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Abstract

Ediacaran rangeomorphs were the first substantially macroscopic organisms to appear in the
fossil record, but their underlying biology remains problematic. Although demonstrably hetero-
trophic, their current interpretation as osmotrophic consumers of dissolved organic carbon
(DOC) is incompatible with the inertial (high Re) and advective (high Pe) fluid dynamics
accompanying macroscopic length scales. The key to resolving rangeomorph feeding and
physiology lies in their underlying construction. Taphonomic analysis of three-dimensionally
preserved Charnia from the White Sea identifies the presence of large, originally water-filled
compartments that served both as a hydrostatic exoskeleton and semi-isolated digestion cham-
bers capable of processing recalcitrant substrates, most likely in conjunction with a resident
microbiome. At the same time, the hydrodynamically exposed outer surface of macroscopic
rangeomorphs would have dramatically enhanced both gas exchange and food delivery. A
bag-like epithelium filled with transiently circulated seawater offers an exceptionally efficient
means of constructing a simple, DOC-consuming, multicellular heterotroph. Such a body plan
is broadly comparable to that of anthozoan cnidarians, minus such derived features as muscle,
tentacles and a centralized mouth. Along with other early bag-like fossils, rangeomorphs can be
reliably identified as total-group eumetazoans, potentially colonial stem-group cnidarians.

1. Introduction

Rangeomorphs were conspicuous members of the Ediacaran biosphere, present from roughly
the end of the Gaskiers glaciation through to the beginning of the Cambrian period (c. 575–
540Ma). As the first substantial instances of large complex organisms in the fossil record, they
mark a key transition in geobiological history, presaging the first appearance of unambiguous
animals at c. 555Ma. Even so, there is little consensus on the phylogenetic affiliations of ran-
geomorphs, with interpretations ranging from total-group cnidarians, ctenophores or sponges,
to stem-group (eu)metazoans, or possibly an entirely unrelated lineage of multicellular macro-
scopic eukaryotes (Xiao & Laflamme, 2009). The problem with these particular fossils is not just
their taxonomic placement, however, but a fundamentally deeper lack of understanding of how
they were constructed, and how they worked as organisms.

Physiologically, macroscopic organisms work in much the same way as their microscopic
counterparts, but with the added allometric challenges of conveying resources to internalized tis-
sues and supporting the associated mass. Because of the fundamental reductions of surface area to
volume (SA:V) that accompany increased body size, the evolution of large three-dimensional (3D)
organisms necessarily involved major anatomical innovations. Even at modern levels of oxygen,
for example, the maximum diameter of aerobic organisms lacking some sort of differentiated
circulatory or respiratory apparatus is less than 2mm (Catling et al. 2005). There are, however,
significant advantages to large body size, not least environmental buffering, systematic decreases
in mass-specific metabolic demand (Glazier, 2006; DeLong et al. 2010), and the emergence of
scale-dependent mechanical, chemical and hydrodynamic properties (Sebens, 1987; Koehl,
1996; Hurd, 2000; Solari et al. 2007; Guizien & Ghisalberti, 2016). Simply as a consequence of
length scale (L) and background fluid velocity (U), for example, large organisms operate in a world
of elevated Reynolds numbers where movement is dominated by inertial rather than viscous
forces (Re=UL/v), and at elevated Péclet numbers where material exchange is dominated by
advection rather than molecular diffusion (Pe=UL/D) (where v is kinematic viscosity and
D is rate of diffusion). Such dynamics offer fundamentally enhanced levels of motility, feeding
and gas exchange to macroscopic organisms (Butterfield, 2018), provided the underlying issues
of construction and resource distribution can be addressed.

Rangeomorphs are characterized by a broadly frond-like habit, built around a centimetre-
scale branching element that exhibits self-similarity over three or four ‘fractal’ levels (Narbonne,
2004; Brasier et al. 2012; Hoyal Cuthill & ConwayMorris, 2014). Various arrangements of these
elements, often in concert with basal holdfasts, elevating stalks or interconnecting rods, gave rise
to a significant range of larger-scale forms including bi-terminal recliners (e.g. Fractofusus),
unstalked unifoliate fronds (e.g. Charnia), stalked unifoliate fronds (e.g. Avalofractus),
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unstalked multifoliate fronds (e.g. Bradgatia), stalked multifoliate
fronds (e.g. Rangea) and compound fronds (e.g. Hapsidophyllas)
(Fig. 1). Although originally interpreted as macroscopic algae
(Ford, 1958), the abundant in situ preservation of rangeomorphs
in deeper-water strata of Avalonia has convincingly ruled out a
photosynthetic habit (Wood et al. 2003); and although some forms
look superficially like modern sea-pens, their distinct styles of
construction and growth rule out any direct affiliation to extant
octocoral cnidarians (Seilacher, 1989; Antcliffe & Brasier, 2007).

Because of their anchored and generally elevated habit, rangeo-
morphs have traditionally been interpreted as microphagous sus-
pension feeders, ecologically analogous to sponges or anthozoan
cnidarians (Jenkins, 1985). Unlike these living forms, however, ran-
geomorphs appear to lack tentacles, openings or any other feeding-
related features, even in specimens preserving detail on a scale of
tens of micrometres (Narbonne, 2004). As such, it has been widely
assumed that nutrient uptake took place on the outside of the
organism, after the manner of osmotrophic bacteria or fungi
(McMenamin, 1993; Laflamme et al. 2009; Sperling et al. 2011).
Certainly the characteristic ‘fractal’ branching would have increased
the proportion of exposed surface area on which this might have
occurred, but it remains to be demonstrated that rangeomorphs
could actually feed in this fashion (Liu et al. 2015).

1.a. Osmotrophy and dissolved organic carbon: a primer

The most immediate issue arising from the osmotrophy model for
rangeomorphs is the imprecise, often inconsistent, use of the term
itself. In its most general sense, osmotrophy is simply the process by

which dissolved substrates are passed across cell membranes
(Jumars et al. 1993; Karp-Boss et al. 1996; Thingstad et al. 2005).
At least implicitly, it is limited to external, environmentally exposed
surfaces, which usefully distinguishes it from otherwise similar proc-
esses of internalized uptake (e.g. in eumetazoan guts and the food
vacuoles of phagocytizing protozoans). The textbook exemplars of
osmotrophic feeding – heterotrophic prokaryotes and fungi – are
also ‘external digesters’, where organisms actively excrete hydrolytic
enzymes and recover the digested products. There are risks to this
type of feeding, however, most obviously through the dispersive loss
of exo-enzymes and product in aqueous environments, but also their
exploitation by unrelated or non-contributing organisms (Jumars
et al. 1993; Karp-Boss et al. 1996; Vetter et al. 1998; Arnosti,
2011; Richards & Talbot, 2013). The key to limiting such losses is
containment. Fungi typically manage this through the penetration
of solid substrates, whereas osmotrophic prokaryotes exploit the
viscosity-dominated fluid dynamics associated with small length
scales (<< Re). The diffusive boundary layer (DBL) surrounding
micrometre- and sub-micrometre-sized cells is effectively imper-
vious to advective loss, greatly facilitating the rate-limiting steps
of both hydrolytic digestion and trans-membrane uptake (Jumars
et al. 1993; Langlois et al. 2009; Arnosti, 2011). Conversely, the
DBL and its facilitation of external digestion and osmotrophy are
progressively eroded at larger length scales. Indeed, the primary
impediment to osmotrophic feeding in large organisms is not SA:
V per se, but the challenge of digesting and incorporating substrate
under elevated Re conditions.

The discussion of osmotrophy has been further confused by the
term ‘dissolved organic carbon’ (DOC), the substrate on which

Fig. 1. (Colour online) Rangeomorph taxa illustrating the characteristic fractal-like branching and diversity of overall form. (a) Charnia masoni, type specimen, from Charnwood
Forest, UK. (b) Rangea schneiderhoehni, type specimen, from Namibia. (c) Hapsidophyllas flexibilis, from SE Newfoundland. (d) Fractofusus misrae from SE Newfoundland. (e)
Bradgatia sp. from SE Newfoundland. Scale bar: (a, e) 2 cm; (b) 1.5 cm; (c) 4 cm; and (d) 3 cm. Photo credits: (a) Phil Wilby; (b) Dima Grazhdankin; (c) Olga Zhaxybayeva; (d)
Alex Liu; and (e) Jean-Bernard Caron.
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rangeomorphs are assumed to have fed. Despite early proposals to
limit the term to genuinely soluble components (Sharp, 1973),
DOC has come to be defined operationally as the reduced carbon
content of a filtered water sample, with the pore size of the filter
ranging more or less arbitrarily from 0.2 to 1.0 μm (Verdugo
et al. 2004). As such, DOC now includes a disparate range of mate-
rials, from fully dissolved molecules to colloids, gels, viruses and
even small microbes.

Further classification of DOC is based on environmental lon-
gevity; on the one hand ‘labile DOC’ with residence times of hours
to days, and on the other ‘recalcitrant DOC’, which persists from
weeks to tens of thousands of years (Hansell, 2013; Follett et al.
2014). In structural terms, labile DOC is represented by free mono-
mers and small oligomers (<600 daltons) and is the only fraction
available for direct osmotrophic uptake. Unsurprisingly, it has lim-
ited potential for environmental accumulation, with amino acids
and sugars in the modern ocean occurring at concentrations of less
than one-billionth of a gram per litre (Hansell, 2013; Moran et al.
2016). By contrast, the larger molecules and materials comprising
recalcitrant DOC accumulate substantially in the oceans, collec-
tively representing more than 200 times the carbon present in
marine biomass. Even so, DOC remains conspicuously dilute in
marine environments (from c. 34 to> 80 μmol kg−1), often falling
below the threshold necessary to sustain microbially mediated
hydrolysis (Arrieta et al. 2015). This alone may contribute to its
extended residence time.

There are multiple sinks for recalcitrant DOC in the modern
oceans, including both biological remineralization and sedimen-
tary adhesion leading to long-term burial. Of the former, a sub-
stantial fraction ends up being captured and consumed by
suspension-feeding animals. Benthic sponges, for example, have
an extraordinary capacity to extract colloidal DOC from large
volumes of water (Yahel et al. 2003; de Goeij et al. 2013; Kahn
et al. 2015), a habit emulated in the pelagic realm by actively
swimming salps and tunicates (Flood et al. 1992; Sutherland
et al. 2010). None of these DOC feeders can be considered osmo-
trophic, however, since all of the associated digestion and uptake
takes place internally, by endocytic choanocytes in the case of
sponges (Leys & Eerkes-Medrano, 2006) and within a differenti-
ated gut in tunicates and other eumetazoans (e.g. Dishaw et al.
2014). At the same time, there is a proportion of DOC that physi-
cally aggregates to produce larger particulate organic carbon
(POC), with the resulting flakes, gels and transparent exopolymer
particles (TEP) available for consumption via conventional
eumetazoan-grade capture and ingestion (Camilleri & Ribi,
1986; Verdugo et al. 2004; Mari et al. 2017).

Despite these various non-osmotrophic means of incorporating
DOC, it is clear that a range of aquatic eukaryotes do exploit it
directly. Labelling experiments, for example, have demonstrated
the osmotrophic uptake of acetate, monosaccharides, amino acids
and fatty acids by most major invertebrate clades (Wright &
Manahan, 1989; Baines et al. 2005; Skikne et al. 2009; Gori et al.
2014; Blewett & Goss, 2017). There are also reports of uncharac-
terized DOC uptake (e.g. Roditi et al. 2000; Barnard et al. 2006;
Rengefors et al. 2008), although it is notable that these substrates
were all derived from fresh algal or arthropod lysates. In other
words, the osmotrophy observed in modern eukaryotes and
metazoans appears to be limited exclusively to the labile, low-
molecular-weight DOC that requires no prior digestion; and even
then, uptake rates are typically 2–4 orders of magnitude lower than
those associated with internalized feeding (Wright & Manahan,
1989). Reports of aquatic invertebrates feeding osmotrophically

on recalcitrant DOC (e.g. Mcmeans et al. 2015) are likely to involve
microbial intermediaries or other means of repackaging leading to
internalized digestion (e.g. Camilleri & Ribi, 1986; Höss et al. 2001;
Eckert & Pernthaler, 2014).

Whatever the absolute quality or quantity of food, it only
becomes metabolically available once it has been translocated from
the external environment into a cell. Although O2, CO2 and a vari-
ety of small hydrophobic molecules diffuse more or less freely
across phospholipid cell membranes, most organic molecules –
including amino acids and monosaccharides – can only be taken
up via membrane-embedded transporter proteins. As such, maxi-
mum uptake rates are determined by the density and specificity of
transporters, and the non-trivial time required for substrate
exchange (Confer & Logan, 1991; Karp-Boss et al. 1996).
Glucose and amino acid transporters, for example, will saturate
under elevated substrate concentrations, limiting the utility of
locally enhanced delivery. Even so, the vanishingly low concentra-
tions of free monomers in the modern ocean means that the rate-
limiting step for marine osmotrophy will almost always revert to
the hydrolytic digestion of more recalcitrant DOC (Confer &
Logan, 1991; Moran et al. 2016), a process fundamentally at odds
with fluid dynamics at macroscopic length scales.

Ultimately, of course, the challenge for all heterotrophic
organisms is accessing food. For microbes operating under low
Re and Pe regimes, the presence of a thick, essentially permanent
DBL means that substrate delivery is dominated by molecular
diffusion (Karp-Boss et al. 1996). Despite their extraordinary
capacity to digest recalcitrant DOC, the physical inability of
osmotrophic microbes to pump or swim substantially through
water means they are prone to starvation under oligotrophic con-
ditions (Arrieta et al. 2015). Delivery can be dramatically
enhanced in larger organisms simply through the accompanying
inertial and turbulent fluid dynamics (Langlois et al. 2009; Singer
et al. 2012; Ghisalberti et al. 2014; Guizien & Ghisalberti, 2016;
Butterfield, 2018), but at the cost of eroding the stable DBL nec-
essary for external digestion (Vetter et al. 1998; Arnosti, 2011;
Richards & Talbot, 2013). In principle, then, macroscopic heter-
otrophs should be able to make a living under fundamentally
more oligotrophic conditions than their microbial counterparts
(Ghisalberti et al. 2014), but only if there is an alternative means
of digesting recalcitrant food.

2. Osmotrophic rangeomorphs?

Laflamme et al. (2009) have argued that Ediacaran rangeomorphs
fed osmotrophically via their ‘fractally’ enhanced SA:V properties,
noting amarginal overlap with some exceptionally large living pro-
karyotes. There are problems with this study, however, not least the
choice of modern analogues. Of the eight ‘strictly osmotrophic
megabacteria’ included in the analysis, only one is actually a
free-living osmotroph: the relatively modest-sized (<15 μm diam-
eter) archaeon Staphylothermus marinus. Two others are substan-
tially larger, but known exclusively from the guts of aquatic
vertebrates where neither substrate digestion nor advective loss
are relevant factors (Sporospirillum praeclarum in tadpoles and
Epulopiscium fishelsoni in surgeon fish). None of the remaining
five taxa is osmotrophic, or even heterotrophic: Thiomargarita,
Achromatium, Beggiatoa and Thiovulum are all sulphur-oxidizing
chemoautotrophs, and Prochloron is a cyanobacterial photoauto-
troph. Indeed, the most likely explanation for the exceptionally
large dimensions of these primary producers is the advective
delivery of (freely diffusible) CO2 at larger length scales. In any
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event, there are no extant heterotrophic prokaryotes, free-living or
otherwise, that fall within the calculated SA:V range of Ediacaran
rangeomorphs (cf. Schulz & Jørgensen, 2001; Laflamme et al.
2009, fig. 4b).

The likelihood of osmotrophic feeding in rangeomorphs is also
problematic in terms of metabolically available DOC. Although the
Proterozoic oceans might well have contained high concentrations
of total DOC (e.g. Shields, 2017), any substantial accumulations
would have been chemically recalcitrant and unavailable for direct
osmotrophic uptake. Arguments for the presence of abundant
labileDOC in Proterozoic oceans – due to the absence of metazoan
zooplankton and concomitant slow sinking of phytoplankton
(Sperling et al. 2011) – are incompatible with the voracious con-
sumption of free monomers by heterotrophic microbes, particu-
larly in well-oxygenated surface waters where almost all labile
DOC is produced. Labile DOCmight well have been intermittently
elevated in the vicinity of Ediacaran rangeomorphs (Budd &
Jensen, 2017), but never at the continuously concentrated levels
enjoyed by gut-dwelling Sporospirillum and Epulopiscium (cf.
Pollak & Montgomery, 1994; Schulz & Jørgensen, 2001).

The most direct means of resolving the trade-off between effec-
tive food delivery (enhanced in larger organisms and elevated Re)
and its follow-up incorporation (enhanced at low Re) is to separate
the two processes. At a unicellular level, the contained intracellular
digestion of POC and DOC by phagocytizing protists by-passes
many of the fluid-dynamic challenges faced by osmotrophic pro-
karyotes, although new ones inevitably arise, not least the elevated
Re and turbulence associated with larger eukaryotic cells, and their
interference with effective prey capture (Dolan et al. 2003). At
macroscopic length scales, phagocytosis becomes entirely unten-
able without anatomical or behavioural adaptations for attenuating
flow, as seen in the ramifying aquiferous system of sponges
(Leys & Eerkes-Medrano, 2006), the enveloping habit of placozo-
ans (Smith et al. 2015) or the chambered, often channelized
gastrodermal system of cnidarians (Southward, 1955; Schick,
1991; Harmata et al. 2013; Raz-Bahat et al. 2017; Goldberg,
2018; Steinmetz, 2019). Such dynamics presumably account for
the exclusively gastrodermal uptake of zooxanthellae in photoen-
dosymbiotic anthozoans. In the case of rangeomorphs, furrows
associated with the ‘fractally’ divided integument offer the only
potential for comparable levels of isolation on the external surface,
although these notably constitute just a fraction of the total
surface area.

What the macroscopic size of rangeomorphs certainly does
confer is elevated Reynolds and Péclet numbers. Ghisalberti
et al. (2014) presciently recognized the fluid-dynamic implications
of large size in Ediacaran macrofossils, noting that the turbulence
generated by the interaction of physical currents and an elevated
macrobenthos comprehensively overrides any diffusional limits
on the delivery of dissolved and suspended resources. Although
problematic in terms of osmotrophic feeding, such ‘canopy effects’
are directly applicable to freely diffusible O2 and CO2; indeed, all
three of the datasets used by Ghisalberti et al. (2014, figs 3, S2) to
illustrate this principle were specifically measures of oxygen trans-
port. In this light, the most immediate advantage to rangeomorphs
adopting a macroscopic habit was access to advective food delivery
and gas exchange (Singer et al. 2012). Additional ventilatory effects
are likely to have been generated by a ciliated epithelium, allowing
rangeomorphs to employ their external surface as a breathing
device under both high-energy and relatively stagnant physical
flow (cf. Short et al. 2006; Shapiro et al. 2014; Cavalier-Smith,
2017; Dufour & McIlroy, 2017).

2.a. The rangeomorph skeleton

Whatever the particular habits of Ediacaran macrofossils, they
were clearly supported by some sort of skeletal superstructure,
an anatomical feature that is likely to illuminate other aspects of
their biology. In the absence of obvious biomineralization, this
has been widely envisaged as a hydrostatic endoskeleton, compa-
rable to the coelomic system of annelid worms (Runnegar, 1982),
the syncytia of giant ‘unicellular’ protists (Seilacher, 1989, 1992;
Seilacher et al. 2003) or a sponge-grade mesenchyme-like mass
(Dufour & McIlroy, 2017). More generally, Laflamme et al.
(2009) have argued that ‘much of the internal body cavity : : :
may have been filled by metabolically inactive material (inorganic,
organic, or fluid).’

The key to resolving the nature of the rangeomorph skeleton
lies in its taphonomic dissection. Although most rangeomorphs
are preserved as more or less 2D bedding-plane imprints – a prod-
uct of felling, degradational collapse and early diagenetic ‘death-
mask’ cementation – there is a notable subset of specimens that
have been preserved as conspicuously 3D casts and moulds
(Jenkins, 1985; Fedonkin, 1994; Dzik, 2002; Grazhdankin &
Seilacher, 2005; Vickers-Rich et al. 2013; Sharp et al. 2017).
Such sedimentary infilling points to the presence not only of large
internalized chambers, but also chamber walls of sufficient integ-
rity to act as the containing form. In Charnia specimens from the
Winter Mountains of the White Sea, for example, substantial parts
of the fronds have been infilled with silt early and rapidly enough to
capture their full 3D profile (Fedonkin, 1994; Grazhdankin, 2004;
Dunn et al. 2018), even as adjacent unfilled areas collapsed to yield
a more typical 2D death-mask (Fig. 2).

Casting is a commonmode of preservation in biomineralized or
heavily lignified organisms, but is less expected in ‘soft-bodied’
Ediacaran forms (Seilacher, 1970; Rex, 1985; Retallack, 1994;
Maeda et al. 2010). Where it does occur, the process will be sim-
ilarly dependent on chambers with self-supporting walls, but pro-
ceeding on fundamentally shorter timescales. Given the rapidly
collapsing 2D habit of rangeomorphs in general, it follows that
the original contents of the chambers must have been correspond-
ingly fluid. The effectively instantaneous casting of Charnia com-
partments (Fig. 2) is inconsistent with the original contents having
the viscosity of syncytial cytoplasm (cf. Seilacher, 1989, 1992), mes-
enchyme (cf. Dufour & McIlroy, 2017) or coelomic fluids (cf.
Runnegar, 1982), particularly given the rapid wound-repair sys-
tems associated with these fully isolated hydrostatic skeletons
(e.g. Menzel, 1988; Duckworth, 2003; Kamran et al. 2017). By
far the most likely material filling the compartments of rangeo-
morphs – and conferring their primary skeletal support – is locally
contained low-viscosity seawater.

In the absence of obvious openings in the body wall (Narbonne,
2004), the route by which such water entered rangeomorph cham-
bers has yet to be identified. One likely possibility is that the con-
duits were simply too small or ephemeral to fossilize under the
associated taphonomic regimes. Even with the fundamentally
greater levels of resolution seen in Burgess Shale-type preservation,
for example, the ostia and associated aquiferous system of sponges
have never been directly preserved (Butterfield, 2003). The external
openings of water-pumping siphonozooids in colonial octocorals
can be similarly cryptic, even in living specimens (Fig. 3d)
(Hickson, 1883; Brafield, 1969; Nonaka et al. 2012; Williams
et al. 2012), and it is notable that the millimetre-sized siphono-
zooids of certain pennatulaceans fail to preserve even under the
most optimized laboratory burial conditions (Norris, 1989).
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Fig. 2. Partially cast 3D specimens of Charnia from the Verkhovka Formation (Winter Mountains, White Sea, Russia), demonstrating the previous presence of water-filled cham-
bers. (a, b) ‘Upper’ and ‘lower’ surfaces of PIN 3993-7018 (with differential transfer of the primary branch casts between the two parts); note that only some parts of this specimen
have been infilled with sediment (roughly the left-hand side of (a) and the right-hand side of (b)), with the remainder experiencing amore typical ‘collapse and death-mask’ type of
preservation. The three serially repeated lensoid structures preserved on the upper side of the cast (arrows in (a)) potentially represent openings into the chambers; they are not
present on the lower ‘fractally’ divided side (b), and are not preserved in collapsed parts of the frond. (c) Cross-section through a silt-cast primary branch of PIN 3993-7018, locally
buried in mud and showing anatomical continuity between the chambers and serially repeated lensoid structures (arrowed); line of section indicated by the dotted line in (b). (d)
Cross-section through a silt-cast primary branch of PIN 3993-7018, locally buried in cross-laminated silt and showing clear evidence of erosive breaching and loss of the upper body
wall; line of section indicated by asterisks in (b). (e) Detail of a further silt-cast, mud-buried specimen (PIN 3992-7020) preserving serially repeated lensoid structures on the upper,
non-fractally divided surface (arrows); the full specimen is figured in Fedonkin (1994). Scale bar: (a, b, e) 1 cm; (c) 2.5 mm; and (d) 5 mm. PIN – Palaeontological Institute, Moscow.
Photo credits: (a, b, c, e) Dima Grazhdankin; and (d) Alex Liu.

Fig. 3. (Colour online) Extant anthozoan cnidarians exhibiting features of
relevance to the interpretation of Ediacaran rangeomorphs. (a) The modern
actiniarian Metridium, demonstrating the disparate range of forms possible
by a single specimen depending on the retention and deployment of sea-
water within the gastrovascular cavity. In the absence of muscle, such an
organismwould be unable to operate tentacles or a central mouth, although
it could still (in principle) function as a suspension-feeding extra-cellular
digestion chamber. (b) Scanning electron micrograph (SEM) of the colonial
alcyonacean Corallium, showing the surface expression of retracted auto-
zooids (muscle-powered micro-predatory feeding polyps) and cryptically
embedded siphonozooids (cilia-powered atentaculate polyps specialized
for circulating seawater); the latter are unlikely to be recognizably preserved
in the fossil record, even under the most exceptional taphonomic circum-
stances. (c) Schematic transverse section through a single siphonozooid
of the colonial alcyonacean Paragorgia, showing its ciliated water-pumping
siphonoglyph (shaded dark blue) and interconnecting gastrovascular canal
system (light blue). (d) Schematic longitudinal section of Paragorgia, show-
ing multiple water-pumping siphonozooids with cryptically small external
openings (siphonoglyphs shaded dark blue, gastrovascular canals light
blue). Scale bar: (a) 2 cm; (b, d) 1 mm; and (c) 0.25 mm. (a) From Batham
& Pantin (1950), reproduced with permission of the Journal of
Experimental Biology. (b) Modified from Nonaka et al. (2012). (c, d)
Modified from Hickson (1883).
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Considering that such features are only expected under the
most exceptional taphonomic circumstances, it is worth revisiting
Grazhdankin’s (2004) original documentation of the 3D Winter
Mountains Charnia. Intriguingly, the upwards-facing surfaces of
at least two specimens bear serially repeated lensoid structures
(Fig. 2a, e, arrows) that are not preserved in corresponding 2D fos-
sils. The continuity of fossil-casting silt through these millimetre-
sized structures (Fig. 2c, arrows) points to their likely function as
anatomical conduits connecting the internal chambers to sur-
rounding seawater. Taphonomic merger of the ‘upper’ and ‘lower’
surfaces during more typical death-mask preservation readily
accounts for their absence in most Charnia fossils (Fig. 4c, d),
as well as the misleading impression that the two sides of
Charnia fronds were morphologically identical (cf. Dunn et al.
2018). Indeed, the preservation of original spatial relationships
in these exceptional specimens demonstrates that much of the
underlying ‘fractal’ architecture was associated exclusively with
the ‘lower’ surface (Fig. 2a, b). In view of their conspicuously
mouldic expression, the ‘third-order branches’ of Charnia also
appear not to define external morphology, but rather internalized
mesentery-like structures – presumably with a primary purpose in
expanding internalized surface area (Fig. 4).

Whether or not the serially repeated lensoid structures
represent biological openings in the Charnia integument, it is
unlikely that they provided the primary conduit for the infilling
sediment. Comparable structures are not recorded in similarly pre-
served Rangea specimens (e.g. Jenkins, 1985; Grazhdankin &
Seilacher, 2005; Vickers-Rich et al. 2013; Sharp et al. 2017), and
such openings in living organisms are almost universally guarded
by ciliated and/or contractile cells. Full 3D preservation also
requires sufficient ‘draft-through’ flow to deliver the casting sedi-
ment prior to degradational collapse (cf. Seilacher, 1970; Rex, 1985;
Maeda et al. 2010), suggesting substantially larger-scale access to
the internalized chambers. Given the high-energy tempestite con-
ditions under which the Winter Mountains Charnia were buried
(Grazhdankin, 2004), the most likely route of silt-entraining cur-
rents would have been through abrasive breaches in the thin body
wall (cf. de Bettignies et al. 2012). Indeed, the depositional

continuity from fossil-casting silts to overlying cross-laminated
horizons in PIN 3993-7018 (Fig. 2d) demonstrates the localized
erosion of upwards-facing portions of the frond; it is only where
the casts are locally succeeded by low-energy muddy laminae that
the differentiated anatomy of this surface is preserved (Figs 2a, e,
4c). In a similar vein, Brasier et al. (2013) have interpreted features
of the high-relief rangeomorphs at Spaniard’s Bay as the conse-
quence of body-wall rupture and/or removal during hydraulic
scouring events, and it is notable that the majority of three-
dimensionally cast rangeomorphs occur in conspicuously more
abrasion- and transport-prone ‘Nama-type’ facies (Grazhdankin,
2004; Grazhdankin & Seilacher, 2005; Vickers-Rich et al. 2013;
Sharp et al. 2017).

Rapid sedimentary casting of bag-like compartments is also
documented in a range of co-occurring non-rangeomorph
Ediacaran taxa. Among the most spectacular examples are in situ,
vertically oriented populations of Charniodiscus in Zimnie Gory
sections of the White Sea (Grazhdankin, 2014; Ivantsov, 2016),
reclined but similarly frondose Pambikalbae and Arborea from
Nilpena in South Australia (Jenkins & Nedin, 2007; Laflamme
et al. 2018; Dunn et al. 2019; Droser et al. 2020) and globular tri-
partite Ventogyrus from the Onega River area of the White Sea
(Ivantsov & Grazhdankin, 1997; Fedonkin & Ivantsov, 2007).
All of these fossils have been variably infilled during event-bed sed-
imentation, yielding a taphonomic continuum from fully inflated
3D casts through to essentially 2D death-mask imprints. As with
rangeomorphs, the form of the casts directly mirrors that of the
external moulds, attesting to the thin deformable nature of the
chamber walls (Jenkins & Nedin, 2007; Sharp et al. 2017) and
the presence of a rapidly displaceable, chamber-filling fluid. Also
like rangeomorphs, there is little direct evidence of the openings
through which seawater may have entered in life but, similarly,
no expectation that these should be recognizably preserved.
Again, the infilling sediment was most likely introduced via abra-
sional breaches in thin body walls. Regardless of any phylogenetic
connection to rangeomorphs, the localized 3D casting of these
arboreomorphs and other problematica point to a similar grade
of chambered construction and hydrostatic support.

(a) (b) (c) (d)

Breach & cast

Collapse &
 death-mask

POC

DOC

DOC

POC

Fig. 4. (Colour online) Schematic reconstruction of the constructional and functional anatomy of rangeomorphs, alongside possible taphonomic pathways. (a) Chambered
construction with a central mesoglea-like layer (black) supporting a ciliated epithelium; external epidermis (brown) serves as an important locus of high Re/Pe gas exchange,
whereas the internalized ‘gastrodermis’ (orange) is optimized for feeding at macroscopic length scales. Overall support is provided by transiently contained seawater (grey). (b)
Suspended DOC and POC is cycled through the internalized system via ciliary transport and siphonoglyph-like pumping. Chamber walls are likely to have hosted a diverse, mostly
anaerobic microbiome (coloured dots), contributing to gut-like extracellular digestion. (c) Three-dimensional casting of rangeomorph chambers following high-energy erosive
breaching of the body wall. (d) Collapse and 2D ‘death-mask’ preservation where the body wall remains intact; the telescoping of spatially separated features onto a single surface
yields specimens that appear similar on both surfaces, and obscures key aspects of the original anatomy.
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2.b. Functional morphology of hydrostatic exoskeletons

The recognition of rangeomorph chambers with direct conduits to
the external environment means that the contained seawater was
topologically on the outside of the organism, that is, within a bag-
like hydrostatic (exo)skeleton. There is nothing particularly exotic
about such a system; indeed, it is the primary means of structural
support among basal eumetazoans. In actiniarian (sea anemones)
and pennatulacean (sea pens, etc.) anthozoans, for example, it is
transiently retained seawater in the gastrovascular system that pro-
vides the antagonist against which epithelial muscle acts to gener-
ate overall form and movement (Fig. 3a) (Batham & Pantin, 1950;
Chapman, 1958). At a more fundamental level, even the muscle
can be dispensed with since the flow and containment of seawater
within the system is based on embedded ciliary pumps, typically
expressed in the form of channelized siphonoglyphs (Fig. 3c, d).
This self-supporting bag-like construction offers an exceptionally
parsimonious means of assembling a macroscopic organism, not
based on costly biominerals, differentiated tissue systems or coe-
lomic fluids, but on environmental water that comes for free.
The only substantial costs are a mesoglea-like internal layer that
defines the overall form of the inflated chamber (cf. Batham &
Pantin, 1951; Tucker et al. 2011) and an enveloping epithelial layer
to ensure its integrity (Fig. 4a) (cf. Tyler, 2003; Jonusaite et al.
2016). With a charging mechanism based on the plesiomorphic
capacity of eukaryotes to pump water (Butterfield, 2018), such
an apparatus provides access to most of the fluid dynamic advan-
tages of large size without the metabolic trade-offs accompanying
more complex, carbon-rich body plans (Thingstad et al. 2005;
Acuña et al. 2011; Pitt et al. 2013).

Most significantly, the middle Ediacaran invention of this bag-
like habit solved the problem of conducting extracellular digestion
at macroscopic length scales. By containing the process within an
essentially impermeable integument, hydrolytic exo-enzymes
could now be freely released without advective loss to the environ-
ment or competing organisms, even under the turbulent condi-
tions associated with centimetre- to metre-length scales (cf. Sher
et al. 2008; Agostini et al. 2012; Raz-Bahat et al. 2017; Goldberg,
2018; Steinmetz, 2019). Combined with organismal control over
the cycling of seawater, the presence of a large-scale holding and
mixing vessel provided both the time and hydrodynamic condi-
tions necessary for optimal uptake and digestion, particularly in
the presence of substantially expanded mesentery-like surface area
(Fig. 4a, b). In modern industrial applications such structures are
known as chemical reactors; in biology, they are regularly
employed as guts (Penry & Jumars, 1987).

The most basic type of gut among living animals is the single-
opening ‘batch reactor’ of predatory cnidarians, where individual
prey items are processed within a (transiently closed) gastrovascu-
lar cavity, followed by the regurgitation of undigested remains
(Schick, 1991; Sher et al. 2008; Schlesinger et al. 2009; Raz-
Bahat et al. 2017; Steinmetz, 2019). Such behaviour, however, is
predicated on the availability of suitable prey and a muscle-based
means of capturing and manipulating it, for which there is no
direct evidence in middle Ediacaran deposits. In this context,
the more appropriate model for extracellular digestion is a
continuous-flow stirred-tank reactor (CSTR), involving the con-
tinuous processing of dissolved or suspended substrate as it passes
through a reaction chamber (Penry & Jumars, 1986). This type of
unidirectional water cycling is widely employed by extant cnidar-
ians, where cilia- and siphonoglyph-based pumping is capable of

marshalling complex flow paths, even within blind-ended cham-
bers and canals (Southward, 1955; Holley & Shelton, 1984;
Schick, 1991; Parrin et al. 2010; Harmata et al. 2013; Goldberg,
2018). Fully open-ended unidirectional processing has also been
achieved secondarily in colonial pennatulacean and alcyonacean
octocorals, through the differentiation and interconnection of
water-pumping siphonozooids and stolon systems (Fig. 3c, d)
(Hickson, 1883; Brafield, 1969; Williams et al. 2012; Nonaka
et al. 2012), as well as in the atentaculate solitary coral
Leptoseris fragilis via the formation of micrometre-scale gastrovas-
cular pores (Schlicter, 1991). Significantly, active gastrovascular
cycling of seawater proceeds even where its skeletal function has
been largely superseded by hard skeleton, demonstrating a primary
purpose in feeding and internal transport. The ‘fractally’ parti-
tioned hydrostatic exoskeleton of rangeomorphs was similarly
suited to such CSTR-like processing.

The Ediacaran introduction of large, gently stirred, semi-
enclosed, reaction vessels would have been equally revolutionary
from amicrobial point of view. Along with the massively expanded
area for surface attachment, microbial residence within the rangeo-
morph chamber system offered both a continuously buffered hab-
itat and essentially unlimited levels of host-delivered resources
(Fig. 4b). At the same time, localized containment allowed the
direct physiological coupling of otherwise incompatible modes
of life. In the bilaterian gut, for example, it is clear that the anaero-
bic conditions necessary for optimal digestion are maintained both
by and for the resident microbiome (Plante, 1990; Friedman et al.
2018; Litvak et al. 2018), even as the collective ‘holobiome’ takes
advantage of a fully oxygenated existence. Comparably steep redox
gradients are found in the gastrovascular cavities of extant cnidar-
ians (Agostini et al. 2012), offering similar opportunities for such
catabolic partnerships (Viver et al. 2017; Goldberg, 2018). In the
case of actiniarian and pennatulacean anthozoans, rhythmic
cycling between hypoxic and anoxic conditions within the gastro-
vascular system (Brafield & Chapman, 1967; Chapman, 1972;
Jones et al. 1977; Brafield, 1980) reflects the active suppression
of oxygen levels, even in the presence of regularly transiting oxy-
genated seawater (Penry & Jumars, 1987; Smith &Waltman, 1995;
Agostini et al. 2012). Given the ubiquity of metabolically diverse
microbes in the marine realm, the Ediacaran appearance of bag-
like rangeomorphs can be viewed as the original evolutionary
experiment linking high-Re oxygen-respiring multicellular eukar-
yotes to a low-Re, hypoxic to anoxic, microbial digester. Such sym-
bioses will have dramatically expanded the capacity of Ediacaran
eukaryotes to feed on dilute and/or recalcitrant DOC, while also
tapping into the rich physiological, immunological and develop-
mental potential of such redox-sensitive relationships (e.g.
McFall-Ngai et al. 2013; Dishaw et al. 2014; Hammarlund, 2020).

In addition to optimizing digestion, a large-scale chemical reac-
tor requires reliable delivery of reactants. Although rangeomorphs
preserve little direct evidence of their water-processing habits, sim-
ply the turbulence generated by the elevated canopy and back-
ground currents will have ensured a continuous supply of food
and gas exchange (Larsen & RiisgÅrd, 1997; Lassen et al. 2006;
Singer et al. 2012; Ghisalberti et al. 2014). By capitalizing on both
the active hydrodynamics of their exposed mostly turbulent out-
sides, and the unique chemical and microbial milieu of their
semi-contained ‘insides’, chamber-forming rangeomorphs
invented a fundamentally new way of feeding, breathing and mak-
ing a living.
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2.c. Rangeomorph affiliations

A cnidarian grade of construction does not mean that rangeo-
morphs were necessarily cnidarians, but it usefully rules out a
number of the usual suspects. There is, for example, no feasible
means by which the cytoplasmic contents of coenocytic or syncy-
tial eukaryotes could be replaced with sediment on timescales com-
patible with the 3D preservation of these soft-bodied organisms.
Moreover, the absence of any known seaweeds using this sort of
chambered, taphonomically castable construction makes an algal
interpretation unlikely, even in photic-zone settings. Any convinc-
ing case for metazoan affiliation, however, requires the positive
identification of diagnostically metazoan features, set in a phyloge-
netic context. Ignoring problematic ctenophores, there are cur-
rently three principal hypotheses for where rangeomorphs
might reasonably be positioned within total-group Metazoa: (1)
the sister-group of all extant animals (stem-group Metazoa)
(Xiao & Laflamme, 2009; Budd & Jensen, 2017; Dunn et al.
2017; Darroch et al. 2018); (2) the sister-group of all extant animals
minus sponges (stem-group Eumetazoa) (Buss & Seilacher, 1994;
Dunn et al. 2017; Hoyal Cuthill & Han, 2018); or (3) the sister-
group of all extant cnidarians (stem-group Cnidaria) (Dunn
et al. 2017).

Despite the potential for confusing non-preservation with a true
absence of derived characters (Sansom et al. 2010), it is clear that
rangeomorphs lacked a number of key crown-cnidarian attributes,
not least an ability to move or respond usefully to sedimentary
inundation. Under comparable levels of event-bed sedimentation,
modern actiniarian and pennatulacean cnidarians engage in pro-
nounced whole-organism or whole-colony contraction, an escape
response that both fluidizes surrounding sediments and precludes
any infilling of gastrovascular compartments (Batham & Pantin,
1950; Kastendiek, 1976; Norris, 1989; Holst & Jarms, 2006;
Chimienti et al. 2018). The conspicuously unresponsive habit of
rangeomorphs reliably demonstrates their lack of cnidarian-grade
muscle. It is also consistent with a lack of (muscle-activated) ten-
tacles and a localized mouth, which in turn implies absence of a
cnidarian-grade nerve net, predatory cnidae or predation-based
feeding.

In the absence ofmuscle and associated systems, there appears to
be little more to rangeomorphs than perforated bags of water
charged by ciliary pumps. But even this represents a fundamental
departure from protistan or sponge-grade multicellularity (Arendt
et al. 2015). Atmacroscopic length scales, such amembranous struc-
ture can only be realistically achieved with themechanical reinforce-
ment afforded by specialized intercellular adhesion molecules and a
collectivized, extracellular, basement membrane (Tyler, 2003;
Nielsen, 2008; Jonusaite et al. 2016). This type of differentiated
epithelium is a uniquely eumetazoan feature, and its (inferred) iden-
tification in thin-walled rangeomorphs convincingly places these
problematic fossils within total-group Eumetazoa (Budd &
Jensen, 2017). The degree to which they can be more precisely
resolved depends on the identification of additional phylogen-
etically informative characters. As pre-muscular, epithelial, tank-
based digesters, they offer a compelling model for stem-group
eumetazoans. To the extent that macroscopically responsive striated
muscle appears to have evolved independently in cnidarians and
bilaterians (cf. Steinmetz et al. 2012), they might further be viewed
as pre-muscular, pre-predatory, stem-group cnidarians (cf. Marcum
& Campbell, 1978; Dunn et al. 2017).

There is much discussion over the nature of the ancestral (eu)
metazoan, but the development of a gastrula phase – where the

outside surface of a spherical blastula becomes sufficiently invagi-
nated to act as an ‘inside’ – was undoubtedly a key innovation
(Nielsen, 2008; Arendt et al. 2015). Although topologically equiv-
alent to a solitary bag-like cnidarian, neither the gastrula nor its
hypothetical ‘gastraea’ counterpart in early metazoan evolution
is obviously comparable to macroscopic rangeomorphs, presum-
ably because a large centralized mouth has no function in the
absence of muscle, tentacles or, indeed, any food particles large
enough to require such an apparatus. In this context, there is a
compelling argument for viewing these macroscopic fossils not
as single organisms, but as integrated suspension-feeding colonies,
broadly analogous to those of extant pennatulacean and alcyona-
cean octocorals. The serially repeated pore-like structures in three-
dimensionally preservedCharnia (Fig. 2) certainly point to colony-
like modularity (cf. Dewel, 2000; Dewel et al. 2001; Hoyal Cuthill &
Conway Morris, 2014; Dececchi et al. 2017; Kenchington et al.
2018), while the quantum increase in length scales associated with
coloniality would have provided fundamentally enhanced access to
water-borne resources without the costs of developing a more
sophisticated body plan (cf. Acuña et al. 2011; Pitt et al. 2013).
Unlike predatory octocorals, however, all of the constituent indi-
viduals or modules of this hypothetical pre-muscular, colonial ran-
geomorph would have been deployed as cilia-powered, broadly
gastraea-like ‘siphonozooids’, with a primary purpose in circulat-
ing water (Figs 3c, d, 4). This does not mean that they are homolo-
gous with the siphonozooids of crown-group cnidarians of course
(cf. Landing et al. 2018). A colonial or modular suspension feeding
habit is likely to have evolved independently in any number of
stem-group metazoan lineages, just as it has among extant groups
(Ryland & Warner, 1986).

3. Conclusion

Rangeomorphs remain one of the most deeply problematic groups
in the fossil record, even as ongoing work reveals novel develop-
mental, anatomical and ecological detail (e.g. Sharp et al. 2017;
Kenchington & Wilby, 2017; Dunn et al. 2018; Kenchington
et al. 2018; Liu & Dunn, 2020). The present study yields yet further
levels of biological resolution:

1. Rangeomorphs were not osmotrophic. The hydrodynamics
associated with organisms of this size are physically and bio-
chemically incompatible with such a habit.

2. Rangeomorphs were supported by a hydrostatic exoskeleton
composed of seawater, as demonstrated by the ready castability
of internalized chambers during event-bed sedimentation.

3. The rangeomorph integument was thin-walled, comprising a
biomechanically reinforced epithelium and associated meso-
glea-like layer. This plastic, bag-like structure was breachable
under high-energy siliciclastic sedimentation, but had sufficient
integrity to allow three-dimensional casting in silt and sand.

4. Serially repeated lensoid structures developed (unilaterally) on
at least some rangeomorph taxa potentially represent the open-
ings through which seawater circulated in life. Smaller and/or
non-preserved channels may also have fulfilled this role, analo-
gous to the cryptic siphonozooids of some modern octocorals.

5. The flow of seawater through the rangeomorph chamber system
is likely to have been driven by collective ciliary pumping, a ple-
siomorphic property of both metazoans and eukaryotes.

6. Rangeomorph chambers provided the controlled hydrody-
namic and physiological circumstances necessary to conduct
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extracellular digestion and phagocytosis at macroscopic length
scales.

7. The constructional and functional anatomy of rangeomorphs
identifies them as pre-muscular, total-group Eumetazoa.

Prior to the appearance of rangeomorphs there were just two
feeding strategies available to free-living heterotrophic organisms:
external digestion plus osmotrophy as practiced by prokaryotes
and fungi, and the more active capture and internal digestion of
phagocytizing protozoans (and sponges). Chamber-forming
eumetazoans broke into this ancient duopoly, not by beating
microbes at their own game, but through the invention of a
revolutionary new technique for harvesting and processing food.
By exploiting the unique potential of large size and compartmen-
talization, eumetazoans tapped into both the turbulent hydrody-
namics of their ‘outside’ (discovering an effectively inexhaustible
source of both food and gas exchange) and the controlled condi-
tions of their ‘inside’ (allowing both extracellular digestion and
‘osmotrophic’ uptake to be conducted on an industrialized,
CSTR-like scale). The key to all of this biological potential was a
hydrostatic exoskeleton based on a bag-like epithelium charged
by ciliary pumps. In one form or another, such construction under-
pins the physiology of all eumetazoan life.
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