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Vibrational and mechanical properties of disordered solids

Rico Milkus

The recent development of a framework called non-affine lattice dynamics made it
possible to calculate the elastic moduli of disordered systems directly from their
microscopic structure and potential energy landscape at zero temperature. In this
thesis different types of disordered systems were studied using this framework.
By comparing the shear modulus and vibrational properties of nearest neighbour
spring networks based on depleted lattices we were able to show that the dominat-
ing quantity of the system’s non-affine reorganisation during shear deformation
is the affine force field. Furthermore we found that different implementation of
disorder lead to the same behaviour at the isostatic point.
Later we studied the effect of long range interaction in such depleted lattices with
regard to spatial correlation local elasticity. We found that the implementation
of long springs with decaying spring constant reproduced the spatial correlation
observed in simulations of Lennard-Jones glasses.
Finally we looked at simple freely rotating polymer model chains by extending
the framework to angular forces and studied the dependence of the shear modulus
and the vibrational density of states (VDOS) and length and bending stiffness of
the chains. We found that the effect of chain length on the shear modulus and the
vibrational density of states diminishes as it depends on the number of backbone
bonds in the system. This number increases fast for short chains as many new
backbone bonds are introduced but slows down significantly when the chain length
reaches 50 monomers per chain. For the dependence on the bending stiffness we
found a rich phenomenology that can be understood by looking at specific motions
of the monomers relative the the chain geometry. We were able to trace back the
different regimes of the VDOS to the simple model of the triatomic molecule. We
also explored the limits of non-affine lattice dynamics when describing systems at
temperatures T > 0 and gave an approximate solution for the shear modulus in
this case.
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Introduction
A closed analytic description of disordered solids always appeared as difficult.
Unlike regular lattices one cannot exploit periodicity to derive dispersion rela-
tion and vibrational density of states (VDOS) analytically as was done by P.
Debye [1]. The same goes for elastic properties. Although one can calculate
the elastic moduli of the affine deformation of a solid, leading to the famous
Born-Huang-Approximation [2], it does not match the observed behaviour even
in a qualitative way. Efforts to improve on this approximation go back to I.M.
Lifshitz [3] and the treatment of single defected lattices with Green’s function
method. Further developments were made with effective medium theories such
as the coherent potential approximation (CPA) [4, 5, 6] that proved very suc-
cessful in qualitatively reproducing the properties of disordered systems. Recent
development of the framework of non-affine lattice dynamics [7], which allows the
calculations of elastic constants directly from the microscopic structure and po-
tential energy landscape of a given system at zero temperature, opened up new
possibilities for the study of disordered systems. In this work we will explore this
framework and apply it to various model systems ranging from nearest neighbour
depleted lattices to model polymer chains with various types of interaction poten-
tials. As the framework involves vibrational properties of the system, we will also
explore the VDOS and eigenvectors of our model systems.
The theoretical framework of this work is mostly based on the classical descrip-
tion of the systems with Newton’s equation. The main points are therefore the
modelling of particle interactions as well as finding a solution to the equation of
motion for a given system. It proved convenient to transform the equation to
Fourier space and analyse its eigenstates, from which one can calculate various
physical properties like the static and complex elastic moduli, which we are mostly
interested in. In this work we use the normal vector notation ~ri for the vector
components of individual particles and bold characters r to denote the compo-

1



Chapter 1. Introduction 2

nents of the whole system. Particle labels are furthermore written as subscripts
and coordinate labels as superscripts, hence rxi denotes the x-component of the
i-th particle.

1.1 Particle interaction

The interactions between atoms in a medium can in general be written as a series
expansion of n-body interaction, where n indicates the number of atoms that
participate in the interaction. We can write the total potential as

U(~r1, ..., ~rN) =
N∑
i

U1(~ri) +
N∑
i<j

U2(~ri, ~rj) +
N∑

i<j<k

U3(~ri, ~rj, ~rk) + ... , (1.1)

where N denotes the total number of atoms in the system. We ignore the one-
body term, since it only plays a role in the treatment of external fields with spatial
fluctuations, which won’t be covered in this work. Furthermore we only use two-
and three-body interactions to model the systems, where two-body interactions
have the form of pairwise potentials only depending on the relative distance rij =
|~ri−~rj| of the particles and three-body interactions appear as angular or bending
interaction between neighbouring interacting bonds with θijk = arccos ~rij ·~rik

rijrik
. The

latter one is important to model the stiffness of polymer chains. To summarize:

U2(~ri, ~rj) = U2(rij)

U3(~ri, ~rj, ~rk) = U3(θijk)
(1.2)

Higher orders could include dihedral interaction between planes formed by neigh-
bouring angular bonds but are neglected in this work due to their relatively weak
strength compared to pairwise and angular interactions.
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1.2 Harmonic approximation and vibrational density
of states

The equation of motion for N particles interacting in the above established way
reads like:

M r̈ = −~∇U(r)

r = (~r1, ..., ~rN)

M = diag(~m1, ..., ~mN) ,

(1.3)

with the mass matrix M. Since we study systems at low temperature that are
close to mechanical equilibrium at r0, we can expand the potential energy around
that minimum:

U(r) ≈ U(r0) + ~∇U(r0)(r− r0) + 1
2(r− r0)T H(r0) (r− r0)

H(r0) =
(
∂2U(r)
∂~ri ∂~rj

)
i,j=1,...,N

∣∣∣∣∣∣
r→r0

= H .

(1.4)

Here H denotes the Hessian of the system and the last equality denotes that the
Hessian is evaluated at the rest configuration. Inserting (1.4) into (1.3) gives us:

M r̈ = −~∇U(r0)−H (r− r0)

→ M ü = −H u ; u = r− r0 .

(1.5)

The second equality holds true since we expanded the potential around a local
energy minimum, which gives us ~∇U(~r0) = 0. The last line of (1.5) is called the
harmonic approximation of our equation of motion. We now perform a Fourier
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transform on it to get:

ω2
k M v̂k = H v̂k

v̂k = F(u) .
(1.6)

This equation is a generalized eigenvalue problem, which can be solved numerically
with standardized methods. By doing so we get the eigenfrequencies ωk and
corresponding eigenvectors v̂k of our system. The distribution of eigenfrequencies,
known as vibrational density of states (VDOS) is formally defined as:

D(ω) = 1
dN

dN∑
k=1

δ(ω − ωk) , (1.7)

where d is the spatial dimension of our system. According to (1.7) the VDOS is
normalized to 1, which is the convention we use for the remainder of the work.

1.3 Non-affine lattice dynamics

The main interest of our research is to study the shear modulus of disordered solids,
which is defined as the ratio between the applied stress to the resulting strain. The
following part, describing the mathematical and conceptual framework of its cal-
culation, closely follows the formalism of A. Lemâıtre and C. Maloney [7]. The
general idea is that after a initial affine deformation, which is just an linear trans-
formation of the coordinates due to a deformation tensor, the particles undergo
a second non-affine relaxation into a nearby energy minimum. This process is
continuous and the particles actually follow an equilibrium trajectory during the
deformation process.
We start with the initial deformation where every particle i undergoes an affine
displacement ~ri → ~ri

′ = F~ri with the deformation tensor F for pure shear:

F =


cos(γ/2) sin(γ/2) 0
sin(γ/2) cos(γ/2) 0

0 0 1

 , (1.8)
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Figure 1.1: (a) Sketch of the shear deformation corresponding to
(1.8). (b) difference between lattices and disordered systems. After an
affine deformation the latter in general is not in equilibrium any more,
as the built up forces don’t balance each other out as in the case of a
perfect lattice.

where γ is the shear angle. To calculate the shear modulus it is useful to define
the Green-Saint Venant strain tensor η

η = 1
2(FTF− 1) = 1

2


0 sin γ 0

sin γ 0 0
0 0 0

 . (1.9)

In general elastic constants are defined as second derivatives of the energy of
a transformation U(r,η(γ)) = U(r, γ) with respect to the strain. We use the
shear deformation as an example but the formalism works for different types of
deformations.
To be able to calculate the shear modulus for our system we have to determine the
change of energy in dependence of the shear strain. One part arises from the affine
displacement due to (1.8). In the absence of inversion symmetry (IS) the system
will not be in mechanical equilibrium after the affine deformation. So each atom
will perform a non-affine relaxation to its rest position in the sheared system. We
can specify the trajectory of this process by the condition that no force acts on
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each atom i at any time.

~fi
′ = −∂U

′(r′, γ)
∂~ri
′ = −∂U(r, γ)

∂~ri
F−1 != 0 −→ ∂U(r, γ)

∂~ri
= 0 . (1.10)

Here U ′ refers to the fact that it is defined in terms of coordinates after the
transformation (1.8) with the identity U ′(r′, γ) = U(r, γ) holding true. We want
to know how this condition changes under the shear deformation, so we derive
(1.10) with respect to γ

∂2U

∂~ri ∂~rj
· D~rj
Dγ

+ ∂2U

∂~ri ∂γ
= 0 . (1.11)

The symbol D indicates that the derivatives taken satisfy (1.10), meaning that
it is taken along the equilibrium trajectory. In the limit γ → 0 this involves the
Hessian H of our system and the affine force field Ξ

∂2U

∂~ri ∂~rj

∣∣∣∣∣
γ→0

= Hij . (1.12)

∂2U

∂~ri ∂γ

∣∣∣∣∣
γ→0

= − ~Ξi . (1.13)

So we can express the solution of (1.11)

Dr
Dγ

∣∣∣∣∣
γ→0

= H−1 Ξ = δr . (1.14)

As we can see, the non-affine displacement is just a linear response to the affine
force field, which also acts as a measure for the local inversion symmetry break-
ing. Now it is possible to calculate the shear modulus accordingly as the second



7 1.3. Non-affine lattice dynamics

derivative of the energy after the strain.

G = 1
V

D2U

Dγ2

∣∣∣∣∣
γ→0

, (1.15)

where V denotes the volume of the system. As in (1.11) the derivative has to be
taken along the trajectory that satisfies (1.10). The second derivative is calculated
as follows

D
Dγ
DU
Dγ

∣∣∣∣∣
γ→0

= D
Dγ

(
∂U

∂γ
+ ∂U

∂r
· Dr
Dγ

)∣∣∣∣∣
γ→0

= D
Dγ

∂U

∂γ

∣∣∣∣∣
γ→0

=
(
∂2U

∂γ2 + ∂2U

∂r ∂γ
· Dr
Dγ

)∣∣∣∣∣
γ→0

= ∂2U

∂γ2

∣∣∣∣∣
γ→0
− Ξ H−1 Ξ .

(1.16)

G = 1
V

 ∂2U

∂γ2

∣∣∣∣∣
γ→0
− Ξ H−1 Ξ

 = GA − GNA . (1.17)

In the first line of (1.16) we used the equilibrium condition ∂U
∂r = 0. The affine

term is the well known Born-Huang-approximation [2]. The negative non-affine
term softens the material due to the relaxation process (1.14).
To calculate the non-affine part of the shear modulus we have to deal with the
inverse of the Hessian. Since this is generally difficult to obtain we will derive
an explicit expression for GNA including the eigenvalues λk and the normalized
eigenvectors v̂k of the original Hessian:

GNA = 1
V

Ξ H−1 Ξ = 1
V

Ξ · (H−1∑
k

Ξ̂kv̂k)

= 1
V

Ξ · (
∑
k

λk 6= 0

(Ξ · v̂k)
1
λk

v̂k) = 1
V

∑
k

λk 6= 0

(Ξ · v̂k)2

λk
.

(1.18)

Let’s look at the affine force field of a disordered system as it is shown Fig. 1.2.
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Figure 1.2: The affine force field ~Ξ for the shear deformation of a 2D
disordered system. One can see the random character of the field as
there are very little correlations between neighboured components.

Due to the random behaviour we can assume that the projection of this field onto
eigenstates (Ξ · v̂k) is a self-averaging quantity. So for a large number of atoms in
our system we can introduce a frequency dependent correlator Γ(ω) as an average
performed over eigenfrequencies ωk ∈ [ω, ω + δω]

Γ(ω) =
〈
(Ξ · v̂k)2

〉
ωk∈[ω,ω+δω]

. (1.19)

With that we can reformulate (1.18) in the thermodynamic limit

GNA = 1
V

∑
k

λk 6= 0

(Ξ · v̂k)2

λk

N→∞
N/V→const.= d

N

V

∫ ∞
0

D(ω)Γ(ω)
ω2 dω . (1.20)

Here d denotes the spatial dimension of our system. This leaves us with three
quantities to calculate: H, Ξ and GA. As all of them are defined as the second
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derivative of the potential energy we write down the general form

∂2U(z)
∂x ∂y

= d2U(z)
dz2

∂z

∂x

∂z

∂y
+ dU(z)

dz

∂2z

∂x ∂y

= c
∂z

∂x

∂z

∂y
+ t

∂2z

∂x ∂y
,

(1.21)

with stiffness c and tension t. The stiffness is also referred to as spring constant
κ as it fulfils this role in the harmonic approximation. In our case z is either the
distance between two particles rij or the angle formed by two bonds θijk and x, y

are either spatial components of particle positions rai or the shear angle γ. This
gives us the three possible combinations to calculate the three above mentioned
quantities:

Hab
ij = ∂2U(z)

∂rai ∂r
b
j

= c
∂z

∂rai

∂z

∂rbj
+ t

∂2z

∂rai ∂r
b
j

.

Ξa
i = ∂2U(z)

∂rai ∂γ
= c

∂z

∂rai

∂z

∂γ
+ t

∂2z

∂rai ∂γ
.

GA = ∂2U(z)
∂γ2 = c

∂z

∂γ

∂z

∂γ
+ t

∂2z

∂γ2 .

(1.22)

Note that all derivatives are evaluated at γ → 0. We derive the explicit dependence
on the shear angle from the deformation tensor:

~rij
′ = F~rij =


rxij cos(γ/2) + ryij sin(γ/2)
ryij cos(γ/2) + rxij sin(γ/2)

rzij

 .

r′ij =
√
r2
ij + 2rxijr

y
ij sin γ .

(1.23)

With that we can calculate the relevant derivatives, whose explicit forms are shown
in the Appendix A.1.
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Next we look at the complex shear modulus G∗, also called viscoelastic shear
modulus. To calculate it, we assume our system is submerged in a viscous medium,
apply an oscillatory shear deformation on the system and calculate the elastic
response. To dissipate the energy put in by the driving force we assume viscous
damping proportional to the relative velocity ṙ′−u(r′) with the affine flow u(r′) =
Ḟ r = ḞF−1r′. This gives us the following equation of motion:

M r̈′ = f ′ − ν (ṙ′ − u(r′)) , (1.24)

with the mass matrix M = diag(m1, ...,mN) and the friction coefficient matrix
ν = diag(ν1, ..., νN). Again primed quantities denote the dynamic positions and
unprimed quantities the reference configuration. With r′ = F r we can write this
in terms of the reference configuration:

M r̈ = f ′ −M F̈ r− 2 M Ḟ ṙ− ν Fṙ . (1.25)

The term M F̈ r breaks translation invariance of the above equation as it spatially
couples particle motion with the coordinates as was noted by Anderson, Ray and
Rahman [8, 9]. In [10] a formalism was introduced that allows to cancel the
spatially dependent terms from the equation of motion. Following that we can
rewrite (1.25) as:

M r̈ = f ′ − 2 M Ḟ ṙ− ν Fṙ . (1.26)

Under the assumption of small strain |F−1| � 1 we expand this equation around a
known equilibrium state r in terms of small displacements x = r(t)−r(0) ; r(0) = r
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and get:

mi
d2~xi
d t2 = ∂ ~fi

′

∂~rj
~xj + ∂ ~fi

′

∂γ
γ − νi

d~xi
d t ,

mi
d2~xi
d t2 + νi

d~xi
d t + Hij~xj = ~Ξiγ(t) ,

M
d2x
d t2 + ν

dx
d t + H x = Ξ γ(t) .

(1.27)

We have written the first two lines in terms of components to make clear how
the Hessian H and affine force field Ξ enter the equation. We now have a simple
damped harmonic oscillator with the affine force field as the emerging driving
force from a small deformation, which is exactly the role it played when we first
introduced it. Note that we explicitly included the time dependence of the small
deformation γ in the last step to emphasize that we have a dynamically driven
system and the deformation can have an arbitrary time dependence as long as it
stays small. To solve (1.27) we perform a Fourier transform:

−M Ω2 x̃ + i Ω ν x̃ + H x̃ = Ξ γ̃ . (1.28)

Here we assumed a driving force γ(t) = γ̃ sin Ωt. We further decompose the Fourier
components and the affine force field into eigenvectors v̂k of the Hessian:

x̃ =
∑
k

x̂kv̂k ; Ξ =
∑
k

Ξ̂kv̂k =
∑
k

(Ξ · v̂k)v̂k ,

[
(ω2

k − Ω2)M + i Ω ν
]
x̂kv̂k = Ξ̂kv̂k γ̃ ,

x̂k = (Ξ · v̂k) v̂Tk
[
(ω2

k − Ω2)M + i Ω ν
]−1

v̂k γ̃ .

(1.29)



Chapter 1. Introduction 12

From there we can calculate the difference ∆t between the stress at γ and γ = 0
in first order expansion:

∆t = 1
V

[
∂U

∂γ
(r(t), γ)− ∂U

∂γ
(r, 0)

]

= 1
V

[
∂2U

∂γ2 γ + ∂2U

∂γ ∂r
r(t)− ∂2U

∂γ ∂r
r(0)

]

= 1
V

[
∂2U

∂γ2 γ + ∂2U

∂γ ∂r
x(t)

]
.

(1.30)

Again by Fourier transform we get the stress response in frequency space:

∆̃t(Ω) = 1
V

[
∂2U

∂γ2 γ̃ + ∂2U

∂γ ∂r
x̃(Ω)

]
= 1

V

[
∂2U

∂γ2 γ̃ −Ξ x̃(Ω)
]

= GA γ̃ − 1
V

∑
k

Ξ̂k x̂k

= GA γ̃ − 1
V

∑
k

Ξ̂2
k v̂Tk

[
(ω2

k − Ω2)M + i Ω ν
]−1

v̂k γ̃

= G∗(Ω) γ̃

→ G∗(Ω) = GA − 1
V

∑
k

(Ξ · v̂k)2 v̂Tk
[
(ω2

k − Ω2)M + i Ω ν
]−1

v̂k .

(1.31)

Here we inserted the definition of the affine force field (1.13) and the expansion
Ξ x̃ = ∑

k,k′
Ξ̂k′v̂k′x̂kv̂k = ∑

k,k′
Ξ̂k′x̂kδk,k′ = ∑

k
Ξ̂kx̂k, where we used the orthonor-

mality of eigenvectors as well as the solution of x̂k from (1.29). (1.31) gives us
the viscoelastic modulus for small oscillatory deformations. For equal particles
M = m1 and ν = ν1, the expression simplifies to:

G∗(Ω) = GA − 1
V

∑
k

(Ξ · v̂k)2

m (ω2
k − Ω2) + i ν Ω . (1.32)
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We can see that for Ω → 0 it coincides with the definition of the shear modulus
from (1.18), which is why we also call this case the static shear modulus. Al-
though it appears as if the static modulus depends on the mass one has to keep
in mind that ω2

k ∼ 1/m so the mass cancels out as it should. We can split the
complex modulus into the real part (storage modulus) and the imaginary part
(loss modulus) G∗(Ω) = G′(Ω) + iG′′(Ω):

G′(Ω) = GA − 1
V

∑
k

m (Ξ · v̂k)2(ω2
k − Ω2)

m2(ω2
k − Ω2)2 + ν2Ω2 ,

G′′(Ω) = 1
V

∑
k

ν (Ξ · v̂k)2 Ω
m2(ω2

k − Ω2)2 + ν2Ω2 .

(1.33)

In the thermodynamic limit we can write (1.33) as integrals involving D(ω) and
Γ(ω):

G′(Ω) = GA − d N
V

∞∫
0

mD(ω)Γ(ω)(ω2 − Ω2)
m2(ω2 − Ω2)2 + ν2Ω2 dω ,

G′′(Ω) = d
N

V

∞∫
0

ν D(ω)Γ(ω) Ω
m2(ω2 − Ω2)2 + ν2Ω2 dω .

(1.34)





Disordered lattices

Disordered systems are difficult to analyse analytically as they lack any kind of
long range symmetry or periodicity. Tools were however developed to approximate
the features of realistic systems by simpler model systems. One very interesting
class of models for amorphous solids are disordered lattices, where the disorder
is implemented by e.g. bond cutting or particle displacements. In general par-
ticle interactions are restricted to nearest neighbour only, which is justified for
systems, where long range interactions, e.g. by electronic contributions, can be
neglected. Examples for those are colloidal glasses or systems with very strong
short range interactions. Depleted lattices have the advantage of showing many
typical features of disordered solids while at the same time having a regular spa-
tial structure. This allows a relatively easy implementation of effective medium
theories such as CPA [4, 5, 6]. Furthermore they allow for a controlled transition
from order to disorder and the observation of various interesting quantities such
as particle vibration patterns and displacement fields during deformations along
this transition.
In the following chapter, which is mostly based on [11, 12, 13], quantities are
calculated by averaging over ten realisations each unless stated otherwise.

2.1 Model systems

In this work we will discuss three types of disordered lattices: a) random networks,
where particles are not arranged on a lattice, b) depleted fcc lattices, where bonds
are cut and c) fcc lattices with vacancies, where particles are removed. Two
dimensional sketches of the systems are shown in Fig. 2.1.

15
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(a) (b) (c)

Figure 2.1: A 2D sketch of the three systems used in this work. a) A
random network, where particles are arranged in a spatially disordered
way, b) a depleted fcc lattice, where single bonds are removed and c)
a defected fcc lattices, where whole particles are removed.

2.1.1 Depleted random network

We use a random network (RN) created by first randomly placing N = 4000 soft
spheres with mass m = 1 in a box and letting them interact via a truncated
LJ potential V (r) = (1/r12 − 2/r6 + 0.031) Θ(2 − r). The system is brought to
a metastable lower energy state by a Monte Carlo energy-relaxation algorithm,
which produces a narrow nearest neighbour bond length distribution around r0 =
0.94. The volume of the box is chosen such to create a dense network with an
average coordination number 〈Z〉 = 10, that fluctuates throughout the network.
Since we are interested in the effect of the coordination number on the system, we
cut bonds from the initial configuration. To limit spatial fluctuations of the shear
modulus G in the system we cut bonds in an adaptive way to achieve a narrow
coordination number distribution. We studied systems with average coordination
numbers from 〈Z〉 = 9 down to 〈Z〉 = 6. The density is kept at a constant value
N/V = 1.467 and we implemented periodic boundary conditions to avoid surface
effects. To make the RN more comparable with the fcc lattices, we assume that
each bond is at rest length and model the interaction between the particles by
harmonic springs according with spring constant κ = 1.
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2.1.2 Depleted FCC

The second system we studied is a depleted fcc lattice with lattice constant a = 1,
which gives us a nearest neighbour bond length of r0 = 1/

√
2. Again we use

N = 4000 particles with mass m = 1, a volume V = 1000 and hence a density of
ρ = 4. The bond cutting was performed in two different ways: a) similar to the
RN we cut bonds so that (almost) each site has the same coordination number
(regular depleted fcc) and b) we cut bonds with a given probability p = 〈Z〉 /12
which gives us a system with a binomial distributed coordination number that has
on average 〈Z〉 bonds per particle (random depleted fcc).

2.1.3 FCC with vacancies

The third type of systems that we looked at is a fcc lattice with vacancies. The
initial lattice is the same as in 2.1.2 but instead of removing bonds we remove
a certain proportion c of particles. In contrast to the other systems the bond
defects are not completely uncorrelated as each vacancy removes multiple bonds
in a specific pattern. Another key difference is the changing density of the system.
Whereas in the other model systems the number of particles and therefore the
density stays constant, the density of the vacancy fcc depends on the number of
removed particles ρ′ = N ′/V = N(1− c)/V = ρ (1− c). The coordination number
is by default distributed comparable to the randomly depleted fcc.

2.2 Vibrational density of states

In the first part we look at the vibrational density of states and compare the
different systems. We are especially interested in the low-frequency part as it
has a large influence on the elastic constants due to the 1/ω2 factor in (1.20).
We thereby compare similar average coordination numbers to see the differences
between the different configurations. To aid clarity we will denote the average
coordination number as 〈Z〉 = Z.
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(c)

(a) (b)

Figure 2.2: (a): VDOS of our random depleted fcc lattice for different
average coordination numbers Z. By comparing to the VDOS of a
perfect fcc we can identify the peaks as remnants of the two van-
Hove singularities of the fcc lattice. (b): Reduced VDOS plots of the
same systems, which show the boson peak anomaly. The dashed lines
indicate the position, which is plotted against the average coordination
number in the inlet. Our numerical results reproduce the well known
ωBP ∼ (Z − 6) scaling. (c): Participation ratio of the systems.

2.2.1 General remarks

In Fig. 2.2 we see the VDOS for the random depleted fcc, which has the typical
features of a disordered system, especially the Boson Peak (BP) anomaly in the
reduced VDOS D(ω)/ω2. This phenomenon is well known for disordered solids [14,
15, 16] and was revently found even in non-centrosymmetrix crystals such as α-
Quartz [17]. As expected the frequency of the BP scales as ωBP ∼ Z − Z∗ =
Z − 6, where Z∗ = 6 denotes the critical connectivity at which the number of
constraints (i.e. bonds) is equal to the degrees of freedom (dimension times number
of particles):

NZ∗

2 = dN −→ Z∗ = 2 d . (2.1)
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RN from our work
Z = 8

(a) (b)

(c) (d)

Jammed soft spheres
Φ = 0.1

LJ-Glass simulation
T = 0K

FCC Argon simulation
T = 50K

Figure 2.3: Comparison of VDOS between our random network (a)
and simulations of soft spheres (b), Lennard-Jones glass (c) and crys-
talline Argon (d). All plots were created with digitized data from the
original plots. In (b,c) the spectrum is obtained in the same way as
in our work, while in (d) is was calculated as the Fourier transform
of the velocity autocorrelation function. We can see that all systems
show similar features as the VDOS obtained from our system.

We also see that at the critical point D(ω → 0) 6= 0, which means there are
modes with zero energy present in the system, i.e. particles can move relative to
each other without additional energy. This is usually associated with mechanical
failure as we will see in the later section when we discuss the shear modulus of our
systems. Another important feature of the VDOS is the low frequency regime be-
low ωBP , which we call the Debye-regime as it follows the famous D(ω) ∼ ω2 law
found by Debye. Due to the limited system size and the regular structure of the
lattice, the eigenvalues tend to cluster at low frequencies, which is why the Debye
regime is not very well visible [18]. It was derived for perfect lattices by using the
discrete translational symmetry and the associated modes are perfect plane waves,
known as phonons. Although this symmetry is broken in our depleted fcc the lat-
tice sites are still similar in structure to each other and the system shows some
regularity on long distances. Therefore modes with long wavelengths λ ∼ 1/ω
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can pass through the system almost without being scattered. This breaks down
as soon as the modes are being scattered by the defects in the lattices, which
happens right before the BP anomaly, where the VDOS deviates from the Debye
law.
Another remnant of the perfect fcc lattice are the two peaks visible at higher
frequencies. In The perfect fcc they are the two van-Hove singularities stemming
from the structure of the Brillouin zone of the reciprocal lattice. Although there
is no notion of a Brillouin zone in the depleted lattice the remnants of the corre-
sponding peaks can still bee seen.
One quantity that shows this transition is the participation ratio p(ω), which tells
us if the oscillations of a given mode (eigenvector) are localized at a few sites or
delocalized over the whole system. As phonons are collective lattice excitations
they are delocalized. We mentioned before that in defected systems there are no
real phonons as there is no translational symmetry. Still, the term phonon-like
is useful, since the modes are close in behaviour to actual phonons and it al-
lows us to distinguish them from other modes in the VDOS, such as diffusons or
locons [19, 20, 21]. p(ω) is defined as:

p(ω) = p(ωk) = 1
N

(
N∑
i=1
|~vk,i|2

)2

N∑
i=1
|~vk,i|4

. (2.2)

The participation ratio has two limits: p(ω) = 1, if the amplitude of a mode is
equal at all sites and p(ω) = 1/N , if only one site is participating at a given mode.
With the participation ratio we can clearly distinguish four different regimes: a)
the low frequency Debye regime with delocalized phonon-like modes, b) the lo-
calization transition, where modes are starting to get scattered due to defects, c)
the diffusive regime, where the components of the eigenvectors are randomly dis-
tributed over the whole system and d) the localized modes close to the maximum
frequency, also called locons [21]. We can see this transition very well in Fig. 2.2(c).
The localization transition is believed to be closely connected to the Ioffe-Regel
transition [22, 23, 24], although there are doubts about the exact connection. The
results for our model systems are in good agreement with the findings of [23, 24]
for similar systems, which indicates that the same basic mechanisms are at work.
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In Fig. 2.3 we can see the VDOS from our depleted random network with Z = 8
next to spectra from other work. The spectrum of (b) is calculated from a jammed
system of soft spheres with packing fraction above the critical point φ− φc = 0.1
in the same way as our VDOS by diagonalizing the Hessian [25]. (c) shows the
spectrum from a simulation of a binary Lennard-Jones glass at T = 0K, again
calculated from the eigenvalues of the Hessian [26]. The system in (d) is a sim-
ulation of fcc Argon at T = 50K and the VDOS is obtained from the Fourier
transform of the velocity autocorrelation function [27]. We can see that all VDOS
show similar features such as a low frequency Debye part and two van-Hove sin-
gularity remnants. Naturally the system most similar to our own (b) shows the
biggest similarity. In the jammed system the first van-Hove remnant is at lower
frequencies and thus begins to merge with the Boson peak anomaly, while the
second one is suppressed compared to our results. This can be explained by the
polydispersity of the system which increases the disorder of the system and weak-
ens the features of the perfect lattice. The simulated Argon shows the most noise
as it was obtained from Fourier transform. Aside from that the spectrum shows
similar features as the one from our simple model system. All those comparisons
show that the nearest neighbour lattice model indeed is a reasonable model for
disordered solids and gives reliable results for the VDOS.

2.2.2 Comparison between random network and regular depleted fcc

In Fig. 2.4 we see the VDOS of our two regular depleted systems in comparison.
The most interesting feature is the similarity in the low frequency regime, which
is unexpected due to the very different spatial structure of the two systems. We
can show this difference with the bond orientation order parameter F6 [28, 29],
which can be calculated as follows:

F6 = 1
N

N∑
i=1

1
Zi

Zi∑
j=1

S6,ij

S6,ij =

6∑
m=−6

Y6m(θij, φij)Y ∗6m(θij, φij)

|
6∑

m=−6
Y6m(θij, φij)|2

.

(2.3)
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(a) (b)

(c) (d)

Z = 6 Z = 7

Z = 8 Z = 9

Figure 2.4: Comparisson of VDOS between regular depleted random
network (red) and fcc (black). We can easily see the striking similari-
ties at low frequencies. The fcc has a noisier Debye regime, since, due
to its regular structure, the eigenfrequencies are clustering more at low
frequencies. Differences arise at the van-Hove remnants, again due to
the structural differences.

Here (θij, φij) denote the angles of the bond between i and j measured against some
reference coordinate system (in general Cartesian). The F6 parameter measures
how much a system resembles a perfect fcc lattice and is usually used as a measure
for disorder. As wee can see in Fig. 2.5, this parameter fails to reproduce the
striking similarities of our two model systems.
Therefore we introduced a different parameter FISB based on the breaking of
inversion symmetry. An easy way to implement this is to use the affine force field
Ξ, which is a measure for the local symmetry breaking, although it falls short
of capturing the effect of mass disorder. Since we do have only one mass in our
system it is still worthwhile to study the affine force field. We use the definition
of Ξab for central forces where all bonds are at rest position r0 and have equal
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Figure 2.5: Comparisson of F6 between regular depleted random
network (full circles). While the fcc has a bond orientational order
of alomst 1, the random network has a very low value around 0.3.
This reflects the structural differences of both systems. In contrast,
the parameter FISB proposed in this work (open circles) reflects the
similarities in inversion symmetry breaking very well and follows the
analytical from of (2.7) (dashed line).

spring constant κ:

~Ξab,i = −κ r0

Zi∑
j=1

n̂aijn̂
b
ijn̂ij

FISB = 1−
∑
a,b |Ξab|2∑

a,b |Ξab,ref|2

(2.4)

Here n̂ij is the unit bond vector between i and j. In section 1.3 we have looked
at non-affine lattice dynamics in the framework of shear deformation with the
corresponding affine force field Ξxy. To get a general order parameter we consider
contributions Ξab from all possible linear deformations a, b = x, y, z. We measure
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the sum of all affine force fields associated with those deformations against a
reference random configuration, where there are no restrictions for relative bond
orientations, i.e. excluded volume.

∑
a,b

|Ξab|2 =
∑
a,b

N∑
i=1

∣∣∣∣∣∣κ r0

Zi∑
j=1

n̂aijn̂
b
ijn̂ij

∣∣∣∣∣∣
2

= κ2r2
0
∑
a,b

N∑
i=1

Zi∑
j,k=1

n̂aijn̂
b
ijn̂

a
ikn̂

b
ik(n̂ij · n̂ik)

= κ2r2
0

N∑
i=1

Zi∑
j,k=1

(n̂ij · n̂ik)3

= κ2r2
0

NZ +
N∑
i=1

Zi∑
j 6=k

(n̂ij · n̂ik)3

 .

(2.5)

For the random case the second term averages to zero as we pick the bonds random
and independent of each other. Therefore we get:

∑
a,b

|Ξab,ref|2 = κ2r2
0 NZ .

FISB = 1−
∑
a,b |Ξab|2∑

a,b |Ξab,ref|2
= − 1

NZ

N∑
i=1

Zi∑
j 6=k

(n̂ij · n̂ik)3 .

(2.6)

So the breaking of inversion symmetry is directly related to the relative orientation
of the bonds around each particle. In the case of the regular depleted fcc FISB
coincides with another quantity related to inversion symmetry, which is the frac-
tion of bonds having an opposing bond. It can be calculated by just considering
one bond and the probability for it having an opposing bond:

p(opposing bond) =

(
1
1

)(
10
Z−2

)
(

11
Z−1

) = Z − 1
11 . (2.7)



25 2.2. Vibrational density of states

As can be seen in Fig. 2.5 the behaviour of FISB not only mirrors the similarities
between our two regular depleted systems very nicely, but also follows the function
of bond opposing probability for the regular depleted fcc. This shows that inver-
sion symmetry plays an important role in the description of disordered materials,
especially around the boson peak anomaly. It also provides an argument to use
depleted lattice systems as a general model for glassy systems, for which there are
various analytical and semi-analytical tools, e.g. CPA.

2.2.3 Comparison of different defected fcc lattices

Next we compared the three model systems based on defected fcc lattices with
each other to study the effects of different types of bond disorder. First we studied
the distribution of the coordination number Z in the random depleted fcc and the
fcc with vacancies. In the case of the randomly depleted fcc it is quite simple:
For a given lattice site there is a chance of p for each bond being depleted and a
chance of 1 − p for the bond being intact. The probability of having z bonds is
therefore:

pdepl(z) =
(

12
z

)
(1− p)zp12−z

〈Z〉depl =
12∑
z=0

z

(
12
z

)
(1− p)zp12−z = 12 (1− p) .

(2.8)

The distribution for the vacancy case works in the same way. Here the probability
for a bond being cut depends on whether the second particle is removed or not.
The probability for this being c and 1− c. Analogous to (2.8) we can write:

p(z)vac =
(

12
z

)
(1− c)zc12−z

〈Z〉vac =
12∑
z=0

z

(
12
z

)
(1− c)zc12−z = 12 (1− c) .

(2.9)

So both systems have a binomial coordination number distribution, which makes
them quite different from the regular depleted fcc, which has (almost) a delta
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(a) (b)

(c) (d)

Z = 6 Z = 7

Z = 8 Z = 9

Figure 2.6: Comparison of our three different fcc models for different
Z. When looking at the high frequency van-Hove remnant we can
see the disorder hierarchy of the three systems. The regular depleted
fcc is the most ordered with the most pronounced peak, whereas the
vacancy system has the lowest. The random depleted system lies in
between having the coordination number distribution from one and
the single bond cutting structure from the other.

distributed coordination number. In Fig. 2.6 we see the VDOS of the three systems
in comparison. Although they are based on the exact same lattice their VDOS
looks quite different, especially when compared to the striking resemblance of
the regular depleted random network and the regular depleted fcc, which had
quite different spatial structures yet very similar VDOS. This hints at the fact
that the connectivity structure of the system is more relevant for the vibrations
possible than the spatial structure of the underlying network, which agrees with
the observations form Sec. 2.2.2, where similar VDOS were obtained due to similar
connectivity structure but very different spatial structure. This is supported by
the observation that, although having the same Z and the same distribution p(z)
the randomly depleted fcc has a quite different VDOS than the fcc with vacancies.
In the latter the missing bonds are not entirely uncorrelated as the removal of one
particle removes bonds in a specific pattern. This is in stark contrast to the



27 2.3. Elastic Properties

Figure 2.7: Comparison of the affine force field strengths of our sys-
tems. As you can see they follow nicely the analytic prediction from
(2.10) and (2.12).

explicit independent removal of individual bonds and affects the distributions of
supported vibrations in the system.

2.3 Elastic Properties

Next we will examine the shear modulus of our model systems. First we will
study the corresponding affine force field Ξ and the related correlator function
Γ(ω). From there we will calculate the static shear modulus as well as the complex
modulus resulting from oscillatory shear and compare the different systems with
each other.

2.3.1 Affine force field and non-affine correlator function

A very important part of the shear modulus is the non-affine relaxation process
leading to GNA introduced in Section 1.3. It is guided by the affine force field
which also is a measure of inversion symmetry as shown before. For the regular



Chapter 2. Disordered lattices 28

(a) (b)

(c) (d)

Z = 6 Z = 7

Z = 8 Z = 9

~ ω²

~ ω²~ ω²

~ ω²

Figure 2.8: Comparison of Γ(ω) of our systems. As expected the
depleted systems scale like ∼ ω2. Away from the critical point Z = 6
the fcc with vacancies shows a diverging behaviour.

depleted fcc we can evaluate the affine force field exactly by using the definition
in (2.4) and averaging over all possible configurations:

〈|Ξ|2(Z)〉 = 2κ2r2
0

4∑
i=0

2∑
j=0

(2j − i)2

8

(
2
j

)(
2
i−j

)(
8

Z−i

)
(

12
Z

) = κ2r2
0
Z(12− Z)

11 · 12 . (2.10)

We get this result by using the fact that in a fcc only the four bonds lying in
the x-y-plane are contributing to the affine force field, of which two contribute
−κr0n̂

x
ijn̂

y
ijn̂ij and two contribute +κr0n̂

x
ijn̂

y
ijn̂ij to Ξ. If we look at only one

direction (e.g. x) we have i bonds in the x-y plane, of which j bonds give a positive
and i−j bonds a negative contribution. Another Z−i bonds lie not in the x-y plane
with a total of

(
12
Z

)
possible configurations. Since we are interested in the square

of the affine force field each configuration has the weight (2j − i)2(n̂xijn̂
y
ijn̂

x
ij)2 =

(2j−i)2/8, since n̂ij = (±1,±1, 0)/
√

2, counted twice for x- and y-direction, which
gives us the prefactor 2.
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(a) (b)

(c) (d)

Z = 6 Z = 7

Z = 8 Z = 9

~ ω²

~ ω²~ ω²

~ ω²

~ ω4
~ ω4

~ ω4

Figure 2.9: Comparison of D(ω)Γ(ω) of our systems. We can see
the change in low frequency scaling from ∼ ω2 to ∼ ω4 caused by the
developing Debye regime. It is important to note that the differences
between the vacancy fcc and the other two systems lessen for this
combined quantity D(ω)Γ(ω), which is the defining quantity for the
calculation of shear modulus G.

It is interesting to see how the strength of the affine force field changes with
the distribution of p(z). In a large enough system we can assume that |Ξ|2 =
Nz〈|Ξ|2(z)〉. Hence we get:

〈|Ξ|2〉 = κ2r2
0

12∑
z=0

Nz

N

z(12− z)
11 · 12 = κ2r2

0
11 · 12

12∑
z=0

p(z)z(12− z)

= κ2r2
0

11 · 12(12〈Z〉 − 〈Z2〉) = κ2r2
0
〈Z〉(12− 〈Z〉)− σ2

z

11 · 12 .

(2.11)

This is surprising, since one would have expected that additional disorder in the
system, due to distribution of the coordination number, would lead to an increase
of |Ξ|2. An intuitive explanation for this behaviour is the fact that sites with
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lower coordination number Z can still have configurations with a high degree of
inversion symmetry, whereas the opposite is not true as highly coordinated sites
cannot go below a certain threshold of base symmetry. For our two model systems
with binomially distributed Z we can evaluate σ2

z and 〈|Ξ|2〉 directly:

σ2
z = 12 p (1− p) = 〈Z〉(12− 〈Z〉)

12 .

〈|Ξ|2〉 = κ2r2
0
〈Z〉(12− 〈Z〉)− σ2

z

11 · 12 = κ2r2
0
〈Z〉(12− 〈Z〉)

12 · 12 .

(2.12)

As we can see in Fig. 2.7 this fits the numerical results very well.
From the affine force field we can evaluate the correlator function Γ(ω) according
to (1.19), which acts as a weight for the different modes when calculating GNA.
Results are shown in Fig. 2.8, where we can see that Γ(ω) ∝ ω2 is approximately
true for low frequencies, as was found by A. Zaccone [31]. Another important
point is that, if normalized with 〈|Ξ|2〉, correlators of the different fcc systems
have the same magnitude and general behaviour. Both properties become even
clearer, when we look at the product D(ω)Γ(ω), which plays an important role in
the non-affine integral (1.20), highlighting the importance of inversion symmetry
breaking in non-affine relaxation. In Fig. 2.9 we can see that D(ω)Γ(ω) shows
two different scalings for low frequencies: ∼ ω4 and ∼ ω2. The first scaling is
a combination of the Debye regime D(ω) ∼ ω2 and the scaling of the Gamma
function Γ(ω) ∼ ω2. As we get closer to the critical point at Z = 6, the Debye
regime vanishes and the VDOS scales like D(ω) ∼ 1 for low frequencies. This
difference will become very important later on when we will look at the complex
modulus of our systems.

2.3.2 Static shear modulus

We finally look at the shear modulus of our fcc lattices. The affine part is calcu-
lated according to (1.22). We can explicitly write down the expression under the
assumption that only pairwise interactions at rest position are taking place:

GA = 1
V

∑
i 6=j

∂2U(rij)
∂γ2 = κ

V

∑
i 6=j

(
∂rij
∂γ

)2

= κ r2
0

V

∑
i 6=j

(
n̂xijn̂

y
ij

)2
. (2.13)
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(a) (b)

(c)

Figure 2.10: Results for the shear modulus G of our three fcc systems,
normalized to the density ρ. Dashed line denotes the analytic result.
As we can see within numerical error all three systems show the same
behaviour.

We can calculate this in the same way as the quantities before by averaging over
all possible configurations. The four bonds in the x-y plane each contribute κr2

0/4,
whereas all other bonds contribute nothing. Hence we get for a large number of
particles:

GA(Z) = 1
2
N

V
〈GA

i 〉 = 1
2
N

V

4∑
j=0

j
κ r2

0
4

(
4
j

)(
8

Z−j

)
(

12
Z

)

= N

V
κ r2

0
Z

24 = κ

a

Z

12 .

(2.14)

Here a is the lattice constant of our fcc and we used the fact that there are 4 atoms
per cell in a fcc, which gives us Nr2

0/V = a2/2 · 4/a3 = 2/a. The non-affine part
GNA cannot be calculated in a similar analytic fashion. But from the numerical
results (Fig. 2.10) we can guess a linear fitting by using the two configurations at



Chapter 2. Disordered lattices 32

Z = 12 (perfect lattice) and Z = 6 (isostatic point):

Z = 12 : GNA = 0 .

Z ≤ 6 : GNA = GA .

→ GNA(Z) =



N

V
κ r2

0
12− Z

24 = κ

a

12− Z
12 , if Z > 6

N

V
κ r2

0
Z

24 = κ

a

Z

12 , if Z ≤ 6

→ G(Z) = GA(Z)−GNA(Z) =


N

V
κ r2

0
Z − 6

12 = κ

a

Z − 6
6 , if Z > 6

0 , if Z ≤ 6

(2.15)

This fits the numerical results very well and reproduces the G ∝ Z − 6 scaling in
three dimensions found in [30, 31, 32]. We can also see that the shear modulus in
a depleted lattice is, aside from Z, determined by the ratio of the spring constant
and lattice constant. Since all parts of the shear modulus are linear in Z, it is
reasonable to expect that the results from (2.14) and (2.15) also hold true for the
random depleted lattice when replacing Z → 〈Z〉. We can see from our results
that this and the coordination number distribution have no impact on the shear
modulus G for the random depleted fcc. When it comes to the fcc with vacancies
the situation is different due to the change in density N/V as we remove particles
from the system. To get the right results we have to correct the density according
to section 2.1.3:

N ′

V
= (1− c)N

V
= 〈Z〉12

N

V
. (2.16)
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Since this factor enters all parts of the shear modulus as a constant factor, we just
have to multiply the results from the depleted lattice by 〈Z〉/12:

GA
vac = κ

a

〈Z〉2

122 = κ

a
(1− c)2 .

GNA
vac = κ

a

〈Z〉
12

12− 〈Z〉
12 = κ

a
c (1− c) .

Gvac = κ

a

〈Z〉
12
〈Z〉 − 6

6 = κ

a
(1− c)(1− 2c) .

(2.17)

This fits the numerical results very well as can be seen in Fig. 2.10. To summarize:
If normalized by the density, all three different fcc systems show the same shear
modulus, which mirrors the similarities in the average affine force field 〈|Ξ|2〉 and
D(ω)Γ(ω) as well as the inversion symmetry breaking related to 〈|Ξ|2〉.

2.3.3 Complex shear modulus

Next we look at the complex modulus of our model systems. Since the mass of
our particles is m = 1, we can simplify the expression for G∗(Ω) so we only have
the friction ν as a free parameter:

G∗(Ω) = GA − 1
V

∑
k

(Ξ · v̂k)2

ω2
k − Ω2 + i ν Ω .

→ GA − 3 N
V

∞∫
0

D(ω)Γ(ω)
ω2 − Ω2 + i ν Ω dω .

(2.18)

The complex modulus has the two limits G∗(0) = GA − GNA = G and G∗(∞) =
GA. The lower limit makes sense as one assumption of the non-affine lattice
dynamics formalism was a very slow shear deformation so the particles can follow
their equilibrium trajectories to the non-affine positions. This is realized by the
driving frequency approaching zero. In the upper limit the opposite is the case and
the particles have no time to relax to their non-affine positions, which is why only
the affine part of the deformations takes place. The real part of the shear modulus
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Figure 2.11: Fitting of D(ω)Γ(ω)/〈|Ξ|2〉 at the isostatic point Z = 6.
We can see that the function D(ω)Γ(ω) ∼ ω2(ωD − ω) (thick black
line) agrees quite well with the numerical data. For this fit we chose
ωD = 2.5.

shows a transition between those two values. First we study the influence of the
friction, which mainly governs the peak position Ωpeak of G′′(Ω) and therefore the
frequency at which the transition from G′(Ω) ∼ G to G′(Ω) ∼ GA takes place. To
get a feeling for the general behaviour of Ωpeak, we just consider the contribution
of one frequency ω = const. in (2.18) and set (Ξ · v̂k)2 ∼ 1, as its value doesn’t
change the scaling. From there we get:

G′′(Ω) ∼ ν Ω
(ω2 − Ω2)2 + ν2Ω2 .

dG′′(Ω)
dΩ

∣∣∣∣∣
Ωpeak

= 0 .

Ω2
peak = 1

6

2ω2 − ν2 + |ν2 − 2ω2|

√√√√1 + 12ω4

(ν2 − 2ω2)2

 .

(2.19)
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To show the scaling for large friction, we assume ν2 � 2ω2 and expand the root
as
√

1 + x ≈ 1 + 1
2x. From that we get:

Ω2
peak(ν →∞) ≈ 1

6

[
−ν2 + |ν2|

(
1 + 1

2
12ω4

ν4

)]
= ω4

ν2 .

Ωpeak(ν →∞) ∼ 1
ν
.

Ωpeak(ν → 0) = ω = const.

(2.20)

These scalings are well reproduced by our numerical results for G′′ as shown in
Fig. 2.12. Quantitatively, the actual position and height of the peaks are of course
not matching perfectly as the calculation of G∗(Ω) involves the non-trivial function
D(ω)Γ(ω). The peak in G′′(Ω) coincides with the transition of G′(ω) between G

and GA.
However, close to the critical point Z = 6 this function is well approximated by:

D(ω)Γ(ω) = a · ω2(ωD − ω) . (2.21)

for all our lattice systems, as can bee seen in Fig. 2.11. We can give some insight
into the relation between the cut-off or Debye frequency ωD and the prefactor
a. As we are at the critical point, the static shear modulus G∗(0) has to vanish,
which leads us to:

G∗(0) = GA(Z = 6)− 3 N
V

ωD∫
0

a · ω2(ωD − ω)
ω2 dω

= 1
2 − 12 aω

2
D

2 = 0 → aω2
D = 1

12 .

(2.22)

Here we used the results from our depleted fcc lattice. Since the density drops
out, the result is also valid for the fcc with vacancies.
Since ωD is set by the system, it is not a free parameter, which leaves us only
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with the friction as parameter of interest. To analyse its effect on the system,
particularly G′′(Ω), we will examine both frequency regimes, Ω � ωD and Ω �
ωD, with either very small or large friction. The maximum frequency ωD of the
system acts a useful measure to determine if the driving frequency is small or large
compared to the system’s eigenfrequencies.
We start with the high frequency limit, where we assume Ω� ωD → Ω2−ω2 ≈ Ω2.
With the approximation from before we can rewrite the equation for G′′ as:

G′′(Ω) = 3
12ω2

D

N

V

ωD∫
0

ν Ωω2(ωD − ω)
(ω2 − Ω2)2 + ν2 Ω2 dω

≈ 1
ω2
D

ωD∫
0

ν Ωω2(ωD − ω)
Ω4 + ν2 Ω2 dω

= 1
ω2
D

ν

Ω(Ω2 + ν2)
ω4
D

12

= ω2
D

12
ν

Ω(Ω2 + ν2) ≈



ω2
D

12
ν

Ω3 , Ω� ν, ωD

ω2
D

12
1
ν Ω , ν � Ω� ωD

(2.23)

So depending on the friction we have two different scalings, with the crossover
happening at Ω ≈ ν. Since we assumed Ω � ωD it follows that the intermediate
regime G′′(Ω) ∼ Ω−1 only appears if ν � ωD, which is in agreement with our
numerical results. To determine the behaviour at low frequencies we use the
approximation (2.21) to evaluate the integral in (2.18). Since the result is rather
long and not easy to read we gave the full expression in Appendix A.2. The
dominant term for low Ω is:

G′′(Ω) ≈ 1
2ωD

√
1
2
(
Ω
√

Ω2 + ν2 + Ω2
)

×arctan2
[
Ω
√

Ω2 + ν2 − ω2
D, ωD

√
2
(
Ω
√

Ω2 + ν2 − Ω2
)]

.

(2.24)
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Here arctan2(x, y) denotes the angle φ of the complex number z = x + iy. The
argument of arctan2 has a singularity at Ω =

√
(
√
ν4 + 4ω4

D − ν2)/2 ∼ ωD. The
last equality holds true for low friction ν, in which case we get a sharp drop of
G′′ at that frequency. This drop coincides with an overshoot in G′(Ω) at the same
frequency. For higher friction the drop is replaced by the G′′(Ω) ∼ Ω−1 scaling
found earlier. Finally we look at the low frequency limit Ω� ωD and get:

G′′(Ω� ωD) ≈ 1
2ωD

√
1
2
(
Ω
√

Ω2 + ν2 + Ω2
)
arctan2

[
−ω2

D, 0
]

= π

2ωD

√
1
2
(
Ω
√

Ω2 + ν2 + Ω2
)

=



π

2ωD

√
1
2 ν Ω , if Ω� ν, ωD

π

2ωD
Ω , if ν � Ω� ωD

(2.25)

In the first line we used the fact that a negative real number has an angle φ = π.
Again, depending on the friction, we get two different scalings with the crossover
at Ω ∼ ν/2. Since we assumed Ω � ωD, the G′′(Ω) ∼ Ω scaling only appears
for ν � ωD. This also means that only one of the two scalings G′′(Ω) ∼ Ω,Ω−1

can be present at any given parameter combination, since the friction can only be
larger or smaller than ωD but not both at the same time.
In Fig. 2.12 we show the different scalings in comparison to the numerical results.
As you can see we have very good agreement at Z = 6 for the scalings as well
as for crossover frequencies. The deviation at very low frequencies is a finite size
effect. Due to the limited size of our model systems the possible wavelength of
phonon like excitations has an upper boundary, which is of the order of the system
size, corresponding to a minimum frequency ωmin. We now look at Ω � ωmin,
also assuming that ν Ω� 1, which allows us to rewrite the sum of (2.18) as:

G′′(Ω) = 1
V

∑
k

ν Ω (Ξ · v̂k)2

(ω2
k − Ω2)2 + ν2 Ω2

≈ 1
V
ν Ω

∑
k

(Ξ · v̂k)2

ω4
k

≈ ν Ω .

(2.26)
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The exact prefactor depends on the individual system as the smallest eigenvalue
depends on the type of disorder. From the crossover of this false scaling and the
correct G′′(Ω) ∼ Ω1/2 scaling we can estimate that our results for G∗(Ω) are only
reliable above a certain threshold.
For coordination numbers away from the critical point we find that the high fre-
quency scaling obtained from (2.23) still holds true, as the behaviour of D(ω)Γ(ω)
plays no role for the behaviour of G∗(Ω). For low driving frequencies Ω the situa-
tion is different as the approximation (2.21) no longer holds true for low eigenfre-
quencies ω. However we can use the Debye approximation D(ω) ∼ ω2 for systems
above the isostatic point and Γ(ω) ∼ ω2 found by Zaccone [31] to estimate the
low frequency scaling of G′′(Ω):

G′′(Ω) ∼ 3 N
V

ωD∫
0

ν Ωω4

(ω2 − Ω2)2 + ν2 Ω2 dω ∼ Ω . (2.27)

As we can see the G′′(Ω) ∼ Ω1/2 scaling disappears and we only get the linear
scaling for low frequencies. This is in agreement with results found by Tighe [33,
34] and Yucht et. al [35], where the anomalous square root scaling was found close
to the isostatic point both in effective medium calculations and simulations.

2.4 Summary

The this chapter we investigated different types of nearest neighbour spring net-
works. One key result is the comparison between the VDOS of a depleted fcc
with a depleted random network which, despite of severe structural differences
(see Fig. 2.5), show a striking similarity especially in the low frequency region,
where the Boson peak anomaly appears. Furthermore we devised a new parameter
based on inversion symmetry breaking that reflects the similarity of the systems
observed in the VDOS. This demonstrates that rather the degree of inversion
symmetry breaking rather than the pure geometric deviation from the fcc lattice
structure (as measured by the widely used F6 parameter) plays the crucial role in
the vibrational properties of disordered systems.
As another key result we were able to show that various types of introduced dis-
order (regular depletion, random depletion, vacancies) in the fcc lattice do not
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change the behaviour of the static shear modulus despite all three systems show-
ing different connectivity structure. When approaching the isostatic point Z = 6
even the function D(ω)Γ(ω) collapses onto one simple function that can be used to
evaluate the complex modulus G∗(Ω) analytically. We then explored the different
scalings in the complex modulus and were able to demonstrate that the change
of the low frequency scaling of the imaginary part G′′(Ω) from ∼ Ω for Z > 6 to
∼ Ω1/2 at Z = 6, which has been observed in simulations and effective medium
calculations [33, 34, 35], can be traced back to the change in the vibrational spec-
trum. At the isostatic point the low frequency Debye-scaling D(ω) ∼ ω2 changes
to D(ω) ∼ 1 which, combined with the unchanged scaling of the non-affine corre-
lator Γ(ω) ∼ ω2, leads to a change in scaling of the combined function D(ω)Γ(ω)
from ∼ ω4 to ω2. This change directly corresponds to the aforementioned change
in the low frequency scaling of G′′(Ω).
The framework we used here has of course several shortcomings of which the most
problematic is the limited range of scalings for G′′(Ω). By assuming a power law
scaling for D(ω)Γ(ω) we can evaluate (1.34) and find:

G′′(Ω) = d
N

V

∞∫
0

ν D(ω)Γ(ω) Ω
m2(ω2 − Ω2)2 + ν2Ω2 dω →

∞∫
0

D(ω)Γ(ω) Ω
(ω2 − Ω2)2 + Ω2 dω

=
∞∫
0

ωa Ω
(ω2 − Ω2)2 + Ω2 dω ∼ Ωb

b =



−1 , a ≤ −1

1
2(a− 1) , − 1 < a < 1

1 , a ≥ 3

(2.28)

As we can see the scaling of G′′(Ω) is restricted to powers in the interval [−1, 1]
and is therefore not able to reproduce results outside this range.



Chapter 2. Disordered lattices 40

(a) (b)Z = 6 Z = 9

(c) (d)Z = 6 Z = 9

(e) (f)Z = 6

Z = 6(g) (h)

ω
D

ω
D

ν = 0.1

ν = 1000

Z = 9

Z = 9

ν = 0.1

ν = 1000

Figure 2.12: (a,b): scaling of the peak position in G′′(Ω) with the
friction ν. The numerical results are in agreement with the an-
alytical estimate from (2.20). (c,d): Comparison between numer-
ical results and the analytical function obtained by using our fit
D(Ω)Γ(Ω) ∼ ω2(ωD − ω). We see very good agreement up to the
point where the numerical result breaks down due to finte size of the
system and eigenvalue gap that follows from it. (e-h): Comparison of
the scalings found in (2.23) and (2.25). Black lines show the crossover
points as described in the text. We find very good agreement for all
of the results.
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(a) (b)Z = 6 Z = 9

ω
D

(c) (d)

ω
D

ω
D

ω
D

Z = 6 Z = 9

Figure 2.13: (a,b): G′(Ω) for frictions ranging from ν = 10−2 to
ν = 105 with stepsize being one order of magnitude (The transition
at the lowest frequency belongs with ν = 105). Above ν ∼ ωD the
friction has no impact on the shape of the curve but just shifts the
transition to lower frequencies. We can see that an overshoot arises
at Ω = ωD when the jump in G′′(Ω) occurs. Again we can see the
equality of all three fcc systems in G′(0), G′(∞) and the transition in
between. For Z = 9 differences appear due to the different behaviour
of D(ω)Γ(ω). (c,d): G′′(Ω) for the same parameters as in (a,b). We
can clearly see the disappearance of the sharp jump at Ω = ωD for
ν > ωD as predicted in the text. In its place the Γ′′(Ω) ∼ Ω−1 scaling
arises and broadens with the friction. We can also see the presence
of a Γ′′(Ω) ∼ Ω1/2 scaling at the critical point, which is absent for
Z = 9. In general the results are in agreement with all analytical
findings related to the friction.





Lattices with long range
correlations

In the following chapter we looked at the influence of long range interaction in
depleted spring networks. Standard nearest neighbour spring networks are a very
useful model to study the properties of disordered systems, but have shortcomings
in capturing certain aspects that are observed e.g. in molecular dynamics (MD)
simulations. One such quantity is the spatial autocorrelation of the local shear
modulus. While nearest neighbour networks show only very short ranged spa-
tial correlation, simulations with long range potentials show a long range spatial
correlation decaying with a power law [36, 37, 38]. Since effective medium approx-
imations often work with heterogeneous elasticity to implement disorder [39, 40],
it is important how strong and over which range those heterogeneities correlate.
The physical consequence of those heterogeneities is the scattering of phonons
which e.g. leads to sound attenuation. In the case of uncorrelated scatterers the
result is Rayleigh scattering, which leads to a sound attenuation ∼ −kd+1, where
k is the phonon’s wave vector and d the spatial dimension of the system. In the
case of power law correlations between the scatterers this was found to changeto
∼ −kd+1 log k [37] as a result of anomalous scattering. The goal of this work,
performed together with Johannes Krausser during his PhD at the University of
Cambridge [41], is to extend the depleted lattice model from the chapter before
to long range interaction and study the (spatial) correlation of various quantities
related to the local shear modulus with the future goal to study this anomalous
scattering of phonons in an easily controllable model system. We decided to use
a two dimensional system in order to increase the number of particles and make
it easier to visualize the results in two dimensional grids.

43
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Figure 3.1: Shell structure of the triangular lattice. The first five
shells are shown with the central site coloured red.

3.1 Model system

The model we are using is a random depleted triangular lattice as depicted in
Fig. 3.1 and 3.2. Long range interactions are implemented by harmonic potentials
with varying rest length r0 and spring constant κ(r0) to avoid internal stresses
and make the introduction of disorder by bond depletion possible and plausible.
For a given system bonds are considered up to a cut-off radius Rc which, since
we have a lattice system, corresponds to a maximum number of included shells S
with S = 1 corresponding to the nearest neighbour system. In this work we study
lattices with S = 1, 2, 5, 15 to give an overview over the influence of those long
range springs on the spatial correlation in the system. Sketches of our systems
are shown in Fig. 3.2. The potential for one shell reads:

U(r) = κ(r0)
2 (r − r0)2 . (3.1)
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Figure 3.2: Model systems with Z = 4 and S = 1, 2, 5, 15 (from top
left to bottom right). The relative opacity of bonds corresponds to the
relative spring constant.

In this work we will restrict ourselves to power law decay of the spring constant
κ(r0) ∼ ra0 . The system is depleted randomly, meaning that each bond has a
certain bond probability p for existing and (1−p) for being broken. The resulting
average coordination number depends on the total number of bonds Zm available,
which in turn depends on the number of shells involved or the range of interaction
considered. In general it can be calculated as for the random depleted fcc:

Z =
Zm∑
z=0

z

(
Zm
z

)
(1− p)zpZm−z = Zm (1− p) . (3.2)

The critical connectivity Z∗ = 2d = 4 (see (2.1)) does neither depend on the
number of shells involved nor the decay of the spring constant. Since we use the
bond probability p as one main parameter it is convenient to introduce the critical
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(a) (b)

Figure 3.3: (a): Affine and non-affine part of the shear modulus. (b):
Total shear modulus G in dependence of the bond probability p. The
theoretical critical bond probabilities are indicated by correspondingly
coloured arrows. As we can see the shear modulus actually goes to zero
at those values, which verifies our theoretical prediction.

bond occupancy p∗:

p∗ = 4
Zm

. (3.3)

To verify (3.3) we have calculated the shear modulus for different bond probabil-
ities and shells S = 1, 2, 5, 15. The results are shown in Fig. 3.3 in dependence
of p, with Zm(1) = 6, Zm(2) = 12, Zm(5) = 36, Zm(15) = 126. As predicted the
critical point lies at p∗ = 4/Zm, which gives the explicit critical bond probabilities
p∗(S): p∗(1) = 2/3, p∗(2) = 1/3, p∗(5) = 1/9, p∗(15) = 2/63.

3.1.1 Local shear modulus

We used the formalism derived in Chap. 1 to calculate the affine and non-affine
part of the shear modulus. To study spatial correlation of the shear modulus G
it is necessary to first define the quantity locally. The complete affine part can be
calculated using (2.13) since we only have pair bonds at rest. The contribution
from particle i is calculated straightforwardly by considering only bonds connected
to i. As each bond connects two sites its contribution is split among both sites
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equally, adding a factor of 1/2:

GA
i = 1

2V

Zi∑
j=1

κ(rij)(rijn̂xijn̂
y
ij)2 = 1

2V

Zi∑
j=1

κij(rijn̂xijn̂
y
ij)2 . (3.4)

The spring constant κij and bond length rij are included in the sum to account
for the existence of bonds with different lengths and varying spring constant in
the system. To define the non-affine part locally we look at the displacements δr
(1.14) that govern the non-affine relaxation. The local displacement of particle
i is obtained by considering the corresponding components of the normal mode
expansion from (1.18) of (1.14):

Dr
Dγ

∣∣∣∣∣
γ→0

= δr = H−1 Ξ =
∑
k

Ξ · v̂k
λk

v̂k

δ~ri =
∑
k

Ξ · v̂k
λk

v̂k,i .

(3.5)

Here v̂k,i is the d-dimensional component of the eigenvector v̂k belonging to particle
i. We follow (1.18) further to calculate the local non-affine modulus:

GNA = 1
V

Ξ H−1 Ξ = 1
V

Ξ · δr =
N∑
i=1

1
V
~Ξi · δ~ri =

N∑
i=1

GNA
i

GNA
i = 1

V
~Ξi · δ~ri = 1

V

∑
k

Ξ · v̂k
λk

(~Ξi · v̂k,i) .

(3.6)

It is important to note that GNA
i is, unlike GA

i , not a completely local quantity
as it involves the affine force field Ξ as well es the eigenvalues and eigenvectors
of the whole system. This however reflects the physical meaning of the non-affine
relaxation as it is a collective reorganisation of the system. It still make sense to
speak of the local non-affine modulus as GNA

i describes the modulus related to the
energy of deformation released by particle i through its non-affine displacement.
The total local shear modulus is just the difference of affine and non-affine part,
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Figure 3.4: Correlation coefficients ρA, ρNA in dependence of p.
Dashed lines show −ρNA while solid lines show ρA. The critical bond
probabilities are indicated by correspondingly coloured arrows. As we
can see ρNA = −1 at the critical point. While ρA goes to 1 at p = 1,
ρNA approaches lower values depending on the interaction length.

as described before:

Gi = GA
i − GNA

i . (3.7)

A similar definition is used for thermal systems using the stress fluctuation instead
of the affine force field [42].

3.1.2 Correlation between local G and GA, GNA

As we can see in Fig. 3.3 the affine part of the shear modulus is always larger or
equal to the non-affine part, when calculated for the whole system. This however
does not reflect the local behaviour. It is a well know phenomenon that the
fluctuations of the non-affine displacement field δr diverge at the critical point [43],
which leads to local GNA showing the same behaviour. The affine part shows no
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(a) (b)

Figure 3.5: (a): Standard deviation of GA, GNA in dependence of
p. The critical bond probabilities are indicated by correspondingly
coloured arrows. As we can see the non-affine fluctuations diverge at
p∗, while the affine fluctuations are small. (b): Ratio of the non-affine
displacement field δr and the affine force field Ξ. The ratio diverges
at the critical point and decays for higher p. We also observe smaller
values for higher shells at a given p.

such divergence, which leads the shear modulus to be locally dominated by its
non-affine part, although when summed up GA and GNA have equal value. To
study the local dependence we calculate the correlation coefficients ρA, ρNA (3.8)
between the local shear modulus and its affine and non-affine part. By comparing
the two we see if the affine or non-affine contribution is dominant. The results are
shown in Fig. 3.4. Since the non-affine part enters negatively in the calculation
of G, ρNA is negative. As we are interested in the strength of the correlation we
show the negative correlation coefficient to make it more easily comparable with
the affine one. As we can see the correlation is sensitive to the bond probability.
At the critical point, indicated by arrows, the local shear modulus anti-correlates
completely with its non-affine part due to the divergence of the fluctuations.

As the local non-affine modulus is proportional to δr this leads to a strongly
fluctuating GNA

i as can be seen in Fig. 3.5. This behaviour is not mirrored by the
affine part, which is why the local shear modulus is dominated by its non-affine
part. With increasing p those fluctuations decrease and the correlation between Gi

and its affine part increases, leading to a crossover between the absolute value of
the two correlation coefficients for S = 5, 15. For S = 1, 2 this crossover happens
at p = 1, where the concept of spatial correlation is meaningless as all sites have
the same shear modulus. Taking this result into account we will study three
different regimes of p: (i) high p, where ρA > ρNA for S = 5, 15 and ρA ≈ ρNA ≈ 1
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for S = 1, 2, (ii) the critical point p∗, where ρA = 0 and ρNA = −1 and (iii)
intermediate p, where ρA ≈ ρNA < 1.

3.2 Spatial correlation function

Next we will look at the spatial correlation function C(r). It is a distance depen-
dent expansion of the Pearson correlation coefficient ρxy that measures how close
two quantities x and y, represented by a group of N points (xi, yi), are to a linear
dependence. It is defined as:

ρxy = 〈xiyi〉 − 〈x〉〈y〉√
(〈x2〉 − 〈x〉2)(〈y2〉 − 〈y〉2)

〈xn〉 = 1
N

N∑
i=1

xni ; 〈yn〉 = 1
N

N∑
i=1

yni ; 〈xiyi〉 = 1
N

N∑
i=1

xiyi .

(3.8)

The value ρxy = ±1 means that all points (xi, yi) lie on the line y = ±mx + t

and knowing one immediately determines the other. Values |ρxy| < 1 lead to
uncertainty in this relation, which means that knowing one quantity only gives
a general idea, depending on ρxy, of the value of the other quantity, with the
limit being ρxy = 0, where the quantities are uncorrelated and no conclusions are
possible. We are interested in the correlation of local shear modulus G at two
different sites i and j, separated by the distance r. Therefore we consider all pairs
(Gi, Gj) with rij = r and calculate the correlation coefficient. Since the shells,
and hence rij, are not equally spaced, we consider the interval rij ∈ [r, r + dr] to
get a smooth spatial correlation function C(r):

C(r) = ρGiGj

∣∣∣
rij∈[r,r+dr]

= 〈GiGj〉 − 〈Gi〉〈Gj〉√
(〈G2

i 〉 − 〈Gi〉2)(〈G2
j〉 − 〈Gj〉2)

∣∣∣∣∣∣
rij∈[r,r+dr]

. (3.9)

The averages here are to be taken over the number of pairs rij ∈ [r, r + dr] and
not the number of particles N . To deal with the averages we go back one step and
consider only pairs in a certain shell S with rij = rS. Since our system is a perfect
triangular lattice, all sites have the same number of neighbours ZS with distance
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rS from them. It is important to note that the pairs here must not be confused
with bonds used to calculate the local shear modulus in (3.7). The pairs are
used to calculate the spatial correlation of the shear modulus and are an inherent
quantity of the base lattice the sites are located on. Since we are not removing
any particles in this work, there are always all possible pairs apparent and any
summation over pairs is not affected by bond depletion. The total number of pairs
with rij = rS is therefore NZS/2 which leads to:

〈Gn
i 〉 = 2

NZS

∑
ij

Gn
i

∣∣∣∣∣∣
rij=rS

= 2
NZS

1
2

N∑
i=1

ZS∑
j=1

Gn
i

= 1
NZS

N∑
i=1

ZSG
n
i = 1

N

N∑
i=1

Gn
i .

(3.10)

The factor 1/2 comes from the double counting of pairs that happens by splitting
the sum in the second step. Since (3.10) holds true for arbitrary combinations of
shells S we can verify that the average over pairs with a given distance is actually
the same as just the average value. Since Gi and Gj are interchangeable we can
write:

〈Gn
i 〉 = 〈Gn

j 〉 = 〈Gn〉 . (3.11)

With that we can write the spatial correlation function for one shell S as:

CS = 〈GiGj〉 − 〈G〉2

〈G2〉 − 〈G〉2

∣∣∣∣∣
rij=rS

. (3.12)

For the case of the affine shear modulus GA we can simplify this expression further,
by using that GA is just a simple sum of contributions from single bonds in the
system. We first split the local affine shear modulus in contributions from all
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shells up to the cutoff radius Rc corresponding to Sc:

GA
i =

Sc∑
r=1

GA
i,r

〈(GA)2〉 − 〈GA〉2 = 1
N

N∑
i=1

G2
i −

(
1
N

N∑
i=1

GA
i

)2

= 1
N

N∑
i=1

(
Sc∑
r=1

GA
i,r

)2

−
(

1
N

N∑
i=1

Sc∑
r=1

GA
i,r

)2

=
Sc∑
r=1

1
N

N∑
i=1

(GA
i,r)2 +

∑
r 6=r′

1
N

N∑
i=1

GA
i,rG

A
i,r′ −

(
Sc∑
r=1

1
N

N∑
i=1

GA
i,r

)2

=
Sc∑
r=1
〈(GA

r )2〉+
∑
r 6=r′
〈GA

r 〉〈GA
r′〉 −

 Sc∑
r=1
〈GA

r 〉2 +
∑
r 6=r′
〈GA

r 〉〈GA
r′〉



=
Sc∑
r=1

(
〈(GA

r )2〉 − 〈GA
r 〉2

)
.

(3.13)

Hereby we used the fact that the contribution to the shear modulus of one shell
Gi,s is independent of the contribution from another shell Gi,s′ . This is due to
the fact that bonds are depleted independently of another and with the same
probability for all shells. The last term we have to analyse is the numerator of
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(3.12). We will for once restrict the calculation to one shell S:

〈GA
i G

A
j 〉 − 〈G〉2

∣∣∣
rij=rS

= 2
NZS

∑
ij

GA
i G

A
j −

(
1
N

N∑
i=1

GA
i

)2

= 1
NZS

N∑
i=1

ZS∑
j=1

GA
i G

A
j −

(
1
N

N∑
i=1

Sc∑
r=1

GA
i,r

)2

= 1
NZS

N∑
i=1

ZS∑
j=1

(
Sc∑
r=1

GA
i,r

)(
Sc∑
r=1

GA
j,r

)
−
(
Sc∑
r=1

1
N

N∑
i=1

GA
i,r

)2

= 1
NZS

N∑
i=1

ZS∑
j=1

GA
i,SG

A
j,S +

∑
r,r′ 6=S

GA
i,rG

A
j,r′

− ( Sc∑
r=1
〈GA

r 〉
)2

.

(3.14)

To understand the split in r = S and r, r′ 6= S we take a moment to think
about how correlations between different sites can be created in our model. In
general correlation between two sites i and j can be introduced by something
that, if changed, changes the values at both sites simultaneously. One way of
doing this is to have a bond between the two sites, which would influence GA

at both sites if changed or removed. As we are interested in correlations at the
distance of a certain shell S it makes sense to treat the contributions GA

i,S and GA
j,S

special as they contain exactly those bonds that connect i and j. Another way of
introducing correlation could be a site k that has a bond both to i and j. If this
site would be displaced or removed it would change the shear modulus at both
sites simultaneously, which would introduce correlation. We can ignore this, since
we restrict ourselves to bond depletion for introducing disorder and removing the
bond rik does not change GA

j . Correlation for GA is therefore only introduced if
two sites share a bond, which means for a given shell S only contributions from this
shell can contribute to the spatial correlation function. We continue to simplify
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the above expression:

〈GA
i G

A
j 〉 − 〈G〉2

∣∣∣
rij=rS

= 1
NZS

N∑
i=1

ZS∑
j=1

GA
i,SG

A
j,S +

∑
r,r′ 6=S

GA
i,rG

A
j,r′

− ( Sc∑
r=1
〈GA

r 〉
)2

= 〈GA
i,SG

A
j,S〉+ 1

NZS

N∑
i=1

ZS∑
j=1

∑
r,r′ 6=S

GA
i,rG

A
j,r′ −

〈GA
S 〉2 +

∑
r,r′ 6=S

〈GA
r 〉〈GA

r′〉



= 〈GA
i,SG

A
j,S〉 − 〈GA

S 〉2 +
∑
r,r′ 6=S

2
NZS

∑
ij

GA
i,rG

A
j,r′ −

∑
r,r′ 6=S

〈GA
r 〉〈GA

r′〉

= 〈GA
i,SG

A
j,S〉 − 〈GA

S 〉2 .

(3.15)

Now we only have to consider one shell, which allows us to further decompose
GA
i,S into contributions from single bonds. One crucial point is that each bond

contributing to GA
i,S also contributes to one of its bond neighbours in shell S. By

summing over all bond neighbours of site i we count every contribution to GA
i,S

exactly once:

ZS∑
j=1

GA
j,S = GA

i,S +RS . (3.16)

The rest RS is the sum of remaining bonds in shell S. Since bonds are depleted
independently of each other the summed contribution of the remaining bonds is
independent of the value of GA

i,s. Independently of the bond probability they will
form ZS − 1 sets of GA

S (although not GA
i,s !) and therefore have the average value
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〈RS〉 = (ZS − 1)〈GA
S 〉. We can write:

〈GA
i G

A
j 〉 − 〈G〉2

∣∣∣
rij=rS

= 〈GA
i,SG

A
j,S〉 − 〈GA

S 〉2 = 1
NZS

N∑
i=1

ZS∑
j=1

GA
i,SG

A
j,S − 〈GA

S 〉2

= 1
NZS

N∑
i=1

GA
i,S

ZS∑
j=1

GA
j,S − 〈GA

S 〉2 = 1
NZS

N∑
i=1

GA
i,S[GA

i,S +RS]− 〈GA
S 〉2

= 1
NZS

N∑
i=1

GA
i,S

ZS∑
j=1

GA
j,S − 〈GA

S 〉2 = 1
ZS

[
〈(GA

S )2〉+ 〈GA
S 〉〈RS〉

]
− 〈GA

S 〉2

= 1
ZS

[
〈(GA

S )2〉+ (ZS − 1)〈GA
S 〉2 − ZS〈GA

S 〉2
]

= 1
ZS

[
〈(GA

S )2〉 − 〈GA
S 〉2

]
.

(3.17)

We can trace back the correlation of GA for a given shell S to the fluctuation
in the contribution from this shell. This immediately makes clear that there will
be no correlations in the affine shear modulus for r > Rc. The total correlation
function for GA at shell S reads:

CS =
〈GA

i G
A
j 〉 − 〈GA〉2

〈(GA)2〉 − 〈GA〉2

∣∣∣∣∣
rij=rS

= 1
ZS

〈(GA
S )2〉 − 〈GA

S 〉2∑Sc
r=1 [〈(GA

r )2〉 − 〈GA
r 〉2]

. (3.18)

When looking at long distances in the triangular lattice, the spacing between
individual shells becomes very small, leading to an increasing number of bonds for
a given interval [r, r + δr]. Those bonds approach an isotropic angle distribution,
which is why we can make a long range approximation for the scaling of (3.18).
We therefore assume an isotropic distribution of bonds on a circle Cj around a site
i with radius r. Each bond contributes 1

2V κ(r)(rn̂xijn̂
y
ij)2 according to (3.4), with j

being an arbitrary site on the circle Cj. As we have a two dimensional system, we
can switch to polar coordinates n̂ = (cosφ, sinφ), which simplify the calculation.
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We are only interested in the scaling of C(r) so only the numerator of (3.18) and
ZS = Zmax(r) has to be considered. The components can be calculated as:

〈GA(r)〉 = 1
2V

1
N

N∑
i=1

Zi(r)∑
j=1

κ r2(cosφj sinφj)2 =

r2κ

2V
1
N

N∑
i=1

Zi(r)∑
j=1

(cosφj sinφj)2

r�1
−→

r2κ

2V
1
N

N∑
i=1

Zi(r)
2π∫
0

1
2π (cosφ sinφ)2dφ

= r2κ

16V
1
N

N∑
i=1

Zi(r) = r2κ

16V 〈Z(r)〉 .

(3.19)

Here Zi(r) denotes the actual number of bonds to the circle of radius r around
site i. Since we now are explicitly calculating GA we have to consider the bond
probability p and the varying Zi it is causing. The second moment of GA

i (r) is a
bit more lengthy but can be calculated in the same way:

〈(GA(r))2〉 = 1
N

N∑
i=1

 1
2V

Zi(r)∑
j=1

κ r2(cosφj sinφj)2

2

=

r4κ2

4V 2
1
N

N∑
i=1

Zi(r)∑
j=1

(cosφj sinφj)2

2

r�1
−→

r4κ2

4V 2
1
N

N∑
i=1

Z2
i (r)

 2π∫
0

1
2π (cosφ sinφ)2dφ

2

= r4κ2

256V 2
1
N

N∑
i=1

Z2
i (r) = r4κ2

256V 2 〈Z
2(r)〉 .

(3.20)
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By inserting (3.20) and (3.19) into (3.18) we get:

C(r) ∼ 1
Zmax(r)

[〈(GA(r))2〉 − 〈GA(r)〉2]

= 1
Zmax(r)

 r4κ2

256V 2 〈Z
2(r)〉 −

(
r2κ

16V 〈Z(r)〉
)2


= r4κ2

256V 2
1

Zmax(r)
[
〈Z2(r)〉 − 〈Z(r)〉2

]
= r4κ2

256V 2
Zmax(r) p (1− p)

Zmax(r)

= r4κ2

256V 2 p (1− p)

→ C(r) ∼ r4κ2 .

(3.21)

In the third line we used the distribution of Z from (2.8) to compute the variance.
We can ignore the factor p(1− p) as it cancels with the denominator from (3.18),
which has the same structure as the numerator and also produces a factor p(1−p).
Aside from that the numerator gives only a constant number as it contains the sum
over all shells. In recent work a correlation function C(r) ∼ r−2 was discovered in
simulations of central force glasses [36, 37, 38]. To make our results comparable
we chose a power law decay of κ ∼ r−3, which gives us C(r) ∼ r4−6 = r−2 for
the affine shear modulus. Although the total shear modulus involves also the
non-affine part, for which no such scaling argument exists, the scaling for GA still
holds importance as it will be dominant for high bond probability and long range
bonds where the non-affine part contributes small values.

3.3 Numerical results for C(r)

We have calculated C(r) numerically for S = 1, 2, 5, 15 by calculating the value
for each shell according to (3.12) and then averaged over values of rS ∈ [r, r+ δr]
to create a list with equidistant values of r. To reduce the numerical error we
averaged each system over 100 different realizations.
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(a) (b) (c)

(d) (e) (f)

Total shear modulus affine shear modulus non-affine shear modulus

~ r-2~ r-2

Figure 3.6: Spatial correlation function of G(a), GA(b) and GNA(c)
for high bond probability p with logarithmic plots shown below. Ar-
rows indicate the maximal interaction length Rc of the corresponding
system. As we can see GA and G follow the predicted C(r) ∼ r−2

power law for r < Rc, while GNA decorrelates at shorter distances.

3.3.1 High bond probability p

First we looked at systems with high bond probability p far away from p∗, where
ρA > ρNA. We considered p = 0.85 as sufficiently large for S = 5, 15. For S = 1, 2
we chose p = 0.99 to represent the regime where ρA ≈ ρNA ≈ 1, as there is no
crossover between the two correlation coefficients in this case. The results are
shown in Fig. 3.4. As one can see the correlation of GA follows the predicted
power law C(r) ∼ r−2 with the correlation length being equal to the cutoff radius
of the interaction as indicated by the coloured arrows. GNA shows no correlation
beyond r ≈ 1 for any interaction length at high bond probability. The correlation
of G matches the behaviour for GA.
This is in agreement with our expectation from the analysis of the correlation
between the local Gi and GA

i , G
NA
i as shown in Fig. 3.6. At high p the local

shear modulus correlates with the affine rather than with the non-affine part for
S = 5, 15, which explains why we observe a similar correlation function for G and
GA. Although the correlations ρA, ρNA have similar strength for S = 1, 2, we still
observe a correlation function C(r) close to the affine prediction.
In order to get further insight into the correlation of the shear modulus we will

examine the spatial structure of the correlation. To do that we calculate all values
C(rij) for one site i and write them into the corresponding sites j. This gives us
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Figure 3.7: Two dimensional maps corresponding to C(r) shown in
Fig. 3.6. We can see the extending lobe structure for higher shells as
well as the similar behaviour of G and GA stemming from the high
correlation between the two quantities.

a spatial map of correlations values. To average over the system we repeat this
for all sites i and overlay the resulting maps so that particle i is always located
at the centre. Afterwards we average again over 100 different realisations. The
results are shown in Fig. 3.7. For GA the correlation has a clear lobe structure
whose range extends for higher shells as predicted by our model. The four lobes
point along the diagonals of the coordinate system, meaning that the correlations
along those directions are enhanced, while correlations along the x- and y-axes
are suppressed. This phenomenon can be explained by the contributions GA

ij from
single bonds to the affine shear modulus given in (3.4):

GA
ij =

κijr
2
ij

2V (n̂xijn̂
y
ij)2 ∼ sin2 φ cos2 φ = sin2 2φ . (3.22)

Here we used the polar representation of the unit vector. We already discussed
that in our model correlation of a quantity between two sites can only be intro-
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Figure 3.8: Two dimensional correlation maps of GNA shown together
with the correlation maps of its constituents Ξ and δr. While the anti-
correlation lobes of the affine force field extend further with increasing
shell number S the correlation of the non-affine displacement field
becomes weaker.

duced, if there is a bond between the two sites whose removal would change the
value at both sites simultaneously. If we look at the contributions to GA we notice
that for φ = kπ/2, k ∈ N , i.e. the x- and y-axes, the bonds do not contribute.
In the context of the affine shear modulus they can therefore be treated as not
existent at all, as their removal would change nothing about GA. This also means
that there cannot be any correlation in those directions as there are no possible
bonds that could introduce it. Furthermore the contribution has a maximum for
φ = π/4 + kπ/2, k ∈ N , which explains why the correlation is strongest in the
diagonal direction. As the spatial correlation function contains the product of
〈GA

i G
A
j 〉 we have to square the contribution from the bond connecting i and j,

which leads to:

C(r) ∼ (GA
ij)2 = sin4 2φ . (3.23)
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Figure 3.9: Left: non-affine displacement field of individual compared
to the average over 100 realisations (top left) for S = 15, p = 0.85.
Most of them resemble the lower ones where the correlation is either
strong in the x- or y-direction. A few show correlation in both direc-
tions. Right: Lobe structure of the affine shear modulus (top) and the
affine force field (bottom). White lines show the predicted behaviour
sin4 2φ for GA and sin2 2φ for Ξ.

In Fig. 3.9 we can see that the lobes observed for GA indeed follow that behaviour.
As explained before the total shear modulus correlates more strongly with the
affine part at high p, which is why the spatial correlation of G mirrors GA rather
than GNA.
For GNA we observe a different pattern with negative correlation lobes pointing in
the diagonal direction and positive lobes in the x- and y-direction. This resembles
the field described in the Eshelby theory of elastic inclusion. Although it was
first derived 1957 by Eshelby [44] to describe heterogenic inclusions in an infinite
elastic body, its applicability at atomic level has been shown as well [45, 46].
The correlation patterns of GNA presented in this work agree well with previous
findings for simulations at T > 0 [47, 48, 49]. To understand this phenomenon
better we have to look at the two components which make up GNA

i , the affine
force field ~Ξi and the non-affine displacement field δ~ri. To capture both alignment
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and strength correlation of the fields we calculate the correlation function as:

CΞ(r) = 〈~Ξi · ~Ξj〉 − 〈~Ξ〉 · 〈~Ξ〉
〈~Ξ2〉 − 〈~Ξ〉 · 〈~Ξ〉

∣∣∣∣∣∣
rij∈[r,r+δr]

. (3.24)

For the non-affine displacement field the expression is equivalent and we averaged
in the same way as before. The results corresponding to the systems above are
shown in Fig. 3.8. We can see that the two features of the correlation of GNA are
present separately in the correlation of the affine force field and the displacement
field. The affine force field shows qualitatively the opposite behaviour to the affine
modulus with anti-correlation in the diagonal direction and no correlation in the
x- and y-axes. This can be understood by looking at the individual correlations
that one bond n̂ij gives to a site i:

~Ξij = −κijrijn̂xijn̂
y
ijn̂ij ∼ sinφ cosφ

cosφ
sinφ

 = sin 2φ
cosφ

sinφ

 (3.25)

The first thing to notice is that contributions to the affine force field show a similar
angular dependence as for GA in that they are 0 for bonds pointing along the x-
and y-axes. This also explains why there is no correlation in the affine force field
along those directions. The anti-correlation in the diagonal direction stems from
the fact the sign of (3.25) changes when the bond is inverted, as we have an odd
number of bond terms in the product. The above expression denotes a contribution
to the site i where we consider bonds pointing from i to j. The contribution from
bond n̂ij = −n̂ji to site j would be ~Ξji = −κjirjin̂xjin̂

y
jin̂ji = −~Ξij. So each

bond adds exactly opposite values to the affine force fields of the two sites it
connects. Therefore Ξ shows a strong anti-correlation behaviour in the direction
with the largest contributions (diagonals) and no correlation in the direction with
no contributions (x,y-axes). We get the specific angular behaviour similar to GA

(3.23) by considering the square of the individual contribution, although with a
negative sign:

C(r) ∼ ~Ξij · ~Ξji = −~Ξij · ~Ξij = − sin2 2φ . (3.26)
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As shown in Fig. 3.9 the correlation of Ξ follows this prediction very well.
The non-affine displacement field shows a quite different correlation behaviour
than GA or Ξ. We can observe a sharp transition between correlation and anti-
correlation along a four-leaved shape. One important feature is the length of
correlations, which extends much further than for the shear modulus or the affine
force field. We can make sense of this by looking at the definition (3.5) of the local
displacement field δ~ri, which involves a sum over all eigenmodes of the system.
The calculation of these modes involves the full Hessian and therefore depends
on the whole system. This connects the displacement fields over long distances
even exceeding the maximal interaction length in the system. It also makes sense
phenomenologically as the non-affine displacement is a collective reorganisation
of the whole system. This requires particle motions to be in some way synchro-
nized with each other, which is well reflected in the correlation maps of δr. The
observed bias in the y-direction stems from the structure of the triangular lattice.
The particle density along the x-axis is larger than along the y-axis, since particles
along the latter one are two shells removed from each other, while particles along
the x-axis are within their first shells. From the perspective of displacement the
system is stretched in the y-direction which let the lobes to appear stretched in
this direction as well.
The spatial pattern of its correlation is a superposition of different patterns stem-
ming from the individual realisations as illustrated in Fig. 3.9. We found that
there are two major contributions with realisations either having strong correla-
tions in x- or y-direction and a few systems that actually have correlations in
both directions. The individual correlation pattern of δr show a similar behaviour
as the shear strain correlation leading to shear banding [48]. It is important to
note that this is only the correlation pattern of the displacement field and not the
displacement field itself.

With those insights the correlation pattern of GNA from Fig. 3.8 appears as
a combination of the anti-correlation lobes from the affine force field and the
(damped) positive correlation in the x- and y-direction from the displacement
field. The pattern of the affine force field shows more distinctly while the pattern
of the non-affine displacement field is suppressed.
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(a) (b) (c)

(d) (e) (f)

Total shear modulus affine shear modulus non-affine shear modulus

~ r-2

Figure 3.10: Spatial correlation function of G(a), GA(b) and GNA(c)
for critical bond probability p∗ with logarithmic plots shown below.
Arrows indicate the maximal interaction length Rc of the correspond-
ing system. As we can see GA follows the predicted C(r) ∼ r−2 power
law for r < Rc, while G and GNA show an oscillating behaviour which
ranges further for lower shells.

3.3.2 Critical bond probability p∗

Next we look at the correlation of the shear modulus at the critical point. As
already discussed one key feature is the diverging fluctuation of the non-affine
displacement fields leading to a highly fluctuating local GNA

i which in turn dom-
inates the total local modulus. We therefore expect a different correlation be-
haviour, where the affine part is suppressed. In Fig. 3.10 we have plotted the
radial correlation function C(r) for shells S = 1, 2, 5, 15 with corresponding p∗ =
2/3, 1/3, 1/9, 2/63. The affine part still follows the same power law C(r) ∼ r−2,
as it is independent of p. The correlation function of G however shows an oscillat-
ing behaviour that extends longer than the interaction length of the correspond-
ing systems, indicated by arrows. This in agreement with observations by other
groups [48, 49, 47, 38]. An important fact is that the correlation at the tail is
stronger for shorter interaction lengths. To study this anomaly further we look,
as before, at the spatial structure of the correlation. The corresponding maps are
shown in Fig. 3.11. We see that GA shows the same spatial correlation pattern as
for high p. G and GNA however show a very different behaviour without a visible
lobe structure in any direction and radial oscillation. As the total shear modulus
shows the exact same pattern as its non-affine part, we will take a closer look at
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Figure 3.11: Two dimensional maps corresponding to C(r) shown in
Fig. 3.10. We can see the extending lobe structure in GA for higher
shells. GNA shows a oscillating long range behaviour with its range
decreasing for higher shells. As the local shear modulus is completely
anti-correlated with its non-affine part, it shows the exact same corre-
lation pattern.

the latter one and study the spatial correlation of Ξ and δr shown in Fig. 3.12.
We can see that the affine force field shows the same correlation as for higher p,
with anti-correlation lobes in the diagonals extending for longer interaction length.
The displacement field δr however shows a different behaviour. Although for shell
S = 1 it still has a pattern resembling the four-leaved structure from before, the
maps of higher shells look quite different. Most importantly the correlation length
and strength reduces with interaction length, which is the source of the observed
correlation behaviour in G and GNA. This can be explained by the structure of the
corresponding lattice. In Fig. 3.13 we can see the displacement field and lattice of
one system with S = 1 and S = 15. As the critical connectivity stays constant at
Z∗ = 4 the transition from S = 1 to S = 15 is a mere replacement of strong short
ranged bonds by weak long ranged bonds as κ ∼ r−3. This leads to a system of
small isolated groups with strong bonds and a more local reorganisation during
the deformation process, which reduces correlation between the local non-affine
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Figure 3.12: Two dimensional correlation maps at p∗ of GNA shown
together with the correlation maps of its constituents Ξ and δr. While
the anti-correlation lobes of the affine force field extend further with in-
creasing shell number S the correlation of the non-affine displacement
field becomes weaker. The latter effect is stronger as p∗ is smaller for
higher shells.

displacement fields. This effect is reduced for higher bond probability as the strong
bonds form a system-spanning skeleton that supports collective displacements.
Again we can conclude that the correlation pattern of GNA is a combination of the
anti-correlation from the affine force field and the correlation of the displacement
field. As the displacement field at the critical point is much stronger than the
affine force field we see the pattern of the displacement correlation much stronger
than for higher bond probability p, where the displacement field is much weaker.
This distorts the lobe structure of the affine force field correlation and leaves only
the anti-correlation pattern. Another consequence of the diverging displacement
field at the critical point is the correlation of local G with local GNA. Therefore
the correlation pattern of G resembles the one of GNA, with the correlation of GA

being suppressed.
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S = 1
p = 0.67

S = 15
p = 0.03

Non-affine displacement field Lattice

Figure 3.13: Two dimensional correlation map at p∗ for S = 1 and
S = 15 with one example of the desplacement field and the underlying
lattice. The colour of arrows indicates the strength of the field, from
weak (blue) to strong (red). In the lattice opacity correlates with
the strength of the bonds. We can see that for S = 15 the system
contains only a few scattered strong bonds and a lot of weak ones.
The displacement field mirrors that structure by being localized having
only a short correlation length.

3.3.3 Transition from critical to high bond probability

The last regime studied in this work is taken from an intermediate range of bond
probability where neither GA

i nor GNA
i is dominating the correlation behaviour

of G. The values for p(S) are p(1) = 0.85, p(2) = 0.7, p(5) = 0.4, p(15) = 0.3.
The correlation functions are shown in Fig. 3.14. Again the affine shear modulus
follows the power law decay shown earlier, while the correlation of GNA shows
oscillatory behaviour as for p∗. The range is however shorter than at the critical
point and decreases further with higher shells. The total shear modulus shows a
peculiar behaviour in that it shows anti-correlation for short range and correlation
similar to GA for long range. Only for S = 1 the correlation of G mirrors mostly
GNA due to the strong correlation of G with GNA (see Fig. 3.15).
To see how the correlation in this transition regime of p behaves spatially, we
look again at the correlation maps of G, GA and GNA. GA shows the same
lobe structure as at the critical point and high p. GNA shows a lobe structure
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(a) (b) (c)

(d) (e) (f)

Total shear modulus affine shear modulus non-affine shear modulus

~ r-2~ r-2

Figure 3.14: Spatial correlation function of G(a), GA(b) and GNA(c)
for intermediate bond probability p with logarithmic plots shown be-
low. Arrows indicate the maximal interaction length Rc of the corre-
sponding system. As we can see GA follows the predicted C(r) ∼ r−2

power law for r < Rc. G follows this law only approximately while
GNA shows an oscillatory behaviour similar to p∗ but with shorter
range.

similar to high p, with anti-correlation in the diagonals and positive correlation
in the x- and y-axes. Compared to high p the anti-correlation lobes appear more
clearly and extend into the first shell. To get insight into this pattern we look
at the correlation maps of Ξ and δr, which are shown in Fig. 3.16. Similar to
GA the affine force field correlations are unaffected by p and therefore show the
same behaviour as before. The non-affine displacement field correlation shows a
behaviour more similar to high p with lobes in the x- and y-direction and a clear
boundary between correlation and anti-correlation. The lobes arise again as a
superposition of strong correlation in x- or y-direction in single realisations. GNA

appears as a combination of those two patterns.
The local shear modulus neither strongly correlates with GA nor anti-correlates
with GNA and therefore shows parts of both correlations patterns. We can see
correlation in the x- and y-directions stemming from GNA. The anti-correlation
in the diagonals is suppressed by the correlation from GA with only a very short
range anti-correlation remaining. This also explains the long correlation length
of G that we see in Fig. 3.15, as positive correlations from GNA and GA add up.
For higher or lower bond probability either the affine or non-affine part becomes
dominant leading to the correlation behaviour discussed before.
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Figure 3.15: Two dimensional maps corresponding to C(r) shown in
Fig. 3.14. We can see the extending lobe structure in GA for higher
shells. GNA shows strong anti-correlation in the diagonals and corre-
lation along x- and y-axis with its range decreasing for higher shells.
The correlation pattern of G appears as an overlap of GA and GNA

with the latter contributing more as ρNA > ρA. Since ρNA, ρA < 1 we
still see some contribution from GA.

3.4 Summary

In this work the influence of interaction range on the spatial correlation of shear
modulus G in dependence of the bond probability p was studied on the exam-
ple of a random depleted triangular lattice. The correlation maps of all relevant
quantities (G,GA, GNA,Ξ, δr) are plotted in Fig. 3.17-3.21. We found that the im-
plementation of longer bonds introduces correlation in the affine part of the shear
modulus GA and the affine force field Ξ at the length of the maximal bond length.
Both show a lobe structure with positive correlation (GA) and anti-correlation (Ξ)
in the diagonal direction that is independent of p. This stems from the individual
contribution of bonds to both quantities, which is maximal in the direction of the
diagonal and zero in x- and y-direction. In the case of a power law decay of the
spring constant, the correlation of GA decays according (3.21). The p dependence
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Figure 3.16: Two dimensional correlation maps at intermediate p of
GNA shown together with the correlation maps of its constituents Ξ
and δr. While the anti-correlation lobes of the affine force field extend
further with increasing shell number S the correlation of the non-
affine displacement field becomes weaker, leading to the decreasing
correlation length of GNA.

of the correlation is introduced by the non-affine displacement field δr, which in
turn is mostly determined by the dominant S = 1 bonds. Therefore similar bond
probabilities give similar correlation patterns for δr. As the critical bond probabil-
ity drastically decreases with the number of included shells the correlation length
of δr is reduced for longer interaction at p∗.
The correlation pattern of the local shear modulus depends on two important in-
terplays. First there is the affine force field and the non-affine displacement field,
which make up the non-affine shear modulus. As p increases the ratio 〈δr〉/〈Ξ〉
decreases and the anti-correlation lobes of Ξ show up in the pattern of GNA. In
addition to that the positive correlation in x- and y-direction from δr are sup-
pressed and the range of this correlation in GNA decreases.
The other important interplay takes place between GA and GNA. When lower-
ing p the affine part decreases while the non-affine part increases. Furthermore
the spatial fluctuation of GNA increases which leads to the shear modulus being
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locally dominated by its non-affine part (although in total GNA might be small).
Therefore the correlation pattern of G changes from resembling the affine part to
resembling the non-affine part. In the latter regime the correlation length is mostly
determined by the non-affine displacement field, which decreases with longer inter-
action length. So with longer interaction we have an increase of correlation length
for high p close to the full lattice due to the decrease of correlation between G

and GNA. For lower p closer to the critical point we have a decrease of correlation
length due to the decreasing correlation in the displacement field.
To summarize there are two main results in this chapter. One is the analytical
link between the spatial correlation of the affine shear modulus and the spring
constant:

C(r, φ) ∼ r4κ2 sin4 2φ . (3.27)

The other is the demonstration of the non-monotonic correlation of G both with
regard to the interaction range and the bond probability as well as its aforemen-
tioned back tracing to the interplay of the local affine shear modulus with the
affine force field and the non-affine displacement fields, which in turn depend on
the structure of the lattice both in terms of interaction range and decay. Another
important point is the demonstration that power law correlations observed in sim-
ulations can indeed be found in simple depleted lattice models, if appropriately
tuned. This opens the possibility to study anomalous properties of disordered
solids that are based on phonon scattering such as sound attenuation on lattice
models. The next step would be to analyse the phonon scattering based on the
correlation function (3.27) and determine quantities like sound attenuation from
it.
It is also important to note that the latter results from the choice of power law
decay for the spring constant, as it introduces very weak bonds for long range in-
teraction which hinder correlation length. For a different choice of spring constant
behaviour the results for low p might be different.
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Figure 3.17: Two dimensional correlation maps of G.
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Figure 3.18: Two dimensional correlation maps of GA.
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Figure 3.19: Two dimensional correlation maps of GNA.
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Figure 3.20: Two dimensional correlation maps of Ξ.
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Figure 3.21: Two dimensional correlation maps of δr.



Polymer networks
Polymers play a big role in modern life, from the widely used polystyrene over
membranes for fuel cells to biomolecules as proteins or DNA. Much analytical work
has been done in analysing the vibrational properties of polymers [50, 51], starting
from theoretical determination of the single-chain backbone vibrational spectra in
seminal work by J. G. Kirkwood [52] and K. S. Pitzer [53], followed by the power-
ful combination of Wilson’s GF-method with group theory by P. Higgs [54]. Still
the spectra of more realistic polymer melts are only little explored, due to lack of
any periodicity or symmetry in the system, which makes the mentioned analytical
methods inapplicable.
In this work we will explore the behaviour a simple spring-bead polymer model,
known as Kremer-Grest [55] model, at low temperature and present a systematic
review on how the vibrational spectrum depends on the length and bending stiff-
ness of the individual chains. The motivation for this, brought forward by BASF
and Professor Alexei Lapkin from the Department of Chemical Engineering and
Biotechnology at the University of Cambridge, is the development of a sensor,
based on Raman spectroscopy, to monitor the growth of polymers in real time.
Since the Raman spectrum is tied to the VDOS D(ω) in the following way [56]:

IRaman(ω) = ω [n(ω, T ) + 1]C(ω)
ω2 D(ω) , (4.1)

it is important to present a systematic review of the VDOS for changing length
and bending stiffness. Here n(ω, T ) denotes the Bose distribution function and
C(ω) the coupling between photons and phonons.
The first part of the chapter in which we examine the vibrational properties of
our model system is mostly based on [57]. We’ll give a description of the model,
which was simulated in LAMMPS [58] by Christopher Ness at 25% of the approximate

75
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θ

LJ interaction

FENE interaction

Monomer
beads

Figure 4.1: Sketch of our model polymer system.

glass transition temperature Tg. This was followed by a second relaxation using the
gradient method done in python to reach a configuration at ≈ 0.025% of Tg, which
is sufficiently low to use harmonic approximation without further assumptions.
Afterwards we present the results for changes in structure and vibrational patterns,
including a comparison with analytic results for similar single chain systems.
The last part will revolve around the mechanical stability of our systems. Since
the calculations were performed at low but non-zero temperatures we will discuss
the limits of non-affine lattice dynamics in this context and provide a solution for
its shortcomings.

4.1 Model systems

The model uses a coarse-graining on the level of the monomer, such that individual
polymer chains are treated as a chain of monomer beads connected with elastic
springs as depicted in Fig. 4.1. For each monomer bead in the system LAMMPS was
used to solve the Langevin equation

m
dv

dt
= −m

ξ
v + dU

dr
+ fB(t), (4.2)

for uniform monomers of mass m and velocity v, coefficient of friction 1/ξ and
random forces fB(t) satisfying 〈fB(t)fB(t′)〉 = 2mkBTδ(t− t′)/ξ. The simulation
was performed at T = 0.1 and three potentials were used: A finitely extensible
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nonlinear elastic (FENE) interaction along the backbone of the polymer chain,
a truncated Lennard-Jones potential acting on all particle pairs within a cut-off
of 2.5 and an angular potential between neighbouring bonds along the backbone,
determining the bending stiffness of our model chains. The potentials have the
explicit form:

UFENE(r) = −1
2εFENER

2
0 log

[
1−

(
r

R0

)2
]

ULJ(r) = 4εLJ
[(
σ

r

)12
−
(
σ

r

)6
]

+ 4εLJ
[(

σ

2.5

)12
−
(
σ

2.5

)6
]

; r < 2.5

Ubend(θ) = εbend[1− cos(θ − θ0)]

(4.3)

The first two potentials combined are the standard choice for the Kremer-Grest
model.
With reference to fundamental units of mass ν, length d, and energy ε, the pa-
rameters are set as σ = 1, R0 = 1.5, m = 1 and εLJ = 1, giving a time unit of
τ =

√
mσ2/εLJ, and we set ξ = 100τ . The system volume V has units d3. The

equilibrium distance between two beads in a chain σ ≈ 0.96 is substantially dif-
ferent from the equilibrium distance of the pure LJ-interaction r0 ≈ 1.12 to avoid
crystallization of the system. As rest angle we chose the bond angle θ0 = 109.5◦

of the polystyrene backbone. A dissipative timescale emerges as mσ2/ξεLJ, and a
thermal timescale emerges as mσ2/ξkBT . The state of our system, i.e. whether it
is in the melted or glassy state, is simply given by the ratio of these timescales, as
T ∗ = kBT/εLJ. Initial loose polymer configurations are generated within a cubic
periodic domain using a non-overlapping random-walk algorithm. We use a sys-
tem of 5× 103 monomers, in chains of uniform length L, which we vary from 2 to
50. For each value of L we generate 5 realisations of the system for the purposes of
ensemble averaging. The system is first equilibrated in a melted state at T ∗ = 1.2,
maintaining zero external pressure using a Nose-Hoover barostat. The system is
subsequently cooled to T ∗ = 0.1 by decreasing T ∗ at rate 1/τc, with τc ∼ O(105)τ .
Taking those configurations obtained from LAMMPS, relaxation with a simple gra-
dient method was performed to bring the system closer to zero temperature and
reduce the net forces f acting in the system. To estimate the temperature after
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the second relaxation we used the ratios of the force fields before and after the
relaxation together with T ∼ 〈f2〉:

Tnew = Told
〈f2
new〉
〈f2
old〉

(4.4)

We set up the gradient method so that it stops when 〈f2
new〉/〈f2

old〉 < 10−3, leading
to a target temperature of T = 10−4, which is very small compared to the glass
transition temperature Tg = 0.4.
Those calculations were performed for systems with five different chain lengths
L = 3, 4, 5, 10, 50 and various bending stiffness ranging from εbend = 0 to εbend =
1000. Since the calculations are based on harmonic approximation and to get a
better comparability of the different interactions, we will from now on look at the
effective spring constants obtained from the second derivative at the rest position
of each potential. We get:

κLJ ≈ 57.1

κFENE ≈ 981.3

κbend = εbend,

(4.5)

which is useful as it shows the clear difference between the strength of bonds along
the chain and bonds formed between chains κFENE/κLJ ≈ 17.2. It is important to
note that κFENE was obtained from the combination of UFENE and ULJ as both
potentials contribute to interactions along the backbone.

4.2 Structural analysis

We will now have a look at how the structure of the system changes with length
and bending stiffness by looking at the radial distribution function g(r), the dis-
tribution of angles along the chains and the density of the system. The latter
is interesting as the initial relaxation in LAMMPS was performed under constant
pressure and changing volume. Results for the density are shown in Fig. 4.2. We
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(a) (b)

(c) (d)

(a) (b)

(e) (f)

θ0

κbend = 1000κbend = 0

L = 3 L = 50

Figure 4.2: (a) Density ρ = N/V of our systems. (b) Angle distribu-
tion of our systems with two configurations responsible for its peaks.
(c-f) Radial distribution function g(r) for flexible and stiff chains with
variable lengths shown with main configurations.

can see that overall the density decreases with increasing bending stiffness. This
happens because stiffer chains have a longer persistence length and cannot coil
around each other so easily, leading to the formation of small cavities in between
the chains. This increases the volume and in turn decreases the density of the
system. The effect is accompanied by a drastic change in the angle distribution.
Flexible chains can adjust the bond angle to their surrounding filling less space,
which results in angles piling up around θ = 60◦, corresponding to close packing
structures, while stiff chains have a mostly fixed bond angle θ0 = 109.5. This is
reflected well by the angle distribution of our systems shown in Fig. 4.2. Another
important difference between flexible and stiff chains is the dependence on chain
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length. Since bonds in the backbone are shorter than inter chain LJ bonds, an
increase in chain length leads to an overall decrease in volume and an increase in
density for flexible chains. Stiff chains show the exact opposite behaviour as they
cannot coil around each other very well. The change of behaviour happens at
around κbend ≈ 80, where also the peak at θ0 = 109.5 starts to emerge, supporting
the given argument.
The radial distribution function also shows a rich phenomenology depending both
on length and bending stiffness as can be seen in Fig. 4.2. In general we can ob-
serve two peaks at the FENE rest length r = 0.96 and the LJ rest length r = 1.12.
Since the FENE bonds are much stronger than LJ bonds the peak is narrower.
Aside from that the behaviour mirrors the changes in structure discussed before.
Let’s start by analysing the flexible chain, whose g(r) does not depend much on
the chain length aside from the replacement of LJ by FENE bonds, leading to an
increase in the FENE peak and a decrease in the LJ peak. At larger distances we
see a double peak caused by two distinct configurations originating from a chain
pushing itself in between two bonds of another chain (as shown in Fig. 4.2). The
configuration has two characteristic distances r = 1.73 and r = 2.02. The actual
peaks are observed at slightly shifted positions due to overlapping of the two peaks
and general imperfection of the LJ rest length.
By increasing the bending stiffness LJ bonds between next-to-nearest neighbours
along the chain break as more and more angles snap into the rest position. This
creates a peak at r = 1.57 and the breaking of our inserted configuration described
before, lowering g(r) at this distance as well as the LJ peak. This effect is more
severe in systems with longer chains, as the density is decreased on top of that,
leading to longer average distances in the polymer network. This shows especially
when we look at very stiff chains. The long persistence length of stiff chains leads
to a drastic decrease of nearest-neighbour LJ bonds as the chains cannot really
coil around each other. In addition you add more bending interaction as the chain
length increase leading to more rest angle configurations and an increase of the
corresponding peak.

4.3 Vibrational density of states

The prime interest of this section is the vibrational density of states (VDOS) and
its dependence on chain length and bending stiffness. In the following section we
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will see how the structural changes, explained above, translate into a reorganisa-
tion of vibrational modes and change in motion pattern. The VDOS is obtained
in the same way as before using eq. (1.12) to calculate the Hessian H of our sys-
tem and solving the eigenvalues problem (1.6) to obtain eigenvectors and -values.
One new thing is the bending interaction from (4.3). Although it is a three-body
interaction we can perform the second derivative with respect to all combinations
of two spatial components by using:

cos θijk = ~rij · ~rik
|~rij||~rik|

(4.6)

The explicit components for H are written in the Appendix A.1. Another dif-
ference to previous work of chapter 2,3 is the fact that our systems are not at a
minimum of the energy landscape, which leads to net forces acting in the system.
Since the forces are small we can ignore them in the context of VDOS, but this
might cause some issues for the calculation of the shear modulus later.

4.3.1 Projection on different motion patterns

In contrast to mono-atomic networks, polymer systems have a much more defined
spatial structure to them. If we take one triplet of particles with bending inter-
action we can define orthogonal directions relative to that triplet, as shown in
Fig. 4.3. A similar approach with different projections was used by Tanguy et
al. [59] to analyse the VDOS of amorphous silica The first is the out-of-plane mo-
tion perpendicular to the triplet plane, called rocking motion. The other two are
in-plane motions, one being directed along the bisector of the bond angle, called
perpendicular motion and the other pointing perpendicular to the bisector, called
along chain motion. Here ’along’ and ’perpendicular’ refer to the direction of the
chain backbone. To obtain each of these contributions separately we project the
displacement vector v̂i(ωk) of each particle onto the orthogonal basis formed by the
three unit vectors (âi,1, âi,2, âi,3) (see Figure 4.3), generating a new representation
ûi(ωk):
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â3

â1
â2

Figure 4.3: Special motion directions relative to our chain. â1 denotes
rocking motion going into the plane. â2 and â3 are perpendicular and
along chain motion.

ûi(ωk) =


v̂i(ωk) · âi,1
v̂i(ωk) · âi,2
v̂i(ωk) · âi,3

 =


ûi,1

ûi,2

ûi,3



Xj(ωk) =
N∑
i=1

û2
i,j j = {1, 2, 3}

(4.7)

Xj(ωk) is the contribution by the three different motions discussed before. By
averaging over these values in a bin of the frequency histogram we get a partial
VDOS showing the contribution of each of these three motions to the full VDOS.
This gives us insights into the dynamics of the chains at different frequencies in
the spectrum.

4.3.2 Imaginary frequencies, collective Lennard-Jones sea and higher
frequency modes

One feature of our systems, that is very different from depleted lattices, is the
fact that it is not at an energy minimum. We discussed earlier how the system
was brought to a low relative temperature of T = 10−4 by the gradient method.
Even in this state very close to zero temperature there are still net forces in the
system, which means it is not at an energy minimum. This results in the Hessian
of the system to be no longer positive semi-definite and hence having negative
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κbend = 0

Figure 4.4: VDOS of flexible chains. The separation between low
frequency LJ-peak and the high frequency FENE contributions can
clearly be seen. Another important feature is the loss of peak structure
for longer chains.

eigenvalues λ < 0 [60, 61, 62, 63, 64]. Through the relation ω2 = λ this gives
us imaginary eigenfrequencies, which will be shown in the plots as negative real
values for convenience. A physical interpretation can be obtained from the har-
monic oscillator model, where imaginary frequencies correspond to non-oscillatory
motions, i.e. permanent rearrangement, which is in agreement with findings that
link those modes to diffusive properties of the system [65]. This makes sense as
the system would naturally try to release the net forces stored in the system to
get to a nearby energy-minimum. As non-affine lattice dynamics is only defined
at zero temperature without net forces in the system, this leads to problems when
calculating the non-affine part of the shear modulus. Since we are at a very low
temperature, there are not many of those modes in our systems, which is why
they are of no interest in the context of the vibrational spectrum. We will address
those problems in a later section when we analyse the mechanical stability.
For flexible chains with κbend = 0 the VDOS are given in Fig. 4.4 for various chain
lengths. It shows the common feature of all systems with low bending stiffness
studied in this work which is a distinct splitting of the VDOS into a low and
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high frequency part. The low frequency part occupies ω = 0 →∼ 40, while the
high frequency part extends up to ω ≈ 65 in most cases, and ω → 100 when
κbend ∼ κFENE. The low and high frequency bands are separated by a trough,
whose depth and precise location in ω is subtly dependent on κbend. The gen-
eral splitting of the VDOS into two bands was shown previously by Jain and De
Pablo [66], who considered fully flexible chains only. By considering the relative
prefactors of the LJ and FENE potentials, we find it instructive to interpret the
low frequency part as a Lennard-Jones ‘sea’, that comprises weak but ubiquitous
inter-chain interactions, while the high frequency part represents FENE bonds,
that are fewer in number and follow specific paths along chain backbones. Within
this picture, the contributions to the VDOS coming from bending interactions are
highly sensitive to κbend. In particular, when κbend is small, we expect bending
interactions to contribute frequencies comparable to, or even lower than, the LJ in-
teractions. By contrast, when κbend → κFENE we expect the bending interactions
to contribute frequencies comparable to the FENE interactions. We anticipate a
redistribution, therefore, of the bending contributions from the low to the high
frequency band as κbend is increased.

4.3.3 VDOS for chains with L = 3

It is instructive to take a closer look at the system with L = 3, for which we have
an analytically solvable model system as presented in Appendix A.4. Excluding
the LJ interaction in between chains and the trivial zero-modes, each chain adds
the three eigenfrequencies from (A.19) to the VDOS:

ω2
1 = κ

m
(2− cos θ)

ω2
2 = κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ +

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)

ω2
3 = κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ −

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)
(4.8)

Here m denotes the mass, κ the effective spring constant of the FENE bonds
κFENE, θ the bond angle and γ′ = κbend/(κ r2) the reduced bending stiffness. For
κbend = 0 the third eigenfrequency goes to zero as well. By numerically solving
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L = 3

Figure 4.5: VDOS of chain with L = 3. We can see the transition
from flexible (blue) to stiff (red) as described in the text.

for the eigenvectors of those three eigenfrequencies we can evaluate the weight of
perpendicular and along chain motion introduced in (4.7). As the chain is inher-
ently flat, no rocking motion can be introduced by FENE or bending interaction.
In Fig. 4.5 we see the full VDOS for various bending stiffness. We can separate
three general shapes of the VDOS:
(i) For the rather flexible case κbend < 100 we see the previously described split in
low frequency LJ-sea and the high frequency backbone part. The high frequency
part shows two broad peaks, caused by contributions from the two eigenfrequen-
cies ω1,2 with distributed angle.
(ii) As the bending stiffness increases the two peaks merge into one high peak at
around κbend = 300, while a shoulder forms at the right side of the LJ-peak.
(iii) For very high bending stiffness κbend > 500, the high frequency peak splits
again with one peak staying at ω ≈ 60 and the other moving to ever higher fre-
quencies. At the same time the shoulder at the LJ peak develops into a separated
peak, whose positions shows a convergent behaviour.

By looking at the motion patterns and the analytical results for L = 3 we can make
sense of this behaviour. In Fig. 4.7 we can see one VDOS for each of the three
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L = 3(a) (b)

(c) (d)

Full VDOS Rocking motion

Along chain motion Perpendicular motion

Figure 4.6: VDOS of chains with L = 3 for various κbend. Lighter
shades of colour indicate lower bending stiffness. In (b-d) we can
see the partial VDOS for the three different motions defined in 4.3.1.
Rocking motion only occurs in the LJ-part of the spectrum. The high
frequency peak almost only consists of perpendicular motion, while
the other two peaks are dominated by along chain motion.

cases mentioned above at κbend = 1, 300, 1000, including the partial VDOS for
the three motions. Next to it are plots showing the bending stiffness dependence
of the three eigenfrequencies ω1,2,3 and the relative contribution of perpendicular
and along chain motion for each. As the bending interaction cannot cause rocking
motion in a chain of length L = 3, it makes sense that the partial VDOS of rocking
motion does not change qualitatively with the bending stiffness. The behaviour
of ω1,2,3 is well reflected in the numerical results for the VDOS although ω3 is
hidden in the LJ peak for low κbend. The shoulder forming at around κbend = 300
are therefore just the ω3 modes moving out of the LJ peak. This interpretation
becomes even more solid when we take a look at the motion ratio of the three
peaks at κbend = 1000. They correspond exactly to the predicted ratios from the
model, with ω1,3 being dominated by along chain and ω2 by perpendicular mo-
tion. We can therefore conclude that the total VDOS is a superposition of the LJ
peak with three peaks caused by the FENE and bending interaction. The VDOS
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ω1

L = 3
κbend = 1000

L = 3
κbend = 300

L = 3
κbend = 1

Figure 4.7: Illustration of the three regimes (i-iii) described in the
text. (b) Dependence of the three non-zero eigenfrequencies of a chain
with L = 3, obtained from (4.8), on κbend. (d,f) Contribution weights
for along chain and perpedicular motion for ω1 and ω2. The weights
of ω3 are inverted compared to ω2. Vertical dashed lines in (b,d,f)
indicate sample values of κbend for which the VDOS are shown in
(a,c,e). As we can see the qualitative behaviour of our real systems
with L = 3 is well captured by the analytical model, both in terms of
frequency and motion weight evolution. The actual frequencies differ
due to the bulk of LJ interactions acting on each particle which pushed
the bond energy, and therefore frequency, to higher values.
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κbend = 0

Figure 4.8: Height of the LJ-peak depending on the connectivity of
FENE bonds ZFENE = (L− 1)/L for flexible chains.

including partial spectra are shown for all κbend in Fig. 4.6 to further illustrate
the continuous change according to the described mechanism. The position of the
peaks is governed by (4.8) and they are broadened by the distribution of bond
angles and FENE bond lengths. The deviation from the predicted position is a
result of the inter chain LJ interaction which is neglected in the model. This adds
a non-neglectable amount of bond energy to each triplet which shifts the frequency
to higher values. Furthermore we can draw a connection between high frequency
perpendicular motion and the bending stiffness as well as along chain motion at
intermediate frequencies with FENE interaction, which will become important for
longer chains, where no analytical solvable model exists.

4.3.4 VDOS for chains with L > 3

Next we will look at longer chains and explain changes due to chain length as
well as translate the insights from L = 3 to those systems. In Fig. 4.9 we see the
spectra of all our systems. The first thing to notice is that the general dependence
on κbend does not depend on the chain length, meaning we can observe the three
cases (i-iii) from above for all lengths in the same regimes of the bending stiffness.
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L = 3 L = 4 L = 5 L = 10 L = 50
κbend = 0

κbend = 1

κbend = 3

κbend = 10

κbend = 30

κbend = 80

κbend = 100

κbend = 150

κbend = 200

κbend = 300

κbend = 450

κbend = 670

κbend = 1000

Figure 4.9: VDOS of all systems including partial spectra of motions.
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There are however differences within those regimes for different lengths.

Flexible chains

For the flexible case we can look at the model system described in Appendix A.3.
With longer chain length we get more non-zero values. This leads to the two
peaks for L = 3 as described above. For L = 4 we have three eigenvalues, of
which the middle one does not depend on the bond angles in the chain, leading
to the high frequency part of the VDOS observed in Fig. 4.9. One pronounced
peak in the middle with two smaller ones on the sides. For even longer chains this
trend continues with the high frequency part forming a continuous peak due to
bond angle distributions in the system. VDOS of the flexible systems are shown in
Fig. 4.4 for all lengths. We can see that the LJ peak decreases with length, since
longer chains have more FENE bonds, which add more high frequency modes to
the system. The rate of change however slows down with length, as there are less
FENE bonds added for a fixed number of particles. In Fig. 4.8 we can see the
peak hight plotted against the FENE connectivity ZFENE of the system, showing
a clear linear dependence. As the connectivity has an upper boundary ZFENE = 2,
which is the case of all particles in the system belonging to one chain, the VDOS
of this configuration is a limiting case. For L = 50 we are already very close to
this spectrum with the LJ peak only being ∼ 1% higher than the extrapolated
limiting case. This makes the system with L = 50 a reasonable approximation
for the limiting case and and shows that there is not much to gain from analysing
longer chains in terms of vibrational spectra.

Stiff chains

In Fig. 4.10 we can see the VDOS for κbend = 1000 and all lengths. For L = 4 one
would expect five peaks, as there are five interactions per chain (three FENE bonds
and two bending interactions). Indeed we can make out three peaks dominated by
along chain motion for 35 < ω < 70 and two peaks dominated by perpendicular
motion for ω > 70. The latter two are more spread out as the eigenvalues of
chains with bending interaction are in general not invariant under rotations around
individual bonds. In the case of L = 4 they depend on the relative orientation
of the two outer bonds in the chain. This seems to affect the high frequency
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κbend = 1000

Figure 4.10: VDOS of stiff chains. One can clearly see the loss of
peak structure for longer chains.

κbend = 1000

Figure 4.11: Height of the LJ-peak depending on the connectivity of
FENE bonds ZFENE = (L− 1)/L for stiff chains.
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(a) (b)L = 50
κbend = 1000

Figure 4.12: (a) VDOS for L = 50 and κbend = 1000 in black with its partial
spectra for the three motions. In gray we see the VDOS of a freely rotating
chain of length L = 5000 with the same parameters as our system. We can make
out the same features as for our simulated system only without the LJ-regime.
Due to the missing LJ interaction the ’real’ spectrum is shifted towards higher
values with the discrepancy being smaller for higher frequencies. (b) VDOS
of the freely rotating chain with its motion spectra. We can see more to the
L = 50 VDOS from our system. In gray we can see the VDOS from (4.9) with
its partial spectra. As described in the text the behaviour around ω = 60 can
be traced back to this model system.

modes more, which is in agreement with our interpretation of high frequency
perpendicular modes being closely related to bending interaction.
For longer chains we get more and more possible frequencies, which changes the
peak structure of the VDOS to a more continuous spread out distribution. As
can be seen in Fig. 4.11 the LJ peak decreases in a similar way as for flexible
chains linearly with ZFENE but shows lower values. This can be explained by the
fact that in addition to the high energy FENE bonds, stiff chains also have high
energy bending interaction, which further shifts modes from the low frequency LJ
peak to higher frequencies. As for flexible chains the VDOS of stiff chains tends
towards a limiting distribution, which is well approximated by our system with
L = 50. One interesting feature is the peak at around ω = 60 that appears for all
lengths at high bending stiffness. For L = 3 we already connected it to one of the
characteristic eigenfrequencies ω1 of the system. In systems with long chains, it
originates from the regular zig-zag backbone structure of stiff chains. An analytic
description for this configuration without bending stiffness is given in Appendix
A.3 For long chains it has the VDOS:

D(ω) = 2
π

ω√
4 κ2

m2 cos2 θ − (ω2 − 2 κ
m

)2
(θ 6= π/2) (4.9)
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L = 50(a) (b)

(c) (d)

Full VDOS Rocking motion

Along chain motion Perpendicular motion

Figure 4.13: VDOS of chains with L = 50 for various κbend. Lighter
shades of colour indicate lower bending stiffness. In (b-d) we can
see the partial VDOS for the three different motions defined in 4.3.1.
Rocking motion mostly occurs in the LJ-part of the spectrum, although
the freely rotated structure of the chains causes rocking motion in
the high frequency part as well. The high frequency regime almost
only consists of perpendicular motion, while the peak at ω = 60 is
dominated by along chain motion.

As shown in Appendix A.3 the eigenfrequencies are independent under rotations
around single FENE bonds, which makes this result so useful for our model as
stiff chains can also rotate freely around each FENE bond. Of course, in the
real system the regular structure is enforced by the bending interaction but we
can still translate insights from the hypothetical model to our real system. In
Fig. 4.12 we can see the VDOS of the regular freely rotating zig-zag chain with
κbend = 1000 and L = 5000 in comparison with our system for L = 50 and the
model VDOS form (4.9). It is evident that the features of the real system have
corresponding parts in the model system aside from the missing LJ peak which
also leads to a shift in the frequencies to higher values. We can further verify
that the high frequency perpendicular motion modes are a result of the bending
interaction, while the peak at ω = 60 is caused by the FENE interactions along
the backbone of the chain in combination with the regular structure of the chain,
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as it corresponds perfectly to the right peak of (4.9) at ω = κ
m

(2− 2 cos θ). This
peak position does not coincide with the frequency of ω1 from the L = 3 model
in (4.8). However, they appear at the same position for the real systems as the
bulk of LJ interaction has higher influence on FENE modes of shorter chains. The
reason for this is most likely an increase in influence for modes closer to the LJ
peak, as they correspond to systems with lower FENE bond energy per particle.
It is therefore the ratio κFENE/κLJ that keeps this peak at a steady position for
different lengths and bending stiffness.

Transition from flexible to stiff chains for L = 50

Finally we take a look at how the VDOS and contributions from different motions
change with κbend. In Fig. 4.13 we see the full VDOS for various bending stiffness
as well as the partial VDOS for the three motion patterns. As stated earlier there
are many similarities between the case of L = 3 and L = 50 in terms of how
modes are shifted. We start with a well separated LJ and FENE part for flexible
chains. As the bending stiffness is increased modes associated with perpendicular
motion are shifted towards higher frequencies, leading to the formation of a single
high peak when they reach the characteristic frequencies of the FENE interaction
at ω = 60. For stiffer chains the bending modes are shifted to higher frequencies
with mostly perpendicular motion. One difference between chains of length L = 3
and longer chains is that strong bending interactions also cause rocking motion.
This is due to the fact that in-plane motions in one triplet of the chain is, in
general, out-of-plane motion from the perspective of neighbouring triplets. Aside
from that we can again see the association of perpendicular motion with bending
interaction, along chain motion with FENE interaction and rocking motion with
LJ interaction as described in 4.3.3, although the peak structure has changed into
a continuous spectrum.

4.4 Shear modulus

Next we study the influence of our parameters (bending stiffness and length) on
the shear modulus of the systems. To do this we first take a look at the correlator
function Γ(ω) calculated from (1.19) and its product with the VDOS D(ω)Γ(ω) to
compare it with our previous findings from 2. We then go further on and present
the results for the static shear modulus calculated according to the framework of
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non-affine lattice dynamics (1.17).

4.4.1 The non-affine correlator function

In Fig. 4.14 the correlator functions for L = 3 and L = 50 are shown covering
the complete range of bending stiffness explored in this work. Both systems have
the same qualitative behaviour with the longer chains having a higher peak for
very stiff chains. This makes sense as Γ(ω) includes the affine force field, which
is proportional to the force constant of the corresponding potential. More high
energy bonds result in a higher affine force field and a higher correlator function.
Unlike for our depleted lattice systems from Chap. 2 we can see no power law
behaviour for small ω. Furthermore we can make out four regimes. For ω < 30 we
observe a gradual increase of the correlator with the frequency as well as with the
bending stiffness. At ω ≈ 40 the correlator of the more flexible systems increases
about one order of magnitude. Since this jump is not apparent in the correlator
of stiff chains it leads to non-monotonic behaviour for 40 < ω < 60, where with
increasing bending stiffness Γ(ω) first decreases and then increases again. In the
inlet we see the dependence of Γ(ω = 45) on the bending stiffness showing the
non-monotonic behaviour. For higher frequencies ω > 60 the behaviour of the
correlator becomes monotonic again. As discussed before, the increasing bending
stiffness creates more high frequency modes which have the highest values of Γ(ω)
associated with them.
Next we look at the product D(ω)Γ(ω) for which results are shown in Fig. 4.14.
We see the same D(ω)Γ(ω) ∼ ω2 scaling as for the depleted lattices. Aside
from that the regimes are the same as for Γ(ω) discussed before. We will next
study the integrand of the non-affine integral (1.20) I(ω) = D(ω)Γ(ω)/ω2 as
this quantity gives us insight into what each frequency contributes to the non-
affine shear modulus GNA. We see in Fig. 4.14 that for low frequencies this
quantity follows a linear function I(ω) = a(ω0 − ω) with some constants a, ω0.
This represents the fitting from (2.21) as :

D(ω)Γ(ω) = ω2I(ω) = aω2(ω0 − ω) (4.10)

In this case ω0 can be seen as the a kind of Debye frequency for the LJ-part,
although the full spectrum is more complicated so that the fitting from before
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

κbend L = 3 L = 50

Figure 4.14: (a-d) Non-affine correlator Γ(ω) in normal and logarith-
mic plot. Results for L = 3 are shown on the left. We can see that
the correlator shows no power law scaling at low frequencies. (e,f) The
product D(ω)Γ(ω) scales like ∼ ω2, which we also found for depleted
fcc lattices in Chapter 2. (g,h) Non-affine integrand D(ω)Γ(ω)/ω2 of
our systems.
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(a) (b)

Figure 4.15: (a) Affine shear modulus GA of our systems in depen-
dence of the bending stiffness. (b) Dependence of GA on the connec-
tivity of FENE bonds. We see a linear behaviour for both κbend = 0
and κbend = 1000.

cannot be used.

4.4.2 Static shear modulus

As discussed before, the fact that our systems are not exactly at a local energy
minimum might lead to problems when calculating the static shear modulus. We
will first look at the affine part, which is well defined even with net forces in the
system as it just depends on the energy stored by the affine deformation. The
explicit contributions from pair and angular bonds are given in the Appendix A.1.
Therefore the results for GA shown in Fig. 4.15 show the expected behaviour with
the modulus increasing for higher bending stiffness and longer chains, as both
increase the bond energy in the system and make it harder to deform. GA shows
a good convergence with the deviation σ =

√
〈(GA)2〉 − 〈GA〉2 never exceeding a

relative value of 4% of the average affine shear modulus.
The same is not true for the non-affine shear modulus GNA. In Fig. 4.16(e)
the results calculated from the framework derived in (1.18) and averaged over 5
realisations are shown together with the corresponding error bars. In contrast to
the affine part the non-affine shear modulus shows no good convergence which
renders the average results meaningless. We can relate those uncertainties to the
fact that our systems are not fully relaxed which prevents the accurate calculation
of the non-affine displacements. The same is true for the total shear modulus.

To get meaningful results for G we look at the complex modulus G∗(Ω).
We have already established that the affine shear modulus GA shows reliable
results. Since we know that G∗(∞) = GA we can be sure that the high frequency
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(e) (f)

(c) (d)

(a) (b)
L = 3

κbend = 0

ΩcΩc

GNA (Ω = 0) GNA (Ω = Ωc)

Figure 4.16: (a,c) Shown are 5 different realisations of G′(Ω) and
G′′(Ω) for L = 5 and κbend. We can clearly see the high fluctuation of
G′(Ω > Ωc). (b,d) Mean value (black) of the systems with 1-σ error
bar (gray). (e,f) average non-affine shear modulus of systems with
L = 3 calculated according to (1.18) (left) and from G′(Ωc) (right).
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(c)

(a) (b)

Figure 4.17: (a) affine shear modulus of our systems. (b) Non-affine
shear modulus calculated from G′(Ωc). (c) Total shear modulus cal-
culated from G′(Ωc).

modulus is accurate as well. At some critical frequency Ωc that accuracy will be
lost as the complex modulus goes to G∗(0) = G. in Fig. 4.16 we can see the
results of individual realisations for L = 3, κbend = 0 and friction ν = 1. We
verify the good convergence at high Ω as predicted and the sudden increase of
fluctuations at Ωc ≈ 1. To aid clarity we have plotted the same results averaged
over the realisations with continuous 1-σ error bar. We will use the approximation
G ≈ G∗(Ωc) to study the behaviour of the static shear modulus G. We will
therefore restrict ourselves to low friction as it shifts the transition G → GA to
higher frequencies, giving the value G∗(Ωc) more reliability as it lays further in
the low Ω plateau regime.
In Fig. 4.16 we can see that the error bars of the values of GNA extracted from
G∗(Ω) are much smaller compared to the error bars from GNA calculated from
(1.18). Additionally the values of GNA show a smoother behaviour. Although the
total shear modulus G, shown in Fig. 4.17 still shows some noise, it has a clear
trend towards a plateau at high κbend. We can conclude from this that increasing
the bending stiffness has a diminishing return in terms of shear modulus. This
makes sense as at some point the stiffness will cause the FENE bonds to deform
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κbend
(a) (b)

(c) (d)

L = 3 L = 50

L = 3 L = 50

Figure 4.18: Real and imaginary part of the complex shear modulus
G∗(Ω) for L = 3 and L = 50 with varying κbend.

instead and since κFENE is independent of κbend there will be no change in required
energy for shear deformation after this point.

4.4.3 Complex shear modulus

As the VDOS shows a very interesting behaviour it is worthwhile to study the
complex shear modulus G∗(Ω) to see how those features are mirrored in G′(Ω)
and G′′(Ω). Results for L = 3 and L = 50 are shown in Fig. 4.18. To explore
the relation between G′′(Ω) and D(ω) it is convenient to look at G′′(Ω) on semi-
logarithmic scale and restrict the plot range. In G′′(Ω) for L = 3 we can identify
similar features as in the VDOS, especially the double peak for low κbend, the
static peak at Ω ≈ 60 and the developing high frequency peak for large bending
stiffness. It is therefore reasonable to look for a connection between D(ω) and
G′′(Ω). We recall the definition from (1.33):

G′′(Ω) = 1
V

∑
k

ν Ω (Ξ · v̂k)2

(ω2
k − Ω2)2 + ν2 Ω2 (4.11)
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(a) (b)

(c) (d)

L = 3
κbend = 0

L = 50
κbend = 0

L = 3
κbend = 1000

L = 50
κbend = 1000

Figure 4.19: Comparison between D(Ω)Γ(Ω)/Ω and G′′(Ω) for dif-
ferent lengths L and bending stiffness κbend. The match is very good,
verifying (4.13).

The contribution to the sum are largest when the denominator is small, which for
a given Ω is true, if ωk ∈ [Ω− ε,Ω + ε]. We can write:

G′′(Ω) ≈ 1
V

∑
k

ωk∈[Ω−ε,Ω+ε]

ν Ω (Ξ · v̂k)2

(ω2
k − Ω2)2 + ν2 Ω2

≈ 1
V

∑
k

ωk∈[Ω−ε,Ω+ε]

(Ξ · v̂k)2

ν Ω

= 1
V
N(ωk ∈ [Ω− ε,Ω + ε])〈(Ξ · v̂k)

2〉ωk∈[Ω−ε,Ω+ε]

ν Ω

(4.12)

In the first step we used (ω2
k − Ω2)2 ≈ 0 since ωk ∈ [Ω − ε,Ω + ε]. In the sec-

ond step we used the random nature of (Ξ · v̂k)2, which justifies to use the av-
erage of this quantity over a small frequency interval. We further recall that
〈(Ξ · v̂k)2〉ωk∈[Ω−ε,Ω+ε] = Γ(Ω), which follows from (1.19). This leaves us with
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L = 3
κbend = 0

L = 50
κbend = 0

L = 3
κbend = 1000

L = 50
κbend = 1000

Figure 4.20: Comparison between D(Ω)Γ(Ω)/Ω and G′(Ω) for differ-
ent lengths L and bending stiffness κbend. As D(Ω)Γ(Ω)/Ω ≈ G′′(Ω)
we can observe the predicted relation d

dΩG
′(Ω) = G′′(Ω)− x (4.15).

the number of modes in a given frequency interval N(ωk ∈ [Ω − ε,Ω + ε]),
which is exactly the definition of the VDOS in this interval D(ω) = N(ωk ∈
[ω − δω, ω + δω])/Ntot with the total number of eigenfrequencies Ntot = 3N . We
can therefore write:

G′′(Ω) ≈ 1
V
N(ωk ∈ [Ω− ε,Ω + ε])〈(Ξ · v̂k)

2〉ωk∈[Ω−ε,Ω+ε]

ν Ω

= 1
V

3ND(Ω)Γ(Ω)
νΩ = 3N

V

D(Ω)Γ(Ω)
νΩ

(4.13)

The exact values of G′′(Ω) differ of course but the general behaviour matches very
well as long as Ω stays in the frequency regime where our system has eigenvalues
as we can see in Fig. 4.19. This means we can directly relate the features of
D(ω)Γ(ω) to features in G′′(Ω). Therefore D(ω) is translated into G′′(Ω) directly
in structure but slightly skewed in intensity. We can translate those features to
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the real port of the complex modulus G′(Ω) by using its definition:

G′(Ω) = GA − 1
V

∑
k

(ω2
k − Ω2) (Ξ · v̂k)2

(ω2
k − Ω2)2 + ν2 Ω2 (4.14)

We will now take a look at the derivative of G′(Ω):

d
dΩG

′(Ω)

= 1
V

∑
k

[
2 Ω (Ξ · v̂k)2

(ω2
k − Ω2)2 + ν2 Ω2 −

Ω(ω2
k − Ω2)[4(ω2

k − Ω2)− 2ν2](Ξ · v̂k)2

[(ω2
k − Ω2)2 + ν2 Ω2]2

]

= 1
ν
G′′(Ω)−

∑
k

Ω(ω2
k − Ω2)[4(ω2

k − Ω2)− 2ν2](Ξ · v̂k)2

[(ω2
k − Ω2)2 + ν2 Ω2]2

(4.15)

We can see that the derivative of G′(Ω) is directly related to G′′(Ω). The features
observed in G′′(Ω) therefore show up in G′(Ω) as well just shifted. We have
visualized this in Fig. 4.20 by comparing D(Ω)Γ(Ω)/Ω to G′(Ω).

4.5 Conclusion

In this work we have studied the effect of chain length and bending stiffness on
the Vibrational and elastic properties of simple model chains. We found that light
can be shed on the overall complex behaviour of D(ω) by projecting the eigenvec-
tors on three conveniently chosen motion directions relative to the chain geometry
(rocking, perpendicular, along chain) to extract the according partial VDOS. From
that we could associate certain frequency regimes with motions and furthermore
with our three interaction types (LJ, FENE, bending). We found that bending
interaction mostly causes high frequency perpendicular motion, while FENE in-
teraction is closely related with along chain motion at intermediate frequencies
present at all lengths and bending stiffness. Rocking motion is closely related
to LJ-interaction at low frequencies and bending interaction at high frequencies
for L > 3. Additionally only a fraction of the modes is affected by the bending
stiffness in a way that creates diverging frequencies. Most of the frequencies show
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converging behaviour within the frame given by the strength of FENE and LJ
bonds.
Length has a diminishing effect on the VDOS as the number of high energy bonds,
which creation is the main effect of chain growth, only increases like ∼ (L− 1)/L
and reaches a plateau quite early.
Another interesting finding is the scaling of the product D(ω)Γ(ω), which shows
a similar behaviour in the LJ-regime as the depleted lattices from Chapter 2 did,
hinting at some unifying quality of the scaling D(ω)Γ(ω) ∼ ω2(ω0 − ω). The fea-
tures found in the VDOS directly relate to similar features in the complex shear
modulus due to the relation (4.13) and (4.15). We also verified that non-affine lat-
tice dynamics is not directly applicable to systems that are not perfectly relaxed
as the fluctuations of the non-affine modulus are not controllable in such cases.
We were however able to approximate the static shear modulus from G′(Ω) by
taking a value at the beginning of the low-Ω plateau. From there we can see the
same diminishing effect of length for G,GA, GNA as for the LJ-peak height. We
also found that the bending stiffness has a diminishing effect on the shear modulus
as it approaches the limit of an infinitely stiff chain with fixed bond angle.
As for our initial motivation to lay the groundwork for a sensor that can mea-
sure the growth of polymers in real time, we found that the diminishing effect of
length makes it difficult to impossible to distinguish between chain lengths above
≈ 50−100 monomers, which is far below the lengths of industrially used polymers,
which have lengths of multiple thousand monomers. We therefore conclude that
Raman spectroscopy is not suitable to measure the growth of long polymers.



Conclusion
In this work we have studied multiple disordered systems and analysed the vi-
brational density of states (VDOS) and the shear modulus in the framework of
non-affine lattice dynamics. In the first chapter we looked at defected fcc lattices
and compared them to spatially disordered random network as well as compared
different types of disordered lattices such as regular depletion where each particle
has the same number of bonds, random depletion where each bond has a given
probability to be removed and vacancies where whole particles are removed. We
found that the VDOS of spatially disordered random networks are almost identical
to those of depleted fcc lattices at the same connectivity. This was surprising as
structural parameters usually used differ substantially between the two systems
and lead us to the conclusion that it is rather inversion symmetry breaking than
spatial disorder which influences the VDOS. It also reinforced the practice of using
depleted lattices to approximate the properties of disordered systems.
In a second step we compared the different defected lattices by looking at the shear
modulus. We found that the type of disorder has no influence on the value of the
shear modulus, which is solely defined by the average number of bonds per par-
ticle. We also found that the non-affine correlator function, which is a crucial in
calculating the complex shear modulus G∗(Ω), scales like Γ(ω) ∼ ω2. This scaling
is robust under changes in the type of disorder as well as the coordination number
of the system. The observed change of scaling in the imaginary part of G∗(Ω),
G′′(Ω), can there fore be traced back solely to the changing scaling of the VDOS.
This change happens at the critical point Z = 2d, where the VDOS changes from
D(ω) ∼ ω2 → D(ω) ∼ 1, which is accompanied by a change in G′′(Ω) from ∼ Ω
to ∼ Ω1/2.
One shortcoming of the used framework is the fact that it only allows for scalings
of G′′(Ω) between −1 and 1, which fails to capture all observed scalings in simu-
lations and experiments. It is therefore necessary to impro on this framework to
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reach a broader band of scalings and phenomena.

In the second chapter we looked at the spatial elastic correlations in depleted
triangular lattices with long range harmonic interaction that decay with longer
distance. We found that the 2-dimensional correlation function of the affine shear
modulus GA shows simple behaviour C(r, φ) ∼ r4κ2 sin4 2φ, where κ is the spring
constant of our harmonic interaction. The angle dependency stems from the dif-
ferent contribution of bonds to GA depending on their angle, which is ultimately
a consequence of the chosen deformation, in this case pure shear. We also see that
the spring constant has to decay with κ ∼ r−3 to reproduce the results found in
simulations. The correlation the non-affine shear modulus is more complicated.
For high bond probabilities the correlation length increases, while for low bond
probabilities it decreases. This can be explained by the fact that lattices with
low-bond probabilities and decaying spring constant are dominated by the few
short ranged bonds with a high spring constant. This leads to local rearrange-
ment during the deformation and a decorrelation of the non-affine shear modulus
at long distances.
The correlation of the full shear modulus is now a combination of the affine and
non-affine part. We found that at different bond probabilities the local shear mod-
ulus is dominated by either the affine or non-affine part, which lead to dominating
behaviour of the corresponding correlation pattern. Therefore the correlation
length of the shear modulus increases with interaction length for high bond prob-
ability and decreases for low bond probability. The correlation pattern changes
as well from the structure of the affine part to the one of the non-affine part. In
an intermediate regime it resembles non of the two completely and is influenced
by the correlation of GA and GNA, which was not studied in this work.
Since the spatial correlation of elastic moduli has widespread application in phonon
scattering and effective medium approximations future work should focus on those
correlations between the affine and non-affine part of the modulus and study how
they fit into the behaviour of the correlation of the total modulus. Furthermore
it is important to study the influence of the correlation patterns on the aforemen-
tioned phonon scattering and effective medium theories to get deeper insight into
the behaviour of disordered solids.

As a last topic we went from simple central force spring networks to more com-
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plex model polymer systems. The initial idea was to study the length dependence
of the VDOS in order to lay the groundwork for the development of a sensor
technology that measures polymer growth in real time. We then also found it
worthwhile to study the spectrum in dependence of the bending stiffness as well
as the shear modulus of our systems. One key result was that the chain length
has a diminishing effect and no real change is visible in the spectrum above ∼ 50
monomers, which speaks against using the vibrational spectrum as a measure for
chain growth.
The results were still interesting as the VDOS shows a rich phenomenology de-
pending on the bending stiffness. We found that different motion patterns along
the chain correlate with certain interaction types. Rocking motion is mostly re-
lated to the inter-chain LJ interaction, while along chain motion is related to the
FENE-bonds along the backbone. Bending interaction mostly causes perpendicu-
lar potion the the former two and the associated modes shift to higher frequencies
as he stiffness is increased. This breakdown of the full VDOS is helpful in under-
standing the non-trivial behaviour of the full spectrum.
Due to the shortcomings of our framework of non-affine lattice dynamics we were
not able to calculate the static shear modulus of our model systems. This again
shows the importance of further development of this framework to include the
release of at least small internal net forces. However we were still able to get an
approximation by using the real part of the complex shear modulus G′(Ω). With
that we found that both length and bending stiffness have diminishing effects on
the shear modulus, which approaches a finite limit for one long chain with infi-
nite bending stiffness. We also were able to show how the features of the VDOS
translate into the imaginary and real part of the complex shear modulus, which is
helpful in studying the latter two under the aspect of changes in the vibrational
spectrum.





Appendix

A.1 Explicit form of contributions to H, Ξ and GA

Here we show the explicit form of the contribution from single pair and bending
interactions shown in Fig. A.1. Therefore we evaluate the derivatives from (1.22)
whose explicit forms for central potentials are:

Hab
nm = ∂2U(rij)

∂ran ∂r
b
m

= cij
∂rij
∂ran

∂rij
∂rbm

+ tij
∂2rij

∂ran ∂r
b
m

~Ξa
n = ∂2U(rij)

∂ran ∂γ
= cij

∂rij
∂ran

∂rij
∂γ

+ tij
∂2rij
∂ran ∂γ

GA = ∂2U(rij)
∂γ2 = cij

∂rij
∂γ

∂rij
∂γ

+ tij
∂2rij
∂γ2

(A.1)
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Figure A.1: Sketches of the two types of interaction ((a) pair and (b)
angular) considered in this work.
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with rij = |rj − ri|, shear angle γ, tension tij = ∂U(rij)/∂rij and stiffness cij =
∂2U(rij)/∂r2

ij also called effective spring constant κij. It is important to note that
i, j denote the actual particle labels, while n,m denote the indices of entries in
the matrix. To get the explicit expression we have to calculate the five derivatives
appearing above:

∂rij
∂ran

= δnjin̂
a
ij

∂rij
∂γ

= rijn̂
x
ijn̂

y
ij

∂2rij
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δnjiδ
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ji
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(
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= −δnji
(
n̂xijn̂

y
ijn̂

a
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(
δayn̂

x
ij + δaxn̂

y
ij

))

(A.2)

Here we used the unit bond vector n̂ij = rij/rij between particle i and j and
δnji = δnj − δni with the Kronecker Delta δ. The above expressions are valid both
for FENE and Lennard-Jones bonds with the only difference being the stiffness
cij and tension tij that have to be evaluated depending on the potential.
For the angular potential we have a slightly different situation as our main variable
in the potential is now the angle between the two bonds ~rj − ~ri and ~rk − ~ri:

θijk = arccos (~rj − ~ri) · (~rk − ~ri)
|~rj − ~ri| |~rk − ~ri|

= arccosAijk (A.3)
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Using this we can write:

Hab
nm = ∂2U(θijk)
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(A.4)
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Here we have used the angular stiffness cijk = ∂2U(θijk)/∂θ2
ijk and tension tijk =

∂U(θijk)/∂θijk. The explicit expressions are obtained by evaluating the derivatives:
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A.2 Complex modulus for Z = 6

For depleted lattices in d = 3 at Z = 6 we can approximate D(ω)Γ(ω) according
to (2.21) as:

D(ω)Γ(ω) = 1
12ω2

D

ω2(ωD − ω) (A.6)

With this we can solve the frequency integral that gives us G∗(Ω) analytically:

G∗(Ω) = GA − 3 N
V

∞∫
0
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ω2 − Ω2 + i ν Ω dω
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V

1
4ω2

D
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ω2 − Ω2 + i ν Ω dω

(A.7)

For our systems we can use GA(Z = 6) = 1/2 and N/V = 4 to get:
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Ω(iν − Ω)

])
(A.8)

Here arctan2(x, y) denotes the angle φ of the complex number z = x + iy. By
using the definition of the complex arctan and logarithm one can derive the explicit
expression for the real and imaginary part of (A.8), which are too lengthy to be
shown here.

A.3 Analytic description of freely joined chains

Although there is not tool to analytically describe a full polymer system as de-
scribed in this work, we will present model systems that will help with the inter-
pretation of the numerical results. We consider a toy model for the determination
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of the skeletal vibration modes of a single polymer chain. The following assump-
tions are made: (i) the chain is fully flexible (vanishing bending stiffness); (ii)
only in-plane motions are considered (rocking or other out-of-plane vibrations are
neglected). These assumptions are required in order to obtain analytical results.
We will start with the most general case of chains of length L with arbitrary angles
between adjacent bonds. The Hessian has the following block structure:

H =



A12 −A12 0 0 0 0
−A12 A12 + A23 −A23 0 0 · · · 0

0 −A23 A23 + A34 −A34 0 0
0 0 −A34 A34 + A45 −A45

...
... . . . −AL−1L

0 0 0 0 · · · −AL−1L AL−1L


(A.9)

with blocks given by:
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 (A.10)

with the unit vector nij which goes from monomer i to a nearest-neighbour j, and
spring constant κ which corresponds to the effective spring constant of the FENE
bonds κFENE. To get the characteristic polynomial p(λ), one has to evaluate the
determinant |H − λ1|. We can iteratively solve this by using the formula for block
matrices:

∣∣∣∣∣∣A B

C D

∣∣∣∣∣∣ =
∣∣∣D∣∣∣ ∣∣∣A−BD−1C

∣∣∣ (A.11)

where the entries are matrices and the relation for our 3× 3 blocks:

A ·B · A = κ2

m2 cos2 θABA (A.12)
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where θAB is the angle between the bonds belonging to A and B. After some
calculation we get the following recursion formula (omitting the 2L + 1 trivial
eigenvalues λ = 0) for the above matrix:

p0(x) = 1

p1(x) = x

pn(x) = x pn−1(x)− cos2 θn−1n−2 pn−2(x)

(A.13)

where x = m
κ
λ−2. It is important to note that the characteristic polynomial, and

hence the eigenvalues, are only dependent on the angle between adjacent bonds.
Therefore they are invariant under deformations where parts of the chain rotate
around a single bond, which makes them useful as model for the polymer systems
in this work as the chains are in general non-flat. Note that n denotes the number
of bonds in a chain, and not the number of particles in the chain (n = L− 1). For
arbitrary angles between the bonds it is not possible to describe the roots of this
polynomial, except for short chains (see below). But, if all angles are the same we
can bring (A.13) into the form of the Chebyshev polynomials of the second kind
Un(x) by substituting x̃ = x/2 cos θ:

pn(x̃) = cosn θ Un(x̃)

x̃ = x

2 cos θ =
m
κ
λ− 2

2 cos θ .
(A.14)

The roots of Un(x) are xk = cos
(

k
n+1π

)
; k = 1, ..., n, which gives us the eigenvalues
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of the linear chain with constant angle as:
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(A.15)

This result can also be derived from exploiting the periodicity of the chain with
constant angle, as was done by J. Kirkwood [52]. If we assume that the chain
points along the x-axis we can identify the previously introduced along-chain and
perpendicular motion (see Fig. 4.3) as A and B in Eq.(6) of [52]. By using the
dispersion relation found in this work, we can solve for those two quantities and
find the weigh functions:

Xl(ω) = |A|2

|A|2 + |B|2 = cos θ + 1
cos θ

ω2 + 2 ω
m

(cos θ − 1)
2ω2

Xt(ω) = |B|2

|A|2 + |B|2 = cos θ − 1
cos θ

ω2 − 2 κ
m

(cos θ + 1)
2ω2

(A.16)

As mentioned before, for the flexible case with distributed angles an analytical
solution is not accessible for a chain of arbitrary length. But we can give the
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eigenvalues in the case of short chains with L = 2, 3, 4, 5:

L = 2 : m

κ
ω2 = 2

L = 3 : m

κ
ω2 = 2± cos θ1

L = 4 : m

κ
ω2 = 2, 2±
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cos2 θ1 + cos2 θ2

L = 5 : m

κ
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± 1√
2

√
cos2 θ1 + cos2 θ2 + cos2 θ3 ±

√
(cos2 θ1 + cos2 θ2 + cos2 θ3)2 − 4 cos2 θ1 cos2 θ3

(A.17)

A.4 Analytical description of a single chain with
L = 3

For a single chain of length L = 3 we can even derive analytic results for the case
of bending interaction, which will provide useful insights into the dependence of
mode distribution and motion pattern on the bending stiffness. The chain consists
of three particles with two FENE pair interactions and one bending interaction.
The Hessian is calculated by using the (A.2) and (A.5). As the eigenvalues of
the Hessian are invariant under spatial rotations, we can chose the triplet to be
lying in the x-y plane with coordinates of the three particles being P1 = −r(s, 0),
P2 = r(0, c), P3 = r(s, 0) and s = sin θ/2, c = cos θ/2. The Hessian reads as:

H = κ

m



s2 + γ′c2 −(1− γ′) s c −s2 (1− 2γ′) s c −γ′c2 γ′ s c

−(1− γ′) s c c2 + γ′s2 s c −c2 − 2γ′s2 −γ′ s c γ′s2

−s2 s c 2s2 0 −s2 −s c
(1− 2γ′) s c −c2 − 2γ′s2 0 2c2 + 4γ′s2 −(1− 2γ′) s c −c2 − 2γ′s2

−γ′c2 −γ′s c −s2 −(1− 2γ′) s c s2 + γ′c2 (1− γ′) s c
γ′s c γ′s2 −γ′s c −c2 − 2γ′s2 (1− γ′) s c c2 + γ′s2


(A.18)
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where κ denotes the spring constant of the FENE bonds, m the mass of the
particles and γ′ = κbend/(κ r2) the reduced bending stiffness. The above matrix
has 3 non-zero eigenvalues, leading to the following eigenfrequencies:

ω2
1 = κ

m
(2− cos θ)

ω2
2 = κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ +

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)

ω2
3 = κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ −

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)
(A.19)

As we can see, one eigenfrequency ω1 is independent of the bending stiffness, while
ω3 shows a convergent behaviour against ω →

√
3κ/m/(2− cos θ) and ω2 diverges

like ∼
√
γ′.
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