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Defining and quantifying frustration in the energy landscape:
Applications to atomic and molecular clusters, biomolecules,

jammed and glassy systems

V. K. de Souza, J. D. Stevenson, S. P. Niblett, J. D. Farrell, and D. J. Wales?
University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 28 October 2016; accepted 7 February 2017; published online 22 March 2017)

The emergence of observable properties from the organisation of the underlying potential energy
landscape is analysed, spanning a full range of complexity from self-organising to glassy and jammed
systems. The examples include atomic and molecular clusters, a -barrel protein, the GNNQQNY
peptide dimer, and models of condensed matter that exhibit structural glass formation and jamming.
We have considered measures based on several different properties, namely, the Shannon entropy,
an equilibrium thermodynamic measure that uses a sample of local minima, and indices that require
additional information about the connections between local minima in the form of transition states.
A frustration index is defined that correlates directly with key properties that distinguish relaxation
behaviour within this diverse set. The index uses the ratio of the energy barrier to the energy differ-
ence with reference to the global minimum. The contributions for each local minimum are weighted
by the equilibrium occupation probabilities. Hence we obtain fundamental insight into the connec-
tions and distinctions between systems that cover the continuum from efficient structure-seekers to
landscapes that exhibit broken ergodicity and rare event dynamics. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4977794]

. INTRODUCTION

The potential energy landscape approach can provide both
novel insight and computational methodology in molecular
and condensed matter science.! Some of the most powerful
tools in the theory of energy landscapes and the associated
numerical methodology are based upon descriptions of struc-
ture, dynamics, and thermodynamics formulated in terms of
local minima on the landscape, and the transition states and
pathways that connect them.! Disconnectivity graphs>? (see
Section I A) can provide an insightful representation of many-
dimensional landscapes and are constructed using information
about minima and transition states, preserving the potential
(or free) energy barriers between minima. In particular, such
graphs have enabled us to identify characteristic patterns of
organisation in the underlying potential energy surface,® which
result in efficient self-organisation at one end of the spec-
trum and glassy behaviour at the other extreme.*> These are
systems with different levels of frustration. Self-organising
systems have low levels of frustration and undergo efficient
relaxation to the lowest-energy minimum, whereas systems
that are highly frustrated may never find this minimum-energy
structure.

There is a qualitative difference in the landscapes for
systems with different degrees of frustration. All the land-
scapes visualised for good structure-seekers, including “magic
number” clusters such as buckminsterfullerene, Cgp, natu-
rally occurring proteins, bulk representations of crystalline
materials, and self-assembling mesoscopic shell structures,
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have a unique low-lying free energy minimum, with no
competing morphologies separated by high barriers.> The
appearance of the corresponding disconnectivity graphs has
been likened to a multilevel palm tree, where local minima are
separated from the global minimum by small barriers.? The
resulting “funnelled” landscape effectively guides relaxation
to the global minimum. An example of a palm tree disconnec-
tivity graph is shown for a Lennard-Jones cluster of 13 atoms
(LJ;3) in the first panel of Figure 1. At the other extreme, the
landscape for structural glass formers supports an exponen-
tially large number of amorphous minima, separated by high
barriers.> An example of a glassy tree can be seen in Fig. 3.
The folding of naturally occurring proteins has been asso-
ciated with a “principle of minimal frustration.”® These pro-
teins fold easily and as they do so, their energy decreases
more than would be expected by chance. There is a strong
energetic bias toward the native state. This bias overcomes
the unfavourable entropy change and also any kinetic trap
contained within the structure of the landscape. Geometrical
frustration, for example associated with the fact that locally
favoured structures, such as icosahedra, cannot tile space, is
considered to play a key role in the glass transition.” Between
the limits of efficient self-organisation and glassy behaviour
lies a continuous range of complexity. Of particular inter-
est are systems characterised by two competing low-energy
structures with a large interconversion barrier. Such “dou-
ble funnel” landscapes may exhibit a separation of relaxation
time scales and heat capacity features associated with a low
temperature transition between the alternative morphologies.’
This competition between structures has been termed “frus-
tration,”®° and a number of examples have been analysed
in detail, as benchmarks for global optimisation, enhanced

Published by AIP Publishing.
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FIG. 1. Disconnectivity graphs for five Lennard-Jones clusters. The graphs
are arranged in the order of increasing frustration from left to right and top to
bottom: LJ3, LIss, LJ3g, LI75, and LJ3;. The global minimum is shown in
black, and branches leading to every other minimum are coloured according
to their contribution to the J7(T) frustration index at the melting temperature
of the system. The scale bar for each graph defines the energy spacing.

thermodynamic sampling designed to overcome broken ergod-
icity, and rare event dynamics.>!0-13

A variety of disconnectivity graphs for contrasting energy
landscapes will be presented in Sec. III. Our aim is to show
how the global organisation of the landscape can be described
in a quantitative manner, by considering various indices that
reflect different measures of the complexity or frustration. One
particular frustration index is found to be particularly suitable
for this purpose.

Il. THE POTENTIAL ENERGY LANDSCAPE

The potential energy landscape (PEL) is a function of all
the relevant atomic or molecular coordinates, which we repre-
sent by the components of a vector X. Here we coarse-grain by
considering stationary points, where the energy gradient van-
ishes, using second derivatives to classify minima, transition
states, and higher-index saddles. The PEL is then characterised
by three quantities: the potential energy V(X); g(X), the first
derivative of the potential energy; and the second derivative
matrix H(X). The elements of the Hessian H(X) define the
curvature of the landscape.

Stationary points have a physical meaning. Local minima
have no negative Hessian eigenvalues, and a small displace-
ment in any of the internal coordinates increases the energy.
Even apparently simple systems can support large numbers
of local minima on the PEL; the lowest is the global mini-
mum. Transition states are defined geometrically in the present
work, as stationary points with a single negative Hessian eigen-
value. Most transition states connect two minima, which are
identified by calculating (approximate) steepest-descent paths
leaving parallel and antiparallel to the eigenvector correspond-
ing to the negative eigenvalue; such a minimum—transition
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state—minimum triplet can be considered as an elementary
rearrangement.

Knowledge of all the stationary points in the system would
in principle provide insight into a variety of interesting prop-
erties. However, larger systems possess a huge number of
stationary points, and so some method of sampling the land-
scape to obtain a representative selection is required. There are
a number of possible approaches to this problem and the most
appropriate method will generally depend on the properties
of interest. Although the landscape was explored in different
ways for the different systems considered in this paper, in all
cases the same geometry optimisation tools were employed
for locating minima and transition states and for character-
ising pathways. The OPTIM program was used for all these
calculations.

Local minima were found by minimising the potential
energy using the limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) algorithm,'® which has proved to be par-
ticularly efficient.!” Transition states were located using the
doubly-nudged'® elastic band'®?*° (DNEB) method. Local
maxima in the chain of states corresponding to the DNEB
interpolation were taken as candidate transition states (TSs),
which were refined using hybrid eigenvector-following.?! To
identify the two minima connected by each TS, a small step
was taken both parallel and antiparallel to the eigenvector cor-
responding to the unique negative Hessian eigenvalue. LBFGS
minimisation was then applied to each set of displaced coordi-
nates to find the two connected minima. If a complete pathway
of elementary arrangements between the two original minima
was not found, a modified Dijkstra algorithm?? was used to
choose a pair of intermediate minima to connect next, with the
aim of completing the pathway using the smallest number of
connection attempts.

For most of the systems studied in the present work, the
PATHSAMPLE program was used as a driver for OPTIM
to expand the stationary point databases. The discrete path
sampling (DPS) approach!? implemented in PATHSAMPLE
is a coarse-grained analog of the transition path sampling
method.”> PATHSAMPLE can systematically generate sets
of discrete paths from an initial connected path between two
end points, creating a kinetic transition network. These dis-
crete paths are connected sequences of minima and intervening
transition states."'3> The PELE?* package, a python library
for finding global minima and connecting minima, was also
used for some of the systems. Further details are provided
below.

A. Disconnectivity graphs

To construct a disconnectivity graph, we group minima
that are mutually accessible at a given total energy, E. These
minima are connected by single- or multi-step pathways where
the energy never exceeds E. Minima are placed in a different
group if the path between them contains a transition state that
lies above the threshold energy, E. These groups can then be
connected at a higher energy. Each group (or superbasin) is rep-
resented by a point, or node, on the horizontal axis, and the ver-
tical axis corresponds to increasing energy. Nodes are joined at
higher energy if they belong to the same superbasin and nodes
continue down to the level of each single local minimum. The
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horizontal axis is usually arbitrary and the order and spacings
between nodes can be chosen for clarity. The superbasin anal-
ysis is performed at a discrete series of total energies, E. There
remains an adjustable parameter in the spacing between energy
levels. If the spacing is too large, little topographical informa-
tion is left, but if it is too small, any coarse-grained structure
may be hidden. We emphasise that disconnectivity graphs are
simply employed as a visualisation tool to provide insight
into the organisation of the potential or free energy landscape.
When thermodynamic or kinetic properties are required, we
utilise additional information. Connected databases of min-
ima and transition states define kinetic transition networks,
which can be constructed systematically using the discrete path
sampling (DPS) framework.'3 Information from the underly-
ing kinetic transition network, specifically the local densities
of states, allows us to estimate occupation probabilities, free
energies, and minimum-to-minimum rate constants.

ll. SYSTEMS
A. Atomic clusters

Many small atomic clusters exhibit efficient relaxation to
the global minimum. However, clusters of particular sizes can
exhibit two (or more) competing morphologies, distinct struc-
tures with similar energy to the global minimum, leading to a
frustrated landscape.®” The interatomic potential considered
is the pairwise additive, isotropic Lennard-Jones (LJ) form

el e

i<j

where € and 2'/%0- are the pair equilibrium well depth and sep-
aration, respectively, and we employ reduced units of energy
and distance defined by € and o.

Disconnectivity graphs for five different cluster sizes are
shown in Figure 1. For clusters with 13 and 55 atoms, denoted
LJ;3 and LJss, the global minimum is a complete Mackay
icosahedron, and the landscapes have a single funnel “palm
tree” form, with no competing alternative low energy mor-
phologies.3 In contrast, for each of LJ3;, LJ3g, and LJ75 there
is a double funnel structure. For LJ3;, the competing fun-
nel is characterised by an alternative surface structure. For
LJ3s and LJ7s, structures in the competing funnels have fun-
damentally different packing schemes, separated from higher
energy incomplete icosahedral minima by relatively large bar-
riers.»!0 The aim of this paper is to find a useful measure
of this frustration, which should identify the LJ3;, LJ3g, and
LJ75 double-funnel systems as significantly more frustrated
than LJj3 and LJss. When searching for the global mini-
mum, the mean first encounter time is significantly longer
for systems with a double funnel structure.!»>> Hence, these
double funnel landscapes provide important benchmarks for
global optimisation, enhanced sampling schemes, and rare
event methods.'=1

Stationary point databases were all obtained by initially
connecting low-lying minima encountered in basin-hopping
global optimisation runs.”®?’” Further refinement was based
on locating kinetically relevant discrete paths between compet-
ing morphologies for the double-funnel systems or increasing
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the number of connections per minimum for LJ;3 and LJss.
In each case, the database was also enlarged using a scheme
to remove artificial frustration.?® Aside from LJ;3, the sam-
ples obtained are necessarily incomplete. These databases
were therefore extended until the appearance of the low-
energy region of the landscape appeared to have converged,
as judged by inspection of the disconnectivity graphs. The
convergence of the various measures of frustration defined in
Section IV for the lower temperature range of interest was also
monitored.

B. (H20)2

The energy landscape of the “nanodroplet” cluster
(H,0)y displays signatures of hierarchical organisation.? This
complexity has been associated with the additional rotational
degrees of freedom for the water molecule, which lead to a
wide range of energies and barrier heights separating structures
with similar arrangements of the oxygen atoms, but alternative
hydrogen-bonding patterns.’ Understanding how these effects
result in qualitative differences from the atomic clusters con-
sidered above is of great interest in view of the central role of
water in the solvation of biomolecular systems.

For the TIP4P rigid molecule pair potential,” the global
potential energy minimum can be described in terms of three
pentagonal prisms sharing approximately square faces.’*3!
There are two other morphologies with competing low energy
minima based on face-sharing cuboids (“box-kite” struc-
ture®?) and three stacked pentagonal prisms sharing pentagonal
faces.’! Minima based on dodecahedral structures generally
lie rather higher in energy.’! The landscape for this system
was explored as follows. Four low-energy structures corre-
sponding to the different morphologies were connected and
then the pathway between the two lowest structures was fur-
ther refined using a short-cutting procedure.?®* The resulting
disconnectivity graph is shown in Fig. 2.

C. A model B-barrel protein

Here we considered a coarse-grained BLN model for
a 69-residue protein,34 where each amino acid is repre-
sented by a hydrophobic (B), hydrophilic (L), or neutral
(N) bead. Stiff harmonic springs were employed to restrain
the bond lengths.>> The global minimum of the sequence
BgN3(LB)4N3B9N3(LB)4N3B9N3(LB)5L (BLN69) is a six-
stranded B-barrel, with three chains forming a hydrophobic
core. However, we have previously shown that there are a num-
ber of low-lying minima with alternative arrangements of the
B-strands, separated by high barriers.>

Figure 2 shows a disconnectivity graph for BLNgg. The
database was again produced by initially connecting low-
lying minima obtained using basin-hopping global optimi-
sation,’®?” and then refining to locate kinetically relevant
paths between alternative morphologies and remove artificial
frustration caused by undersampling.

D. The amyloidogenic GNNQQNY peptide dimer

The polar amyloidogenic heptapeptide GNNQQNY is a
key component of the N-terminal prion-determining domain
of the yeast protein Sup35. This peptide is noteworthy for its
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(H20)20 20€ l BLNGQ D€ l GNNQQNY 10e l

FIG. 2. Disconnectivity graphs for (H,O),0, the 69-residue BLN model protein, and the heptapeptide GNNQQNY. The global minimum for each system is
shown in black and branches leading to every other minimum are coloured according to their contribution to thef(T) frustration index at the melting temperature
of the system. The colour scale is identical to that used in Figure 1, where minima corresponding to red branches make the largest contribution to frustration.
The scalebar for each graph defines the energy spacing.
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FIG. 3. Disconnectivity graphs for BLJgg (top) and BLJ,5¢ (bottom). The colour scale shows the contributions to the frustration index f(T) at the melting
temperature, and the energy scale bar defines the spacing.
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individual stability,>” and a crystal structure has been charac-
terised, where the monomers align to give in-register paral-
lel B-sheets.’® Here we employ a DPS database created for
the GNNQQNY dimer, which we previously found to sup-
port four competing conformations: one that is intermediate
between compact and extended structures and three S-sheets
corresponding to in-register parallel, off-register parallel, and
antiparallel arrangements.?® These results were obtained with
the CHARMM 19* potential and EEF1 implicit solvent.*’ The
corresponding potential energy landscape might be expected to
exhibit an intermediate level of frustration, and this intuition
is consistent with the new results reported below. The time
scale for interconversion between the four low-lying struc-
tures was estimated as hours or longer at 298 K.?® Replica
exchange molecular dynamics*' (REMD) was used for an
initial exploration of the conformational space. The resulting
database of minima and transition states was then grown using
DPS focusing on the paths making the largest contributions
to the steady state rate constants between the alternative mor-
phologies. Shortcutting procedures®3* were followed by the
removal of artificial traps.”® A disconnectivity graph for this
system is shown in Fig. 2.

J. Chem. Phys. 146, 124103 (2017)

E. Binary structural glass formers

Binary Lennard-Jones (BLJ) potentials are extensively
used in studies of structural glass phenomenology,*** since
with suitable parameterisations they do not crystallise on time
scales usually accessible to molecular dynamics. Here we
consider BLJ systems modelled using periodic boundary con-
ditions containing two types of atom, A and B, in the ratio
80:20, which was originally proposed to model the metallic
glass NiggPg,.* Although this model possesses mixed and
phase separated crystalline structures,*’*8 these can easily be
excluded from the structural databases employed for land-
scape analysis. The parameterisation employed was oaa = 1,
OAB = 08, OBB = 088, EAA = 1, EAB = 1.5, and €BB = 0.5.42
The resulting disconnectivity graphs® exhibit many low-lying
minima corresponding to amorphous structures, separated by
high barriers of order 30kpT ;, where T, corresponds to a glass
transition temperature. Grouping local minima according to
whether they can be interconverted without a cage-breaking
rearrangement, which would be necessary for diffusion, has
revealed a higher order structure in the energy landscape,’
which may yield a useful way to define “metabasins.”**-°
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FIG. 4. Disconnectivity graphs for 60 (top) and 256 (bottom) soft spheres. The colour scale shows the contributions to the frustration indexf(T) at the melting

temperature, and the scalebar defines the energy spacing.
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To avoid finite-size effects, the system must not be too
small, and 60 atoms were found to be a good compromise
in previous work.** Our results are for a 60-atom BLJ mix-
ture of 48 type A and 12 type B particles (BLJgy) and a
256-atom mixture of 204 A and 52 B particles (BLJ>s56).
Both systems have a number density of 1.3 in reduced units
of o7, (used throughout) and were simulated with periodic
boundary conditions. Full details are given in Ref. 51 and
disconnectivity graphs for BLJgg and BLJ,s¢ are shown in
Figure 3. The BLJgy database contains over 11 000 minima,
while the database for BLJ»s6 has 2500. The PELs for both sys-
tems show typical glassy organisation, with many minima of
similar energies separated by high barriers, and a hierarchical
structure. For both BLJ systems, initial samples of minima
were obtained from locally ergodic canonical MD trajecto-
ries.’! Local minimisation was applied for each configuration
of the trajectory, producing a sequential series of minima.
Adjacent minima were then connected, giving a single kinet-
ically relevant discrete path.>>> We expect to find lower
frustration for such a connected path of minima and tran-
sition states, compared to a more extensive search for
a particular region of the energy landscape, as discussed
below.

F. Soft spheres: Landscapes for jamming

Jamming corresponds to a transition to rigidity in dis-
ordered matter. In the jammed state, materials respond
essentially elastically to small applied shear stresses. How-
ever, such systems can easily be unjammed and made to flow by
tuning various control parameters. The jamming transition can
be induced by varying thermodynamic variables, such as tem-
perature or density, and also by mechanical variables, such as
applied stress.”

Packings of soft repulsive spheres at zero temperature
exhibit a sharp jamming transition in the thermodynamic limit.
The transition is induced by applied pressure or enforced
packing fraction, causing deformation of the particles. When

J. Chem. Phys. 146, 124103 (2017)

deformations vanish, the system loses rigidity. At a low pack-
ing fraction, no particles interact, a state described as an
unjammed “mechanical vacuum.” As the packing fraction is
increased, there is a transition to a jammed, rigid structure.
Such frictionless spheres with finite-range repulsions have
been studied extensively.’3>

The two systems considered here consist of N = 60 and
N = 256 spheres of equal mass, M, and variable radii, R;,
with periodic boundary conditions. The radii are distributed
evenly within the range 0.416 to 0.583. When they overlap, the
spheres interact via a Hertzian soft sphere potential. Denoting
the centre-to-centre distance as r;;, a dimensionless overlap
parameter, d;;, can be defined as

r,-j
Ri + R] ’

0;=1- 2)

The interaction potential is zero unless ¢;; > 0 and then has
the form

V= 65655. (3)

For the soft sphere systems, a particular region of the
potential energy landscape was explored in detail using PELE.
Basin-hopping steps were taken from an initial starting mini-
mum to find further minima, and then pathways were obtained
using DNEB. The search then returns to the initial starting min-
imum for further basin-hopping steps. The resulting database
was refined with the untrapping method designed to remove
artificial frustration, as for some of the other models discussed
above.?® The untrapping scheme was designed to locate miss-
ing lower energy pathways in the low energy part of the land-
scape. However, for soft spheres, it also results in significant
further exploration, finding many more minima with similar
energies, which contribute to the frustration. As this sampling
method may overestimate frustration, for comparison we have
performed an identical analysis for BLJ,5¢. Disconnectivity
graphs are shown in Fig. 4 for the 60 and 256 sphere systems
and in Fig. 5 for BLJse.
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FIG. 5. Disconnectivity graph corresponding to extensive exploration of a local region for BLJ,56. The colour scale shows the contributions to the frustration
index f(7T') at the melting temperature, and the scalebar defines the energy spacing.
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IV. QUANTIFYING FRUSTRATION IN THE LANDSCAPE

We have considered various different indices to anal-
yse the degree of frustration in different systems. First, the
Shannon entropy,’®>” s(T'), depends upon equilibrium thermo-
dynamic properties, and therefore only requires information
about local minima

S(T) = - Zp (T) Inp(T), @)

where T is the temperature and p, (T) is the equilibrium occu-
pation probability of minimum «, calculated using harmonic
vibrational densities of states.’® If information about transition
states is not available, this index can provide a useful measure
of frustration, as shown in Figure 6. To compare results for very
different systems, we have used a dimensionless temperature,
obtained using an estimate for the melting temperature, 7,.
This estimate comes from the temperature at the correspond-
ing heat capacity maximum, obtained consistently within the
harmonic superposition approximation.>®

The three indices defined below require databases where
the connectivity of the local minima is defined by transition
states

N(T) = ZZ [P+ pSAT) | nay (D),

a=1ly<a

K(T) = ZZ [P (Dkya(T) + Py (Dkay(T)] , (5)
a=1y<a

= (T)( - Vg“““).
a#gmin - ngm

N(T) uses ngq,, the number of steps (transition states) in
the fastest path between minima y and «, and K(T') uses Koy,
the rate constant for transitions between minima y and a. ny,
and ko, were both obtained from the Dijkstra shortest path
analysis,”” with edge weights of —In Pgy, where Pg, is the
branching probability of stepping to minimum « from among
the direct connections of minimum 7y. The branching prob-
abilities and minimum-to-minimum rate constants k,, were
estimated from transition state theory,®*°? using harmonic
vibrational densities of states. In contrast, f(7") uses infor-
mation about the potential energy of the minima, V,, and
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FIG. 6. The Shannon entropy, s(7'), for all the models considered.
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transition states. V gmip signifies the potential energy of the low-

est minimum in the database and V:; is the potential energy of
the highest transition state on the lowest energy path between
minimum ¢ and the lowest minimum. The lowest minimum
is the global minimum for most of the databases considered,
except for the condensed matter systems, where the crystalline
region of configuration space is intentionally excluded.

The most insightful quantity was found to be f(T'), which
employs barrier thresholds VCL in the same way as a scheme
that we introduced in earlier work to help refine databases
to remove artificial frustration.”® This approach was, in turn,
derived from an analogous index based on free energies that we
used earlier,%? which extends measures based on stability64 and
energy gaps®>% by including explicit barrier information. A
further advantage of f(7) over the other measures that include
connectivity, N(T) and K(T), is that it does not require addi-
tional characterisation of discrete paths or rate information and
hence, it is quick and easy to calculate.

We calculated Vﬂ; in tandem with the superbasin analysis?
that yields the disconnectivity graphs, identifying the energy
threshold below which the lowest minimum is no longer acces-
sible from minimum «. Results for f(7"), which we will refer
to as the frustration index, are show~n in Figure 7.

Analogous indices s(7), N (T),K(T),and f(T) were calcu-
lated from the probabilities py! = po' /(1 pz?mn) These quanti-
ties reflect the renormalised relatlve populations of the minima
when the temperature dependence of the global minimum is
removed. As the temperature decreases, the equilibrium occu-
pation probability of the global minimum can become very
large. As the global minimum does not itself contribute to
frustration, this high occupation probability causes the frus-
tration measures to decrease rapidly at low temperature. This
decrease is an erroneous effect as relaxation to the global min-
imum becomes more difficult and hence frustration increases
at low temperature. The renormalisation is shown for LJ3g in
Figure 8, where f(T') and f(T') are compared. Full results for
f(T) are shown in Figure 9.

__ The classification of systems is probably clearest for
f(T), which provides a relatively stable index over quite a wide
range of temperature, thanks to removal of the temperature
dependence of the lowest minimum. We see that for most of the
range 0 < T'/T,, < 1 structure-seekers have f(T) < 1, frustrated

1000
F(T)

100 1

0.1 A

0.01 7

0.001 T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. The frustration index, f(T'), is shown for all the models considered.
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FIG. 8. f(T) and F(T) for LIsg.

landscapes including structural glasses have 1 > f(T) > 50,
and jammed systems have f(T) > 100. We would not wish
to overinterpret smaller differences in f(7); it is the order of
magnitude differences that are really significant here.

A. Comparison of sampling protocol

For most of the models compared here, the underlying
kinetic transition networks correspond to samples of station-
ary points designed to describe the dynamics associated with
specific pathways or regions of the landscape. The degree
of frustration could therefore exhibit some degree of sample
dependence, and we have therefore provided details of the
landscape exploration methods for each system in Section III.
However, if all the landscapes were sampled in the same way,
we expect the key trends to be unaffected. A representative
sample of minima and transition states should provide us with
occupation probabilities and barrier heights that provide a con-
verged value for the chosen measure of frustration, (7). The
most frustrated systems we have considered here are the soft
sphere packings, which were explored through a more exten-
sive local search. The same local exploration was therefore
repeated for the binary Lennard-Jones system of 256 particles
and continued until we obtained the same number of minima
as for the soft sphere example. Fig. 10 shows that the results

1000 . . . .

J()

100 1

LJi3
0.1 T

0.0 0.2 0.4 0.6 0.8 1.0
T/Tn

FIG. 9. The frustration index calculated from renormalised probabilities,
f(T), for each of the models considered.
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T T T T

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 10. f(T) for a256-atom binary Lennard-Jones mixture, where the energy
landscape has been explored by two different schemes. In the first approach,
the sample is based on a pathway through the landscape corresponding to a
locally ergodic molecular dynamics trajectory. In contrast, the second scheme
employs a more extensive local exploration, as for the 256-atom soft sphere
system.

for this scheme with around 40 000 minima are very similar to
those obtained for a single kinetically relevant discrete path of
around 3600 minima, based upon an initial molecular dynam-
ics trajectory. The frustration index is still significantly lower
than that for the soft sphere systems. In fact, the more extensive
local searches may produce lower frustration measures as they
do not encounter many of the alternative low-energy minima
separated by high barriers that are present in the landscape.

V. DISCUSSION AND CONCLUSIONS

We have explored measures to quantify the global organ-
isation of the potential energy landscape. A frustration index,
f(T), including renormalised approximate equilibrium occu-
pation probabilities and barrier information, is found to be
particularly useful. If transition state information is not avail-
able, the Shannon entropy, based on equilibrium occupation
probabilities, can also provide a measure of frustration, albeit
without allowing for dynamical effects.

We studied a number of different systems and found
soft sphere packings to be the most frustrated, followed by
binary Lennard-Jones models of supercooled liquids and a 69-
residue model S-barrel protein. In all these very frustrated
systems, there are a number of low-energy competing struc-
tures close in energy to the global minimum. Lower frustration
is found for systems with a well-defined global minimum. LJ3;
is the most frustrated Lennard-Jones cluster, while the amy-
loidogenic GNNQQNY heptapeptide and the (H2O0)z0 clus-
ter exhibit comparable values for f(7'). The least frustrated
systems we compared are the LJ;3 and LJs5 clusters, where the
landscapes have a single funnel with no competing low-energy
structures.

The frustration index provides a quantity to characterise
aspects of the potential energy landscape that have previously
been described more qualitatively. It is easy to calculate, and
we have shown that it reliably distinguishes different degrees
of frustration for a variety of systems. The key features are also
relatively robust in terms of how the underlying landscape has
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been explored. These results should provide a useful tool for
quantifying frustration across very different systems of inter-
est, potentially providing new insight into our understanding
of emergent properties.
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