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Normalizing and denoising protein expression
data from droplet-based single cell profiling
Matthew P. Mulè 1,2,4, Andrew J. Martins 1,4 & John S. Tsang 1,3✉

Multimodal single-cell profiling methods that measure protein expression with oligo-

conjugated antibodies hold promise for comprehensive dissection of cellular heterogeneity,

yet the resulting protein counts have substantial technical noise that can mask biological

variations. Here we integrate experiments and computational analyses to reveal two major

noise sources and develop a method called “dsb” (denoised and scaled by background) to

normalize and denoise droplet-based protein expression data. We discover that protein-

specific noise originates from unbound antibodies encapsulated during droplet generation;

this noise can thus be accurately estimated and corrected by utilizing protein levels in empty

droplets. We also find that isotype control antibodies and the background protein population

average in each cell exhibit significant correlations across single cells, we thus use their

shared variance to correct for cell-to-cell technical noise in each cell. We validate

these findings by analyzing the performance of dsb in eight independent datasets spanning

multiple technologies, including CITE-seq, ASAP-seq, and TEA-seq. Compared to existing

normalization methods, our approach improves downstream analyses by better unmasking

biologically meaningful cell populations. Our method is available as an open-source R

package that interfaces easily with existing single cell software platforms such as Seurat,

Bioconductor, and Scanpy and can be accessed at “dsb [https://cran.r-project.org/

package=dsb]”.
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Recent developments in multimodal single cell analysis
involve using DNA barcoded antibodies to simultaneously
profile surface proteins together with the transcriptome

(e.g., CITE-seq) and/or chromatin accessibility (e.g., ASAP-seq)
in single cells1–4. This greatly enhances our ability to discover,
define, and interpret cell types and states, particularly those
comprising the immune system given extensive existing knowl-
edge connecting surface protein profiles to immune cell subsets
and functions5. Droplet-based sequencing of single cells stained
with DNA-barcoded antibodies provides a readout of protein
levels in the form of antibody-derived tag (ADT) counts for each
protein. This “cytometry via sequencing” approach bypasses
spectral interference inherent in fluorescence-based cytometry
methods, thus enabling simultaneous profiling of hundreds of
proteins in single cells. While low-level normalization and
modeling approaches for single cell RNA-seq data have received
considerable attention6–12, those for protein/ADT are in their
infancy and more importantly, the extent and sources of noise
have not been quantitatively analyzed despite the substantial
levels of apparent noise reported in raw protein counts2.

Stochastic processes during single cell mRNA capture and
sequencing contribute to sampling noise13,14 and other technical
variations leading to reduced UMI counts, including zero counts
for genes despite actual mRNA expression in a given cell. Such
noise can be modeled with statistical distributions15–17 or nor-
malized, for example, by standardizing the total number of
mRNA reads between cells commonly performed via scaling
factors computed from each cell’s total mRNA “library size”18

(defined herein as the total UMI count for a given assay/data
modality in each cell). However, these methods are not appro-
priate for surface protein count data for several reasons. First, a
major noise component of ADT data appears to be added
background noise because cells tend to have positive counts for
multiple classes of proteins that are reported to be mutually
exclusively expressed in distinct cell subsets. For example, com-
pared to sparse mRNA counts, only two 0 values are present
across more than 11,000 cord blood cells stained with 13 surface
proteins in the original report of the CITE-seq method2. Second,
current methods/experiments still measure only a small fraction
of unique proteins with a wide range of antigen density on dif-
ferent cell types, resulting in individual protein counts in single
cells spanning ~2–3 orders of magnitude (e.g., <10 to >1000);
differences in total protein counts between cells therefore depend
on the specific antibody panel used. Finally, the total protein
counts detected on a given cell may reflect both technical but also
biological variations such as cell size across cells and cell types,
especially given the dependence of the total ADT counts on the
specific antibody panel used.

The original developers of CITE-seq normalized ADT data by
using a centered log ratio transformation (CLR). The resulting
values can be interpreted as either a natural log ratio of the count
for a given protein relative to the other proteins in the cell (CLR
“across proteins”, as implemented in the original report of CITE-
seq2) or relative to other cells (CLR “across cells”, a modification
used in later work by the authors19, which renders CLR less
dependent on the composition of the antibody panel). The CLR
transformation helps to better separate cell populations, but it
does not directly estimate and correct for specific sources of
technical noise including the apparent background noise men-
tioned earlier. The authors accounted for protein-specific noise in
human cells by spiking in mouse cells to set a per-protein cutoff
for determining whether a CLR transformed (across-protein)
expression value was above that in mouse cells2. This approach
appears not adopted beyond its original use, likely because it
entails more complex experiments and analyses. More recent
reports applied other approaches, for example, fitting models to

estimate background and foreground distributions for each
protein without using spike-in control cells20,21, or using isotype
antibody controls to estimate background3,22. It is unclear
the extent to which these approaches remove noise versus bio-
logically relevant signals since the noise sources remain uni-
dentified; some proteins also have multimodal distributions
across cells, while isotype controls are not typically used in flow
cytometry for quantitative thresholding23 since their level can
reflect both biological and technical variations. Thus, determining
the major sources of noise and developing dedicated methods to
account for them are major unmet needs given the swift adoption
and proliferation of multimodal single cell profiling methods
involving the measurement of protein expression with DNA
barcoded antibodies.

Here we perform experiments and computational analyses to
reveal two major components of protein expression noise in
droplet-based single cell experiments: (1) protein-specific noise
originating from ambient, unbound antibody encapsulated in
droplets that can be accurately estimated via the level of “ambi-
ent” ADT counts in empty droplets, and (2) droplet/cell-specific
noise revealed via the shared variance component associated with
isotype antibody controls and background protein counts in each
cell. We develop an R software package, “dsb” (denoised and
scaled by background), the first dedicated low-level normalization
method developed for protein ADT data, to correct for both of
these noise sources without experimental modifications. Our
application of this approach to our own and several external data
sets spanning multiple technologies and assay types demonstrates
the generalizability of dsb to enhance downstream analysis,
including manual and unsupervised protein-based and multi-
modal (joint protein–mRNA) identification of cell populations
and states.

Results
Analysis of unstained cells reveals ambient antibody capture as
a major source of protein-specific noise. To assess protein count
noise, we first utilized our previously reported dataset measuring
more than 50,000 peripheral mononuclear cells (PBMCs) from 20
healthy human donors24 stained with an 87 CITE-seq antibody
panel (including four isotype controls; Totalseq-A reagents,
Biolegend). Consistent with the original CITE-seq report2, we
noticed non-zero counts for most proteins in each cell, resulting
in positive counts even of markers not expected to be expressed in
certain cell types. We also noticed non-zero, “ambient” protein
counts in tens of thousands of empty droplets containing capture
beads without cells, which emerge naturally due to Poisson dis-
tributed cell loading, reminiscent of cell-free RNA observed in
droplet-based single cell RNAseq25–27. We reasoned that back-
ground noise in CITE-seq data may partly reflect such unbound,
ambient antibodies captured in droplets. To assess whether
counts in empty droplets indeed reflect the ambient component
in cell-containing droplets, we compared background protein
levels in cell-free droplets with droplets capturing unstained
control cells spiked into the cell mixture after cell staining
and washing but prior to droplet generation (Fig. 1a). We found
positive protein counts even for unstained control cells, and that
the average log-transformed level per protein in empty droplets
and unstained control cells were highly correlated (Fig. 1b). A
similarly strong correlation was observed between the average
protein counts in subpopulations of stained cells “negative” for a
given protein and those in empty droplets (Supplementary
Fig. 1a–c; negative cells correspond to those in the fraction with
lower expression of the protein—see the “Methods” section),
further suggesting that the noise component correlated across
cells is dominated by ambient antibody capture. Thus, protein
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counts in empty droplets, which are available in all single-cell
droplet experiments, provide a direct estimate of the ambient
background due to free antibody capture for each protein. Con-
sistent with our findings on ambient antibody capture as the
major source of background noise in CITE-seq data, a recent
study reporting CITE-seq antibody titration experiments across
a` wide concentration range demonstrated that background
noise increased with the antibody staining concentration, with
some antibodies at or above 2.5 µg/mL having even more
cumulative UMIs in the empty droplets compared to cells28. Our
observation thus motivated the first step of our method to remove
protein-specific technical noise: transforming counts of each
protein in cell-containing droplets by subtracting the mean and

dividing by the standard deviation of that same protein across
empty droplets (see the “Methods” section). The resulting
transformed protein expression values for each cell reflect the
number of standard deviations above the expected ambient cap-
ture noise, thus centering the negative cell population for each
protein around zero to help improve interpretability of the
resulting protein expression values (Fig. 1c).

Shared variance between isotype controls and background
protein counts in single cells provide cell-intrinsic normal-
ization factors. In addition to ambient noise correlated across
single cells as captured by average readouts from empty droplets,
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cell/droplet-intrinsic technical factors including but not limited to
oligo tag capture, cell lysis, reverse transcriptase efficiency,
sequencing depth and non-specific antibody binding, can con-
tribute to cell-to-cell variations in protein counts that should
ideally be normalized across single cells. Given that the differ-
ences in total protein UMI counts between individual cells could
reflect biologically relevant variations, such as those due to the
physical size of naïve vs. activated lymphocytes, library size
normalization (dividing each cell by the total library size) could
remove biological rather than technical cell to cell variations. In
addition, since current CITE-seq antibody panels are a small
subset of total surface proteins, the assumption that total UMI
counts should be similar among cells may not be valid. Here we
integrated two types of independently derived measures to reveal
a more conservative (i.e., avoiding over-correction and removal of
biological information), robust estimate of the factor associated
with cell-intrinsic technical noise (Fig. 1a).

First, the four isotype control antibodies with non-human
antigen specificities in our panel could in principle help capture
contributions from non-specific binding and other technical
factors discussed above. The counts of the isotype controls were
only weakly (but significantly) correlated with each other across
cells (Fig. 1f), and interestingly, the correlation between the mean
of four isotype controls and the protein library size (which has
both biological and technical components) across single cells was
even higher (Pearson correlation 0.45) than that between the
protein library size and the individual isotype controls (average
Pearson correlation 0.25). This suggests that while each isotype
control may be individually noisy, and their levels may still
partially reflect biological contributions, collectively their shared
component of variation (i.e., as reflected by their average) may
better capture technical noise in the experiment. Second, to
further boost the robustness of estimating cell-intrinsic technical
noise, particularly given that the number of isotype controls
available in practice can be limited, we sought an additional
estimate of droplet-intrinsic technical variation. Since each cell in
a sample of multiple distinct cell types (e.g., PBMCs) is expected
to express only a subset of protein markers in staining panels, we
reasoned that the distribution of each cell’s non-staining proteins
(e.g., those specifically expressed in other cell types/lineages)
could be differentiated from the cell’s “positively expressed”
proteins by fitting a 2-component mixture model to each cell. If
so, the average counts in the population of non-staining/negative
proteins could reflect and therefore serve as another readout of

the cell’s technical component that could then be integrated with
the cell-intrinsic noise captured by isotype controls. To assess this
hypothesis, we applied a Gaussian mixture model with two
(k= 2) subpopulations to fit the protein counts within each single
cell after correcting for the protein-specific ambient noise we
identified above (see below and the “Methods” section; Fig. 1d).
We found clear separation between the background (with
mean= µ1) and positive (mean= µ2) protein population with
substantial cell-to-cell heterogeneity of subpopulation means
(Fig. 1d). We next assessed the robustness of using a two-
component mixture to model the protein counts of individual
cells by comparing k= 1–6 component models assessed using the
Bayesian Information Criterion (BIC). While two-component
models had the best fit in a majority (81%) of cells, indicating a
bimodal protein distribution within single cells, k= 3 models had
the best fit in nearly all remaining cells (Fig. 1e, Supplementary
Figs. 2a, b; see also Supplementary Note). The BIC for these cells
were very similar to the corresponding k= 2 models (Supple-
mentary Fig. 2c), indicating that the two-component fits were
identifying very similar positive and negative populations.
Importantly, for the minority of cells with optimal k= 3 or 4
models, the resulting mean of the lowest expression population
(µ1 estimate) was highly concordant when the same cells were fit
with a k= 2 model (Supplementary Fig. 2d–f). These data suggest
that a two-component Gaussian mixture fit of the protein
population within single cells can robustly delineate the negative
background protein count population for most cells.

Together µ1 and the isotype controls provide estimates of
technical noise within each single cell. However, each variable
may be individually noisy; we thus assessed information sharing
among these variables. The correlations between µ1 and each
individual isotype control (average correlation r= 0.33) or the
average of all four isotype controls (r= 0.59) were higher than
those between the isotype control themselves (average correlation
r= 0.11), suggesting that the shared variation (i.e., average)
between the independently inferred µ1 and isotype controls
captured unobserved, latent factors contributing to technical
noise (Fig. 1f, g). We thus reasoned that the first principal
component score (λ) capturing the shared variation of µ1 and the
isotype controls across single cells would be a robust measure of
technical noise intrinsic to individual cells. λ was associated with
the protein library size across single cells within cell clusters
(Supplementary Fig. 3a clusters defined after dsb steps I and II,
see the “Methods” section), supporting the notion that λ captures

Fig. 1 Antibody-derived protein UMI count data noise source assessment. a 1 and 2: Experimental setup and potential noise sources in CITE-seq data. 3:
protein-specific noise: if ambient antibody encapsulated in droplets constitutes a major source of protein-specific noise, values should be highly correlated
with those in unstained control cells (top); if control cells contain information on noise not captured by empty drops, the correlation should be weak. 4:
Cell-specific noise evaluated through the correlation between the background protein population mean and isotype controls across single cells. Created
with BioRender.com. b Average protein log10(count+ 1) of unstained control cells spiked into the stained cell pool prior to droplet generation (y-axis)
versus that of droplets without a cell (x-axis). Pearson correlation coefficient and p value (two sided) are shown. c Density histograms of protein expression
of lineage-defining proteins within major subsets in stained cells (black) and unstained controls (red) normalized together using dsb step I (ambient
correction and rescaling based on levels in empty droplets). d A two-component Gaussian mixture model was fitted to the protein counts within each
single cell; the distributions of the component means from all single cell fits (blue= ”negative” population; red= “positive” population) are shown, protein
distributions from a randomly selected cell shown in the inset. e Comparison of Gaussian mixture models fit with between k= 1 and k= 6 subpopulations
to dsb normalized protein values for n= 28,229 cells from batch 1 after dsb step I (ambient correction) but prior to step II, vs. the model fit Bayesian
Information Criteria (BIC, using mclust R package definition of BIC where larger values correspond to a better fit) from the resulting 169,374 models.
Boxplots show the median with hinges at the 25th and 75th percentile, whiskers extend plus or −1.5 times the inter quartile range. k= 2 component
Gaussian mixtures have the best fit in more than 80% of cells (orange, right inset bar plot). f Pearson correlation coefficients among isotype controls and
background component mean inferred by Gaussian mixture model (µ1 fitted per cell as in d); all corresponding p values (two sided) are <2e−16. g Scatter
density plot between µ1, the mean of each cell’s negative subpopulation from the per-cell Gaussian mixture model (blue in c) versus the mean of the four
isotype controls across single cells. Pearson correlation coefficient is shown (two-sided p value < 2e−16). h The distribution of the dsb technical
component as calculated using a 2 component (x-axis) vs. 3 component (y-axis) mixture model to define the µ1 parameter, Pearson correlation coefficient,
p value (two-sided) < 2e−16.
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the technical component of the protein library size. Furthermore,
consistent with the observation above regarding the Gaussian
mixture model fit, λ was highly concordant regardless of whether
the background (µ1 estimate) was defined using a k= 2 or
k= 3-component Gaussian mixture (Fig. 1h).

Given the information sharing between µ1 and isotype
controls, we recommend the inclusion of multiple isotype
controls in CITE-seq experiments to serve as anchors for robust
inference of technical normalization factors (see Supplementary
Note). Together, our data indicate that while the signal from
individual measures, such as isotype controls can be noisy
and may reflect multiple yet often unknown sources of variation,
their correlated component of variation can serve as a robust
normalization factor for surface protein expression in single cells.
Thus, in a second, optional but recommended step, our method
computes λ for each cell as its “technical component”, which is
then regressed out of the ambient noise corrected protein values
(Fig. 1c) generated by step 1 above (see the “Methods” section).
The underlying modeling assumptions of the dsb technical
component also held well in seven independent datasets
generated via different assay platforms and protein panels of
diverse sizes (from 17 to more than 200 proteins; see below).

Comparison with other transformations and assessing dsb in
independent datasets generated by different technology plat-
forms. The unstained spike-in cells above should reflect the level
of protein specific, “ground-truth” noise, we thus used these cells
to visually compare dsb with other normalization transformations
(Supplementary Fig 3e; see the “Methods” section). Unstained
cells normalized using dsb centered around zero, while CLR or
log transformation placed these cells at arbitrary locations. For
example, CD4 has a trimodal distribution due to absence of
expression in populations such as B lymphocytes, low expression
in CD14+ monocytes and high expression in helper T cells; dsb
normalized values centered the background population together
with unstained control cells at zero and delineated low-level
CD4 staining on monocytes. In contrast, these monocytes are
closer to and partially overlapped with the unstained population
when CLR or log normalization were used (Supplementary
Fig 3e). We further compared dsb to CLR (the version that
normalizes across cells) since CLR is the most commonly applied
transformation for ADT data to date and normalization across
cells should depend less on the protein staining panel than CLR
across proteins. Using k-medoids clustering of single cells based
on protein expression data only, the Gap-Statistic29, which
reflects improvement in within-cluster coherence relative to that
expected of random data drawn from a reference distribution,
was consistently higher using dsb compared to CLR across dif-
ferent values of k. However, the trend as a function of k was
similar between dsb and CLR, suggesting that the improvement
could be partly due to scaling differences between these two
transformations (Supplementary Fig. 3f). Finally, differential
expression analysis comparing major immune cell populations
with the rest of the cells revealed that key lineage and cell-type-
specific proteins (e.g., CD56 on NK cells) tended to have larger
fold changes when using dsb normalized protein values compared
to CLR (Supplementary Fig. 3g).

We next tested the general applicability of dsb by using several
independent, publicly available CITE-seq datasets. We first
assessed whether the modeling assumptions developed using
our own CITE-seq data would generalize to four other CITE-seq
datasets that profiled ~5000 to 10,000 cells using 14–29 surface
phenotyping proteins and three isotype controls, and were
generated using different versions of the 10X Genomics droplet
profiling kit than the one we used. Similar to our dataset, we

detected a large number of empty droplets containing antibody
reads (>50,000) inferred by the EmptyDrops25 algorithm used in
the Cell Ranger barcode rank algorithm; the number of cell-
containing droplets estimated by Cell Ranger and further filtered
by quality control metrics (3000–8000 droplets) was also
consistent with the number of loaded cells (Fig. 2a, Supplemen-
tary Fig. 4a, h, o). Thus, protein-specific ambient noise can be
estimated as in our data set using these empty droplets. Applying
dsb without any modification resulted in biologically interpre-
table protein-based clusters (Fig. 2b, c, Supplementary Fig. 4e, f, l,
m, s, t) and canonical immune cell populations could be clearly
delineated by conventional biaxial plots (Fig. 2d, Supplementary
Fig. 4g, n, u). Importantly, the model-fitting behavior and
correlations among isotype controls and background counts
observed in our dataset were similarly observed in these
independent datasets, including: (1) The k= 2 component
Gaussian mixture model had the best fit according to BIC in
most single cells (Fig. 2e, 89% average across four CITE-seq
datasets); (2) the estimated µ1 (mean of background protein
counts) for each cell correlated significantly with the mean of
isotype controls across single cells and was higher than the
correlation with individual isotype controls (Fig. 2f, g, Supple-
mentary Fig. 4b, c, i, j, p, q); (3) the inferred technical component
using isotype controls and µ1 was correlated with the protein
library size (Fig. 2h, Supplementary Figs. 4d, k, r); finally, (4) even
on the smallest panel (14 phenotyping antibodies, 3 isotype
controls) the per cell technical component λ was highly
concordant regardless of whether the background (µ1 estimate)
was defined using a k= 2 or k= 3-component Gaussian mixture
(Supplementary Fig. 2g).

We next tested the applicability of dsb to several new types of
multimodal single cell data generated by technologies that measure
surface protein expression in droplet captured single cells using oligo-
barcoded antibodies including (1) “proteogenomic” data (protein+
DNA mutation assays from Mission Bio; 9 proteins plus an isotype
control), (2) ATAC-seq with Select Antigen Profiling (ASAP-seq:
protein and chromatin accessibility; 238 proteins plus isotype
controls), and 3) Transcription, Epitopes, and Accessibility (TEA-
seq: protein + chromatin accessibility and transcriptome assessment;
45 proteins plus one isotype control). All datasets had ADT reads in a
large number of empty droplets (Supplementary Figs. 5a, d, e). Our
method was compatible with the proteogenomic dataset, helping to
identify markers for each cell cluster after correcting for protein-
specific background levels estimated from >16,000 empty droplets
(Supplementary Figs. 5a–c). In the ASAP-seq dataset that measured
multiple isotype controls, µ1 again correlated significantly with the
mean of isotype controls across single cells and this correlation was
higher than that among the individual isotype controls (Supplemen-
tary Figs. 5f, g), and the inferred per-cell dsb technical component
was correlated with the library size as observed above (Supplementary
Fig. 5h). In TEA-seq and ASAP-seq data, the negative staining cells
could often be identified by applying the same 3.5 threshold that we
applied in our and other data sets (Supplementary Figs. 5i–k and see
below). The compatibility and utility of dsb with large protein panels
such as in the ASAP-seq dataset is consistent with our recent CITE-
seq analysis of Covid-19 patients using a similarly large panel where
dsb helped enable accurate cell population identification by both
automated clustering and manual gating30. A summary of results
from these datasets is shown in Fig. 2i.

Case study I: dsb improves interpretation of protein-based and
joint protein–mRNA clustering results. We next further inves-
tigated the ways in which normalization with dsb could help
improve cell type identification. By design, dsb zero-centers the
background population for each protein and provides normalized
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expression interpretable as signal above expected background
noise. These features are thus particularly helpful in manual
gating across cell lineages (Supplementary Fig. 6a) and can
improve the annotation of cell types derived from unbiased
clustering. In contrast, distinguishing true biological expression
from noise within individual cell clusters can be challenging when
using transformations such as the CLR, partly because CLR
protein values lie on a non-zero-centered scale (each protein also
has a distinct noise floor); therefore, cells can appear to express
markers known to be specific for other cell lineages. For example,
in cluster 4 from our PBMC data (framed cluster in Fig. 3a),
proteins such as IgA/IgM and CD57 could be mis-interpreted as
showing signal above noise (Fig. 3b). In contrast, dsb normalized
values for IgA, IgM, and CD57 are zero-centered (Fig. 3b),

indicating that the level of these proteins in this cluster was sta-
tistically similar to the level in empty droplets and were therefore
not expressed (Fig. 3c, d—red proteins). In contrast, CD16,
CD244, and CD56 had dsb values above 8 (i.e., >8 standard
deviations above the mean in empty droplets, +/− the correction
from regressing out the technical component), suggesting these
were CD57 negative CD16++ CD56+ NK cells, which are not
known to express B-cell markers such as IgM or IgA. In general,
cell clusters identified using dsb normalized protein values
had cell type-defining proteins detected above the same threshold
(3.5) applied within each cell cluster (Fig. 3e, Supplementary
Fig. 6b, c).

We also assessed compatibility of dsb with an unsupervised
joint mRNA-protein clustering algorithm that constructs a
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weighted nearest-neighbor (WNN) joint embedding of CITE-seq
mRNA and protein data31 (Fig. 3f). We ran WNN clustering
using the same processed mRNA data together with ADT data
normalized by either dsb or CLR (across cells). The clustering
results were similar, suggesting dsb and CLR led to broadly
concordant results. However, closer examination of individual
clusters revealed that dsb could lead to more interpretable results.
Notably, CD14-positive cells (presumably monocytes) were

distributed across multiple dsb-derived clusters, including cluster
3 characterized by elevated CD86 (Fig. 3g). In contrast, the CLR
value of these same cells was relatively low for CD86 but high for
other markers (e.g., CD8 and IgM) that should not be expressed
by monocytes (Fig. 3h). Furthermore, median CLR values in these
cells (but not dsb—Fig. 3g) were correlated with the 98th
percentile of expression in empty droplets across proteins
(R= 0.67, p= 3.1e−10; Fig. 3h), suggesting that protein-specific
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ambient noise contributed substantially to the CLR values;
this noise source was successfully accounted for by dsb via
the use of empty droplets. Finally, relative to the rest of the cells,
differentially expressed transcripts in dsb-derived cluster 3
include inflammatory and activation genes (Fig. 3i), consistent
with the CD86-high phenotype revealed by dsb.

Case study II: dsb unmasks MAIT cell population in tri-modal
TEA-seq data. As a second example, we further analyzed tri-
modal transcriptome, protein, and chromatin accessibility (TEA-
seq) data32. Visual inspection suggested improvement in biaxial
plots after dsb normalization as the same interpretable threshold
of 3.5 applied to all datasets in this study delineated two cell
populations based on CD4 and CD14 (Fig. 4a) compared to
normalization with protein library size (as implemented in the
original TEA-seq study), and CLR (Supplementary Fig. 9a, b). To
assess unsupervised multimodal clustering, we carried out the
same comparison of CLR and dsb normalization using WNN
clustering (combining mRNA and protein) as above but on TEA-
seq data. Similar to above, the clustering results overlapped sig-
nificantly (Chi-squared test, p < 2e−16 Supplementary Fig. 9c, d).
However, we noticed phenotypic marker differences within a
specific T cell cluster that could substantially change the biolo-
gical interpretation of the resulting cell population. During thy-
mic development, human T cells rearrange variable, diversity and
joining (VDJ) genes at the T cell receptor (TCR) locus. The
resulting TCR gene rearrangements are distinct to functional
categories of T cells with known specialized functions.
This TEA-seq data included antibodies specific for alpha-beta

(TCR a/b—conventional helper and cytotoxic T cells), gamma-
delta (TCR g/d gamma-delta T cells), and Va7.2 (specific for
mucosal associated invariant T (MAIT) cells). The MAIT TCR
Va7.2 median dsb values were high (~15 standard deviations
above background noise) in cell cluster 14 (with more than 700
cells); as expected, cells in this cluster expressed TCR Va7.2
exclusively with no other TCR proteins according to dsb nor-
malization (Fig. 4c, Supplementary Fig. 9f). In contrast, the CLR
normalized values of the cells in this cluster had higher median
values for TCR a/b than TCR-va7.2; both TCRs were similarly
distributed and it was thus unclear which was truly expressed
given the uncertain noise floor of CLR normalized counts
(Fig. 4d, Supplementary Fig. 9e). This was also the case for the
gamma-delta T cell receptor protein, which was around zero after
dsb normalization (Supplementary Fig. 9e, f). CD56, CD3, CD8,
and KLRG1 in Cluster 14 were also positive based on dsb (more
than 6 standard deviations above background noise) (Fig. 4e),
thus broadly consistent with the known phenotype of
CD8+MAIT cells33. These cells have distinct biological func-
tions from conventional T cells, partly due to their semi-invariant
T cell receptor (TCR-Va7.2) specific for bacterial metabolic
products presented via major histocompatibility complex-related
protein MR134. Based on CLR normalized protein levels alone,
cells in cluster 14 had a phenotype resembling conventional
T cells with elevated cytotoxic capacity (TCR a/b, KLRG1 and
CD56 positive)35,36. Since dsb corrects for protein-specific noise,
we hypothesized that the apparent expression of both TCRs in
cluster 14 after CLR normalization was likely due to ambient
noise present in CLR transformed data. Supporting this notion,
the median CLR values (but not the dsb-derived values) were
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correlated with the 98th percentile values from empty droplets
(Pearson correlation 0.8, two-sided p= 2.4e−7, compared Pear-
son correlation 0.13, two-sided p= 0.39 for dsb), and both the
alpha-beta and gamma-delta TCR proteins were among the
highest ranked proteins based on expression in empty droplets
(Fig. 4e, f). To further assess the identity of this cluster, we per-
formed unbiased differential mRNA expression analysis of cluster
14 cells versus other clusters (Fig. 4g). Among the top dis-
criminative markers for cluster 14 was the transcription factor
ZBTB16 (Fig. 4g), which is known to be elevated during iNKT
and MAIT cell differentiation37, expressed by mature
MAIT cells38,39, but suppressed during conventional naïve T cell
differentiation40. We next constructed a 165-transcript MAIT cell
signature derived from the top differentially expressed genes
reported in an independent study, which used bulk RNA-seq to
compare FACS-sorted TCR-Va7.2+ human MAIT cells versus
other T cells lacking this TCR41. This MAIT cell signature was
significantly enriched (Fig. 4h) in differentially expressed genes
from cluster 14 (normalized GSEA enrichment score 2.64, p value
1e−10). As this example demonstrates, dsb helped to avoid
potential misannotation of a T cell subset and revealed biologi-
cally coherent mRNA and protein profiles of MAIT cells. Thus,
dsb is compatible with and can improve downstream analysis
outcomes of multimodal single cell data such as TEA-seq.

Discussion
Our experiments and computational analyses revealed ambient
capture of antibodies by droplets is a major source of protein-
specific noise in droplet-based ADT data. Our method, dsb, esti-
mates and corrects this noise component without experimental
modifications since we found that it can be reliably estimated
using empty droplets, which are abundant in droplet based single
cell datasets. On top of protein-specific noise, cell intrinsic noise
was apparent given our observation of the strong correlation (i.e.,
shared variance) among distinct isotype controls and the average
ADT level of background proteins inferred by mixture modeling
within single cells. This correlated component affords dsb to
implement a conservative approach to estimate and correct for
cell-to-cell technical noise, an improvement over approaches that
use individual isotype controls or total protein library size because
individual variables alone are inherently noisier and could contain
more biological (as opposed to technical) signals. We found that
application of dsb to both our own and independent multimodal
single cell datasets with ADT data improved the identification and
annotation of cell types and states based on protein-based or
multimodal clustering approaches.

Recent methods proposed to use joint probabilistic modeling of
mRNA and protein21,42 with one of the goals being identification
of protein expression above noise. For example, TotalVI42 uses an
mRNA and protein generative neural network model to estimate
posterior probability distributions of protein expression, which
identified cells with zero, low, or high probability of CD4 protein
levels in human PBMCs. As expected, this identified monocytes
and T-helper cells based on known low and high surface CD4
protein levels on these cells, respectively; these populations were
similarly recovered by dsb normalized populations. While such
end-to-end probabilistic models hold promise for single cell
analysis, the TotalVI counts are denoised in non-normalized UMI
count space—to use these raw UMI counts for downstream ana-
lysis tasks outside the probabilistic neural network framework,
the values would still need to be normalized, for example via
a log transformation. Such probabilistic models are thus com-
plementary to and distinct from dsb, which focuses on low-level
protein- and cell-intrinsic denoising and normalization unique to
ADT protein data by directly inferring and removing the two

noise components detailed in our analyses above. In addition, the
specific noise sources revealed by our analyses and approaches to
estimate them could lead to more informative prior distributions
used by Bayesian probabilistic modeling approaches such as
TotalVI. As demonstrated here, the denoised and normalized data
from dsb can be used in any downstream analysis application to
potentially enhance the results of higher level single cell data
analysis methods, such as joint protein–mRNA clustering31,43–45.

We further detail the experimental evidence for noise sources
as well as the modeling assumptions, caveats, and limitations of
our method in the Supplementary Note. Briefly, we assessed (1)
the robustness of our estimation of protein-specific noise, (2) the
sensitivity of dsb normalized values to different methods of
defining empty droplets, (3) the impact of different cutoffs for
defining background droplets for use with dsb, (4) normalization
across batches: normalizing multiple experimental batches toge-
ther vs. applying normalization separately to each batch, and (5)
caveats for using dsb on datasets without isotype control antibody
measurements. The use of different methods for defining back-
ground droplets had negligible impact on normalized expression
values, however, defining a reasonable subset of barcodes as
background droplets still requires care. The dsb package doc-
umentation provides code to extract and quality control the
background droplet population from the raw data matrix. It uses
all cell barcodes from the Cell Ranger alignment tool by default,
although other alignment tools such as kallisto46 and CITE-seq-
Count47 can also be used. In our own dataset used above, we also
found little differences in dsb-normalized expression values
between first merging data across from batches before applying
dsb vs. applying dsb to each batch individually. However, in
general this could be dependent on the extent of uniformity
among the batches. Finally, additional analysis further supported
the benefit of including isotype controls to help correct for cell-to-
cell technical noise in step II of dsb (see Supplementary Note for
details).

The dsb package is computationally efficient and can process
on the order of 105 cells on a laptop, e.g., the primary dataset in
this study (with >53,000 cells) was normalized and denoised in
under 4 min. The output can be easily integrated with diverse
single cell software platforms such as Bioconductor48, Seurat49,
and Scanpy50.

Methods
The denoised scaled by background normalization (dsb) method. The dsb
method is implemented via the R package “dsb [https://cran.r-project.org/
package=dsb]” through a single function call to DSBNormalizeProtein(), which
models and accounts for (1) protein-specific ambient noise correlated across single
cells as captured by average readouts from empty droplets and (2) droplet/cell-
specific technical noise revealed via the shared variance component associated with
isotype control antibodies and background protein counts in each cell. Internally
the function is carried out in two major steps. In step I, protein counts in empty
droplets are used to estimate the expected ambient background noise for each
antibody. Each protein’s counts in cell-containing droplets are thus rescaled using
this expected noise measurement as:

Y ¼ log xi þ P
� �� μn

σn
ð1Þ

where log xi is the natural log of the count for protein Y in cell i, P is a pseudocount
added to prevent taking the log of zero and to stabilize the variance of small counts,
and μn and σn are the mean and standard deviation of empty droplets for protein
Y, respectively, computed in the same way in natural log space with pseudocount P
added. The value of P can be empirically chosen; we use 10 by default, finding this
provides good clustering performance and visualization of the CITE-seq data we
have analyzed. The transformed expression estimate (Y) for the protein in each cell
can be interpreted as the number of standard deviations above the expected
ambient background noise of that protein. This expression matrix can be returned
without further removing technical cell to cell variations in step II, for example if
isotype controls are not available, by setting denoise.counts= FALSE in the R
function, however we strongly recommend using isotype controls and further
correcting cell to cell technical variations by fitting and removing each cell’s dsb
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technical component in step II below by setting denoise.counts= TRUE and
use.isotype.control= TRUE (the function default).

In step II, dsb denoises cell-to-cell technical variations by defining and
removing the “technical component” of each cell’s protein values after ambient
correction from step 1. This step fits a model to each cell to learn the background
population mean, and then combines this value with the shared variation in values
of isotype control proteins. In the first part of this two-part step, dsb fits a Gaussian
mixture model through the expectation-maximization algorithm implemented with
the mclust51 R package to the transformed count of each cell from step 1 with k= 2
mixture components:

ð fxiÞ ¼ ϕ1N1ðxjμ1; σ1Þ þ ϕ2N2ðxjμ2; σ2Þ ð2Þ

In the model above, the log normally distributed proteins of each cell i
comprising the non-staining noise/background protein subpopulation for that cell
are estimated by (N1), and µ1 is the mean of the background protein subpopulation
N1 in that cell. A noise variable matrix is then constructed by combining all the
fitted µ1 values with the isotype control values for all cells. dsb then calculates
principal component 1 (i.e. the primary latent component “λ”) of these variables in
the noise matrix across cells:

λ1 ¼ ϕ1;1 μ1
� �þ ϕ1;2 Isotype1

� �
¼ ϕ1;pðIsotype pÞ ð3Þ

where loading vectors in equation III calculated by the R function prcomp() are
multiplied by the noise matrix, forming each cell’s PC1 score λ1 which determines
the cell’s “dsb technical component”. Finally, the dsb technical component for each
cell is then regressed out of the ambient-noise-corrected values “Y” from part 1; the
values returned by dsb are the residuals (plus intercept) of a linear model regressing
the ambient corrected values on the technical component for each protein.
Internally, to implement this step dsb uses a function from the limma52 package
removeBatchEffect() for robust and efficient matrix decomposition to fit and then
regress out the effect of a specified covariate (in this case the technical component
λ1 from Eq. (3)) from a matrix of variables (proteins) across observations (cells).

We strongly recommend using isotype controls if using the cell to cell denoising
step (i.e. if setting denoise.counts= TRUE) as we observe that the use of more
isotype controls increases the robustness of the calculation of the technical
component. See the dsb software documentation on CRAN and the Supplementary
Note for additional information on usage and definition of the technical
component in experiments without isotype controls.

CITE-seq on 20 human PBMC samples. CITE-seq data analyzed here were
previously used to assess the cellular origin and circuitry of baseline immune
signatures24; an earlier version of dsb was used therein to normalize the protein
data which is identical to the default method implemented in the dsb package, with
exception of the pseudocount used (1 vs. 10, see below). Experiment details can be
found in our prior report24. Briefly, oligo-labeled antibodies for sample barcoding
(cell “hashing”) and surface target protein detection were obtained from Biolegend.
After incubating each sample with a barcoding antibody19, cells from each donor
were pooled into one tube and stained with an optimized mixture of oligo-labeled
CITE-seq antibodies against target surface proteins. Two experimental batches
were performed on consecutive days, using aliquots of the same pool of antibodies
for each batch. The pooled donor cells from each of two batches were each dis-
tributed evenly across six lanes (per batch) of the 10x Genomics Chromium
Controller using Single Cell 3′ expression reagents (version 2). Sample barcoding
(HTO) and target surface protein (ADT) libraries were prepared as in the original
CITE-seq report and according to the publicly available CITE-seq protocol (version
2018-02-12, cite-seq.com). cDNA libraries were prepared using the 10x Genomics
v2 kit according to manufacturer’s instructions. Libraries were sequenced using the
Illumina HiSeq 2500 using v4 reagents. We used CITE-seq Count47 for HTO and
ADT read mapping and Cell Ranger for RNA mapping, and cells were then
demultiplexed as previously reported19,24,53 (see Supplementary Note for addi-
tional details on demultiplexing, see supplementary Data 1 for a list of antibodies
used in this study).

Healthy donor CITE-seq data analysis. Raw CITE-seq data from our prior
report24 were normalized with the dsb package using the default parameters and
empty/background droplets as defined by either clear breaks in the protein library
size distribution or droplets defined as negative/background by sample demulti-
plexing with little impact on normalized values (see Supplementary Note and
Supplementary Fig. 8). The denoise.counts argument was set to TRUE which carries
out the recommended step 2 (denoising cell–cell technical variations by estimating
and regressing out the technical component for each cell) and the use.isotype.-
control argument set to TRUE (defining each cell’s technical component by com-
bining isotype control antibody values and the mean of background counts as
detailed above). See section below “Assessment of performance of dsb vs. CLR” for
methods related to normalization comparisons. Uniform manifold approximation
projection54 (UMAP) was run with the umap-learn Python package in R using
reticulate with parameters n.neighbors= 35, min.dist= 0.6. Unsupervised protein-
based clustering was performed using Seurat55 to implement the SLM56 algorithm
as we previously reported24 directly on a distance matrix formed on the protein vs.
cells matrix of CITE-seq proteins (without isotype controls) after normalizing with

dsb (in our original report, using pseudocount 1). We retained these cell type
annotations used in the original report but renormalized data for all analysis in this
paper using dsb with the current package default pseudocount= 10 which resulted
in identically distributed relative protein values across cell clusters (Supplementary
Fig. 6c, see also Fig. 5c in Kotliarov et al. 2020).

Assessment of performance of dsb vs. CLR. Our CITE-seq PBMC data of
~53,000 cells from healthy donors profiled with 83 phenotyping proteins and 4
isotype controls (as shown in Figs. 1 and 3, from Kotliarov et al.) was used for
comparison of CLR and dsb normalization using statistical tests, cell type anno-
tation from protein based clustering and comparison of multimodal mRNA+
protein-based clustering. For comparisons, the default implementation of dsb, with
denoise.counts= TRUE and use.isotype.control= TRUE, was compared to the CLR
transformation across cells, parameters normalization.method= CLR and mar-
gin= 2 in the NormalizeData() function in Seurat version 431. The Gap statistic29

for dsb and CLR normalized data was calculated based on k medoids clustering
algorithm with k values from 1 to 20, using with 20 bootstrap samples to obtain the
reference null distributions. Differential expression testing of protein markers
comparing each cluster to all other clusters was performed for the major cell types
in the coarse clustering (clusters C0–C10) as reported in Kotliarov et al. 24 vs. all
other cells using the FindMarkers() function in Seurat to implement a Wilcox test
with a log-fold change threshold of 0.3. See section below “Weighted nearest
neighbor analysis of CITE-seq and TEA-seq data” for information on clustering
comparison.

Assessment of dsb on external CITE-seq (protein+mRNA) datasets. Raw and
filtered UMI matrices for RNA and ADT counts from Cell Ranger were down-
loaded from the 10X Genomics website. Background droplets and cells were
defined and the default dsb normalization was carried on each dataset as described
in the tutorial in the “dsb package documentation [https://github.com/niaid/dsb]”.
Cells were defined as barcodes in the filtered Cell Ranger output, and background
drops were defined as after removing the cells from the from the raw Cell Ranger
output, where a range of ~5e4–7e4 background droplets containing protein reads
were used to measure ambient background. Background drops could be clearly
differentiated from cell containing droplets by an order of magnitude difference in
the protein library size distribution (see blue vs. orange distributions in Supple-
mentary Fig. 4a, h, o). The droplets in each of these populations were then sub-
jected to standard scRNAseq quality control metrics based on mRNA content,
mitochondrial read proportion and protein library size with filters tuned to each
dataset in order to retain only high-quality cells in the cell protein matrix and to
remove potential cells from the background protein matrix. The number of cell-
containing droplets after QC was consistent with the expected per-lane cell
recovery based on the cell loading density of the experiment. Proteins with very low
raw data signal (a maximum UMI count <5 across all cells) were removed prior to
normalization, resulting in removal of the CD34 protein from two datasets. After
these basic quality control steps, dsb normalization was carried out using default
parameters in the dsb package (denoise.counts= TRUE and use.isotype.control=
TRUE). Cells were clustered on a cell by protein Euclidean distance matrix of dsb
normalized values not including isotype control proteins as described above.
UMAP was run with n_neighbors parameter = 40 and min_dist parameter= 0.4.
Cluster labels reflect graph-based clustering in Seurat with resolution tuned to each
dataset.

Assessment of dsb on external proteogenomic (protein+DNA mutation
assay) data. The Mission Bio example data was downloaded from the company’s
website. Since this dataset only analyzed 10 surface proteins, we performed ambient
noise removal, rescaling based on counts in the observed empty droplets only (i.e.
performing step 1 only by setting the denoise.counts argument to FALSE). UMAP
was run with the min_dist parameter set to 0.4 and the n_neighbors argument set to
40 directly on dsb normalized protein values. Clustering was done on a Euclidean
distance matrix using Seurat with a resolution parameter set to 0.5 as
described above.

Analysis of ASAP-seq (protein+ chromatin accessibility) and TEA-seq
(protein+mRNA+ chromatin accessibility) data. ASAP-seq and TEA-seq data
were downloaded from GEO and preprocessed according to the workflows pro-
vided in the publicly available analysis code from the original manuscripts. Cell
containing droplets were defined as the droplets that passed the authors original
quality control metrics. For dsb normalization, we subset non-cells from the raw
protein data, estimating noise from the major peak in library size distribution, with
quality control to eliminate potential cells from the background matrix, following a
similar procedure outlined in the dsb documentation with some modification for
ASAP-seq data where mRNA data are not available thus background was estimated
based on protein alone from the subset of droplets that did not pass the authors
quality control metrics for cells. For comparison, in both datasets cells were nor-
malized with CLR (across cells, margin= 2 in the NormalizeData() function using
Seurat) and for TEA-seq, an additional log transformation with library size scaling
factors (NormalizeData() function with parameter normalization.method= “
LogNormalize”). Analysis of differentially expressed genes in specific clusters vs. all
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other cells was carried out in Seurat with the function FindMarkers() using an ROC
test. Gene Set enrichment analysis of the MAIT cell signature was performed with
the fgsea package57 based on genes ranked by the log2-fold change of genes in
cluster 14.

Weighted nearest neighbor analysis of CITE-seq and TEA-seq data. For
multimodal clustering of the TEA-seq and CITE-seq healthy donor datasets, we
used the weighted nearest-neighbor algorithm31 with the Seurat function Find-
MultimodalNeighbors(), with slight modification. In pilot analysis of the WNN
algorithm we found both CLR and dsb joint embeddings and clustering improved
by using protein data directly instead of compressing protein data into principal
components. We used the normalized values of 45 (TEA-seq) and 69 (our healthy
donor CITE-seq data) phenotyping proteins directly in the joint model (we first
removed 14 uninformative/poor performing proteins that had very low average dsb
values across all protein-based clusters from the protein data matrix from the
healthy donor CITE-seq data). We compared the same joint clustering approach
with the only difference being the normalization used in the input data. In analysis
of both the CITE-seq and TEA-seq datasets, the mRNA data was compressed into
30 principal components; the same 30 mRNA principal components were com-
bined with either dsb or CLR normalized protein data for joint clustering. First,
mRNA data were normalized with the Seurat function NormalizeData() with the
parameter normalization.method= “LogNormalize”, implementing a natural log
transformation, standardizing by the library size and multiplying values by 1e4.
These values were compressed into 30 principal components based on scaled values
for variable genes selected by setting the FindVariableFeatures() function with the
selection.method parameter set to ‘vst’. For the CLR WNN model, protein data were
normalized by the CLR across cells (using the Seurat function NormalizeData()
with normalization.method= “CLR” and margin= 2). For the dsb WNN model,
data were normalized using the default implementation of dsb, (parameters
denoise.counts= TRUE, use.isotype.control= TRUE). Seurat was then used to
separately cluster the two weighted nearest-neighbor graphs constructed from
mRNA principal components and either CLR or dsb normalized input
protein data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data used in this analysis are available to download at datasets [https://doi.org/10.35092/
yhjc.13370915]. The public datasets included in the data repository were downloaded online
and are also available from 10X genomics [https://support.10xgenomics.com/single-cell-
gene-expression/datasets] and from Mission Bio https://missionbio.com/capabilities/dna-
protein/#Data]. ASAP-seq and TEA-seq datasets were downloaded from GSE156477 and
GSE158013, respectively. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author upon reasonable request.

Code availability
The dsb software package is available for download on CRAN: [https://cran.r-project.org/
package=dsb]. An analysis workflow with R code and detailed instructions to reproduce
the analysis results reported in this manuscript are available for download from github
[https://github.com/niaid/dsb_manuscript/]58.
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