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Abstract

Sparse superposition codes, or sparse regression codes (SPARCs), are a recent class of codes
for reliable communication over the AWGN channel at rates approaching the channel capac-
ity. Approximate message passing (AMP) decoding, a computationally efficient technique for
decoding SPARCs, has been proven to be asymptotically capacity-achieving for the AWGN
channel. In this paper, we refine the asymptotic result by deriving a large deviations bound on
the probability of AMP decoding error. This bound gives insight into the error performance of
the AMP decoder for large but finite problem sizes, giving an error exponent as well as guidance
on how the code parameters should be chosen at finite block lengths. For an appropriate choice
of code parameters, we show that for any fixed rate less than the channel capacity, the decoding
error probability decays exponentially in n/(log n)2T , where T , the number of AMP iterations
required for successful decoding, is bounded in terms of the gap from capacity.

1 Introduction

A long-standing goal in information theory is to construct efficient codes for the memoryless additive
white Gaussian noise (AWGN) channel, with provably low probability of decoding error at rates
close to the channel capacity. The input-output relationship of the real-valued AWGN channel is
given by

y = u+ w, (1.1)

where u is the input symbol, y is the output symbol, and w is independent Gaussian noise with
zero mean and variance σ2. There is an average power constraint P on the input: if u1, u2, . . . , un
are transmitted over n channel uses, it is required that 1

n

∑n
i=1 u

2
i ≤ P . Then the signal-to-noise

ratio is given by snr = P/σ2 and the channel capacity is C := 1
2 log(1 + snr).

Sparse superposition codes, or sparse regression codes (SPARCs), are a class of codes introduced
by Barron and Joseph [1, 2] for reliable communication over the AWGN channel at rates close to
C. In [2], the authors proposed the first feasible SPARC decoder, called the ‘adaptive successive
decoder’, and showed for any fixed rate R < C, the probability of decoding error decays to zero
exponentially in n

logn . Despite these strong theoretical guarantees, the rates achieved by this decoder
for practical block lengths are significantly less than C. Subsequently, a adaptive soft-decision
iterative decoder was proposed by Cho and Barron [3], with improved finite length performance for
rates closer to capacity. Theoretically, the decoding error probability of the adaptive soft-decision
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Figure 1: A is an n×ML matrix and β is a ML×1 vector. The positions of the non-zeros in β correspond
to the gray columns of A which combine to form the codeword Aβ.

decoder was shown to decay exponentially in n/(log n)2T , where T is the minimum number of
iterations [4, 5].

Recently, decoders for SPARCs based on Approximate Message Passing (AMP) techniques were
proposed in [6–8]. AMP decoding has several attractive features, notably, the absence of tuning
parameters, its superior empirical performance at finite block lengths, and its low complexity when
implemented using implicitly defined Hadamard design matrices [7, 8]. Furthermore, its decoding
performance in each iteration can be predicted using a deterministic scalar iteration called ‘state
evolution’.

In this paper, we provide a non-asymptotic analysis of the AMP decoder proposed in [7]. In [7],
it was proved that the state evolution predictions for the AMP decoder are asymptotically accurate,
and that for any fixed rate R < C, the probability of decoding error goes to zero with growing block
length. However this result did not specify the rate of decay of the probability of error. In this
paper, we refine the asymptotic result in [7], and derive a large deviations bound for the probability
of error of the AMP decoder (Theorem 3.1). This bound gives insight into the error performance
of the AMP decoder for large but finite problem sizes, giving an error exponent as well as guidance
on how the code parameters should be chosen at finite block lengths.

The error probability bound for the AMP decoder is of the same order as the bound for the
Cho-Barron soft-decision decoder [4, 5]: both bounds decay exponentially in n/(log n)2T , where T
is the minimum number of iterations. However, the AMP decoder has slightly lower complexity
and has been empirically found to have better error performance (see Remark 6 on p.10).

In the rest of this section, we describe the sparse regression codebook, briefly review the AMP
decoder, and then list the main contributions of this paper.

1.1 The sparse regression codebook

A sparse regression code (SPARC) is defined in terms of a design matrix, or ‘dictionary’, A of
dimension n×ML. The entries of A are i.i.d. N (0, 1

n). Here n is the block length, and M and L
are integers whose values will be specified below in terms of n and the rate R. As shown in Fig. 1,
we think of the matrix A as being composed of L sections with M columns each.

Each codeword is a linear combination of L columns, with one column selected from each of the
L sections. The codeword is formally expressed as Aβ, where β is an ML×1 vector (β1, . . . , βML)
with the following property: there is exactly one non-zero βj for 1 ≤ j ≤ M , one non-zero βj
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for M + 1 ≤ j ≤ 2M , and so forth. The non-zero value of β in section ` is set to
√
nP`, where

P1, . . . , PL are positive constants that satisfy
∑L

`=1 P` = P . Denote the set of all β’s that satisfy
this property by BM,L(P1, . . . , PL). For the main result in this paper, we use an exponentially
decaying allocation of the form P` ∝ e−2C`/L, for ` ∈ {1, 2, . . . , L}.

Both the design matrix A and the power allocation are known to the encoder and the decoder
before communication begins.

As each of the L sections contains M columns, the total number of codewords is ML. To obtain
a rate of R nats/sample, we require

ML = enR or L logM = nR. (1.2)

(Throughout the paper, rate will be measured in nats unless otherwise mentioned.) An important
case is when M equals La, for some constant a > 0. Then (1.2) becomes aL logL = nR. In this
case, L = Θ( n

logn), and the size of the design matrix A (given by n×ML = n× La+1) now grows
polynomially in n.

Given a sequence of information bits, the encoder maps them to a message vector β0 ∈ BM,L

and generates the codeword Aβ0 ∈ Rn. At the decoder, the task is to recover β0 from the channel
output sequence

y = Aβ0 + w. (1.3)

Assuming that the transmitted message vector is uniformly distributed over BM,L, the maximum-
likelihood decoder minimizes the probability of the decoded message vector not being equal to the
transmitted one. The maximum-likelihood decoding rule for a SPARC is given by

β̂ML = arg min
β∈BM,L

‖y −Aβ‖ ,

where ‖ · ‖ denotes the `2-norm. This decoder was analyzed in [1] and shown to have probability
of error decaying exponentially in n for any fixed R < C. However, it is infeasible as the decoding
complexity is exponential in n. This motivates the need for low-complexity SPARC decoding
techniques such as AMP.

1.2 Notation

For a positive integer m, we use [m] to denote the set {1, . . . ,m}. Throughout the paper, we use
boldface to denote vectors or matrices, plain font for scalars, and subscripts to denote entries of a
vector or matrix. Bold lower case letters or Greek symbols are used for vectors, and bold upper
case for matrices. For example, x denotes a vector, with xi being the ith element of x. Similarly,
X is a matrix,and its (i, j)th entry is denoted by Xi,j . The transpose of X is denoted by X∗. The
number of columns in the design matrix A is denoted by N = ML, so A has dimensions n×N .

For length-N vectors such as β, we will need to refer to specific entries as well as sections.
Indices such as j will be used to denote specific entries, while the subscript (`) will be used to
denote the entire section ` ∈ [L]. Therefore βj denotes the jth entry of β, for j ∈ [ML], and β(`)

denotes the length-M vector containing the entries in the `th section of β, for ` ∈ [L]. For example,
β(2) = {βM+1, . . . , β2M} is the vector containing the entries in the second section of β.

We will use a mapping ind : [L] → [ML]M that maps a section index to the indices of the
entries corresponding to that section. For example ind(`) = [(` − 1)M + 1, (` − 1)M + 1, . . . , `M ]
is the length-M vector of indices contained in section `. We define a complementary function
sec : [ML] → [L] that maps the index of an entry to the section containing it. For example,
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sec(i) = ` indicates that i ∈ ind(`), and ind(sec(i)) returns the length-M vector of the indices for
the section to which i belongs.

In the analysis, we will treat the message as a random vector β which is uniformly distributed
over BM,L(P1, . . . , PL). We will denote the true message vector by β0, noting that β0 is a realization
of the random vector β.

The indicator function of an event A is denoted by 1(A). The t × t identity matrix is denoted
by It and we suppress the subscript if the dimensions are clear from context. log and ln are both
used to denote the natural logarithm. We will use k,K, κ, κ0, κ1, . . . , κ8 to denote generic universal
positive constants.

1.3 The AMP channel decoder

Approximate message passing refers to a class of iterative algorithms obtained via quadratic or
Gaussian approximations of standard message passing algorithms such as belief propagation or min-
sum. Approximations of loopy belief propagation were first used for CDMA multiuser detection
[9, 10]. AMP was then proposed in the context of compressed sensing [11–15], and has since been
applied to other high-dimensional estimation problems represented by dense factor graphs where
standard message passing is infeasible, e.g. low-rank matrix estimation [16–19].

AMP techniques were used to develop efficient SPARC decoders in [6–8]. The problem of
recovering the SPARC message vector β from the channel output sequence y in (1.3) is similar
to the compressed sensing recovery problem, with one key difference: in a SPARC we know that
β ∈ BM,L, and an effective decoder must take advantage of this structure.

We now describe the AMP decoder from [7] and give some insight into its working. Given
the received vector y = Aβ0 + w, the AMP decoder generates successive estimates of the message
vector, denoted by {βt}t≥0, where βt ∈ RML. We initialize the algorithm with β0 = 0, the all-zeros
vector. For t = 0, 1, . . ., the decoder computes

zt = y −Aβt +
zt−1

τ2
t−1

(
P −

∥∥βt∥∥2

n

)
, (1.4)

βt+1
i = ηti(β

t + A∗zt), for i = 1, . . . ,ML, (1.5)

where quantities with negative indices are set equal to zero. The constants {τt}t≥0, and the esti-
mation functions {ηti(·)}t≥0 are defined as follows. Define

τ2
0 = σ2 + P, τ2

t+1 = σ2 + P (1− xt+1), t ≥ 0, (1.6)

where xt+1 = x(τt), with

x(τ) :=
L∑
`=1

P`
P

E

 exp
{√

nP`
τ

(
U `1 +

√
nP`
τ

)}
exp

{√
nP`
τ

(
U `1 +

√
nP`
τ

)}
+
∑M

j=2 exp
{√

nP`
τ U `j

}
 . (1.7)

In (1.7), the expectation is over {U `j }, which are i.i.d. N (0, 1) random variables for j ∈ [M ] and
` ∈ [L]. Hence x(τ) is a deterministic function of τ . For consistency, we define x0 = 0. Recall that
sec(i) returns a value in [L] indicating the section to which index i belongs and ind(sec(i)) returns
the vector of section indices for i’s section. For i ∈ [ML], define

ηti(s) =
√
nPsec(i)

exp{si
√
nPsec(i)/τ

2
t }∑

j∈ind(sec(i)) exp{sj
√
nPsec(i)/τ

2
t }
. (1.8)
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Notice that ηti(s) depends on all the components of s in the section containing i, i.e. all components
of s belonging to ind(sec(i)).

For any rate R < C, the AMP decoder is run for a finite number of iterations T , where T is
specified later in Section 2.1. After T iterations, the maximum value in each section ` ∈ [L] of βT

is set to
√
nP`, and remaining entries to 0 to obtain the decoded message β̂.

The relation (1.6), which describes how τt+1 is obtained from τt, is called “state evolution”.
We now explain the significance of the state evolution parameters xt, τ

2
t , and the choice of the

estimation function ηt.

State evolution interpretation

To understand the decoder, first consider the AMP update step (1.5) in which βt+1 is generated
from the “effective observation” st := βt+A∗zt. The update in (1.5) is underpinned by the following
key property of the effective observation: st is approximately distributed as β0 + τtZ, where Z is a
length-ML standard Gaussian random vector independent of the message vector β0.

In light of the above property, a natural way to generate βt+1 from st = s is βt+1(s) = E[β |β+
τtZ = s], i.e., βt+1 is the Bayes optimal estimate of β given the observation st = β + τtZ. This
conditional expectation can be computed using the independence of β and Z, with Z being a
standard normal vector, and the location of the non-zero entry in each section of β uniformly
distributed within the section. Then, for i ∈ [ML], we obtain

βt+1
i (s) = E[βi|β + τtZ = s] =

√
nPsec(i) exp{si

√
nPsec(i)/τ

2
t }∑

j∈ind(sec(i)) exp{sj
√
nPsec(i)/τ

2
t }
, (1.9)

which is the expression in (1.8). Furthermore, βt+1
i (s)/

√
nPsec(i) is the posterior probability of βi

being the non-zero entry in its section, conditioned on the observation s = β + τtZ.
It is shown in [7, Proposition 1] that under the assumption that st has the distributional repre-

sentation β + τtZ, we have

xt+1 =
1

nP
E[β∗βt+1],

1

n
E
∥∥β − βt+1

∥∥2
= P (1− xt+1). (1.10)

The expectation in (1.10) is again computed over β and Z, which are independent. Using (1.10) in
(1.6), we see that the effective noise variance τ2

t is the sum of the channel noise variance and the
expected squared error in the estimate after step t. The parameter xt can be interpreted as the
power-weighted fraction of sections correctly decodable after step t: starting from x0 = 0 we wish
to ensure that at the termination step T , the parameter xT is very close to one, implying that the

expected squared error 1
nE
∥∥β − βT

∥∥2 ≈ 0 under the distributional assumption for st. This is done
in Lemma 2.2, which provides a strictly positive lower bound on the difference (xt+1− xt) for each
iteration t until xt reaches a value close to 1.

The other part of the proof is establishing the validity of the key distributional assumption on
the effective observation st. The asymptotic result in [7] is proven by showing that the distributional
assumption holds in the large system limit (with a suitable notion of convergence). The large system
limit refers to taking L,M, n→∞, while satisfying L logM = nR. In this paper, we obtain a non-
asymptotic bound on the probability of decoding error by showing that the average squared error in
each iteration t, given by 1

n‖β0−βt‖2, concentrates around the state evolution prediction P (1−xt).
This concentration inequality also specifies the performance trade-offs incurred by different scaling
choices for M vs. L, as both tend to infinity.

5



1.4 Structure of the paper and main contributions

• In Section 2, we derive a lower bound on the minimum increase in each step of the state
evolution parameter xt, for an exponentially decaying power allocation (Lemma 2.2). This
in turn yields an upper bound on the number of iterations T . This upper bound is inversely
proportional to ∆R + ∆2

R, where ∆R := (C −R)/C is the fractional gap from capacity.

• The main result of the paper (Theorem 3.1) is a large deviations bound on the probability of
AMP decoding error. Using this bound, in Section 3.2 we investigate the error exponent with
AMP decoding, i.e., how fast does the error probability decay with growing block length, with
R < C held fixed. We show that for an appropriate choice of code parameters, the complexity
of the AMP decoder scales as a low-order polynomial in the block length n, while the decoding
error probability decays exponentially in n/(log n)2T . Here T , the number of AMP iterations
required for successful decoding, is bounded in terms of the gap from capacity. In Section
3.3, we examine how fast the error probability can decay when R approaches C as n→∞.

• The proof of the main result is given in Section 4, and has two main ingredients: a conditional
distribution lemma (Lemma 4.3) specifying distributional representations for the iterates
(vectors) produced by the AMP decoder, and a concentration lemma (Lemma 4.5), which
uses these distributional representations to obtain concentration inequalities for various inner
products involving the AMP iterates. The conditional distribution lemma was already proved
in [7], so the key technical contribution is Lemma 4.5.

• The proof of the concentration lemma (Lemma 4.5) is given in Section 5. In addition to
strengthening the asymptotic convergence results in [7], Lemma 4.5 also simplifies some tech-
nical aspects of the proof. The techniques used to derive the concentration inequalities in
Lemma 4.5 are broadly similar to those used for the non-asymptotic analysis of the standard
AMP recursion in [20, Lemma 4.5]. However, there are a few important differences: due to
the SPARC message vector β having a section-wise structure (with one non-zero per section),
the results derived in [20] for i.i.d. signal priors cannot be directly applied here.

We mention that in this paper, we only consider the standard SPARC construction described in
Section 1.1. Extending the analysis to the spatially-coupled SPARCs proposed in [8, 21, 22] is an
interesting research direction and part of ongoing work.

2 Bounds for state evolution parameters

We first derive a lower bound for x(τ) defined in (1.7). This lower bound will be used to specify the
number of AMP iterations T required for successful decoding (in terms of L,M,R). The number
of iterations T determines how the error probability bound in Theorem 3.1 depends on the rate R.

Lemma 2.1. Consider any non-increasing power allocation {P`}`∈[L], and let ν` := LP`/(Rτ
2).

Assume that there exist absolute positive constants ā, a (not depending on L) such that ā ≥ ν1 ≥
ν2 . . . ≥ νL ≥ a.

(a) We have x(τ) ≥ xL(τ), where xL(τ) is defined as follows in terms of constants α ∈ [0, 1), υ >
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0, that may be arbitrarily chosen.

xL(τ) =

L∑
`=1

P`
P

Q(−α(ν`/2−1)√
ν`

√
logM)

1 +M−(1−α)(ν`/2−1)
1{ν` > 2}

+
Q(2υ/

√
ν`)

1 + e−υ
√

logM
1
{

2
(

1− υ√
logM

)
≤ ν` ≤ 2

}]
, (2.1)

where κ is a universal positive constant, and Q(·) is the complementary distribution function of a
standard Gaussian, i.e., Q(x) =

∫∞
x

1√
2π
e−u

2/2du.

(b) For sufficiently large M and any δ ∈ (0, 1
2),

xL(τ) ≥
(

1− M−κ2δ2

δ
√

logM

) L∑
`=1

P`
P

1{ν` > 2 + δ}+
1

4

L∑
`=1

P`
P

1
{

2
(

1− κ3√
logM

)
≤ ν` ≤ 2 + δ

}
, (2.2)

where κ2, κ3 are universal positive constants.

Proof. In Appendix A.

Eq. (2.2) can be interpreted as follows for large M,L: if the effective noise variance at the end
of step t is τ2

t = τ2, then any sections ` that satisfy LP` > 2Rτ2 will be decodable in step t + 1,
i.e., βt+1

(`) ∈ RM will have most of its mass on the correct non-zero entry.
We now evaluate the lower bound of Lemma 2.1 for the following exponentially decaying power

allocation:

P` = P · e
2C/L − 1

1− e−2C · e
−2C`/L, ` ∈ [L]. (2.3)

For this allocation, we have

LP` = (P + σ2)L((1 + snr)1/L − 1) (1 + snr)−`/L , ` ∈ [L]. (2.4)

The next lemma uses Lemma 2.1 to obtain a lower bound on how much the state evolution param-
eter xt increases in each iteration, for the exponentially decaying power allocation.

Lemma 2.2. Let δ ∈ (0,min{∆R,
1
2}], where ∆R := (C − R)/C. Let f(M) := M−κ2δ

2

δ
√

logM
, where

κ2 is the universal constant in Lemma 2.1(b). Consider the sequence of state evolution parameters
x0 = 0, x1, . . . computed according to (1.6) and (1.7) with the exponentially decaying power allocation
in (2.3). For sufficiently large L,M , we have:

x1 ≥ χ1 := (1− f(M))
P + σ2

P

(
1− (1 + δ/2)R

C − 5R

L

)
, (2.5)

and for t > 1:

xt − xt−1 ≥ χ := (1− f(M))
[σ2

P

(
1− (1 + δ/2)R

C
)
− f(M)

(1 + δ/2)R

C
]
− 5R(1 + σ2/P )

L
, (2.6)

until xt reaches (or exceeds) (1− f(M)).

Proof. In Appendix B.
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2.1 Number of iterations and the gap from capacity

We want the lower bounds χ1 and χ in (2.5) and (2.6) to be strictly positive and depend only on
the gap from capacity ∆R = (C −R)/C as M,L→∞. For all δ ∈ (0,∆R], we have

1− (1 + δ/2)R

C ≥ 1−
(

1 +
∆R

2

)
(1−∆R) =

∆R + ∆2
R

2
. (2.7)

Therefore, the quantities on the RHS of (2.5) and (2.6) can be bounded from below as

χ1 ≥ (1− f(M))
P + σ2

P

(
∆R + ∆2

R

2
− 5R

L

)
, (2.8)

χ ≥ (1− f(M))

[
σ2

P

(
∆R + ∆2

R

2

)
− f(M)

]
− 5R(1 + σ2/P )

L
. (2.9)

We take δ = ∆R, which gives the smallest value for f(M) among δ ∈ (0,∆R]. 1 We denote this
value by

fR(M) :=
M−κ2∆2

R

∆R
√

logM
. (2.10)

From (2.9), if fR(M)/∆R → 0 as M → ∞, then σ2

P

(
∆R+∆2

R
2

)
will be the dominant term in χ for

large enough L,M . The condition fR(M)/∆R → 0 will be satisfied if we choose ∆R such that

∆R ≥
√

log logM

κ2 logM
, (2.11)

where κ2 is the universal constant from Lemma 2.1(b) and Lemma 2.2. From here on, we assume
that ∆R satisfies (2.11).

Let T be the number of iterations until xt exceeds (1− fR(M)). We run the AMP decoder for
T iterations, where

T := min
t
{t : xt ≥ 1− fR(M)}

(a)

≤ 1− fR(M)

χ

(b)
=

P/σ2

(∆R + ∆2
R)/2

(1 + o(1)), (2.12)

where o(1) → 0 as M,L → ∞. In (2.12), inequality (a) holds for sufficiently large L,M due to
Lemma 2.2, which shows for large enough L,M , the xt value increases by at least χ in each iteration.
The equality (b) follows from the lower bound on χ in (2.9), and because fR(M)/∆R = o(1).

After running the decoder for T iterations, the decoded message β̂ is obtained by setting the
maximum of βT in each section ` ∈ [L] to

√
nP` and the remaining entries to 0. For a given

snr, from (2.12) we note that the number of iterations T depends only on the gap from capacity
∆R = (C−R)/C, and does grow with the problem dimensions M,L, or n. The number of iterations
increases as R approaches C. The definition of T guarantees that xT ≥ (1 − fR(M)). Therefore,
using τ2

T = σ + P (1− xT ) we have

σ2 ≤ τ2
T ≤ σ2 + PfR(M). (2.13)

1As Lemma 2.2 assumes that δ ∈ (0,min{ 1
2
,∆R}], by taking δ = ∆R we have assumed that ∆R ≤ 1

2
, i.e., R ≥ C/2.

This assumption can be made without loss of generality — as the probability of error increases with rate, the large
deviations bound of Theorem 3.1 evaluated for ∆R = 1

2
applies for all R such that ∆R <

1
2
.
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3 Performance of the AMP decoder

The section error rate of a decoder for a SPARC S is defined as Esec(S) := 1
L

∑L
`=1 1{β̂(`) 6= β0(`)

}.
Our main result is a bound on the probability of the section error rate exceeding any fixed ε > 0.

Theorem 3.1. Fix any rate R < C. Consider a rate R SPARC Sn with block length n, design
matrix parameters L and M determined according to (1.2), and an exponentially decaying power
allocation given by (2.3). Furthermore, assume that M is large enough that

∆R ≥
√

log logM

κ2 logM
,

where κ2 is the universal constant used in Lemmas 2.1(b) and 2.2. Fix any ε > 2snr
C fR(M), where

fR(M) := M−κ2∆2
R

∆R
√

logM
.

Then, for sufficiently large L,M , the section error rate of the AMP decoder satisfies

P (Esec(Sn) > ε) ≤ KT exp
{ −κTL

(logM)2T−1

(εσ2C
2
− PfR(M)

)2}
, (3.1)

where T is defined in (2.12). The constants κT and KT in (3.1) are given by κT = [c2T (T !)17]−1

and KT = C2T (T !)11 where c, C > 0 are universal constants (not depending on AMP parameters
L,M, n, or ε) but are not explicitly specified.

Proof. The proof is given in Section 4.

In the discussion that follows we refer to the probability P (Esec(Sn) > ε0) on the left side of
(3.1) as the ‘deviation probability’ (of the section error rate), and the upper bound given by the
right side of (3.1) as the ‘bound on the deviation probability’.

Remarks:

1. The probability measure in (3.1) is over the Gaussian design matrix A, the Gaussian channel
noise w, and the message β distributed uniformly in BM,L(P1, . . . , PL).

2. Given L,M , the bound on the deviation probability given in (3.1) depends on the rate R only
through T .

3. Asymptotic convergence results of the kind given in [7] are implied by Theorem 3.1. Indeed,
for any fixed R < C, consider a sequence of SPARCs {Sn}n≥0 indexed by block length n with
M = La for some constant a > 0. Then, from Theorem 3.1 we have

∑∞
n=1 P (Esec(Sn) ≥ ε) <

∞. Therefore the Borel-Cantelli lemma implies that limn→∞ Esec(Sn)
a.s.
= 0.

We note that for a fixed R < C, there are many choices for scaling M vs. L that guarantee
that limn→∞ Esec(Sn)

a.s.
= 0. Some examples, along with the tradeoffs they imply, are discussed

in the following subsection.

4. The dependence of the constants KT , κT on T ! arises due to the induction-based proof of
the concentration lemma. These constants have not been optimized, but we believe that the
dependence of these constants on T ! is inevitable in any induction-based proof of the result.
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5. As described in [1], one can obtain a small probability of codeword error, i.e., P (β̂ 6= β), by
using a concatenated code with the SPARC as the inner code and an outer Reed-Solomon
code. A suitably chosen Reed-Solomon code of rate (1 − 2ε) ensures that β̂ = β whenever
the section error rate Esec < ε, for any ε > 0. For such a concatenated code, the overall rate
is (1− 2ε)R and the probability P (β̂ 6= β) is bounded by the RHS of (3.1).

6. The deviation probability of the section error rate for the Cho-Barron adaptive successive soft-
decision decoder has also been shown to decay exponentially in L/(logM)2T−1 [4, Lemma 7].
When implemented with Gaussian design matrices, both the AMP decoder and the adaptive
successive soft-decision decoder have running time and memory of O(nML). However, the
latter requires an orthonormalization step in each iteration, hence the AMP decoder is faster
in practice. Moreover, the complexity and memory requirement of the AMP decoder can be
greatly improved by replacing the Gaussian design matrix with a Hadamard-based one [7,8].
However, there is currently no theoretical analysis of the section error rate with a Hadamard-
based AMP decoding scheme.

7. Though Theorem 3.1 is stated and proved for the exponentially decaying allocation with
P` ∝ e−2C`/L, a result similar to (3.1) holds for any power allocation for which a state evolution
lower bound analogous to Lemma 2.2 can be established. More precisely, consider a fixed
R < C and an allocation {P`}`∈[L] such that the state evolution parameter xt monotonically
increases until it reaches (1− f(M)) in a finite number of iterations T ′. Then the deviation
probability bound (3.1) holds for that allocation, with T replaced by T ′.

3.1 Effects of L,M on decoding performance

We now examine how varying the parameters L,M affects the performance of the AMP decoder.
Recall from (1.2) that L,M determine the block length via n = (L logM)/R. For a fixed M and
a target section error rate ε0 >

2snr
C fR(M), the bound on the deviation probability given in (3.1)

shows that the probability of decoding greater than a fraction ε0 of sections in error decreases
exponentially in L.

Next, consider fixing L and increasing M . This has several effects. First, M controls how small
the target section error rate in Theorem 3.1 can be, via the requirement ε > 2snr

C fR(M). Hence, in
order to bound the deviation probability P (Esec(Sn) > ε0) for a fixed R, there is a corresponding
requirement that M is large enough that ε0 >

2snr
C fR(M). Thus, the larger the M , the smaller we

can make the target section error rate. Also notice from Lemmas 2.1 and 2.2 that increasing M
tightens the lower bound on the state evolution parameter xt in each step.

On the other hand, the bound on the deviation probability in Theorem 3.1 Eq. (3.1) worsens with
increasing M (with L fixed). Moreover, as R gets closer to C, the weakening of the bound in (3.1)
due to increasing M is more acute since T increases with ∆−1

R = C/(C −R) (see (2.12)). Therefore,
increasing M allows the AMP decoder to have a smaller target section error rate, but increases
the probability of the observed section error rate deviating from the target by a large amount.
This prediction, based on Theorem 3.1, has been empirically verified recently in [23, Sec. III.A].
Fig. 2 shows a plot from [23], with the solid curve representing the empirical section error rate for
different values of M with L = 1024. We observe that the dashed curve, representing the state
evolution prediction for the section error rate, approaches zero with increasing M . However, beyond
a certain value of M , the empirical performance begins to diverge sharply from the state evolution
prediction. This is due to the benefit of a lower predicted section error rate being outweighed by
the loss of concentration around the prediction.
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Figure 2: AMP error performance with increasing M , for fixed L = 1024, R = 1.5 bits, and snr = 11.1 (2
dB from Shannon limit). The solid line is the empirical section error rate, obtained by averaging over 200
trials for each point. The dashed line is the section error rate predicted by state evolution. See [23, Sec.
III.A] for details.

As M increases with L held fixed, numerical simulations for a range of rates suggest that the
empirical section error rate starts diverging from the state evolution prediction close to M = L (as
in Fig. 2). However, a theoretical analysis of how M should be chosen for a fixed L in order to
ensure the smallest section error rate (while maintaining concentration around the state evolution
prediction) remains open. The challenge here is that the constants κT ,KT in Theorem 3.1 are not
optimal, and the exact dependence of the deviation probability on T is not known.

In the next two subsections, we consider the behavior of the deviation probability bound of
Theorem 3.1 in two different regimes. The first is where R < C is held constant as L,M →∞ (with
n = L logM/R) — the so-called “error exponent” regime. In this case, ∆R is of constant order, so
fR(M) in (2.10) decays polynomially with growing M . The other regime is where R approaches
C as L,M →∞ (equivalently, ∆R shrinks to 0), while ensuring that the error probability remains

small or goes to 0. Here, (2.11) specifies that ∆R should be of order at least
√

log logM
logM .

3.2 Error exponent of AMP decoding

For any ensemble of codes, the error exponent specifies how the codeword error probability decays
with growing code length n for a fixed R < C [24]. In the SPARC setting, we wish to understand
how the bound on the deviation probability in Theorem 3.1 decays with n for fixed values of ε > 0
and R < C. (As explained in Remark 5 following Theorem 3.1, concatenation using an outer code
can be used to extend the result to the codeword error probability.) With optimal encoding, it was
shown in [1] that deviation probability decays exponentially in nmin{ε∆,∆2}, where ∆ = (C −R).
For the AMP decoder, we consider two choices for (M,L) in terms of n to illustrate the trade-offs
involved:

1. M = La, for some constant a > 0. Then, (1.2) implies that L = Θ( n
logn) and M = Θ(( n

logn)a).
Therefore, the bound on the deviation probability in Theorem 3.1 decays exponentially in
n/(log n)2T .
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2. L = κn/log log n, for some constant κ, which implies M = R
κ log n. With this choice the

bound on the deviation probability in Theorem 3.1 decays exponentially in n/(log log n)2T .

Note from (2.12) that for a fixed R < C, the number of AMP iterations T is an Θ(1) quantity
that does not grow with L,M, or n. The deviation probability decays more rapidly with n for the
second choice above, but this comes at the expense of much smaller M (for a given n). Therefore,
the first choice allows for a much smaller target section error rate (due to smaller fR(M)), but has
a larger probability of deviation from the target. One can also compare the two cases in terms of
decoding complexity, which is O(nMLT ) with Gaussian design matrices. The complexity in the
first case is O(n2+a/(log n)1+a), while in the second case it is O(n2 log n/log log n).

3.3 Gap from capacity with AMP decoding

We now consider how fast R can approach the capacity C with growing n, so that the deviation
probability still decays to zero. Recall that lower bound on the gap from capacity is already specified
by (2.11): for the state evolution parameter xT to converge to 1 with growing M (predicting reliable

decoding), we need ∆R ≥
√

log logM
κ2 logM . When ∆R takes this minimum value, the minimum target

section error rate fR(M) in Theorem 3.1 is

fR(M) =

√
κ2

logM
√

log logM
. (3.2)

(We note that in the lower bound for ∆R in (2.11), we can replace κ2 by κ2/κ0, for any κ0 >
1
2 .

This would change the factor of logM in the denominator of (3.2) to (logM)κ0 . We do not pursue
this generalization in the interest of keeping the exposition simple. We just note that increasing κ0

allows a smaller target section error rate fR(M) at the expense of a larger gap ∆R.)
We evaluate the bound on the deviation probability of Theorem 3.1 with ∆R at the minimum

value of
√

log logM
κ2 logM , for ε > 2snr

C fR(M), with fR(M) given in (3.2). From (2.12), we have the bound

T ≤ 2snr

∆R
≤ κ4

√
logM

log logM
(3.3)

for large enough L,M . Then, using Stirling’s approximation to write log(T !) = T log T − T +
O(log T ), Theorem 3.1 yields

− logP (Esec(Sn) > ε) ≥ κ5Lε
2

c2T (T !)17(logM)2T−1
−O(T log T )

=
κ5Lε

2

exp{2T log c+ 17(T log T − T ) + (2T − 1) log logM +O(log T )} −O(T log T )

≥ Lε2

exp
{
κ6

√
(logM)(log logM)

(
1 +O( 1

log logM )
)} −O(√(logM)(log logM)

)
(3.4)

where the last inequality above follows from (3.3).
We now evaluate the bound in (3.4) for the case M = La considered in Sec 3.2. We then have
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L = Θ( n
logn) and M = Θ(( n

logn)a). Substituting these in (3.4), we obtain

− logP (Esec(Sn) > ε) ≥ κ7nε
2

(log n) exp{κ8

√
(log n)(log logn)}

= κ7 exp{log n− κ8

√
(log n)(log log n)− log log n}ε2

= κn
1−O(

√
log logn

logn
+ log logn

logn
)
ε2. (3.5)

Therefore, for the case M = La, with a gap from capacity (∆R) that is of order
√

log logn
logn , we can

achieve a deviation probability that decays as exp{−κn1−O(
√

log logn/logn)ε2}. Furthermore, from
(3.2) we see that ε must be of order at least 1

logn
√

log logn
.

We note that this gap from capacity is of a larger order than polar codes, which have a poly-
nomial gap to capacity [25]. Guruswami and Xia showed in [25] that for binary input, symmetric
memoryless channels, polar codes of block length n with gap from capacity of order 1

nµ can achieve

a block error probability decaying as 2−n
0.49

with a decoding algorithm whose complexity scales as
n · poly(log n). (Here 0 < µ < 1

2 is a universal constant.) We remark that for AWGN channels,
there is no known coding scheme that provably achieves a polynomial gap to capacity with efficient
decoding.

Recall the lower bound on the gap to capacity arises from the condition (2.9) which is required
to ensure that the (deterministic) state evolution sequence x1, x2, . . . is guaranteed to increase by
at least an amount proportional to ∆R in each iteration. It was shown in [26, Sec. 4.18] that for
the iterative hard-decision decoder that the gap to capacity can be improved to O( log logM

logM ) by
modifying the exponential power allocation: the idea is to flatten the power allocation for a certain
number of sections at the end. We expect such a modification to yield a similar improvement in
the capacity gap for the AMP decoder, but we do not detail this analysis as it is involves additional
technical details.

To summarize, the AMP decoder (as well as the adaptive hard-decision/soft-decision decoders)
are efficient and achieve near-exponential decay of error probability in the regime where R < C
remains fixed. When ∆R shrinks to 0 with growing M , these decoders are no longer efficient as
they require M to increase exponentially in 1/∆R (cf. (2.11)). An interesting open question is
whether spatially coupled SPARCs with AMP decoding have a smaller gap from capacity. The
analysis of the state evolution equations for spatially coupled SPARCs (via potential functions)
in [21, 22] indicates that they achieve capacity with AMP decoding, but a rigorous analysis of the
error probability of these spatially coupled SPARCs is still an open question.

4 Proof of Theorem 3.1

The main ingredients in the proof of Theorem 3.1 are two technical lemmas (Lemma 4.3 and Lemma
4.5). After laying down some definitions and notation that will be used in the proof, we state the
two lemmas and use them to prove Theorem 3.1.
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4.1 Definitions and Notation for the Proof

For consistency with earlier analyses of AMP, we use notation similar to [7,13]. Define the following
column vectors recursively for t ≥ 0, starting with β0 = 0 and z0 = y.

ht+1 := β0 − (A∗zt + βt), qt := βt − β0,

bt := w − zt, mt := −zt.
(4.1)

Recall that β0 is the message vector chosen by the transmitter. The vector ht+1 is the noise in the
effective observation A∗zt + βt, while qt is the error in the estimate βt. The proof will show that
ht+1 is approximately i.i.d. N (0, τ2

t ), while bt is approximately i.i.d. N (0, τ2
t − σ2).

Define St1,t2 to be the sigma-algebra generated by

b0, ...,bt1−1,m0, ...,mt1−1,h1, ...,ht2 ,q0, ...,qt2 , and β0,w.

Lemma 4.3 iteratively computes the conditional distributions bt|St,t and ht+1|St+1,t . Lemma 4.5
then uses this conditional distributions to show the concentration of various inner products involving
ht+1,qt,bt, and mt to deterministic constants.

For t ≥ 1, let

λt :=
−1

τ2
t−1

(
P −

∥∥βt∥∥2

n

)
. (4.2)

We then have
bt + λtm

t−1 = Aqt, and ht+1 + qt = A∗mt, (4.3)

which follows from (1.4) and (4.1). From (4.3), we have the matrix equations

Bt + [0|Mt−1]Λt = AQt and Ht + Qt = A∗Mt, (4.4)

where for t ≥ 1

Mt := [m0 | . . . |mt−1], Qt := [q0 | . . . | qt−1]

Bt := [b0| . . . |bt−1], Ht = [h1| . . . |ht], Λt := diag(λ0, . . . , λt−1).
(4.5)

The notation [c1 | c2 | . . . | ck] is used to denote the matrix with columns c1, . . . , ck. We define
M0,Q0,B0, H0, and Λ0 to be all-zero vectors.

We use mt
‖ and qt‖ to denote the projection of mt and qt onto the column space of Mt and Qt,

respectively. Let αt := (αt0, . . . , α
t
t−1)∗ and γt := (γt0, . . . , γ

t
t−1)∗ be the coefficient vectors of these

projections, i.e.,

mt
‖ =

t−1∑
i=0

αtim
i, qt‖ =

t−1∑
i=0

γtiq
i. (4.6)

The projections of mt and qt onto the orthogonal complements of Mt and Qt, respectively, are
denoted by

mt
⊥ := mt −mt

‖, qt⊥ := qt − qt‖ (4.7)

Lemma 4.5 shows that for large n, the entries of αt and γt concentrate around constants. We
now specify these constants. With τ2

t and xt as defined in (1.6) and (1.7), for t ≥ 0 define

σ2
t := τ2

t − σ2 = P (1− xt). (4.8)
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Define matrices C̃t, C̆t ∈ Rt×t for t ≥ 1 such that

C̃ti+1,j+1 = σ2
max(i,j), and C̆ti+1,j+1 = τ2

max(i,j), 0 ≤ i, j ≤ t− 1. (4.9)

The concentrating values for γt and αt are

γ̂t := σ2
t (C̃

t)−1(1, . . . , 1)∗
(a)
= (0, . . . , 0, σ2

t /σ
2
t−1)∗ ∈ Rt,

α̂t := τ2
t (C̆t)−1(1, . . . , 1)∗

(b)
= (0, . . . , 0, τ2

t /τ
2
t−1)∗ ∈ Rt.

(4.10)

To see that (a) holds, we observe that (C̃t)−1C̃t = It implies that (C̃t)−1(σ2
t−1, . . . , σ

2
t−1)∗ =

(0, . . . , 0, 1) ∈ Rt. The equality (b) is obtained similarly. Let (σ⊥0 )2 := σ2
0 and (τ⊥0 )2 := τ2

0 , and for
t > 0 define

(σ⊥t )2 := σ2
t

(
1− σ2

t

σ2
t−1

)
, and (τ⊥t )2 := τ2

t

(
1− τ2

t

τ2
t−1

)
. (4.11)

Lemma 4.1. For sufficiently large L,M , the constants (σ⊥k )2 and (τ⊥k )2 are bounded below by
a positive constant c∗ > 0 for 0 ≤ k < T . The value of c∗ depends on the ratio R/C, with c∗
approaching 0 as the rate approaches the capacity.

Proof. For k = 0, the lower bounds are immediate since (τ⊥0 )2 = σ2 + P and (σ⊥0 )2 = σ2. For
1 ≤ k ≤ T , we write

(τ⊥k )2 =
τ2
k

τ2
k−1

(P (xk − xk−1))
(a)

≥ σ2P

σ2 + P
χ

(b)

≥ σ2P

σ2 + P
κ0(∆R + ∆2

R/2), (4.12)

where κ0 > 0 is a universal constant. Here, (a) is due to (2.6), and (b) follows from (2.9) for large
enough L,M because f(M) is of smaller order than ∆R when (2.11) is satisfied.

The lower bound on (σ⊥k )2 follows in a similar manner by writing

(σ⊥k )2 =
σ2
k

σ2
k−1

(σ2
k − σ2

k−1) =
1− xk

1− xk−1
P (xk − xk−1)

(a)

≥ χ · Pχ
(b)

≥ Pκ2
0(∆R + ∆2

R/2)2, (4.13)

where (a) is obtained as follows. Since T is the first iteration in which the x value exceeds (1−f(M)),
and the increase in each iteration is at least χ, for 1 ≤ k < T we have 1 > xk ≥ xk−1 + χ. The
inequality (b) follows from the same argument as the last inequality in (4.12). From (4.12) and
(4.13), it is clear that the bounds tend to 0 as R approaches C.

Lemma 4.2. If the (σ⊥k )2 and (τ⊥k )2 are bounded below by some positive constants for 0 ≤ k < T ,

then the matrices C̃k and C̆k defined in (4.9) are invertible for 1 ≤ k ≤ T .

Proof. The proof can be found in [20, Lemma 4.1 in the extended version].

We use the following notation. Given two random vectors X,Y and a sigma-algebra S , X|S d
=

Y implies that the conditional distribution of X given S equals the distribution of Y. For a matrix
A with full column rank, PA := A(A∗A)−1A∗ denotes the orthogonal projection matrix onto the
column space of A, and P⊥A := I− PA. We also recall that N = ML.

The following lemma, which was also used for the asymptotic result in [7], characterizes the
conditional distribution of the vectors ht+1 and bt given the matrices in (4.5) as well as β0 and w.
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Lemma 4.3 (Conditional Distribution Lemma [7, Lemma 4]). For the vectors ht+1 and bt defined
in (4.1), the following hold for 1 ≤ t ≤ T , provided n > T , and Mt and Qt have full column rank.

h1|S1,0

d
= τ0Z0 + ∆1,0, and ht+1|St+1,t

d
=

τ2
t

τ2
t−1

ht + τ⊥t Zt + ∆t+1,t, (4.14)

b0|S0,0

d
= σ0Z

′
0, and bt|St,t

d
=

σ2
t

σ2
t−1

bt−1 + σ⊥t Z′t + ∆t,t. (4.15)

where Z0,Zt ∈ RN and Z′0,Z
′
t ∈ Rn are i.i.d. standard Gaussian random vectors that are indepen-

dent of the corresponding conditioning sigma algebras. The deviation terms are ∆0,0 = 0,

∆1,0 =
[(∥∥m0

∥∥
√
n
− τ0

)
I−

∥∥m0
∥∥

√
n

Pq0

]
Z0 + q0

(∥∥q0
∥∥2

n

)−1((β0)∗m0

n
−
∥∥q0

∥∥2

n

)
, (4.16)

and for t > 0,

∆t,t =

t−2∑
r=0

γtrb
r +

(
γtt−1 −

σ2
t

σ2
t−1

)
bt−1 +

[(∥∥qt⊥∥∥√
n
− σ⊥t

)
I−

∥∥qt⊥∥∥√
n

PMt

]
Z′t

+ Mt

(M∗
tMt

n

)−1(Htq
t
⊥

n
− Mt

n

∗[
λtm

t−1 −
t−1∑
r=1

λrγ
t
rm

r−1
])
, (4.17)

∆t+1,t =
t−2∑
r=0

αtrh
r+1 +

(
αtt−1 −

τ2
t

τ2
t−1

)
ht +

[(∥∥mt
⊥
∥∥

√
n
− τ⊥t

)
I−

∥∥mt
⊥
∥∥

√
n

PQt+1

]
Zt

+ Qt+1

(Q∗t+1Qt+1

n

)−1(B∗t+1m
t
⊥

n
− Q∗t+1

n

[
qt −

t−1∑
i=0

αtiq
i
])
. (4.18)

The next lemma uses the representation in Lemma 4.3 to show that for each t ≥ 0, ht+1 is the
sum of an i.i.d. N (0, τ2

t ) random vector plus a deviation term. Similarly bt is the sum of an i.i.d.
N (0, σ2

t ) random vector and a deviation term.

Lemma 4.4. For t ≥ 0, the conditional distributions in Lemma 4.3 can be expressed as

ht+1|St+1,t

d
= h̃t+1 + ∆̃t+1, bt|St,t

d
= b̆t + ∆̆t, (4.19)

where

h̃t+1 := τ2
t

t∑
r=0

(τ⊥r
τ2
r

)
Zr, ∆̃t+1 := τ2

t

t∑
r=0

( 1

τ2
r

)
∆r+1,r, (4.20)

b̆t := σ2
t

t∑
r=0

(σ⊥r
σ2
r

)
Z′r, ∆̆t := σ2

t

t∑
r=0

( 1

σ2
r

)
∆r,r. (4.21)

Here Zr ∈ RN , Z′r ∈ Rn are the independent standard Gaussian vectors defined in Lemma 4.3.

Consequently, h̃t+1 d
= τtZ̃t, and b̆t

d
= σtZ̆t, where Z̃t ∈ RN and Z̆t ∈ Rn are standard Gaussian

random vectors such that for any j ∈ [N ] and i ∈ [n], the vectors (Z̃0,j , . . . , Z̃t,j) and (Z̆0,i, . . . , Z̆t,i)
are each jointly Gaussian with

E[Z̃r,jZ̃s,j ] =
τs
τr
, E[Z̆r,iZ̆s,i] =

σs
σr

for 0 ≤ r ≤ s ≤ t. (4.22)
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Proof. We give the proof for the distributional representation of ht+1, with the proof for bt being
similar. The representation in (4.19) can be directly obtained by using Lemma 4.3 Eq. (4.14) to
recursively write ht in terms of (ht−1,Zt−1,∆t,t−1), then ht−1 in terms of (ht−2,Zt−2,∆t−1,t−2),
and so on.

Using (4.20), we write h̃t+1 = τtZ̃t, where Z̃t = τt
∑t

r=0

(
τ⊥r
τ2
r

)
Zr is n Gaussian random vector

with i.i.d. entries, with zero mean and variance equal to

τ2
t

t∑
r=0

(τ⊥r )2

τ4
r

=
τ2
t

τ2
0

+
t∑

r=1

(τ2
t

τ2
r

)(
1− τ2

r

τ2
r−1

)
=
τ2
t

τ2
0

+
t∑

r=1

(τ2
t

τ2
r

− τ2
t

τ2
r−1

)
= 1. (4.23)

For j ∈ [N ] the covariance between the jth entries of Z̃r and Z̃s, for 0 ≤ r ≤ s ≤ t, is

E[Z̃r,jZ̃s,j ] = τrτs

r∑
u=0

s∑
v=0

(τ⊥u
τ2
u

)(τ⊥v
τ2
v

)
E{ZujZvj}

(a)
= τrτs

r∑
u=0

(τ⊥u )2

τ4
u

(b)
=
τs
τr
, (4.24)

where (a) follows from the independence of Zuj and Zvj and (b) from the calculation in (4.23).

The next lemma shows that the deviation terms in Lemma 4.3 are small, in the sense that their
section-wise maximum absolute value and norm concentrate around 0. Lemma 4.5 also provides
concentration results for various inner products and functions involving {ht+1,qt,bt,mt}.

Let c, C > 0 be universal constants not depending on n, ε, or t. For t ≥ 0, let

Kt = C2t(t!)11, κt =
1

c2t(t!)17
, K ′t = C(t+ 1)5Kt, κ′t =

κt
c(t+ 1)7

. (4.25)

To keep the notation compact, we use K,K ′, κ, and κ′ to denote generic positive universal constants
throughout the lemma statement and proof.

Lemma 4.5. The following statements hold for 1 ≤ t < T , where T is defined in (2.12) and

ε ∈ (0, 1). Let Xn
.
= c be shorthand for P (|Xn − c| ≥ ε) ≤ t3KKt−1 exp

{
− κκt−1Lε2

t3(logM)2t−1

}
. Let

Xn $ c be shorthand for P (|Xn − c| ≥ ε) ≤ t4KK ′t−1 exp
{
− κκ′t−1Lε

2

t6(logM)2t+1

}
.

(a)

P
([ 1

L

L∑
`=1

max
j∈ind(`)

|[∆t+1,t]j |
]2
≥ ε
)
≤ P

( 1

L

L∑
`=1

max
j∈ind(`)

([∆t+1,t]j)
2 ≥ ε

)
(4.26)

≤ t3KK ′t−1 exp
{
− κκ′t−1Lε

t4(logM)2t

}
, (4.27)

1

n
‖∆t,t‖2 .

= 0, (4.28)

(b)

P
( 1

n

∣∣∣(ht+1)∗q0
∣∣∣ ≥ ε) ≤ t3KK ′t−1 exp

{
− κκ′t−1Lε

2

t4(logM)2t−1

}
, (4.29)

1

n
(bt)∗w

.
= 0,

1

n
(mt)∗w

.
= −σ2. (4.30)
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(c) For all 0 ≤ r ≤ t,

1

n
(qr)∗qt+1 $ σ2

t+1,
1

n

∥∥qt+1
∥∥2

$ σ2
t+1, (4.31)

1

n
(br)∗bt

.
= σ2

t . (4.32)

(d) For all 0 ≤ r, s ≤ t,

1

n
(hs+1)∗qr+1 $ −

σ2
r+1τ

2
max(r,s)

τ2
r

, (4.33)

1

n
(br)∗ms .= σ2

max(r,s), (4.34)

(e) For all 0 ≤ r ≤ t,

λt+1 $
σ2
t+1

τ2
t

, (4.35)

1

n
(mr)∗mt .= τ2

t . (4.36)

(f) Let QQQt+1 := 1
nQ∗t+1Qt+1 and MMMt := 1

nM∗
tMt. Then

P (QQQt+1 is singular) ≤ tK ′t−1 exp
{
− κκ′t−1L

(logM)2t+1

}
, (4.37)

P (MMMt is singular) ≤ tKt−1 exp
{
− κκt−1L

(logM)2t−1

}
. (4.38)

For all 1 ≤ i, j ≤ t+ 1 and 1 ≤ i′, j′ ≤ t:

P
(∣∣∣[QQQ−1

t+1 − (C̃t+1)−1]i,j

∣∣∣ ≥ ε ∣∣∣ QQQt+1 invertible
)
≤ KK ′t−1 exp

{
− κκ′t−1Lε

2

(logM)2t−1

}
, (4.39)

P
(∣∣∣γt+1

i−1 − γ̂t+1
i−1

∣∣∣ ≥ ε ∣∣∣ QQQt+1 invertible
)
≤ t5KK ′t−1 exp

{
− κκ′t−1Lε

2

t8(logM)2t+1

}
, (4.40)

P
(∣∣∣[MMM−1

t − (C̆t)−1]i′,j′
∣∣∣ ≥ ε ∣∣∣ MMMt invertible

)
≤ KKt−1 exp

{
− κκt−1Lε

2

(logM)2t−3

}
, (4.41)

P
(∣∣∣αti′−1 − α̂ti′−1

∣∣∣ ≥ ε ∣∣∣ MMMt invertible
)
≤ t4KKt−1 exp

{
− κκt−1Lε

2

t5(logM)2t−1

}
, t ≥ 1.

(4.42)

Terms C̃t+1 and C̆t are defined in (4.9) and γ̂t+1 and α̂t are defined in (4.10).

(g) For terms (σ⊥t+1)2 and (τ⊥t )2 defined in (4.11) and shown to be positive in Lemma 4.1,

P
(∣∣∣ 1
n

∥∥qt+1
⊥
∥∥2 − (σ⊥t+1)2

∣∣∣ ≥ ε) ≤ t6KK ′t−1 exp
{
− κκ′t−1Lε

2

t10(logM)2t+1

}
, (4.43)

P
(∣∣∣ 1
n

∥∥mt
⊥
∥∥2 − (τ⊥t )2

∣∣∣ ≥ ε) ≤ t5KKt−1 exp
{
− κκt−1Lε

2

t7(logM)2t−1

}
. (4.44)
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(h)

P
( 1

L

L∑
`=1

max
j∈ind(`)

∣∣∣ht+1
j

∣∣∣ ≥ τ0

√
3 logM + ε

)
≤ t4KK ′t−1 exp

{
− κκ′t−1Lε

2

t6(logM)2t

}
, (4.45)

P
( 1

L

L∑
`=1

max
j∈ind(`)

(ht+1
j )2 ≥ 6τ2

0 logM + ε
)
≤ t4KK ′t−1 exp

{
− κκ′t−1Lε

t6(logM)2t

}
. (4.46)

The lemma is proved in Section 5.

4.2 Comments on Lemma 4.5

The proof of Lemma 4.5 is inductive: the concentration results for time step t depend on the results
at times t = 0, 1, . . . , t − 1. To prove Theorem 3.1, the main result we need from Lemma 4.5 is
that for each t ≤ T , the squared error 1

n‖qt‖2 = 1
n‖βt − β0‖2 concentrates on σ2

t . This result is
used in Section 4.3 below to prove Theorem 3.1. The concentration of 1

n‖qt‖2 is shown in part (c)
of Lemma 4.5, but the proof of part (c) requires the other concentration results in the lemma to
hold. For example, we prove part (c) by noting that qt = ηt−1(β0−ht)−β0, appealing to Lemma
4.3 to find the conditional distribution of ht, and then using other parts of the induction to show
that the terms in the conditional distribution of ht concentrate.

While the concentration inequalities in Lemma 4.5 are broadly similar to those in [20, Lemma
4.5], there are a few important differences. The first is that the denoising functions {ηt}t≥0 (defined
in (1.8)) act section-wise on their vector input due to the fact that the message vector β0 has a
section-wise structure. In contrast, the analysis in [20] considers only separable denoising functions
that act component-wise on vector inputs. This is because it is assumed in [20] that the signal
has i.i.d. entries. However, the “signal” (the message vector) considered here is only section-wise
independent, with the section size M approaching infinity in the large system limit. (In the large
system limit L,M, n all tend to infinity, with the constraint L logM = nR.) A related consequence
is that the sampling ratio (n/N) of the measurement matrix [20] is assumed to be of constant order,
while in the SPARC setting, n

N = n
ML → 0 in the large system limit.

The concentration constants: The dependence on t of the constants κt, κ
′
t,Kt,K

′
t in (4.25) is

determined by the induction used in the proof: the concentration results for step t depend on those
corresponding to all the previous steps. The t! terms in the constants arise due to quantities that
can be expressed as a sum of t terms with step indices 1, . . . , t, e.g., ∆t,t and ∆t+1,t in (4.17) and
(4.18). The concentration results for such quantities have 1/t and t multiplying the exponent and
pre-factor, respectively, in each step t (see Lemma C.2), which results in the t! terms in Kt and
κt. Similarly, the (C2)t and (c2)t terms in κt,Kt arise due to quantities that are the product of two
terms, for each of which we have a concentration result available from the induction hypothesis.
(see Lemma C.3).

Finally, the logM factor in the denominator of the exponent in each of the concentration in-
equalities is due to a dependence on the magnitude of the largest entry in each section of ∆t+1,t.
(Each section has M entries, and the maximum of M i.i.d. standard Gaussians is close to

√
2 logM .)
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4.3 Proof of Theorem 3.1

The event that the section error rate exceeds ε is {Esec(Sn) > ε} =
{∑

` 1{β̂(`) 6= β0(`)
} > Lε

}
. It

is shown in [7, Sec. V.E] that

{Esec(Sn) > ε} ⇒
{‖βT − β0‖2

n
≥ εσ2C

2

}
, (4.47)

where βT is the AMP estimate at the termination step T . (Recall that the largest entry within
each section of βT is chosen to produce β̂.)

Now, from (4.31) of Lemma 4.5(c), we know that for any ε̃ ∈ (0, 1):

P
(‖βT − β0‖2

n
≥ σ2

T + ε̃
)

= P
(‖qT ‖2

n
≥ σ2

T + ε̃
)
≤ KT exp

{
− κTLε̃

2

(logM)2T−1

}
. (4.48)

From the definition of T and (2.13), we have σ2
T = τ2

T − σ2 ≤ PfR(M). Hence, (4.48) implies

P
(‖βT − β0‖2

n
≥ PfR(M) + ε̃

)
≤ P

(‖βT − β0‖2
n

≥ σ2
T + ε̃

)
≤ KT exp

{
− κTLε̃

2

(logM)2T−1

}
.

(4.49)

Now take ε̃ = εσ2C
2 − PfR(M), noting that this ε̃ is strictly positive whenever ε > 2snrfR(M)/C,

the condition specified in the theorem statement. Finally, combining (4.47) and (4.49) we obtain

P (Esec(Sn) > ε) ≤ KT exp
{
− κTL

(logM)2T−1

(εσ2C
2
− PfR(M)

)2}
.

5 Proof of Lemma 4.5

The proof proceeds by induction on t. We label as Ht+1 the results (4.26), (4.27), (4.29), (4.31),
(4.33), (4.35), (4.37), (4.39), (4.40), (4.43), (4.45), and (4.46). We similarly label as Bt the results
(4.28), (4.30), (4.32), (4.34), (4.36), (4.38), (4.41), (4.42), (4.44). The proof consists of four steps:
(1) B0 holds, (2) H1 holds, (3) if Br,Hs hold for all r < t and s ≤ t, then Bt holds, and (4) if Br,Hs
hold for all r ≤ t and s ≤ t, then Ht+1 holds.

Appendix C lists a few basic concentration inequalities, and Appendix D contains other lemmas
that are used in the proof. To keep the notation compact, we use K,K ′, κ, and κ′ to denote generic
positive universal constants throughout the proof, with the values changing as the proof progresses.

5.1 Step 1: Showing B0 holds

(a) [Eq. (4.28) for t = 0]. ∆0,0 = 0 so there is nothing to prove.
(b) [Eq. (4.30) for t = 0]. We first show concentration of (b0)∗w/n. From Lemma 4.3 and the

distribution of the channel noise, we note that b0 d
= σ0Z

′
0 and w

d
= σZ, where Z′0,Z ∈ Rn are

independent standard Gaussian random vectors. Then applying Lemma C.7, we obtain

P
( 1

n

∣∣∣(b0)∗w
∣∣∣ ≥ ε) = P

( 1

n

∣∣∣(Z′0)∗Z
∣∣∣ ≥ ε

σσ0

)
≤ 2 exp

{
− nε2

3σ2σ2
0

}
. (5.1)
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To show concentration for (m0)∗w/n recall m0 = b0 − w, and therefore (m0)∗w = (b0)∗w −
‖w‖2 d

= (b0)∗w−σ2 ‖Z‖2 . The result then follows by applying Lemma C.2, (5.1), and Lemma C.7.

(c) [Eq. (4.32) for t = 0]. From Lemma 4.3, it follows ‖b0‖2 d
= σ2

0‖Z′0‖2 and therefore by Lemma
C.7,

P
(∣∣∣ 1
n
‖b0‖2 − σ2

0

∣∣∣ ≥ ε) = P
(∣∣∣ 1
n
‖Z′0‖2 − 1

∣∣∣ ≥ ε

σ2
0

)
≤ 2 exp

{
− nε2

8σ4
0

}
.

(d) [Eq. (4.34) for t = 0]. Recall that m0 = b0 −w. The result follows from Lemma C.2, B0(b)
and B0(c).

(e) [Eq. (4.36) for t = 0]. Since w
d
= σZ, where Z ∈ Rn is standard Gaussian, we have

‖m0‖2 =
∥∥b0 −w

∥∥2
= ‖b0‖2 + ‖w‖2 − 2(b0)∗w

d
= ‖b0‖2 + σ2‖Z‖2 − 2(b0)∗w.

Using the above,

P
(∣∣∣‖m0‖2

n
− τ2

0

∣∣∣ ≥ ε) = P
(∣∣∣‖b0‖2

n
+
σ2‖Z‖2
n

− 2(b0)∗w

n
− (σ2

0 + σ2)
∣∣∣ ≥ ε)

(a)

≤ P
(∣∣∣‖b0‖2

n
− σ2

0

∣∣∣ ≥ ε

3

)
+ P

(∣∣∣‖Z‖2
n
− 1
∣∣∣ ≥ ε

3σ2

)
+ P

(∣∣∣(b0)∗w

n

∣∣∣ ≥ ε

6

)
(b)

≤ 2 exp
{
− nε2

72σ4
0

}
+ 2 exp

{
− nε2

72σ4

}
+ 2 exp

{
− nε2

108σ2σ2
0

}
.

Step (a) follows from Lemma C.2, and step (b) from B(b), B(c), and Lemma C.7.
(f) [Eqs. (4.38), (4.41), and (4.42) for t = 0]. There is nothing to prove here.
(g) [Eq. (4.43) for t = 0]. Since m0

⊥ = m0 this result is the same as B(e).

5.2 Step 2: Showing H1 holds

(a) [Eqs. (4.26) - (4.27) for t = 0]. Eq. (4.26) follows from the Cauchy-Schwarz inequality.
We now prove (4.27). From the definition of ∆1,0 given in Lemma 4.3 (4.16), and noting that
‖q0‖2 = nP , we can write

∆1,0 = Z0

(∥∥m0
∥∥

√
n
− τ0

)
−
∥∥m0

∥∥
√
n
· q0

√
nP
· Z +

q0

P

((b0)∗m0

n
− P

)
,

where we have used the fact that Pq0Z0
d
= q0
√
nP
Z where Z ∼ N (0, 1) by Lemma D.3. Consider a

single element j ∈ [N ] of ∆1,0. Using Lemma D.1 and the bound q0
j ≤

√
nPind(sec(j)), it follows

([∆1,0]j)
2 ≤ 3

∣∣∣[Z0]j

∣∣∣2·∣∣∣∥∥m0
∥∥

√
n
−τ0

∣∣∣2+3
nPind(sec(j))

P 2
·
∣∣∣(b0)∗m0

n
−P
∣∣∣2+3

∥∥m0
∥∥2

n
·
nPind(sec(j))

P
·Z

2

n
. (5.2)

Using (5.2), we have the following bound:

P
( 1

L

L∑
`=1

max
j∈ind(`)

([∆1,0]j)
2 ≥ ε

) (a)

≤ P
(∣∣∣∥∥m0

∥∥
√
n
− τ0

∣∣∣2 1

L

L∑
`=1

max
j∈ind(`)

([Z0]j)
2 ≥ ε

9

)
+ P

(
c logM

∣∣∣(b0)∗m0

n
− P

∣∣∣2 ≥ ε

9

)
+ P

(
c logM ·

∥∥m0
∥∥2

n
· Z

2

n
≥ ε

9

)
, (5.3)
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where the inequality follows from Lemma C.2, and the fact that nP`/P ≤ c logM for all ` ∈ [L],
where c > 0 is an absolute constant. Label the terms on the RHS of (5.3) as T1, T2, T3. To complete
the proof, we show that each term is upper bounded by K ′0 exp{−κ′0Lε}. First,

T1 ≤ P
(∣∣∣∥∥m0

∥∥
√
n
− τ0

∣∣∣ ≥ √
ε

3
√

3 logM

)
+ P

( 1

L

L∑
`=1

max
j∈ind(`)

|[Z0]j |2 ≥ 3 logM
)
≤ K ′0e−κ

′
0Lε + e−κL logM .

The above follows from Lemma C.4, result B0(e), and Lemma C.7. Next, the second term T2 in
(5.3) has the desired bound from B0(d). Finally, for the last term T3 we have

T3 ≤ P
((∣∣∣∥∥m0

∥∥2

n
− τ2

0

∣∣∣+ τ2
0

)Z2

n
≥ ε

9c logM

)
≤ P

(∣∣∣∥∥m0
∥∥2

n
− τ2

0

∣∣∣ ≥ √ε)+ P
( |Z|√

n
≥

√
ε

3
√
c logM

min
{

1,
1

|τ0|
}) (b)

≤ K ′0e
−κ′0Lε + 2e−κLε.

Step (b) follows from result B0(e), and Lemma C.6. This completes the proof of (4.27).
(b) [Eq. (4.29) for t = 0]. Using the conditional distribution of h1 stated in Lemma 4.3 and
Lemma C.2, we have

P
(∣∣∣(h1)∗q0

n

∣∣∣ ≥ ε) = P
(∣∣∣τ0Z

∗
0q

0

n
+

∆∗1,0q
0

n

∣∣∣ ≥ ε) ≤ P(∣∣∣Z∗0q0

n

∣∣∣ ≥ ε

2τ0

)
+ P

(∣∣∣∆∗1,0q0

n

∣∣∣ ≥ ε

2

)
.

Label the two terms on the right side of the above as T1 and T2. To complete the proof we will
show each term is upper bounded by K ′0 exp{−κ′0Lε2}. Since q0 is independent of Z0, we have

Z∗0q
0 d

= ‖q0‖Z, where Z is a N (0, 1) random variable. Therefore,

T1 = P
(∥∥q0

∥∥
√
n

|Z|√
n
≥ ε

2τ0

)
= P

(
|Z| ≥ ε

√
n

2τ0

√
P

)
≤ 2 exp

{
− nε2

8τ2
0P

}
.

where the last inequality follows from Lemma C.6. Finally,

T2 = P
(∣∣∣ 1
n

L∑
`=1

[∆1,0](`)q
0
(`)

∣∣∣ ≥ ε

2

)
≤ P

( 1

n

L∑
`=1

√
nP` max

j∈ind(`)
|[∆1,0]j | ≥

ε

2

)
(a)

≤ P
( 1

L

L∑
`=1

max
j∈ind(`)

|[∆1,0]j | ≥
ε
√

logM

2Rc

) (b)

≤ K ′0 exp{−κ′0Lmin{ε2 logM, 1}}.

Step (a) follows from the fact that for all ` ∈ [L],
√
nP` ≤ c

√
logM for some constant c > 0 and

the fact that nR = L logM and step (b) from H1(a).

(c) [Eq. (4.31) for t = 0]. We begin by showing the result for
∥∥q1

∥∥2
/n . Recalling that q1 =

η0(β0 − h1)− β0, and using the conditional distribution of h1 stated in Lemma 4.3, we write

P
(∣∣∣ 1
n

∥∥q1
∥∥2 − σ2

1

∣∣∣ ≥ ε) = P
(∣∣∣ 1
n

∥∥η0(β0 − τ0Z0 −∆1,0)− β0

∥∥2 − σ2
1

∣∣∣ ≥ ε)
≤ P

(∣∣∣ 1
n

∥∥η0(β0 − τ0Z0)− β0

∥∥2 − σ2
1

∣∣∣ ≥ ε

3

)
+ P

( 1

n

∣∣∣ ∥∥η0(β0 − τ0Z0 −∆1,0)− β0

∥∥2 −
∥∥η0(β0 − τ0Z0)− β0

∥∥2
∣∣∣ ≥ ε

3

)
.

22



Label the two terms on the RHS as T1 and T2. We will show that each of these is upper bounded

by K ′0 exp{−κ
′
0Lε

2

logM }. The bound for T1 is obtained using Hoeffding’s inequality (Lemma C.1). To
verify the conditions to apply Hoeffding’s inequality, first write

1

n

∥∥η0(β0 − τ0Z0)− β0

∥∥2
=

1

L

L∑
`=1

1

logM

(
R
∥∥∥η0

(`)(β0 − τ0Z0)− β0(`)

∥∥∥2 )
,

and note that for each ` ∈ [L]:

0 ≤ R

logM

∥∥∥η0
(`)(β0 − τ0Z0)− β0(`)

∥∥∥2
≤ 2R

logM

(∥∥∥η0
(`)(β0 − τ0Z0)

∥∥∥2
+
∥∥∥β0(`)

∥∥∥2 )
≤ 4R

( nP`
logM

)
≤ c,

for some absolute constant c > 0. Next, the expectation given by Hoeffding’s inequality can be
written as

EZ0

∥∥η0(β0 − τ0Z0)− β0

∥∥2
= Eβ,Z0

∥∥η0(β − τ0Z0)− β
∥∥2

= nσ2
1

where the first equality is true for each β0 ∈ BM,L because of the uniform distribution of the non-
zero entry in each section of β over the M possible locations and the i.i.d. distribution of Z0. The
second equality follows from Lemma D.6.

Next, we bound term T2. First, write∥∥η0(β0 − τ0Z0 −∆1,0)− β0

∥∥2 −
∥∥η0(β0 − τ0Z0)− β0

∥∥2

= [η0(β0 − τ0Z0 −∆1,0)− β0]∗[η0(β0 − τ0Z0 −∆1,0)− η0(β0 − τ0Z0)]

+ [η0(β0 − τ0Z0)− β0]∗[η0(β0 − τ0Z0 −∆1,0)− η0(β0 − τ0Z0)].

Now using the above and Lemma C.2,

T2 ≤ P
( 1

n

∣∣∣[η0(β0 − τ0Z0 −∆1,0)− β0]∗[η0(β0 − τ0Z0 −∆1,0)− η0(β0 − τ0Z0)]
∣∣∣ ≥ ε

6

)
+ P

( 1

n

∣∣∣[η0(β0 − τ0Z0)− β0]∗[η0(β0 − τ0Z0 −∆1,0)− η0(β0 − τ0Z0)]
∣∣∣ ≥ ε

6

)
.

Label the terms on the right side of the above as T2,a and T2,b. Then,

T2,a = P
( 1

n

L∑
`=1

∣∣∣[η0
(`)(β0 − τ0Z0 −∆1,0)− β0(`)

]∗[η0
(`)(β0 − τ0Z0 −∆1,0)− η0

(`)(β0 − τ0Z0)]
∣∣∣ ≥ ε

6

)
≤ P

( 1

n

L∑
`=1

2
√
nP`

∑
i∈ind(`)

∣∣∣η0
i (β0 − τ0Z0 −∆1,0)− η0

i (β0 − τ0Z0)
∣∣∣ ≥ ε

6

)
(a)

≤ P
( 1

L

L∑
`=1

max
j∈ind(`)

|[∆1,0]j | ≥
ετ2

0

16Rc
√

logM

) (b)

≤ K ′0 exp
{
− κ′0Lε

2

logM

}
.

Step (a) follows from Lemma D.5 applied to each section using (nP`)
3/2 ≤ c(logM)3/2 for ` ∈ [L],

for some constant c > 0. Step (b) follows from H1(a). Term T2,b has the same upper bound which

can be shown as above using Lemma D.5. This proves the result for
∥∥q1

∥∥2
/n.

Proving the concentration result for (q0)∗q1/n is similar: we use Lemma C.2 followed by Ho-
effding’s inequality and Lemma D.5.
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(d) [Eq. (4.33) for t = 0]. Recalling that q1 = η0(β0 − h1)− β0, we write

(h1)∗q1 = (h1)∗[η0(β0 − h1)− β0] = (h1)∗η0(β0 − h1) + (h1)∗q0.

Using the above,

P
(∣∣∣(h1)∗q1

n
+ σ2

1

∣∣∣ ≥ ε) = P
(∣∣∣(h1)∗η0(β0 − h1)

n
+

(h1)∗q0

n
+ σ2

1

∣∣∣ ≥ ε)
≤ P

(∣∣∣(h1)∗η0(β0 − h1)

n
+ σ2

1

∣∣∣ ≥ ε

2

)
+ P

(∣∣∣(h1)∗q0

n

∣∣∣ ≥ ε

2

)
. (5.4)

By H1(b), the second term in (5.4) is bounded by K ′0 exp{−κ′0nε2}. To bound the first term, using
the conditional distribution of h1 stated in Lemma 4.3 we write

P
(∣∣∣ 1
n

(h1)∗η0(β0 − h1) + σ2
1

∣∣∣ ≥ ε

2

)
= P

(∣∣∣ 1
n

(τ0Z0 + ∆1,0)∗η0(β0 − τ0Z0 −∆1,0) + σ2
1

∣∣∣ ≥ ε

2

)
≤ P

( 1

n

∣∣∣∆∗1,0η0(β0 − τ0Z0 −∆1,0)
∣∣∣ ≥ ε

6

)
+ P

(∣∣∣ 1
n
τ0Z

∗
0η

0(β0 − τ0Z0) + σ2
1

∣∣∣ ≥ ε

6

)
+ P

( 1

n

∣∣∣τ0Z
∗
0[η0(β0 − τ0Z0 −∆1,0)− η0(β0 − τ0Z0)]

∣∣∣ ≥ ε

6

)
. (5.5)

Label the terms of the above as T1, T2, T3. To complete the proof, we will show that each term is
bounded by K ′0 exp{−κ′0Lε2/ logM}. We begin by bounding T1.

T1 = P
( 1

n

L∑
`=1

∣∣∣([∆1,0](`))
∗η0

(`)(β0 − τ0Z0 −∆1,0)
∣∣∣ ≥ ε

6

)
≤ P

( 1

n

L∑
`=1

√
nP` max

j∈ind(`)
|[∆1,0]j | ≥

ε

6

)
(i)

≤ P
( 1

L

L∑
`=1

max
j∈ind(`)

|[∆1,0]j | ≥
ε
√

logM

6Rc

) (j)

≤ K ′0 exp{−κ′0Lmin{ε2 logM, 1}}.

Step (i) follows from the fact that
√
nP` ≤ c

√
logM for some constant c > 0 and all ` ∈ [L], and

step (j) from H1(a).
Next consider T2. Because of the uniform distribution of the non-zero entry in each section

of β over the M possible locations and the i.i.d. distribution of Z0, for any β0 ∈ BM,L, we have
EZ0{τ0Z

∗
0η

0(β0 − τ0Z0)} = EZ0,β{τ0Z
∗
0η

0(β − τ0Z0)}. This expectation can then computed as

1

n
E{τ0Z

∗
0η

0(β − τ0Z0)} (a)
=

1

n
E
∥∥η0(β − τ0Z0)

∥∥2 − P (b)
= −P (1− x1) = −σ2

1, (5.6)

where equality (a) is obtained using Stein’s lemma, Lemma D.2 (see [7, p.1491, Eqs. (102) – (104)]
for details). The equality (b) follows from Lemma D.6. Now, from Lemma D.4 and (5.6), we have

T2 = P
( 1

n

∣∣∣τ0Z
∗
0η

0(β0 − τ0Z0)− E{τ0Z
∗
0η

0(β − τ0Z0)}
∣∣∣ ≥ ε

6

)
≤ exp{−κLε2}.

Finally consider the term T3.

T3 = P
( 1

n

L∑
`=1

∣∣∣([Z0](`))
∗
[
η0

(`)(β0 − τ0Z0 −∆1,0)− η0
(`)(β0 − τ0Z0)

] ∣∣∣ ≥ ε

6τ0

)
≤ P

( 1

n

L∑
`=1

max
k∈ind(`)

|[Z0]k|
∑

i∈ind(`)

∣∣η0
i (β0 − τ0Z0 −∆1,0)− η0

i (β0 − τ0Z0)
∣∣ ≥ ε

6τ0

)
(e)

≤ P
( 1

L

L∑
`=1

max
k∈ind(`)

|[Z0]k| max
j∈ind(`)

|[∆1,0]j | ≥
ετ0

12Rc

) (f)

≤ K ′0 exp
{−κ′0Lε2

logM

}
.

24



Step (e) follows from Lemma D.5 applied to each section and the fact that nP` ≤ c logM for some
constant c > 0 and all ` ∈ [L]. Step (f) is obtained as follows.

P
( 1

L

L∑
`=1

max
j∈ind(`)

|[∆1,0]j | max
k∈ind(`)

|[Z0]k| ≥ ε
) (g)

≤ P
( 1

L

L∑
`=1

max
k∈ind(`)

([Z0]j)
2 1

L

L∑
`=1

max
j∈ind(`)

([∆1,0]j)
2 ≥ ε2

)
≤ P

( 1

L

L∑
`=1

max
j∈ind(`)

([Z0]j)
2 ≥ 3 logM

)
+ P

( 1

L

L∑
`=1

max
j∈ind(`)

([∆1,0]j)
2 ≥ ε2

3 logM

)
(h)

≤ e−κL logM +K ′0e
−κ
′
0Lε

2

logM .

Step (g) follows from Cauchy-Schwarz and step (h) from Lemma C.7 and H1(a). Using the bounds
for T1, T2, T3, the three terms in (5.5), completes the proof.

(e) [Eq. (4.35) for t = 0]. By definition, λ1 = − 1
τ2
0

(
P − ‖β

1‖2

n

)
, and so it follows that:

P
(∣∣∣λ1 +

σ2
1

τ2
0

∣∣∣ ≥ ε) = P
(∣∣∣( 1

n

∥∥β1
∥∥2 − P

)
+ σ2

1

∣∣∣ ≥ ετ2
0

)
. (5.7)

Note that,
∥∥q1

∥∥2 − 2(q0)∗q1 =
∥∥β1 − β0

∥∥2
+ 2β∗0(β1 − β0) =

∥∥β1
∥∥2 − nP. Using this in (5.7),

P
(∣∣∣λ1 +

σ2
1

τ2
0

∣∣∣ ≥ ε) = P
(∣∣∣(∥∥q1

∥∥2

n
− 2

(q0)∗q1

n

)
− (σ2

1 − 2σ2
1)
∣∣∣ ≥ ετ2

0

)
≤ P

(∣∣∣∥∥q1
∥∥2

n
− σ2

1

∣∣∣ ≥ ετ2
0

2

)
+ P

(∣∣∣(q0)∗q1

n
− σ2

1

∣∣∣ ≥ ετ2
0

4

)
≤ K ′0 exp

{−κ′0Lε2
logM

}
,

where the last inequality follows from H1(c).

(f) [Eqs. (4.37), (4.39), and (4.40) for t = 0]. Note that Q1 = 1
n

∥∥q0
∥∥2

= P = σ2
0 = C̃1 so the

inverse concentration in (4.39) is trivially true. Recall that γ1
0 = (q0)∗q1

nP . Then using H1(c) we have

P
(∣∣∣γ1

0 −
σ2

1

σ2
0

∣∣∣ ≥ ε) = P
(∣∣∣(q0)∗q1

nP
− σ2

1

σ2
0

∣∣∣ ≥ ε) = P
(∣∣∣(q0)∗q1

n
− σ2

1

∣∣∣ ≥ εP) ≤ K ′0 exp
{−κ′0Lε2

logM

}
.

(g) [Eq. (4.43) for t = 0]. By definition,
∥∥q1
⊥
∥∥2

=
∥∥q1

∥∥2− (γ1
0)2
∥∥q0

∥∥2
=
∥∥q1

∥∥2−nP (γ1
0)2. Using

this and the fact that (σ⊥1 )2 = σ2
1(1− (σ2

1/σ
2
0)), we find the following upper bound.

P
(∣∣∣∥∥q1

⊥
∥∥2

n
− (σ⊥1 )2

∣∣∣ ≥ ε) = P
(∣∣∣∥∥q1

∥∥2

n
− P (γ1

0)2 − σ2
1

(
1− σ2

1

σ2
0

)∣∣∣ ≥ ε)
(a)

≤ P
(∣∣∣∥∥q1

∥∥2

n
− σ2

1

∣∣∣ ≥ ε

2

)
+ P

(∣∣∣P (γ1
0)2 − σ4

1

σ2
0

∣∣∣ ≥ ε

2

) (b)

≤ K ′0 exp
{−κ′0Lε2

logM

}
.

Step (a) follows from Lemma C.2 and step (b) from H1(c) and H1(f) along with Lemma C.5.
(h) [Eqs. (4.45)- (4.46) for t = 0]. For any element i ∈ [N ], using the conditional distribution of
h1 stated in Lemma 4.3 and the Triangle Inequality, it follows

∣∣h1
i

∣∣ ≤ τ0 |[Z0]i|+ |[∆1,0]i| . We then
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have the following upper bound:

P
( 1

L

L∑
`=1

max
j∈ind(`)

∣∣h1
j

∣∣ ≥ τ0

√
3 logM + ε

)
≤ P

( 1

L

L∑
`=1

[
τ0 max

j∈ind(`)
|[Z0]j |+ max

j∈ind(`)
|[∆1,0]j |

]
≥ τ0

√
3 logM + ε

)
≤ P

( 1

L

L∑
`=1

max
j∈ind(`)

|[Z0]j | ≥
√

3 logM
)

+ P
( 1

L

L∑
`=1

max
j∈ind(`)

|[∆1,0]j | ≥ ε
)
≤ e−κL logM +K ′0e

−κ′0Lε2

where the last inequality is obtained using Lemma C.7 and H1(a). The result for the squared terms
can be shown similarly.

5.3 Step 3: Showing Bt holds

We prove the statements in Bt assuming that B0, . . . ,Bt−1, andH1, . . . ,Ht hold due to the induction
hypothesis. We begin with a lemma that is used to prove Bt(a). Parts (a)−(g) of step Bt assume the
invertibility of MMM1, . . . ,MMMt, but for the sake of brevity, we do not explicitly specify the conditioning.

Lemma 5.1. Let v := 1
nH∗tq

t
⊥− 1

nM∗
t

[
λtm

t−1 −∑t−1
i=1 λiγ

t
im

i−1
]

and MMMt := 1
nM∗

tMt. For j ∈ [t],

P
(∣∣∣[MMM−1

t v]j

∣∣∣ ≥ ε ∣∣∣ MMM1, . . . ,MMMt invertible
)
≤ t2KKt−1 exp

{
− κκt−1Lε

2

t2(logM)2t−1

}
.

Proof. The proof is similar to that of [20, Lemma 5.1] and is therefore omitted.

(a) [Eq. (4.28)]. The proof of Bt(a) follows closely to that of [20, Bt(a)] and is therefore omitted.
(b) [Eq. (4.30)]. We begin by showing concentration for (bt)∗w/n. From the conditional repre-
sentation of bt given in Lemma 4.3 Eq. (4.15), we have

P
(∣∣∣(bt)∗w

n

∣∣∣ ≥ ε) = P
(∣∣∣ σ2

t

σ2
t−1

(bt−1)∗w

n
+
σ⊥t (Z′t)

∗w

n
+

∆∗t,tw

n

∣∣∣ ≥ ε)
≤ P

(∣∣∣(bt−1)∗w

n

∣∣∣ ≥ εσ2
t−1

3σ2
t

)
+ P

(∣∣∣(Z′t)∗w
n

∣∣∣ ≥ ε

3σ⊥t

)
+ P

(∣∣∣∆∗t,tw
n

∣∣∣ ≥ ε

3

)
.

Label the three terms on the right side of the above as T1, T2, T3. The proof is completed by showing

each is upper bounded by t3KKt−1 exp
{
−κκt−1Lε2

t3(logM)2t−1

}
. First, T1 has the desired upper bound by

inductive hypothesis Bt−1(b). For T2, we recall that Z′t is independent of w, and σ⊥t is bounded from
below (Lemma 4.1). Hence, using Lemma C.7, T2 is upper bounded by 2 exp{−κnε2} . Finally,
using

∣∣∆∗t,tw∣∣ ≤ ‖∆t,t‖ ‖w‖, T3 can be bounded as

T3 ≤ P
(‖∆t,t‖ ‖w‖

n
≥ ε

3

)
≤ P

(‖∆t,t‖√
n

(∣∣∣‖w‖√
n
− σ

∣∣∣+ σ
)
≥ ε

3

)
(a)

≤ P
(‖∆t,t‖√

n
≥ ε

6
min{1, 1

σ
}
)

+ P
(∣∣∣‖w‖√

n
− σ

∣∣∣ ≥ √ε) (b)

≤ t3KKt−1 exp
{
− κκt−1Lε

2

t3(logM)2t−1

}
+ 2e−κnε.

Step (a) follows from Lemma C.3, and step (b) from Bt(a) and Lemma C.7.
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Now consider concentration for (mt)∗w/n. By definition, mt = bt−w and so the result follows
from Lemma C.2, the concentration result for (bt)∗w/n, and Lemma C.7.

(c) [Eq. (4.32)]. We prove the concentration result for
∥∥bt∥∥2

/n, with the proof for (bt)∗br/n
with 0 ≤ r ≤ t − 1 following similarly. Using the conditional distribution of bt from Lemma 4.3
Eq. (4.15), we have

∥∥bt∥∥2
= ‖(σ2

t /σ
2
t−1)βt−1 +σ⊥t Z′t+∆t,t‖2. Expanding this expression for ‖bt‖2,

and recalling that (σ⊥t )2 = σ2
t (1− σ2

t /σ
2
t−1), we use Lemma C.2 to write

P
(∣∣∣∥∥bt∥∥2

n
− σ2

t

∣∣∣ ≥ ε)
≤ P

(( σ2
t

σ2
t−1

)2
∣∣∣∣∣
∥∥bt−1

∥∥2

n
− σ2

t−1

∣∣∣∣∣ ≥ ε

4

)
+ P

(
(σ⊥t )2

∣∣∣∣∣‖Z′t‖2n
− 1

∣∣∣∣∣ ≥ ε

4

)
+ P

(‖∆t,t‖2
n

≥ ε

4

)
+ P

(2σ2
t σ
⊥
t

σ2
t−1

∣∣(bt−1)∗Z′t
∣∣

n
+ 2σ⊥t

∣∣∆∗t,t Z′t∣∣
n

+
2σ2

t

σ2
t−1

∣∣∆∗t,t βt−1
∣∣

n
≥ ε

4

)
.

(5.8)

Label the probabilities in (5.8) as T1, T2, T3, T4. To prove the result we show each term is upper

bounded by t3KKt−1 exp
{
−κκt−1Lε2

t3(logM)2t−1

}
. This is true for term T1 and T3 using inductive hypothesis

Bt−1(c) and Bt(a), respectively. Next, T2 ≤ 2 exp{−κnε2} using Lemma C.7.

For T4, we note that (bt−1)∗Z′t
d
= ‖bt−1‖Z, and ∆∗t,tZ

′
t
d
= ‖∆t,t‖Z̃, where Z, Z̃ are standard

normal random variables. We therefore have

T4 ≤ P
(2σ2

t σ
⊥
t

σ2
t−1

‖bt−1‖ |Z|
n

≥ ε

12

)
+P

(
2σ⊥t
‖∆t,t‖|Z̃|

n
≥ ε

12

)
+P

( 2σ2
t

σ2
t−1

‖∆t,t‖‖bt−1‖
n

≥ ε

12

)
. (5.9)

Letting c1 =
σ2
t−1

24σ2
t σ
⊥
t

, the first term on the RHS of (5.9) can be written as

P
(‖bt−1‖√

n
· |Z|√

n
≥ c1ε

)
= P

((∥∥bt−1
∥∥

√
n
− σt−1 + σt−1

) |Z|√
n
≥ c1ε

)
≤ P

(∥∥bt−1
∥∥

√
n
− σt−1 ≥ σt−1

)
+ P

( |Z|√
n
≥ c1ε

2σt−1

)
(a)

≤ t3KKt−1 exp
{
− κκt−1L

t3(logM)2t−1

}
+ 2 exp

{
− nε2c2

1

8σ2
t−1

}
,

(5.10)

where step (a) follows from Lemma C.4, inductive hypothesis Bt−1(c), and Lemma C.6.
Letting c2 = 1

24σ⊥t
, the second term on the RHS of (5.9) can be bounded as

P
(‖∆t,t‖√

n

|Z̃|√
n
≥ c2ε

)
≤ P

(‖∆t,t‖√
n
≥ √c2ε

)
+ P

(
|Z̃| ≥ √nc2ε

)
≤ t3KKt−1 exp

{
− κκt−1Lε

2

t3(logM)2t−1

}
+ 2 exp

{
− nεc2

2

}
,

(5.11)

where the last inequality follows from Bt(a) and Lemma C.6.
The concentration inequality for the last term in (5.9) follows in a similar manner using the

concentration results for ‖∆t,t‖/
√
n and

∥∥bt−1
∥∥ /√n. We have therefore shown that T4 is bounded

by t3KKt−1 exp
{
−κκt−1Lε2

t3(logM)2t−1

}
, which completes the proof of the concentration result for

∥∥bt∥∥2
/n.
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(d) [Eq. (4.34)]. We show concentration of (br)∗ms/n for 0 ≤ r, s ≤ t when either r = t, s = t, or
both r = s = t. By definition, ms = bs −w so (br)∗ms = (br)∗bs − (br)∗w. Then it follows:

P
(∣∣∣(br)∗ms

n
− σ2

max(r,s)

∣∣∣ ≥ ε) = P
(∣∣∣(br)∗bs

n
− (br)∗w
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− σ2
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2

)
+ P
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2

) (b)

≤ t3KKt−1 exp
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− κκt−1Lε

2

t3(logM)2t−1

}
.

Step (a) follows from Lemma C.2 and step (b) using Bt(c) and B0(b) - Bt(b).
(e) [Eq. (4.36)]. By definition, mt = bt −w, and so it follows:

P
(∣∣∣(mr)∗mt

n
− τ2

t

∣∣∣ ≥ ε) = P
(∣∣∣(mr)∗bt

n
− (mr)∗w

n
− τ2
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(a)

≤ P
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− σ2
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∣∣∣ ≥ ε

2

)
+ P
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+ σ2

∣∣∣ ≥ ε

2

) (b)

≤ t3KKt−1 exp
{
− κκt−1Lε

2

t3(logM)2t−1

}
.

Step (a) follows from Lemma C.2 and step (b) from Bt(d) and B0(b) - Bt(b).
(f), (g) [Eqs. (4.38), (4.41), (4.42), and (4.44)]. The proofs of Bt(f), (g) follow closely to that
of [20, Bt(g), (h)] and are not included here. For result (4.38) we note that (τ⊥t ) > 0 for 0 ≤ t < T
by Lemma 4.1, while [20] used the stopping criterion to show this fact.

5.4 Step 4: Showing Ht+1 holds

We begin with a lemma that is used in the proof of Ht+1(a). Parts (a)−(h) of step Ht+1 assume the
invertibility ofQQQ1, . . . ,QQQt+1, but for the sake of brevity, we do not explicitly specify the conditioning.

Lemma 5.2. Let v := 1
nB∗t+1M

⊥
t − 1

nQ∗t+1[qt−∑t−1
i=0 α

t
iq
i] and QQQt+1 := 1

nQ∗t+1Qt+1. For r ∈ [t+1],

P
(
|[QQQ−1

t+1v]r|≥ ε
∣∣∣ QQQ1, . . . ,QQQt+1 invertible
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≤ t2KK ′t−1 exp

{
− κκ′t−1Lε

2

t2(logM)2t−1

}
.

Proof. The proof follows similarly to that of Lemma 5.1 and [20, Lemma 5.2].

(a) [Eqs. (4.26) - (4.27)]. Eq. (4.26) follows from the Cauchy-Schwarz inequality. To show (4.27),
we recall the definition of ∆t+1,t from Lemma 4.3 Eq. (4.18):

∆t+1,t =
t−1∑
r=0

(αtr − α̂tr)hr+1 +
(∥∥mt

⊥
∥∥

√
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⊥
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n
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[
QQQ−1v

]
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, (5.12)

where we have used that Qt+1QQQ−1v =
∑t

r=0 qr[QQQ−1v]r+1 and (‖mt
⊥‖/
√
n)PQt+1Zt

d
= (‖mt

⊥‖Q̃t+1Z̃)/n

which follows by Lemma D.3 where Z̃ ∈ Rt+1 is a vector of i.i.d. standard Gaussians and

Q̃t+1 = [q̃0 | . . . | q̃t] :=
√
n

[
q0
⊥

‖q0
⊥‖
| . . . | qt⊥

‖qt⊥‖

]
. (5.13)

Consider a single element j ∈ [N ] of ∆t+1,t. Using the triangle inequality to bound the expression
in (5.12), we obtain

|[∆t+1,t]j | ≤
t−1∑
r=0

|αtr − α̂tr||hr+1
j |+ |[Zt]j |

∣∣∣‖mt
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n
− τ⊥t
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⊥‖√
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|Z̃s||q̃sj |√
n

+ c
√

logM
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∣∣∣[QQQ−1v]u

∣∣∣.
(5.14)
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In the last term above, we have used the fact that for each for i ∈ [N ] we have the upper bound
|qri | ≤ 2

√
nPind(sec(i)) ≤ c

√
logM for constant c > 0. Squaring (5.14) and applying Lemma D.1 to

bound the RHS, we obtain

([∆t+1,t]j)
2 ≤ 3(t+ 1)

t−1∑
r=0

∣∣αtr − α̂tr∣∣2 (hr+1
j )2 + 3(t+ 1)([Zt]j)

2
∣∣∣‖mt

⊥‖√
n
− τ⊥t

∣∣∣2
+ 3(t+ 1)

‖mt
⊥‖2
n

t∑
s=0

Z̃2
s

n
(q̃sj )

2 + 3(t+ 1)c logM
t+1∑
u=1

[QQQ−1v]2u.

Therefore, setting ε′ = ε
9(t+1)2 and using Lemma C.2, we have the following upper bound:

P
( 1

L

L∑
`=1

max
j∈ind(`)

([∆t+1,t]j)
2 ≥ ε

)
≤

t−1∑
r=0

P
(∣∣∣αtr − α̂tr∣∣∣2 1

L

L∑
`=1

max
j∈ind(`)

(hr+1
j )2 ≥ ε′

)
+ P

(∣∣∣∥∥mt
⊥
∥∥

√
n
− τ⊥t

∣∣∣2 1

L

L∑
`=1

max
j∈ind(`)

([Zt]j)
2 ≥ ε′

)
+

t∑
k=0

P
(∥∥mt

⊥
∥∥2

n
· Z̃

2
k

n
· 1

L

L∑
`=1

max
j∈ind(`)

(q̃kj )2 ≥ ε′
)

+
t+1∑
u=1

P
(∣∣∣[QQQ−1v]u

∣∣∣ ≥ √
ε′

2
√
c logM

)
.

(5.15)

Label the terms on the RHS of (5.15) as T1, T2, T3, T4. To complete the proof, we will show that

each term is upper bounded by t3KK ′t−1 exp
{ −κκ′t−1Lε

t4(logM)2t

}
.

First, for 0 ≤ r ≤ t− 1,

T1 ≤
t−1∑
r=0

P
(∣∣∣αtr − α̂tr∣∣∣ ≥

√
ε′

7τ2
0 logM

)
+

t−1∑
r=0

P
( 1

L

L∑
`=1

max
j∈ind(`)

(hr+1
j )2 ≥ 7τ2

0 logM
)

(b)

≤ t · t4KKt−1 exp
{ −κκt−1Lε

(t+ 1)2(t− 1)5(logM)2t

}
+ tKKt−1 exp

{ −κκt−1L

(logM)2t−2

}
. (5.16)

Step (b) follows from Bt(f) and inductive hypotheses H1(h) - Ht(h). Next consider T2.

T2 ≤ P
(∣∣∣∥∥mt

⊥
∥∥

√
n
− τ⊥t

∣∣∣ ≥√ ε′

3 logM

)
+ P

( 1

L

L∑
`=1

max
j∈ind(`)

([Zt]j)
2 ≥ 3 logM

)
(c)

≤ KKt−1 exp
{ −κκt−1Lε

27(t+ 1)2t7(logM)2t

}
+ exp{−κL logM}. (5.17)

Step (c) follows from Bt(g), Lemma C.4, and Lemma C.7. From Lemma 5.2, term T4 is upper

bounded by t3KK ′t exp
{
−κκ′tLε2
t4(logM)2t

}
.

Finally, consider T3 for 0 ≤ k ≤ t. Recall that q̃k =
√
nqk⊥‖qk⊥‖, and for each section ` ∈ [L] we

have
max
j∈ind(`)

([q̃k⊥]j)
2 ≤ ‖[qk⊥](`)‖2 ≤ ‖qk(`)‖2 ≤ 2nP` ≤ c logM, (5.18)
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for a universal constant c > 0. Recalling ε′ = ε
9(t+1)2 , we therefore have

T3 ≤
t∑

k=0

P
(∥∥mt

⊥
∥∥2

n
· Z̃

2
k

n
≥ ε′

c logM

)
≤

t∑
k=0

P
( Z̃2

k

n
≥ ε′

2(τ⊥t )2c logM

)
+ P

(∥∥mt
⊥
∥∥2

n
≥ 2(τ⊥t )2

)
(d)

≤ 2(t+ 1) exp
{−κLε

t2

}
+ t5KKt−1 exp

{ −κκt−1L

t7(logM)2t−1

}
, (5.19)

where step (d) is obtained using Bt(g) Lemma C.6 (and recalling that nR/ logM = L). Thus, using
the definitions of κt, κ

′
t in (4.25), we have the required bound for each of the terms in (5.15).

(b) [Eq. (4.29)]. Using the conditional distribution of ht+1 in Lemma 4.3 Eq. (4.14), and Lemma
C.2, we have

P
( 1

n

∣∣∣(ht+1)∗q0
∣∣∣ ≥ ε) = P

( 1

n

∣∣∣ τ2
t

τ2
t−1

(ht)∗q0 + τ⊥t Z∗tq
0 + ∆∗t+1,tq

0
∣∣∣ ≥ ε)

≤ P
( 1

n

∣∣∣(ht)∗q0
∣∣∣ ≥ ετ2

t−1

3τ2
t

)
+ P

( 1

n

∣∣∣Z∗tq0
∣∣∣ ≥ ε

3τ⊥t

)
+ P

( 1

n

∣∣∣∆∗t+1,tq
0
∣∣∣ ≥ ε

3

)
.

Label the terms on the right side of the above as T1, T2, T3. First, by the induction hypothesis

Ht(b), T1 is bounded by t3KK ′t−1 exp
{ −κκ′t−1Lε

2

t4(logM)2t−3

}
. Next consider term T2. Since q0 and Zt are

independent, we have Z∗tq
0 d

= ‖q0‖Z, where Z ∈ R is standard Gaussian. Therefore, using Lemma
C.6 and recalling that ‖q0‖2 = nP , we obtain

T2 = P
(∥∥q0

∥∥
√
n

|Z|√
n
≥ ε

3τ⊥t

)
= P

( |Z|√
n
≥ ε

3τ⊥t
√
P

)
≤ 2 exp

{ −nε2
18P (τ⊥t )2

}
.

Finally,

T3 = P
(∣∣∣ L∑

`=1

([∆t+1,t](`))
∗q0

(`)

n

∣∣∣ ≥ ε

3

) (a)

≤ P
( 1

L

L∑
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ε
√

logM

3Rc

) (b)

≤ t3KK ′t−1e
−κκ′t−1Lε

2

t4(logM)2t−1 .

Step (a) follows since nR = L logM with
∑

i∈ind(`)

∣∣q0
i

∣∣ =
√
nP` and

√
nP` ≤ c

√
logM for some

constant c > 0 and each ` ∈ [L] and step (b) from Ht+1(a).
(c) [Eq. (4.31)]. We will show the concentration result for (qr)∗qt+1/n when 0 ≤ r ≤ t + 1.
Recalling that qr = ηr−1(β0 − hr)− β0, it follows that

P
(∣∣∣ 1
n

(qr)∗qt+1 − σ2
t+1

∣∣∣ ≥ ε) = P
(∣∣∣ 1
n

(ηr−1(β0 − hr)− β0)∗(ηt(β0 − ht+1)− β0)− σ2
t+1

∣∣∣ ≥ ε).
Using the representation in Lemma 4.4 Eq. (4.19), and Lemma C.2 we write

P
(∣∣∣ 1
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(ηr−1(β0 − hr)− β0)∗(ηt(β0 − ht+1)− β0)− σ2
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)
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)
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3

)
,

(5.20)

30



We label the three terms on the RHS of (5.20) as T1, T2, T3 and bound each term separately. We
first note the following bound about ∆̃r that will be used repeatedly. For 1 ≤ r ≤ t+ 1,

P
( 1

L

L∑
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j∈ind(`)

∣∣∣[∆̃r]j

∣∣∣ ≥ ε) = P
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)
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≤
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r

) (b)

≤ t4KK ′t−1 exp
{ −κκ′t−1Lε

2

t4(t+ 1)2(logM)2t

}
.

(5.21)

In the above, step (a) follows by the triangle inequality, Lemma C.2, and the fact that τ2
r−1/τ

2
k ≤ 1

for k ≤ r − 1, and step (b) from Ht+1(a) and the fact that r ≤ (t+ 1).
First consider T1, the first term of (5.20).
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≤ t4KK ′t−1 exp
{ −κκ′t−1Lε
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t4(t+ 1)2(logM)2t+1

}
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(5.22)

In the above, step (a) follows from Lemma D.5 applied to each section, step (b) from the fact that
(nP`)

3/2 ≤ c(logM)3/2 for some constant c > 0 and all ` ∈ [L], and step (c) from (5.21). The same
upper bound as that shown in (5.22) for T1 also holds (shown similarly) for term T2 of (5.20).

Finally, consider the last term T3 of (5.20). Using the definition of h̃r in (4.20), we have

T3 = P
(∣∣∣ 1
n

[ηr−1(β0 − τr−1Z̃r−1)− β0]∗[ηt(β0 − τtZ̃t)− β0]− σ2
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3

)
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L

L∑
`=1

R

logM
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]∗[ηt(`)(β0 + τtZ̃t)− β0(`)

]− σ2
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3

)
,

≤ 2 exp{−Lε2/(9c2)}, (5.23)

where the last inequality is obtained using Hoeffding’s inequality (Lemma C.1), which can be
applied after verifying two conditions. First,

EZ̃r−1,Z̃t
{[ηr−1(β0 + τr−1Z̃r−1)− β0]∗[ηt(β0 + τtZ̃t)− β0]}

= EZ̃r−1,Z̃t,β
{[ηr−1(β + τr−1Z̃r−1)− β]∗[ηt(β + τtZ̃t)− β]} = nσ2

t+1,

where the first equality is true for each β0 ∈ BM,L because of the uniform distribution of the non-
zero entry in each section of β over the M possible locations and the entrywise i.i.d. distributions
of Z̃r−1 and Z̃t and the second equality by Lemma D.6. Second, for each section ` ∈ [L], there
exists a constant c > 0 such that,

0 ≤ R

logM
[ηr−1

(`) (β0 + τr−1Z̃r−1)− β0(`)
]∗[ηt(`)(β0 + τtZ̃t)− β0(`)

] ≤ c.
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We have thus shown that each term of (5.20) is upper bounded by t4KK ′t−1 exp
{ −κκ′t−1Lε

2

t6(logM)2t+1

}
,

which gives the desired result.
(d) [Eq. (4.33)]. Recalling that qs+1 = ηs(β0 − hs+1)− β0, we have

(hr+1)∗qs+1 = (hr+1)∗[ηs(β0 − hs+1)− β0] = (hr+1)∗ηs(β0 − hs+1) + (hr+1)∗q0.

Using the above and Lemma C.2, we obtain
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)
,

(5.24)

where the last equality is obtained using the representation in Lemma 4.4, Eq. (4.19). The second

term on the RHS of (5.24) is upper bounded by t3KK ′t−1 exp
{ −κκ′t−1Lε

2

t4(logM)2t−1

}
by Ht+1(b). In what

follows we upper bound the first term of (5.24), denoted by T1. Using Lemma C.2, we have

T1 ≤ P
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)
. (5.25)

We label the terms on the RHS of (5.25) as T1a, T1b, T1c, and bound each separately. Using Lemma
4.4, the first term can be written as

T1a = P
(∣∣∣τrZ̃∗rηs(β0 − τsZ̃s)

n
+
σ2
s+1τ
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∣∣∣ ≥ ε

6

)
, (5.26)

where Z̃r, Z̃s ∈ RN are standard Gaussian vectors, with E[Z̃rj , Z̃sj ] =
τmax(r,s)

τmin(r,s)
, for j ∈ [N ]. We

then observe that
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s

. (5.27)

In the above, step (a) follows for each β0 ∈ BM,L because of the uniform distribution of the non-zero
entry in each section of β over the M possible locations and the entry-wise i.i.d. distributions of
Z̃r and Z̃s, step (b) by Stein’s Lemma (see [7, p.1491, Eqs. (102) – (104)] for details), and step (c)
from Lemma D.6. Using (5.27) in (5.26), it is shown in Lemma D.4 that T1a ≤ exp{−κLε2}.

Next consider T1b:
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.
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Here, step (a) follows from the fact that
√
nP` ≤ c

√
logM for some constant c > 0 for each section

` ∈ [L] and nR = L logM , and step (b) from (5.21). Finally, consider the last term T1c of (5.25).
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In the above, step (c) follows from Lemma D.5 applied to each section ` ∈ [L], using nP` ≤ c logM

for a universal constant c > 0; step (d) holds since h̃u
d
= τu−1Z̃u−1 where Z̃u−1 ∈ RN is standard

Gaussian, as shown in Lemma 4.4. Now considering the probability on the RHS of (5.28), we find:
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Step (e) follows by Cauchy-Schwarz and step (f) from Lemma C.7 and the fact that for 0 ≤ s ≤ t,
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(5.29)

In the above, step (g) follows by Lemma D.1, Lemma C.2, and the fact that τ2
s /τ

2
i ≤ 1 for 0 ≤ i ≤ s

and step (h) from Ht+1(a) and the fact that 0 ≤ s ≤ t. We have now shown that the three terms

of (5.25) are bounded by t4KK ′t−1 exp
{ −κκ′t−1Lε

2

t6(logM)2t+1

}
, which completes the proof.

(e) [Eq. (4.35)]. This result follows similarly to H1(e) by noting ‖βt+1‖2 − nP = ‖qt+1‖2 −
2(q0)∗qt+1 and appealing to Ht+1(c).
(f), (g) [Eqs. (4.37), (4.39), (4.40), (4.43)]. These results follow along the same lines as Bt(f), (g).
(h) [Eqs. (4.45) - (4.46)]. Using the representation of ht+1 from Lemma 4.4 Eq. (4.19), we write

P
( 1

L

L∑
`=1

max
j∈ind(`)

|ht+1
j | ≥ τ0

√
3 logM + ε

)
= P

( 1

L

L∑
`=1

max
j∈ind(`)

∣∣∣h̃t+1
j + [∆̃t+1]j

∣∣∣ ≥ τ0

√
3 logM + ε

)
,
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The term on the RHS of the above, we have:

P
( 1

L

L∑
`=1

max
j∈ind(`)

∣∣∣h̃t+1
j + [∆̃t+1]j

∣∣∣ ≥ τ0

√
3 logM + ε

)
≤ P

( 1

L

L∑
`=1

max
j∈ind(`)

|h̃t+1
j |+

1

L

L∑
`=1

max
j∈ind(`)

∣∣∣[∆̃t+1]j

∣∣∣ ≥ τ0

√
3 logM + ε

)
≤ P

( 1

L

L∑
`=1

max
j∈ind(`)

|h̃t+1
j | ≥ τ0

√
3 logM

)
+ P

( 1

L

L∑
`=1

max
j∈ind(`)

∣∣∣[∆̃t+1]j

∣∣∣ ≥ ε)
(a)

≤ exp{−κL logM}+ t4KK ′t−1 exp
{
− κκ′t−1Lε

2

t6(logM)2t

}
.

In step (a), the first term on the RHS follows from Lemma C.7 since h̃t+1 d
= τtZ̃t where τt < τ0

and Z̃t ∈ RN is standard Gaussian. The second term on the RHS follows from the bound in (5.29).
where the final inequality follows since τt/τ0 ≤ 1. The result for the squared terms follows similarly.

Appendix

A Proof of Lemma 2.1

(a) Recall the definition of x(τ) given in (1.7) which can be written as

x(τ) =

L∑
`=1

P`
P
E`(τ), where E`(τ) := E

 exp
(√

nP`
τ U `1

)
exp

(√
nP`
τ U `1

)
+ exp

(
− nP`

τ2

)∑M
j=2 exp

(√
nP`
τ U `j

)
 .

(A.1)
Using the relation nR = L lnM , we write nP`

τ2 = ν` lnM , where ν` = LP`/(Rτ
2). Then E`(τ) in

(A.1) can be expressed as

E`(τ) = E
[
(1 + exp{−

√
ν` lnM U `1}M−ν`

M∑
j=2

exp{
√
ν` lnM U `j })−1

]
. (A.2)

Letting

X := M−ν`
M∑
j=2

exp{
√
ν` lnM U `j }, and V := exp{−

√
ν` lnM U `1}, (A.3)

we use iterated expectation and the independence of X,V to write

E`(τ) = EV E[(1 + V X)−1|V ] ≥ EV [(1 + V EX)−1], (A.4)
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where the last step follows from Jensen’s inequality. The expectation of X is

EX = M−ν`
M∑
j=2

E
[

exp{
√
ν` lnM U `j }

]
(a)
= M−ν`(M − 1)Mν`/2 ≤M1−ν`/2

where (a) is obtained using the moment generating function of a Gaussian random variable. We
therefore have

1 ≥ E`(τ) ≥ EV [(1 + V EX)−1] ≥ EV [(1 + VM1−ν`/2)−1]. (A.5)

For any α ∈ [0, 1), when {V ≤Mα(ν`/2−1)}, we have (1 + VM1−ν`/2) ≤ 1 +M−(1−α)(ν`/2−1). Using
this in (A.5), for ` such that ν` > 2 we have

E`(τ) ≥ P (V ≤Mα(ν`/2−1))

1 +M−(1−α)(ν`/2−1)

(a)
=
P
(
U `1 ≥ −α(ν`/2−1)√

ν`

√
lnM

)
1 +M−(1−α)(ν`/2−1)

, (A.6)

where step (a) follows from the definition of V in (A.3).
Next consider ` such that 2(1 − εM ) ≤ ν` ≤ 2, where εM := υ√

logM
, for some constant υ > 0.

Then, as (1− ν`/2) ≤ εM , from (A.5) we have

E`(τ) ≥ EV [(1 + VM εM )−1] = E
[(

1 + eεM lnM−U`1
√
ν` lnM

)−1]
≥ P (U `1 > 2υ/

√
ν`)

1 + exp(−υ
√

lnM)
. (A.7)

(b) For δ ∈ (0, 1
2), first consider ` such that ν` > 2 + δ. Using the bound Q(x) ≤ 1

x
√

2π
exp{−x2

2 }
for x > 0, the relevant term in (2.1) can be bounded from below as

Q
(
− α(ν`/2−1)√

ν`

√
logM

)
1 +M−(1−α)(ν`/2−1)

≥
[
1−
√
ν`M

−α2(ν`/2−1)2/2ν`

√
2π lnM(ν`/2− 1)α

]
· 1

1 +M−(1−α)(ν`/2−1)

≥
[
1−
√
ν`M

−α2(ν`/2−1)2/2ν`

√
2π lnM(ν`/2− 1)α

][
1−M−(1−α)(

ν`
2
−1)
]

≥ 1−
√
ν`M

−α2(ν`/2−1)2/2ν`

√
2π lnM(ν`/2− 1)α

−M−(1−α)(
ν`
2
−1).

(A.8)

where the second inequality is obtained using 1
1+x ≥ (1−x), for x ∈ [0, 1]. Now choose α as follows:

α =

{
1− δ, 2 + δ < ν` < 4,
1
2 , ν` ≥ 4.

Using this α in (A.8), for ν` ≥ 2 + δ we obtain

E`(τ) ≥
(

1− 4M−δ
2(1−δ)2/32

√
2π lnMδ(1− δ)

−M− δ
2

2

)
1{2 + δ < ν` < 4}

+
(

1−
√

2ν`M
−1/8ν`

√
π lnM

−M− 1
2

)
1{ν` ≥ 4}

≥
(

1− M−κ2δ2

δ
√

lnM

)
1{ν` > 2 + δ}, (A.9)

for a suitably chosen universal positive constant κ2. Next, if 2 < ν` ≤ (2 + δ), using α = 0 in (2.1)
yields E`(τ) ≥ 1/4. Finally there exists a universal constant κ3 such that

Q(2κ3/
√
ν`)

1 + e−κ3

√
lnM

≥ 1

4
when ν` ≥ 2

(
1− κ3√

logM

)
.
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B Proof of Lemma 2.2

Let xt−1 = x < (1 − f(M)). We will use Lemma 2.1(b) with ν` determined by (2.4). We only
need to consider the case where νL < (2 + δ), because otherwise ν` ≥ (2 + δ) for ` ∈ [L], and (2.2)
guarantees that xt ≥ (1− f(M)).

With xt−1 = x, we have τ2
t−1 = σ2 + P (1− x). With τ = τ2

t−1, we have

ν` =
LP`
Rτ2

t−1

=
τ2

0

Rτ2
t−1

L((1 + snr)1/L − 1)(1 + snr)−`/L, ` ∈ [L], (B.1)

where we have used the expression in (2.4) for LP`. Using (B.1) in (2.2),

xt ≥ (1− f(M))
L∑
`=1

P`
P

1{ν` > 2 + δ}

(a)
= (1− f(M))

L∑
`=1

P`
P

1
{ `
L
<

1

2C log
(L((1 + snr)1/L − 1)τ2

0

(2 + δ)Rτ2
t−1

)}
(b)

≥ (1− f(M))

L∑
`=1

P`
P

1
{ `
L
≤ 1

2C log
( 2Cτ2

0

(2 + δ)Rτ2
t−1

)}
(c)

≥ (1− f(M))
P + σ2

P

[
1− exp

{
− log

( 2Cτ2
0

(2 + δ)Rτ2
t−1

)
+

2C
L

}]
(d)

≥ (1− f(M))
P + σ2

P

[
1− (2 + δ)Rτ2

t−1

2Cτ2
0

− 5R

L

]
. (B.2)

In the above, (a) is obtained using the expression for ν` in (B.1), and inequality (b) by noting that

L((1 + snr)1/L − 1) = L(e2C/L − 1) ≥ 2C.

Inequality (c) is obtained by using the geometric series formula: for any ξ ∈ (0, 1), we have

bξLc∑
`=1

P` = (P + σ2)(1− e−2CbξLc/L) ≥ (P + σ2)(1− e−2Cξe2C/L).

Inequality (d) uses e2C/L ≤ 1 + 4C/L for large enough L. Substituting τ2
t−1 = σ2 + P (1− x), (B.2)

implies

xt − x ≥ (1− f(M))
P + σ2

P

(
1− 5R

L

)
− (1− f(M))

(1 + δ/2)R

C
(P + σ2

P
− x
)
− x

= (1− f(M))
P + σ2

P

(
1− (1 + δ/2)R

C − 5R

L

)
− x
(

1− (1− f(M))
(1 + δ/2)R

C
)
. (B.3)

Since δ < (C − R)/C, the term (1+δ/2)R
C is strictly less than 1, and the RHS of (B.3) is strictly

decreasing in x. Using the upper bound of x < (1− f(M)) in (B.3) and simplifying, we obtain

xt − x ≥ (1− f(M))
σ2

P

(
1− (1 + δ/2)R

C
)
− f(M)(1− f(M))

(1 + δ/2)R

C − 5R(1 + σ2/P )

L
. (B.4)

This completes the proof for t > 1. For t = 1, we start with x = 0, and we get the slightly stronger
lower bound of χ1 by substituting x = 0 in (B.3).
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C Concentration lemmas

In the following ε > 0 is assumed to be a generic constant, with additional conditions specified
whenever needed. The proofs of Lemmas C.2–C.5 can be found in [20].

Lemma C.1 (Hoeffding’s inequality [27, Thm. 2.8]). If X1, . . . , Xn are bounded random variables
such that ai ≤ Xi ≤ bi, then for ν = 2[

∑
i(bi − ai)2]−1

P
( 1

n

n∑
i=1

(Xi − EXi) ≥ ε
)
≤ e−νn2ε2 , P

(∣∣∣ 1
n

n∑
i=1

(Xi − EXi)
∣∣∣ ≥ ε) ≤ 2e−νn

2ε2 .

Lemma C.2 (Concentration of sums). If random variables X1, . . . , XM satisfy P (|Xi| ≥ ε) ≤
e−nκiε

2
for 1 ≤ i ≤M , then

P
(∣∣∣ M∑

i=1

Xi

∣∣∣ ≥ ε) ≤ M∑
i=1

P
(
|Xi| ≥

ε

M

)
≤Me−n(mini κi)ε

2/M2
.

Lemma C.3 (Concentration of products). For random variables X,Y and non-zero constants
cX , cY , if

P (|X − cX |≥ ε) ≤ Ke−κnε
2
, and P (|Y − cY | ≥ ε) ≤ Ke−κnε

2
,

then the probability P (|XY − cXcY | ≥ ε) is bounded by

P
(
|X − cX | ≥ min

(√ ε

3
,
ε

3cY

))
+ P

(
|Y − cY | ≥ min

(√ ε

3
,
ε

3cX

))
≤ 2K exp

{ −κnε2
9 max(1, c2

X , c
2
Y )

}
.

Lemma C.4 (Concentration of square roots). Let c 6= 0. Then

If P (|X2
n − c2|≥ ε) ≤ e−κnε2 , then P (||Xn| − |c| |≥ ε) ≤ e−κn|c|

2ε2 .

Lemma C.5 (Concentration of powers). Assume c 6= 0 and 0 < ε ≤ 1. Then for any integer k ≥ 2,

if P (|Xn − c|≥ ε) ≤ e−κnε
2
, then P (|Xk

n − ck|≥ ε) ≤ e−κnε
2/[(1+|c|)k−|c|k]2 .

Lemma C.6. For a standard Gaussian random variable Z and ε > 0, P (|Z| ≥ ε) ≤ 2e−
1
2
ε2.

Lemma C.7. Let Z1, Z2, . . . , ZN and Z̃1, Z̃2, . . . , Z̃N be i.i.d. standard Gaussian random variables
and 0 ≤ ε ≤ 1. Then the following concentration results hold.

P
( 1

L

L∑
`=1

max
j∈ind(`)

Z2
j ≥ 3 logM + ε

)
≤ exp

{−L
5

(
2ε+ log

M

70

)}
, (C.1)

P
(∣∣∣ 1

N

N∑
i=1

Z2
i − 1

∣∣∣ ≥ ε) ≤ 2 exp
{−Nε2

8

}
, (C.2)

P
(∣∣∣ 1

N

N∑
i=1

ZiZ̃i

∣∣∣ ≥ ε) ≤ 2 exp
{−Nε2

3

}
. (C.3)
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Proof. Using a Cramér-Chernoff bound [27, Sec. 2.2], for any t > 0 we have

P
( 1

L

L∑
`=1

max
j∈ind(`)

Z2
j ≥ 3 logM + ε

)
≤ exp

(
− tL(ε+ 3 logM) +

L∑
`=1

logEetmaxj∈ind(`) Z
2
j

)
. (C.4)

Then using the moment-generating function of a Chi-square random variable, we obtain

Eetmaxj∈ind(`) Z
2
j ≤

∑
j∈ind(`)

EetZ
2
j =

M√
1− 2t

,

when 0 < t < 1/2. Using this bound in (C.4) for ` ∈ [L], we find

P
( 1

L

L∑
`=1

max
j∈ind(`)

Z2
j ≥ 3 logM + ε

)
≤ exp

(
inf

t∈(0,1/2)

[
− tL(ε+ 3 logM) +L logM − L

2
log(1− 2t)

])
.

We choose t = 2/5 to obtain the desired bound:

P
( 1

L

L∑
`=1

max
j∈ind(`)

Z2
j ≥ 3 logM + ε

)
≤ exp

(
− 2Lε

5
− L

5
logM +

L

2
log 5

)
≤ exp

(−L
5

(
2ε+ log

M

70

))
.

The bounds in (C.2) and (C.3) can be similarly obtained using Cramér-Chernoff bounds. The
relevant moment generating functions are

EetZ
2
i =

1√
1− 2t

, 0 < t < 1/2 and EetZiZ̃i =
1√

1− t2
, 0 < t < 1, for i ∈ [N ]. (C.5)

The steps to obtain the bounds in (C.2) and (C.3) using these moment generating functions are
similar to those for sub-Gamma random variables; see, e.g., [27, Sec. 2.4].

D Other useful lemmas

Lemma D.1. For any scalars a1, ..., at and positive integer m, we have (|a1| + . . . + |at|)m ≤
tm−1

∑t
i=1 |ai|m. Consequently, for any vectors u1, . . . ,ut ∈ RN ,

∥∥∑t
k=1 uk

∥∥2 ≤ t∑t
k=1 ‖uk‖2.

Proof. The first result is obtained by applying Hölder’s inequality to the length-t vectors (|a1| , . . . , |at|)
and (1, . . . , 1). The second statement is obtained by applying the result with m = 2.

Lemma D.2 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Z2, and
any function f : R → R for which E[Z1f(Z2)] and E[f ′(Z2)] both exist, we have E[Z1f(Z2)] =
E[Z1Z2]E[f ′(Z2)].

Lemma D.3. Let u ∈ RN be a deterministic vector, Ã ∈ Rn×N be a matrix with i.i.d. N (0, 1
n)

entries, and W be a d-dimensional subspace of Rn for d ≤ n. Let (w1, ...,wd) be an orthogonal

basis of W with ‖wr‖2 = n for r ∈ [d], and let P
‖
W denote the orthogonal projection operator onto

W. Then for D = [w1 | . . . | wd], we have PWÃu
d
= ‖u‖√

n
PWZu

d
= ‖u‖√

n
Dx where x ∈ Rd is a random

vector with i.i.d. N (0, 1/n) entries.
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Lemma D.4 (H(d) concentration). Let Z, Z̃ ∈ RN each be standard Gaussian random vectors such
that (Zi, Z̃i) are i.i.d. bivariate Gaussian, for 1 ≤ i ≤ N . For ` ∈ [L], let Y ` = 1

logM ·Z∗(`)ηs(`)(β0−
τsZ̃`), where 0 ≤ s ≤ T . Then for κ, a universal positive constant,

P
(∣∣∣ 1
L

L∑
`=1

(Y ` − E[Y `])
∣∣∣ ≥ ε) ≤ exp{−κLε2}.

Proof. We first note that Y ` is a (scalar) random variable with an ` dependence. (It is not an
M -length vector.) We represent Y ` as a sum of a bounded random variable and an unbounded
random variable.

Y ` =
Z∗(`)η

s
(`)(β0 − τsZs(`))

logM
1
{

max
i∈ind(`)

|Zi| ≤ x
}

+
Z∗(`)η

s
(`)(β0 − τsZ̃(`))

logM
1
{

max
i∈ind(`)

|Zi| ≥ x
}
, (D.1)

where we specify the value of x later. Label the first term on the right side of (D.1) as Y `
b for

‘bounded’ and the second term as Y `
u for ‘unbounded’. Therefore, using Lemma C.2,

P
(∣∣∣ 1
L

L∑
`=1

(Y ` − E[Y `])
∣∣∣ ≥ 2ε

)
= P

(∣∣∣ 1
L

L∑
`=1

(Y `
b − E[Y `]) +

1

L

L∑
`=1

Y `
u

∣∣∣ ≥ 2ε
)

≤ P
(∣∣∣ 1
L

L∑
`=1

(Y `
b − E[Y `])

∣∣∣ ≥ ε)+ P
(∣∣∣ 1
L

L∑
`=1

Y `
u

∣∣∣ ≥ ε). (D.2)

Define ζL = 1
L

∑L
`=1 E[Y `

u ]. Noting that E[Y `] = E[Y `
b ] + E[Y `

u ], we write

P
(∣∣∣ 1
L

L∑
`=1

(Y `
b − E[Y `])

∣∣∣ ≥ ε) = P
(∣∣∣ 1
L

L∑
`=1

(Y `
b − E[Y `

b ])− ζL
∣∣∣ ≥ ε)

≤ P
( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≥ ε+ ζL

)
+ P

( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≤ −ε+ ζL

)
.

(D.3)

From (D.2) and (D.3) we have

P
(∣∣∣ 1
L

L∑
`=1

(Y ` − E[Y `])
∣∣∣ ≥ 2ε

)
≤ P

( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≥ ε+ ζL

)
+ P

(∣∣∣ 1
L

L∑
`=1

Y `
u

∣∣∣ ≥ ε)
+ P

( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≤ −ε+ ζL

)
.

(D.4)

Label the terms on the right side of (D.4) as T1, T2, and T3. The rest of the proof proceeds as
follows:

1. We show that −M−c0 ≤ ζL ≤M−c0 for some universal constant c0 > 0.

2. We apply Hoeffding’s inequality to show that T1 and T3 are bounded by exp{−κ1Lε
2} for

some universal constant κ1 > 0.

3. We show that T2 is also exponentially small in L.
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To show item (1), recalling that ζL = 1
L

∑L
`=1 E[Y `

u ], we will obtain an upper bound for |E[Y `
u ]|.

E[Y `
u ] = E

[Z∗(`)ηs(`)(β0 − τsZ̃(`))

logM
1
{

max
i∈ind(`)

|Zi| ≥ x
}]
≤ c√

logM
E
[

max
i∈ind(`)

|Zi|1
{

max
i∈ind(`)

|Zi| ≥ x
}]
,

(D.5)

where we have used
√
nP` ≤ c

√
logM for some constant c > 0. Let W = maxi∈ind(`) |Zi|, and define

W̃ = W1{W ≥ x}. Then since W̃ is non-negative, we have E[W̃ ] =
∫∞

0 P (W̃ ≥ w)dw. Note that

P (W̃ ≥ w) =

{
P (W ≥ w) if w > x

P (W ≥ x) if 0 < w ≤ x.
(D.6)

Then it follows from (D.5) and (D.6),∣∣∣E[Y `
u ]
∣∣∣ ≤ c√

logM

[ ∫ x

0
P (W ≥ x)du+

∫ ∞
x

P (W ≥ u)du
]

≤ c√
logM

[
xP (W ≥ x) +

∫ ∞
x

P (W ≥ u)du
]

≤ c√
logM

[
2Me−x

2/2 +

∫ ∞
x

2Me−u
2/2du

]
. (D.7)

≤ c√
logM

[
2Me−x

2/2 +
2M

x
e−x

2/2
]
. (D.8)

where (D.7) is obtained by noting that for y > 0,

P
(

max
i∈ind(`)

|Zi| ≥ y
)

= P
(
{Z1 ≥ y} ∪ . . . ∪ {ZM ≥ y} ∪ {Z1 ≤ y} ∪ . . . ∪ {ZM ≤ y}

)
≤ 2Me−y

2/2 min
{

1,
1

y
√

2π

}
.

Inequality (D.8) also uses the above bound for the Gaussian tail probability.
Now choose x = k

√
2 logM for k > 1 to be fixed later. Then (D.8) implies∣∣∣E[Y `

u ]
∣∣∣ ≤ 2c

Mk2−1
√

logM

(
1 +

1

k
√

2 logM

)
.

We have therefore shown
∣∣∣E[Y `

u ]
∣∣∣ ≤ 2cM−(k2−1) for M large enough (M > e4 suffices). So it follows

ζL ≤
1

L

L∑
`=1

∣∣∣E[Y `
u ]
∣∣∣ ≤ 2c

Mk2−1
and ζL ≥

−1

L

L∑
`=1

∣∣∣E[Y `
u ]
∣∣∣ ≥ −2c

Mk2−1
. (D.9)

Next we bound the terms T1 and T3 in (D.4) using Hoeffding’s inequality (Lemma C.1). First

notice that for ` ∈ [L], the random variable Y `
b ∈ [−x

√
nP`

logM , x
√
nP`

logM ], where x = k
√

2 logM . To apply
Hoeffding’s inequality, we also note that

L∑
`=1

([x√nP`
logM

]
−
[
− x
√
nP`

logM

])2
=

L∑
`=1

4x2nP`
(logM)2

=
8k2nP

logM
= 8k2PRL,
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Therefore it follows that

T1 = P
( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≥ ε+ ζL

)
≤ exp

(−L(ε+ ζL)2

c̃

)
,

where c̃ = 4k2P/R. From (D.9), ζL can be made arbitrarily small by choosing M large enough.
Therefore, we have T1 ≤ exp{−κ1Lε

2} for large enough M . Similarly, for sufficiently large M we
also have

T3 = P
( 1

L

L∑
`=1

(Y `
b − E[Y `

b ]) ≤ −ε+ ζL

)
≤ exp{−κ1Lε

2}.

Finally we bound the second term in (D.4). Using the Cramér-Chernoff bound, for t > 0 we have

T2 = P
(∣∣∣ 1
L

L∑
`=1

Y `
u

∣∣∣ ≥ ε) ≤ exp
([
− tLε+

L∑
`=1

logEet|Y
`
u |
])
, (D.10)

We bound Eet|Y `u | as follows. We have

E exp
{
t|Y `

u |
}

= E exp
{
t
∣∣∣(Z(`))

∗ηs(`)(β0 − τsZ̃(`))

logM
1
{

max
i∈ind(`)

|Zi| ≥ x
}∣∣∣}

≤ E exp
{ ct√

logM
max
i∈ind(`)

|Zi|1
{

max
i∈ind(`)

|Zi| ≥ x
}}

= E[U ],

(D.11)

where we have defined U := exp
{

ct√
2 logM

maxi∈ind(`) |Zi|1
{

maxi∈ind(`) |Zi| ≥ x
}}

and used
√
nP` ≤

c
√

logM . Also recall that x = k
√

2 logM . As before, let W = maxi∈ind(`) |Zi|, and notice that

U =

{
1 if W ≤ x
exp

{
ctW√
logM

}
if W ≥ x.

It follows that

P (U ≥ u) =


1 if 0 < u ≤ 1

P (W ≥ x) if 1 < u ≤ exp
{

ctx√
logM

}
P (W ≥ (log u)

√
logM

ct ) if u > exp
{

ctx√
logM

}
.

(D.12)

Let x̃ = exp
{

ctx√
logM

}
= exp{

√
2kct}. Then using (D.11) and (D.12), we have

Eet|Y
`
u | ≤ E[U ] =

∫ ∞
0

P (U ≥ u)du ≤ 1 + (x̃− 1)P (W ≥ x) +

∫ ∞
x̃

P
(
W ≥ (log u)

√
logM

ct

)
du

≤ 1 + (x̃− 1)2Me−
x2

2 + 2M

∫ ∞
x̃

exp
{
− (log u)2 logM

2c2t2

}
du.

= 1 + 2 exp(
√

2kct)M−(k2−1) + 2M

∫ ∞
√

2kct
exp

{
− v2 logM

2c2t2

}
evdv. (D.13)

Now by completing the square and simplifying, the integral in (D.13) can be bounded as∫ ∞
√

2kct
exp

{
− v2 logM

2c2t2

}
evdv = exp

{ c2t2

2 logM

}
Q
(
k
√

2 logM − 1
)
≤ c1M

−k2
, (D.14)
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for some absolute positive constant c1 < 2. In (D.14), Q(a) = (2π)−1/2
∫∞
a e−v

2/2dv is the Gaussian

upper tail probability function. Using (D.14) in (D.13) and taking t = 1√
2c

, we obtain Eet|Y `u | ≤
1 + c2M

−(k2−1), where c2 > 0 is an absolute positive constant. Substituting this into (D.10) we
find:

T2 = P
(∣∣∣ 1
L

L∑
`=1

Y `
u

∣∣∣ ≥ ε) ≤ exp
{
− Lε

c
√

2

}
(1 + c2M

−(k2−1))L

≤ exp
{
− Lε

c
√

2

}
exp{c2LM

−(k2−1)} ≤ exp{−κLε},

for some absolute positive constant κ, when M is sufficiently large. This completes the proof.

Lemma D.5. [5, Lemma 9] For the function ηtj : RN → R defined in (1.8) for any j ∈ [N ] and

s,∆ ∈ RN , the following is true for all ` ∈ [L]:∑
i∈ind(`)

∣∣ηti(s)− ηti(s + ∆)
∣∣ ≤ 2nP`

τ2
t

max
i∈ind(`)

|∆i| .

Proof. From the multivariate version of Taylor’s theorem, for any j ∈ [N ] we have

ηtj(s + ∆) = ηtj(s) + ∆T∇ηtj(s + c∆), (D.15)

for some c ∈ (0, 1). Noting that for j ∈ [N ], ηtj depends only on the subset of its input also
belonging to section ind(sec(j)), using (D.15) we have∑
i∈ind(`)

∣∣ηti(s)− ηti(s + ∆)
∣∣ =

∑
i∈ind(`)

∣∣∣ ∑
j∈ind(`)

∆j
∂

∂sj
ηti(s + c∆)

∣∣∣
(a)

≤
√
nP`
τ2
t

∑
i∈ind(`)

∣∣∣ηti(s + c∆)∆i

∣∣∣+
1

τ2
t

∑
i∈ind(`)

∣∣∣ηti(s + c∆)
∑

j∈ind(`)

∆jη
t
j(s + c∆)

∣∣∣ (b)

≤ 2nP`
τ2
t

max
i∈ind(`)

|∆i| ,

where inequality (a) uses the fact that for i, j ∈ ind(`), ∂
∂sj
ηti(s) = 1

τ2
t
ηti(s)[

√
nP` 1{j = i} − ηtj(s)].

Inequality (b) uses the fact that
∑

j∈ind(`)

∣∣∣ηtj(s + c∆)
∣∣∣ =

∑
j∈ind(`) η

t
j(s + c∆) =

√
nP`.

Lemma D.6. Let Z̃r, Z̃s ∈ RN each be standard Gaussian random vectors such that the pairs
(Z̃r,i, Z̃s,i), i ∈ [N ], are i.i.d. bivariate Gaussian with covariance E[Z̃r,iZ̃s,i] = (τs/τr). Then for
0 ≤ r ≤ s ≤ T ,

1

n
E{[ηr(β − τrZ̃r)]∗[ηs(β − τsZ̃s)]} = Pxr+1, (D.16)

1

n
E{[ηr(β − τrZ̃r)− β]∗[ηs(β − τsZ̃s)− β]} = σ2

s+1. (D.17)

Proof. We will use the following fact, shown in [7, Proposition 1]:

E{β∗ηr(β − τrZ̃r)} = nPxr+1, for 0 ≤ r ≤ t. (D.18)
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Let ur = β − τrZ̃r and us = β − τsZ̃s. Recall from (1.9) that ηr(β − τrZ̃r) = E[β | ur] and
ηs(β − τsZ̃s) = E[β | us]. Therefore, for r ≤ s

E{[ηr(β − τrZ̃r)]∗ηs(β − τsZ̃s)} = E{[E[β | ur]]∗E[β | us]}
= E{[E[β | ur]]∗[E[β | us,ur]− β + β]} (D.19)

= E{[E[β | ur]]∗β}, (D.20)

= nPxr+1. (D.21)

which proves (D.16). In the above, (D.19) holds because E[β | us,ur] = E[β | us] as shown below,
(D.20) holds because E{(E[β|us,ur] − β)∗E[β|ur]} = 0 due to the orthogonality principle, and
(D.21) follows from (D.18).

The result (D.17) follows from (D.16) and (D.18), noting that ‖β‖2 = nP . Therefore, the proof
is complete once we show that E[β | us,ur] = E[β | us]. For i ∈ [N ], we have

E[βi | β − τsZ̃s = us,β − τrZ̃r = ur] = E[βi | {βj − τsZ̃s,j = usj , βj − τrZ̃r,j = urj}j∈ind(sec(i))]

=
√
nPsec(i) P (βi =

√
nPsec(i) | {βj − τsZ̃s,j = usj , βj − τrZ̃r,j = urj}j∈ind(sec(i)))

=

√
nPsec(i) f({βj − τsZ̃s,j = usj , βj − τrZ̃r,j = urj}j∈ind(sec(i)) | βi =

√
nPsec(i))P (βi =

√
nPsec(i))∑

k∈ind(sec(i)) f({βj − τsZ̃s,j = usj , βj − τrZ̃r,j = urj}j∈ind(sec(i)) | βk =
√
nPsec(i))P (βk =

√
nPsec(i))

(D.22)

where we have used Bayes Theorem with f denoting the joint density function of {βj − τsZ̃s,j =
usj}j∈ind(sec(i)), {βj − τrZ̃r,j = urj}j∈ind(sec(i)). Now, β is independent of Z̃r and Z̃s, and the pairs

(Z̃r,i, Z̃s,i), i ∈ [N ], are i.i.d. bivariate Gaussian with covariance E[Z̃r,iZ̃s,i] = τs
τr

. We therefore have

f({βj − τsZ̃s,j = usj , βj − τrZ̃r,j = urj}j∈ind(sec(i)) | βk =
√
nPsec(i))

∝ exp
{
− τ2

r

2(τ2
r − τ2

s )

[(usk −
√
nPsec(i))

2

τ2
s

+
(urk −

√
nPsec(i))

2

τ2
r

−
2(usk −

√
nPsec(i))(u

r
k −

√
nPsec(i))

τ2
r

]}
×

∏
j∈ind(sec(i)), j 6=k

exp
{
− τ2

r

2(τ2
r − τ2

s )

[(usj)
2

τ2
s

+
(urj)

2

τ2
r

−
2usju

r
j

τ2
r

]}
= exp

{τ2
r

√
nPsec(i)

τ2
r − τ2

s

[usk
τ2
s

+
urk
τ2
r

− usk + urk
τ2
r

]}
× exp

{
−
τ2
r nPsec(i)

2(τ2
r − τ2

s )

[ 1

τ2
s

+
1

τ2
r

− 2

τ2
r

]}
×

∏
j∈ind(sec(i))

exp
{
− τ2

r

2(τ2
r − τ2

s )

[(usj)
2

τ2
s

+
(urj)

2

τ2
r

−
2usju

r
j

τ2
r

]}
.

(D.23)

Using (D.23) in (D.22), together with the fact that P (βk =
√
nPsec(i)) = 1

M for each k ∈ ind(sec(i)),
we obtain

E[βi | β − τsZ̃s = us,β − τrZ̃r = ur] =

√
nPsec(i) exp

{
τ2
r

√
nPsec(i)

τ2
r−τ2

s

[
usi
τ2
s

+
uri
τ2
r
− usi+u

r
i

τ2
r

]}
∑

j∈ind(sec(i)) exp
{
τ2
r

√
nPsec(i)

τ2
r−τ2

s

[
usj
τ2
s

+
urj
τ2
r
− usj+u

r
j

τ2
r

]}
=

√
nPsec(i) exp

{
usi
√
nPsec(i)

τ2
s

}
∑

j∈ind(sec(i)) exp
{
usj
√
nPsec(i)

τ2
s

} = E[βi | β − τsZ̃s = us],
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as required.
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