and calibration does not necessarily result in it being

clinically useful. This is because traditional model metrics are insensitive to the benefits and harms of

correct and incorrect classifications. The two toy examples that follow illustrate this point.

1.3 Limitations of traditional performance measures

The toy examples that follow present two artificial but realistic scenarios that illustrate the shortcomings

of relying on traditional performance measures when evaluating prediction models. That is, we may

end-up (confidently) selecting an inadequate model, i.e., a model with sub-optimal clinical utility (Table

1.1).

1.3.1 Toy example 1

We consider the following hypothetical scenario for a patient treated with chemotherapy for metastatic

non-seminomatous testicular cancer. After chemotherapy, retroperitoneal lymph nodes can either still

contain remnants of the metastases (residual disease) or only contain benign necrosis. Surgical lymph

node resection (lymphadenectomy) can provide certainty and remove metastatic remnants but should

be avoided when lymph nodes only contain benign necrosis. Following Van Calster et al. (2020) we

assume that 55% of patients have residual disease (the binary outcome). We compare two logistic

regression models to estimate the probability of residual disease. Both include the same continuous

covariate but a different binary covariate. These covariates can be thought of as tumour-specific markers

(e.g., percentage reduction in residual mass size after chemotherapy) or other biomarkers (e.g., elevated

human chorionic gonadotropin levels).

Model A includes a binary covariate with a sensitivity of 88%, and a specificity of 49%. Model

B includes a covariate with a sensitivity of 52%, and a specificity of 93%. We refer to Section A.1

for more details on the data generating model. We evaluate the models on an independent dataset of

100,000 patients. Model A and B have AUROCs of 0.754 and 0.791, respectively. The ROC curves

have a different shape (Figure 1.1a). For Model A, the curve is higher in the top right and for Model B,

in the lower left. Figure 1.1b presents a graphical assessment of calibration by plotting the predicted

probabilities (x axis) against the observed probabilities (y axis), calculated using smoothing techniques

(Austin and Steyerberg, 2014). Ideally, if predicted and observed probabilities agree (as they do here),
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Table 1.1 Common terms

Calibration Correspondence between predicted and observed probabilities,
usually assessed graphically (in calibration plots, e.g., Figure 1.1b).
Further, in this work, we are using the ICI as a summary measure
of calibration: ICI = 1

N

∑N
i=1 |predictedi − observedi| where i =

1, . . . ,N indexes datapoints.
Clinical utility of model Quantification of whether the model will lead to better (clinical)

decisions and consequently to an improved health outcome, com-
pared to a default strategy (e.g., not using the model or using
another model).

Discrimination The ability of a model to differentiate between those who do or do
not experience the outcome. A model has perfect discrimination
if the predicted risks for all individuals who have (diagnostic) or
develop (prognosis) the outcome are higher than those for all indi-
viduals who do not experience the outcome. In this work, we are
using the AUROC as a measure of discrimination. It corresponds
to the probability that a randomly selected diseased patient had a
higher risk prediction than a randomly selected patient who does
not have the disease.

Model evaluation/validation The terms evaluation and validation are used interchangeably in
this work. The aim of model validation is to evaluate (quantify)
the model’s predictive performance.

Net benefit (NB) A simple performance measure, with expected benefits and harms
put on the same scale so that they can be compared directly. Benefit
- (harm × exchange rate). The expected benefit is represented
by the number of patients who have the disease and who will
receive treatment (true positives) using the proposed strategy. The
expected harm is represented by number of patients without the
disease who would be treated in error (false positives) multiplied
by a weighting factor (exchange rate) based on the patient’s target
threshold. See Section 1.5 for details.

Sensitivity (or true positive rate) The proportion of true positives in individuals
with the outcome.

Specificity (or true negative rate) The proportion of true negatives in individu-
als without the outcome.

Target threshold (t) It reflects the probability at which we are indifferent about be-
tween two strategies (e.g., administer treatment or not). It captures
the relative value the patient places on receiving treatment for the
disease, if present, to the value of avoiding treatment if the disease
is not present. If the treatment has high efficacy and minimal cost,
inconvenience, and adverse effects (e.g., oral antibiotics for com-
munity acquired pneumonia), then the target threshold will be low;
conversely, if the treatment is minimally effective or associated
with substantial morbidity(e.g., radiation for a malignant brain
tumour), then the target threshold will be high. For details see
Section 1.4.
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(a)

(b)

Figure 1.1 Results Toy example 1: (a) ROC curves, and (b) calibration curves for Models A and B.

the plots show a 45-degree line. The ICIs for Models A and B are 0.382 and 0.300, respectively. Based

on these results we would conclude Model B demonstrates better predictive performance. But, as we

will now show, when we take into consideration the clinical consequences of taking action based on the

two models’ output, Model A should be preferred.

To take into account the clinical consequences we need to valuate decisions based on using each

of the models. To do this, we need information about the benefits and harms of correct and incorrect

decisions. Cost-benefit analysis is a widely used approach to valuate decisions (Hunink et al., 2014).

Briefly, benefits and harms are summarised using utilities (formally defined in Section 1.4). A utility

function assigns a value to each of the four possible decision-outcome combinations stating exactly

how beneficial/harmful each decision (surgery or no surgery in our example) is. For each of the four

possible outcomes derived from the model output for each patient: true positives (the model correctly

flags a patient having residual disease and lymphadenectomy is carried out), false positives (the model

incorrectly flags a patient as having residual disease, and lymphadenectomy is carried out), true negatives

(the model correctly does not flag a patient having residual disease, and no surgery is carried out), and

false negatives (the model incorrectly fails to predict residual disease, and no surgery is carried out), a
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Figure 1.2 Re-scaled expected utility (EU) for different thresholds values for Models A and B. For each
threshold value the model with the highest EU should be preferred. max(EU) is the maximum of the EU
across both models and therefore does not correspond to the model-specific maxima.

Table 1.2 Utility values from Jung et al. (2020).

Parameter Description Value

UT P Utility for true positives (lymphadenectomy is appropriate and provided) -28,613
UFP Utility for false positives (lymphadenectomy is not appropriate but provided) -14,970
UT N Utility for true negatives (lymphadenectomy is not appropriate and not provided) -11,646
UFN Utility for false negatives (lymphadenectomy is appropriate but not provided) -37,085

utility value is assigned. Then, we can calculate expected utility (EU) of making treatment decisions

(surgery yes or no) based on each of the models.

Figure 1.2 shows a re-scaled version of the EU for each of the models. The graph, allows us to show

the relationship between the EU (y axis) for different values of the utilities which are summarised using

the threshold concept (x axis) (Pauker and Kassirer, 1980). (We formalise this concept in Section 1.4).

For now it is sufficient to state that for each threshold on the x axis the model with the highest EU should

be preferred. The vertical dashed line presents the threshold corresponding to utilities values reported by

Jung et al. (2020) (Table 1.2), which we assume are the “true” utilities. We see that under these utilities

Model A should be preferred. Actually, this is the case for a wide range of threshold values up to 65%.

Recall that both the AUROC and ICI, being agnostic to the clinical consequences of using the models,

preferred Model B.

Our results are subject to variability due to the stochasticity of the data generation process. To

account for this variability we repeat the simulation 1000 times, and we record the percentage of times

each model is declared a winner based on each performance measure (Table 1.3). The discrepancy

between the performance measures is evident, with the AUROC choosing Model B as the best 100% of

the times, whist Model A is the best when we take into consideration the benefits and harms. Interestingly,

the ICI is slightly better than a coin flip in choosing the best model.
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Table 1.3 Percentage of times each model (A or B) is declared a winner (over 1000 repetitions) based on
each performance measure. AUROC: area under the ROC curve, ICI: integrated calibration index, EU:
expected utility.

AUROC ICI EU

Model A 0 54 100
Model B 100 46 0

For this example, we used the utilities calculated by Jung et al. (2020) which results in an optimal

threshold of 0.28 (vertical line, Figure 1.2). This is very close to the 0.2 threshold previously suggested as

clinically reasonable for this scenario (Verbakel et al., 2020). Even though Jung et al. (2020) investigate

a different clinical condition and in a different context, our conclusions still hold.

This is because the crucial point in our example is that the ROC curves cross. In many practical

applications, it is likely that the ROC curves will cross. One reason for this is that comparisons are

likely to be between models with similar performance. In many situations, a model is adjusted a small,

incremental step at a time. The result is a series of comparisons between similar models, which are

therefore likely to have similar ROC curves. When curves are similar, it is unlikely that one will

dominate another – unlikely that one will have a superior sensitivity for all choices of specificity (Hand,

2009). Indeed, empirical evidence supports this hypothesis: Provost et al. (1998) compared a variety of

models on ten datasets and found that for only one there was an absolute best performing model. More

recently, Shah et al. (2019) presented a similar scenario to ours using real data.

Nevertheless, the problem does not arise only when ROC curves cross. There are situations where

both AUROCs and ROCs are almost indistinguishable and yet there is a clear winner between the models

when information about the benefits and costs is considered. The next toy example illustrates such a

scenario.

1.3.2 Toy example 2

Our second example is a diagnostic scenario inspired by Gail and Pfeiffer (2005). They consider

a self-administered questionnaire designed to estimate risk of colorectal cancer in the next 5 years.

The decision to be taken is whether an individual should be referred for further evaluation, such as

colonoscopy, or not. Gail and Pfeiffer (2005) set the four utilities as: UFN =−100 for the possibility

of death and morbidity due to failing to detect colorectal cancer, UFP =−1 for the risk of bleeding or

perforation of the colon, UT P =−11 for the risk of bleeding or perforation of the colon and the lowered

chance of death or morbidity from colorectal cancer due to early detection, and UT N = 0 as a reference

value. They further assume prevalence of colorectal cancer is 0.01.

We compare three models to predict the risk of colorectal cancer. Model A includes a covariate

with sensitivity 0.9 and specificity 0.2, Model B a covariate with sensitivity 0.2 and specificity 0.6, and

Model C includes both covariates. All three models include the same continuous covariate. Details on
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Table 1.4 Average performance for each model (A, B or C) over 1000 repetitions. AUROC: area under
the ROC curve (AUROC), ICI: integrated calibration index, EU: expected utility. The EU for each model
was based on the four utilities specified at the start of Section 1.3.2. Combined these four utilities result
in an optimal threshold of 0.01. The calculation follows equation (1.2). Additionally, max(EU) is the
maximum of the EU across both models and does not correspond to the model-specific maxima.

AUROC ICI*1000 EU/-max(EU)

Model A 0.923 0.907 -1.136
Model B 0.926 0.933 -1.117
Model C 0.928 0.980 -1.105

the data generating model are given in Section A.2. All models are trained and evaluated in independent

datasets of 100,000.

Table 1.4 shows the results across 1000 repetitions. The conclusions are subtle. In terms of AUROC

Model C is the best, but in terms of ICI Model A has the advantage. Based on the AUROC and ICI

together a researcher would probably choose Model B as the best, as the inclusion of the added covariate

in Model C does not seem to offer much in terms of AUROC and results in worse ICI. But, when we

calculate the expected utility Model C is the best performing model.

These two examples showcase the disadvantage of commonly used performance measures, that is

they are insensitive to the clinical implications. Since none of these traditional metrics encapsulate if a

model’s prediction will result in a favourable change in patient care and outcome, there are recent calls

to develop clinical useful models (Chatterjee et al., 2016; Moons et al., 2015; Shah et al., 2019). To

achieve this, model evaluation must move beyond traditional metrics and “into clinically meaningful

presentations to evaluate improvement in clinical benefits of one model versus another or any model

versus none” (Localio and Stack, 2015). In the following section, we introduce the concept of the target

threshold that allows us to summarise the different benefits/harms associated with correct/incorrect

classifications of a binary outcome into a single number.

1.4 The target threshold

We showed that the traditional metrics have limited value for choosing between models (or treatment

decisions) because they do not account for benefits and harms. Here we take on a decision theoretic

approach in weighing benefits and harms when using a model to guide clinical decisions (Pauker and

Kassirer, 1975, 1980). In the rest of this section, we summarise the benefit and harms of correct and

incorrect classifications of a binary outcome into a single number, which we refer to as the target

threshold. This approach allows us to achieve two related goals:

1. determine the optimal specified level of risk to use as the target threshold for treatment decisions,

and

2. consider the possibility of incorrectly specifying benefits and harms.
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Let Y ∈ {0,1} represent a binary outcome of interest. In our previous examples, these were the

presence or not of residual disease, and the development or not of colorectal cancer the next 5 years.

The observed Y is a realisation of a binary random variable following a Bernoulli distribution with

π = P[Y = 1]. This is the marginal probability of the outcome being present, and consequently, the

probability the outcome being absent is (1−π).

We introduce utility functions to take into account the benefits or harms of different classifications.

A utility function assigns a value to each of the four possible classification-outcome combinations stating

exactly how beneficial/costly each action (treat or no treat) is. We assume that people who are classified

as positive receive treatment and people who are classified as negative do not receive treatment3. We

use “treatment” in the generic sense of healthcare intervention which could be a drug, surgery or further

testing. Each possible combination of classification (negative and positive) and outcome status (0, 1) is

associated with an utility. The four utilities associated with binary classification problems are:

• UT P, the utility of a true positive classification, that is administering treatment to an individual

who has the outcome (i.e., treat when necessary),

• UFP, the utility of a false positive classification, that is the utility of administering treatment to an

individual who does not have the outcome (i.e., administering unnecessary treatment),

• UFN , the utility of a false negative classification, that is the utility of withholding treatment from

an individual that has the outcome (i.e., withholding beneficial treatment), and

• UT N , the utility of a true negative classification, that is the utility of withholding treatment from

an individual who does not have the outcome (i.e., withholding unnecessary treatment).

The expected utilities of the two fixed courses of action (or policies) of always treat and never treat

are given by

EUtreat = πUT P +(1−π)UFP, (1.1a)

EUno treat = πUFN +(1−π)UT N (1.1b)

where EUtreat and EUno treat are the expected utility of treating and not treating, respectively. In

principle, one should choose the course of action with the highest expected utility. When the expected

utilities are equal, the decision maker is indifferent on the course of action (Pauker and Kassirer, 1975).

Based on classical decision theory, we employ the threshold concept and denote with t the threshold at

which the decision maker is indifferent on the course of action (Pauker and Kassirer, 1980). This is the

principle of clinical equipoise which exists when all of the available evidence about a course of action

does not show that it is more beneficial than an alternative and, equally, does not show that it is less

beneficial than the alternative (Turner, 2013). Clinical equipoise is regarded as an “ethically necessary

condition in all cases of clinical research” (Freedman, 1987). Based on the threshold concept, an

individual should be treated (i.e., classified as positive) if π ≥ t and should not be treated (i.e., classified

3In other words, “classify as positive” and “classify as negative” are equivalent to “treat” and “no treat” actions, respectively.
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as negative) otherwise. Having defined t as the value of π of clinical equipoise where the expected

benefit of treatment is equal to the expected benefit of avoiding treatment implies EUtreat = EUno treat or

equivalently, tUT P +(1− t)UFP = tUFN +(1− t)UT N . Solving for t,

t =
UT N −UFP

UT N −UFP +UT P −UFN

=
H

H +B
=

1
1+ B

H

,
(1.2)

where B =UT P −UFN is the difference between the utility of administering treatment to individuals

who have the outcome and the utility of withholding treatment in those who have the outcome. In other

words, B is the benefit for positive prediction, and consequent treatment, among those with the outcome.

Similarly, B can be interpreted as the consequence of failing to treat when it would have been of benefit,

that is, the harm from a false negative result (compared to a true positive result). Comparably, H is

the difference between the utility of avoiding treatment in patients who do not have the outcome and

the utility of administering treatment to those who do not have the outcome (i.e., UT N −UFP). In other

words, H is the consequence of being treated unnecessarily, this is the harm associated with a false

positive result (compared to a true negative result).

We henceforth refer to t as the target threshold. Alternative names in the literature are risk threshold

(Baker et al., 2009) and threshold probability (Tsalatsanis et al., 2010). It is a scalar function of

UT P,UFN ,UT N and UFP that determines the cut-off point for calling a result positive that maximizes

expected utility. Equation (1.2) therefore tells us that the target threshold at which the decision maker

will opt for treatment is informative of how they weigh the relative harms of false positive and false

negative results. The main advantage of this decision theoretic approach is there is no need to explicitly

specify the relevant utilities, but only the desired target threshold, which in many clinical settings may

be more intuitive. Two illustrative examples follow.

Example 1: Assume that for every correctly treated patient (true positive) we are

willing to incorrectly treat 9 healthy individuals (false positives). Then we consider the

benefit of correctly treating a patient to be nine times larger than the harm of an unnecessary

treatment: the harm-to-benefit ratio is 1:9. This ratio has a direct relationship to t: the odds

of t equal the harm-to-benefit ratio. That is, H/B = t/(1− t) which is implied by (1.2). For

example, t of 10% implies a harm-to-benefit ratio of 1:9 (odds(10%) = 10/90).

Example 2: Assume that not treating an individual with the outcome (false negative)

is 9 times worse than treating unnecessarily a healthy individual (false positive). Then

we consider the harm of not treating a patient to be nine times larger than the harm of an

unnecessary treatment: the harm-to-benefit ratio is again 1:9.

Both statements are equivalent since they result in the same H/B ratio. The difference is how each

statement is formulated. In Example 1 we formulated the statement in terms of true/false positives to
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showcase that we can derive the target threshold, t, by thinking in terms of “numbers needed” (numbers

needed to treat, numbers needed to test, etc). In Example 2 we formulated the statement in terms of false

negatives/positives to showcase that we can derive the target threshold, t, by thinking solely in terms of

harms of incorrect decisions.

Having derived the target threshold, in the next section we define the expected utility of risk

prediction. The expected utility depends on the four basic utilities which is not desirable. We instead use

the target threshold and the never treat policy to derive an interpretable simplification of the expected

utility which we call the Net Benefit of a risk prediction model. We use the Net Benefit as our model

evaluation metric throughout this thesis.

1.5 Net Benefit for risk prediction

In practice, we do not know the probability of the outcome of any given individual. Instead, we need to

estimate it, according to a set of covariates. Let X ∈Rd be a vector of d covariates and define π(x) as the

conditional class 1 probability given the observed values of the covariates, x : π(x) = P[Y = 1 | X = x].
We are concerned with the problem of classifying future values of Y from the information that the

covariates X contain. Assume we have a prediction model and an estimate of π(x), denoted π̂(x).
We classify an individual as positive if π̂(x)≥ t, where t is the target threshold (defined in (1.2)) and

as negative otherwise. The expected utility of assigning treatment or not (i.e., classifying positive or

negative) at t based on the model’s predictions π̂(x) can be written as

EUPred(t) = P(π̂(x)≥ t,y = 1)UT P +P(π̂(x)< t,y = 1)UFN+

P(π̂(x)< t,y = 0)UT N +P(π̂(x)≥ t,y = 0)UFP

= πT PRtUT P +π(1−T PRt)UFN +(1−π)FPRtUFP +(1−π)(1−FPRt)UT N

= {πT PRtB− (1−π)FPRtH}+{πUFN +(1−π)UT N},

(1.3)

where T PRt is the true positive rate, i.e., P(π̂(x)≥ t|y = 1) and FPRt is the false positive rate, i.e.,

P(π̂(x)≥ t|y = 0). The drawback of this formulation is the need to specify the four utilities. Equation

(1.3) can be simplified by considering the expected utility of risk prediction in excess of the expected

utility of no treatment. The expected utility of no treatment is given in (1.1b), and so, subtracting this

from both sides of (1.3), the expected utility of risk prediction in excess of the expected utility of no

treatment is

EUPred(t)−EUno treat = πT PRtB− (1−π)FPRtH

= B
{

πT PRt − (1−π)FPRt
t

1− t

}
.

(1.4)

This is a Hippocratic utility function because it is motivated by the Hippocratic oath. It incorporates

both the principles of beneficence (do the best in one’s ability) and non-maleficence (do no harm). Both

principles are considered central notions in bioethics (Childress and Beauchamp, 2001). To be consistent
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with the Hippocrates’s oath, the modeller chooses the model that has the greatest chance of giving an

outcome no worse than the outcome of no treatment. With B = 1, (1.4) is defined as the Net Benefit

of risk prediction versus treat none (Baker et al., 2009; Vickers and Elkin, 2006). Setting B = 1 as the

reference level means that Net Benefit is measured in units of true positive predictions. To see this we

re-write (1.4) as

NBPred(t) =
T Pt

n
− FPt

n
t

1− t
, (1.5)

where T Pt is number of patients with true positive results, FPt is number of patients with false

positive results, and n is the sample size. To simplify notation we write NB instead of NBPred(t). NB

gives the proportion of net true positives in the dataset, accounting for the different misclassification

costs. In other words, the observed number of true positives is corrected for the observed proportion of

false positives weighted by the odds of the target threshold, and the result is divided by the sample size.

This net proportion is equivalent to the proportion of true positives in the absence of false positives. For

instance, a NB of 0.05 for a given target threshold, can be interpreted as meaning that use of the model,

as opposed to simply assuming that all patients are negative, leads to the equivalent of an additional 5

net true positives per 100 patients.

Note that alternative measures, such as the relative utility (Baker, 2009; Baker et al., 2009) and the

weighted net reclassification improvement (Pencina et al., 2011), have been suggested. These 3 measures

are mathematically interconnected (Van Calster et al., 2013). Consequently, we only focus on NB which

will be our main performance measure for model evaluation throughout this thesis. In the above, we

have shown NB is defined as a function of the target threshold t, which captures the relative utilities

of treatment decisions. It is possible to plot NB for a risk prediction model, across a range of t values,

thereby allowing straightforward visual comparison across a range of possible utilities. In addition, it

can be used to compare the clinical utility of different models: for example, a basic and extended model

fitted on the same data set, or even 2 different models (developed from 2 different data sets) validated on

the same independent data set.

Even though NB (and related measures) allow us to evaluate the clinical utility of a prediction model

they remain aggregate measures. Ideally, we would like to use models to improve decision-making at

the individual level. A crucial step for this is the quantification and communication of uncertainty for

individual predictions. As a result, in this work we adopt a Bayesian paradigm for modelling.

1.6 Bayesian modelling in healthcare

Quantification of uncertainty is critically important. This is easily understood as the ability to say, “I

don’t know” and potentially abstain from providing a diagnosis or prediction when there is a large

amount of uncertainty for a given individual. With this ability, additional (human) expertise can be

sought or additional data can be collected to reduce the uncertainty to make a more informed decision. To

be more precise, in this work we focus on uncertainty quantification for individual-specific probabilities.
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We aim to get an answer to the following question: Given the available information, what is the range of

plausible values π(x) for a specific individual could take?

The Bayesian formalism can provide us with such an answer. Bayesian statistics is an approach to

data analysis based on Bayes’ theorem (Laplace, 1814), where available knowledge about parameters in

a model is updated with the information in observed data (Bernardo and Smith, 2009). The background

knowledge is expressed as a prior distribution and is combined with observed data in the form of a

likelihood function to determine the posterior distribution. The posterior can also be used for making

predictions about future events. The Bayesian paradigm allows for the construction of powerful and

flexible statistical models within a rigorous and coherent probability framework. Bayesian analysis

has been successfully applied across various research fields such as social sciences, ecology, genetics,

medicine and more (see van de Schoot et al. (2021) for a recent review).

Individual-specific quantification of uncertainty is crucial, especially in healthcare applications

(Begoli et al., 2019; Kompa et al., 2021). Whilst two (or more) models can perform similarly in terms of

aggregate metrics (e.g., AUROC, NB, etc) they can provide very different individual (risk) predictions

for the same individual (Li et al., 2020; Pate et al., 2019). This can ultimately lead to different decisions

for the individual, with potential detrimental effects. Uncertainty quantification can mitigate this issue

since it allows the clinician to abstain from utilising the model’s predictions. If there is high predictive

uncertainty for an individual, the clinician can discount or even disregard the prediction.

To illustrate this point, we use the standard Bayes posterior from the breast cancer prognostication

case study (Section 3.4.1, Chapter 3). The posterior predictive distributions for two patients are displayed

in Figure 1.3. The average posterior risk for each patient is indicated by the vertical line at 34 and

35%, respectively. Based solely on these average estimates chemotherapy should be recommended as

a treatment option to both patients (see Section 3.4.1 for justification). It is clear, however, that the

predictive uncertainty for these two patients is quite different, as the distribution of risk for patient 1 is

much more dispersed than the distribution for patient 2. One way to quantify the predictive uncertainty

would be to calculate the standard deviation of these distributions, which are 6.9% and 2.8% for patient

1 and patient 2, respectively. Even though both estimates are centred at similar values the predictive

uncertainty for patient 1 is more than two times higher than patient 2. Using this information, we could

flag patient 1 as needing more information before making a clinical decision.

In addition, for models that predict critical conditions (e.g., sepsis), uncertainty quantification is vital

for triaging patients. Clinicians could focus on patients with highly certain estimates, but also further

examine patients for whom the model is uncertain with respect to their current condition. For patients

with highly uncertain predictions, additional lab values or more frequent monitoring could be requested.

1.7 Thesis overview and outline

In this chapter, we argued that clinical utility needs to be taken into consideration when evaluating

risk prediction models. We then showed how traditional performance metrics can provide misleading
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Figure 1.3 Predictive uncertainty for the risk of death in two patients. The posterior predictive dis-
tributions reflect the range of risks assigned to these patients, and the mean risk is shown as vertical
lines. Despite the fact that both patients have similar mean risks, we may be more inclined to trust the
predictions for patient 2 given the lower amount of uncertainty associated with that prediction.

conclusions about a model’s utility. We concluded that traditional measures have limited use for

(medical) decision-making because they do not incorporate benefits and harms related to treatment

decisions. We then presented the work of Pauker and Kassirer (1975, 1980) and introduced the concept

of the target threshold, a scalar function of the four basic utilities of prediction, i.e., the optimal level of

risk for positive prediction, in the sense of maximizing a person’s expected utility given his/her four

basic utilities. The main advantage of this decision theoretic approach is there is no need to explicitly

specify the relevant utilities, but only the desired target threshold.

As a result, we have a principled and cohesive approach4, which we call standard Bayes (SB) to

evaluate the clinical utility of a risk prediction model:

1. derive an estimate of π(x)5,

2. set t, based on acceptable benefits and harms,

3. create classifications based on π(x)≥ t, and

4. calculate NB. A model is clinically useful if NB > 0, for the target threshold of interest. In a

model comparison setting, Model A should be preferred over Model B if NBModel A > NBModel B.

We use this approach in Chapter 2 to investigate the clinical utility of including information about

circulating tumour DNA when predicting response to treatment in metastatic breast cancer. We show

that incorporating trajectories of circulating tumour DNA can improve patient decisions.

Nevertheless, the SB approach has an inherit limitation. That is, the harms and benefits of different

(mis)classifications are not taken into consideration during model training. The posed model for π(x) is

4Note, this concept is general. It applies equally to a non-Bayesian as it does to a Bayesian framework. In this work, we
focus on a Bayesian paradigm, hence the name, standard Bayes (SB).

5this is a point summary of the posterior predictive distribution, such the mean or median.
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agnostic on the benefits and harms. In other words, steps 1 and 2 above are independent of each other.

Then, a natural question arises: would integrating steps 1 and 2 offer any advantages compared to SB?

In Chapter 3 we propose a novel framework that allows us to integrate steps 1 and 2. The framework

allows us to “tailor” model development with the aim of improving performance in the presence of

unequal misclassification costs. We call the approach Tailored Bayes (TB). TB allows information about

the relative utilities (summarised by the target threshold) to be taken into account whilst training the

model. We use simulation studies to showcase when TB is expected to outperform SB. We then apply

the methodology to three real-data applications. We show that incorporating this information into the

model through our TB approach leads to better treatment decisions.

An interesting observation from these applications of TB was that the relative importance of

the covariates in terms of their contribution to the predictions changes. This can have an impact

for applications where variable selection is a key (e.g., in many applications in Systems Biology

(Vyshemirsky and Girolami, 2008)) or a desirable (e.g., when cost or practicality considerations dictate

that wider deployment of the prediction model would require a reduced set of covariates to be used)

inferential task. As a result, in Chapter 4 we extend the framework to incorporate a variable selection

procedure. Variable selection is a ubiquitous challenge in statistical modelling, especially, with the rise

of high-dimensional data. We show that TB favours smaller models (with fewer covariates) compared to

SB, whilst performing better or no worse than SB. This pattern is seen both in simulated and real data.

In addition, we show that the relative importance of the covariates changes when we consider unequal

misclassification costs.

We finish with a concluding chapter that summarises the work that is presented in this thesis and

provides an outlook for future work.





Chapter 2

Individualised Predictions of Disease
Progression using ctDNA for Metastatic
Breast Cancer

Abstract Having previously introduced an approach to evaluate the clinical utility of a

risk prediction model (see Section 1.5), in this chapter we apply that approach to assess the

clinical utility of circulating tumour DNA (ctDNA) in evaluating response to treatment in

metastatic breast cancer (mBC).

Evaluation of response to treatment is essential in the management of metastatic disease.

Response to treatment is currently evaluated either using imaging techniques or repeated

tumour biopsies. However, both have limitations, such as the increased radiation burden

from repeated imaging assessments and the invasiveness of repeated biopsies. To by-

pass these limitations, ctDNA monitoring has been proposed as an attractive alternative

to track response to treatment. In this chapter, we establish the clinical utility of serial

ctDNA monitoring in predicting response to treatment in mBC. We found the incorporation

of ctDNA allows us to predict radiologic response to treatment which ultimately leads

to improved clinical decisions. In addition, the proposed modelling framework allows

us to create dynamically updated individual-level predictions. Our results demonstrate

the promise of ctDNA monitoring in predicting treatment response and its potential for

personalised clinical decision-making. We anticipate our modelling framework will to be a

starting point for more sophisticated models in additional cancer types.

Outline This chapter is concerned with a Bayesian modelling framework to predict

response to treatment in mBC. We start in Section 2.1 with an introduction to the problem.

We then describe the data (Section 2.2.1) and its challenges (Section 2.2.2). To address

these challenges, we propose a Bayesian two-stage modelling framework (Sections 2.2.3

and 2.2.4). In Section 2.2.5 we show how we use the model output to create dynamic,
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individualised predictions. We then apply the model to our data set and present the results

in Section 2.3. Section 2.4 contains a discussion commenting both on the potential impact

of the proposed model and on future work directions.

2.1 Introduction

Accurate and reliable evaluation of response to treatment is fundamental in the management of metastatic

cancer. Response evaluation during cancer therapy and follow-up of patients with solid malignancies

is currently primarily based on radiological assessments according to response evaluation criteria in

solid tumours (RECIST) (Eisenhauer et al., 2009). Repeated radiologic assessments are however time

consuming, costly, and increase the radiation burden for the patient.

In addition, novel therapies are often aimed at specific mutations. Therefore, for treatment decision-

making, up-to-date information about the genomic composition of the tumour lesions is crucial. However,

tumour characteristics can change during the course of the disease. Within a single patient, distinct

metastatic lesions can be molecularly divergent, and therapeutic stress exerted on tumour cells, par-

ticularly by targeted drugs, can dynamically modify the genomic landscape of tumours (Siravegna

et al., 2017). Repeated biopsies can provide information about these dynamic adaptations. But obtain-

ing repeated biopsies is not always feasible, given the invasiveness of the procedure. In addition, a

tissue biopsy is not always representative of the whole tumour burden due to sampling error, tumour

heterogeneity and the dynamic adaptations caused by anticancer treatments (Chung et al., 2007).

To circumvent the above-mentioned limitations regarding radiologic response assessment, as well as

the need for up-to-date information about molecular characteristics, there is a requirement for tumour-

specific, highly sensitive, non-invasive methods to determine the genomic composition of tumours and

to assess response to treatment. A potential method to obtain information about both the genomic

composition of tumours and the tumour burden is through detection and quantification of tumour DNA

in plasma. Analysis of circulating tumour DNA (ctDNA), commonly referred to as “liquid biopsy”,

is a non-invasive way to detect and measure cancer-specific molecular alterations in the blood (Alix-

Panabières et al., 2012; Siravegna et al., 2017). The use of ctDNA is emerging as a useful tool in several

settings, including cancer diagnosis and prognosis (see Siravegna et al. (2017) for an overview).

Additionally, liquid biopsies can be applied to the monitoring of response and/or resistance to

systemic therapy. For example, they can provide temporal measurements of the total tumour burden

as well as identify specific mutations that arise during therapy (Bettegowda et al., 2014). Blood-based

monitoring of treatment response is particularly attractive because it is minimally invasive, does not

involve radiation, and could ultimately be less expensive than current approaches to response assessment

(Merker et al., 2018). More importantly, an early prediction of therapeutic response could be useful to

distinguish patients most likely to benefit from continued therapy from patients unlikely to benefit, in

whom an earlier switch to an alternative therapy may spare toxicity and provide clinical benefit.
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At present, however, the clinical value of ctDNA analysis remains controversial, although evidence

indicates that the abundance of tumour cells in the blood after treatment can be predictive of response to

therapy and, thus, treatment outcomes (Cayrefourcq and Alix-Panabières, 2019; De Rubis et al., 2019).

Specifically, data suggests that ctDNA levels within an individual patient correlate with tumour burden

over time and that serial assessment of ctDNA may represent a promising approach for monitoring

treatment response, with early decreases in ctDNA serving as a predictor of response. Such correlations

between changes in ctDNA levels and tumour responses have been demonstrated in small proof-of-

principle studies in a variety of cancer types, such as lung cancer (Mok et al., 2015), colorectal cancer

(Siravegna et al., 2015), breast cancer (Dawson et al., 2013), and melanoma (Chen et al., 2016).

Specifically, for metastatic breast cancer (mBC), the capacity of serial monitoring of ctDNA to track

tumour burden has been previously addressed by several researchers. Dawson et al. (2013) evaluated

ctDNA in serially collected blood samples and determined that ctDNA exhibited greater correlation with

changes in tumour burden than other biomarkers (circulating tumour cells and CA15-3). Importantly,

ctDNA assessment was able to provide the earliest measure of treatment response in 53% of the patients

(increased ctDNA levels were detectable on average 5 months before the detection of progressive disease

using imaging). In addition, Schiavon et al. (2015) analysed ESR1 mutations in ctDNA to demonstrate

the evolution of resistance during therapy in 171 patients with advanced-stage breast cancer. In another

study Murtaza et al. (2013) showed that ctDNA could complement current invasive biopsy approaches

to identify mutations associated with acquired drug resistance in advanced cancers. These are, however,

proof-of-concept studies with small sample sizes, limited follow-up and focused on descriptive statistics.

An additional limitation worth discussing is the specificity of ctDNA quantification. The studies

above have used targeted approaches for quantification of ctDNA levels. Targeted approaches involve

the detection of previously determined genetic mutations, that is known mutations from the primary

tumour which are tracked in plasma. However, tumours are constantly evolving and in advanced stages,

genetic alterations in metastases may significantly differ from those identified in the primary tumour

(Siravegna et al., 2015). In fact, the driver landscape of metastases may differ from primary cancers

(Yates et al., 2017). This highlights the need for untargeted assessment of the tumour load. Untargeted

approaches can identify novel changes occurring during tumour treatment and do not require a priori

knowledge about the primary tumour’s genome (Elazezy and Joosse, 2018). Hence, they offer a more

comprehensive evaluation of tumour genomic composition and burden.

Here, we are proposing a probabilistic framework to model both (untargeted) ctDNA levels and

the probability of response to treatment in mBC. The model can be used to monitor both the change in

ctDNA levels but also to predict radiologic response to treatment. A key feature of the framework is the

ability to dynamically update the predictions at the individual level as additional measurements become

available. Such a longitudinal assessment, therefore, could enable the clinician to keep track of both the

overall tumour burden and disease progression status, ultimately aiding clinical decision-making. For

instance, clinicians could identify patients at risk for disease progression and select or adjust systemic
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therapy accordingly to improve patient-tailored therapy. We provide evidence of this evaluating the

clinical utility of the model using the tools introduced in Chapter 1.

The rest of the chapter is organised as follows. Section 2.2.1 presents the data, alongside the analysis

challenges (Section 2.2.2). To overcome these challenges we introduce a two-stage Bayesian modelling

framework (Section 2.2.3). In Section 2.3 we present the results and showcase the key feature of our

framework, the ability to obtain individualised, dynamically updated predictions. Section 2.4 contains a

discussion.

2.2 Methods

In this section we describe the data structure and pre-processing steps (Section 2.2.1) and the associated

challenges (Section 2.2.2). To overcome these challenges we propose a two-stage Bayesian modelling

framework (Section 2.2.3). In Section 2.2.4 we give details on the priors and computation implementation.

We then introduce two approaches to create subject-specific, dynamic predictions (Section 2.2.5).

Section 2.2.6 outlines the performance measures we use for model evaluation.

2.2.1 Data collection and pre-processing

Between August 2007 and January 2020, 1023 computed tomography (CT) scans were collected from

135 patients with metastatic breast cancer, recruited as part of the DETECT clinical trial based at

Cambridge University Hospital, UK (led by Dr. Emma Beddowes)1. The disease status, progressive

disease (PD) or not (progression: 1 = yes, 0 = no) at each scan was determined according to the

RECIST 1.1 criteria2(Eisenhauer et al., 2009). More specifically, the non-progressive disease category

encompassed all the patients with radiographically determined stable disease, partial or complete

response. At baseline 80% of the cohort was in this category. Patients were then followed during

standard-of-care (cytotoxic) chemotherapy, targeted or endocrine therapy. For each line of treatment, the

CT scan prior to the start of this line of treatment was used as baseline. As a result, the PD outcome

at each visit was determined based on the previous baseline assessment. Note that PD is repeatedly

measured during follow-up i.e., the PD outcome for each patient is recorded at each visit, and as a result

it can switch between 0 and 1 repeatedly over time.

Between August 2010 and October 2019, 992 blood samples were collected from all patients.

Blood samples were collected as follows: for patients on chemotherapy samples were taken once per

cycle (pre-treatment) and for a minimum of four cycles where applicable. For patients on continuous

1The DETECT clinical trial is an ongoing investigator-led pilot study jointly sponsored by Cambridge University Hospital
NHS Foundation Trust and the University of Cambridge (IRAS number 214569). The trial is open to any patient with metastatic
breast cancer with a clinical performance status of 0-2 which involves consenting patients to give blood samples for research
into ctDNA. The main goals are to investigate the clinical utility of ctDNA in predicting treatment response, to identify early
treatment failure and to evaluate treatment resistance, and to develop personalised treatment options evaluating biomarkers of
response.

2The RECIST criteria are used for the assessment of disease progression, and consequently for the assessment of treatment
response.
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treatments such as endocrine therapy blood samples were taken at routine clinic visits (typically every

3-6 months).This resulted in samples taken up to 24 times per patient (median 6 samples per patient).

We used a genome-wide untargeted approach, the ichorCNA algorithm, to quantify the ctDNA fraction

(Adalsteinsson et al., 2017). The algorithm quantifies tumour content in cell-free DNA (cfDNA)

based on estimation of copy number aberrations in the genome. Blood plasma of patients with cancer

contains ctDNA, but this valuable source of information is diluted by much larger quantities of DNA

of noncancerous origins, such that ctDNA usually represents only a small fraction of the total cfDNA.

The ichorCNA is a widely used tool to quantify the fraction of ctDNA in cfDNA (Ben-David et al.,

2018; Manier et al., 2018; Stover et al., 2018; Taylor et al., 2018). Prior to the analysis, the output of

the ichorCNA algorithm was arcsine transformed, which is recommended for this type of data (Ahrens

et al., 1990). All results are provided in this transformed scale.

For statistical analysis, the first CT scan was designated time zero. Blood samples taken before these

days were assigned negative time values. Also, ctDNA data collected after the last CT scan were not

used3. Further, we excluded 2 patients due to missing covariate values resulting in 133 patients included

in the analysis. The covariates include time (years) since baseline visit, ER status (1 = positive; 0 =

negative), HER2 status (1 = positive, 0 = negative), and treatment regime and treatment duration (years).

Treatment regime was defined based on the base treatment compound or the add-on if the base treatment

was missing.

We assessed the performance of the model in predicting PD by applying it to held-out test data

corresponding to last CT per patient (for the patients with more than 1 scans). The rest of the data was

used for training. This temporal validation approach (Miller et al., 1991), matches how such a model

would be used in clinical practice. All results are reported as temporal validation performance metrics,

obtained by applying the trained model to the test set. Finally, to illustrate how the model can be used to

dynamically update predictions at the individual level we excluded 3 patients from the training dataset.

2.2.2 Data challenges

Here, we outline some of the data challenges which will lead us to introducing our proposed model in

the next section.

First, the CT scans are taken at irregular time points. Figure 2.1 illustrates this for a random sample

of six patients. We see the variability in both the length of the follow-up for each patient and the actual

timing of the CT scans. For example, Patient 1 was measured 12 times within a 4.5-year period whilst

Patient 2 was measured only five times within a 1.5-year period. This makes simple approaches such as

performing separate t-tests comparing the two groups (i.e., progression yes/no at specific timepoints4)

infeasible. A more efficient approach that does not require common measurement times across all

patients is a random effects model (Laird and Ware, 1982; Raudenbush and Bryk, 2002) (sometimes also

3We recognise that ctDNA data collected after the last CT scan could have been used in the analyses (and would in principle
improve efficiency of estimation in the training dataset). Their exclusion was done to reflect how in practice the model would
be used for prediction.
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Figure 2.1 Longitudinal ctDNA (grey dots) and PD (asterisks) measurements for six patients (panels).
Ordinary least squares (OLS) summaries of the ctDNA profiles (solid lines) with 95% confidence
intervals are given per subject. Not only the direction (increase or decrease) of ctDNA varies but the rate
as well.

known as mixed effect models, hierarchical models, or multilevel models). This model also captures the

correlation between the progression measurements over time from the same patient.

Second, the CT and ctDNA measurements are not necessarily taken at the same timepoint (Figure 2.1).

This poses challenges on how to incorporate information about the longitudinal ctDNA measurements

in the model for disease progression (our primary outcome). Approaches that collapse the observed

longitudinal information over time using a summary measure (e.g., overall average, change score,

maximum, minimum, achievement of a threshold, etc.) which then could be used as a covariate in

a (logistic) model for PD are inadequate for two reasons. First, it may be difficult to decide which

summary measure to use, and as there are many candidate measures, there is perhaps a problem of

multiple comparisons. Second, we would be interpolating the chosen summary measure to the timepoint

the CT scan was taken.

To address these challenges we implement a two-stage model: first a linear random effects model is

fitted to the longitudinal ctDNA data and predicted values of the random coefficients are computed; then

a logistic random effects regression model is fitted to the binary outcome, using the random coefficients

as covariates. That is, the unobserved underlying parameters (random effects) in the longitudinal ctDNA

model are included as covariates to the primary model on disease progression. This two-stage random

effects modelling approach has many advantages. First, it allows us to handle the irregularly measured

time-varying ctDNA. Second, the model allows to incorporate the inter-subject variability in terms

of ctDNA profiles, which is illustrated in Figure 2.1. The ordinary least squares summaries of the

ctDNA measurements (grey dots) are given. Not only the direction (increase or decrease) of ctDNA

varies but the rate as well. Third, it allows us to deal with the time-gap between the CT and ctDNA

4Note that each patient can transition between PD=0 and 1 (or between PD=1 and 0) status at any timepoint during
follow-up.
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measurements, by “predicting” ctDNA values at the timepoints when CT scans were taken. Fourth,

we can take into account the inter-subject association of the successive CT scans. Lastly, the model

allows to obtain dynamic personalized prediction of future longitudinal outcome trajectories and risks of

disease progression at any time, given the subject-specific outcome profiles up to the time of prediction.

A key feature of these dynamic prediction frameworks is that the predictive measures can be dynamically

updated as additional longitudinal measurements become available for the target subjects, providing

instantaneous risk assessment.

The most common data types for such two-stage models are for continuous longitudinal and time-

to-event data (e.g., Rizopoulos (2012); Self and Pawitan (1992); Tsiatis et al. (1995)). For instance, a

binary variable indicating whether a patient survives five years after the start of treatment is a common

outcome in medicine, but the exact survival time (possibly censored) is more informative. However, in

many applications, the exact timing of the event is either unknown or not informative. For instance, for

our application, the time of disease progression within a single treatment regime is unknown. Thus, a

continuous/binary (ctDNA/PD) model is appropriate.

2.2.3 Modelling framework

We consider the problem of predicting the probability of disease progression at any timepoint during

follow-up, in a population of subjects undergoing treatment for mBC, based on longitudinal measure-

ments of ctDNA. Thus, for each subject, we have a set of continuous longitudinal measurements, and a

set of longitudinal primary outcomes (a binary variable indicating whether the subject has progressed

or not at the specific timepoint). A goal of the analysis is to provide, for each subject, an estimated

probability of progression and a quantification of the uncertainty of this estimate. This probability and

associated uncertainty estimate could be used for deciding whether the tumour is responding to the

treatment and whether the subject could benefit from changing treatment.

The statistical model has two components, one to model the longitudinal ctDNA measurements, and

one to model the longitudinal PD status. The data available for each patient i (i = 1, . . . ,n) are

[ctDNAi(si1),ctDNAi(si2), . . . ,ctDNAi(simi),PDi(ti1),PDi(ti2), . . . ,PDi(tiki),Xi]

where ctDNAi(si1) is the value of ctDNA at time s1, PDi(ti1) is the progressive disease status at time

t1, and Xi are the rest of the covariates (see Section 2.2.1). Note that timepoints s and t are indexed by i

since patients are measured at different timepoints.

The two-stage approach

In the first stage, the evolutions of the repeated ctDNA measurements are summarised by random effects

obtained by fitting a linear random effects model, and in the second stage, the resulting random effects

are used as covariates in a logistic regression model to predict the risk of PD.
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Let ctDNAi(si j) = ctDNAi(s) represent the continuous ctDNA longitudinal measurements for

individual i at measurement time j ( j = 1, . . . ,mi). The first stage model can be written as follows

ctDNAi(s) = X1i(s)βββ 1 +Z1i(s)bbbi + εεε i (2.1)

where vectors X1i(s) and Z1i(s) are p and q dimensional covariates corresponding to fixed and

random effects, respectively. They include the covariates of interest such as treatment and time. The

vector βββ 1 contains the fixed effect parameters. The vector bbbi = (bi1, . . . ,biq)
′ contains the random effects

for patient i and it is distributed as N (0,ΣΣΣb). Finally, εεε i = (εi1, . . . ,εimi)
′ is a vector of measurement

errors with εεε i ∼ N (0,σ2
ε Imi). We further assume that bbbi and εεε i are independent.

In the second stage, point estimates of the subject-specific random effects, bbbi from stage 1 are used

as predictors in a random effects logistic regression model with the disease progression as the outcome.

Let PDi(ti j) = PDi(t) represent the binary measurements (progression yes/no) for individual i at time j

( j = 1, . . . ,ki). Then, the second stage model can be written as

logit{p(PDi(t) = 1)}= X2i(t)βββ 2 +Z2i(t)uuui + γγγ
′b̂bbi (2.2)

where b̂bbi is the estimated vector of random effects from (2.1), βββ 2 and γγγ are vectors of unknown

parameters, and uuui is a vector of unknown random effects, distributed as uuui ∼ N (000,ΣΣΣu). Hence, the two

models are linked through bbbi. Note that some (or all) covariates in X2i can overlap with vector X1i in

model (2.1). In addition, we choose to include the random effects themselves from stage 1 as covariates

in stage 2 which is similar to previous work (Baghfalaki et al., 2014; Choi et al., 2014; He and Luo,

2016; Wulfsohn and Tsiatis, 1997). We did not consider different representations of the random effects

bbbi in (2.2), but we recognise other options are available, such as using the trend (bi0+bi1t) as a covariate,

which we plan to study in future extensions of the model.

A simplification

Here we implement a convenient and widely used simplification of (2.1) and (2.2). In (2.1), letting

the jth row of Z1i equal (1,si j) for j = 1, . . . ,mi, so that bbbi = (bi0,bi1)
′ corresponding to the random

intercept and slope for subject i, and with

ΣΣΣb =

[
σ2

11 σ

σ σ 2
12

]
(2.3)

we obtain a random slopes and intercepts model (Laird and Ware, 1982). In (2.2) letting the jth row

of Z2i equal 1, so that uuui = u′i0 corresponding to the random intercept for subject i, then

ΣΣΣu = σ
2
u (2.4)
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We justify this choice on the random effects in Appendix B. This parameterization postulates that

patients who have a lower/higher level for the ctDNA at baseline (i.e., intercept) or who show a steeper

increase/decrease in their longitudinal trajectories (i.e., slope) are more likely to experience the event.

Given this simplification the unknown parameter vector is ΘΘΘ = (ΘΘΘ′
1,ΘΘΘ

′
2)

′, where ΘΘΘ
′
1 and ΘΘΘ

′
2 refer to

the parameter vectors for the 1st stage and 2nd stage models, respectively. Namely, ΘΘΘ1 = (βββ 1,σε ,ΣΣΣb)
′

and ΘΘΘ2 = (βββ 2,γγγ,σ
2
u )

′.

2.2.4 Bayesian inference

To infer the unknown parameter vector ΘΘΘ, we use Bayesian inference based on Markov chain Monte

Carlo (MCMC) simulations.

Bayesian inference has many advantages. First, MCMC algorithms can be used to estimate the

posterior distributions of the parameters, while likelihood-based estimation only produces a point

estimate of the parameters. Second, Bayesian inference provides better performance in small samples

compared to likelihood-based estimation (Lee and Song, 2004).

In addition, an attractive feature of our two-stage formulation is that the model can be fitted with

readily available software, as follows. First, the linear random effects model (equation (2.1) with the

simplification (2.3)) is fitted to the longitudinal ctDNA data, and predicted summaries b̂bbi for the random

effects are computed. We use the means of the posterior distribution of b̂bbi as summary measures. Then,

the predicted values of the random effects are used as covariates in the generalized logistic model for

PD (equation (2.2) with the simplification given in (2.4)).

Fitting the two-stage model under a Bayesian framework requires first to estimate the fixed effects

of the Bayesian linear random effects model as well as the means of the posterior distribution of the

random effects, followed by estimating the logistic model parameters and random effects in the second

stage. This requires specification of the prior distributions for the parameters of the submodels in each

stage.

We use vague priors on all elements in ΘΘΘ. Specifically, except the intercept terms, all other elements

in βββ 1,βββ 2, and γγγ are N (0,100). The intercept terms as well as σε are assigned Student-t prior distribution

with mean 0, 3 degrees-of-freedom, and scale 2.5 (Gelman et al., 2008). We parametrise the covariance

matrix ΣΣΣb in terms of a correlation matrix ΩΩΩb and a vector of standard deviations σσσ through

ΣΣΣb = σσσ
′
ΩΩΩbσσσ (2.5)

Priors are then specified for the parameters on the right hand side of the equation. For ΩΩΩb, we use

the LKJ-Correlation prior with parameter ζ = 1, i.e.,

ΩΩΩb ∼ LKJ(1)

which corresponds to a uniform density over correlation matrices of the respective dimension i.e.,

all correlations matrices are equally likely a priori (Figure 2.2). Following Gelman et al. (2006) we use a
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Figure 2.2 Marginal correlation for LKJ(ζ ) prior on a 2×2 matrix size.

half Cauchy prior with scale parameter equal to 2 for every element of σσσ . We also use we use a half

Cauchy prior for σu with scale parameter equal to 2.

The posterior samples are obtained from the full conditional of each unknown parameter using

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) and the No-U-Turn Sampler (NUTS) (Hoffman

and Gelman, 2014). HMC algorithms produce samples, which are less autocorrelated than those of

other samplers such as the random-walk Metropolis algorithm. Both HMC and NUTS samplers are

implemented in Stan, which is a probabilistic programming language (Carpenter et al., 2017). We use

the brms R package version 2.14.4 to implement the models (Bürkner, 2017).

To monitor Markov chain convergence, we use the trace plots and view the absence of apparent

trends in the plot as evidence of convergence. In addition, we use the Gelman–Rubin diagnostic to

ensure the scale reduction R̂ of all parameters are smaller than 1.1 (Gelman et al., 2013). After fitting

the model to the training dataset (the dataset used to build the model) using Bayesian approaches via

MCMC, we obtain M (e.g., M = 10,000 after burn-in) samples for the parameter vector ΘΘΘ.

2.2.5 Dynamic Prediction Framework

We illustrate how to make predictions for a new subject I at time t, based on the available ctDNA

history ctDNA{t}
I = {ctDNAI(sI j);0 ≤ sI j ≤ t}, the PD history PD{t}

I = {PDI(tI j);0 ≤ tI j < t} and

the covariate history X̄XX{t}
I = {XXX1I(sI j),XXX2I(tI j),ZZZ1I(sI j),ZZZ2I(tI j);0 ≤ sI j, tI j ≤ t} up to time t, based

on the fitted models given in equation (2.1) with the simplification (2.3), and equation (2.2) with the

simplification given in (2.4).

We are interested in obtaining predictions for the probability of progressive disease (PD) at time t.

We propose two approaches to create these predictions, based on different use of the histories. The first

approach relies solely on the available ctDNA history i.e.,

p(PDI = 1|ctDNA{t}
I , X̄XX{t}

I ) (2.6)
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Equation (2.6) is the probability of progressive disease at time t based on the available ctDNA and

covariate histories up to time t. We refer to this approach as “Dynamic Predictions”. To do this, the

key step is to obtain the mean for patient I’s random effects vector bbbI from its posterior distribution

p(bbbI|ctDNA{t}
I ,ΘΘΘ1). Likely, for the linear mixed model this has a closed form solution, see next section

for details.

We further need samples from uI0. Let its posterior distribution be p(uI0|ctDNA{t}
I ,PD{t}

I ,ΘΘΘ2) which

simplifies to p(uI0|PD{t}
I ,ΘΘΘ2), since the ctDNA history, ctDNA{t}

I , is incorporated through the vector b̂bbI

which is introduced as fixed effects in equation (2.2). In this approach, we do not use information about

the PD history so the posterior further simplifies to p(uI0|ΘΘΘ2) i.e., the posterior depends only on the

parameters in the ΘΘΘ2 vector. Hence, the posterior of uI0 reduces to p(uI0|σ2
u ), which actually is the prior

distribution of the random effects. Then, (2.6) becomes

p(PDI = 1|ctDNA{t}
I , X̄XX{t}

I ) =

∫
p(PDI = 1|ctDNA{t}

I , X̄XX{t}
I ,ΘΘΘ2,uI0)p(uI0|σ2

u )duI0 (2.7)

We use the MCMC samples to approximate this expectation. Specifically, conditional on the mth

posterior sample ΘΘΘ
(m)
2 , we draw the mth sample from

p(PDI = 1|ctDNA{t}
I , X̄XX{t}

I )≈ 1
M

M∑
m=1

p(PDI = 1|ctDNA{t}
I , X̄XX{t}

I ,ΘΘΘ
(m)
2 , û(m)

I0 ) (2.8)

where in each iteration, the predicted random effect û(m)
I0 is drawn from N ∼ (0, σ̃2(m)

u ), where

σ̃
2(m)
u is the sampled value of σ2

u at the mth iteration. The above steps can be repeated to obtain an

updated prediction at any time a new measurement is recorded for this patient, by adjusting the vector

ctDNA{t}
I and the corresponding ZZZ1I , XXX1I and XXX2I matrices.

The second approach creates predictions using both the available ctDNA and PD histories, i.e.,

p(PDI = 1|ctDNA{t}
I ,PD{t}

I , X̄XX{t}
I ) (2.9)

Equation (2.9) is the probability of progressive disease at time t based on the available ctDNA, PD

and covariate histories up to time t. We refer to this approach as “Individualised Dynamic Predictions”.

Now, we need to obtain samples from both bbbI and uI0. For bbbI we follow the same procedure as before

and outlined in the next section. For uI0, let its posterior distribution be p(uI0|ctDNA{t}
I ,PD{t}

I ,ΘΘΘ2)

which simplifies to p(uI0|PD{t}
I ,ΘΘΘ2) using the same reasoning as above. Then, (2.9) becomes

p(PDI = 1|ctDNA{t}
I ,PD{t}

I , X̄XX{t}
I )

=

∫
p(PDI = 1|ctDNA{t}

I ,PD{t}
I , X̄XX{t}

I ,ΘΘΘ2,uI0)p(uI0|PD{t}
I ,ΘΘΘ2)duI0

(2.10)

This posterior expectation can be used to make predictions for a new patient, exploiting the infor-

mation that we already have about the patient. To do this, the key step is to obtain samples from the
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posterior

p(uI0|PD{t}
I ,ΘΘΘ

(m)
2 ) =

p(uI0,PD{t}
I |ΘΘΘ(m)

2 )

p(PD{t}
I |ΘΘΘ(m)

2 )

∝ p(PD{t}
I |uI0,ΘΘΘ

(m)
2 )p(uI0|ΘΘΘ(m)

2 )

(2.11)

where the first equality is from Bayes theorem. Following Wang et al. (2017) for each of ΘΘΘ
(m)
2 ,

m = 1, . . . ,M, we use adaptive rejection Metropolis sampling (Gilks et al., 1995) to draw 30 samples of

uI0 and retain the final sample. This process is repeated for the M saved values of ΘΘΘ2.

Prediction of bbb1i

Lastly, to perform all the above calculations we need first to estimate the mean of the subject-specific

random effects b̂bbI . Denote the posterior of bbbI with p(bbbI|ctDNA{t}
I ,ΘΘΘ1). For linear models it follows from

standard results on conditional multivariate normal densities that the posterior density is multivariate

normal. The mean of the posterior has the following form

E[bbbI|ctDNA{t}
I ,ΘΘΘ1] = ΣbZZZ′

1I(σ
2
ε IIImi +ZZZ1IΣΣΣbZZZ′

1I)
−1(ctDNAI −XXX1Iβββ 1) (2.12)

Then, we set b̂bbI as

b̂bbI = E[bbbI|ctDNA{t}
I ] =

∫
E[bbbI|ctDNA{t}

I ,ΘΘΘ1]p(ΘΘΘ1|D)dΘΘΘ1

≈ 1
M

M∑
m=1

Σ
(m)
b ZZZ′

1I(σ̂
2(m)
ε IIImi +ZZZ1IΣ

(m)
b ZZZ′

1I)
−1(ctDNAI −XXX1Iβββ

(m)
1 ),

(2.13)

which is the mean of the posterior distribution of the random effects. D denotes the training

data, and p(ΘΘΘ1|D) is the posterior of the fixed effects parameters. Note this is a conditional mean,

i.e., it is updated with ctDNA measurements. For instance, suppose for patient I we are interested

in the predicted probability at a new timepoint t ′, then the ctDNA history is updated to ctDNA{t ′}
I .

We can then dynamically update the posterior mean distribution using equation (2.13), i.e., calculate
1
M

∑M
m=1E[bbbI|ctDNA{t ′}

I ,ΘΘΘ
(m)
1 ], after adjusting appropriately the ZZZ1I and XXX1I matrices. This closed-form

solution for the random effects estimates is an advantage of the linear model in (2.1).

To summarise, with the M posterior samples for patient I’s random effects bbbI and uI0, predictions

can be obtained by simply plugging in realisations of the parameter vector and random effects vector

{ΘΘΘ
(m),bbb(m)

I ,u(m)
I0 ,m = 1, . . . ,M}. For example, the mth sample of the PD outcome at time t, PDI(t), is

obtained from equation (2.2):

p(PD(m)
I (t) = 1) = expit{X2I(t)βββ

(m)
2 + û(m)

I0 + γγγ
′(m)b̂bbI}
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where expit(x) = 1/(1+ exp(−x)), b̂bbI is estimated as in (2.13) and û(m)
I0 is estimated depending on

whether we are using the Dynamic Predictions or Individualised Dynamic Predictions approach. In

the former case, û(m)
I0 is estimated by sampling from the prior, using the procedure (2.8). In the latter

case, it is estimated by sampling from the posterior, using the procedure (2.11). All prediction results

can then be obtained by calculating simple summaries (e.g., mean, variance, quantiles) of the posterior

distributions of M samples {p(PD(m)
I (t) = 1),m = 1, . . . ,M}.

2.2.6 Assessing predictive performance

It is essential to assess the performance of the proposed predictive measures. Here, we focus on the

average of the posterior PD probability which we denote with π(t|ctDNA{t},PD{t}). Specifically, we

assess the discrimination (how well the models discriminate between patients who had the event from

patients who did not) using the area under the ROC curve (AUROC). We assess the calibration (the

agreement between observed and predicted probabilities) using the integrated calibration index (ICI)

(Austin and Steyerberg, 2019). We assess the overall performance (how well the models predict the

observed data) using the expected Brier score (BS) (Brier, 1950). Finally, we assess clinical utility (how

well the models classify at target thresholds) using the Net Benefit (NB).

Area under the ROC curve

First we define the true positive (TPR) and true negative (TNR) rates (see also Table 1.1) at any

given cut point c ∈ (0,1) as T PR = P{π > c|PD = 1} and T NR = P{π ≤ c|PD = 0}, where π =

π(t|ctDNA{t},PD{t}) the predicted probability of progressive disease and PD is the observed disease

status that equals to 1 if the subject experiences progressive disease at timepoint t, and 0 otherwise5.

Then, the TPR and TNR can be estimated from the empirical distribution of the predicted probabilities

(i.e., π̂) among either cases or controls. With the estimation of TPR and TNR, the ROC curve can be

constructed for all possible cut points c ∈ (0,1) and the corresponding AUC can be estimated. In general,

AUROC = 1 indicates perfect discrimination and AUROC = 0.5 means no better than random guess. We

use the pROC package (version 1.16.2) to estimate the AUROC (Robin et al., 2011).

Integrated Calibration Index

The Integrated Calibration Index (ICI) provides a numerical summary of model calibration over the

observed range of predicted probabilities (Austin and Steyerberg, 2019). For each subject in the test

sample, a binary outcome (PD) is observed and a predicted probability of the disease progression π̂ is

estimated. In addition, let π̂c denote the smoothed probability based on the loess calibration curve; π̂c is

an estimate of the observed probability of the outcome that corresponds to the given predicted probability.

5For each subject we are predicting the probability of progressive disease (π) at the last visit (which is not used for model
training, see Section 2.2.1). Consequently, we only have one predicted probability for each subject and we do not take into
account the actual time this prediction is made for.
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A common approach is to estimate π̂c using a locally weighted least squares regression smoother (i.e.,

the loess algorithm (Cleveland, 1991)). We can then calculate the absolute difference between these

two quantities: f (π̂) = |π̂ − π̂c|. Let φ(π̂) denote the density function of the distribution of predicted

probabilities. Then, we define ICI = E[ f (π̂)], where the expectation is over φ(π̂). Hence, the ICI is the

weighted difference between smoothed observed proportions (i.e., π̂c) and predicted probabilities (i.e.,

π̂), in which observations are weighted by the empirical density function of the predicted probabilities

(i.e., φ(π̂)). This is equivalent to integrating f (π̂) over the distribution of the predicted probabilities.

An estimator of ICI is ÎCI = 1
N

∑N
i=1 |π̂i − π̂c

i |, where i = 1, . . . ,N indexes the subjects in the test set.

Contrary to the AUROC, the ICI does not have an intuitive interpretation, but given its definition, lower

values indicate better performance.

Brier Score

Similarly to the ICI, the expected Brier Score (BS) is defined as BS = E[(PD− π̂)2], where the observed

disease status PD equals to 1 if the subject experiences progressive disease and 0 otherwise. An estimator

of BS is B̂S = 1
N

∑N
i=1(PDi − π̂i)

2, where i = 1, . . . ,N indexes the subjects in the test set. A BS = 0

indicates perfect prediction and BS = 0.25 means no better than random guess.

Net Benefit

For convenience we restate the Net Benefit equation:

NB =
T Pt

N
− FPt

N
t

1− t
, (2.14)

where T Pt is number of patients with true positive results, FPt is number of patients with false

positive results, and N is the test sample size.

From (2.14) we see the NB of a model is the difference between the proportion of true positives (T Pt)

and the proportion of false positives (FPt) weighted by the target threshold t (expressed on the odds

scale) at which an individual is classified as “high risk” (see Section 1.5 for details). The interpretation of

the target threshold is given in Section 1.4. Briefly, in this context, it implies the relative value for either

changing treatment if PD was likely or avoiding treatment change if PD was not likely. For example,

if the clinician views unnecessary treatment change in nine women as an acceptable cost for correctly

treating one woman with PD, this is equivalent to changing treatment in all women with ≥ 10% risk. To

show how to such information we use a range of target thresholds and plot NB on the y axis against

alternative values of t on the x axis.

2.3 Results

In this section, we apply the proposed model and prediction process to our dataset. For all results in

this section, we run two parallel MCMC chains and run each chain for 40,000 iterations. The first 2000
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Table 2.1 Area under the ROC curve (AUROC), Integrated Calibration index (ICI), and Brier score (BS)
for Models A and B evaluated on the test set.

AUROC ICI BS

Model A 0.750 0.153 0.222
Model B 0.711 0.165 0.238

iterations are discarded as burn-in and the inference is based on the remaining 38,000 iterations from

each chain. Good mixing properties of the MCMC chains for all model parameters are observed in the

trace plots. The scale reduction R̂ of all parameters are smaller than 1.1.

Since our aim is to evaluate whether ctDNA helps predicting progressive disease we compare two

models: Model A includes information about ctDNA, whilst Model B does not. This is achieved by

including (Model A) and excluding (Model B) the bbbi term from the 2nd stage model.

Initially, we included treatment duration in both 1st and 2nd stage models, but we excluded it later

from the 2nd stage models as it did not offer any predictive performance gain. Also, there is no enough

information in the data to estimate the parameters for two treatment regimes, treatment 10 and 12. The

parameters corresponding these treatments are not identifiable within the fitted models. Hence, we

recommend against using the model for patients treated with either regimes. The posterior parameter

estimates are given in Appendix B (Tables B.1 and B.2).

We compare the two candidate models in terms of discrimination, calibration and overall performance

in the test set. We present AUROC, ICI, and BS score in Table 2.1. Under all performance measures

Model A performs better than Model B.

We further compare the models in terms of their clinical utility and present NB in Figure 2.3. The

interpretation of this plot is that the model with the highest NB at a particular target threshold has

the highest clinical value. We note Model A has the highest NB across all target thresholds, except

for very low or high values of t. NB gives the proportion of “net” true positives in the dataset. This

“net” proportion is equivalent to the proportion of true positives in the absence of false positives (i.e.,

perfect specificity). In fact, this is a direct comparison with the treat none policy, which has zero true

positives and zero false positives by default. For example, Model A has an NB of 0.289 at the 25% target

threshold, which is equivalent to detecting ≈ 29 PD cases and suggesting zero unnecessary treatment

changes per 100 patients. Under Model B, this would be ≈ 25 detected PD cases. We can also calculate

the difference in NB between the two models. Consider again the Model A which yields 41 true positives

and 19 false positives at the 25% risk threshold (NB = 0.289). At the same threshold, Model B yields

38 true positives and 22 false positives (NB = 0.252). The difference in NB for the Models A and B at

the 25% target threshold is 0.289–0.252 = 0.037. Hence, Model A has 3.7 more net detected PD cases

per 100 patients. This is equivalent to having 3.7 more detected PD cases per 100 patients for the same

number of unnecessary treatment changes.
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Figure 2.3 Net Benefit for a range of target thresholds. A model is of clinical value if it has the highest
NB compared with the simple strategy of no treatment (horizontal black line) across the full range of
target thresholds. The model with the highest NB at a particular target threshold enables us to change
treatment as many high risk patients as possible while avoiding harm from unnecessarily changing
treatment to low risk patients.

2.3.1 Dynamic Predictions

To illustrate the subject-specific predictions, we set aside three patients (not used in model training) and

predict the probability of PD at clinically relevant timepoints, conditional on their available measure-

ments. The patients were chosen to represent three distinct types of longitudinal profiles (increasing,

decreasing, stable) alongside some variation on the PD outcome, i.e., both positive and negative CT

scans. Figure 2.4 presents the profiles of the three patients alongside their PD outcomes. Patients A and

B present clinically worsening and improving longitudinal measure profiles, respectively. Patient C has

a stable profile. All three patients transition between progressive and non-progressive disease at various

rates and timepoints.

Following the methodology of Section 2.2.5, we calculate dynamic predictions using ctDNA history

alone (Dynamic Predictions), or combined with the PD history (Individualised Dynamic Predictions),

based on Model A. We show the predictions of PD for each patient in Figure 2.5. To create predictions

at any given timepoint, t, we only use the available ctDNA measurements up to 0.5 years in the past, i.e.,

t −0.5. This was for two reasons. First, because more recent measurements are more informative of a

patient’s clinical status. Second, a lead-time of a few months has been observed between a rise in ctDNA

levels and clinical progression (Dawson et al., 2013; Hrebien et al., 2019)6. We start by observing that

the predictions seem to be sensitive to the ctDNA measurements and generally follow the ctDNA profiles.

For instance, the upward trend in ctDNA seen in the second to last panel (t : 1.37) of Figure 2.5a is

captured by the high predicted risk of PD. Similarly, the third (t : 0.67) and fourth panels (t : 0.94) are

examples where a decreasing ctDNA profile leads to low predicted probability of PD. Second, the two

dynamic approaches (Dynamic Predictions and Individualised Dynamic Predictions) have comparable

predicted values and prediction intervals in these patients. This indicates the use of only the ctDNA

history offers the same conclusions as both ctDNA and PD histories together. Hence, we can potentially
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Figure 2.4 Longitudinal ctDNA (grey dots) and PD (asterisks) measurements for patients A, B, and C
who have been excluded from the analysis dataset, and for whom we calculate predictions. The solid
lines are OLS estimates with 95% confidence intervals.

avoid the extra computational cost of sampling for the posterior of the random effect(s) in 2nd stage

model. Third, with such predictions, clinicians are able to precisely track the health condition of each

patient and make better informed decisions at the individual level. In particular, predicting the outcome

of therapy early would allow adaptive changes to treatment. For example, for Patient A, the ctDNA

measurements up to timepoint 0.67 (third panel) exhibit a declining pattern, and based on the last 0.5

years of data, the corresponding median predicted probabilities are 5% and 6% for the two approaches,

respectively. This indicates she is responding to treatment. On the other hand, up to timepoint 1.37 (6th

panel) the ctDNA measurements exhibit an upward trend which indicates a worsening clinical condition.

This is captured by the corresponding median predicted probabilities at 65% and 82%, respectively. This

higher risk of progressive disease at timepoint 1.37 indicates the tumour has developed resistance to

treatment and clinicians may consider alternative treatment regimes.

2.4 Discussion

In this work, we proposed a two-stage Bayesian probabilistic model to answer two related questions: (1)

whether ctDNA helps predict response to treatment in mBC (2) and, given that patients with metastatic

disease are followed-up for considerable time, can we dynamically update those predictions, as additional

longitudinal measurements become available? We found that (1) the incorporation of ctDNA to monitor

response to treatment offers clinical utility, and (2) the model allows for individualised dynamically

updated predictions.

6We recognise this strategy for dynamic predictions, using the available ctDNA measurements within 6 months of the
timepoint of prediction, is not reflected in how we develop the models on the training data. This is because we wanted to
showcase the flexibility of our approach with regards to the dynamic predictions. That is, we can calculate dynamic predictions
using the patients’ past information in various ways. For instance, the models allow for different past timeframes to be used for
different patients, leading to individualised use of a patient’s history.
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(a)

(b)

(c)

Figure 2.5 Dynamically updated predicted probabilities of PD for patients (a) A, (b) B, and (c) C. Left
axis: Median and 90% credible intervals of the predicted probability. Right axis: Observed ctDNA
measurements. The observed outcome PD (yes, no) is given as well (asterisks). Each panel shows the
corresponding predicted probabilities at timepoint, t, and the longitudinal ctDNA measurements up to
that timepoint. These measurements are color-coded depending on whether they were utilised or not in
the calculations at the corresponding timepoint.
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Our framework provides a potential path to aid personalised decision-making by providing quantita-

tive estimates of clinical outcomes, alongside uncertainty quantification. Our framework considers the

probability of disease progression for each patient individually; by doing so, it can identify individual

patients with extremely high-risk of non-response to treatment. This information can be used by clin-

icians, for example to discontinue treatment if the tumour is not responding. An additional desirable

element of our framework is uncertainty quantification at the individual level. Thus, a clinician can use

the predictions to make treatment decisions or if predictive uncertainty is high, collect more information,

e.g., more blood samples, or refer to CT scan for confirmation.

To our knowledge, this is the first attempt to propose a statistical model to predict the probability

of disease progression given available past ctDNA information in mBC. Previous studies were limited

due to small sample sizes, short follow-up, focus on descriptive relationships and targeted ctDNA

quantification. Here, we used a larger sample size of 135 patients who we followed for a median of

1.5 years. In addition, we used an untargeted approach for ctDNA quantification. The main advantage

of untargeted approaches is not needing prior information about the primary tumour’s genome. In

addition, only low depth sequencing is required, keeping the cost of the assay low. On the other hand,

a high concentration of ctDNA is needed for reliable reconstruction of tumour-specific genome-wide

changes. Furthermore, untargeted approaches show lower sensitivity than targeted ones (Chen and

Zhao, 2019). This suggests one of many avenues for future research. First, it will be useful to compare

several approaches to estimate the tumour burden and determine the most sensitive option (targeted or

untargeted) balancing the minimum cost and prior information about the primary tumour.

Second, more appropriate study designs will allow better use of the available information. An obvious

improvement would be to measure both ctDNA and PD at the same timepoints. As we mentioned

in Section 2.2.2 some patients have had considerable time gaps between the two measurements. Our

model allows us to deal with such cases by “predicting” the ctDNA values but this process in inherently

error-prone and model-dependent, especially the longer the time-gap is. This is also supported by the

high turnover of the ctDNA, which implies measurements taken further apart provide a distorted picture

of the patient clinical condition.

Third, we opted for a two-stage over a joint model to link the two processes, ctDNA and PD. That is,

we defined two separate models for the ctDNA and PD outcomes, each of them containing individual-

level random effects. We estimated the parameters of the two models separately, as this allowed us

to use existing, off-the-shelf software. Additionally, a two-stage approach can achieve comparable

predictive performance to joint modelling, although their performances in parameter estimation can be

very different (Barrett and Su, 2017; Dandis et al., 2020). However, the two-stage approach ignores the

fact that the random effects are not exactly observed but estimated, which may lead to underestimation

of the uncertainty as well as imprecision in the regression coefficients (De la Cruz et al., 2011; Sayers

et al., 2017; Wang et al., 2000). Hence, a future avenue would be the estimation of the parameters

together, in a joint modelling approach.
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Fourth, integration of more cancer-patient biomarker data could improve prognostic accuracy. The

last decades have seen significant advances in the genomics, proteomics and molecular pathology of

biomarkers in cancer. For examples, both DNA- and RNA-based biomarkers have been identified

(including mRNA and non-coding RNA) (Rapisuwon et al., 2016). In this work, we only used ctDNA

longitudinal measurements to predict disease progression. But our model could be extended to more

serially measured biomarkers. This would allow us to consider the between-biomarkers correlation, and

estimate the adjusted association of each longitudinal biomarker with the risk of disease progression.

Often, such biomarkers vary over time, leading to scenarios where disease progression can be predicted

using covariates that are both longitudinal and high-dimensional. To our knowledge, extensions to high-

dimensional settings where the covariates are measured longitudinally are currently lacking. This is even

more pressing under a joint modelling approach as estimation of joint models becomes computationally

prohibitive when more than a handful of longitudinal covariates are included.

Another avenue for future research is to determine optimal number and/or timing of ctDNA monitor-

ing before a clinical decision is made. We showed that tumour burden can be used to predict disease

progression and it can be used to change therapeutic regime, if necessary. An open question is how long

after treatment initiation we should wait before start measuring ctDNA and how often. This is crucial

given recent evidence of time-lag between disease progression determined from ctDNA and CT scans

(Bettegowda et al., 2014; Dawson et al., 2013; Ma et al., 2020).

Lastly, we used a wide range of target thresholds to evaluate the clinical utility of our model. Future

research can be directed towards identifying a smaller range of reasonable target thresholds. This can

be achieved by eliciting patients’ and/or clinicians’ preferences regarding the relative costs of different

classification errors. Numerous techniques that have been proposed in the literature can help with this

(e.g., Hunink et al. (2014); Tsalatsanis et al. (2010)). Nevertheless, in practice, eliciting these preferences

may be challenging. In such situations, we advocate using a range of plausible t values that reflect

general decision preferences. This range can be set by asking for sensible upper and lower bounds on

the maximum number of false positives one would tolerate to find one true positive. For example, if a

detected progressive disease is worth 10 unnecessary treatment changes, an appropriate target threshold

would be 1/(1 + 10) = 9%. A risk-averse person would perhaps tolerate more unnecessary treatment

changes and motivate a lower bound on the target threshold of 1%. In a clinical context, and with severe

illness, the upper bound on the target threshold usually does not exceed 50% – an undetected progressive

disease is generally considered more harmful than a false positive case (Wynants et al., 2019).

To conclude, our results suggest the incorporation of ctDNA in clinical practice offers clinical

utility and allows for individualised risk predictions throughout a course of therapy. Individualised risk

modelling will facilitate personalised therapeutic approaches, with wide applicability in oncology and

other areas of medicine.



Chapter 3

Tailored Bayes: a risk modelling
framework under unequal
misclassification costs

Abstract Risk prediction models are a crucial tool in healthcare (see Chapter 1). How-

ever, risk prediction models for a binary outcome are often constructed using methodology

which assumes the costs of different classification errors are equal. In many healthcare

applications this assumption is not valid, and the differences between misclassification

costs can be quite large. In Chapter 1 we introduced a decision analytic approach to take

into account unbalanced misclassification costs. We called it standard Bayes (SB). In

Chapter 2 we applied that approach to assess the clinical utility of ctDNA in evaluating

response to treatment in metastatic breast cancer. Here we show this strategy may still result

to sub-optimal solutions. This lead us to present Tailored Bayes (TB), a novel Bayesian

inference framework which “tailors” model fitting to optimise predictive performance with

respect to unbalanced misclassification costs. We use both simulation and real data to show

the advantages of TB compared to SB.

Outline We start in Section 3.1 showing that most commonly used prediction models

for a binary outcome implicitly assume equal misclassification costs, which is undesirable

in many applications. We then briefly introduce already proposed solutions and their

limitations. We then present TB, a novel framework to incorporate misclassification

costs into Bayesian modelling (Section 3.2). In Section 3.3 we use simulation studies to

showcase when TB is expected to outperform SB. We then apply TB to three real-world

applications, and demonstrate the improvement in predictive performance over standard

methods (Section 3.4). Finally, Section 3.5 contains a discussion on the methodology and

avenues for future work.
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3.1 Introduction

In clinical medical research, much effort has been invested in developing decision support systems for

diagnostic and prognostic settings. Most of these systems are based on risk prediction models. We

saw three examples (QRISK2, EuroSCORE and PREDICT) in Chapter 1 (Section 1.1). Such models

are used to guide clinical decision-making, for instance whether an individual should be treated or not.

“Treatment” can refer to a wide range of healthcare interventions, such as additional diagnostic workup,

referral to specialized care, a procedure, delaying surgery (e.g., in patients at high risk of complications),

or lifestyle changes. But the probabilistic nature of risk prediction models complicates significantly the

decision process. For example, if a prediction model estimates the probability of an individual having a

disease equal to 40%, it is unclear whether this individual should receive treatment or not. We have seen

how classical decision theory provides us with a normative approach to answer such questions (Chapter

1).

Relying on classical decision theory, we employ the concept of the target threshold. The target

threshold, t, is defined as the probability at which the decision maker is indifferent between two strategies

(e.g., administer treatment or not) (Pauker and Kassirer, 1975, 1980). We derived the target threshold

from first principles and saw how it summarises the benefits and harms of correct and incorrect decisions

through the four basic utilities of a binary classification problem (Section 1.4). The main advantage of

the threshold concept is there is no need to explicitly specify these utilities, but only the desired target

threshold. Hence, the threshold concept allows us to incorporate decision-makers’ preferences when

making treatment decisions.

Based on the threshold concept, a consistent approach to decision-making is: having a probability

estimate π̂(x) we treat based on whether or not the following holds: π̂(x)≥ t. We called this paradigm

standard Bayes (SB)1. That is, we decide to give treatment if π̂(x)≥ t, and withhold treatment otherwise.

Note that “treat” and “no treat” policies are equivalent to “classify as positive” and “classify as negative”,

respectively. So, the above statement can be re-worded as: we decide to classify as positive if π̂(x)≥ t,

and negative otherwise.

Here, we show that despite being an easy to use and widely applicable approach, the SB paradigm

may result in sub-optimal classifications (and consequent decisions). Figure 3.1 presents such a setting.

We applied SB logistic regression to data generated from a regression model with two covariates, x1 and

x2 (see Section 3.3.1 for details). The black lines give the optimal model output for various values of t.

We focus on t = 0.3 which corresponds to B/H = 2.3/1 (see equation (1.2)). This implies that we are

assuming a false negative classification is 2.3 times worse than a false positive one. The grey line shows

the average posterior predictive estimate based on the SB approach described above. The sub-optimality

of this solution is apparent, since the posterior does not cover the target t = 0.3 line. We revisit this

example in more detail in Section 3.3.1.

1Although this concept is general, we focus on a Bayesian regression paradigm, hence the name. This implies that π̂(x) is a
point summary of the posterior predictive distribution (see Section C.2).
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Figure 3.1 Optimal model output (black lines) for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9. Posterior
mean boundaries for SB (grey) when targeting t = 0.3. Shaded regions represent 90% highest predictive
density (HPD) regions. Data simulated from θ := p(y = 1|x1,x2) =

x2
x1+x2

, with y ∼ Bernoulli(θ) and
x1,x2 ∼ U (0,1) and n = 5000 (see Section 3.3.1 for details).

The fundamental cause for this sub-optimality is that most models for binary outcomes are often

constructed to minimise the expected classification error; that is the proportion of incorrect classifications.

This has been shown in Steinwart (2005); Zhang (2004) and Bartlett et al. (2006). Here, we present a

pictorial “proof” using three popular choices of loss (objective) functions used in binary classification

models - the exponential loss used in boosting classifiers (Friedman et al., 2000), the hinge loss of

support vector machines (Zhang, 2004), and the logistic loss of logistic regression (Friedman et al.,

2000; Zhang, 2004).

Figure 3.2 shows these three losses as a function of y f rather than f , because of the symmetry

between the y =+1 and y =−1 case ( f = f (x) = h(x)T β +β0) 2. The symmetry between y =+1 and

y =−1 cases implies that the positive part of the x axis, i.e., y f > 0 corresponds to correctly classified

points while the negative part corresponds to incorrect classifications. Since there is no distinction on

the type of misclassification, both errors (i.e., false positives and negatives) are treated equally while

training the models with these loss functions. Hence, it is implicitly assumed that all classification errors

have equal costs, i.e., the cost of misclassification of a positive label equals the cost of misclassification

of a negative label. (Throughout the document we refer to the costs of incorrect classifications as

misclassification costs).

However, equal costs may not always be appropriate, and will depend on the scientific or medical

context. For example, in cancer diagnosis, a false negative (that is, misdiagnosing a cancer patient as

healthy) could have more severe consequences than a false positive (that is, misdiagnosing a healthy

individual with cancer); the latter may lead to extra medical costs and unnecessary anxiety for the

individual but not result in loss of life. For such applications, a prioritised control of asymmetric

misclassification costs is needed.
2Note, in contrast to the rest of this work, in Figure 3.2 the outcome, y, is coded as {−1,+1}, instead of {0,1}. Also, f

can be any function of the input, x, linear or non-linear.
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Figure 3.2 The 0-1 (misclassification) loss function and surrogates (hinge loss, logistic loss and expo-
nential loss). All are shown as a function of y f rather than f , because of the symmetry between y =+1
and y =−1 case ( f = f (x) = h(x)T β +β0). Note that a classification error is made if and only if y f is
negative; thus the 0-1 loss is a step function that is equal to 1 for negative values of the abscissa.

3.1.1 Related work and our proposal

To meet this need, different methods have been developed. In the machine learning literature they

are studied under the term cost-sensitive learning (Elkan, 2001). Existing research on cost-sensitive

learning can be grouped into two main categories: direct and indirect approaches. Direct approaches aim

to make particular classification algorithms cost-sensitive by incorporating different misclassification

costs into the training process. This amounts to changing the objective/loss function that is optimised

when training the model (e.g., Kukar et al. (1998); Ling et al. (2004); Masnadi-Shirazi and Vasconcelos

(2010)). A limitation is that these approaches are designed to be problem-specific, requiring considerable

knowledge of the model in conjunction with its theoretical properties, and possibly new computational

tools. Conversely, indirect approaches are more general because they achieve cost-sensitivity without

any, or with minor modification to existing modelling frameworks. In this work we focus on indirect

approaches.

Indirect methods can be further subdivided into thresholding and sampling/weighting. Thresholding

refers to the target threshold concept we have already presented. We have already seen that thresholding

simply changes the classification threshold of an existing risk prediction model. We can use the target

threshold to classify datapoints into positive or negative status if the model can produce probability

estimates. This strategy is optimal if the true class probabilities were available. In other words, if the

model is based on the logarithm of the ratio of true class probabilities, the threshold should be modified

by a value equal to the logarithm of the ratio of misclassification costs (Duda et al., 2012). In practice,

however, this strategy may lead to sub-optimal solutions - we already presented such a setting (see

Figure 3.1). We further demonstrate this using synthetic (Section 3.3) and real-life data (Section 3.4).

Alternatively, sampling methods modify the distribution of the training data according to misclas-

sification costs (see Elkan (2001) for a theoretical justification). This can be achieved by generating

new datapoints from the class with smaller numbers of datapoints i.e., oversampling from the minority
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class, or by removing datapoints from the majority class (undersampling). The simplest form is random

sampling (over- or under-). However, both come with drawbacks. Duplicating samples from the minority

class may cause overfitting (Zadrozny et al., 2003). Similarly, random elimination of samples from the

majority class can result in loss of data which might be useful for the learning process. Weighting (e.g.,

Margineantu and Dietterich (2003); Ting (1998)) can also be conceptually viewed as a sampling method,

where weights are assigned proportionally to misclassification costs. For example, datapoints of the

minority class, which usually carries a higher misclassification cost, may be assigned higher weights.

Datapoints with high weights can be viewed as sample duplication – thus oversampling. In general,

random sampling/weighting determine the datapoints to be duplicated or eliminated based on outcome

information (whether a datapoint belongs to the majority or the minority class). Notably, they do not

take into account critical regions of the covariate space, such as regions that are closer to the target

decision boundary. A decision boundary specifies distinct classification regions on the covariate space

based on specified misclassification costs (see Section 3.3). This is the goal of the framework presented

here.

In this chapter, we build upon the seminal work of Hand and Vinciotti (2003), and present an

umbrella framework that allows us to incorporate misclassification costs into commonly used models

for binary outcomes. The framework allows us to tailor model development with the aim of improving

performance in the presence of unequal misclassification costs. Although the concepts we discuss are

general, and allow for relatively simple tailoring of a wide range of models (essentially whenever the

objective function can be expressed as a sum over samples), we focus on a Bayesian regression paradigm.

Hence, we present Tailored Bayes (TB), a framework for tailored Bayesian inference when different

classification errors incur different penalties. We rely on the target threshold concept to quantify the

benefits and harms of correct and incorrect classifications. We then build a 2-stage model (Section 3.2).

In the first stage, the most informative datapoints are identified. A datapoint is treated as informative

if it is close to the target threshold of interest. Each datapoint is assigned a weight proportional to its

distance from the target threshold. Intuitively, one would expect improvements in performance to be

possible by putting decreasing weights on the class labels of the successively more distant datapoints.

In the second stage, these weights are used to downweight each datapoint’s likelihood contribution

during model training. A key feature is that this changes the estimation output in a way that goes beyond

thresholding and we demonstrate this effect in simple examples (Section 3.3).

The rest of this chapter is organised as follows. Section 3.2 presents the TB framework. In Section 3.3

we conduct simulation studies to illustrate the improvement in predictive performance of our proposed

TB modelling framework over the SB paradigm. We then apply the methodology to three real-data

applications (Section 3.4). We show that incorporating this information about misclassification costs

into the model through our TB approach leads to better treatment decisions. We finish with a discussion

of our approach, findings and provide some general remarks in Section 3.5.
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3.2 Methods

In Section 3.2.1 we incorporate the target threshold in the model formulation which results in the tailored

likelihood function (Section 3.2.2) and the tailored posterior (Section 3.2.3). Section 3.2.4 gives the

data-splitting strategy we are implementing.

3.2.1 Model formulation

Denote data D = {(yi,xi) : i = 1, . . . ,n} where yi is the binary outcome indicating the class to which

the ith datapoint belongs and xi is the vector of covariates of size d 3. The objective is to estimate the

posterior probability of belonging to one of the classes given a set of new datapoints. We use D to fit a

model p(yi | xi) and use it to obtain π(x∗) for a future datapoint y∗ with covariates x∗. We simplify the

structure using p(yi | f (xi)), where f : X → R is a function that maps the vector of the covariates to

the real line i.e., the linear predictor used in generalised linear models. To develop the complete model,

we need to specify p(yi | f (xi)) and f .

In the machine learning literature, most of the binary classification procedures use a loss-function-

based approach. In the same spirit, we model p(yi | f (xi)) according to a loss function ℓ(yi, f (xi)) which

measures the loss for reporting f when the truth is y. Mathematically, minimizing this loss function can

be equivalent to maximizing −ℓ(y, f ), where exp{−ℓ(y, f )} is proportional to the likelihood function.

This duality between “likelihood” and “loss”, that is viewing the loss as the negative of the log-likelihood

is referred to in the Bayesian literature as a logarithmic score (or loss) function (Bernardo and Smith,

2009; Bissiri et al., 2016). In the introduction we saw a few popular choices of loss functions such as the

exponential loss (Friedman et al., 2000), the hinge loss (Zhang, 2004), and the logistic loss (Friedman

et al., 2000; Zhang, 2004). In this work, we focus on the following loss,

ℓwi(yi, f (xi)) =−wiyi logπ( f (xi))−wi(1− yi) log(1−π( f (xi))), for i = 1, . . . ,n (3.1)

and we define πwi( f (xi)) := π( f (xi))
wi = (exp{xT

i βββ}/1 + exp{xT
i βββ})wi , where wi ∈ [0,1] are

datapoint-specific weights. This is a generalised version of the logistic loss, first introduced by Hand

and Vinciotti (2003). We recover the standard logistic loss by setting wi = 1 for all i = 1, . . . ,n. Note

that we specify f as a linear function, i.e., f (xi) = xT
i βββ , where βββ is a (d + 1)-dimensional vector of

regression coefficients. Hence, our objective is to learn βββ . We make this explicit by replacing πwi( f (xi))

with πwi(xi;βββ ) for the rest of this work.

The datapoint-specific weights, wi, allow us to tailor the standard logistic model. We wish to weigh

observations based on their vicinity to the target threshold, t, upweighting observations close to t (the

most informative) and downweighting those that are further away. To accomplish this we set the weights

as

wi = exp
{
−λh(πu(xi), t)

}
= exp

{
−λ (πu(xi)− t)2}, (3.2)

3In this chapter we follow the notation introduced in Chapter 1. As a result, Y ∈ {0,1} and X ∈ Rd , and π(x) = P[Y = 1 |
X = x] is the conditional class 1 probability given the observed values of the covariates.
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where h is the squared distance (see Section C.6 for other options) and πu(xi) is a base/reference

prediction model. Of course, in practice we do not know πu(xi) so we cannot measure the distance

between t and each datapoint’s predicted probability, πu(xi), in order to derive these weights. To

overcome this, we propose a two-stage procedure. First, the distance is measured according to an

estimate of πu(xi), π̂u(xi), which can be compared with t to yield the weights. This estimate could be

based on any classification method: we use standard Bayesian logistic regression in the analysis below.

If a well-established model of πu(xi) already exists in the literature that could be used (as in our cardiac

surgery case study, see Section 3.4.2) this task would not be necessary. After deriving the weights,

they are then used to estimate πwi(xi;βββ ). Finally, under the formulation in (3.2) the weights decrease

with increasing distance from the target threshold t. The tuning parameter λ ≥ 0 controls the rate of

that decrease. For λ = 0 we recover the standard logistic regression model. We use cross-validation to

choose λ , see later for details.

3.2.2 Tailored likelihood function

To gain a better insight into the model we define the tailored likelihood function as

L(D | βββ ) =

n∏
i=1

exp{−ℓwi(yi,xT
i βββ )}=

n∏
i=1

(
exp{xT

i βββ}
1+ exp{xT

i βββ}

)yiwi
(

1− exp{xT
i βββ}

1+ exp{xT
i βββ}

)wi(1−yi)

(3.3)

Strictly speaking, this quantity is not the standard logistic likelihood function. Nevertheless, it is

instinctive to see its correspondence with the standard likelihood function. Thus, we rewrite (3.3) (after

taking the log in both sides) as

log(L(D | βββ )) =−
∑n

i=1 ℓwi(yi,xT
i βββ )

=
∑n

i=1 yiwi log

(
exp{xT

i βββ}
1+exp{xT

i βββ}

)
+wi(1− yi) log

(
1− exp{xT

i βββ}
1+exp{xT

i βββ}

)

=
∑n

i=1 wi

[
yi log

(
exp{xT

i βββ}
1+exp{xT

i βββ}

)
+(1− yi) log

(
1− exp{xT

i βββ}
1+exp{xT

i βββ}

)]
=
∑n

i=1 wili(D | βββ )

(3.4)

where li(D | βββ ) is the standard logistic log-likelihood function. We can further replace (3.2) into

(3.4)

log(L(D | βββ )) =
n∑

i=1

exp
{
−λ (πu(xi)− t)2}li(D | βββ )

to see that each datapoint contributes exponentially proportional to its distance from the target

threshold t, which summarises the four utilities associated with binary classification problems (see

Section 1.4). One option to proceed is by optimising the tailored likelihood function with respect to the

coefficients in an empirical risk minimisation approach (Vapnik, 1998). An attractive feature of (3.4) is
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that this optimisation is computationally efficient since we can rely on existing algorithmic tools, e.g.,

(stochastic) gradient optimisation. However, here we learn the coefficients in a Bayesian formalism.

3.2.3 Bayesian tailoring

Following Bayes Theorem, the TB posterior is

p(βββ | D) =
L(D | βββ )p(βββ )

p(D)
, (3.5)

where L(D | βββ ) is the tailored likelihood function given in (3.3), p(βββ ) is the prior on the coefficients,

and p(D) =
∫

L(D|β̃ββ )p(β̃ββ )dβ̃ββ , is the normalising constant. In this work we assume a normal prior

distribution for each element of βββ , i.e., p(β j) = N (µ j,σ
2
j ), where µ j and σ j are the mean and standard

deviation respectively for the jth element of βββ ( j = 1, . . . ,d +1). For all analysis below we use vague

priors with µ j = 0 and σ j = 100, for all j.

Conveniently, we can interpret the choice of prior as a regularizer on a per-datapoint influence (or

importance) (see Section C.1). Crucially, this allows us to view the TB posterior as combining a standard

likelihood function with a data-dependent prior (Section C.1). Hence, even though the tailored likelihood

function does not have a probabilistic interpretation the TB posterior is a proper posterior.

In Appendix C we provide details on the model inference and predictions steps (Section C.2), the

cross-validation scheme for choosing λ (Section C.3), and the Markov chain Monte Carlo (MCMC)

algorithm we are implementing (Section C.4).

3.2.4 Data splitting strategy

To avoid overfitting due to the estimation of both πu(xi) and πwi(xi;βββ ) from the same dataset we use

the following data splitting process (Figure 3.3). First, the data is split into training and testing sets.

This step is avoided if we already have an independent test set (Section 3.4.1) or if data is simulated

(Section 3.3). The train set is subsequently split again into design (20%) and development (80%). The

design part is used to estimate πu(xi). The development part is used to choose λ (with 5-fold stratified

CV, see Section C.3 for details). After choosing a λ value the model is fit to the entire development part,

and it is with respect to the posterior from this final fit credible intervals are generated in the analyses

below. Finally, the test set is used to validate the performance of the model. We opted for this three-way

splitting strategy, design-development-test set, because we have large datasets available but any other

method such as leave-one-out, (nested) cross-validation, or bootstrap methods could be used. In addition,

note that compared to SB, this data splitting strategy will increase the posterior variance of our TB

estimates. This is because contrary to SB, the TB posterior is based on the development part of the

training set rather than the entire training set.
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π̂u(xi)

λ∗

π̂(x∗) p(β|Ddevelop)

D

Dtrain

Dtest

20%

80%

Ddesign

Ddevelop

Figure 3.3 The data splitting strategy. The dataset, D, is split into train (Dtrain) and test (Dtest) sets.
The train set is subsequently split again into design (Ddesign) (20%) and development (Ddevelop) (80%).
The design part is used to estimate π̂u(xi). The development part is used to choose λ ∗ (5-fold CV,
see Section C.3 for details). After choosing a λ ∗ value the model is fit to the entire development part,
obtaining the posterior, p(βββ |Ddevelop). Finally, the test set is used to create predictions, π̂(x∗) (this is the
posterior predictive mean defined in Section C.2.)

3.3 Simulations

The simulations are designed to provide insight into when TB can be advantageous compared to the

standard Bayesian paradigm. Two scenarios where TB is expected to outperform standard Bayes (SB)

are the absence of parallelism of the optimal decision boundaries and data contamination. A decision

boundary determines distinct classification regions in the covariate space. It provides a rule to classify

datapoints based on whether the datapoint’s covariate vector falls inside or outside the classification

region. If a datapoint falls inside the classification region it will be labelled as belonging to class 1

(e.g., positive), if it falls outside it will be labelled as belonging to class 0 (e.g., negative). According to

Bayesian decision theory the optimal decision boundaries determine the classification regions where

the expected reward is maximised given pre-specified misclassification costs (Duda et al., 2012). More

specifically, we classify as positive if π(x)
1−π(x) >

t
1−t , where π(x) denotes the true class 1 probability, as

in Section 1.5. Simulations 1 and 2 present two settings where the optimal decision boundaries are not

parallel with their orientation changing as a function of the target threshold. Simulation 3 is an example

of data contamination.

3.3.1 Simulation 1: Linear Decision Boundaries

We first evaluate the performance of tailoring by extending a simulation from Hand and Vinciotti (2003).

We simulate n data points according to two covariates, x1 and x2, and assign label 1 with probability:

θ := p(y = 1|x1,x2) =
qx2

x1+qx2
with y ∼ Bernoulli(θ), x1,x2 ∼ U [0,1] and where q is a scalar. The

parameter q determines the relative prevalence of the two classes, when q > 1 there are more class

1 than class 0, otherwise there are more class 0 than class 1. Figure 3.4 shows the optimal decision

boundaries in the covariate space for a range of target thresholds using n = 5000 and q = 1 (which
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(a) (b)

Figure 3.4 Optimal decision boundaries (black lines) for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9. Posterior
mean boundaries for SB (grey) and TB (yellow) when targeting the (a) 0.3, and (b) 0.5 boundary. Shaded
regions represent 90% highest predictive density (HPD) regions.

leads to a prevalence of 0.5)4. A key feature is that these boundaries are linear, but not parallel. The

absence of parallelism renders any linear model unsuitable as a global fit, but the linearity of the decision

boundaries allows linear models to describe these boundaries sufficiently.

We use the decision boundaries corresponding to 0.3 and 0.5 target thresholds as exemplars. SB

results in a sub-optimal estimated decision boundary for t = 0.3 (Figure 3.4a). The estimated 0.3

boundary from SB is parallel to the 0.5-optimal boundary. This is expected because under this simulation

setting logistic regression is bound to find a compromise model which should be linear with level lines

roughly parallel to the true 0.5 boundary (where misclassification costs are equal). On the other hand, TB

allows derivation of a decision boundary which is far closer to the optimum. Note the wider predictive

regions of the tailoring. This is an expected consequence of our framework which we comment on in

Section C.6. When deriving decision boundaries under the equal costs implied by a 0.5 target threshold

(Figure 3.4b), the two models are almost indistinguishable.

To systematically investigate the performance of tailoring across a wide range of settings, we set-up

different scenarios by varying: (1) the sample size, (2) the prevalence of the outcome, (3) and the target

threshold. Model performance is evaluated in an independently sampled dataset of size 2000. Under

most scenarios TB outperforms SB (Figure 3.5). The performance gains are evident even for small

sample sizes. With a few exceptions (most notably t = 0.7 and 0.9) the advantage of tailoring is relatively

stable across sample sizes. The advantage of tailoring persists even when varying the prevalence of the

outcome. In fact, we see that under certain scenarios TB is superior to SB even for the 0.5 boundary.

Figure 3.6 illustrates such a scenario for q = 0.1, which corresponds to prevalence of 0.15. Under such

class imbalance, which is common in medical applications, even when targeting the 0.5 boundary, one

might want to use tailoring over standard modelling approaches.

4This is the simulation scenario in Figure 3.1.
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Figure 3.5 Difference in Net Benefit for samples sizes of 500, 1000, 5000, 10000 averaged over 20
repetitions. A positive difference means TB outperforms SB. The values of 0.1, 0.5, 1, for the q
parameter correspond to prevalence of around 0.15, 0.36, 0.50, respectively.

Figure 3.6 Single realisation with q = 0.1 corresponding to prevalence of around 0.15. Optimal decision
boundaries (black lines) for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9. Posterior mean boundaries for
SB (grey) and TB (yellow) when targeting the 0.5 boundary. Shaded regions represent 90% highest
predictive density (HPD) regions.
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3.3.2 Simulation 2: Quadratic Decision Boundaries

Our second simulation is a more pragmatic scenario where the optimal decision boundaries a quadratic

rather that linear function of the covariates. The model is of the form

x|y = 1 ∼ N

([
1

0

]
,

[
1,0

0,2

])

x|y = 0 ∼ N

([
0

1

]
,

[
2,0

0,1

])

where x = (x1,x2)
T contains the two continuous-valued predictors. The marginal probabilities of

the outcome are equal, i.e., p(y = 0) = p(y = 1) = 0.5. In this case of unequal covariance matrices, the

optimal decision boundaries are a quadratic function of x (Figure 3.7a) (Duda et al. (2012), Chapter

2). The model we implement is sub-optimal. Nevertheless, this example allows us to demonstrate in

an analytically tractable way the advantage of tailoring and it allows us to explore a broader array of

generic simulation examples, since arbitrary Gaussian distributions lead to decision boundaries that are

general hyperquadrics.

Figures 3.7b and 3.7c show the posterior median decision boundaries for SB and TB using n = 5000

under the data generating model described above, and for a range of target thresholds. It is clear that

the direction of the optimal decision plane is a function of the costs. The parallel decision boundaries

obtained by applying different thresholds to the standard logistic predictions are clearly not an optimal

solution when comparing against the optimal boundaries depicted in Figure 3.7a. Although limited to

estimation of linear boundaries, tailoring is able to adapt the angle of the boundary to better approximate

the optimal curves. One exception in comparative performance is the 0.5 threshold which is estimated

perfectly for both models. This is expected, since the standard logistic model targets the 0.5 boundary.

As before, we investigate the performance of tailoring across a wide range of settings, by varying:

(1) the sample size, (2) the prevalence of the outcome, (3) and the target threshold. Performance is

evaluated in an independently sampled test set of size 2000. Figure 3.8 shows the difference in NB

between TB and SB. Tailoring performs similarly or better than standard regression across all target

thresholds for prevalence scenarios 0.3 and 0.5. For 0.1 the two models are closely matched. A further

comparison with a non-linear model, namely Bayesian Additive Regression Trees (BART) (Sparapani

et al., 2021) is detailed in Section C.5. Briefly, TB demonstrated equivalent or better performance than

BART at the clinically relevant lower prevalences of 0.1 and 0.3, indicating that the benefits offered by

TB cannot be matched simply by switching to a non-linear modelling framework.
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(a)

(b) (c)

Figure 3.7 (a) Optimal decision boundaries for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9. Posterior median
boundaries for (b) SB, and (c) TB.

Figure 3.8 Difference in Net Benefit for samples sizes of 500, 1000, 5000, 10000 averaged over 20
repetitions. A positive difference means TB outperforms SB. Each grid corresponds to a different
prevalence setting.
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Figure 3.9 Single realisation from contaminated distribution with 10% corrupted datapoints. Data
(n = 1000) with labels 0 and 1 are shown in blue and red, respectively. The corrupted data points are
depicted with triangles on the upper right-hand corner of the data cloud. The lines corresponds to target
thresholds 0.1, 0.5, and 0.9.

3.3.3 Simulation 3: Data contamination

Our third simulation scenario demonstrates the robustness of tailoring to data contamination i.e., the

situation in which a fraction of the data have been mislabelled. The data generating model is a logistic

regression with a large fraction of mislabelled datapoints. We simulate d = 2 covariates and n = 1000

datapoints. Figure 3.9 depicts a scenario with 10% of datapoints mislabelled among those with high

values of both covariates, i.e., among the upper right hand side of the data cloud. For each covariate,

1000 values are independently drawn from a standard Gaussian distribution. Denoting the coefficient

vector by βββ ∈R3 with values βββ = (0,2,3) (the first value corresponds to the intercept term) we simulate

the outcome vector as y ∼ Bernoulli
(

exp{xT βββ}
1+exp{xT βββ}

)
, where x = (1,x1,x2)

T . We then corrupt the data with

class 0 datapoints, i.e., we set y := 0 for ψn datapoints where ψ is the fraction of contamination taking

values 5%,10%,15%,20% and 30%. The covariates are generated from equivalent and independent

normal distributions, specifically x1,x2 ∼ N (1.5,0.5). This type of contamination framework has been

popularised by Huber (1964, 1965) and used extensively to study the robustness of learning algorithms

to adversarial attacks in general (Balakrishnan et al., 2017; Diakonikolas et al., 2018; Osama et al., 2019;

Prasad et al., 2018) and medical applications (Paschali et al., 2018).

We derive the optimal NB based on the true probability score in an independent non-contaminated

test dataset of size n = 20005. Figure 3.10 shows the results for various contamination fractions. For

most fractions TB outperforms SB. As the contamination fraction gets larger the performance of both

models degrades, but standard regression degrades at a faster rate. Tailoring can accommodate various

degrees of contamination better than standard logistic regression, while generally never resulting in

poorer performance.

5Here, we chose to use a non-contaminated test dataset. As part of future work we could consider situations where (a) both
train and test sets are contaminated and (b) only the test set is contaminated.
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Figure 3.10 Net Benefit of tailoring (red) and standard regression (green) compared to optimal classifica-
tion (blue) averaged over 20 repetitions. Each grid corresponds to different contamination fraction.

Note that under no contamination (i.e., ψ = 0, first panel Figure 3.10) SB is an optimal classifier,

since the optimal decision boundaries are parallel straight lines (Figure 3.9). However, for all other

scenarios even a data corruption as small as 5% results in poor performance under SB for target

thresholds > 0.5. On the contrary, tailoring maintains stable performance and close to the optimal for

t < 0.5, for up to 15% of mislabelled datapoints.

3.4 Real data applications

We evaluate the performance of TB on three real-data applications involving a breast cancer prognosti-

cation task (Section 3.4.1), a cardiac surgery prognostication task (Section 3.4.2) and a breast cancer

tumour classification task (Section 3.4.3). Overall, our empirical results demonstrate the improvement

in predictive performance when taking into consideration misclassification costs during model training.

3.4.1 Real data application 1: Breast cancer prognostication

Here, we apply the TB methodology to predict mortality after diagnosis with invasive breast cancer.

The training data is based on 4718 oestrogen receptor positive subjects diagnosed in East Anglia, UK

between 1999 and 2003. The outcome modelled is 10-year mortality. The covariates are age at diagnosis,

tumour grade, tumour size, number of positive lymph nodes, presentation (screening vs. clinical), and

type of adjuvant therapy (chemotherapy, endocrine therapy, or both). We use 20% of the data as design

and the rest as development set (see Figure 3.3), repeating the design/development set split m = 5

times. The entire training dataset is used to fit SB. Both models are evaluated in an independent test set

consisting of 3810 subjects. Detailed information on the datasets can be found in Karapanagiotis et al.

(2018).

An important part of the TB methodology is the choice of t. In breast cancer, accurate predictions

are decisive because they guide treatment. In clinical practice, treatment is given if it is expected to
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Figure 3.11 Difference in Net Benefit for various t values evaluated on the test set. Error bars correspond
to one standard error of the difference. That is, denoting the difference in Net Benefit Di = NBi

T B−NBi
SB

with i = 1, . . . ,m = 5 for each t then the standard error of the difference is SED =
√∑

(Di−D̄)2

m(m−1) , where

D̄ =
∑

i Di/m. This accounts for the fact that both models have been evaluated on the same data. The
units on the y axis may be interpreted as the difference in benefit associated with one patient who would
die without treatment and who receives therapy. The 0.14 to 0.23 shaded area on the x axis corresponds
to 3%–5% absolute risk of death reduction with and without chemotherapy. These are the risk ranges
where chemotherapy is discussed as a treatment option.

reduce the predicted risk by at least some pre-specified magnitude. For instance, clinicians in the

Cambridge Breast Unit (Addenbrooke’s Hospital, Cambridge, UK) currently use the absolute 10-year

survival benefit from chemotherapy to guide decision-making for adjuvant chemotherapy as follows:

< 3% no chemotherapy; 3%−5% chemotherapy discussed as a possible option; > 5% chemotherapy

recommended (Down et al., 2014). Following previous work (Karapanagiotis et al., 2018), we assume

that chemotherapy reduces the 10-year risk of death by 22% (Peto et al., 2012). Then, a risk reduction

between 3% and 5%, corresponds to target thresholds between 14% and 23%. Hence, we explore

misclassification cost ratios corresponding to t in the range between 0.1 and 0.5.

Figure 3.11 shows the difference in NB between the two models averaged over the 5 splits. We see

TB outperforms SB for most target thresholds, especially where decisions about adjuvant chemotherapy

are more crucial. Compared to SB, tailoring achieves up to 3.6 more true positives per 1000 patients

(when t = 0.15), which is equivalent to having 3.6 more true positives per 1000 patients for the same

number of unnecessary treatments.

Next, we examine the effect of tailoring on the posterior distributions of the coefficients. As an

exemplar, we use the posterior samples for the model corresponding to t = 0.15 (Figure 3.12). We see

that tailoring affects both the location and spread of the estimates compared to standard modelling. First,

note the wider spread of tailoring compared to the standard models. Second, the tailored posteriors

are centred on different values. The most extreme example is the coefficient for the number of nodes.

Under tailoring it has a stronger positive association with the risk of death. To quantify the discrepancy

between the posteriors of the two models table 3.1 shows estimates of the overlapping area between
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Figure 3.12 Marginal density plots of posterior parameters for t = 0.15 for SB (blue) and TB (red).

Covariate Posterior Overlap (%)
nodes 3.05
size 23.46
chemo 41.92
age 48.78
hormone 57.76
grade 62.66
screen 69.94

Table 3.1 Overlapping area of posterior distributions for each coefficient based Gaussian kernel density
estimations (Pastore and Calcagnì, 2019).

the posteriors for each covariate. These range from 3% to 70%. The relative shifts in magnitude of the

effect sizes indicates different relative importance of the covariates in terms of their contribution to the

predictions from the two models.

Additionally, we explore the sensitivity of our results to the choice of the prior standard deviation.

Our main analysis is based on a prior with standard deviation, σ j = 100. Since this prior puts a

large proportion of the prior density on regions that may not be supported by the data (especially for

standardised coefficients), we repeated the analysis using σ j = 10 and σ j = 1. Figure 3.13 shows the

TB posterior distributions of the coefficients under t = 0.15. We see the posteriors between different

choices of prior standard deviations are almost indistinguishable. As a result, we conclude that for this

application the choice of prior standard deviation does not seem to have any quantifiable effect on the

posterior.
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Figure 3.13 Marginal density plots of posterior parameters for t = 0.15 for different σ j values.

3.4.2 Real data application 2: Cardiac surgery prognostication

For our second case study we investigate whether TB allows for better predictions, and consequently

improved clinical decisions for patients undergoing aortic valve replacement (AVR). Cardiac patients

with severe symptomatic aortic stenosis are considered for surgical AVR (SAVR). Given that SAVR

is typically a high-risk procedure, transcatheter aortic valve implantation (TAVI) is recommended as

a lower risk alternative but it is associated with higher rates of complications (Baumgartner et al.,

2017). The European System for Cardiac Operative Risk Evaluation (EuroSCORE) is routinely used

as a criterion to choose between SAVR and TAVI (Roques et al., 2003). EuroSCORE is an operative

mortality risk prediction model which takes into account 17 covariates encompassing patient-related,

cardiac and operation-related characteristics. It was first introduced by Nashef et al. (1999) and it

has been updated in 2003 (Roques et al., 2003) and 2012 (Nashef et al., 2012). Published guidelines

recommend TAVI over SAVR if a patient’s predicted mortality risk is above 10% (Baumgartner et al.,

2017) or 20% (Vahanian et al., 2008). Here, we compare the performance of TB with EuroSCORE and

SB given these target thresholds.

We use data (n = 9031) from the National Adult Cardiac Surgery Audit (UK) collected between

2011 and 2018. We use 80% of the data for training and the rest for testing, repeating the train/test

set split m = 5 times. For this data a design set to estimate πu(xi) is not necessary (see Figure 3.3)

but instead we use the predictions from EuroSCORE (Roques et al., 2003). We add an extra step of

re-calibration to account for the population/time drift (Cox, 1958; Miller et al., 1993). Figure 3.14

presents the results. We see TB outperforms both EuroSCORE and SB when targeting the 0.1 threshold,

and only EuroSCORE at t = 0.2.

We further investigate the effect of tailoring to individual parameters. Figure 3.15 shows the highest

posterior density (HPD) regions for a subset of the covariates under SB and TB for t = 0.1 and 0.2. As

in the previous case study, under tailoring the regions are generally wider and are centred on different

values. For instance, compared to SB under both t = 0.1 and 0.2 the posteriors of critical operative
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Figure 3.14 Difference in Net Benefit (∆NB) between TB and EuroSCORE (ES) (red), and between
TB and SB (green) for various target thresholds evaluated on the test set. Error bars correspond to one
standard error of the difference (see caption of Figure 3.11 for details).

state and unstable angina are shifted towards the same direction (positive for critical operative state and

negative for unstable angina). Contrast these with the posteriors of emergency and active endocarditis

that compared to SB they are centred on more positive values under t = 0.1 and more negative under

t = 0.2. On the contrary, extracardiac arteriopathy, recent myocardial infarct, and sex are centred on

similar values across the three models. This once more exemplifies the change in the contribution of

some covariates towards the predicted risks when taking into account misclassification costs.

3.4.3 Real data application 3: Breast cancer tumour classification

For our third case study we use the Wisconsin breast cancer tumour dataset from the UCI repository

(Dua and Graff, 2017). The dataset consists of n = 699 points, with covariates x ∈ R9, which describe

characteristics of the cell nuclei present in digitized images of a breast mass, and labels y ∈ {0,1}. The

class labels 0 and 1 correspond to ‘benign’ and ‘malignant’ cancers, respectively. To validate the results

of the simulation in Section 3.3.3 we artificially contaminate the dataset. More precisely, we use 70%

of the data for training, which is corrupted by flipping the labels of 49 class 1 datapoints to 0 (10%

contamination). In clinical practice, such data contamination may arise due to the manual nature of

breast cancer detection and classification. Breast cancer detection is commonly performed through

medical imaging modalities by one or more experts (usually pathologists) (Murtaza et al., 2019). The

procedure is time-consuming and dependent on the professional experience and domain knowledge

of the pathologists, thus making it prone to errors. This is highlighted by the significant inter- and

intra-variability between pathologists (Hong et al., 2012; Li et al., 2009; Warfield et al., 2008). We use

20% of the training data as design and the rest as development set. We assume that missing a malignant

cancer is more severe than misdiagnosing a benign as malignant, and so we focus on target thresholds

t < 0.5, which correspond to a larger weight placed on false negatives vs false positives. Figure 3.16
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Figure 3.15 Highest posterior density (HPD) regions for the parameters. Dots represent medians, and
thick and thin lines represent 90 and the 95% of the HPD regions, respectively. The dashed vertical lines
pass through the posterior median values of the SB parameters.

presents the difference in NB for various t values over 5 splits of the training data into design and

development. We see tailoring outperforms standard regression for most target thresholds.

We further investigate the effect of tailoring on individual parameter values. Figure 3.17 shows the

HPD regions under SB and TB for t = 0.3 and 0.5. As in the previous case studies, under tailoring

the regions are generally wider and are centred on different values. For instance, under t = 0.3 all

posteriors are shifted towards more positives values. The only two exceptions are the coefficients

of clump thickness, cell shape and mitosis which are pulled towards zero. Similar conclusions, but

less pronounced are seen under t = 0.5. This again indicates that the relative importance of different

covariates changes when using our tailored modelling approach.

3.5 Discussion

In this chapter, we presented Tailored Bayes, a framework to incorporate misclassification costs into

Bayesian modelling. We demonstrated that our framework improves predictive performance compared to

standard Bayesian modelling over a wide range of scenarios in which the costs of different classification

errors are unbalanced.

The methodology relies solely on the construction of the datapoint-specific weights (see equation

(3.2)). In particular, we need to specify t, the grid of λ values for the CV, a model to estimate πu(xi)

and the weighting function, h. For some applications there may be a recommended target threshold, t.

For instance, UK national guidelines recommend that clinicians use a risk prediction model (QRISK2;

(Hippisley-Cox et al., 2008)) to determine whether to prescribe statins for primary prevention of
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Figure 3.16 Difference in Net Benefit for various t values evaluated on the test set. Error bars correspond
to one standard error of the difference (see caption of Figure 3.11 for details).

Figure 3.17 Highest posterior density (HPD) regions for the parameters. Dots represent medians, and
thick and thin lines represent 90 and the 95% of the HPD regions, respectively. The dashed vertical lines
pass through the posterior median values of the SB parameters.
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cardiovascular disease (CVD) if a person’s CVD risk is 10% or more (NICE, 2016). When guidelines

are not available, the specification of t is inevitably subjective, since it reflects the decision maker’s

preferences regarding the relative costs of different classification errors. In practice, eliciting these

preferences may be challenging, despite the numerous techniques that have been proposed in the

literature to help with this (e.g., Hunink et al. (2014); Tsalatsanis et al. (2010)). In such situations, we

advocate fitting the model for a range of plausible t values that reflect general decision preferences.

For example, research in both mammographic (Schwartz et al., 2000) and colorectal cancer screening

(Boone et al., 2013) has shown that healthcare professionals and patients alike greatly value gains in

sensitivity over loss of specificity. For additional examples on setting t see Vickers et al. (2016) and

Wynants et al. (2019). Further examples in which benefits and costs associated with an intervention (as

well as with patients’ preferences) are taken into account, are provided by Le et al. (2017); Manchanda

et al. (2016); Watson et al. (2020).

We discuss the remaining elements for the construction of the weights in Section C.6. There we

define the effective sample size for tailoring, ESSt , and showcase how to use it to set the upper limit for

the grid of λ values. In addition, we show our framework is robust to miscalibration of πu(xi) and the

choice of h. The framework is therefore flexible, allowing many ways for the user to specify the weights.

In contrast to the work of Hand and Vinciotti (2003) our approach is framed within the Bayesian

formalism. Consequently, the tailored posterior integrates the attractive features of Bayesian inference -

such as flexible hierarchical modelling, the use of prior information and quantification of uncertainty -

while also allowing for tailored inference. Quantification of uncertainty is critically important, especially

in healthcare applications (Begoli et al., 2019; Kompa et al., 2021). We illustrated this point in Section 1.6.

In fact, Figure 1.3 presented the SB posterior for two patients from the breast cancer prognostication

case study (Section 3.4.1). We see the predictive distributions for the two patients are centred on similar

values. As we discussed in Section 3.4.1, based on these average estimates, chemotherapy should be

recommended as a treatment option to both patients. However, the predictive uncertainty for patient 1 is

considerable. Using this information we may not be inclined to recommend chemotherapy to patient 1,

and instead flag her as needing more information before making a clinical decision.

A few additional comments are in order. In this work we used vague Gaussian priors, but they

could be replaced with other application-specific distribution choices. For instance, in the case of

high-dimensional data another option could be the sparsity-inducing prior used by Bayesian lasso

regression (Park and Casella, 2008). Furthermore, we can easily incorporate external information in a

flexible manner, through πu(x), in addition to the prior on the coefficients. If a well-established model

exists then it is natural to consider using it to improve the performance of an expanded model. We

have implemented such an approach in Section 3.4.2. Cheng et al. (2019) propose several approaches

for incorporating published summary associations as prior information when building risk models. A

limitation of their approaches is the requirement for a parametric model, i.e., information on regression

coefficients. Our method does not have any restriction on the form of πu(x), it can arise from a parametric

or non-parametric model.
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We note that we opted to use the same set of covariates, x, to estimate both πwi(x;βββ ) and πu(x). This

does not need to be the case. If available, we could instead use another set of covariates, say Z to estimate

πu(z). The set Z could be a superset or a subset of X or the two sets could be completely disjoint. We

implement this approach in the next chapter (Chapter 4). We also note that in this work we focused on

logistic regression based on linear combinations of the covariates to showcase the methodology. This is

because it is widely utilised and allows analytical and computational tractability. Nevertheless, we would

stress that our framework is generic, and not restricted to either linear combinations or logistic regression.

It can accommodate a wide range of modelling frameworks, from linear to non-linear and from classical

statistical approaches to state-of-the-art machine learning algorithms. As a result, future work could

consider such extensions to other models. Also, future work could consider the advantages of a joint

estimation, i.e., both steps, stage 1 (estimation of weights) and stage 2 (estimation of weighted prediction

probabilities) jointly. A further direction is the extension of the framework to high-dimensional settings.

We propose such an extension in the next chapter.

To conclude, in response to recent calls for building clinically useful models (Chatterjee et al., 2016;

Shah et al., 2019) we presented an overarching Bayesian learning framework for binary classification

where we take into account the different benefits/costs associated with correct and incorrect classifi-

cations. The framework requires the modellers to first think of how the model will be used and the

consequences of decisions arising from its use - which we would argue should be a prerequisite for any

modelling task. Instead of fitting a global, agnostic model and then deploying the result in a clinical

setting we propose a Bayesian framework to build towards models tailored to the clinical application

under consideration.

3.6 Software

The R code used for the experiments in this chapter has been made available as an R package,

TailoredBayes: https://github.com/solonkarapa/TailoredBayes. The implementation is constructed

with the scope of being versatile. The user can customise every aspect of the algorithm, if needed, or

simply rely on the default options.

https://github.com/solonkarapa/TailoredBayes




Chapter 4

Tailored Bayesian variable selection under
unequal misclassification costs

Abstract Risk prediction models for binary outcomes are often constructed using

methodology which assumes the costs of different classification errors are equal (see

Chapter 3). However, in many healthcare applications this assumption is not realistic. To

address this issue, in the previous chapter, we presented Tailored Bayes (TB) a principled,

simple and widely applicable umbrella framework to incorporate misclassification costs into

Bayesian modelling. Using both simulated and real data we showed that the TB approach

allows us to “tailor” model development with the aim of improving performance in the

presence of unequal misclassification costs. However, we only considered low-dimensional

data. Here, we extend the TB to deal with high(er)-dimensional data, given their widespread

use in modern healthcare applications. Consequently, we incorporate the TB approach into

a hierarchical sparse regression framework for variable selection. Our aim is to compare

TB and standard Bayes (SB) under a wide range of settings both using simulated and real

data. Overall, we show that TB favours smaller models (with fewer covariates) compared

to SB, whilst performing better or no worse than SB. We thus conclude that TB allows

for more parsimonious explanations for the data. In addition, we show the ranking of

covariates changes when we take misclassification costs into consideration. This may result

in lower data collection costs and different covariates used in further downstream analysis,

for instance in genetic fine-mapping and related applications.

Outline In light of our results in the previous chapter, we start by introducing and

motivating Bayesian variable selection (BVS) (Section 4.1). We then outline some key

concepts of Bayesian variable selection which we then integrate into our TB approach

(Section 4.2). In Section 4.3 we use a wide range of simulation studies to compare TB

and SB. We then apply TB to three real-world applications, corresponding to a wide range

of sample sizes, covariate dimensions and outcome prevalences, and we comment on the
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advantages and disadvantages of the two approaches (Section 4.4). Finally, Section 4.5

contains a discussion.

4.1 Introduction

In the previous chapter we showed that the most commonly used models for binary classification seek to

minimise the percentage of incorrect classifications (see Section 3.1). This implies the costs of different

classification errors are equal. We then argued that in many healthcare applications this assumption is

inappropriate. In fact, our two main case studies exemplified this.

In Section 3.4.1 we saw how clinicians make treatment decisions about adjuvant therapy in breast

cancer. We derived the target thresholds, between 14% and 23%, where chemotherapy is discussed as

a treatment option. These thresholds imply that clinicians consider approximately 3 to 6 times worse

to fail to administer treatment that should have been given (a false negative) than to give unnecessary

treatment (a false positive)1.

Similarly, in Section 3.4.2 we presented the guidelines on choosing between two procedures (TAVI

and SAVI) in cardiac surgery patients. Again, the recommended target thresholds of 0.1 and 0.2 imply

clinicians consider approximately 4 to 9 times worse a false negative than a false positive prediction.

To address this issue of incorporating information about different misclassification costs during

model training we proposed Tailored Bayes (TB), a framework for Bayesian inference that allows us to

incorporate misclassification costs into commonly used models for binary outcomes. The framework

allows us to tailor model development with the aim of improving performance in the presence of unequal

costs. We used both simulations and real-data applications to demonstrate the improvement in predictive

performance over standard modelling approaches. An interesting finding was that the relative importance

of the covariates changes considerably under the TB framework. This phenomenon was present in

all case studies (Section 3.3). We concluded TB can change the covariates’ contribution towards the

predicted risks. An interesting extension is to consider what might happen in high(er)-dimensional

settings. We hypothesise the change in the covariates’ contribution may lead us to prioritise different

covariates to include in the final model (or selection of models) under the TB framework.

Hence, in this chapter, we extend the framework to incorporate a variable (covariate) selection

procedure.

4.1.1 Motivation for Bayesian variable selection

Prediction models are increasingly important in the current era of precision medicine (Kattan et al.,

2016). Prediction models are often used to describe the association of an outcome of interest with several

covariates (or risk factors). In some applications, one may be interested in predicting the outcome using

1Recall t = 1
1+B/H (see Section 1.4). Setting t = 0.14 (and 0.23) and solving for B/H gives approximately 6 and 3,

respectively. We saw in Section 1.4, B is the harm from a false negative result and H is the harm associated with a false positive
result.
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the covariates. For examples of such applications, see chapters 1, 2, and 3. In other applications, one

may want to quantify the effects of covariates on the expected value of an outcome, for example, when

assessing the predictive value of a cardiovascular risk factor. One particular application where this is

paramount is genetic fine mapping (Huang et al., 2017; Schaid et al., 2018). The goal of fine mapping is

to identify the most likely genetic variants that causally affect some trait(s) of interest. In other words,

the main goal of fine mapping is to increase our mechanistic understanding, rather than to build a better

predictive model.

In either case, at the beginning of the analysis many covariates may be available for inclusion in a

model, but it is not always clear upfront if all or just some of them should be included in the final model.

This is especially important in situations where a large number of potential covariates are available.

The inclusion of unnecessary covariates in a model has several disadvantages, such as increased risk

of multicollinearity, insufficient samples to estimate all model parameters, overfitting the current data

leading to poor predictive performance on new data and making model interpretation more difficult

(van de Schoot et al., 2021).

A common approach is to select a subset from a large set of candidate covariates based on statistical

significance. The poor performance of models derived this way has been demonstrated (Steyerberg

et al., 2018). Similar algorithmic approaches (such as stepwise and best-subset regression) have also

been found to perform poorly in simulations and case studies (see Rothman et al., 2008; Viallefont et al.,

2001, and references therein).

In contrast, Bayesian model selection provides a systematic way to compare and assess the relevance

and the performance of many models or covariates (Mattei, 2019). Bayesian model comparison is

theoretically attractive because it produces a distribution over a set of models. This (a) allows comparison

of non-nested models, (b) it is consistent provided the data generating model is among the compared

ones (Bernardo and Smith, 2009), (c) is connected with cross-validation (Fong and Holmes, 2020),

(d) provides a comprehensive quantification of uncertainty in the important covariates, and subsets of

covariates.

As variable selection is just a subset of model selection, all the above are directly applicable. More

specifically, attractive features of Bayesian variable selection (BVS) include inference of posterior

probabilities for each covariate, posterior inference on competing combinations, and, potentially most

importantly, the possibility of incorporating prior information into the analysis. That is, Bayesian

approaches allow for prior knowledge about correlations among the covariates to be incorporated into

the analysis. For example, in models with gene expression data, spike-and-slab variable selection

priors incorporating knowledge of gene-to-gene interaction networks have been employed to aid the

identification of predictive genes (Li and Zhang, 2010), as well as the identification of both relevant

pathways and subsets of genes (Stingo et al., 2011). In addition, BVS has been successfully applied in

many related areas such as genome-wide association studies (e.g., Guan and Stephens (2011); Zhao et al.

(2019)), genetic fine mapping (e.g., Wallace et al. (2015)) and other biomedical applications (Ge et al.,

2019; Gu et al., 2020; Hill et al., 2012; Theorell and Nöh, 2020).
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Risk prediction models can be combined with BVS to provide a powerful mechanism to select

covariates, enforce sparsity and quantify uncertainty on the selected covariates. In this chapter, armed

with the many attractive features of BVS we provide a comprehensive comparison of TB and SB in both

simulated and real-data.

The rest of the chapter is organised as follows. Section 4.2 provides an overview of standard Bayesian

model/variable selection concepts which we then incorporate into our TB approach. Section 4.3 contains

a series of simulation studies aimed to compare TB and SB in wide range of scenarios. In Section 4.4,

we further compare TB and SB on three broad-based real-world data applications involving (1) the

prediction of hospital mortality, (2) the diagnosis of diabetes, and (3) prediction of breast cancer relapse.

Overall, our results are summarised as follows. TB generally favours sparser models (with fewer

covariates) compared to SB. At the same time, it performs better or no worse than SB. In addition, the

relative importance of the covariates changes under the TB approach, implying that different covariates

may be chosen for further downstream analysis. We end with a discussion highlighting avenues for

further work (Section 4.5).

4.2 Methods

In Section 4.2.1 we introduce some generic concepts on Bayesian model selection which we then

specialise to variable selection (Section 4.2.2). In Section 4.2.3 we present the TB model formulation.

We finish this section describing the metrics we use when comparing TB and SB (Section 4.2.4)

4.2.1 Preliminaries

We consider a prediction problem with covariates x and an outcome y. The observed data is denoted

by D = {(yi,xi) : i = 1, . . . ,n} and a future observation by (x∗,y∗). Under an assumed model, M, y has

density p(y|x,θθθ ,M), where θθθ is a vector of unknown parameters. Conditioning on observed data D by

Bayes’ theorem we get the posterior distribution p(θθθ |D,M) for the model parameters,

p(θθθ |D,M) =
p(D|θθθ ,M)p(θθθ |M)∫
p(D|θθθ ,M)p(θθθ |M)

(4.1)

where p(D|θθθ ,M) is the likelihood and p(θθθ |M) is the prior density of θθθ under model M. Equation

(4.1) can in turn be used to determine the posterior predictive distribution,

p(y∗|x∗,D,M) =

∫
p(y∗|x∗,θθθ ,M)p(θθθ |D,M)dθθθ (4.2)

An underlying assumption so far is that the chosen model M is adequate for its designed purpose.

This may not be the case. For example, a grossly misspecified model may describe the actual problem

very poorly. Hence, we seek to find a model or collection of models that is useful. We evaluate the

usefulness of a model by its ability to make predictions about future (i.e., yet unseen) observations.
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Hence, after specifying a set of alternative models {Mk}K
k=1 and a corresponding prior p(Mk) on

each model, one can integrate over the models and thereby arrive at the Bayesian model averaging

(BMA) predictive distribution (Hoeting et al., 1999),

pBMA =
K∑

k=1

p(y∗|x∗,D,Mk)p(Mk|D) (4.3)

where p(Mk|D) are the posterior probability of the model Mk. Equation (4.3) is an average of the

posterior predictive distributions under each of the models considered, weighted by their posteriors

probabilities. The term p(Mk|D) is given by

p(Mk|D) =
p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

(4.4)

where

p(D|Mk) =

∫
p(D|θθθ k,Mk)p(θθθ k|Mk)dθθθ k (4.5)

is the integrated likelihood2 of model Mk, θθθ k is the vector of parameters of model Mk, p(θθθ k|Mk)

is the prior of θθθ k under model Mk, p(D|θθθ k,Mk) is the likelihood and p(Mk) is the prior probability of

model Mk.

The model posterior distribution p(M1|D), . . . , p(MK |D) is the fundamental object of interest for

model selection. In the following section we focus on a special case of the model selection problem:

variable selection.

4.2.2 Bayesian Variable Selection

The problem of variable selection arises when one wants to model the relationship between y and a subset

of x = (x1, . . . ,xP)
3, but there is uncertainty about which subset to use. Such a situation is particularly

of interest when P is large and x is thought to contain many redundant or irrelevant variables. Each

model under consideration corresponds to a distinct subset of x. The linear predictor may be written as

η =
P∑

j=1

γ jx jβ j (4.6)

where x j( j = 1, . . . ,P) are the covariates and β j ∈ R, are the regression coefficients. It will be

convenient throughout to index each of these 2P possible subset choices by the vector

γγγ = (γ1, . . . ,γP)
′ ∈ {0,1}P

2This quantity is also often called the “marginal likelihood” or “evidence” of model Mk.
3to simplify notation we drop the subscript i.
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where γ j = 0 or 1 according to whether β j is zero or not, respectively. The vector γγγ uniquely defines

a specific model. Note that here, γγγ plays the role of model identifier Mk described above. Hence, in the

following we substitute γγγ for the model indicator k. For instance, in the following section we talk about

model space prior denoted by p(γγγ) which is conceptually equivalent to p(Mk).

Model Space Priors for Variable Selection

For the specification of the model space prior, most BVS implementations (e.g., George and McCulloch

(1993, 1997)) have used independence priors of the form

p(γγγ) =
∏

j

wγ j
j (1−w j)

(1−γ j) (4.7)

Under this prior, each x j enters the model independently of the other covariates, with probability

p(γ j = 1) = 1− p(γ j = 0) = w j. A useful reduction of (4.7) has been to set w j := w, meaning all

covariates have equal inclusion probability, w, of being included. This reduction yields

p(γγγ) =
∏

j

wqγ (1−w)(1−qγ ) (4.8)

where qγ := γγγ ′1 denotes the size of the γ th subset. The hyperparameter w is the a priori expected

proportion of variables in the model. Setting w = 1/2, yields the popular uniform prior

p(γγγ) = 1/2P

This prior puts most of its weight near models of size P/2 because there are more of them. An

alternative is to assign a prior on w. For instance, using a beta prior, i.e., w ∼ Beta(a,b), (4.8) becomes,

p(γγγ) =
B(a+qγ ,b+ p−qγ)

Beta(a,b)
(4.9)

where B(a,b) is the beta function. Thus, by setting a and b, one could represent prior belief about

the proportion of the covariates that should be included in the model. Under such a prior, the components

of γγγ are exchangeable but not independent (except for the special case (4.7)).

As in Ley and Steel (2009) and Scott and Berger (2010), we set a = 1, so that the prior distribution

on model size is nonincreasing in qγ . The hyperparameter b can then be chosen to reflect the expected

model size, the global prior probability of at least one association or the marginal prior odds that any

covariate is associated with the outcome. Following Wilson et al. (2010) we choose b = ψP i.e., b is

proportional to total number of covariates P. Under this formulation the expected model size is P
ψP+1 ,

which approaches a limit of 1/ψ as P approaches infinity, the global prior odds of any effect is constant

at 1/ψ , and the marginal prior odds of any single variable having an effect is 1/ψP, and therefore

decreases with the total number of covariates. As a result, ψ can be chosen to induce more or less
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sparsity, depending on prior beliefs. In practice, we recommend trying a range of several ψ and choosing

the value which optimizes predictive performance in the validation data. Here, we use ψ = 0.1 (unless

otherwise stated) to ensure a fair comparison between TB and SB.

Parameter Priors for Selection of Nonzero coefficients

We now consider parameter prior formulations for variable selection where the goal is to ignore only

those x j for which β j = 0 in (4.6). In effect, the problem then becomes that of selecting a submodel of

(4.6) of the form

η = Xγβββ γ (4.10)

where Xγ is the n× qγ matrix whose columns correspond to the γ th subset of x1, . . . ,xP, βββ γ is a

qγ × 1 vector of unknown regression coefficients. Here, γγγ plays the role of the model parameter θθθ k

described in Section 4.2.1. The most common option is to assign independent normal priors to the

non-zero coefficients centred on zero, with a common variance σ2
β

,

p(βββ γ |γγγ) = N (000, IIIσ
2
β
) (4.11)

Rather than fixing σ2
β

, which controls the magnitude of included effects, we use a flexible hyper-prior

to allow adaption to the data at hand. We assign the following vague hyper-prior for σβ

σβ ∼ U (0.01,σu) (4.12)

which is recommended by Gelman et al. (2006) and has been used previously (Newcombe et al.,

2019; O’Hara et al., 2009). We use σu = 5 for all the analysis below.

Posterior Calculation and Exploration for Variable Selection

An exhaustive evaluation of all possible combinations of covariates is computationally prohibitive even

for a moderate number of covariates. Hence, we rely on MCMC methods (Brooks et al., 2011) which

have become a principal tool for posterior evaluation and exploration in Bayesian variable selection

problems (see Section D.1 for details). Such methods are used to simulate a sequence of models

γγγ
(1),γγγ(2), . . . (4.13)

that converges (in distribution) to p(γγγ|D) (the model posterior probability), i.e.,

p̃(γγγ|D) =

∑B
b=1 I[γγγ(b) = γγγ]

B
d−−→ p(γγγ|D) (4.14)
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where B is the number of MCMC iterations and I[.] is the indicator function. The marginal posterior

inclusion probability (PIP) p(γ j = 1|D) can be approximated by

p̃(γ j = 1|D) =
∑
γ∈U

γ j p̃(γγγ|D) (4.15)

where U is the set of unique models that were sampled. The simulated models (4.13) can also play

an important role in model averaging. For instance, (4.3) can be approximated by

p̃BMA =
∑
γγγ∈S

p̃(y∗|x∗,D,γγγ)p̃(γγγ|D,S) (4.16)

where S is a manageable subset of models, p̃(γγγ|D,S) is a probability distribution over S (given in

(4.14)), and p̃(y∗|x∗,D,γγγ) is the MCMC approximation to p(y∗|x∗,D,γγγ) given by

p̃(y∗|x∗,D,γγγ) =
1
B

B∑
b=1

p(y∗|x∗,D,βββ (b),γγγ) (4.17)

4.2.3 Model formulation

Finally, we need to specify the likelihood function. The tailored likelihood function was given in

equation (3.2.2). We re-state it here,

L(D | θθθ ,γγγ) =
n∏

i=1

exp{−ℓwi(yi,xT
i βββ γγγ)}=

n∏
i=1

(
exp{xT

i βββ γγγ}
1+ exp{xT

i βββ γγγ}

)yiwi
(

1−
exp{xT

i βββ γγγ}
1+ exp{xT

i βββ γγγ}

)wi(1−yi)

(4.18)

where θθθ = (βββ γγγ ,σ
2
β
)T , βββ γγγ is the element-wise product of the vectors βββ and γγγ , and wi ∈ [0,1] are the

datapoint-specific weights, which are set as

wi = exp
{
−λ (πu(xi)− t)2} (4.19)

We refer to Section 3.2.1 for detailed explanation of (4.19). Briefly, datapoints are weighted based

on their vicinity to the target threshold, t. More precisely, datapoints are downweighed at an exponential

rate. This rate is controlled by λ . πu(xi) is a base/reference prediction model4 and needs to be estimated.

To do this, we use the same procedure as in the previous chapter, i.e., we estimate πu(xi) using standard

Bayesian logistic regression. In the simulations, we use all the available covariates to estimate πu(xi). In

the real-data applications, we use either all the available covariates or a subset5, but we do not consider

variable selection when estimating πu(xi). Another alternative, is to use a well-established model of

πu(xi). We implement this approach in our third case study (see Section 4.4.3). To avoid overfitting when

we estimate both πu(xi) and πwi(xi;βββ ) from the same dataset we use the same data splitting process as

4Recall from Section 3.2.1, πwi(xi;βββ ) = (exp{xT
i βββ}/1+ exp{xT

i βββ})wi
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in the previous chapter (see Section 3.2.4). The only modification is we repeat the data splitting process

10 times in order to assess the reliability of the methods.

Combining the tailored likelihood in (4.18) with the prior we derive the TB posterior as

p(θθθ |D) ∝ L(D | θθθ ,γγγ)p(θθθ |γγγ)p(γγγ) (4.20)

where p(γγγ) is the model space prior defined in equation (4.9) and p(θθθ |γγγ) is the prior on the

parameters conditional on (i.e., included in) the model (see equations (4.11) and (4.12)).

4.2.4 Performance evaluation

We aim to compare TB and SB under a wide range of simulated and real-data scenarios. Our comparison

is focused on three aspects:

1. Predictive performance. As in the rest of this thesis our performance measure for model evaluation

is the Net Benefit (NB) (see Section 1.5). Recall NB is a suitable model evaluation metric since

it allows us to account for the unbalanced misclassification costs. The observed number of true

positives is corrected for the observed proportion of false positives weighted by the odds of the

target threshold, and the result is divided by the sample size. This net proportion is equivalent to

the proportion of true positives in the absence of false positives. To calculate the predictions we

use the average of the BMA predictive distribution (see equation (4.16)).

2. Ranking covariates. We are interested in how the covariates’ rank changes between TB and SB.

For the real-data we use to (marginal) posterior inclusion probability (PIP) (see equation (4.15)).

For the simulated data we use the precision-recall plot (see later for details) which allows us to

compare the two models with the ground truth.

3. Model size. We are interested in how the posterior model mass is distributed across model sizes

between TB and SB. More specifically, we interested in the difference in the preferred models

under TB and SB in terms of the number of covariates chosen. The posterior model mass is

calculated using the posterior model probabilities (see equation (4.14)).

The three model comparison aspects are motivated as follows. Imagine two modelling frameworks

giving rise to Models A and B, using three covariates. Two interesting scenarios can arise. First, the two

models may have similar predictive performance but rank differently the three covariates. We argued in

the introduction in some biological or other applications covariate ranking may be of (primary) interest.

Second, another alternative is both the covariate ranking and the predictive performance for the two

models is the same but the latter is based on different number of covariates, e.g., the performance of

Model A is based on all three covariates, but the performance of Model B is based only on two covariates.

The simulations that follow illustrate both scenarios.
5this allows us to illustrate the flexibility of the framework, since it can used in applications where P ≫ n.
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4.3 Simulations

Here we use synthetic and semi-synthetic data to investigate the strengths and weaknesses of TB

compared to SB. Simulation 1 is a simple scenario with independent covariates that allows to visualise

the effect of TB, that is to show that the decision boundaries actually change. Simulation 2 is a more

realistic scenario with correlated covariates. Simulation 3 is an example of a mispecified model, where

interaction terms between covariates are not included in the model. Finally, Simulation 4 is a semi-

synthetic scenario (real covariates and simulated outcome) which allows us to study the two methods

under a more realistic covariate correlation structure.

4.3.1 Simulation 1: Independent Covariates

We consider data sets of n = 1000 observations with P ∈ {20,100} continuous covariates. To generate

the data, first, n realizations of the binary outcome variable are drawn from the Bernoulli distribution, y ∼
Bernoulli(p). Typically the two classes are imbalanced, hence, we set the prevalence, p ∈ {0.1,0.3,0.5}.

After that, the corresponding covariates to each outcome value are drawn from the P-dimensional normal

distributions,

x|y = 0 ∼ N (µµµ0,ΣΣΣ0)

x|y = 1 ∼ N (µµµ1,ΣΣΣ1)
(4.21)

with the mean vectors set to µµµT
0 = (0,1,000) and µµµT

1 = (1,0,000) where 000 is a vector of dimension

P− 2. The covariance matrices are diagonal, ΣΣΣ0 = diag(2,1,111) and ΣΣΣ1 = diag(1,2,111), where 111 is a

P−2 dimensional vector of 1s. This choice of covariance matrices represents a scenario of independent

covariates with only univariate relations to the outcome. More importantly, under this setting, only the

first two covariates (x1 and x2) are associated with the outcome which allows us to visualise the results.

Figure 4.1a shows the posterior median boundaries for SB and TB under the data generating model

described above, and for a range of target thresholds. The parallel decision boundaries obtained by

applying different thresholds to the standard logistic predictions are clearly not an optimal solution when

comparing against the theoretical boundaries depicted in Figure 4.1b. Although limited to estimation of

linear boundaries, TB is able to adapt the angle of the boundary to mimic the optimal curves.

Next, we investigate the performance of tailoring across a wide range of settings, by varying: (1) the

prevalence of the outcome, p, (2) the target threshold, t, (3) and the covariate dimension, P. Performance

is evaluated in independently sampled test sets of size n = 2000. Figure 4.2 shows the difference in NB

between TB and SB across 100 simulated datasets. Tailoring performs better and generally no worse

than SB across all target thresholds for prevalence scenarios 0.3 and 0.5. For p = 0.1 the two models are

closely matched.
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(a)

(b)

Figure 4.1 (a) Posterior median boundaries for SB and TB under P = 20 and p = 0.5; (b) optimal
decision boundaries for target thresholds 0.1, 0.3, 0.5, 0.7, 0.9.

Figure 4.2 Distribution of difference in NB across 100 replications. A positive difference means TB
outperforms SB. Each grid corresponds to a different P setting. The lower and upper hinges of the
boxplots correspond to the first and third quartiles (25th and 75th percentiles). The upper/lower whisker
extends from the hinge to the largest/smallest value no further than/at most 1.5 * IQR from the hinge
(where IQR is the inter-quartile range).
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Model Size and Detection of Relevant Covariates

Next we investigate the composition of the resulting covariate combinations regarding relevant and

irrelevant ones between the two approaches. For our 100 replications, we compute the precision (i.e.,

positive predictive value) as the ratio of selected relevant covariates among the total number of selected

covariates, which answers the question: “what portion of the selected covariates is actually relevant?”.

Formally,

precision =
T P

T P+FP

This measure focuses exclusively on the composition of the selected combination. Hence, a model

selecting only 1 out of 100 relevant covariates, but no irrelevant covariate would still optimize this

measure. To take also into account the total information available in the covariate space we can compute

the recall (i.e., true positive rate) as the ratio of selected relevant covariates among all existing relevant

covariates, answering the question “what portion of all relevant covariates was selected?”. Formally,

recall =
T P

T P+FN

These two quantities are calculated as follows: in each iteration of the MCMC sampler, T P, FP

and FN for TB and SB were counted by comparing the selected model with the true one. Then, T P,

FP and FN rates were defined as the average true, false positive and false negative values over the

100 replications. Figure 4.3 shows the results. In all cases, TB achieves the same or marginally better

precision than SB, while the recall is the same or slightly worse. This indicates that TB might miss

relevant covariates. This is manifested by assigning more posterior mass into smaller models (in terms

of number of covariates) (Figure 4.4). But, interestingly, this does not negatively affect predictive

performance (see Figure 4.2).

Overall, TB correctly identified the relevant covariates albeit being more conservative (spreading the

posterior mass across smaller model sizes) than SB, whilst maintaining the same or improving predictive

performance.

Benefits of Model Averaging

Here we investigate the difference in performance between fitting the full model and the BMA solution,

as implemented above. This is because, given the dimensionality of the problems investigated, we could,

in practice, fit the full model (i.e., include all covariates). This selection of a single model ignores model

uncertainty and may have a negative effect on predictive performance. In fact, our results show that

the BMA solution over the candidate models yields the best results or at least no worse on expectation

(Figure 4.5). This agrees with what is known about the good performance of the BMA (Hoeting et al.,

1999; Piironen and Vehtari, 2017). In addition, with model selection we estimate the posterior probability

of all models within the considered class of models (or in practice, of all models with non-negligible

probability). In our case, this question is asked in variable-specific form: i.e., the task is to estimate the
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Figure 4.3 Precision-recall plot comparing SB and TB. Precision corresponds to the ratio of relevant
detected covariates divided by total amount of covariates in the model. Recall shows the ratio of relevant
detected covariates divided by the total existing number of relevant covariates.

(a)

(b)

Figure 4.4 Distribution of Posterior Model Mass (log scale) across model size among top 100 visited
models, when (a) P = 20 and (b) P = 100.
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(a)

(b)

Figure 4.5 (a) Difference in NB (∆NB) for SB, i.e., SBBMA −SBno selection, (b) Difference in NB (∆NB)
for TB, i.e., T BBMA −T Bno selection. Positive difference means the BMA solution performs better.

marginal posterior probability that a variable should be in the model. Given we may have some a priori

expectation that only a small proportion of candidates are truly affecting the outcome, this information

should be taken into account in the variable selection.

4.3.2 Simulation 2: Correlated Covariates

Our choice of covariance matrices in the previous section results in independent covariates. However, in

most real-world applications, the assumption of completely independent covariates does not necessarily

hold true. A typical example is fine mapping applications where the covariates (genetic variants) can

be very highly correlated, owing to a phenomenon called linkage disequilibrium (Ott, 1999; Schaid

et al., 2018). Therefore, we implement a more widely utilised framework were covariates are correlated

(Nikooienejad et al., 2016). We draw the covariates from a multivariate normal distribution centred at

zero, i.e.,

x ∼ N (000,ΣΣΣ)
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Figure 4.6 Distribution of difference in NB across 100 replications. A positive difference means TB
outperforms SB.

For the covariance matrix ΣΣΣ, the diagonal elements of were 1 and off-diagonal elements were

ρ = 0.5. We then draw realizations of the outcome variable yi (i = 1, . . . ,n = 1000) from the Bernoulli

distribution, yi ∼ Bernoulli(pi) with parameter pi modelled by a logistic relation to the linear predictor

of relevant covariates,

pi =
1

1+ exp(−xT
i βββ )

The structure of βββ
T is (β0,β1, . . . ,βrel, . . . ,000), where dim(βββ ) =P, and β j = 1, j = 1, . . . ,rel = ⌈P/3⌉.

This set-up results in 7 and 34 relevant covariates for P = 20 and 100, respectively. The intercept term

β0 is chosen so we obtain approximately the desired outcome prevalence as in the previous section.

The results are given in Figure 4.6. TB provides no benefit under this scenario which is expected

because the fitted model is correctly specified. Figure 4.7 plots the precision-recall results. Under

P = 100, TB achieves better precision than SB. But, under P = 20 TB achieves the same or marginally

worse precision than SB. In general, the recall is worse for TB. This again indicates that TB might miss

relevant covariates which is manifested by assigning more posterior mass into smaller models (Figure

4.8).

4.3.3 Simulation 3: Interaction Simulation

TB is more likely to outperform SB when the model is misspecified. This was the case in Section 4.3.1.

Here, the data generating model is the same as in the previous section, but now the including the

following relevant interactions, i.e., x1 ∗ x2, x1 ∗ x3, x5 ∗ x6. The main effects of these covariates are

included in the model. In total the data generating model is composed of 5 main effects and 3 interactions,

all with coefficients equal to log(3). The fitted model is misspecified as the interaction term is not

included.

Figure 4.9 shows the results. TB performs better or no worse than SB. The precision-recall plot

is given in Figure 4.10. Again, both models perform equally well. The only exception is for t = 0.1
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Figure 4.7 Precision-recall plot comparing TB and SB. Precision corresponds to the ratio of relevant
detected covariates divided by total amount of covariates in the model. Recall shows the ratio of relevant
detected covariates divided by the total existing number of relevant covariates.

Figure 4.8 Distribution of Posterior Model Mass (log scale) across model size among top 100 models,
under P = 20.

Figure 4.9 Distribution of difference in NB across 100 replications. Each grid corresponds to a different
P setting.
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Figure 4.10 Precision-recall plot comparing TB and SB. Precision corresponds to the ratio of relevant
detected covariates divided by total amount of covariates in the model. Recall shows the ratio of relevant
detected covariates divided by the total existing number of relevant covariates.

and 0.3 and prevalence = 0.5 where TB performs notably worse than SB. Lastly, we investigate how

the posterior model mass is distributed across model sizes (Figure 4.11). We see that TB is more

conservative, spreading the posterior mass across smaller model sizes.

Overall, the conclusions are similar to Section 4.3.1. TB and SB perform equally in terms of

selecting the relevant covariates without missing the truly relevant ones. But TB generally favours

smaller models while being competitive in terms of predictive performance.

4.3.4 Simulation 4: Semi-Synthetic data

Here we compare TB and SB using data arising from a real-life case study. The advantage of this

semi-synthetic scenario is to control the relationship between covariates and outcome whilst based

on real data. The semi-synthetic scenario is based on the SUPPORT dataset (see Section 4.4.1 for

details). We draw realisations of the outcome variable yi from a Bernoulli distribution, yi ∼ Bernoulli(pi)

(i = 1, . . . ,n = 1000). The parameter pi is based on the original data analysis and is provided alongside

the dataset. The model used to estimate pi is available online on the Vanderbilt Biostatistics website6.

Briefly, the model is a Cox proportional hazards regression, from which we extract the pi corresponding

to 180-day risk of mortality. Five out of the 20 covariates are the irrelevant ones, since they were not

included in the original model. These were urine, race, diabetes, income and sex. Here, we explore how

TB and SB perform in terms of predictive performance, the selected model sizes and identifying the

relevant covariates.

Figure 4.12 shows the difference in NB over 100 simulated datasets. There is no difference in

average performance between the two models. The precision-recall plot is given in Figure 4.13. TB

achieves higher precision and lower recall across all thresholds, except when t = 0.1. Under TB if a

covariate is selected it is more likely to be relevant (higher precision, and consequently lower false

6https://biostat.app.vumc.org/wiki/Main/SupportDesc

https://biostat.app.vumc.org/wiki/Main/SupportDesc
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(a)

(b)

Figure 4.11 Distribution of Posterior Model Mass (log scale) across model size among top 100 models,
when (a) P = 20 and (b) P = 100.

Figure 4.12 Distribution of difference in NB across 100 replications. A positive difference means TB
outperforms SB.
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Figure 4.13 Precision-recall plot comparing TB and SB.

Figure 4.14 Distribution of Posterior Model Mass (log scale) across model size among top 100 models.

discovery rate) but might miss some of the relevant covariates (lower recall). The latter point is illustrated

with posterior mass spreading across smaller models under TB compared to SB (Figure 4.14).

4.4 Real data applications

We evaluate the performance of TB and SB on three real-data applications corresponding to a wide

range of sample sizes, covariate dimensions and outcome prevalences (see Table 4.1). As before, all the

results are presented in terms of predictive performance, covariate ranking and model size. Overall, our

empirical results corroborate the findings from the simulations. That is, TB performs better or no worse

than SB while favouring sparser models, and prioritising different covariates.

4.4.1 Real data application 1: SUPPORT

For our first case study, we use the data from the Study to Understand Prognoses and Preferences for

Outcomes and Risks of Treatments (SUPPORT) (Knaus et al., 1995). In this multicentre study, 9103

hospitalized patients had data recorded including diagnoses, laboratory and vital status (Table 4.2). The
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Table 4.1 Real-world datasets used. N: sample size, P: covariate dimension, Prev: outcome prevalence.

Name N P Prev

SUPPORT 9103 20 0.46
Diabetes 375 10 0.15
METABRIC 1787 1504 0.30

Figure 4.15 Difference in NB for various t values; a positive difference means TB outperforms SB. Error
bars correspond to one standard error of the difference.

outcome of interest is 180-day mortality. The dataset is publicly available on the Vanderbilt Biostatistics

website7. All covariates were standardised prior to the analysis. Some patients had missing values for

one or more covariates; in this case we imputed the missing data using the recommended default values

listed on the Vanderbilt web site. Data were divided with a 80%/20% split into training and test sets.

When estimating πu(x) we use the 13 covariates that form the physiologic score (for details see Knaus

et al. (1995)) because they are major prognostic factors (Table 4.2).

As before, we are comparing TB and SB in three aspects: predictive performance, covariate ranking

and model sizes. First, we evaluate the out of sample predictive performance for each training-test split

using NB as performance measure. TB outperforms SB for t = 0.8 and 0.9, performs worse for t = 0.3

and there is no difference for the rest of the target thresholds (Figure 4.15).

Second, we evaluate the ranking of covariates under TB and SB. Figure 4.16 shows the posterior

inclusion probability (PIP) for each covariate across target thresholds. Notably the variable selection

decisions under TB are quite different compared to SB. Even though both models confidently choose

dzgroup, scoma, age, hday and ca as important predictors they disagree on sod. Under SB the median

PIP for sod is 0.8 across thresholds, compared with 0.6 for TB. This implies under standard modelling

we would confidently pick sod as an important predictor, but under tailoring this would depend on the

target threshold. This is exemplified in Figure 4.17 that shows the median PIPs for the two models.

The 45-degree line reflects perfect agreement between TB and SB. Most PIPs change between the two

7https://biostat.app.vumc.org/wiki/Main/DataSets

https://biostat.app.vumc.org/wiki/Main/DataSets
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Table 4.2 Names and description for each covariate. Covariates with an asterisk are used to form the
physiologic score. For more details, we refer to the Vanderbilt website. PaO2: partial pressure oxygen
in arterial blood, FiO2: fraction of inspired oxygen.

Covariate Description

meanbp* Mean arterial blood pressure
wblc* White blood cell count in thousands
hrt* Heart rate per minute
resp* Respiration rate
temp* Temperature
pafi* PaO2/(.01*FiO2)
alb* Serum albumin
bili* Serum bilirubin
crea* Serum creatinine
sod* Serum sodium
dzgroup* Disease group
scoma* SUPPORT Coma Score
age* (years)
hday Day in hospital when qualify for study
ca Cancer by comorbidity or primary disease category (no, present)
urine Urine output
race Asian, black, hispanic, white, or other
diabetes (No or present)
income One of the following: under $11k, $11-$25k, $25-$50k, >$50k
sex (Male, Female)
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Figure 4.16 Posterior inclusion probability (PIP) for TB and SB for each target threshold (panels).

Figure 4.17 Median posterior inclusion probability (PIP) for TB and SB for each target threshold
(panels).

models as the target threshold changes. An illustrative example is alb: for low thresholds (t = 0.1 and

0.3) it has a smaller PIP under TB than SB. This is reversed for t = 0.5, where the PIP under TB is higher.

Moving to t = 0.9 the PIP under TB is smaller again. This is because under TB the relative importance

of each covariate changes across different thresholds (Figure 4.18). The depicted covariates exhibit

different patterns. For example, resp exhibits a decreasing relationship between PIP and threshold, and

alb exhibits an inverse U-shaped relationship.

Third, we investigate how the posterior model mass is distributed across model sizes. Figure 4.19

shows the posterior probability for each model (dots) under TB and SB. We see that across thresholds

tailoring favour smaller (i.e., sparser) models, spreading the posterior mass across smaller model sizes.

The top 5 models (in terms of posterior probability) are given in black. We see that they generally tend

to correspond to smaller model sizes under TB. Based on the above, we can conclude that TB favours

more parsimonious solutions (smaller model sizes) without loss in predictive performance.
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Figure 4.18 Posterior inclusion probability (PIP) of each covariate across target thresholds.

Figure 4.19 Posterior Mass (log scale) across model size. The black dots correspond to the top 5 models
(in terms of posterior model probability).
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Table 4.3 Names and Description for each covariate.

Covariate Description

chol Total cholesterol
stab.glu Stabilized glucose
hdl High density lipoprotein
age (years)
gender (Male, Female)
bmi Body mass index
bp.1s First systolic blood pressure
bp.1d First diastolic blood pressure
whr Waist-to-hip ratio
time.ppn Postprandial time when labs were drawn (minutes)

4.4.2 Real data application 2: Diabetes

We perform a variable selection strategy for indicators of Diabetes Mellitus Type II (DM II) in African

Americans. The data (403 subjects) were again obtained from the Department of Biostatistics, Vanderbilt

University website. We model the presence of diabetes based on covariates such as total cholesterol,

stabilized glucose, age, body mass index, systolic and diastolic blood pressure, waist-to-hip ratio

and postprandial time indicator (see Table 4.3). To create the outcome we discretised glycosolated

hemoglobin at 7mg/dL. Values of glycosolated hemoglobin > 7mg/dL are usually taken as a positive

diagnosis of diabetes (Schorling et al., 1997; Willems et al., 1997). After excluding subjects with missing

values, the data consisted of 375 subjects which was split 10 times into training and test samples of

sizes 337 and 38, respectively. Furthermore, we use 67 out of the 337 subjects as the design dataset to

estimate πu(x), based on all the covariates. To avoid the problem of nonidentifiability, due to collinearity

between the covariates, we use weakly informative priors as proposed by Gelman et al. (2008). More

specifically, we choose normal priors for the coefficients with variance, σ2 = 2.5, after standardising

the data to zero mean and unit variance. Recent work has focused on target thresholds t < 0.5 when

developing/evaluating risk prediction models for DM II (Hippisley-Cox and Coupland, 2017; Mars et al.,

2020). Following that line of work we use t < 0.5.

First, we evaluate the out of sample predictive performance for each training-test split (Figure 4.20).

TB performs equally or slightly better on average for across all thresholds.

Next, we evaluate the ranking of covariates between TB and SB. Figures 4.21 and 4.22 show the

PIPs across different thresholds. It is interesting to note the variable selections under tailoring are quite

different compared to the standard logistic. In particular, while both the models successfully identify

stabilized glucose as an important predictor, age is identified as an important predictor under standard

(median PIP = 0.65 across thresholds), but not under tailoring (median PIP = 0.32 across thresholds).

Furthermore, the relative importance of each variable seems to change across different thresholds (Figure

4.23).
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Figure 4.20 Difference in NB for various t values; a positive difference means TB outperforms SB. Error
bars correspond to one standard error of the difference.

Figure 4.21 Posterior inclusion probability (PIP) for TB and SB for each target threshold (panels).

Figure 4.22 Median Posterior inclusion probability (PIP) for TB and SB for each target threshold
(panels).
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Figure 4.23 Posterior inclusion probability (PIP) of each covariate across target thresholds.

Figure 4.24 Distribution of Posterior Model Mass (log scale) across model sizes. The black dots
correspond to the top 5 models (in terms of posterior model probability).

Finally, we investigate how the posterior model mass is distributed across model sizes (Figure 4.24).

We see that across thresholds TB favours models with the same or fewer covariates than SB. The top 5

models are given in black. We see that they generally tend to correspond to equal or smaller model sizes

under TB. Hence, we again conclude the tailored modelling provides more parsimonious solutions with

improvement or no loss in predictive performance. Note that under tailoring smaller models get higher

weights in the BMA.

4.4.3 Real data application 3: METABRIC

For our third case study, we aim to identify gene signatures associated with the risk of relapse in breast

cancer and to establish their clinical utility. Multi-gene signatures have been extensively studied to

provide prognostic and predictive information for breast cancer treatment (Harris et al., 2016). Such

molecular assays provide risk prediction with good prognostic value allowing clinically valid risk

groups to be defined (Harris et al., 2016; Richman and Dowsett, 2019). Hence, as a secondary goal we

investigate whether we can show clinical utility of the already existing risk stratification thresholds.
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We use data from n = 1787 patients from the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) cohort (Curtis et al., 2012; Rueda et al., 2019). The outcome modelled is

5-year risk of relapse. For this data we opted not to estimate πu(x) but instead we use the predictions

from an existing model, PREDICT (see Section 1.1). We add an extra step of re-calibration to account for

the population/time drift. To choose λ we formulate a working model using common clinicopathological

predictors of relapse: age at state entry (diagnosis), tumour grade, tumour size, ER and HER2 status, and

the number of positive lymph nodes. Using this working model we perform 10-fold cross-validation.

Here we do not aim to find new gene signatures but instead to establish the clinical utility of the

genes that have already been reported in the literature. To this end, we include in our variable selection

set-up all the genes that have been appeared in published signatures. Recently, Huang et al. (2018)

reported 33 published breast cancer gene signatures with 1895 unique genes out of which 1493 are

found in our dataset. We further included 5 genes selected at random as a sanity check. These are

CK904829, DB338332, TPH2, B3GAT1, and IER5L. Due to colinearity problems we excluded three

genes (HLA-DPA1, HLA-F, HLA-DOB) ending up with a total P = 1504 covariates to search over

(1498 genes + 6 clinicopathological covariates). We use ψ = 0.014 to match the average number of

genes (67.8) across existing signatures (ψ = 0.014 results in expected model size of 68, a priori).

An important part of the TB methodology is the choice of t. Güler (2017) provides a summary of

the proposed thresholds for different assays. For example, using the Predictor analysis of microarray

50 (PAM50) score patients are divided into high (>20%), intermediate (10-20%) and low (<10%) risk

groups. Cardoso et al. (2016) defined low clinical risk as the 10-year probability of breast-cancer–specific

survival without systemic therapy of more than 88%. Similar, ranges are reported for Oncotype DX.

Hence, we set our target threshold, t < 0.5, to cover these values.

We start by evaluating the out of sample predictive performance for each training-test split (Figure

4.25). Both models perform equally well across all thresholds of interest. We further compare our models

with two commonly used signatures8, PAM50 (Parker et al., 2009) and Oncotype (Paik et al., 2004)

(Figure 4.26). Both signatures feature in the 2016, American Society of Clinical Oncology Breast Cancer

Guidelines which provide guidelines for the use of gene-expression assays to help guide treatment

decisions regarding the use of adjuvant systemic therapy (Harris et al., 2016). For low thresholds

(t ≤ 0.12), all models demonstrate comparable performance. For higher thresholds TB and SB have a

clear advantage over both PAM50 (Figure 4.26a) and Oncotype (Figure 4.26b). Most importantly, TB

and SB demonstrate higher clinical utility in the target thresholds where treatment decisions are made

(see above).

Next, we evaluate the ranking of variables between TB and SB (Figure 4.27). Once more, the relative

importance of each variable changes between models. In particular, while both models identify the

positive lymph nodes as an important predictor, they slightly disagree on tumour size and ENC1. Both

are identified as less important under tailoring. Furthermore, the relative importance of each variable

seems to change across different thresholds (Figure 4.28). For example, ENC1 is more important for low

8The algorithms are implemented using the genefu package (Gendoo et al., 2020).
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Figure 4.25 Difference in NB for various t values; a positive difference means TB outperforms SB. Error
bars correspond to one standard error of the difference.

(a)

(b)

Figure 4.26 NB for various t values comparing TB, SB with (a) PAM50, and (b) Oncotype. Panel (b)
shows results only for the ER positive subjects.
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Figure 4.27 Median posterior inclusion probability (PIP) for TB and SB for each target threshold
(panels).

Figure 4.28 Posterior inclusion probability (PIP) for a subset of the covariates across target thresholds.

and high thresholds. Subsequently, we compare the PIPs for the five randomly selected genes (Figure

4.29). Across all thresholds TB assigns the same or lower PIPs to all genes. Even though under both

models all genes have very low PIPs, the percentage change (shown in colour) is up to 70%. Additionally,

we compare the median PIPs for SB and TB across all the genes included in the 33 published signatures

(Figure 4.30). The three genes that stand-out are TROAP, ELMO3 and ENC1. Across thresholds the

absolute percentage change for TROAP ranges from 2% to 190%, for ELMO3 from 7% to 80% and for

ENC1 from 0% to 64%.

Finally, we investigate how the posterior model mass is distributed across model size (Figure 4.31).

Again, we see that across thresholds TB favours models with fewer covariates than SB. This supports

the notion that TB can lead to sparser models, which are cheaper and easier to deploy, while retaining

predictive performance that is at least as good.
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Figure 4.29 Median posterior inclusion probabilities (PIPs) for TB and SB for the five randomly selected
genes. Percentage change tailor−standard

standard ∗100 shown in color.

Figure 4.30 Median posterior inclusion probabilities (PIPs) for TB and SB for all the genes included in
the 33 published signatures.

Figure 4.31 Distribution of Posterior Model Mass (log scale) across model sizes. Each panel corresponds
to a different choice of t.
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4.5 Discussion

Summarising, in this chapter we extended the TB framework to incorporate a variable selection pro-

cedure. This allows us to make use of the TB ideas in high-dimensional settings. That is, we can

take misclassification costs into consideration while training a binary classification model. The aim

of this chapter was to present a comprehensive comparison between TB and SB in settings where

variable selection may be adopted. To this end, we simulated data corresponding to a wide range of data

generating settings and used three real-word datasets with different sample sizes, number of covariates

and outcome prevalences. We found that TB favours smaller models (fewer covariates) compared to SB,

whilst performing better or no worse than SB. This pattern was seen both in simulated and real data.

This allows more parsimonious explanations for the data at hand. The price to pay is likely to be slightly

higher false negative rate (lower recall) while maintaining the same false discovery rate. In addition, we

showed the relative importance of the covariates changes when we consider unequal misclassification

costs. This has implications for risk prediction models since smaller models may result in lower data

collection costs and different covariates being selected for further downstream analysis, for instance in

genetic fine-mapping and related applications. In fact, in other related fields, such as Systems Biology

model/covariate ranking is important challenge as well (Vyshemirsky and Girolami, 2008).

We opted to introduce sparsity using a model-space prior approach. That is, we viewed the model as

a whole, placed priors on γγγ , the covariates selected in the model and their coefficients βββ γ , which then

makes the choice of which covariate should be included in the model to be a secondary problem. This

is a natural way to introduce sparseness as the model-space prior approach allows us to describe the

uncertainty with respect to the model specification given an exhaustive list of candidate models. An

alternative approach is to place priors on the individual parameters. Typical examples are the lasso-type

(Park and Casella, 2008) and horseshoe-type priors (Carvalho et al., 2010). Such examples are grouped

under the continuous shrinkage priors umbrella (see e.g., Polson and Scott, 2010, and references therein).

For an overview of the two approaches see O’Hara et al. (2009). Future work could consider the

comparing TB and SB when using continuous shrinkage priors.

In the previous chapter we mentioned the flexibility of the TB approach when constructing πu(x).
Namely, we have the option to use another set of covariates, say Z to estimate πu(z). The set Z could be

a superset or a subset of X or the two sets could be completely disjoint. We used this approach in this

chapter. For example, in Section 4.4.1 we used only a subset of the covariates to estimate πu(x). These

corresponded to covariates strongly predictive of the outcome. In Section 4.4.3 we opted not to estimate

πu(x) but used the predictions from an already existing model (similarly to Section 3.4.2 in previous

chapter). In addition, we used a subset of the covariates (the clinicopathological risk factors) to choose a

good λ value. The above points showcase the flexibility in combining prior information and the data at

hand when constructing the weights.

Finally, both simulation examples and real-data applications have larger sample sizes than number

of covariates (n > P). We note this is not a requirement for our TB approach and it could also be applied

to high(er)-dimensional settings (P > n). But we need to point out that since our approach is based
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on MCMC methods (to be precise, reversible jump MCMC (RJMCMC), see Section D.1), settings

where P > n may be algorithmically challenging. For high-dimensional covariate spaces, the traditional

posterior summary statistics of counting the occurrence of each particular posterior model may be

infeasible because any model is most likely to be sampled only once in a MCMC with workable length.

Of course, this is not an issue inherent to TB but it also affects other models relying on (RJ)MCMC

methods. A potential solution would be to construct a RJMCMC sampler for a specific problem of

interest, focusing on careful specification of the proposal mechanism and then tuned using pilot runs.

Examples for tuning include blocking and re-parameterisation. We refer to the review by Hastie and

Green (2012) for such solutions. Another potential avenue is to focus on alternatives to RJMCMC. For

instance, both variational inference (Carbonetto and Stephens, 2012) and expectation-maximization

(EM) algorithms have been used in BVS settings (Duan et al., 2018; Hayashi and Iwata, 2010).

To conclude, variable selection (and more broadly model selection) is a ubiquitous challenge in

statistical modelling, especially, with the rise of high dimensional data. Modern scientific research often

involves the simultaneous measurement of a large number of (potentially irrelevant) variables. In this

context, it appears of paramount importance to be able to compare and assess the relevance and the

performance of these many models, and to identify the most clinically useful ones. Bayesian model

uncertainty combined with TB provides a coherent way of answering some of these questions. Here we

presented overarching Bayesian model selection framework where we take into account the different

benefits/costs associated with correct and incorrect classifications, resulting in selections of variables

that are better tailored to the specific clinical application.

4.6 Software

The R code used for the TB implementation in this chapter is available as an R package, R2BGLiMS:

https://github.com/pjnewcombe/R2BGLiMS. Section D.2 presents several convergence tests.

https://github.com/pjnewcombe/R2BGLiMS


Chapter 5

Discussion

5.1 Summary

Throughout this thesis, we have been concerned with approaches to (1) evaluate and (2) build clinically

useful risk prediction models for binary outcomes.

In Chapter 2 we focused on model evaluation. We sought to investigate whether ctDNA can be

used to predict response to treatment in metastatic breast cancer (mBC). ctDNA has been proposed

as a promising approach to assess response to treatment. This is because quantification of ctDNA is

less costly, minimally invasive and can be more informative than currently used techniques as it can

provide up-to-date information about the genomic composition of the tumour lesions. To assess the

usefulness of ctDNA, we proposed a two-stage Bayesian probabilistic model of treatment response.

The model allowed us to address the main challenges presented in the data. Namely, the unbalanced

study design and the fact that the two outcomes, ctDNA and treatment response are not measured at the

same timepoints. We found that ctDNA is useful for predicting response to treatment offering improved

clinical utility. In addition, we showed how we can dynamically update individualised predictions, as

additional longitudinal measurements become available.

In Chapters 3 and 4 we focused on model building. We sought to incorporate information about the

costs of different misclassification errors during model training. Our work was motivated by the main

shortcoming of commonly used risk prediction models. That is, models for binary outcomes are often

constructed to minimise the expected classification error; that is the proportion of incorrect classifications.

This is not desirable in many healthcare applications. To overcome this shortcoming, we proposed a

novel Bayesian framework which we called Tailored Bayes (TB) (Chapter 3). We demonstrated TB

has favourable properties compared to standard Bayesian (SB) paradigm. In particular, we used toy

simulations to showcase scenarios where TB is expected to outperform SB. We then applied TB to

three real-world case studies, and showed that incorporating information about misclassification costs

into the model leads to better (treatment) decisions. In Chapter 4 we extended TB in high-dimensional

settings. We thus proposed a sparse TB model and used extensive simulations and real data to compare

TB and SB. We found that TB favours smaller models (with fewer covariates) compared to SB, whilst
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performing better or no worse than SB. In addition, TB actually changes the rank order of the covariates

compared to SB.

5.2 Conclusions

Evaluating and building clinically useful models is clearly very important, particularly given the

widespread adoption of prediction models in healthcare (see Chapter 1). In Chapter 1 we showed that a

model with good predictive performance (in terms of traditional performance metrics) is not enough to

guarantee clinical usefulness. A well performing model, by traditional metrics, can be clinically useless,

and a poorly performing model valuable.

In Chapter 2, we demonstrated the utility of serial ctDNA measurements in predicting response to

treatment in mBC. This has important clinical implications for decision-making since clinicians can use

the predictions to guide treatment choices. One of the main contributions of this chapter was therefore

to provide quantitative estimates of response to treatment. This is the first work to offer individualised

predictions of disease progression. Our proposal considers the probability of disease progression for

each patient individually; by doing so, it can identify individual patients with extremely high-risk of

non-response to treatment. Clinicians can use this information to discontinue treatment if the tumour is

not responding. A further attractive feature of our model is uncertainty quantification at the individual

level. This allows for more targeted decisions. For instance, if predictive uncertainty is high clinicians

can collect more information, e.g., more blood samples, or refer to CT scan for confirmation.

In Chapter 3, we proposed an umbrella framework for Bayesian inference under unbalanced mis-

classification costs, TB. The framework allows us to take into account misclassification costs whist

training the model, thus addressing an inherent limitation of commonly used models. We demonstrated

the impact of this approach to the model output (the posterior distribution) and the improvement in

predictive performance compared to the SB approach. As far as we know this is the first work to

address the issue of incorporating misclassification costs into Bayesian modelling. Hence, one of our

contributions is to motivate the approach from a Bayesian perspective. As we discussed in Section 3.5

the tailored posterior (being a proper posterior) integrates the attractive features of Bayesian inference -

such as flexible hierarchical modelling, the use of prior information and quantification of uncertainty.

Another important contribution was the use of a wide range of simulated scenarios which allowed to us

gain some intuition on the underpinnings of the method and insights into when TB can be advantageous

compared to the standard Bayesian paradigm. Two such scenarios are the absence of parallelism of the

optimal decision boundaries and data contamination. Further, we applied the method to three real-data

applications and showed that it results in clinical useful models. An interesting finding from these

applications was that under the TB approach the relative importance of the covariates in terms of their

contribution to the prediction’s changes. We thus hypothesised this could lead us to prioritise different

covariates under a variable selection setting.
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Hence, in Chapter 4 we extended the TB framework to high-dimensional settings. Based on

our comprehensive empirical comparison between TB and SB we concluded that TB favours more

parsimonious solutions which may result in lower data collection costs and different covariates being

selected (or prioritised) for further downstream analysis. Even though this was an empirical observation

based on simulation and real-data analysis we can gain some intuition of this behaviour if we view the

TB posterior as combining a standard likelihood function with a data-dependent prior. As we mentioned

in Chapter 3 and showed in Appendix C.1 we can interpret the TB prior as a data-dependent regularizer.

Thus, compared to SB, TB can provide additional regularisation which is driven by the data. This could

explain the results in Chapter 4, i.e., that TB favours smaller models (with fewer covariates) compared

to SB. We believe a comprehensive study of the theoretical properties of TB is a promising avenue for

future work. In this work, we focused on extensive simulations and real-life scenarios to evaluate the

two approaches, which constitutes our main contribution. An attractive feature was the consistency of

the conclusions in both the simulated and real datasets. This allowed us to gain better insights on what

to expect when applying TB to a real-word setting and how to explain the results.

5.3 Future work

Several possible directions for further work have been suggested throughout this thesis. Here we

outline two further directions selected as likely the most promising to prioritise: (1) extension of TB to

non-linear models and (2) to multiple health states and more interventions.

In this work, we focused on logistic regression based on linear combinations of the covariates to

develop the TB framework. The choice to employ this modeling framework brings many advantages such

as ease of implementation, analytical and computational tractability and a smaller number of parameters

to estimate. Nevertheless, a potential promising future avenue could be to develop non-linear TB

implementations. This is motivated by the popularity and empirically demonstrated good performance

of many non-linear models. We believe it would be interesting to study under what circumstances non-

linear TB would be expected to outperform non-linear SB and compare their performance in real-world

applications.

Throughout this thesis we have been concerned with problems involving two health states and two

intervention actions/policies. Many important problems in clinical practice can be represented like this.

For example, the breast cancer prognostication case study (Section 3.4.1) involved the health states, dead

or alive, and the intervention actions, treat with chemotherapy or not. In screening for disease, a person

either has detectable disease or not, and an intervention choice is whether to apply a screening test to

that person, perhaps based on an estimate of the probability that the person is diseased. In predicting

whether a person will have a myocardial infarction in the next ten years, the person either will or will

not be so diagnosed, and an intervention might be whether to recommend taking statins to prevent

cardiovascular events. Although such formulations for two health states and two intervention actions
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have many applications and have been well studied, there may be multiple health states to consider, and

the intervention actions may be more elaborate.

An example of more than two intervention actions is given in Richman and Dowsett (2019). They

propose three intervention actions for women with breast cancer upon completion of 5 years of endocrine

therapy. After calculating the risk of late recurrence (π(x)) in women who have not had distant disease

recurrence 5 years after diagnosis, they recommend one of three possible actions: stop endocrine therapy,

offer genomic test for late recurrence or extend endocrine therapy. For each of these three possible

actions, the disease is either present or absent, resulting in 6 possible combinations of intervention

actions and disease states. By assigning utilities to each of these 6 conditions we can then define two

target thresholds for clinical management. First, we need a target threshold for stopping endocrine

therapy versus offering genomic testing. We denote this target threshold by tstop. Second, we need

another target threshold for continuing endocrine therapy versus offering genomic testing. We denote

this target threshold by tcont. Based on these thresholds one stops therapy if π(x)< tstop. If π(x)> tcont

one continues therapy and if tstop ≤ π(x)≤ tcont one offers further genomic testing. Future work could

be directed towards developing evaluation metrics for such examples. For instance, it is unclear if an

interpretable metric such as the Net Benefit (see Section 1.5) can be derived for these types of problems.

Another direction would be to study how to incorporate these new target thresholds in the TB framework.

Sometimes an intervention affects multiple health states. For example, Hippisley-Cox and Coupland

(2010) studied the unintended effects of prescribing statins to reduce the risk of cardiovascular disease

(CVD) among high-risk patients. Risk prediction models, such as QRISK2, are used to identify high

risk patients most likely to benefit from interventions, including statins (see Section 1.1). However, the

use of statins has negative effects such as myopathy, cataract, acute renal failure, oesophageal cancer,

and moderate or serious liver dysfunction. A few challenges arise when trying to derive a net benefit

function for these types of health states. A first challenge is to assign costs to all the possible outcomes.

Not everyone would agree to the costs used, but let’s take this step as given. Let the cost ck to each

outcome, k = 1,2, . . . ,K, where k = 1 corresponds a CVD event and K = 7 to liver dysfunction, then we

can determine whether there is a net benefit from prescribing statins as

Net Benefit =
∑

k

ckπ1k(x)+
∑

k

ckπ0k(x) (5.1)

where π0k(x) is the probability of the outcome in the absence of statins and π1k(x) is the probability

in the presence of statins. The net benefit is the expected cost in the absence of statins minus the expected

cost in the presence of statins. Relative risks estimates RRk can be used to compute π1k(x) = RRkπ0k(x).
The above calculation has a drawback though. It ignores the possibility that a person would develop

more than one of these conditions. This assumption means that one does not need to assign costs to

multiple simultaneous outcomes. Moreover, one does not need to know the joint distribution of these

various outcomes with and without statins; the marginal estimates like π0k(x) and π1k(x) are sufficient.

But in many settings, this assumption is unrealistic. We then need to estimate the joint distributions of
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the outcomes. We believe that model evaluation metrics taking into account all these settings are an

interesting avenue for future work.
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Appendix to Chapter 1

A.1 Details to Toy example 1

Here we give details for the simulation presented in Section 1.3.1. Let y ∈ {0,1} be the binary outcome

(residual disease: {no, yes}) and x the covariates. Both models include the same continuous covariate,

x1, simulated from

x1|y = 1 ∼N (0.5,1)

x1|y = 0 ∼N (0,1)
(A.1)

The binary covariate, xA, in Model A is simulated as

xA|y = 1 ∼Bernoulli(sensA)

xA|y = 0 ∼Bernoulli(1− specA)
(A.2)

where sensA = 0.88 and specA = 0.49 are the sensitivity and specificity of xA, respectively. Similarly,

the binary covariate, xB, in Model B is simulated as

xB|y = 1 ∼Bernoulli(sensB)

xB|y = 0 ∼Bernoulli(1− specB)
(A.3)

where sensB = 0.52 and specB = 0.93 are the sensitivity and specificity of xB, respectively. Finally,

the outcome is simulated as

y ∼ Bernoulli(prev) (A.4)

where prev = 0.55 is the prevalence of y.
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A.2 Details to Toy example 2

The simulation in Section 1.3.2 follows the same structure as above. That is, the continuous covariate,

x1, is simulated from

x1|y = 1 ∼N (−1,1)

x1|y = 0 ∼N (1,1)
(A.5)

The binary covariate, xA, in Models A and C is simulated as

xA|y = 1 ∼Bernoulli(sensA)

xA|y = 0 ∼Bernoulli(1− specA)
(A.6)

where sensA = 0.9 and specA = 0.2 are the sensitivity and specificity of xA, respectively. The binary

covariate, xB, in Models B and C is simulated as

xB|y = 1 ∼Bernoulli(sensB)

xB|y = 0 ∼Bernoulli(1− specB)
(A.7)

where sensB = 0.2 and specB = 0.6 are the sensitivity and specificity of xB, respectively. Finally,

the outcome is simulated as

y ∼ Bernoulli(prev) (A.8)

where prev = 0.01 is the prevalence of y.
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To compare between including or not a random slope parameter in the 2nd stage model we used the

expected log pointwise predictive density to assess model performance (Vehtari et al., 2017). More

specifically, we used the Bayesian leave-one-out cross-validation estimate of the expected log pointwise

predictive density which is a sum of n individual pointwise log predictive densities. It is defined as,

êlpdloo =

n∑
i=1

log p̂(yi|y−i),

where

p̂(yi|y−i) =
1
M

M∑
m=1

p(yi|θ (m))

is the leave-one-out predictive density given the data without the ith data point, θ refers to all the

model parameters, and θ (m), m = 1, . . . ,M refers to draws from the posterior, with p(yi|θ) being the

likelihood. êlpdloo was estimated as described in Vehtari et al. (2017) and Vehtari et al. (2015) and

implemented using the loo package (Vehtari et al., 2020) in R. To compare between the two models,

including (Model 1) and excluding (Model 2) the random slope, we calculate the difference (and standard

error) in êlpdloo, ∆êlpdloo. Comparing the models reveals an estimated ∆êlpdloo of -0.7 (with a standard

error of 2.0) in favour of Model 1. But, given the large standard error compared to ∆êlpdloo we opted to

proceed with the simpler (with fewer parameters) Model 2 at the 2nd stage.

Parameter estimates based on Model A are presented as follows:

1. Table B.1 presents the parameters of the 1st stage model, corresponding to the ΘΘΘ1 parameter

vector.

2. Table B.2 presents the parameters of the 2nd stage model, corresponding to the ΘΘΘ2 parameter

vector.



120 Appendix to Chapter 2

Table B.1 Parameter estimates 1st stage model. ρ denotes the correlation between σ11 and σ22.

Estimate Est.Error l-95% CI u-95% CI
Intercept 0.22 0.10 0.03 0.41

time 0.02 0.01 -0.00 0.04
ER status (pos) -0.05 0.04 -0.13 0.03

Her2 status (pos) -0.02 0.02 -0.07 0.03
Treatment 1 -0.05 0.09 -0.22 0.12
Treatment 2 0.00 0.09 -0.18 0.19
Treatment 3 -0.06 0.09 -0.24 0.11
Treatment 4 0.01 0.12 -0.23 0.24
Treatment 5 -0.01 0.09 -0.18 0.17
Treatment 6 0.00 0.10 -0.19 0.20
Treatment 7 0.01 0.09 -0.17 0.20
Treatment 8 -0.13 0.12 -0.37 0.11
Treatment 9 0.07 0.10 -0.13 0.26

Treatment 10 -0.10 0.13 -0.35 0.15
Treatment 11 -0.04 0.09 -0.21 0.14
Treatment 12 0.14 0.18 -0.21 0.49
Treatment 13 0.11 0.09 -0.06 0.29
Treatment 14 -0.01 0.09 -0.20 0.17
Treatment 15 -0.03 0.09 -0.21 0.15
Treatment 16 0.01 0.09 -0.17 0.20
Treatment 17 0.02 0.09 -0.16 0.21
Treatment 18 -0.08 0.11 -0.29 0.14
Treatment 19 0.07 0.10 -0.11 0.26

Treatment duration 0.00 0.01 -0.01 0.01
σε 0.15 0.00 0.14 0.16

σ11 0.09 0.01 0.07 0.12
σ22 0.05 0.01 0.03 0.07

ρ 0.40 0.32 -0.23 0.96
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Table B.2 Parameter estimates 2nd stage model. γ1 and γ2 are two elements of the γγγ vector.

Estimate Est.Error l-95% CI u-95% CI
Intercept -3.85 1.70 -7.56 -0.88

time 0.30 0.10 0.12 0.50
ER status (pos) -0.83 0.56 -1.96 0.24

Her2 status (pos) -0.29 0.31 -0.90 0.30
Treatment 1 2.79 1.61 0.03 6.37
Treatment 2 2.37 1.71 -0.66 6.10
Treatment 3 1.21 1.66 -1.70 4.84
Treatment 4 2.54 2.23 -1.84 7.00
Treatment 5 2.95 1.64 0.10 6.59
Treatment 6 2.54 1.75 -0.61 6.32
Treatment 7 3.19 1.65 0.36 6.83
Treatment 8 2.50 2.23 -1.89 6.93
Treatment 9 3.19 1.67 0.28 6.86

Treatment 10 -74.68 59.72 -217.33 0.83
Treatment 11 2.76 1.62 -0.01 6.37
Treatment 12 -76.16 60.06 -220.33 0.38
Treatment 13 4.14 1.63 1.33 7.75
Treatment 14 3.95 1.66 1.11 7.61
Treatment 15 2.70 1.60 -0.06 6.26
Treatment 16 3.24 1.67 0.36 6.91
Treatment 17 2.72 1.67 -0.19 6.41
Treatment 18 3.31 1.89 -0.12 7.34
Treatment 19 4.29 1.71 1.27 8.00

γ1 7.03 3.76 -0.01 14.81
γ2 4.42 7.21 -9.86 18.59
σu 0.90 0.23 0.47 1.37
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C.1 Interpretation of the TB prior (and posterior)

Here we show the prior in TB can be interpreted as a regularizer on a per-datapoint influence/importance.

First, we slightly modify notation and consider data Di = (Xi,Yi) as a copy of a random variable

D = (X ,Y ) ∈ Rd ×{0,1}. Then, let L (Di|βββ ) be the standard likelihood contribution of datapoint i

(i = 1, . . . ,n). The TB posterior, up to a normalising constant, is

p(βββ |D) ∝

n∏
i=1

L (Di|βββ )wi p(βββ ). (C.1)

Following Walker and Hjort (2001) we can view (C.1) as combining the original likelihood function

with a data-dependent prior that is divided by a portion of the likelihood. To see this, we first define the

data-dependent prior as
p(βββ )∏n

i=1 L (Di|βββ )1−wi

which corresponds to

p(βββ |D) ∝

n∏
i=1

L (Di|βββ )
p(βββ )∏n

i=1 L (Di|βββ )1−wi
=

n∏
i=1

L (Di|βββ )wi p(βββ ),

which is seen to coincide with (C.1). This data-dependent downweighting of the prior reduces the

weights of those parameter values that “track the data too closely” (Linero and Yang, 2018).

C.2 Model inference and prediction

To sample from the TB posterior we use Markov Chain Monte Carlo (MCMC) (see Section C.4 for details

on the computational scheme). We obtain S posterior samples {βββ
s}S

s=1, where βββ
s = (β s

1 , . . . ,β
s
d+1). We
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use the posterior samples to approximate the predictive density for test data x∗

p(π(x∗) | x∗,D) =

∫
p(π(x∗) | x∗,βββ )p(βββ | D)dβββ

≈ 1
S

S∑
s=1

p(π(x∗) | x∗,βββ s).

(C.2)

To calculate point predictions we summarise (C.2) by using the posterior predictive mean,

π̂(x∗) =
∫

π(x∗)p(π(x∗) | x∗,D)dπ(x∗), (C.3)

which is used as a plug-in into the NB function (equation (1.5)). We also use Bayesian inference

for the estimation of πu(x) so π(x∗) can be conceptually replaced by πu(x) in equations (C.2) and (C.3)

with the caveat that they are estimated in different subsets of the data (see Section 3.2.4 for the data

splitting strategy we are implementing).

C.3 Cross-validation to choose λ

We use stratified K-fold cross-validation (CV) to choose λ in equation (3.2). The stratification ensures

the prevalence of the outcome is the same in each fold. In K-fold CV, the data is partitioned into K

subsets D(k), for k = 1, . . . ,K and then the model is fit separately to each training set D(−k) thus yielding

a posterior distribution p(βββ | D(−k)). When calculating the predictive performance of the model the data

of the kth fold is used as test data. The predictive density for x∗, if it is in subset k, is

p(π(x∗) | x∗,D(−k)) =

∫
p(π(x∗) | x∗,βββ )p(βββ | D(−k))dβββ

≈ 1
S

S∑
s=1

p(π(x∗) | x∗,βββ s)

(C.4)

and the posterior predictive expectation is π̂(x∗) =
∫

π(x∗)p(π(x∗) | x∗,D(−k))dπ(x∗) which is used as

a plug-in into equation (1.5) to calculate the K-fold CV estimate of NB in the kth fold, NB(k). We choose

λ as

λ
∗ = argmax

λ

1
K

K∑
k=1

NB(k)

We use K = 5 for the all analysis. In practice, we have seen the results are insensitive to the choice

of K.
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C.4 Computational scheme

For all analysis in this report we use MCMC which has become a very important computational tool in

Bayesian statistics since it allows for Monte Carlo approximation of complex posterior distributions

where analytical or numerical integration techniques are not applicable. The Markov chain is constructed

using random walk Metropolis-Hastings updates (Brooks et al., 2011). We give a brief overview of the

algorithm.

The target distribution is p(βββ |D) (equation (3.5)). The sampling scheme starts at an initial set of

parameter values, denote these βββ
0. To sample the next set of parameters, which we denote βββ

1, we

propose moving from the current state to another set of parameter values, βββ
new, by using a proposal

function q(βββ new|βββ ). We then accept these proposed values as the next sample with probability equal to

the Metropolis-Hastings ratio:

MHR(βββ ,βββ new) =
L(D|βββ new)p(βββ new)

L(D|βββ )p(βββ )
× q(βββ |βββ new)

q(βββ new|βββ )
, (C.5)

where L(D|βββ ) is the tailored likelihood and p(βββ ) the prior, given in Section 3.2.2 and 3.2.3. The

proposed move is accepted with probability

α(βββ ,βββ new) = min(1,MHR(βββ ,βββ new)).

If this new set of values is accepted, the proposed set is accepted as βββ
1; otherwise, the sample

value remains equal to the current sample value, i.e., βββ
1 = βββ

0. The proposal function is Gaussian, i.e.,

q ∼ N (βββ , IIIsd) where sd is chosen to yield an acceptance rate ≈ 0.24 (Brooks et al., 2011). In the

current version of the algorithm all parameters are updated jointly.

C.5 Comparison with BART

Given the non-linear decision boundaries of the simulation scenario in Section 3.3.2, we further compare

TB with a standard non-linear Bayesian model. We use logistic Bayesian Additive Regression Trees

(BART) as implemented in the BART package version 2.9 (lbart() function) (Sparapani et al., 2021).

Figure C.1 shows the difference in NB between TB and BART. Under the 0.5 prevalence scenario

BART performs better than TB except at t = 0.9. On the other hand, TB performs better or no worse

than BART under prevalence scenarios 0.1 and 0.3. This is noteworthy as these prevalence scenarios are

common in medical applications. Together with the results from Figure 3.8, we conclude that for this

simulation scenario, TB, albeit implemented as a linear model, mitigates some of the advantages of a

non-linear one, such as BART. Note that an additional comparison of interest would be BART with a

tailored BART implementation. We leave this for future work.
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Figure C.1 Difference in Net Benefit for samples sizes of 500, 1000, 5000, 10000 averaged over 20
repetitions. A positive difference means TB outperforms BART. Each grid corresponds to a different
prevalence setting.

C.6 Additional experiments and implementation considerations

The method presented in this paper relies on the construction of the datapoint-specific weights (see

equation (3.2)). Here we discuss each element in turn.

C.6.1 On choosing λ

We have opted to use cross-validation to choose λ . An open question is how to choose the range of

λ values to consider. Our proposal is to consider values of the form λ ∈ {0, . . . ,m}. When λ = 0,

the model reduces to standard logistic regression, a sensible choice for the lower limit. To choose the

upper limit, m, note that as λ increases the rate with which the datapoints are downweighted increases

exponentially (Figure C.2). This in turn decreases the effective number of datapoints that are used when

training the model. We call this the effective sample size for tailoring, ESST . Formally, we define ESST

as

ESST =

n∑
i=1

wi

Under standard modelling, ESST = n, since wi = 1, ∀i. Under tailoring ESST ≤ n, which is why

tailoring results in wider posteriors1. This is demonstrated in Figure 3.4. In addition, Figure C.3 shows

the precision (as measured by the width) of the HPD credible intervals produced by each model under

the simulation setting in Section 3.3.2. The figure suggests that the width of the credible intervals

increases under tailoring compared to standard modelling. This is expected due to the downweighting of

the likelihood contributions.

As a result, we can use the ESST as a guide to choose m. Figure C.4 shows ESST
n for various λ values

and target thresholds for the breast cancer prognostication case study (Section 3.4.1). Based on a target

1recall, wi ∈ [0,1]
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Figure C.2 Distribution of weights, wi, against π̂u(xi) for breast cancer prognostication case study
(Section 3.4.1) for t = 0.15.

Figure C.3 90% HPD Interval width for each parameter as a function of the model.

threshold we can choose m so the ESST does not drop below a pre-specified threshold. Importantly, this

plot can be produced before fitting the model since we only need estimates of πu(xi).

In a similar fashion, we can have an indication whether TB will outperform SB before fitting

the model. This can be achieved by plotting NB as λ increases (Figure C.5). If NB remains stable

or decreases as λ increases (Figure C.5, t = 0.5 orange points) then TB will probably not offer any

performance improvement compared to SB (see Figure 3.11, t = 0.5). This is because, as discussed

above, when λ = 0 TB reduces to SB (i.e., all weights are equal to one).

C.6.2 On calibration

Accurate estimation of πu(xi) at the first step of our framework is important for the construction of the

weights. Ideally, we would like the estimated probabilities, π̂u(xi) to be well calibrated. Calibration refers

to the degree of agreement between observed and estimated probabilities (Section 1.2). Probabilities are

well calibrated if, for every 100 patients given a risk of x%, close to x have the event.
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Figure C.4 ESST
n for various λ values per target threshold.

Figure C.5 Average 5-fold CV estimate of Net Benefit for the breast cancer prognostication dataset.
Black points correspond to the chosen lambda values, λ ∗ (defined in Section C.3).
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(a) (b)

Figure C.6 (a) Calibration plot of π̂u(xi) on the train data using loess smoother. The 45-degree line
represents the perfect calibration. (b) Illustrations of different miscalibration scenarios. The y axis shows
π̂u(xi) and the x axis the miscalibrated π̂(xi) used in model fitting.

We use the breast cancer prognostication case study (Section 3.4.1) to investigate the effect of

miscalibration on the model performance. First, we assess the calibration of π̂u(xi). Figure C.6a

presents a graphical evaluation of calibration. It is based on loess-based smoothing method (Austin and

Steyerberg, 2014) where the estimated (i.e., π̂u(xi)) and observed probabilities (from the development

data) are plotted against each other; good models are close to the 45-degree line. We see the probabilities

are well calibrated for the lower thresholds, and tend to be underestimated for the higher risk thresholds.

To explore sensitivity of the tailored model to the accuracy of the step 1 probabilities, we deliberately

perturbed π̂u(xi) generating four miscalibration types: (1) overestimation; (2) underestimation, when

probabilities are systematically overestimated or underestimated, respectively; (3) overfitting, when

small probabilities are underestimated whereas large ones are overestimated; (4) underfitting, when

small probabilities are overestimated whereas large ones are underestimated. We further allowed for two

degrees of miscalibration (mild and severe) for each type giving us a total of eight scenarios (Figure

C.6b).

Figure C.7 shows the difference in NB between the original tailored (calibrated) model and the

tailored miscalibrated ones for the different scenarios. Comparing across miscalibration types we see

that the decline in performance depends on the type of miscalibration, with overfitting and underfitting

more robust than over- and underestimation. Comparing within each type we note a drop in performance

from mild to severe degrees, especially for over- and underestimation.

These results show that the model performance (in terms of NB) depends on the type of miscalibration

and is robust to mild miscalibration. In practice, the calibration of the estimated probabilities can be

readily evaluated graphically as done here or using statistical tests (Austin and Steyerberg, 2014). If

the results show poor calibration we recommend re-calibrating π̂u(xi) before calculating the datapoint-

specific weights (Janssen et al., 2008; Steyerberg et al., 2004).

C.6.3 On the weighting function

In Section 3.2.1 we defined the weights using the squared distance function, h. Here we investigate the

sensitivity of the framework to the choice of the distance function. We choose the family of ε-insensitive
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Figure C.7 Difference in NB, ∆NB (on the test set) between original, calibrated TB and miscalibrated TB
under different scenarios. A positive difference means the calibrated TB outperforms the miscalibrated
one.

functions (Vapnik, 1998), which is defined as

h(πu(x), t) = |πu(x)− t|ε

where we denote

|πu(x)− t|ε =

0 if |πu(x)− t| ≤ ε

|πu(x)− t|− ε otherwise
(C.6)

The ε-insensitivity arises from the fact that the function value is equal to 0 if the discrepancy

between the predicted probability πu(x) and the target threshold t is less than ε . In other words, we

do not care about the distance as long as it is less than ε , but will not accept any deviation larger than

this. As a result, observations with predicted probability within ε of the target threshold will not be

downweighted. For ε = 0 we recover the absolute distance, which is the objective function in median

regression (Bassett Jr and Koenker, 1978). Both the squared distance and the family of ε-insensitive

functions are symmetric, i.e., they downweight equally observations based only on their distance from

the target threshold, not taking into account the direction. This is a reasonable requirement for our

weighting function. Figure C.8 presents the results for various ε values for the breast cancer case study

(Section 3.4.1). The conclusions are qualitatively unchanged when compared within different ε values

and between ε-insensitive functions and the squared distance (first panel in Figure C.8). Hence, we

conclude that for this dataset the results are also robust to the choice of the weighting function.
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Figure C.8 Difference in NB (breast cancer prognostication case study) between TB and SB under the
squared distance and ε-insensitive functions for various ε values. Note the first panel corresponds to
Figure 3.11.
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Appendix to Chapter 4

D.1 Computational scheme

An exhaustive evaluation of all possible combinations of the covariates is computationally prohibitive

even for a moderate number of covariates. To alleviate this issue we have implemented an iterative

MCMC sampling algorithm, reversible jump MCMC (RJMCMC) (Green, 1995).

RJMCMC is a class of MCMC methods tailored for drawing posterior samples spanning multiple

parametric models together with their model-specific parameters, by jumping between models as part

of the sampling. The algorithm is conceptually similar with the one described in Appendix C.4, with

the caveat that we now need to sample the model, γγγ , alongside the other parameters, θθθ . The algorithm

starts at an initial model, γγγ(0), which is a selection of covariates, and corresponding set of parameter

values, θθθ
(0). To sample the next model and set of parameters, which we denote by γγγ(1) and θθθ

(1), we

propose moving from the current state to another model and/or parameter values, γγγ(new) and θθθ
(new),

using a proposal function q(θθθ (new),γγγ(new)|θθθ ,γγγ) (see later for details). We then accept these proposed

values as the next sample with probability equal to the Metropolis-Hastings ratio:

MHR =
L(D|θθθ (new),γγγ(new))p(θθθ (new)|γγγ(new))p(γγγ(new))

L(D|θθθ ,γγγ)p(θθθ |γγγ)p(γγγ)
× q(θθθ ,γγγ|θθθ (new),γγγ(new))

q(θθθ (new),γγγ(new)|θθθ ,γγγ)
, (D.1)

where L(D|θθθ ,γγγ) is the tailored likelihood given in equation (4.18), p(γγγ) is the model space prior

defined in equation (4.9) and p(θθθ |γγγ) is the prior on the parameters conditional on (i.e., included in) the

model (see equations (4.11) and (4.12)). The proposed move is accepted with probability min(1,MHR).

If this new set of values is accepted, we set γγγ(1) = γγγ(new) and θθθ
(1) = θθθ

(new), otherwise the current values

are retained γγγ(1) = γγγ(0) and θθθ
(1) = θθθ

(0). This produces results in a sequence of parameter/model samples,

which converge to the target posterior distribution, p(θθθ |D).

We briefly describe how the proposal function, q(θθθ (new),γγγ(new)|θθθ ,γγγ), is chosen. For details we refer

to Newcombe et al. (2017). The proposal is done in 2 steps with first a proposal for γγγ(new) (the model
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proposal) and then a proposal for θθθ
(new) (the parameter update) which implies that

q(θθθ (new),γγγ(new)|θθθ ,γγγ) = q(γγγ(new)|θθθ ,γγγ)q(θθθ (new)|γγγ(new),θθθ ,γγγ)

The model proposal q(γγγ(new)|θθθ ,γγγ) is done as follows: First, the type of move is determined from

four possibilities: (1) adding a covariate, (2) removing a covariate, (3) swapping the presence of one

covariate for another, or (4) a ‘null’ move where no change to the model is made. These move types are

assigned conditional probabilities according to the number of covariates currently included in the model;

an addition can only occur when there are < P covariates present, a removal can only occur when there

are > 0 covariates present, and a swap can only occur when there are ≥ 1 covariates present. Next, if an

addition, removal or swap move was selected, the covariates to be involved in the move are picked from

the covariates available for the move (e.g., an addition can only involve covariates that are currently

excluded) with equal probability. Therefore, q(γγγ(new)|θθθ ,γγγ) is determined by multiplying the probability

of the move type and, with the exception of a ‘null’ move, the probability of selecting the particular

covariates involved in the move.

The parameter updates q(θθθ (new)|γγγ(new),θθθ ,γγγ) involve standard sampling methods. For parameters

remaining in the model during a move, proposals are drawn from Gaussian distributions centred on the

current value. For an addition move, values for the new parameter are drawn from Gaussian distributions,

centred on zero. Therefore, q(θθθ (new)|γγγ(new),θθθ ,γγγ) is calculated as a Gaussian density (product, where

more than one parameter is involved in the move).

D.2 Convergence Diagnostics

To assess the computational performance of the RJMCMC sampling algorithm we performed several

convergence tests. These include 1) trace plots, 2) reproducibility of space exploration, and 3) the

Potential Scale Reduction Factor (PSRF). The convergence tests are demonstrated using the Diabetes

data set (Section 4.4.2) and the TB model for t = 0.5. All evaluated after running the algorithm five

times with random starting points. All tests indicate convergence of the RJMCMC sampler.

D.2.1 Trace plots

Figure D.1 displays the mixing of the regression coefficients. The relatively constant distribution of

parameter values over the course of the Markov Chain indicates good mixing.

D.2.2 Reproducibility of space exploration

To investigate whether final results correspond to the mathematical model and are not a product of poor

convergence of the Markov Chain (such as getting stuck in a local optimum) we run the algorithm five

times with random starting points. The results are displayed in Figure D.2, but with standard deviations
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Figure D.1 Trace plots of βββ parameters for each of the five repetitions. The sampler was run for 1
million iterations in total, with 50% as burn-in, after which every 100th sample is stored.

Figure D.2 Posterior inclusion probability (PIP) with standard deviations, based on five independent
RJMCMC runs with random starting points.

added, based on the five independent runs. The low standard deviations indicate a good reproducibility

of the RJMCMC sampler.

D.2.3 Potential Scale Reduction Factor

The Potential Scale Reduction Factor (PSRF) is a common quantifier of Markov Chain convergence,

which takes values in the interval [1,∞) and quantifies the difference in the obtained distributions

from a number of independent executions, here five (Brooks and Gelman, 1998; Gelman et al., 2013).

Conventionally, convergence is stated when the PSRF is lower than 1.1. Figure D.3 displays the PSRF

averaged over the 5 runs of the RJMCMC sampler. All values are well below 1.1, thereby indicating

good convergence.
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Figure D.3 PSRF values for each covariate, averaged across five independent runs.
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