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Maternal nutrition, breast milk micronutrients and infant growth in 

rural Gambia 

The World Health Organization recommends exclusive breastfeeding for the first six months of 

an infant’s life. However, the evidence base to support the adequacy of breast milk with respect 

to infant micronutrient status, across the duration of exclusive breastfeeding, among women who 

enter pregnancy and lactation with a poor nutritional status is limited. The research presented in 

this thesis explores the relationship between maternal nutritional status, breast milk 

micronutrients and infant status in a rural sub-Saharan context.  

Existing evidence for associations between maternal dietary intake and nutritional status and 

breast milk micronutrient composition were systematically reviewed. Most effected by maternal 

nutrition were breast milk water-soluble vitamin concentrations (except for folic acid), fat-

soluble vitamin concentrations were less influenced, and mineral concentrations were generally 

unaffected (except for iodine and selenium). 

Next, the impact of feeding practice on infant growth in rural Gambia was explored. In this 

population, where growth faltering across the first two years of life is endemic, exclusive 

breastfeeding to six months of age had limited benefit on infant growth.  

Finally, the impact of maternal multiple micronutrient supplementation on breast milk iodine, 

thiamin, riboflavin, vitamin B6 and B12 was explored. Supplementation during pregnancy 

positively influenced maternal status for all investigated micronutrients, and modestly increased 

breast milk iodine and riboflavin concentrations across the first six months of lactation. No effects 

on breast milk concentrations of thiamin, vitamin B6 or B12, and limited effect on infant 

postpartum status, were observed. 

The research presented in this thesis suggests that concentrations of breast milk micronutrients 

may be insufficient in settings where maternal micronutrient status is poor, with likely 

consequences for infant health. This research supports the need for interventions to improve the 

nutritional status of pregnant and lactating women in resource-poor settings alongside the 

promotion of exclusive breastfeeding for optimal health outcomes for infants as well as their 

mothers.  

Kamilla Gehrt Eriksen, September 2017  
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Chapter 1  

Introduction and background 

Every third person in the world is affected by malnutrition, either in the form of overweight, 

obesity, underweight or micronutrient deficiencies (1). Evidence on the severity and long-lasting 

consequences of malnutrition is compelling. Around 45% of all deaths in children under the age 

of five are linked to undernutrition and micronutrient deficiencies (2), and decreased cognitive 

function, poor growth and economic consequences are the negative impact of poor quality diets 

(1, 3). Malnutrition constitutes a major public health problem, mainly caused by poor quality 

diets and low dietary diversity (2). 

Nutrition plays a vital role in determining both maternal and child health outcomes, and the 

effects of malnutrition can extend to the next generation. Maternal short stature and low body-

mass-index (BMI) in pregnancy are associated with foetal growth restriction (2) and with 

childhood stunting (height-for-age z-score below -2 SD of the WHO Growth Standards) (4, 5). 

Infants who are growth restricted in utero are at risk of shorter height during adulthood (6), 

increasing the risk of an intergenerational cycle of stunting (3). According to the most recent 

estimates, 155 million children under the age of five years were stunted in 2016 (7), with reduced 

economic productivity as a detrimental outcome (8). It has been estimated that 20% of stunting 

prevalence originates from foetal growth restriction (9). 

Around two billion people suffer from at least one micronutrient deficiency (1), and women of 

reproductive age in resource-poor areas are particularly at risk (2). Maternal micronutrient needs 

are increased during pregnancy due to the demand of the developing foetus (10). Existing 

deficiencies are often exacerbated during pregnancy and can lead to adverse outcomes for both 

the mother and her unborn child, such as growth deficits, foetal structural defects and some 

pregnancy disorders (11). 



 
Chapter 1. Introduction 

2 
 

Impaired prenatal nutrition has also been linked to offspring risk of chronic disease in later life 

(12-14). Nutritional deprivation during early development triggers permanent changes in 

metabolism, increasing the risk of chronic diseases if rapid weight gain occurs after the age of 

two years (3). This is known as the developmental origins of health and disease hypothesis, 

linking poor intrauterine environment and foetal growth restriction to a higher risk of 

hypertension, type II diabetes and cardiovascular disease in adulthood (13, 14). 

To address malnutrition and prevent adverse outcomes for mothers and children, implementation 

of evidence-based interventions at all stages of the life cycle are needed at scale (15). The first 

thousand days, from conception to the child’s second birthday, has been determined the most 

important window of opportunity for preventing long lasting growth and development deficit (2, 

8). It is a vulnerable period with rapid growth velocity and brain development, high susceptibility 

to programming effects along with high nutritional requirements (8). Furthermore, the pre-

conceptional period is an important period to address to ensure nutrition adequacy during the first 

thousand days (8).  

Evidence from three large meta-analyses of randomised controlled trials (RCT) showed that 

maternal supplementation during pregnancy with iron-folic acid (16), multiple micronutrients 

(10), and protein-energy (17) improved birth weight outcomes and decreased the risk of small-

for-gestational age infants. The World Health Organization (WHO) currently recommends 

prenatal iron and folic acid supplementation as  part of routine antenatal care to decrease maternal 

iron deficiency anaemia, low birth weight and to prevent neural tube defects (16, 18-20). Some 

researchers have argued for changing this recommendation to include multiple micronutrients 

(10). A recent meta-analysis of 17 RCTs concluded that multiple micronutrient supplementation 

during pregnancy compared to giving iron with or without folic acid decreased low birth weights, 

infants born small-for-gestational age and the rate of still births (10). 

In terms of long-term effects of prenatal multiple micronutrients, a meta-analysis of RCTs 

reported that a multiple micronutrient supplementation during pregnancy did not impact growth, 

body composition or cardiovascular risk markers of children younger than nine years of age (21). 

Evidence of the beneficial effect of maternal supplementation on infant micronutrient status is 

limited. One RCT reported improved infant vitamin B12 status, but not vitamin A or zinc, at six 

months of age following maternal food and multiple micronutrient supplementation during 

pregnancy and the first 3 months of lactation (22). No other trials of multiple micronutrient 

supplementation during pregnancy reported infant postpartum micronutrient status.  
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After delivery, the focus of the recommended interventions is generally shifted from the mother 

towards the infant. During infancy, the WHO recommends optimal breastfeeding practices (see 

Sections 1.1. and 1.2) along with timely introduction of safe, adequate and nutrient-dense 

complementary foods from six months to two years of age (23). In some settings additional 

vitamin A, iron, vitamin D and iodine supplements for infants are recommended to sustain 

nutrient requirements for healthy development (15). 

The mothers’ postpartum nutritional status has not received much attention as a critical and 

vulnerable period in the prevention of maternal and child undernutrition. The WHO recommends 

iron supplementation, alone or in combination with folic acid, during the first 6-12 weeks 

postpartum, but only in populations with high prevalence of gestational anaemia (24).  Bhutta et 

al (2013) (15) recommend several evidence-based interventions to address maternal and child 

undernutrition, but none of these interventions specifically address maternal nutritional status 

during lactation. A recent systematic literature review investigating the effect of multiple 

micronutrient supplementation during lactation on maternal and offspring outcomes concluded 

that it was impossible to quantify the effectiveness of maternal postnatal multiple micronutrient 

supplementation (25). The review included only two studies, both of which were of poor quality, 

highlighting that maternal postpartum nutrition is somewhat neglected in the scientific literature.  

During lactation the energy and nutrient demands are greater than during pregnancy (26, 27). In 

the first few months of life healthy growing, exclusively breastfed infants double their birth 

weight, and the nutritional demand for lactating women is increased to support the growth of her 

offspring as well as her own metabolism (28). Lactating women who are not adequately 

nourished risk depleting their micronutrient stores, which can negatively influence the nutritional 

status of the breastfeeding child (29). Arguably, maternal pre- and postnatal nutritional status 

should be studied as a continuum, with emphasis on how it affects breast milk micronutrient 

composition and infant nutritional status, especially during the period of exclusive breastfeeding 

(EBF) (29).  

In an attempt to address this research gap, this thesis focuses on breast milk micronutrients with 

the aim of exploring maternal nutrition during both pregnancy and lactation, breast milk 

composition, infant growth and nutritional status in a population in rural Gambia, where food 

availability and nutritional status are poor. 

The following section introduces the relevance of breastfeeding and infant growth in settings 

where growth faltering is common, and highlights why the lactation period is an important period 
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to study, before focusing on lactation physiology, human milk composition and how maternal 

nutrition influences breast milk composition.  

1.1 Breastfeeding  

The WHO recommends EBF1 until six months of age, with continued breastfeeding up to two 

years of age or beyond, along with nutritionally adequate, safe and appropriate complementary 

foods from six months of age (23).  

The short-term benefits of breastfeeding have been well documented in both high-, (HIC) low- 

and middle-income countries (LMIC) (31-33). Observational studies have shown that 

breastfeeding has clear short-term advantages for child survival through reduction of morbidity 

and mortality from infectious diseases (31, 33, 34). One recent meta-analysis reported markedly 

reduced infant mortality, especially due to infectious diseases, with breastfeeding even into the 

second year of life (31). The benefit of early initiation of breastfeeding was recently reported in 

a meta-analysis, where delayed initiation of breastfeeding (2-23 hours after birth) increased the 

risk of neonatal mortality with 33% compared to initiation within the first hour after birth (33). 

Optimal breastfeeding practices have further been associated with a lower risk of childhood 

gastrointestinal infections, respiratory infection, sudden infant death syndrome and otitis media 

(31, 32). In addition to nutritional components, breast milk also contains a wealth of bioactive 

constituents that have beneficial non-nutritional functions for the infant; these include among 

others, a positive influence on the infant’s immune system and gut microbiome (35, 36). 

Breastfeeding also has long-term beneficial influences, with a wealth of observational evidence 

suggesting a protective effect on the incidence of non-communicable diseases, notably 

cardiovascular disease, diabetes (32, 37) and obesity (37-39). A recent observational study from 

Brazil found that breastfeeding is associated with improved performance in intelligence tests 30 

years later (40). The evidence on longer-term outcomes is however more controversial than the 

shorter-term influences of breastfeeding. Studies have shown small effect sizes, and findings 

related to protective effects on obesity, raised blood pressure, other cardio metabolic risk factors 

(41-44) and cognitive performance (32) have been contradictory. The majority of these 

conflicting results (41-44), are based on the promotion of breastfeeding intervention trial 

                                                 
1 EBF is defined by WHO as breastfeeding with no supplemental liquids or solid foods other than medications or 
vitamins (30) 30. World Health Organization. Indicators for assessing infant and young child feeding 
practices. Part 1 definitions. 2008. 30. Ibid. 
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(PROBIT), an RCT where more than 17,000 women were randomised to breastfeeding 

counselling in Belarus (45). Duration and exclusivity of breastfeeding were higher in the 

intervention group. However, the PROBIT study essentially compares “some” breastfeeding with 

“more” breastfeeding, and a difference in outcomes might have been observed comparing the 

“more” breastfeeding with an only formula fed control group. 

Mothers also benefit positively from breastfeeding. Breastfeeding has been linked to a lower risk 

of breast cancer and possible also against ovarian cancer and type II diabetes in nursing mothers 

(31). A recent meta-analysis also found that breastfeeding are associated with lactational 

amenorrhea, increasing birth spacing (46), whereas evidence on the association between 

breastfeeding and postpartum weight loss is weak (46).  

The evidence on breastfeeding’s beneficial impact for infants and mothers is based largely on 

observational studies and in growing numbers on breastfeeding promotion intervention studies. 

It is unethical to randomise infants to various modes of feeding, which is why observational 

studies of breastfeeding practices and experimental designs of breastfeeding promotion offer the 

best available evidence of the causal relationships between breastfeeding and health outcomes. 

However, observational studies are prone to bias linked to confounding and reverse causality. 

The main confounders linked to breastfeeding are socioeconomic status and education. In HIC 

breastfeeding are associated with higher socio-economic status, and in LMICs this relationship 

is reversed (31). With reverse causality, the temporal sequence of the early signs of infection or 

growth faltering and cessation of breastfeeding may not be appreciated; infection or growth 

faltering may be responsible for the cessation of breastfeeding, rather than the other way round 

(47).  

In experimental studies of breastfeeding promotion, noncompliance and similarities in the 

distribution of duration of breastfeeding can make causal inference problematic (47).  

1.2 Exclusive breastfeeding 

The WHO changed their recommendation of EBF from the first 4-6 months of life to six months 

after an Expert Consultation meeting in 2001 (48). The main evidence cited in support of the 

revision was a systematic review looking at infant health benefits (49) and a review evaluating 

the nutrient adequacy of EBF during the first six months of life (50). 
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The systematic review by Kramer and Kakuma (2012) (49) concluded: “The available evidence 

demonstrates no apparent risks in recommending, as a general policy, exclusively breastfeeding 

for the first six months of life in both developing and developed-country settings”. This 

recommendation was based on comparing EBF for six months versus EBF for 3–4 months with 

continued mixed breastfeeding2 until at least six months, in terms of growth, development, 

morbidity and survival of healthy, term infants. In total, 23 studies were summarized in the 

review, and 21 of these were observational studies that varied in both quality and geographic 

region. The last two studies were small RCTs conducted in Honduras, which did not classify as 

high methodological quality studies. Eleven of the 23 studies identified were conducted in 

LMICs. The authors concluded that in a LMIC setting, the most important advantage of EBF to 

six months of age was related to a decrease in infectious disease morbidity and mortality, 

especially due to gastrointestinal infections. No difference in infant allergic disease, growth, 

obesity or cognition was found between EBF to six versus EBF for 3-4 months (49). 

Most of the scientific evidence included in this review was from observational studies, with well-

recognised sources of potential bias. The quality assessment conducted in the Kramer and 

Kakuma (2012) (49) review showed that definitions of EBF varied considerably across studies. 

Few adhered to the WHO definition of EBF, and the majority defined EBF to also include the 

provision of water, teas or juices and a small amount of infant formula, which is by WHO 

definitions predominantly breastfeeding (30). 

As a part of the 2001 Expert Consultation, the WHO evaluated the nutrient adequacy of EBF in 

meeting infants’ nutrient requirements during the first six months of life (50). This was assessed 

by comparing infant nutrient intakes from breast milk with infant nutrient requirements, mostly 

evaluated by measuring infant growth.  

The evaluation concluded that the total energy and protein concentration of breast milk was 

adequate to sustain infant needs in the first six months of life. In terms of micronutrients the 

evaluation was reduced to investigate only a few micronutrients; calcium, iron, zinc and vitamins 

A, D and B6. The authors only identified vitamins A and B6 as the micronutrients of concern, 

because maternal deficiencies of these two vitamins could lead to sub-optimal concentrations in 

breast milk. Iron status in exclusive breastfed children was also concluded as potentially 

problematic, as a study included in the review had demonstrated poorer iron status in infants who 

                                                 
2 Mixed feeding is introduction of complementary liquid or solid foods with continued breastfeeding 
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were exclusive breastfed for six months versus four months in Honduras (51). Breast milk is a 

poor source of iron, and the estimated infant iron requirements cannot be met by breast milk alone 

at any stage of infancy. Nevertheless the authors concluded that in well-nourished populations 

the iron endowment infants are born with can sustain the need in early infancy, with iron from 

complementary foods needed after six months (50).  

The WHO Expert Consultation recognised the lack of available data, and concluded that apart 

from a possible negative effect of EBF on infant iron status in poorly nourished populations, “the 

available evidence is grossly inadequate to assess risk of deficiency in other micronutrients” (48). 

Concerning the duration of EBF they also noted that: “the sample sizes were insufficient, 

however, to rule out an increased risk of growth faltering in some infants who are exclusively 

breastfed for 6 months, especially in populations with severe maternal malnutrition and a high 

prevalence of intrauterine growth retardation” (48). The Expert Consultation stated that 

investigating breast milk composition in poorly-nourished mothers and the adequacy to meet 

infant nutrient requirements is a highly-prioritised research area (48). 

1.3 Infant growth 

Regardless of the WHO recommendation, EBF practices differ widely between countries. In 

LMICs only 37% of infants younger than six months are exclusively breastfed (31). If looking at 

the prevalence of EBF to six months in LMICs, this is much lower, however due to lack of data 

no regional or global estimates exists. 

These low percentages of EBF practices are likely linked to a longstanding debate about the 

optimal duration of EBF. One of the reasons for this debate is that growth faltering is commonly 

observed before six months of age in resource-poor settings, even in countries with high 

prevalence of breastfeeding (52-56). A secondary data analysis of national surveys from India 

reported that 21% of exclusive breastfed infants were stunted at six months of age, although there 

was no difference in stunting prevalence between exclusive breastfed and non-exclusive 

breastfed children, and the EBF definitions was based on a 24-hour recall (55). 

When compared to the WHO International Growth Standards, infants from resource-poor settings 

are smaller at birth, show catch-up growth during the first few months of life, and then enter a 

period of reduced growth velocity marked by profound growth faltering up until 24 months of 

postnatal life (53, 54). Piwoz et al (2012) (57) stated that one of the main priorities in the work 
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of addressing poor growth is to understand why breastfed infants in resource-poor areas growth 

falter in early infancy (other determinants of poor growth are described at the end of this section). 

There is limited evidence on how EBF to six months impacts infant growth in resource-poor 

populations. A recent meta-analysis of 35 RCTs investigated the effect of breastfeeding 

promotion interventions on infant and childhood growth (58). However, most studies included in 

this meta-analysis were conducted in affluent countries or urban areas in middle-income 

countries. In these populations, childhood overweight and obesity is a greater problem than 

growth faltering, and non-(exclusively) breastfed children are given infant formula (e.g. (41, 59)). 

The growth pattern of formula fed infants differs from that of infants who are breastfed, which is 

why the 2006 WHO Growth Standards are based on data from exclusively breastfed infants in 

the WHO Multicentre Growth Reference Study to represent healthy infant growth (60). Formula 

fed infants gain weight and length more rapidly than breastfed infants, starting around 2-3 months 

of age, and when they reach their first year of life they have a considerably larger body size 

(weight, length, BMI, skinfold) (61, 62). This accelerated postnatal growth has been linked to 

higher obesity rates in later life (63, 64). It is has been hypothesised that the higher protein content 

of infant formula (65), and possibly also a higher total energy intake in formula fed infants (66) 

drives larger body size. When investigating how EBF to six months influence infant growth in 

settings where growth faltering is common, it is important not to compare exclusive breastfed 

infants’ growth against that of formula fed infants.  

On examining the evidence from low-income countries in their meta-analysis where non-

(exclusively) breastfed children were either given no or poor-quality infant formula, Guigliani et 

al (2015) (58) concluded that infant weight-for-age (WAZ) was significantly, although modestly, 

lower in the intervention group receiving breastfeeding counselling (z-score mean difference: -

0.11). The effect was also reported for weight-for-length (WLZ) (z-score difference: -0.11), 

though no effect was seen on length/height-for age (LAZ) in low-income countries. This review 

assessed the impact of breastfeeding intervention on growth rather than the effect of breastfeeding 

per se, and so the results from the meta-analysis suggest that a longer duration of EBF in low-

income countries has a modestly negative impact on infant WAZ and WLZ. This does not, 

however, tell us how EBF to six months influences growth, as most of the studies from low-

income countries reported a low prevalence of EBF at six months of age.  

Few studies have been able to investigate how EBF to six months influence growth in a resource-

poor setting. Two RCTs have investigated the impact of EBF to six months on infant growth in 
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a setting where no infant formula was given (67, 68). These were both conducted in Honduras, 

and showed no difference in weight or length at six months of age between infants who were 

exclusively breastfed to six months versus to those to four months (with continued breastfeeding 

and solid foods). Both studies were also included in the Kramer & Kakuma (2012) (49) review 

that shaped the WHO recommendation of EBF to six month. These studies have however been 

criticised for having a low sample size (49) (n=119 and n=97 respectively), and only one of these 

trials followed the infants to one year of age (67), making it difficult to investigate any longer 

term influences. Two observational studies have also found the same overall results of no effect 

of EBF to six months on infant growth (69, 70). However, these observational studies were either 

cross-sectional or longitudinal studies that analysed serial measurements as cross-sectional data, 

reducing the power of longitudinal data (71). 

The early growth faltering experienced in resource-poor areas has most commonly been 

attributed to several combined environmental influences such as, early introduction of low quality 

complementary foods, low dietary diversity, poverty, diarrheal diseases and other infections and 

poor hygiene and sanitation standards (8, 54, 72). A review of epidemiological studies has 

convincingly showed that suboptimal infant feeding practices, recurrent infections and 

micronutrient deficiencies are important determinants of stunting (2, 73). However, even with 

this knowledge, the most effective interventions to reverse growth faltering remain unclear (57, 

74). No intervention study has normalised infant growth in settings where growth faltering is 

common (3). It has been argued that infant growth failure is further linked to more distant 

influences, such as economic growth, which increases access to health care, education and 

urbanisation (75). Intergenerational factors may also play a role, with maternal short stature being 

associated with offspring stunting (4, 5), and paternal in utero energy and nutrient restriction 

being associated with offspring postnatal growth (76). 

A potential contributing factor to linear growth failure that has not received much attention is the 

possible inadequacies in breast milk micronutrient concentrations of mothers who enter 

pregnancy and lactation with a poor nutritional status (77). It is widely recognised that the 

response to deficiency of several nutrients, the so called Type II nutrients, is characterised by 

reduced growth or body weight without any reduction in tissue concentration (78). These includes 

for instance protein, essential amino acids, zinc and phosphorus. A Type I nutrient response, on 

the other hand, is characterised by a reduction in tissue concentration and body stores followed 

by clinical signs of deficiency. Type I nutrients include most micronutrients, for instance iron, 

iodine, selenium, thiamin, riboflavin and vitamin B12 (78).  
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Because few micronutrients are classified as Type II nutrients, it is often assumed that poor breast 

milk micronutrient concentration does not play a major causal role in the widespread growth 

faltering experienced in many LMIC settings (77). This has however not been ruled out by 

intervention studies or trials; few studies exists on how breast milk micronutrient concentrations 

is associated with infant growth in settings where infant growth faltering is common and where 

the mother is also at risk of micronutrient deficiencies. One observational study on breast milk 

micronutrient concentrations of Kenyan women examined vitamin B12, a Type I nutrient, and 

found that it was not associated with infant growth at six months of age (79). Further, the low 

concentration of Type II nutrients such as zinc in breast milk, and the limited impact that maternal 

zinc status and dietary intake is believed to have on breast milk concentration, have led to a 

general lack of concern about the potential role that deficiencies in breast milk micronutrients 

play in contributing to infant growth failure (77). Overall, there is a notable lack of studies 

looking at the effects of breast milk micronutrient concentration on infant growth. 

Irrespective of any impact on growth, the role of breast milk micronutrient concentration on 

infant nutritional status during the period of EBF is important for other infant health outcomes, 

and especially in resource-poor areas where lactating mothers are at risk of micronutrient 

deficiencies themselves (29). The data available, though limited, point to poor micronutrient 

status in breastfed infants at six months of age in resource-poor settings (22, 80-82). For example 

in Honduras 67% of breastfed infants had low vitamin B12 status, and 28% had low vitamin A 

status at six months of age (82). Low micronutrient status in infancy has typically been attributed 

to poor maternal status during pregnancy, low birth weight and/or preterm delivery resulting in 

poor infant stores at birth or low quality complementary foods, whereas breast milk micronutrient 

quality has been largely overlooked (77). 

1.4 Lactation physiology and breast milk composition 

Human milk is produced in the mammary gland, located in the breast, which consists of a series 

of ducts of epithelial origin branching through a connective tissue stroma and ends in clusters of 

grape-like alveoli, where milk secretion and storage take place. The alveoli are arranged into 

lobules, each of which drains into a ductal system which carries the milk product to the outside 

(83)(Figure 1).  
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Figure 1. Cross-section of the mammary gland 

1. Chest wall 2. Muscles 3. Lobules (groups of alveoli) 4.Nipple 5. Areola 6. Milk ducts 7. Fat 8. Skin. Source of 
picture: Patrick J. Lynch, medical illustrator.  

The complex nature of breast milk composition also reflects the secretion and transport processes 

that take place within the mammary gland. Milk nutrients are secreted by epithelial cells in the 

alveoli of the mammary gland by numerous and complex systems, and are transported from the 

blood to the milk via transcellular pathways (84). There are two principle pathways by which 

solutes can move across an epithelium, the paracellular and the transcellular pathway (Figure 2). 

In the first pathway (pathway V in Figure 2) solutes are transported across the epithelium by 

passing through a tight junction. This pathway is only open during pregnancy, involution and in 

inflammatory states such as mastitis (85). In contrast the transcellular pathway involves the 

transport of solutes through the cell. The pathway responsible for the largest volume of milk is 

the excocytic pathway (pathway I in Figure 2). It is responsible for the exocytotic secretion of 

milk proteins, lactose, calcium and other components of the aqueous fraction of milk. It 

synthesizes milk proteins in the rough endoplasmic reticulum, then transfers these to the Golgi 

apparatus, where they are packaged into secretory vesicles for secretion. In the lipid pathway 

(pathway II) milk lipids are secreted by involvement of triglycerides that coalesce into larger fat 

droplets and move towards the apical membrane and are secreted as milk fat globules (83-85). 

Pathway III is the membrane transport pathway where distinct ions and small molecules such as 

glucose and amino acids are transported to the milk. This is done by specific transporters located 
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at the basal plasma membrane, Golgi apparatus, secretory vesicles and apical plasma membrane. 

Transcytosis is the last transcellular pathway (pathway IV) which is where the basal membrane 

takes up proteins, such as immunoglobulins, by endocytosis. The solutes are transported across 

the cell to the apical membrane where it is secreted into the milk space.  

 

Figure 2. Pathways for milk secretion 

Pathway I: Exocrine pathway. Pathway II: Lipid pathway. Pathway III: Membrane transport pathway. Pathway IV: 
Transcytosis pathway. Pathway V: Paracellular pathway. Abbreviations: RER – rough endoplasmic reticulum. MFG 
– milk fat globule. GJ – Gap junction. D – desmosome. BM – basement membrane. FDA – fat-depleted adipocyte. 
PC – plasma cell. From Neville (1995) (83), and McManaman and Neville (2003) (85).  

Breast milk is produced during lactogenesis, which is the onset of milk secretion and includes all 

changes in the mammary epithelium necessary to go to full lactation after birth. Lactogenesis can 

be divided into two phases, where the onset of colostrum production in the final trimester of 

pregnancy is the first phase, and thereafter the mammary gland is sufficiently differentiated to 

secrete milk. Phase two of lactogenesis (secretory activation) is the onset of milk secretion after 

parturition following the initiation of lactation (86).  
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1.4.1 Milk composition  

Human milk composition is dynamic, extremely complex and highly variable (36). Breast milk 

consist of more than 200 recognized elements, including water, macronutrients, minerals, 

vitamins, trace elements and non-nutritional bioactive components, such as hormones, antibodies 

and human milk oligosaccharides. Its composition has evolved over millions of years adapting 

to the requirements of infants (36). 

Milk composition changes radically according to stage of lactation, especially during the first 

few days after birth when secretion changes from colostrum to milk. After a few weeks the 

composition stabilises and further changes in composition occur over a longer time frame (87). 

Human milk can roughly be divided into three types that differ in composition according to stage 

of lactation; colostrum, transitional, and mature milk. Colostrum is low in volume and is secreted 

in the first days postpartum; transitional milk is characterised by a gradual increase in volume 

and fat concentration and typically occurs from day five to two weeks postpartum. By four to six 

weeks postpartum the milk is considered fully mature (88). Even in mature milk, composition 

continues to change over the course of lactation. 

Protein concentrations gradually decline in breast milk according to stage of lactation, whereas 

fat and carbohydrate concentration slightly increases from colostrum to mature milk (89, 90). For 

the majority of the water-soluble vitamins, concentrations are lower in early milk (1-5 days) 

compared to mature milk (91), except for vitamin B12 where the opposite has been reported (92). 

Fat-soluble vitamin concentrations are high in colostrum and drastically decline during the first 

week of lactation (93, 94). High concentration of fat-soluble vitamins in early lactation has been 

attributed to their storage in the mammary gland prior to delivery and released in response to 

endocrine changes associated with delivery and lactogenesis (95). Mineral concentrations are 

generally higher in colostrum than in mature milk, except for calcium where no changes have 

been observed according to stage of lactation (94). 

Considerable variation in milk production and composition is also seen across population and 

between mothers (96, 97). For instance, milk protein and carbohydrate concentrations are 

relatively constant between individual women, whereas fat, and also the energy content of milk, 

varies widely between individuals and populations (50). Milk composition varies according to 

the time of day, within-feeding, and according to intervals between feedings (98, 99). The first 

milk expressed during a feed (foremilk), has a lower content of fat compared to the last milk 
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consumed during a feed (hindmilk) (98, 100). This change in composition is mostly seen for fat 

and fat-soluble components, where fat changes as much as five-fold within a single feed. Even 

within mature milk alone fat composition can change drastically over 24 hours. One study found 

an estimated variation coefficient in fat concentration in mature milk of 47% (101). 

Breast milk volume is likely to also influence milk composition. Milk volume is primarily linked 

to infant demand (102), along with infant weight and total nursing time (103). Exclusively 

breastfed infants receive a higher milk volume than partially breastfed infants, which is especially 

apparent during the period when complementary foods replace breast milk (104). The variability 

in breast milk volume consumed by exclusively breastfed infants in the first six months of life is 

of particular importance, as milk transfer varies significantly from one mother-infant pair to 

another. It varies approximately from 450 to 1300 ml/day, averaging approximately 800 ml/day 

in healthy women across the first six months of EBF (99). 

Evidence have shown that in women producing low milk volumes, the quantity of a nutrient 

increases to compensate (87, 105). A study investigating this in relation to macronutrient 

composition found lower concentrations of protein and fat with higher volumes of milk produced, 

whereas lactose increased with increasing volume (106). Literature on the influence of volumetric 

differences on micronutrient concentration is however lacking. A review reported breast milk 

calcium concentration to be independent of breast milk volume (107) and a recent study in 

Switzerland found the same results for milk iron concentration (Noever et al unpublished, 

personal communication). No studies have investigated how vitamin concentrations are 

influenced by volume. Breast milk volume/infant intake was previously measured by test-

weighing the infant before and after breastfeeding for at least 24 hours (104), whereas now the 

dose-to-mother deuterium oxide method is considered the gold standard (108).  

1.5 Maternal nutritional influences  

Maternal nutritional status or dietary intake is the most important environmental influence on 

breast milk nutritional composition (97). Mixed evidence has been found on other environmental 

influences, such as maternal age, parity and gestational age (94, 109-111). 

The influence of maternal nutritional status and dietary intake on macronutrient composition has 

been studied by several researchers (106, 112-115), and especially studies with a focus on breast 

milk fatty acid composition have been conducted (116-119). These studies have found that breast 
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milk protein concentration is generally not influenced by maternal diet (106, 113), neither is 

lactose, the main carbohydrate found in breast milk (106, 114). However, one intervention study 

in rural Gambia reported a small increase in breast milk protein and a small decrease in lactose 

concentration with a high energy dietary supplement (fortified biscuit) given during lactation 

(115). Although this study used the same participants as retrospective controls, and the change 

observed could therefore be due to stage of lactation rather than the supplement. 

In relation to fat, findings have been contradictory. The total milk fat concentration seems to be 

unaffected (26, 97) whereas the fatty acid profile of breast milk appears responsive to maternal 

intake (116-119). In an RCT with 24 breastfeeding mothers assigned to receive either a daily 

docosahexaenoic acid (DHA) supplement or a placebo, authors found that postpartum DHA 

supplementation increased maternal plasma phospholipid and breast milk DHA (117). 

The influence of maternal undernutrition on lactation performance and breast milk energy has 

also been studied (115, 120). Older studies have found that undernourished women only produced 

half the volume of milk produced by well-nourished women from more affluent countries. 

However, subsequent work using improved methods showed no distinction in the production of 

breast milk volume between undernourished and well-nourished women (97). A study combining 

data from 1060 women at three months postpartum found that maternal nutritional status, 

indicated as body mass index (BMI), was not associated with breast milk volume or breast milk 

energy content, not even in thin mothers (BMI <18.5 kg/m2) (120) (Figure 3). Thin mothers living 

in resource-poor areas produced milk with energy levels comparable to those in milk produced 

by normal weight mothers. This was supported by the findings of an intervention study where 

130 rural Gambian women were given a nutritional supplements during lactation (participants 

acted as retrospective controls), increasing energy intake from 1569 to 2291 kcal/day (115). The 

authors found no effect of the supplement on breast milk volume or total energy at any stage of 

lactation or in any season of the year. 
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Figure 3. Relationship between maternal BMI and (a) milk volume and (b) energy content. 

Data from 1060 women at three months postpartum from 35 separate studies. Values are means. From Prentice, 
Goldberg and Prentice (1994) (120). 

The influence of maternal nutritional status on breast milk micronutrient composition is less well 

understood. A recent systematic review by Bravi et al (2016) (112) investigated how maternal 

dietary intake influences macro- and micronutrient concentrations in breast milk, but this review 

was restricted to studies investigating the influence of maternal dietary intake, excluding those 

investigating the effect of maternal nutritional status and micronutrient supplements. 

Furthermore, the review only included studies of well-nourished mothers, excluding studies 

conducted in poorly-nourished populations. Allen (1994) (121) also reported on how maternal 

nutritional status and dietary intake influence breast milk micronutrient composition, but this 

study was not based on a systematic approach and is now more than two decades old.  

Other available studies or narrative reviews on breast milk micronutrient composition have either 

focused on a single breast milk micronutrient, or have used non-systematic literature review 

approaches without a specific objective of investigating maternal nutritional influences (77, 107, 

121-127). Most of these available studies are clustered around specific micronutrients, leaving 

some micronutrients almost completely unexplored.  

This introduction highlights the research gap that exists on maternal nutrition, breast milk 

micronutrients and infant growth in the first six months of life when infants are relying on breast 

milk as their only source of nutrients. The scientific literature to support the adequacy of breast 

milk micronutrient composition among women with a poor nutritional status is limited.
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1.6 Aims and objectives (I) 

There is limited evidence on the influence of maternal nutritional status and dietary intake on 

breast milk micronutrient composition in resource-poor areas where the mother is at risk of 

micronutrient deficiency. Data are lacking on how EBF to six months of age, in a resource-poor 

setting where infants experience early growth faltering, is associated with infant growth. The 

scientific literature on maternal nutrition, breast milk micronutrient composition and infant 

nutritional status during the period of EBF in a resource-poor setting, is lacking. 

The overall aim of this thesis is to: 

Investigate maternal nutrition, breast milk micronutrient concentrations and infant 

growth and nutritional status during the period of exclusive breastfeeding in a resource-

poor population.  

The first two research objectives of this thesis are to:  

1. Systematically define the existing evidence-base of maternal nutritional influences 

(nutritional status, dietary and supplement intake) on breast milk micronutrient (vitamins 

and minerals) concentrations across the first six months of lactation (Chapter 2) 

 

2. Identify how exclusive breastfeeding practices during the first six months of life is 

associated with growth of rural Gambian infants up to two years of age (Chapter 5) 

The results of the systematic literature review (Chapter 2) will guide the remaining objectives of 

this thesis, which are listed in Chapter 3 (Section 3.4, pages 115-116).
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Chapter 2   

Systematic literature review  

This Chapter presents a systematic literature review aiming to assess the influence of maternal 

nutritional status and intake (food or supplements) on breast milk micronutrient concentrations, 

and includes studies from all settings (high-, middle- and low income countries). The following 

micronutrients are included: vitamin A, vitamin D, vitamin E, vitamin K, vitamin C, thiamin, 

riboflavin, vitamin B6, folic acid, vitamin B12, calcium, copper, iodine, iron, selenium and zinc. 

This review is used to highlight the selection of micronutrients that will be focused on in the 

remainder of this thesis.  

2.1 Methods  

2.1.1 Search strategy  

A comprehensive and systematic literature search was performed in PubMed/MEDLINE 

including articles published until March 1st 2017. The Preferred Reporting Items for Systematic 

Reviews and Meta-analyses (PRISMA) standard reporting guidelines were used. The following 

Mesh search terms were used: lactation, breastfeeding breast milk, human milk, vitamin B1, 

thiamin, vitamin B2, riboflavin, vitamin B6, vitamin B9, folate, folic acid, vitamin B12,  cobalamin, 

vitamin A, retinol, vitamin D, vitamin E, vitamin K, vitamin C, ascorbic acid, iodine, iron, 

calcium, zinc, selenium, copper and micronutrient. In addition to the studies found through 

PubMed, reference lists of the identified studies were checked and relevant studies were included.  
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2.1.2 Inclusion and exclusion criteria  

All types of human studies were included for this review; randomised controlled trials (RCTs), 

interventions (no randomisation) and observational studies with no restriction on year of 

publication. Studies were included if (i) maternal nutritional status or intake was measured (either 

by biomarkers, dietary intake, supplementation or food fortification) during either pregnancy or 

lactation, (ii) breast milk micronutrient concentrations were measured and reported as means or 

medians, and (iii) the relationship between maternal nutritional status or intake and breast milk 

micronutrient concentrations in the first six months of life were investigated. 

Studies investigating adolescents (<18 years), HIV positive women or pre-term deliveries were 

excluded, because of the likely difference in the concentration of some micronutrients in breast 

milk in these specific subgroups (110, 128-130). Studies that only investigated breast milk 

micronutrient concentrations beyond the first six months of lactation and studies providing breast 

milk concentrations in a figure without reporting the actual concentrations within the text were 

also excluded. Case studies and literature reviews were excluded along with studies with no full 

text access. For vitamin A, studies that did not report on breast milk retinol concentrations in 

relation to milk fat were excluded (n=17). Vitamin A is present almost exclusively in the lipid 

fraction of breast milk as retinyl esters, mainly retinyl palmitate (131, 132). Breast milk vitamin 

A concentration is strongly associated with milk fat, and retinol adjusted for fat is a more accurate 

reflection of total breast milk vitamin A concentrations. It has been suggested to express fat-

soluble vitamins per grams of milk fat to reduce sampling inaccuracies (93, 131). This criterion 

was not applied to the other fat-soluble vitamins (D, E and K), as this would have led to exclusion 

of almost all the relevant studies. 

2.1.3 Data extraction  

All studies were read and information was extracted on study design, geographical area, sample 

size, micronutrient supplementation status, breast milk sampling protocols (including number of 

samples collected, collection method, stage of lactation when samples were collected, laboratory 

method and exclusively breastfeeding status if reported), maternal nutritional assessment 

(including method used to assess status or intake), and main results (including breast milk 

micronutrient concentrations and estimates of the relationship between maternal nutritional status 

or intake and micronutrient concentrations in breast milk).  
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2.2 Results  

2.2.1 Description of included studies  

Figure 4 details the publication selection flow. The initial search yielded 4505 publications, of 

which 4126 were excluded after title and abstract evaluation. Another 245 were excluded after 

considering the full text, leaving 135 eligible publications. Six further studies were identified by 

cross-referencing included publications. In total, 141 publications were included in this 

systematic review. The main characteristics and results of the included publications are 

summarised in Table 1 (vitamins) and Table 2 (minerals). Among the 141 included studies, 25 

studies investigated several breast milk micronutrient components and were included more than 

once in Tables 1 and 2 and in the review below.  

The studies included were published between 1960 and 2017, with 50% (70/141) published 

before 2000. Sixty studies were conducted in LMICs, 78 in HIC and 3 studies included 

participants from both HICs and LMICs. Twenty-nine of the studies were RCTs, 25 were 

interventions with no randomisation and often no placebo group, 77 were observational studies, 

and the remaining 10 studies were classified as pre-post intervention studies. Instead of using a 

control or placebo group, these ten studies compared breast milk micronutrient concentrations in 

breast milk samples collected pre-supplementation and post-supplementation. A fundamental 

problem with this study design is that it cannot be determined if a change in breast milk 

micronutrient concentration is due to supplementation or if it reflects a physiological increase or 

decrease in milk micronutrient concentrations with stage of lactation. 

Analytical methods used among the included studies were highly variable. In addition to different 

methods being used between micronutrients, the methods also varied within each micronutrient. 

For instance, nine different analytical methods were used to quantify breast milk iodine 

concentration (Table 2). This was also the case for vitamin B12, for which studies used various 

pre-treatments to extract breast milk vitamin B12 from its binding protein, apo-haptocorrin 

(apoHC), and various assays for vitamin B12 concentration (Table 1). Furthermore, a total of 11 

studies did not describe the analytical method used.   
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Figure 4. Publication selection flow 
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2.2.2 Maternal nutrition 

Of the total 141 studies, 41 investigated more than one of the three exposure variables; maternal 

supplementation, dietary intake or status. The 63 RCTs, intervention and pre-post intervention 

studies included in this review provided the micronutrients in the form of either a single dose 

(tablet form or oil) or as a daily tablet (n=57), lipid-based nutritional supplement (n=1), as 

fortified foods (not including fortified oil) (n=4), or as a mixture of diet and supplementation 

(n=1). Among the 78 included observational studies, 34 investigated maternal nutritional status 

only by either blood or urine, and 29 studies investigated maternal dietary intake as the only 

exposure variable measured by either FFQs, 24-hour recalls or dietary records or diaries. Four 

observational studies investigated self-reported supplement use, and the remaining 11 

observational studies investigated both maternal status and dietary intake.  

Only 13 studies investigated maternal supplementation, intake or status during pregnancy, 14 

investigated supplementation, intake or status during both pregnancy and lactation and 111 

focused on supplementation, dietary intake or status on or around the day of breast milk sample 

collection. In three of the studies, it was not clear when the blood, urine or maternal dietary intake 

data was collected.  

2.2.3 Breast milk collection 

From the total 141 studies, 97 (69%) collected breast milk longitudinally (serial samples), and 

breast milk micronutrient concentrations were measured in colostrum to mature milk up to 12 

months postpartum. 

Several different breast milk expression methods were used across the included studies. In some, 

the milk was obtained by manual hand expression (n=58), in others the sample was collected 

with a manual breast pump (n=17) or electronic pump (n=20), and in many studies it was not 

specified how breast milk was expressed (n=46).  

Protocols for the collection of breast milk varied widely across studies. Some studies obtained a 

sample from a full breast expression (n=21) (resulting in the collection of both foremilk and 

hindmilk), others collected a sample just before and after a feed (n=18) (foremilk and hindmilk), 

after a feed (n=2) (hindmilk only), and others collected a mid-feed milk sample (n=19) (hindmilk 

only). Several studies did not standardise the collection method around a feed, but collected the 

sample between feeds (n=30) (foremilk only) often standardising the collection to a specific time 
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of day. The majority of the studies did not specify how the breast milk sample was collected 

(n=51). Seven studies reported collection breast milk from both breasts, 33 from one breast only 

and 101 studies did not specify if the sample was from one or both breasts. Quite a large number 

of studies did not standardise breast milk sample collection according to stage of lactation (n=32), 

meaning that concentrations from across the lactation period were either pooled or used for 

comparison.   

Only a small number of studies included data on breast milk volume, either expressed as a daily 

volume production or as daily infant intake. Similarly, only a few studies (n=42) reported if the 

infants were exclusively, predominantly or partially breastfed at the time of milk collection. 

2.2.4 Main results  

The relationship between maternal intake, nutritional status and breast milk micronutrient 

composition are presented below, ordered by type of micronutrient, with vitamins first followed 

by minerals. For each micronutrient, results are ordered as follows: The relationship between (i) 

maternal supplementation and breast milk micronutrient concentration (ii) maternal dietary 

intake and breast milk micronutrient concentration and (iii) maternal micronutrient status and 

breast milk micronutrient concentration. 

Vitamin A 

A total of 16 studies focused on vitamin A; nine RCTs, three intervention and four observational 

studies.  

Four RCTs supplemented mothers with single mega-doses of 200,000-400,000 IU of vitamin A 

within one week after delivery, and showed an increase in breast milk retinol/g fat concentration 

(133-136). The effect was sustained for 3-4 months postpartum, however it disappeared around 

6-9 months (133, 134, 136). Two of these RCTs, Rice et al (1999) (136) and Ayah et al (2007) 

(133), also measured maternal serum retinol and both studies found no effect of supplementation 

on serum retinol concentrations. This suggests that when supplementing the lactating mother, 

vitamin A is directed to the mammary gland rather than the liver, and that serum retinol is stable 

over a wide range of vitamin A intakes. These four RCTs were conducted in Kenya, 

Ghana/India/Peru, Brazil and Bangladesh; the Bangladeshi population particularly had a high 

prevalence of vitamin A deficiency during the study period. 
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One RCT and one intervention study, supplementing mothers during pregnancy or lactation with 

a weekly or daily vitamin A supplement (4800 RE weekly, 650 μg daily) reported an increase in 

breast milk retinol/g fat in breast milk (137, 138): 0.053 µmol/g vs 0.044 µmol/g (p<0.05) in 

mature milk from supplemented vs placebo women in Indonesia (137) and 29.5 µg/g vs 22.9 µg/g 

(p<0.01) in supplemented vs. unsupplemented women from The Gambia (138). Both studies 

failed to find any effect of vitamin A supplementation on maternal plasma and serum. 

An RCT from Bangladesh found vitamin A supplementation of 0.25 mg retinyl acetat (given 

twice a day, six days a week) during lactation to increase breast milk retinyl equivalents/g fat in 

mature milk: 29 nmol/g fat vs. 20 nmol/g fat in supplemented vs. unsupplemented women (139). 

A recent RCT from Ghana supplemented mothers during both pregnancy and lactation with either 

a daily multiple micronutrient (MMN) supplement or a lipid-based nutrient supplement (LNS) 

both containing 800 μg vitamin A (111). The authors did not find a significant difference in breast 

milk retinol/g fat at six months postpartum in the supplemented group compared to the control 

group (MMN: 55.4 nmol/g fat, LNS: 54.7 nmol/g fat, control: 59.1 nmol/g fat).  

Supplementation with β-carotene, during either pregnancy or lactation, did not increase breast 

milk retinol/g fat concentrations (140-143), and two of these studies were RCTs conducted in 

populations with a high prevalence of vitamin A deficiency (140, 143). 

One study conducted in Cameroon demonstrated a positive association between maternal dietary 

vitamin A intake and breast milk retinol/g fat concentration (r2=0.13, p<0.001) by FFQ and 24-

hour recall (144), while other studies did not report any association (145, 146). For instance a 

dietary intake study in Brazil did not find an association between maternal dietary vitamin A 

intake (by FFQ) and concentration in colostrum (146). 

Four studies investigated maternal vitamin A status (measured as serum or plasma retinol) and 

the association with breast milk retinol/g fat (137, 138, 146, 147). Two studies found a positive 

association (137, 147), however the remaining studies did not. 

Vitamin B1 (thiamin) 

Eleven studies on breast milk thiamin concentration were included in this review, one RCT, four 

interventions, two pre-post intervention and four observational studies. 
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The only included RCT was conducted in Cambodia, in a population at risk of thiamin deficiency 

(148). The authors found that the consumption of thiamin fortified fish sauce (8 g/l) during 

pregnancy and lactation significantly increased total thiamin concentration in mature milk: 177 

μg/l vs. 144 μg/l in women consuming fortified fish sauce (highest dose) vs. placebo. In line with 

this data, two pre-post intervention studies reported that thiamin supplementation (1.36 mg/day 

and 100 mg/day) during lactation increased breast milk thiamin in populations with poor thiamin 

status (115, 149).  

A pre-post intervention study in a Thai-Myanmar population found that maternal intake of 

thiamin fortified flour (estimated intake of thiamin: 0.34 mg/day) increased breast milk free 

thiamin, however not breast milk total thiamin concentration (147). This study did not have a 

control group, but compared breast milk thiamin concentration after fortification with pre-

fortification concentration in two different groups of women. 

One intervention study conducted in a refugee camp near the Thai-Myanmar border 

supplemented participants who showed signs of thiamin deficiency with 100 mg of thiamin a 

day, but only during pregnancy (150). Women who did not show physical signs of deficiency did 

not receive any supplements. At three months postpartum, there was no difference in breast milk 

thiamin concentration between supplemented (128 μg/l) and unsupplemented women (117 μg/l) 

(150). In two intervention studies, in well-nourished women from the United States, breast milk 

thiamin concentration did not respond rapidly to maternal supplementation during lactation (151, 

152). This contrasting observation to the findings from less well-nourished settings could suggest 

a preferential transport of thiamin into breast milk if maternal status is poor. 

Maternal dietary thiamin intake during both pregnancy and lactation was positively associated 

with breast milk thiamin concentration in poorly- and well-nourished populations (153-155).  

Maternal thiamin status was associated with breast milk total thiamin in Cambodia (149), and in 

a population living in a refugee camp at the Thai-Myanmar border (r2=0.37, p<0.05) (156). 

Vitamin B2 (riboflavin) 

A total of seven studies on riboflavin were included in this review; three interventions, one pre-

post intervention and three observational studies.  
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One of the interventions and one of the pre-post intervention studies were conducted in rural 

Gambia, where there is a high rate of riboflavin deficiency (115, 157). Both studies found a 

positive effect of riboflavin supplementation (2 mg/day and 1.22 mg/day) during lactation in 

breast milk riboflavin concentrations. In the study published by Bates et al (1982) (157) the 

concentrations were 0.23 μg/ml vs. 0.14 μg/ml in the supplemented vs. placebo group (p<0.03) 

at approximately 40 days after supplementation commenced. In the pre-post intervention study 

published in 1983 by Prentice et al (1983) (115), a concentration of 0.21 μg/ml pre-

supplementation vs. 0.28 μg/ml post supplementation (p<0.001) was observed. 

An intervention conducted in a replete population in the United States also reported riboflavin 

supplementation (2 mg/day) during pregnancy and lactation to have a positive effect on riboflavin 

concentrations: 710 μg/l vs. 485 μg/l (p<0.01) in supplemented vs. unsupplemented women at 

six weeks postpartum (151). In contrast, another American study did not find any effect of 

supplementation (2 mg/day): 274 μg/l in supplemented vs. 243 μg/l in unsupplemented women 

at six months postpartum (152). Both of these studies had low sample sizes (n=11 and n=12).  

Three observational studies investigated the relationship between maternal dietary riboflavin 

intake and breast milk riboflavin concentrations. Two studies, one conducted in India (where 

maternal riboflavin status was poor) and one in Spain, found a significant association (155, 158), 

whereas the last study, which was conducted in Russia, did not (154).  

Only one study reported data on maternal riboflavin status, and found a positive effect between 

maternal status during third trimester of pregnancy and breast milk riboflavin in mature milk 

(158).  

Vitamin B6 

A total of 11 studies on vitamin B6 were identified for inclusion in this review; one RCT, five 

interventions, one pre-post intervention and four observational studies.  

The only RCT, randomised participants to a supplement during lactation of either 0.5 mg 

pyridoxine or 4.0 mg pyridoxine as part of a daily multiple micronutrient supplement (159). There 

was a significant difference in total breast milk vitamin B6 concentrations between the two 

groups, at 24 weeks postpartum; 1317 nmol/l and 2666 nmol/l (p<0.01) for the 0.5 and 4.0 mg/day 

supplement groups, respectively.  
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Four interventions and one observational study (160-164) from the United States found a positive 

effect of vitamin B6 supplementation during lactation on breast milk vitamin B6 concentration. 

One of these studies (160) also reported a positive effect of prenatal vitamin B6 supplementation 

(this was an observational analysis, as the women self-reported their supplement use). However, 

Chang et al (1990) (160), Styslinger et al (1985) (162) and Hamaker et al (1990) (164) did not 

include an unsupplemented group, but showed that breast milk vitamin B6 concentration 

paralleled the level of supplementation.  

One intervention and one pre-post intervention study did not observe an effect of vitamin B6 

supplementation (115, 152). Thomas et al (1980) (152) found no effect of supplementation during 

lactation (4 mg/day) on breast milk vitamin B6 concentration at six months postpartum: 235 μg/l 

vs. 212 μg/l in the supplemented vs. unsupplemented American women, however this study had 

a low sample size (n=12). The pre-post intervention study, conducted in rural Gambia, found that 

a daily fortified biscuit (containing 0.71 mg of vitamin B6) given during lactation did not increase 

breast milk vitamin B6 concentrations (115). This study did not use a placebo or a control group; 

milk vitamin B6 concentrations after supplementation were compared with pre-supplement 

concentrations.  

Several studies reported a positive association between maternal dietary vitamin B6 intake and 

breast milk vitamin B6 concentrations (165) (161, 162, 166). A study conducted in the United 

States (161), reported that maternal dietary vitamin B6 intake measured by 4-day dietary records 

was associated with breast milk vitamin B6 concentration at 5-7 days postpartum (r=0.84, 

p<0.01), and at 43-45 days (r=0.76, p<0.05) in unsupplemented women.  

Three studies reported a positive association between maternal serum/plasma vitamin B6 and 

breast milk vitamin B6 concentrations (160, 161, 165). For instance, Chang et al (1990) (160) 

from the United States showed that maternal plasma pyridoxal phosphate (PLP) was associated 

with breast milk vitamin B6 at one month (r=0.49, p<0.01), four months  (r=0.57, p<0.01) and 

six months postpartum (r=0.63, p<0.01).  

Vitamin B9 (folate) 

Eleven studies on breast milk folate were identified for inclusion in this review; two RCTs, three 

interventions, four pre-post intervention and three observational studies.  
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Two RCTs from Canada (167) and the United States (168) showed no effect of maternal folic 

acid supplementation during lactation (400 μg/day and 1 mg/day, respectively) on breast milk 

total folate concentration: 159 nmol/l vs. 183 nmol/l in supplemented vs. placebo women in 

Canada at 16 weeks postpartum (167) and 182 nmol/l vs. 187 nmol/l in supplemented vs. placebo 

women from the United States at six months postpartum (168). 

An intervention study reported no effect of folic acid supplementation as there was no increase 

in breast milk folate concentration in women supplemented with 0.8 mg/day folic acid during 

lactation; 55 μg/l vs. 50 μg/l in supplemented vs. unsupplemented American women (152). In 

contrast, Sneed et al (1981) (161) reported a positive effect of 0.8 mg/day folic acid 

supplementation during lactation on breast milk folate compared to a placebo group in the United 

States. However, participants in this study were not randomised to a supplement group.  

Maternal dietary folate intake, measured by 4-day dietary records was not associated with breast 

milk folate concentration in American women (r=0.25 p>0.05) (161). Similarly, maternal meat 

intake was also not associated with breast milk folate in Indian women (169).  

Three observational studies did not find evidence for an association between maternal serum 

folate and breast milk folate concentration (161, 170, 171). This suggests that breast milk folate 

is tightly regulated and minimally influenced by maternal folate status or intake. 

Four pre-post intervention studies, with no placebo or control groups, which compared milk 

folate concentrations after supplementation with pre-supplement concentrations were included 

(115, 172-174). One of these studies, conducted in Mexico, found an increase in breast milk total 

folate (172), whereas the remaining three studies conducted in the United States, Japan and The 

Gambia did not (115, 173, 174). However, West et al (2012) (173) did find an increase in breast 

milk folic acid concentration with folic acid supplementation (750 μg/day) and natural food folate 

(400 μ/day).  

Vitamin B12 

A total of 15 studies investigated how maternal vitamin B12 intake or status is associated with 

breast milk B12 concentrations, two RCTs, two interventions, two pre-post intervention and eight 

observational studies.  
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Six studies investigated the influence of vitamin B12 tablet supplementation during pregnancy or 

lactation on breast milk vitamin B12 concentration (115, 152, 161, 163, 175, 176). Two of these 

studies were recent RCTs conducted in India (175) and Bangladesh (176) in populations with 

poor maternal vitamin B12 status. In India, vitamin B12 supplementation (50 μg/day) during 

pregnancy (given from <14 weeks gestation) and through to six weeks postpartum, increased 

breast milk vitamin B12 concentration:  136 pmol/l vs. 87 pmol/l (p<0.001) in supplemented vs. 

placebo women at six weeks postpartum (175). Supplementation also increased breast milk 

vitamin B12 concentration at three and six months postpartum, however this effect was not 

significant. In Bangladesh, vitamin B12 supplementation (250 μg/day) during pregnancy and 

lactation had an effect on vitamin B12 concentration in colostrum (778 pmol/l vs. 320 pmol/l in 

supplemented vs. placebo group, p=0.001) and in mature milk (235 pmol/l vs. 170 in 

supplemented vs. placebo group, p=0.03) (176). This increase in breast milk vitamin B12 with 

supplementation was supported by two intervention studies from the United States supplementing 

women with 8 μg/day of oral vitamin B12 during lactation (161, 163). Another intervention study 

conducted in the United States found contrasting results, reporting no evidence of an increase in 

breast milk vitamin B12 at six months postpartum when supplementing women with 8 μg/day 

during lactation (152). 

The two included pre-post intervention studies (115, 177) did not detect a difference in breast 

milk vitamin B12 concentration. In The Gambia, a daily fortified biscuit (containing 1.19 μg of 

vitamin B12) did not increase breast milk vitamin B12 concentration (115), and in the United 

States, 10 weeks of supplementing lactating women with a vitamin B12 rich diet and supplement 

(a total of ~8.6 µg/day) did not change breast milk concentration (177). Both of these studies did 

not use a placebo or a control group; but compared breast milk vitamin B12 concentrations after 

supplementation with pre-supplement concentrations.  

In general, the included observational studies did not find any evidence for an association 

between maternal dietary vitamin B12 intakes and breast milk vitamin B12 concentrations (79, 

161, 169, 178, 179). A study in Kenya found no evidence for dietary vitamin B12 intake which 

was measured by a quantitative weighing method and dietary recall, to have an influence on 

breast milk vitamin B12 at 0-1 month postpartum (r2=0.27, p=0.08). However the study found 

evidence for an association at 1-4 months (r2=0.20, p<0.01), and at 4-6 months postpartum 

(r2=0.26, p<0.001) (79). 
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Mixed results were reported on the association between maternal vitamin B12 status and breast 

milk vitamin B12 concentration. A recent Danish observational study found an association 

between maternal plasma vitamin B12 and breast milk vitamin B12 at four months postpartum 

(r=0.58, p=0.002), however not at two weeks or nine months postpartum (180). Three other 

studies reported evidence for an association between maternal serum/plasma vitamin B12 and 

breast milk vitamin B12 in a Canadian (181) and American population (177, 182), whereas four 

other observational studies from Guatemala (178), Cambodia (181), Brazil (171) and the United 

States (161) did not.  

Vitamin C 

A total of 12 studies investigated how maternal vitamin C intake or status was associated with 

breast milk ascorbic acid concentration. Seven of these studies were intervention studies and five 

of them were observational studies. 

Three of the intervention studies were conducted in poorly nourished populations, and two of 

them in the 1980’s in rural Gambia (183-185). All three studies found a positive impact of 

maternal ascorbic acid supplementation (ranging from 35-1000 mg/day) on breast milk ascorbic 

acid concentrations. For instance in The Gambia, 90 mg of ascorbic acid given during lactation, 

in the form of a daily tea drink, had an effect on breast milk vitamin C; 3.40 mg/dl vs. 5.51 mg/dl 

in supplemented vs. unsupplemented women (184). The remaining four intervention studies were 

conducted in well-nourished populations (the United States and Australia), and ascorbic acid 

supplementation had less impact on breast milk concentration in these women compared to the 

effect observed in poorly-nourished populations (152, 161, 163, 186). However, it should be 

noted that that all four studies date back to the 1960’s and had small sample sizes.  

Three observational studies conducted in well-nourished populations reported mixed results on 

the influence of dietary ascorbic acid intake on breast milk concentrations (154, 187, 188). A 

study from Finland reported dietary vitamin C, measured by 7-day food consumption record, to 

be associated with breast milk vitamin C (r=0.39 to 0.46, p<0.01) (188), however the remaining 

studies conducted in well-nourished populations generally did not (154, 187). Three 

observational studies conducted in poorly nourished populations all reported a positive 

correlation of dietary ascorbic acid intake with breast milk ascorbic acid (155, 185, 189). 
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Only one study investigated maternal status and the relationship with breast milk vitamin C. This 

study was conducted in Finland and reported that maternal plasma vitamin C was associated with 

breast milk vitamin C (r=0.60, p=0.001), even after adjusting for milk volume (188). 

Vitamin D 

A total of 10 studies reported on how maternal vitamin D status or intake influence breast milk 

vitamin D; three RCTs, two interventions and five observational studies. 

Two of the included RCTs and the two included intervention studies generally supported an 

increase in breast milk vitamin D and 25(OH)D concentration with daily maternal vitamin D 

supplementation of 1000 to 6400 IU during lactation (190-193). One of these studies (conducted 

in Finland) only found an increase in breast milk 25(OH)D concentration and not total vitamin 

D (190). Conversely, a study from Japan showed no increase in breast milk 25(OH)D 

concentration with supplementation (193). Of these four studies, only one was a RCT, however 

with a small sample size (n=19) (192).  

The final RCT that was included reported a daily vitamin D supplement of 5000 IU or a single 

dose of 150,000 IU to increase breast milk cholecalciferol during the first month of lactation 

(194). 

Only one study investigated maternal dietary vitamin D (measured by a three day food diary) and 

the relationship with breast milk vitamin D (195). This study was conducted in the United States 

reported and an association with total breast milk vitamin D concentration (r=0.57, p=0.005), but 

not with breast milk 25(OH)D (r=0.25, p=0.2). 

The evidence for an association between circulating serum/plasma 25(OH)D and breast milk 

25(OH)D was varied. Two older studies found no association during lactation (193, 196), 

however a recent Danish study found longitudinal associations at 2 weeks, 4 and 9 months 

postpartum (r=0.51 to r=0.74, p<0.01) (197), as did another study at one week postpartum 

(r=0.62, p<0.05) (198). Jan Mohammed et al (2014) (199) found maternal serum 25(OH)D in the 

second trimester to be associated with breast milk 25(OH)D in the first days after delivery, 

however this association was not observed at 2, 3, 6 or 12 months postpartum. A positive 

association between maternal serum cholecalciferol and breast milk cholecalciferol (r=0.38, 

p=0.02) was reported (194). 
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Vitamin D was present in low concentrations in breast milk compared to other micronutrients 

(Table 1). A seasonal variation in breast milk 25(OH)D concentrations was found, with higher 

concentrations during the summer months in both Finland (190) and in Denmark (197). 

Vitamin E 

There was limited evidence investigating maternal nutritional influences on breast milk vitamin 

E concentration, with a total of only seven studies identified, one RCT and six observational 

studies. 

The only included RCT was conducted in Brazil, and found supplementation of both natural and 

synthetic vitamin E (400 IU RRR-α-tocopherol or 400 IU all-rac-α-tocopherol, respectively) to 

significantly increase colostrum α-tocopherol concentration 24 hours after supplementation; 

2187 µg/dl vs. 2508 µg/dl vs. 1643 µg/dl in natural vs. synthetic supplementation vs. control 

group (p<0.0001) (200).  

In general, the studies reviewed failed to find an association between maternal dietary vitamin 

and breast milk vitamin E concentrations (201-204). For instance, two studies that were both 

conducted in Poland reported no association between maternal dietary vitamin E intake 

(measured by a 3 day food diary) and breast milk vitamin E (r=0.034, p=0.2) (202, 203). In 

contrast, a single study from Spain observed a positive association between maternal dietary 

vitamin E intake during third trimester of pregnancy (measured by a 5 day dietary record and 

FFQ) and vitamin E concentration in transitional milk, but not in mature milk (205). 

Two studies reported no association between maternal serum α-tocopherol and breast milk 

vitamin E concentration: r=0.07 (p=0.4) (200) and r=-0.12 (p=0.22) (206) in a Brazilian 

population.  

Vitamin K 

Few studies have investigated the impact of maternal nutritional influences on breast milk 

vitamin K concentration. In total, only four studies were included in this review; two RCTs and 

two observational studies.  

The two included RCTs were conducted in the United States and the Netherlands, and included 

small sample sizes (n=22 and n=32, respectively). They found vitamin K supplementation during 
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lactation to increase breast milk vitamin K concentration; 82 ng/ml vs. 1.2 ng/ml at 12 weeks 

postpartum in supplemented vs. placebo women (given 5 mg/day) (207) and 140 nmol/l vs. 4.9 

nmol/l in supplemented vs. placebo women at 16 weeks postpartum (given 4 mg/day) (208).  

Two of the reviewed studies found no association between maternal dietary vitamin K intake 

(measured by FFQ and 3-day dietary recalls, respectively) and breast milk vitamin K 

concentrations (209, 210).  

Only one study investigated the relationship between maternal plasma vitamin K and breast milk 

vitamin K concentration, and did not find any evidence for an association (208).  

Calcium 

A total of seven studies investigated maternal nutritional influences on breast milk calcium 

concentrations, three RCTs and four observational studies.  

Two of the RCTs were conducted in rural Gambia supplementing participants with 1500 mg/day 

calcium during pregnancy (211) and 1000 mg/day during lactation (212). Breast milk calcium 

concentration was not affected by supplementation during pregnancy; 231 mg/l vs. 234 mg/l 

(p>0.05) in supplemented vs. placebo group at 13 weeks gestation (211), or by supplementation 

during lactation (212). Regardless of low habitual calcium intake in rural Gambia, neither of the 

two studies found an effect of calcium supplementation, suggesting that breast milk calcium 

concentration is unresponsive to maternal calcium status and intake. Another RCT conducted in 

the United States (213) supports this finding; no effect of calcium supplements of 1000 mg/day 

during lactation on breast milk calcium was found; 24 mg/dl vs. 24 mg/dl in supplemented vs. 

placebo women at six months postpartum.  

Four observational studies from Spain (214), the United States (215, 216) and China (217) 

generally found no relationship between maternal dietary calcium intake and breast milk calcium 

concentrations. One study did find maternal dietary calcium intake in the third trimester of 

pregnancy (measured by a 5-day dietary record and FFQ) to be associated with breast milk 

calcium in mature milk, however not with calcium concentration in transitional milk (214).  

One study reported no association between maternal serum calcium and breast milk calcium 

concentration in an American population (216).  
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Copper  

A total of 11 studies investigated how maternal copper intake and status influence breast milk 

copper concentration: one intervention and 10 observational studies.  

All studies found no association between maternal copper supplementation (218, 219), maternal 

dietary copper intake (216, 217, 220, 221), maternal serum copper (216, 222-225) and breast milk 

copper concentration. The single intervention study included was conducted in Italy, and 

supplemented women with 2 mg copper sulphate daily, reported breast milk copper concentration 

of 0.52 mg/l vs. 0.51 mg/l in supplemented vs. unsupplemented women at one month postpartum 

(219). The studies were from a variety of countries: Italy, Greece, Japan, Iran, India, Finland, the 

United States, Poland and China. All studies except for one (225) investigated at breast milk 

copper concentration in relation to either iron and/or zinc concentrations.  

Iodine 

A total of 22 studies from across Europe, Africa, Asia, the Middle East, and North America 

investigated how maternal iodine intake or status influences breast milk iodine concentration 

(BMIC). Three RCTs, two interventions, two pre-post interventions and 15 observational studies, 

with seven of the studies conducted in populations with insufficient iodine intake (reported 

maternal urinary iodine concentration (UIC) <150 μg/l during pregnancy or <100 μg/l during 

lactation) (226-232), and one study in a Korean population with exceptionally high iodine intake 

from seaweed (233). 

The three included RCTs were conducted in Morocco (227), Denmark (232) and Belgium (231) 

in populations with insufficient iodine intake. In Morocco a strong effect of a single dose of 400 

mg of iodine during lactation was reported; 61.4 μg/l vs. 33.2 μg/l (p<0.001) in supplemented vs. 

placebo women at three months postpartum (227). A similar effect was observed in Belgium, 

where women were given 100 μg/day of iodine during pregnancy, which increased iodine 

concentration in colostrum; 61 μg/l vs. 29 μg/l (p<0.01) in supplemented vs. placebo women 

(231). Pedersen et al (1993) (232) also found an increase in BMIC in Danish women with 

supplementation (200 μg/day) during pregnancy and lactation, however this increase did not 

reach statistical significance (p=0.06).  

Two intervention studies also found a positive effect of iodine supplementation on BMIC. 

Chaouki et al (1994) (228) conducted their study in a iodine deficient population in Algeria, and 
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observed that iodised oil (0.5 ml iodised oil, approximately 240 mg of iodine) given pre-

conception, during the first month of pregnancy or during the first three months of pregnancy had 

a positive effect on BMIC at one and six months postpartum compared to a control group 

(p<0.001). One included pre-post intervention study was conducted in a well-nourished 

population (in the United States), where women were given 600 μg of potassium iodine, equalling 

to 456 μg of iodine, and eight hours after ingestion BMIC increased from a baseline of 46 µg/l to 

281 µg/l (234). Two other studies failed to find an effect of supplementation during lactation (116 

ug/day potassium iodide and 150 μg/day iodine) (219, 235). The study by Kirk et al (2012) (235) 

was a pre-post intervention conducted in the United States, and reported no difference in BMIC 

in women supplemented with 150 µg of iodine. 

Maternal intake of iodised salt (235, 236), self-administered iodine supplements (226, 237) and 

other foods high in iodine (233, 238, 239) significantly increased BMIC. However, the evidence 

was poor from studies investigating the correlation between maternal dietary iodine intake and 

BMIC, with three studies reporting no association (219, 235, 240). For instance, Hannan et al 

(2009) (240) reported that maternal dietary iodine intake (measured by 24-hour recall) was not 

associated with BMIC in early lactation (r=0.28, p=0.2) or in late lactation (r=-0.09, p=0.7) or 

combined (r=0.22, p=0.2). However, these three studies all had low sample sizes (n=10, n=13 

and n=31 respectively), and a poor study design (all observational studies).  

Studies investigating associations between maternal iodine status, measured as UIC, and BMIC 

found mixed results. Seven studies found a relationship (226, 227, 229, 239, 241-243), however 

three studies did not (244-246). Costeira et al (2009) (229) found an association between maternal 

UIC and BMIC at three months postpartum in an iodine deficient population in Portugal (r=0.46, 

p<0.01). Whereas, Leung et al (2009) (244) from the United States, with sufficient iodine intake, 

did not find an association between maternal iodine intake and iodine concentration in colostrum 

60 hours after birth (r2=0.006 p=0.5). 

A large difference in BMIC was observed between populations with differing iodine status. For 

example, in an iodine deficient population from Morocco a median concentration in mature milk 

(~3 months postpartum) of 33.2 μg/l in unsupplemented mothers (227) was observed. In contrast, 

in Korea where maternal iodine intake was exceptionally high due to habitually high consumption 

of seaweed, mean BMIC was 892 μg/l at 4 weeks postpartum (233).  
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Iron  

A total of 12 studies, two interventions, 1 pre-post intervention and 9 observational studies, were 

included in this review on breast milk iron.  

Six of the studies were conducted in iron-replete populations and showed that iron 

supplementation (247), dietary iron intake (216, 217, 220, 221, 240) and maternal iron status 

(171, 216, 247) did not influence breast milk iron concentrations. The intervention study 

conducted by Zapata et al (1994) (247) found no effect of iron supplementation (40 mg/day) 

during lactation on Brazilian women’s breast milk iron concentration; 12.5 μmol/l vs. 13.4 μmol/l 

in supplemented vs. control group at one month postpartum.  

Studies involving women with low iron status found mixed results. The intervention study 

conducted by Zavaleta et al (1995) (248) supplemented anaemic Peruvian mothers (haemoglobin 

(Hgb) <110 g/l) with 100 mg/day of iron during lactation and found no difference in breast milk 

iron concentration; 0.4 μg/ml vs. 0.4 μg/ml in anaemic mothers (supplemented) vs. non-anaemic 

mothers (nonsupplemented). A pre-post intervention conducted in a Maela refugee camp in the 

Thai-Myanmar border found breast milk iron to increase after implementation of iron fortified 

flour in a group of women with a high prevalence of iron deficiency and anaemia (iron deficiency 

defined by serum ferritin <12 µg/l or soluble transferrin receptor >8.5 mg/l, anaemia defined as 

Hgb <120 g/l) (147). However this study did not have a control group, but compared breast milk 

iron concentration after fortification with pre-fortification concentration in two different groups 

of women. 

Two studies conducted in Egypt and India both reported a significant association between 

maternal serum iron and breast milk iron (249, 250) and maternal haemoglobin (collected at 

delivery) and breast milk iron (250). Mildly and severely anaemic women were included in these 

two studies, and Kumar et al (2008) (249) reported that breast milk iron concentration was 

significantly reduced in severely anaemic women (Hgb≤60 g/l) compared to non-anaemic women 

(Hgb≥110 g/l) but not in those with mild-to-moderate anaemia (Hgb between 61-109 g/l). In line 

with this, Shashiraj et al (2006) (251) demonstrated an association between maternal 

haemoglobin and breast milk iron concentration in a group of anaemic women (Hgb ≥110 g/l) 

from India (r=0.339, p=0.01) one day after birth. This association was not seen in non-anaemic 

women in the same population (r=-0.016, p>0.05). Shashiraj et al (2006) (251) did not find any 

association between maternal serum iron and breast milk iron in anaemic or non-anaemic women.  
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Breast milk iron concentration was consistently low between populations compared to other 

micronutrients (Table 2). 

Selenium 

A total of 13 studies were included in this review on selenium, three interventions, one pre-post 

intervention and nine observational studies. 

All three interventions and one pre-post intervention study found a significant, albeit weak, effect 

of selenium supplementation during pregnancy or lactation on breast milk selenium 

concentrations (252-255). For instance, Moore et al (2000) (253) supplemented Chinese women 

with a selenium-enriched yeast tablet (100 ug/day) during the last trimester of pregnancy and 

three months postpartum which increased breast milk selenium concentration; 16.2 ng/g vs. 8.4 

ng/g (p=0.04) in supplemented vs. placebo women at one month postpartum.  

One study conducted in Italy found maternal egg intake (measured by FFQ) during pregnancy to 

be positively associated with breast milk selenium (r=0.20, p=0.04) and maternal fish intake 

during lactation to be associated with breast milk selenium (r=0.21, p=0.04) (256). In contrast 

Hannan et al (2009) (240) found maternal dietary selenium intake (measured by 24-hour recall) 

to not be associated with breast milk selenium in early lactation (r=-0.10, p=0.7) or in late 

lactation (r=-0.39, p=0.3) or combined (r=-0.18, p=0.4), and the same overall conclusion of no 

association was reached by two other studies (217, 257). 

The majority of the included studies found a significant association between maternal plasma or 

serum selenium and breast milk selenium (224, 252, 254, 255, 257-259), however other studies 

failed to find a significant association (258, 260, 261). All of the studies that did not find a 

significant association had small sample sizes (n=~20).  

Zinc 

A total of 24 studies were included on zinc in this review; four RCTs, two interventions and 18 

observational studies.  

The four RCTs generally found no effect of maternal zinc supplementation (100 mg/weekly, or 

30, 25, 15 mg/daily) during pregnancy or lactation on breast milk zinc concentration (143, 159, 

262, 263). Two of the RCTs were conducted in the United States (159, 263), one in Indonesia 

(143), and the most recent one in Iran (262). The latter found no effect of maternal zinc 
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supplementation of 100 mg/weekly during lactation on breast milk zinc at 1 month (226 μg/dl vs. 

212 μg/dl in supplemented vs. placebo, p=0.3), 4 months (111 μg/dl vs. 103 μg/dl in 

supplemented vs. placebo, p=0.2) or at 5 months postpartum (118 μg/dl vs. 109 μg/dl in 

supplemented vs. placebo, p=0.3). However, the authors reported an effect at 2 months (182 μg/dl 

vs. 152 μg/dl in supplemented vs. placebo, p=0.02) and 3 months postpartum (159 μg/dl vs.129 

μg/dl in supplemented vs. placebo, p=0.005).  

Several observational studies generally did not find maternal zinc supplementation/fortification 

(147, 215, 218, 219), maternal dietary zinc intake (216, 217, 220, 221, 240, 264-266) or maternal 

serum/plasma zinc (171, 216, 222-224, 264-269) to be associated with breast milk zinc 

concentration. However three observational studies reported a positive association between 

maternal intake or status and breast milk zinc concentration (270-272).
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Vitamin A 

  

    

Ayah 2007 Randomised, 
placebo controlled, 
double-blind trial 
(n=564) 

Kenya  

Supplements were given 24 
hours after delivery. Group 1: 
Mother received a single dose 
of 400,000 IU vitamin A and 
infant received 100,000 IU 
vitamin A as retinyl palmitate 
(n=142). Group 2: Mothers 
received a single dose of 
400,000 IU vitamin A and 
infant received placebo 
(n=140). Group 3: Mother 
received placebo and infant 
received 100,000 IU vitamin A 
(n=143). Group 4: Mother 
received placebo and infant 
received placebo (n=139) 

 

3 samples collected at 4, 14 and 26 weeks 
postpartum. A sample of 2-5 ml foremilk was 
obtained from each mother by manual 
expression, after at least 1 hour without nursing.  

HPLC was used for analysis 

Supplement group 

 

Mean breast milk retinol/g fat concentration, 4 weeks 
supplemented group (SG): 0.025 μmol/g fat, placebo group (PG): 
0.019 μmol/g fat, 14 weeks, SG: 0.02 μmol/g fat, PG:0.019 
μmol/g fat, week 26 SG: 0.020 μmol/g fat, PG: 0.019 μmol/g fat 

Mean (±SD) breast milk retinol, 4 weeks SG: 0.67 μmol/l, PG: 
0.60 μmol/l, 14 weeks, SG: 0.52 μmol/l, PG:0.44 μmol/l, week 26 
SG: 0.50 μmol/l, PG: 0.44 μmol/l (significantly different at all 
time-points) 

Mean serum retinol at 36 weeks gestation: 0.81μmol/l (no 
difference between groups). Week 14 SG: 1.05 μmol/l, PG: 1.01 
μmol/l (no significantly different), week 26 SG: 0.96 μmol/l, 
PG:0.98 μmol/l (not significantly different, p=0.5) 

 

Maternal vitamin A dose of 400,000 IU increased breast milk 
retinol/g fat at 4 weeks postpartum (p=0.02), but not at 14 and 26 
weeks postpartum (p=0.43, and p=0.31 respectively)  

 

+ ÷ 

Bahl 2002 Randomised, double-
blind, placebo 
controlled trial 
(n=631) 

Ghana, India and 
Peru 

Supplements were given 
during lactation. Participants in 
the intervention group received 
a single dose of 60 mg vitamin 
A, as retinol palmitate, 
between 18–42 days 
postpartum, in the second 
group mothers received a 
placebo  

2 samples were collected, 1 at enrolment 
(between 18-42 days postpartum), and 1 sample 
at 2, 6 or 9 months postpartum in randomly 
selected subgroups. 10 ml samples were 
collected in amber-coloured glass bottles from 
either one of the breasts using a breast pump. 
Breast milk samples were collected 
independently of the time since the previous 
feed, usually between 0900 and 1200 hours 

HPLC was used for analysis  

Supplement group  Mean (±SD) breast milk retinol/g fat concentration, baseline, 
supplemented group (SG): 52.2±27.4 nmol/g fat, placebo group 
(PG): 51.6±26.4 nmol/g fat (no difference between groups), 2 
months, SG: 49.8±24.6 nmol/g fat, PG: 42.7±22.1 nmol/g fat, 6 
months SG: 42.9±21.6 nmol/g fat, PG: 41.8±25.8 nmol/g fat, 9 
months SG: 43.6±22.4 nmol/g fat, PG: 45.2±27.9 nmol/g fat 

 

Maternal vitamin A supplementation increased breast milk 
retinol/g fat at 2 months postpartum (p<0.05), however not at 6 or 
9 months postpartum (p>0.05) 

+ ÷ 

Bezerra 2009 Randomised, 
controlled trial, no 
placebo group 
(n=143) 

Brazil  

Supplements were given after 
delivery, group 1: retinyl 
palmitate single dose of 
200,000 IU, group 2: a double 
dose of 200,000 IU 24 hours 
apart, and group 3: No 
supplementation. The vitamin 

2 samples were collected at baseline (up to 16 
hours after delivery) and 4 weeks postpartum. 
After overnight fast, breast milk was collected 
by manual expression of a single breast. The first 
ejection of milk was discarded to avoid 
fluctuations in retinol and fat content. The 
samples contained between 1 and 2 ml of 

Supplement group Mean (±SD) breast milk retinol/g fat concentration, baseline 
(colostrum), group 1: 48.9±38.0 μg/g fat, group 2: 49.2±41.2 μg/g 
fat, group 3:50.4±38.5 μg/g fat (no difference between groups), 4 
months, group 1: 15.6±8.3 μg/g fat, group 2: 17.2±8.9 μg/g fat, 
group 3:12.7±6.7 μg/g fat 

Mean (±SD) breast milk retinol at baseline (colostrum), group 1: 
3.22±1.81 μmol/l, group 2: 3.21±1.87 μmol/l, group 3: 3.31±1.40 

+ ÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

A capsules also contained 
vitamin E (40 mg) 

 

colostrum milk, and the aliquots were collected 
in polypropylene tubes protected from the light 
and duly identified 

HPLC was used for analysis 

All infants were exclusively breastfed  

μmol/l, 4 months, group 1: 1.78±1.00 μmol/l, group 2: 1.93±1.10 
μmol/l, group 3: 1.28±0.61  μmol/l (significant difference between 
groups, p=0.01) 

 

Maternal vitamin A supplementation of 400,000 IU increased 
breast milk retinol/g fat at 4 weeks postpartum (p<0.05). 
Supplementation of 200,000 IU had no effect on breast milk 
retinol/g fat (p>0.05)  

 

Canfield 1997 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation, group 1: 60 
mg, group 2: 210 mg β-
carotene  

7 samples collected on -1, 0, 1, 2, 4, 7, and 9 
days postpartum, with study baseline at 8 days 
postpartum. Milk samples were collected by 
electric breast pumps under subdued lighting. 
The complete contents of one breast were 
collected into sterile polypropylene containers or 
glass bottles  

HPLC was used for analysis  

Supplement group Mean (±SEM) breast milk retinol/g fat concentration, baseline 
(n=3), group 1: 1.1±0.3 μmol/g fat, group 2: 1.7±0.3 μmol/g fat 
(concentrations after supplementation not reported) 

 

Maternal β-carotene supplementation did not increase breast milk 
retinol/g fat (statistics not reported)  

 

÷ 

Canfield 1998 Intervention, no 
randomisation or 
placebo group (n=5) 

USA  

Supplements were given 
during lactation, 30 mg β-
carotene for 28 days 

13 samples collected over an 8 week period, 
days -1, 0, 1, 2, 4, 6 and once weekly for 7 
weeks thereafter (stage of lactation not clear). 
The breast were completely emptied using an 
electronic pump, with the infant to breastfed 
from the breast 2-3 hour before collection. 
Participants used the same breast for collection 
of all samples. Subdued lighting and light-
protected sterile polypropylene containers were 
used 

HPLC was used for analysis 

Infants were exclusively breastfed  

Supplement group  

 

Mean (±SE) breast milk retinol/g fat concentration, baseline (n=6): 
0.034±0.003μmol/g fat (concentrations after supplementation not 
presented) 

Mean (±SE) breast milk retinol, baseline (n=3): 2.24±0.0003 
μmol/l (concentrations after supplementation not presented) 

 

Maternal β-carotene supplementation did not increase breast milk 
retinol/g fat (statistics not reported)  

÷ 

Canfield 2001 Randomised, 
placebo controlled 
trial (n=86) 

Supplements were given 
during lactation. Group 1 
(n=32): 90 mg β-carotene as 
red palm oil, group 2 (n=36): 
90 mg purified β-carotene as 
tablets, group 3 (n=18): 

2 samples collected, one sample at baseline 
(stage of lactation not clear) and one sample 10 
days after supplementation. Participants  

Supplement group 

 

Mean (±SEM) breast milk retinol/g fat concentration, baseline, 
group 1: 0.04±0.01 μmol/g fat, group 2: 0.05±0.04 μmol/g fat, 
group 3: 0.06±0.04 μmol/g fat (no significant difference between 
groups). +10 days, group 1: 0.03±0.02 μmol/g fat, group 2: 
0.04±0.02 μmol/g fat, group 3: 0.03±0.02 μmol/g fat 
 

÷ 



 
 

41 
 

Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Honduras (deficient 
population)  

placebo tablets. Participants 
returned on days 3, 5, 7 and 9 
for 

an additional supplement 

provided milk (5–10 ml) mid-morning by 
manual expression 

HPLC was used for analysis  

Mean (±SEM) breast milk retinol baseline, group 1: 1.63±1.01 
μmol/l, group 2: 1.28±0.59 μmol/l,, group 3: 1.95±0.87 μmol/l,  
(no significant difference between groups). +10 days, group 1: 
1.10±0.42 μmol/l, group 2: 1.28±1.37 μmol/l,, group 3: 1.09±0.63 
μmol/l, 

 

Maternal β-carotene supplementation did not increase breast milk 
retinol/g fat (statistics not reported) 

 

Dijkhuizen 2004 Randomised, double-
blind, placebo 
controlled trial 
(n=170) 

Indonesia (deficient 
population) 

Supplements were given daily 
during pregnancy until 
delivery (supplementation 
started <20 weeks gestation). 
Group 1: β-carotene (4.5 mg), 
group 2: zinc (30 mg), group 3: 
β-carotene (4.5mg) and zinc 
(30 mg), group 4: placebo. All 
groups were also given iron 
(30 mg) and folic acid (0.4 mg) 

 

2 samples collected at 1 and 6 months 
postpartum. Breast milk was collected from the 
right breast 45–60 min after the last feeding from 
that breast. The breast was completely expressed 
with the use of a manual pump 

HPLC was used for analysis 

Supplement group 

 

Median (range) breast milk retinol/g fat concentration, 1 month, 
group 1: 32.7 (34.4, 73.5) nmol/g fat, placebo: 50.6 (44.1, 88.6) 
nmol/g fat. 6 months, group 1: 30.9 (19.7, 47.1) nmol/g fat, 
placebo: 27.9 (18.9, 36.6) nmol/g fat 

 

Maternal daily β-carotene supplementation (4.5 mg) during 
pregnancy did not increase breast milk retinol/g fat at 1 or 6 
months postpartum (statistics not reported) 

÷ 

Engle-Stone 2014 Observational 
(n=440)  

Cameroon  

No supplements were given by 
investigators  

1 sample collected (stage of lactation not clear, 
minimum age of infant was 1 month). Milk was 
collected from the breast from which the infant 
had not fed for a longer time. The mother first 
allowed her child to feed from the breast from 
which milk was to be collected. After exactly 30 
seconds, the mother manually expressed 5–10 ml 
of milk from the same breast 

HPLC was used for analysis 

FFQ and 24-hour recall 
(n=246) collected at the 
same time as breast 
milk sample 

Plasma (n=242) 
collected at the same 
time as the breast milk 
sample 

Mean (95% CI) breast milk retinol/g fat concentration: 23.6 (22.2, 
25.1) μg/g fat 

Mean (95% CI) breast milk retinol: 3.79 (3.53, 4.05) μmol/l, 

Dietary vitamin A intake: 346 μg RAEs/day 

Mean (95% CI) inflammation-adjusted pRBP 1.53 (1.47, 1.59)  

 

Maternal dietary vitamin A intake was associated with breast milk 
retinol/g fat (r2=0.13,  p<0.001) 

Maternal inflammation-adjusted pRBP was associated with breast 
milk retinol/g fat (r2=0.09,  p<0.0001) 

+ 

Klevor 2016 Randomised, 
partially double-
blind, controlled-trial 

Ghana 

Supplements were given 
during pregnancy and 
lactation. Group 1: daily 
supply of an lipid-based 
nutritional supplement (LNS) 

1 sample collected at 6 months postpartum. 
Casual ‘‘spot’’ breast milk samples were 
collected after feeding the infant for 1 min on 
that breast, by manual expression. 
Approximately 10 ml was collected from each 
participant 

Supplement group Mean (±SD) breast milk retinol/g fat concentration, group 1: 
54.7±2.5 nmol/g fat, group 2: 55.4±2.5 nmol/g fat, group 3: 
59.1±2.8 nmol/g fat 

Mean (±SD) breast milk retinol concentration, group 1: 2.5±0.1 
μmol/l group 2: 2.5±0.1 μmol/l, group 3: 2.5±0.1 μmol/l 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

providing 800 μg RE of 
vitamin A from 

Before 20 weeks gestation to 6 
months postpartum. Group 2: 
daily supply of a 

Multiple micronutrient (MMN) 
providing 800 μg RE of 
vitamin A from 20 weeks 
gestation to 6 months 
postpartum. Group 3: Control 
group 

given a daily supply of iron 
and folic acid only during 
pregnancy and 

a calcium placebo tablet during 
the first 6 months postpartum 

 

HPLC was used for analysis Maternal LNS or MMN supplementation during pregnancy and 
lactation did not increase breast milk retinol/g fat concentration 
(p=0.5) 

Muslimatun 2001 Randomised double-
blind, community-
based trial (n=170) 

Indonesia (deficient 
population)  

Supplements were given 
during pregnancy. Participants 
were randomly assigned to two 
groups. They were 
supplemented once weekly 
from enrolment (16-20 weeks 
gestation) until delivery with 
two tablets each containing 60 
mg iron as ferrous sulfate and 
250 mg folic acid or with two 
tablets each containing 2400 
retinol equivalents (RE) 
vitamin in addition to the same 
amount of ferrous sulfate and 
folic acid 

 

2 samples collected at 4-7 days (n=73, 
transitional milk) and 3 months postpartum 
(n=85, mature milk). Between 08.00 and 11.00 
am all milk from the right breast, which had not 
been used to feed the child during the previous 
hour, was collected using a breast milk pump. 
The breast milk was stored in dark brown glass 
bottles 

HPLC was used for analysis  

Supplement group  

Serum collected at the 
same time as breast 
milk samples 

Mean breast milk retinol/g fat concentration, transitional milk, 
supplemented group (SG): 0.113 μmol/g fat, placebo group (PG): 
0.097 μmol/g fat, mature milk SG: 0.053 μmol/g fat, PG: 0.044 
μmol/g fat 

Mean breast milk retinol, transitional milk, SG: 3.37 μmol/l, PG: 
2.29 μmol/l, mature milk SG: 1.24 μmol/l, PG: 1.06 μmol/l 

(Mean serum retinol concentrations not reported, however there 
were no difference between groups) 

 

Maternal retinol supplementation during pregnancy increased 
breast milk retinol/g in mature milk (p<0.05) however not in 
transitional milk (p>0.05)  

Maternal serum retinol (in the placebo group) was associated with 
breast milk retinol/g fat in mature milk (r=0.487, p<0.01) 

+ ÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Olafsdottir 2001 Observational 
(n=77) 

Island  

No supplements were given by 
investigators  

1 samples collected between 2-4 months 
postpartum. 40 ml of milk from each participants 
in a sterile glass bottle either manually or by 
using simple sterile pumps. The first drops of 
milk were put aside before starting the collection 

HPLC was used for analysis 

24-hour recall, 
specifically reporting 
intake of cod liver oil, 
collected at the same 
time as breast milk 
sample 

Median breast milk retinol equivalent/fat concentration: 11.8 μg/g 
fat 

Median breast milk retinol equivalent 58.4 μg/100 ml 

Median dietary vitamin A intake: 889 μg/day in participants with a 
cod liver oil intake, and 4127 with no intake of cod liver oil 
(significantly different)  

 

Maternal intake of cod liver oil was not associated with breast 
milk retinol equivalent/g fat (statistics not reported) 

 

÷ 

Rice 1999 Randomised double-
blind, placebo 
controlled trial 
(n=220) 

Bangladesh 
(deficient 
population)  

Supplements were given 
during lactation. Group 1: 
Participants received one dose 
of 200,000 IU (60,000 RE) 
retinyl palmitate + daily 
placebo tablets until 9 months 
postpartum. Group 2: 7.8 mg 
of beta-carotene daily. Group 
3: daily placebo tablet  

 

4 samples collected at 0.5 (baseline, casual 
collection, n=74) and 3 (n=69), 6 (n=70) and 9 
(n=64) months postpartum (full collection). 
Samples were collected using two different 
techniques. For full collection, a trained field 
worker used a manual breast pump to express the 
entire contents of one breast which had not been 
used to feed an infant for ≥2 hours. Milk was 
collected from the left breast except when a 
breast infection was present or if milk 
production had stopped. Samples were collected 
between 10.30 and 21.15 hours. For casual milk 
collection, participants manually expressed 5 ml 
of milk into a glass collection jar without control 
over the time since last breastfeeding episode. A 
milk sample was collected from the breast which 
had not been used to feed the infant for the 
longer period of time. Casual milk samples were 
collected between 08.00–19.00 hour 

HPLC was used for analysis  

Supplement group 

 

Mean (±SD) breast milk retinol/g fat concentration, baseline, 
supplemented group, group 1 (SG): 0.37±0.19 μmol/g fat, placebo 
group, group 3 (PG): 0.34±0.18 μmol/g fat (no difference at 
baseline), 3 months, SG: 0.28±0.14 μmol/g fat, PG: 0.23±0.11 
μmol/g fat, 6 months SG: 0.24±0.11 μmol/g fat, PG: 0.24±0.16 
μmol/g fat, 9 months, SG: 0.24±0.13 μmol/g fat, PG: 0.21±0.10 
μmol/g fat 

Mean (±SD) breast milk retinol baseline, SG: 1.71±1.34 μmol/l, 
PG: 1.51±1.08 μmol/l (no difference at baseline), 3 months, SG: 
1.20±1.00 μmol/l, PG: 0.83±0.43 μmol/l (statistically different, 
p<0.01), 6 months SG: 0.85±0.53 μmol/l, PG: 0.87±0.61 μmol/l, 9 
months, SG: 0.91±0.68 μmol/l, PG: 0.79±0.44 μmol/l 

 

Maternal supplementation of 200,000 IU increased breast milk 
retinol/g fat at 3 months postpartum (p<0.05), however not at 6 or 
9 months (p>0.05) 

 

 

+ ÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

da Silva Ribeiro 
2010 

Observational 
(n=86) 

Brazil 

No supplements were given by 
investigators  

1 sample collected up to 16 hours postpartum. 
The sample was collected by manual expression 
from a single full breast not suckled in the 
previous feeding. The first milk ejection was 
discarded to avoid fluctuations in retinol content 

HPLC was used for analysis 

Serum, collected at the 
same time as breast 
milk sample 

FFQ, used to divide the 
participants into two 
groups according to 
predominant vitamin A 
source: Group A: >50% 
preformed vitamin A (n 
= 37). Group B: >50% 
pro-vitamin A 
carotenoid (n=49) 

Mean (±SD) colostrum retinol/g fat concentration, group A: 
40.0±28.7 μg/g fat, group B: 35.8±9.7 μg/g fat 

Mean (±SD) colostrum retinol, group A: 3.4±1.7 μmol/l, group B: 
3.6±1.9 μmol/l (not significantly different) 

Mean (±SD) serum retinol, group a: 1.4±0.40 μmol/l, group B: 
1.2±0.57 μmol/l (significantly different, p=0.03) 

Mean (±SD) dietary vitamin A, group A: 2071.0±1465.9 μg 
RAE/day, group B: 1051.6±920.4 μg RAE/day (significantly 
different, p<0.001) 

Maternal serum retinol was not associated with colostrum retinol/g 
fat (statistics not reported) 

Maternal dietary vitamin A intake was not associated with 
colostrum retinol/g fat (p=0.3) 

 

÷ 

Stuetz 2012 (eur) Pre-post 
intervention, no 
randomisation (n=86 
before fortification, 
n=99 after 
fortification) 

 

Thai-Myanmar 
border (Maela 
Refugee camp) 

Vitamin A fortified wheat flour 
(estimated daily intake: 235 
µg/RE) was provided for all 
participants (the flour was also 
fortified with other 
micronutrients) 

2 samples were collected, 1 before fortification 
of flour was introduced at 12 weeks postpartum 
and 1 sample after flour fortification was 
introduced at 12 weeks postpartum (two 
different groups of women). Milk samples were 
collected by manual expression into glass tubes 
wrapped in aluminium foil in order to protect 
against degradation  

 

HPLC was used for analysis 

Fortification (pre-post 
intervention design, the 
study used pre-
supplement 
concentrations as 
comparison group)  

 

Blood collected 12 
weeks postpartum 

Geometric mean breast milk retinol/g fat concentration, before 
fortification: 46.2 µmol/kg, after fortification: 43.2 µmol/kg 

Mean (±SD) serum retinol, before fortification: 159±0.40  µmol/l, 
after fortification: 1.69±0.47 µmol/l,  (not significantly different, 
p=0.1)  

 

Maternal intake of  vitamin A fortified flour did not increase 
breast milk retinol/fat (p=0.3) 

Maternal serum retinol was associated with breast milk retinol (β= 
0.127, p<0.001) 

 

÷ + 

Turner 2013 Randomised 
controlled trial 
(n=135) 

Bangladesh 
(deficient 
population) 

Supplements were given 
during lactation. 

Participants were stratified by 
their screening serum retinol 
concentrations (>0.875 mmol/l 
and <0.875 mmol/l) and 
randomly allocated to group 1: 
100g orange-fleshed sweet 
potatoes (naturally rich in β-

2 samples collected, at baseline (between 2.6-8.9 
months postpartum) and 3 weeks after when the 
study ended. Milk from a full breast was 
collected from the breast not fed on in the 
previous hour. Milk samples were collected via 
an electric breast pump until no milk was 
expressed from the breast 

HPLC was used for analysis 

Supplement group 

 

Mean (±SEM) breast milk retinyl equivalents/g fat concentration, 
baseline, supplemented group, group 3 (SG): 25±3.1 nmol/g fat, 
control group, group 4 (CG): 26±3.4 nmol/g fat (not significantly 
different), post-intervention, SG: 29±2.3 nmol/g fat, CG: 20±1.6 
nmol/g fat 

Mean (±SEM) breast milk retinyl equivalents, baseline SG: 
0.77±0.06 μmol/l, CG: 0.63±0.06 μmol/l (not significantly 
different), post-intervention, SG: 1.04±0.08 μmol/l, CG: 
0.55±0.04 μmol/l 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

carotene) and a cornoil 
capsule, group 2: 127 g canned 
tangerines (naturally rich in 
beta-cryptoxanthin) and a 
corn-oil capsule, group 3: low-
dose vitamin A supplement 
(0.25 mg retinyl acetate) and 
100g white-fleshed sweet 
potatoes (WFSP), group 4: 
100g WFSPs and a corn-oil 
(control). The treatments were 
consumed twice a day, 6 days 
a week for 3 weeks 

 

Maternal supplementation of 0.25 mg retinyl acetate increased 
breast milk retinyl equivalents/g fat (p<0.05)  

Villard 1987 Intervention, no 
randomisation or 
placebo group 
(n=55) 

The Gambia 
(deficient 
population) 

Supplements were given 
during pregnancy and 
lactation, to women from 
Keneba, a 650 µg daily vitamin 
A dose, as a food supplement 
consisting of an energy-rich 
biscuit and a multi-vitamin 
fortified tea drink. Women 
from Manduar received no 
vitamin A supplementation  

 

12 samples collected weekly between 3-15 
weeks postpartum. A 5-10 ml sample was 
collected by manual expression in the morning, 
usually from the right breast. The sample was 
collected between feeds 

The breast milk vitamin A concentration was 
measured fluorimetrically 

Supplement group  

Plasma collected at the 
same time as breast 
milk sample  

 

Mean (±SEM) breast milk vitamin A/g fat concentration, 
supplemented group: 29.5±1.10 µg/g fat, unsupplemented group: 
22.9±1.79 µg/g fat 

Mean (±SEM) plasma retinol, supplemented group: 52.2±1.69 
µg/dl, unsupplemented group: 46.1±3.69 µg/dl (not significantly 
different) 

 

Maternal daily vitamin A supplementation of 650 µg during 
pregnancy and lactation increased breast milk vitamin A/g fat 
concentration (p<0.01) 
Maternal plasma retinol was not associated with breast milk 
vitamin A (statistics not reported) 

+ ÷ 

Vitamin B1 
(thiamin) 

      

Coats 2013 Pre-post 
Intervention. no 
randomisation 
(n=16) 

Cambodia 

Supplements were given 
during lactation. All 
participants received oral 
thiamin hydrochloride, 100 mg 
for 5 days 

2 samples collected at baseline (day 1) and 6 
days after supplementation (not standardised to 
stage of lactation). Breast milk was expressed 
directly by mothers into a container immediately 
before oral thiamin administration 

Fluorescent thiochromes was used for analysis 

Supplementation (Pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Median (range) breast milk total thiamin concentration, baseline: 
179.5 (85-359) nmol/l, day 6: 502.7 (360-808) nmol/l 

Median (range) total plasma thiamin concentration, baseline: 2.4 
(0-6.9) nmol/l, 6 days: 18.6 (13.4, 25.3) nmol/l (significantly 
different) 

Maternal thiamin supplementation  increased breast milk thiamin 
(p<0.001)  

Maternal total plasma thiamin was associated with breast milk 
total thiamin (p<0.001) 

+ 
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First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Deodhar 1960 Observational 
(n=60) 

India  

No supplements were given by 
investigators 

1 sample collected between two feeds at about 3 
p.m. by voluntary expression. The sampling was 
done on three consecutive days and the average 
value for three samples was taken (stage of 
lactation was not clear) 

 

Laboratory method used not clear 

 

Dietary intake of 1 day 
collected at the same 
time as the breast milk 
sample.  The data was 
used to divide 
participants into 4 
groups, according to 
their intake of thiamin, 
with the median and 
the two quartiles 
determined the 
distribution 

Mean breast milk thiamin concentration, group 1: 11.51 
mcg/100ml, group 2: 11.59 mcg/100ml, group 3: 13.16 
mcg/100ml, group 4: 15.86 mcg/100ml 

Mean dietary thiamin intake, group 1: 0.21 mg/day, group 2: 0.36 
mg/day, group 3: 0.58 mg/day, group 4: 1.23 mg/day 

 

Maternal dietary thiamin intake was associated with breast milk 
thiamin (r=0.35, p<0.05) 

+ 

Kodentsova 2006 Observational (n=35, 
excluding preterm 
infants) 

 

Russia  

Supplements were not given by 
investigators, however many of 
the participants consumed 
supplements, which was 
captured in a 24-hour recall. 
The participants were divided 
into two groups, group 1: no 
vitamin supply and group 2: 
adequate vitamin supply 

 

1 sample collected between 3-10 days 
postpartum. The women were fasting when a 
single sample of breast milk was collected 
(breast milk collection method not clear) 

 

The thiochrome method was used for analysis 

24-hour recall collected 
a few days after birth  

Mean (±SD) breast milk thiamin concentration, group 1: 92±21 
µg/l, group 2: 238±49 µg/l 

 

Maternal dietary thiamin intake (including supplement use) was 
associated with breast milk thiamin (p<0.05) 

+ 

McGready 2001 Intervention, no 
randomisation or 
placebo group 
(n=50) 

Thai/Burmese border 
(Karen refugees) 

Supplements were given 
through pregnancy. The 
participants that showed sign 
of thiamin deficiency during 
pregnancy were given a 
supplement of oral thiamin 
hydrochloride (100 mg/day) 
during pregnancy. The women 
having no clinical signs of 
deficiency did not receive 
thiamin supplementation 

  

1 sample collected 3 months postpartum (n=16). 
10 ml of breast milk were collected ≥1 hour after 
the previous feed. Once the infant was attached 
and sucking, the milk was expressed from the 
contralateral breast 

HPLC was used for analysis  

Supplement group  Median (range) breast milk thiamin concentration, supplemented 
group: 128 (890, 155) µg/l, unsupplemented group: 117 (7.6, 34.2) 
µg/l 

 

Maternal thiamin supplementation during pregnancy did not 
increase breast milk thiamin at 3 months postpartum (statistics not 
reported) 

÷ 

Nail 1980 Intervention, no 
randomisation or 
placebo group 
(n=11) 

Supplements were given 
during pregnancy and 
lactation. All participants 
received supplements during 
pregnancy (4-36 weeks before 

2 samples collected at 1 and 6 weeks 
postpartum. The supplemented participants 
expressed milk four times per day for 3 days, at 
0, 4, 8, and 12 hours after ingestion of the 
vitamin supplement The unsupplemented 

Supplement group  Mean breast milk thiamin concentration, 1 week, supplemented 
group: 133 µg/l, unsupplemented: 138 µg/l, 6 week, supplemented 
group: 238 µg/l, unsupplemented: 220 µg/l 

Maternal thiamin supplementation during pregnancy and lactation 
did not increase breast milk thiamin (statistics not reported) 

÷ 
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Milk samples Maternal nutritional 
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USA birth) and 11 participants were 
supplemented during lactation 
and 4 were not. The 
supplemented women were 
given a multivitamin and 
mineral supplementation 
containing 1.7 mg thiamin 

 

participants obtained the sample immediately 
upon arising in the morning and at the same 4-
hour intervals. Milk was with the aid of a breast 
pump 

Laboratory method used not clear 

 

 

 

Ortega 2004 Observational 
(n=51) 

Spain 

No supplements were given by 
investigators  

2 samples collected at 13-14 (transitional milk) 
and 40 days postpartum (mature milk) (breast 
milk collection method not clear) 

Laboratory method used not clear 

Food record booklet for 
5 days collected during 
third trimester of 
pregnancy, which was 
used to divide 
participants into two 
groups, group 1: 
thiamin intake < RI 
(n=13), group 2: 
thiamin intake ≥ RI 
(n=38) 

Mean (±SD) breast milk thiamin concentration, transitional milk, 
group 1: 0.90 (±1.03) μmol/l, group 2: 0.88±0.57 μmol/l, mature 
milk, group 1: 0.25±0.07 μmol/l, group 2: 0.59±0.44 μmol/l 

Maternal dietary thiamin intake during third trimester of 
pregnancy was associated with breast milk thiamin in mature milk, 
however not in transitional milk (p<0.05) 

+ 

Prentice 1983 

 

Pre-post 
intervention, no 
randomisation 
(n=130) 

The Gambia  

Supplements were given 
during lactation, 1.36 mg/day 
of thiamin to all participants as 
a fortified biscuit.  

 

2 samples collected pre-supplementation (n=21) 
and post-supplementation (n=23). (stage of 
lactation not clear, however it was confined to 
the first 6 months of lactation). Milk was 
expressed from each breast before and after a 
mid-afternoon feed on two occasions (pre-
supplement) and on two further occasions (post-
supplementation). Milk was collected four times 
throughout the day, at regular intervals 

Laboratory method used  not clear 

Supplementation (pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

Mean (±SE) breast milk thiamin concentration, pre-supplement: 
0.16±0.006 μg/ml, post-supplement: 0.22±0.006 μg/ml 

Maternal thiamin supplementation during lactation increased 
breast milk thiamin (p<0.001) 

+ 

Stuetz 2012 (plos 
one) 

Observational 
(n=636)  

Thai-Myanmar 
border (Maela 
refugee camp) 

Supplements were given 
during lactation, 100 mg of 
thiamin a day to all 
participants  

1 sample collected at 12 weeks postpartum. Milk 
samples (5–10 ml) were collected by manual 
expression 

HPLC was used for analysis  

Whole blood collected 
at the same time as the 
breast milk sample  

Median (IQR) breast milk total thiamin: 755.4 (730.4, 780.7) 
nmol/l 

Mean (±SD) thiamin diphosphate (TDP) concentration: 
129.8±42.1 µg/l 

 

+ 
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Maternal TDP was associated with breast milk total thiamin 
(r2=0.37, p<0.05)  

 

 

Stuetz 2012 (eur) Pre-post 
intervention, no 
randomisation 
(n=86, before 
fortification, n=99 
after fortification) 

Thai-Myanmar 
border (Maela 
Refugee camp) 

Thiamin fortified wheat flour 
(estimated daily intake: 0.34 
mg of thiamin) was provided 
for all participants (the flour 
was also fortified with other 
micronutrients). All 
participants were furthermore 
supplemented with 92 mg/day 
of thiamin during pregnancy 
and lactation in both the before 
and after fortification groups. 
The investigators did not 
provide the flour, or the 
supplements.  

2 samples were collected, 1 before fortification 
of flour was introduced at 12 weeks postpartum 
and 1 sample after flour fortification was 
introduced at 12 weeks postpartum (two 
different groups of women). Milk samples were 
collected by manual expression into glass tubes 
wrapped in aluminium foil in order to protect 
against degradation  

Breast milk thiamin was analysed using 
precolumn derivatization, reversed-phase liquid 
chromatography and fluorescence detection 

 

Fortification (pre-post 
intervention design, the 
study used pre-fortified 
concentrations as 
comparison group, in 
two different groups of 
women)  

 

Whole blood collected 
12 weeks postpartum 

Mean (±SD) breast milk total thiamin concentration, before 
fortification: 256.6±129.9 µg/l, after fortification: 290.8±83.5 µg/l 

Mean (±SD) breast milk thiamin monophosphate (TMP) 
concentration, before fortification: 178.1±68.4 µg/l, after 
fortification: 176.8±49.5 µg/l 

Geometric mean breast milk free thiamin concentration, before 
fortification: 100.6 µg/l, after fortification: 129.4 µg/l 

Mean (±SD) whole blood thiamin diphosphate (TDP), before 
fortification: 67.4±21.9  µg/l, after fortification: 69.0±17.7 µg/l, 
(not significantly different, p=0.6)  

Maternal intake of  thiamin fortified flour did not increase breast 
milk total thiamin (p=0.1), it did increase breast milk free thiamin 
(p=0.03) 

 

+ ÷ 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation. Supplemented 
participants were given a 
multivitamin tablet (containing 
1.7 mg/day of thiamin) and the 
remaining participants were 
not given any supplements 

 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

The thiochrome method was used for analysis 

Supplement group Mean (±SD) breast milk thiamin concentration, supplemented 
group 228±42 μg/l, not supplemented: 208±34 μg/l 

 

Maternal thiamin supplementation during lactation did not 
increase breast milk thiamin (statistics not reported) 

÷ 

Whitfield 2016 Randomised double-
blind, placebo 
controlled trial 
(n=90) 

Cambodia  

Fortified fish sauce were given 
during pregnancy and 
lactation. Participants were 
randomised to 1 of 3 groups (n 
= 30) for ad libitum fish sauce 

consumption for 6 months: 
Group 1: placebo (no thiamin), 

1 sample collected at the study end-line (not 
standardised according to stage of lactation). A 
battery-powered single breast pump was used. 
One full breast expression was collected from 
the breast that the participant self-identified as 

Supplement group  

 

Mean (95%CI) breast milk total thiamin concentration, group 1: 
144 (123, 165) μg/l, group 2: 207 (186, 227) μg/l, group 3: 177 
(156, 199) μg/l 

Mean (95% CI) Erythrocyte thiamin diphosphate (eTDP) 
concentrations, group 1: 193 (164, 222) nM, group 2: 282 (235, 
310) nM, group 3: 254 (225, 284) nM (significantly different) 
 

+ 
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group 2: low-concentration (2 
g/l), group 3: high-
concentration (8 g/l) fish sauce 

 

being more “full” (the breast not most recently 
emptied) 

HPLC was used for analysis 

Maternal intake of thiamin fortified fish sauce during pregnancy 
and lactation increased breast milk total thiamin (statistics not 
reported) 

 

Vitamin B2 
(riboflavin) 

      

Bates 1982 Intervention, no 
randomisation 
(n=60) 

 

The Gambia  

Supplements were given by 
investigators during lactation, 
either 2 mg/day of riboflavin, 
or a placebo (double-blinded) 
for 12 weeks  

7 samples was collected across the 12 weeks 
long study. Foremilk samples were collected just 
before the supplement was given in the evening 
on every 3rd day during the first 6 week of the 
study. One sample was also collected at 12 
weeks (stage of lactation not clear) 

 

Fluorimetric procedure was used for analysis  

Supplement group  Mean (±SD) breast milk riboflavin concentration, baseline, 
supplemented group (SG): 0.61±0.07 μg/ml, placebo group (PG): 
0.15±0.07 μg/ml (not significantly different). Days 1-9, SG: 
0.18±0.07 μg/ml, PG: 0.14±0.06 μg/ml, days 10-18, SG: 
0.23±0.10 μg/ml, PG: 0.16±0.08 μg/ml, days 19-27, SG: 
0.22±0.04 μg/ml, PG: 0.15±0.06 μg/ml, days 28-36, SG: 
0.22±0.05 μg/ml, PG: 0.16±0.09 μg/ml, days 37-42 μg/ml, SG: 
0.23±0.08 μg/ml, PG: 0.14±0.11 μg/ml, day 84, SG: 0.22±0.08 
μg/ml, PG: 0.12±0.05 μg/ml 

Maternal riboflavin supplementation during lactation increased 
breast milk riboflavin at all time-points (p<0.03)  

 

+ 

Deodhar 1960 Observational 
(n=60) 

India  

No supplements were given by 
investigators 

1 sample collected between two feeds at about 3 
p.m. by voluntary expression. The sampling was 
done on three consecutive days and the average 
value for three samples was taken (stage of 
lactation not clear) 

Laboratory method used not clear 

 

Dietary intake of 1 day 
collected at the same 
time as breast milk 
sample. The data was 
used to divide 
participants into 4 
groups, according to 
their intake of  
riboflavin, with the 
median and the two 
quartiles determining 
the distribution 

Mean breast milk riboflavin concentration, group 1: 20.98 
mcg/100ml, group 2: 24.36 mcg/100ml,  group 3: 25.12 
mcg/100ml, group 4: 0.41 mcg/100ml 

Mean dietary riboflavin intake, group 1: 0.15 mg/day, group 2: 
0.23 mg/day, group 3: 0.28 mg/day, group 4: 0.41 mg/day 

Maternal dietary riboflavin was associated with breast milk 
riboflavin (r=0.54, p<0.05) 

+ 

Kodentsova 2006 

 

Observational (n=35, 
excluding preterm 
infants) 

Russia  

No supplements were given by 
investigators, however many of 
the participants consumed 
vitamins, which was captured 
in a 24-hour recall. The 
participants were divided into 
two groups, group 1: no 

1 sample collected between 3-10 days 
postpartum. The women were fasting when a 
single sample of breast milk was collected 

Breast milk riboflavin was estimated 
spectrophotometrically by the method of titration 

24-hour dietary recall 
collected a few days 
after birth 

Mean (±SD) breast milk riboflavin concentration, group 1: 266±40 
µg/l, group 2: 330±41 µg/l 

Maternal dietary intake of riboflavin (including supplement use) 
was not associated with breast milk riboflavin (p>0.05) 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

vitamin supply and group 2: 
adequate vitamin supply 

 

Nail 1980 Intervention, no 
randomisation or 
placebo group 
(n=11) 

USA 

Supplements were given 
during pregnancy and 
lactation. All participants 
received supplements during 
pregnancy (4-36 weeks before 
birth) and during lactation 11 
participants received 
supplements during lactation, 4 
did not. The supplemented 
women were given a 
multivitamin and mineral 
supplementation containing 
2.00 mg of riboflavin 

 

2 samples collected at 1 and 6 weeks 
postpartum. The supplemented participants 
expressed milk four times per day for 3 days, at 
0, 4, 8, and 12 hours after ingestion of the 
vitamin supplement The unsupplemented 
participants obtained the sample immediately 
upon arising in the morning and at the same 4-
hour intervals. Milk was with the aid of a breast 
pump 

Laboratory method used not clear 

 

Supplement group  Mean breast milk riboflavin concentration, 1 week, supplemented 
group: 880 μg/l, unsupplemented: 367 μg/l, 6 week, supplemented 
group: 710 μg/l, unsupplemented: 485 μg/l 

Maternal riboflavin supplementation increased breast milk 
riboflavin (p<0.01) 

+ 

Ortega 1999 Observational 
(n=57) 

Spain  

 

No supplements were given by 
investigators  

2 samples collected at 13-14 (transitional milk) 
and 40 days postpartum (mature milk). Milk 
samples were taken between 10 and 11 am by 
manual expression of a 5 ml sample from each 
breast at the beginning and end of a feed 

Fluorometry was used for analysis  

 

Food record booklet for 
5 days collected during 
third trimester of 
pregnancy, which was 
used to divide 
participants into two 
groups, group 1: 
riboflavin intake < RI 
(n=25), group 2: 
riboflavin  intake ≥ RI 
(n=32) 

 

Blood (activation 
coefficient of 
erythrocyte glutathione 
reductase (α-EGR) 
collected during third 
trimester of pregnancy 

 

Mean (±SD) breast milk riboflavin concentration, transitional 
milk, group 1:  574.9±258.7 nmol/l, group 2: 948.1±700.1 nmol/l, 
mature milk, group 1: 725.4±254.3 nmol/l, group 2: 993.8±436.6 
nmol/l 

Mean (±SD) serum (α-EGR) concentration, group 1: 704±241.8 
nmol/l, group 2: 996.4±302.9 nmol/l 

Maternal α-EGR during third trimester of pregnancy was 
associated with breast milk riboflavin in mature milk (statistics not 
reported) 

Maternal dietary riboflavin intake during third trimester of 
pregnancy was associated with breast milk riboflavin in 
transitional and mature milk (p<0.05) 

 

+ 

Prentice 1983 

 

Pre-post 
intervention, no 

Supplements were given 
during lactation, 1.22 mg/day 
of riboflavin to all participants 
as a fortified biscuit.  

2 samples collected pre-supplementation (n=21) 
and post-supplementation (n=23) (stage of 
lactation not clear, however it was confined to 

Supplementation (pre-
post intervention 
design, the study used 

Mean (±SE) breast milk riboflavin concentration pre-supplement: 
0.21±0.01 μg/ml, post-supplement: 0.28±0.01 μg/ml 

 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

randomisation 
(n=130) 

The Gambia  

 
the first 6 months of lactation). Milk was 
expressed from each breast before and after a 
mid-afternoon feed on two occasions during Sep 
1979 (pre-supplement) and on two further 
occasions during Sep 1980 (post-
supplementation). Milk was collected four times 
throughout the day, at regular intervals 

Laboratory method used not clear 

pre-supplement 
concentrations as 
comparison group) 

 

Maternal riboflavin supplementation during lactation increased 
breast milk riboflavin (p<0.001) 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation, 2.0 mg/day of 
riboflavin, and the remaining 
participants were not given any 
supplements 

 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

Laboratory method used not clear 

Supplement group Mean (±SD) breast milk riboflavin concentration, supplemented 
group 274±46 μg/l, unsupplemented: 243±35 μg/l 

Maternal riboflavin supplementation during lactation did not 
increase breast milk riboflavin (statistics not reported) 

÷ 

Vitamin B6       

Boylan 2002 Observational 
(n=25)  

 

USA 

No supplements were given by 
investigators, however 20 of 
the women took supplements 
regularly 

1 sample collected between 8-11 days 
postpartum (transitional milk). The breast milk 
was collected in the morning after a period of at 
least 2 hours in which the mother had not 
breastfed the infant. All milk was collected from 
one breast only into a sterile tube connected 
directly to an electric breast pump 

HPLC was used for analysis  

24-hour recall, 
collected at the same 
time as breast milk 
sample, which was 
used to divide the 
participants into two 
groups, group 1 (n=12): 
dietary intake of B6 
below the median 
(median=2.90 mg/day) 
and group 2 (n=13): 
above the median 

 

Median (min, max) breast milk pyridoxal concentration, group 1: 
0.18 (0.12, 0.30) µmol/l, group 2: 0.65 90.33, 1.29) µmol/l 

Maternal dietary intake was associated with breast milk pyridoxal 
(p<0.008) 

+ 

Chang 1990 Intervention, no 
randomisation or 
placebo group 
(n=47) 

Supplements were given 
during lactation (until 6 
months postpartum). Group 1: 
2.5 mg/day of pyridoxine, 
group 2: 4.0 mg/day, group 3: 

7 samples collected, one at 3-5 days post-partum 
(colostrum) and 6 samples each months during 
the first 6 months postpartum. Breast milk was 
expressed manually by the mother (10 ml), or 

Supplement group  

 

Plasma pyridoxal 
phosphate (PLP) 

Mean (±SEM) breast milk vitamin B6 colostrum, group 1: 107±9 
nmol/l, group 2: 191±11 nmol/l, group 4: 658±132 nmol/l (group 
3 not reported)  

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

USA 
7.5 mg/day, or group 4: 10 
mg/day. No supplements were 
given by investigators during 
pregnancy, but most 
participants did take 
supplements themselves during 
pregnancy. For colostrum 
analysis, the participants were 
divided into groups according 
to B6 supplement intake during 
pregnancy  

 

with the use of a breast pump, each feeding for 
one 24-hour period 

Saccharomyces uvarum microbiological assay 
was used for analysis 

 

collected at 1, 4 and 6 
months postpartum  (B6 concentrations in the remaining 6 months were reported in a 

figure)  

Mean (±SEM) plasma PLP, 1 month, group 1: 56±7 nmol/l, group 
2: 99±6 nmol/l, group 3: 106±14 nmol/l, 4 months, group 1: 
94±11 nmol/l, group 2: 111±9 nmol/l, group 3: 184±22 nmol/l, 
group 4: 173±7 nmol/l, 6 months, group 1: 93±7 nmol/l, group 2: 
103±8 nmol/l, group 3: 155±9 nmol/l, group 4: 320±12 nmol/l 

Maternal prenatal supplementation increased breast milk B6 at 3-5 
days postpartum (statistics not reported) 

Maternal postpartum supplementation increased breast milk B6 
across the first six months postpartum (statistics not reported)  

Maternal plasma PLP was associated with breast milk B6 at 1 
month postpartum (r=0.49, p<0.01), and at 4 months postpartum 
(r=0.57, p<0.01), and at 6 months postpartum (r=0.63, p<0.01) 

 

Hamaker 1990 Observational 
(n=15) 

USA  

Supplements were not given by 
investigators, but participants 
took supplements themselves 
during lactation, and were 
divided into two groups based 
on their supplement intake, 
group 1 (n=8): 2.5 mg 
pyridoxine, group 2 (n=9): 
15.0 pyridoxine (routinely 
intake)  

 

1 sample collected at 1 month postpartum. 
Between 5-10 ml of foremilk was collected at 
each infant feeding during one 24-hour period. 
Milk samples were expressed manually 

Saccharomyces uvarum microbiological assay 
was used for analysis 

Supplement group  Mean (±SD) breast milk total vitamin B6, after supplementation 
was consumed, group 1: 1297±608 nmol/l, group 2: 4098±698 
nmol/l  

Maternal pyridoxine supplementation during lactation increased 
breast milk total B6 (p<0.05) 

+ 

Moser-Villon 
1990 

 

 

Randomised, double-
blinded controlled 
trial (n=40) 

USA 

Supplements were given 
during lactation, starting from 
delivery to 9 months 
postpartum. Participants were 
given a multiple micronutrient 
tablet daily, that only differed 
in amount of zinc and 
pyridoxine, 1) 0 mg zinc and 
0.5 mg pyridoxine (n=10), 2) 0 
zinc and 4.0  mg pyridoxine 
(n=10), 3) 25 mg zinc and 0.5 
mg pyridoxine (n=10) 4) 25 

6 samples collected at 1, 2, 4, 12, 24, 36 weeks 
postpartum. Samples was collected into 
polypropylene containers from the first 
breastfeed of the day, by manually expression. 
Half from the beginning and half from the end of 
the feeding 

Atomic-absorption spectrophotometry was used 
for analysis  

Supplement group  

 

 

 

Mean (±SEM) breast milk total vitamin B6 concentration, 1 week, 
group 1:  495±88 nmol/l, group 2: 1095±119 nmol/l, 2 weeks 
group 1: 823±93 nmol/l, group 2: 1469±155 nmol/l, 4 weeks 
group 1: 1023±144 nmol/l, group 2: 2421±290 nmol/l, 12 weeks 
group 1: 1410±280 nmol/l, group 2: 2556±339 nmol/l, 24 weeks 
group 1: 1317±183 nmol/l, group 2: 2666±408 nmol/l, 36 weeks 
group 1: 1406±290 nmol/l, group 2: 3100±473 nmol/l 

Mean (±SEM) total plasma vitamin B6 concentration at 1 week 
group 1: 53±5 nmol/l, group 2: 102±10 nmol/l, 2 weeks group 1: 
55±3 nmol/l, group 2: 112±12 nmol/l, 4 weeks group 1: 76±6 
nmol/l, group 2: 143±19 nmol/l, 12 weeks group 1: 89±9 nmol/l, 
group 2: 243±39 nmol/l, 24 weeks group 1: 99±10 nmol/l, group 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

mg zinc and 4.0 mg pyridoxine 
(n=10) 

 

2: 242±33 nmol/l, 36 weeks group 1: 86±10 nmol/l, group 2: 
205±30 nmol/l (significantly different)  

 

Maternal vitamin B6 supplementation of 4 mg/day during lactation 
increased breast milk vitamin B6 compared to 0.5 mg/day (p<0.01)  

 

Prentice 1983 

 

Pre-post 
intervention, no 
randomisation 
(n=130) 

The Gambia  

Supplements were given 
during lactation, 0.71 mg/day 
of vitamin B6 to all participants 
as a fortified biscuit.  

 

2 samples collected pre-supplementation (n=21) 
and post-supplementation (n=21) (stage of 
lactation not clear, however it was confined to 
the first 6 months of lactation). Milk was 
expressed from each breast before and after a 
mid-afternoon feed on two occasions during Sep 
1979 (pre-supplement) and on two further 
occasions during Sep 1980 (post-
supplementation). Milk was collected four times 
throughout the day, at regular intervals 

Laboratory method used not clear 

Supplementation (pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Mean (±SE) breast milk vitamin B6 pre-supplementation: 
0.12±0.005 μg/ml, post-supplementation: 0.10±0.005 μg/ml 

Maternal vitamin B6 supplementation during lactation did not 
increase breast milk vitamin B6 (p>0.05) 

÷ 

Sneed 1981 Intervention, no 
randomisation 
(n=16) 

USA  

Supplements were given 
during lactation. Supplemented 
participants (n=9) were given a 
multivitamin tablet (containing 
4 mg/day of vitamin B6), and 
the remaining participants 
(n=7) were given a placebo 

 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals, beginning with the first 
infant feeding of the day. The milk was 
expressed immediately before taking the 
supplement in the morning 

Microbiological assay was used for analysis 

Supplement group 

Blood, collected at the 
same time as breast 
milk samples 

4-day dietary records 
collected between 4-7 
and 42-45 days 
postpartum 

 

Mean (±SD) breast milk vitamin B6 concentration, 5-7 days, 
supplemented group (SG): 248±60 µg/l, placebo group (PG): 
123±34 µg/l. 43-45 days, SG: 240±57 µg/l, PG: 120±33 µg/l 
Mean (±SD) dietary vitamin B6 intake, 5-7 days, SG: 5.33±0.29 
mg/day, PG: 1.52±0.40 mg/day. 43-45 days, SG: 5.12±0.31 
mg/day, PG: 1.41±0.56 mg/day 

Maternal vitamin B6 supplementation increased breast milk 
vitamin B6 (p<0.01) 

Maternal blood vitamin B6 was associated with breast milk 
vitamin B6 at 5-7 days postpartum (r=-0.80, p<0.01), and at 43-45 
days (r=-0.89, p<0.01) in participants not supplemented 

Maternal dietary vitamin B6 intake was associated with breast milk 
vitamin B6 at 5-7 days postpartum (r=0.84, p<0.01), and at 43-45 
days (r=0.76, p<0.05) in participants not supplemented 

 

+ 

Styslinger 1985 Intervention, no 
randomisation or 

Supplements were given 
during lactation. Group 1: no 
supplementation , group 2: 

1 sample collected (stage of lactation not clear). 
5 ml was collected following milk let down and 
before the infant nursed. Sample collection was 

Supplement group Mean (±SEM) breast milk vitamin B6 concentration, group 1: 
93±8 µg/l, group 2: 192±16 µg/l, group 3: 247±25 µg/l, group 4: 
413±45 µg/l 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

placebo group 
(n=24)  

USA 

supplements of 2.5 mg 
pyridoxine, group 3: 10.0 mg 
pyridoxine , group 4: 20.0 mg 
pyridoxine per day for three 
consecutive days 

 

initiated at 6 am on the first day of the study and 
continued to midnight of day three. Milk was 
expressed manually or by hand pump 

Saccharomyces uvarum microbiological assay 
was used for analysis 

Infants were exclusively breastfed 

3 day diet records (not 
clear when collected)  Mean (±SEM) dietary vitamin B6 intake (excluding supplement 

intake) was 1.8±0.2 mg/day for all four groups (no difference 
between groups)  

Maternal vitamin B6 supplementation increased breast milk 
vitamin B6 (p<0.05)  

Maternal dietary vitamin B6 intake was associated with breast milk 
B6 (r=0.79, p<0.001) 

Roepke 1979 Observational 
(n=106 during 
pregnancy and n=62 
during lactation) 

USA 

No supplements were given by 
investigators 

2 samples collected at 3 and 14 days postpartum. 
Milk was manually expressed, and 5 ml was 
collected at an early morning feed 

Saccharomyces uvarum microbiological assay 
was used for analysis 

24-hour diet recall and 
also a 3 day diet record, 
which was used to 
divide participants into 
two groups, group 1: B6 
intake ≤2.5 mg/day, 
group 2: B6 intake >2.5 
mg/day (data collected 
between 5 and 7 
months of gestation)  

Serum collected at 5 
months gestation 

Mean (±SE) breast milk vitamin B6 concentration 3 days, group 1 
(n=9) : 8.1±1.5 µg/l, group 2 (n=42): 16.1±3.0 µg/l. Day 14, group 
1 (n=9): 40.1±10.3 µg/l., group 2 (n=38): 57.4±7.2 µg/l 

Maternal dietary vitamin B6 intake during pregnancy was 
associated with breast milk vitamin B6 at 3 days postpartum 
(p<0.02), however not at 14 days postpartum  

Maternal serum vitamin B6 at 5 months gestation was associated 
with breast milk vitamin B6 at 14 days postpartum (r=0.51, 
p<0.001)  

+ ÷ 

Thomas 1979  Intervention, no 
randomisation or 
placebo group 
(n=17) 

USA 

Supplements were given 
during lactation. Supplemented 
participants (n=10) were given 
a multivitamin tablet 
(containing 4 mg/day of 
vitamin B6), and the remaining 
participants (n=7) were not 
given any supplements 

 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals. The milk was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

Microbiological assay was used for analysis 

Supplement group  Mean (±SE) breast milk vitamin B6 concentration, 5-7 days, 
supplemented group (SG): 225±87 μg/l, not supplemented (NS): 
128±59 µg/l. 43-45 days, SG: 237±57 µg/l, NS: 204±53 µg/l 

Maternal vitamin B6 supplementation influenced breast milk 
vitamin B6 in transitional milk (p<0.05), however not in mature 
milk (p>0.05) 

+ ÷ 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation. Supplemented 
participants were given a 
multivitamin tablet (containing  
4 mg/day of vitamin B6) and 
the remaining participants 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 

Supplement group Mean (±SD) breast milk vitamin B6 concentration, supplemented 
group 235±49 μg/l, unsupplemented: 212±58 μg/l 

 

Maternal vitamin B6 supplementation did not increase breast milk 
vitamin B6 (statistics not reported) 

÷ 
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First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

were not given any 
supplements 

 

supplements expressed milk at corresponding 
times 

Microbiological assay was used for analysis 

West 1976 Observational 
(n=19) 

 

USA 

No supplements were given by 
investigators  

Participants collected samples of foremilk before 
the first morning feed for 3 consecutive days 
during 1 week, and for 1 day on each of the 
following 2 week (stage of lactation not clear, 
between 3 weeks and 30 months) 

Saccharomyces carlsbergensis microbiological 
assay was used for analysis 

Diet records for 3 
consecutive days 
collected during the 
first week of milk 
collection, which was 
used to divide 
participants into three 
groups, group 1: B6 
intake <2.5 (n=6), 
group 2: B6 intake 
between 2.5-5.0 (n=8), 
group 3: B6 intake >5.0 
(n=5) mg per day  

Mean (±SD) breast milk vitamin B6 concentration, group 1: 
129±39 mg/day, group 2: 239±51 mg/day, group 3: 314±52 
mg/day 

Maternal dietary vitamin B6 intake was associated with breast milk 
vitamin B6 (p<0.01) 

+ 

Vitamin B9 
(folate) 

      

Donangelo 1989 Observational 
(n=83) 

Brazil 

No supplements were given by 
investigators 

1 sample collected between 9.00 and 10.00 am 
by manual expression before the infant was due 
to be fed (5-10 ml) (stage of lactation was 
mixed, between 1-180 days)  

Radioisotope dilution assay was used for 
analysis  

Infants were exclusively breastfed  

Serum collected at the 
same time as breast 
milk sample 

Mean (±SE) breast milk folate concentration, 1-5 days postpartum 
(n=17): 23.0±4.1 nmol/l, 6-30 days (n=18): 61.8±6.9 nmol/l, 31-
280 days (n=11): 107±17.3 nmol/l 

Mean (±SE) serum folate concentration, 1-5 days postpartum 
(n=9): 10.3±1.0 nmol/l, 6-30 days (n=18): 18.8±3.8 nmol/l, 31-
280 days (n=10): 11.0±2.0 nmol/l 

Maternal serum folate was not associated with breast milk folate at 
any stage of lactation (statistics not reported) 

÷ 

Houghton 2009 Randomised, 
placebo controlled 
trial (n=69) 

Canada 

Supplements were given 
during lactation. Group 1: 
[6S]-5-methylTHF (416 
μg/day). Group 2:  folic acid 
(400 μg/day). Group 3: placebo 

Supplementation started 1 
week postpartum and ended 16 
week postpartum 

3 samples collected at 4, 8 and 16 weeks 
postpartum. Complete breast expression 
(manually or by electric breast pump) was used 
to collect milk samples. Milk samples were 
collected between 13.00 and 14.50 

HPLC was used for analysis 

Supplement group  

Plasma collected at the 
same time as breast 
samples  

Mean (±SD) breast milk folate concentration, 4 weeks, group 1: 
189±52 nmol/l, group 2: 155±55 nmol/l, group 3: 193±62 nmol/l. 
8 weeks, group 1: 175±43 nmol/l, group 2: 176±80 nmol/l, group 
3: 207±76 nmol/l. 16 weeks, group 1: 182±102 nmol/l, group 2: 
159±79 nmol/l, group 3: 183±57 nmol/l 

Mean (±SD) plasma folate concentration, 16 weeks, group 1: 
104±55 nmol/l, group 2: 97±27 nmol/l, group 3: 48±24 nmol/l 
(significantly different) 

÷ 
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First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Maternal folic acid supplementation did not increase breast milk 
folate (statistics not reported) 

Maternal plasma folate was not associated with breast milk folate 
(statistics not reported) 

 

Jathar 1970 Observational 
(n=47) 

India 

No supplements were given by 
investigators 

1 sample collected early in the morning before 
feeding the infant, by manual expression (stage 
of lactation not clear) 

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

Dietary assessment, 
collected at the same 
time as breast milk 
sample, which divided 
the participants into 
three groups, group 1 
(n=15): lacto-
vegetarian, group 2 
(n=16): non-vegetarian, 
occasional meat eaters, 
group 3 (n=17): non-
vegetarian, frequent 
meat eaters.  

Mean (±SE) breast milk folic acid activity group 1: 10.3±2.1 
mμg/ml, group 2: 6.6±1.3 mμg/ml, group 3: 10.8±2.2 mμg/ml 

Maternal meat intake did not influence breast milk folate (statistics 
not reported) 

÷ 

Khambalia 2006 Pre-post 
intervention, no 
randomisation 
(n=71) 

Mexico 

Supplements were given 
during lactation. During the 
first clinic visit after childbirth 
(22±13 days postpartum), 
participants were randomised 
to group 1: receiving a 
multivitamin supplement 
containing 400 μg folic acid 
and 18 mg of elemental Fe. 
Group 2: receiving a 
multivitamin supplement 
containing 400 μg folic acid 
without Fe. Supplements were 
provided daily for 6 months 

 

3 samples collected at 22 (baseline), 82 (mid-
study) and 138 days (end-study) postpartum. 
Milk was collected by complete expression of 1 
breast at least 2 hours after the previous feeding 
using an electric breast pump 

Folate concentration was determined by 
microbiological assay 

Supplementation (Pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Median (IQR) breast milk folate concentration, baseline: 102.5 
(89.6, 129.2) nmol/l, mid-study: 154.9 (128.6, 178.2) nmol/l, end-
study: 144.2 (122.1, 179.3) nmol/l 

Maternal folic acid supplementation during lactation increased 
breast milk folate (p<0.001)  

+ 

Mackey 1999 Randomised double-
blinded, placebo 
controlled trial 
(n=42) 

Supplements were given 
during lactation. The 
participants received either a 
supplement with 0 or 1 mg 
folic acid/day. 

2 samples collected at 3 months (baseline) and 6 
months postpartum (end point). Complete breast 
expression was used to collect milk samples 

Supplement group  Mean (±SEM) breast milk folate concentration, baseline, 
supplemented group (SG): 186±9.6 nmol/l, placebo group (PG): 
224±11.6 nmol/l (significantly different at baseline). 6 months, 
SG: 181.9±10.6 nmol/l, PG: 187.0±11.9 nmol/l 

÷  
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

USA Supplementation started 3 
months postpartum and ended 
6 months postpartum 

 

(15–30 ml) by manual means or with a 
mechanical pump 

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

At 3 months, all but 2 infants were exclusively 
breastfed; at 6 month, all but 8 infants were 
exclusively breast-fed 

Plasma collected at the 
same time as breast 
milk samples 

Mean (±SEM) plasma folate concentration, baseline, SG: 44.9±4.1 
nmol/l, PG: 42.1±5.07 nmol/l. 6 months, SG: 46.7±6.5 nmol/l, PG: 
36.8±4.2 nmol/l (not significantly different) 

Maternal folic acid supplementation during lactation did not 
increase breast milk folate (statistics not reported) 

Maternal plasma folate was associated with breast milk folate, 
however only in supplemented women (r=-0.52, p<0.01) at 6 
months postpartum 

 

Prentice 1983 

 

Pre-post 
intervention, no 
randomisation 
(n=130) 

The Gambia  

Supplements were given 
during lactation, 5.7 μg/day of 
folic acid to all participants as 
a fortified biscuit.  

 

2 samples collected pre-supplementation (n=21) 
and post-supplementation (n=22). (stage of 
lactation not clear, however it was confined to 
the first 6 months of lactation). Milk was 
expressed from each breast before and after a 
mid-afternoon feed on two occasions during Sep 
1979 (pre-supplement) and on two further 
occasions during Sep 1980 (post-
supplementation). Milk was collected four times 
throughout the day, at regular intervals 

Laboratory method used not clear 

Supplementation (pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Mean (±SE) breast milk folic acid pre-supplementation: 38.2±2.9 
ng/ml, post-supplementation: 47.3±3.95 ng/ml 

Maternal folic acid supplementation during lactation did not 
increase breast milk folic acid (p>0.05) 

÷ 

Tamura 1980 Pre-post 
intervention, no 
randomisation 
(n=16) 

Japan 

Supplements were given 
during lactation to participants 
for 4 weeks (1 mg of folic 
acid/day) 

2 samples collected (stage of collection unclear). 
Milk samples were collected between 2:00 to 
3:00 PM, just before the infant was fed. 
Approximately 10 ml was collected by manual 
expression 

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

Supplementation (Pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

Plasma collected at the 
same time as breast 
milk samples 

Mean (±SD) breast milk folate concentration, baseline: 
130.2±45.9 ng/ml, post-supplementation: 136.6±41.2 ng/ml 

Mean (±SD) plasma milk folate concentration, baseline: 6.0±2.0 
ng/ml, post-supplementation: 41.8±53.8 ng/ml (significantly 
different) 

Maternal folic acid supplementation (1 mg/day) during lactation 
did not increase breast milk folate (p>0.6) 

Maternal plasma folate was not associated with breast milk folate 
(statistics not reported) 

 

÷ 

Smith 1983 Observational study 
(n=11) 

Supplements were not given by 
investigators, however all 
participants reported taking a 
daily multivitamin and mineral 
supplement with 0.8-1 mg folic 

2 samples collected at 6 and 12 weeks 
postpartum. Foremilk and hindmilk were 
collected by the participants manually or with a 
breast pump, at a morning, midday and evening 

Serum collected at the 
same time as breast 
milk samples 

Mean (±SD) breast milk total folate concentration: 78.9±44.7 
ng/ml (concentrations from both study visits and from foremilk 
and hindmilk combined) 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

USA acid during pregnancy and they 
continued taking the 
supplement for the duration of 
the study 

feed. A total of 6 samples at each time-point was 
collected from each participant on three 
consecutive days 

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

Infants were exclusively breastfed 

Red blood cell (RBC) 
folate collected at the 
same time as breast 
milk samples 

(Maternal serum and RBC folate concentrations presented in a 
figure) 

Maternal serum/RBC folate was not associated with breast milk 
folate (statistics not reported) 

Sneed 1981 Intervention, no 
randomisation 
(n=16) 

USA  

Supplements were given 
during lactation. Supplemented 
participants (n=9) were given a 
multivitamin tablet (containing 
0.8 mg/day of folic acid) and 
the remaining participants 
(n=7) were given a placebo 

 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals, beginning with the first 
infant feeding of the day. The milk was 
expressed immediately before taking the 
supplement in the morning 

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

Supplement group 

Serum collected at the 
same time as breast 
milk samples 

4-day dietary records 
collected between 4-7 
and 42-45 days 
postpartum 

 

Mean (±SD) breast milk folate concentration, 5-7 days, 
supplemented group (SG): 49.4±5.4 μg/l, placebo group (PG): 
41.6±7.5 μg/l. 43-45 days, SG: 49.9±3.6 μg/l, PG: 42.8±5.1 μg/l 

Mean (±SD) serum folate, 5-7 days, SG: 10.04±2.52 ng/ml, PG: 
6.75±3.41 ng/ml. 43-45 days, SG: 7.43±2.26 ng/ml, PG: 
6.26±3.65 ng/ml (not significantly different) 

Mean (±SD) dietary folic acid intake, 5-7 days, SG: 1060±100 
µg/day, PG: 290±100 µg/day, 43-45 days, SG: 1010±80 µg/day, 
PG: 340±200 µg/day, 

Maternal folic acid supplementation increased breast milk folate at 
both time-points (p<0.01) 

Maternal serum folate was not associated with breast milk folate at 
5-7 days postpartum (r=0.37, p>0.05), or at 43-45 days (r=0.03, 
p>0.05) in participants not supplemented 

Maternal dietary folic acid intake was not associated with breast 
milk folate at 5-7 days postpartum (r=0.25, p>0.05), or at 43-45 
days (r=-0.14, p>0.05) in participants not supplemented 

 

+ ÷ 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation. Supplemented 
participants were given a 
multivitamin tablet (containing 
0.8 mg/day of folic acid) and 
the remaining participants 
were not given any 
supplements 

 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

Supplement group Mean (±SD) breast milk folate concentration, supplemented group 
54.8±7.0 μg/l, unsupplemented: 50.1±4.5 μg/l 

Maternal folic acid supplementation did not increase breast milk 
folate (statistics not reported) 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Folate concentration was determined by the 
Lactobacillus casei microbiological assay 

West 2012 Pre-post 
intervention, no 
randomisation 
(n=28) 

USA 

Supplements were given 
during lactation to all 
participants. All participants 
consumed a daily multivitamin 
supplement containing 750 μg 
folic acid, plus an intake of 
natural food folate (400 
μg/day) for 10-12 weeks (from 
approximately 5- 15 weeks 
postpartum) 

3 samples collected, at 5 (baseline) and 15 weeks 
(study end) postpartum. Breast milk samples 
were collected from a full expression of one 
breast 2 hour after the first feed of the day. 
Participants expressed the same breast 
throughout the study 

LC-MS/MS was used for analysis  

Supplementation (pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Mean (95% CI) breast milk total folate concentration, baseline: 
56.2 (48.8, 64.2) ng/ml, 15 weeks: 61.8 (54.1, 70) ng/ml 

Mean (95% CI) breast milk folic acid concentration, baseline: 16.2 
(11.8, 21.3) ng/ml 15 weeks: 24.1 (18.7, 30.3) ng/ml 

Maternal folic acid supplementation during lactation did not 
increase breast milk total folate (p=0.2) 

Maternal folic acid supplementation during lactation increased 
breast milk folic acid (p<0.003) 

÷ + 

Vitamin B12       

Bae 2015 Pre-post 
intervention, no 
randomisation 
(n=28) 

USA 

All participants, pregnant 
(n=26), lactation (n=28) and 
controls (non-pregnant, non-
lactating) (n=21) consumed 
equivalent vitamin B12 
amounts of ~ 8.6 µ/day for 10 
weeks. The vitamin B12 was 
given as a meal (~6 µ/day) and 
as a supplement (2.6 µ/day). 
The effect of supplementation 
on breast milk concentration 
was only investigated in 
lactating women, not in 
pregnant women.  

 

2 samples collected, at baseline 5 weeks 
postpartum and 10 weeks after, 15 weeks 
postpartum, only collected from the lactating 
women entering the study. Breast milk samples 
were collected from fasting women (10 hours), 
one full breast expression two hours after the 
first feed of the day 

Protein binding immunoassay was used for 
analysis 

Infants were exclusively breastfed 

Supplementation (diet 
+ supplement) (Pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

Serum (B12 and 
holotranscobalamin 
(holoTC) collected at 
the same time-point as 
breast milk samples 

Geometric mean (95% CI) breast milk vitamin B12 concentration 
at baseline (n=28): 318 (227, 447) pmol/l, 15 weeks (study end): 
298 (213, 419) pmol/l 

Median (IQR) serum vitamin B12 concentration, baseline 463 (419, 
511) pmol/l 

Median (IQR) serum holoTC concentration, baseline: 96 (82, 111) 

Maternal vitamin B12 supplementation (diet + supplement) during 
lactation did not increase breast milk vitamin B12 (p=0.5) 

Maternal serum vitamin B12 was associated with breast milk 
vitamin B12 at baseline (5 weeks postpartum) (r=0.48, p=0.01) 

Maternal serum holoTC was associated with breast milk vitamin 
B12 at baseline (r=0.42, p=0.03) 

Maternal serum vitamin B12 was not associated with breast milk 
B12 at study end (r=0.18, p=0.4) 

Maternal serum holoTC was associated with breast milk vitamin 
B12 at study-end (15 weeks postpartum) (r=0.40, p=0.04) 

 

+ ÷ 

Casterline 1997 

  

Observational 
(n=113) 

No supplements were given by 
investigators 

1 sample collected at 3 months postpartum. A 
milk sample was collected by complete 
expression of one breast, using and electric 
breast pump while the child was nursing from 

Plasma collected at the 
same time as the breast 
milk sample  

Mean (±SD) breast milk vitamin B12 concentration: 689.7±490.7 
pmol/l 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Guatemala  the opposite breast to stimulate a let-down 
reflex. Samples were collected from the opposite 
breast from the one used for the last feed and at 
least 1.5 hour after the last feed 

MAGIC vitamin B12/folate radioassay was used 
for analysis  

Infants were exclusively breastfed 

24-hour recalls on two 
separate occasions at 1 
and 2 months 
postpartum 

Mean (±SD) plasma vitamin B12 concentration: 252.2±101.7 
pmol/l 

Mean (±SD) holotranscobalamin concentration: 70.3±61.9 pmol/l 

Mean (±SD) dietary vitamin B12 intake: 3.9±12.0 μg/day 

Maternal plasma vitamin B12 was not associated with breast milk 
vitamin B12 (r=0.18, p>0.05) 

Maternal holotranscobalamin was not associated with breast milk 
B12 (statistics not reported) 

Maternal dietary B12 intake was not associated with breast milk 
vitamin B12 (r=0.02, p>0.05) 

 

Chebaya 2017 

 

Observational 
(n=129 Canadians, 
n=69 Cambodians) 

Canada and 
Cambodia 

No supplements were given by 
investigators, however 
Canadian mothers consumed a 
daily vitamin B12-containing 
multiple 

micronutrient supplement 
throughout pregnancy and 
lactation (12 μg/day); 
Cambodian mothers were 

unsupplemented  

 

1 sample collected at 8 weeks postpartum in the 
Canadian study and between 3-27 weeks in the 
Cambodian study. Milk from one full breast 
expression was collected using an electric breast 
pump, more than two hours after the previous 
feeding 

Chemiluminescent enzyme immunoassay was 
used for analysis 

Infants were exclusively breastfed  

Serum and plasma 
collected at the same 
time as the breast milk 
sample 

Geometric mean breast milk vitamin B12 concentration, Canada 
(n=109): 452 pmol/l, Cambodia (n=59): 317 pmol/l 

Geometric mean serum B12, Canada (n=124): 698 pmol/l 

Geometric mean plasma B12, Cambodia (n=69): 620 pmol/l 

Maternal serum vitamin B12 was associated with breast milk 
vitamin B12 in Canadian mothers (β=0.498, p<0.001)  

Maternal plasma vitamin B12 was not associated with breast milk 
vitamin B12 in Cambodian mothers (β=0.105, p=0.4) (adjusted for 
stage of lactation) 

 

+ ÷ 

Donangelo 1989 Observational 
(n=83) 

Brazil 

No supplements were given by 
investigators 

1 sample collected between 1-180 days 
postpartum, between 9.00 and 10.00 am by 
manual expression before the infant was due to 
be fed (5-10ml)  

Radioisotope dilution assay was used for 
analysis  

Infants were exclusively breastfed  

Serum collected at the 
same time as breast 
milk sample 

Mean (±SE) breast milk vitamin B12 concentration, 1-5 days 
postpartum (n=17): 0.82±0.26 nmol/l, 6-30 days (n=18): 
1.18±0.39 nmol/l, 31-280 days (n=10): 0.67±0.15 nmol/l 

Mean (±SE) serum B12 concentration, 1-5 days postpartum (n=17): 
0.23±0.04 nmol/l, 6-30 days (n=18): 0.35±0.05 nmol/l, 31-280 
days (n=10): 0.32±0.04 nmol/l 

Maternal serum vitamin B12 was not associated with breast milk 
vitamin B12 at any stage of lactation (statistics not reported) 

 

÷ 
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First author, year  Study design  
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setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Duggan 2014 

 

Randomised, 
placebo controlled 
trial (n=366) 

India  

Supplements were given 
during pregnancy and 
lactation. Participants were 
randomly assigned to receive 
daily oral dose of vitamin B12 
(50 μg) or a placebo from 
enrolment (<14 weeks 
postpartum) through 6 weeks 
postpartum. All women 
received the standard care of 
60 mg of iron and 500 µg of 
folic acid 

3 samples collected at 6 weeks, 3 months and 6 
months postpartum. Breast milk was collected 
without restriction regarding time since last feed. 
After cleaning the nipple and before the mothers 
nursed the infants, 10 ml of breast milk was 
expressed manually from one breast 

Competitive protein binding immunoassay was 
used for analysis 

Supplement group Median (IQR) breast milk vitamin B12 concentration, 6 weeks, 
supplemented group (SG) (n=68): 136 (93, 203) pmol/l, placebo 
group (n=73): 87 (44, 127) pmol/l. 3 months, SG (n=47): 97 (63, 
146) pmol/l, PG (n=57): 68 (37, 102) pmol/l. 6 months, SG 
(n=37): 106 (65, 160) pmol/l, PG (n=44): 80 (51, 113) pmol/l.  

Median plasma vitamin B12, second trimester, SG: 216 pmol/l, PG: 
112 pmol/l (significantly different). Third trimester, SG: 184 
pmol/l, PG: 105 pmol/l (significantly different)  

Maternal vitamin B12 supplementation during pregnancy and 
lactation (until 6 weeks postpartum) increased breast milk B12 at 6 
weeks postpartum (p<0.001), however not at 3 (p=0.7) or 6 
months postpartum (p=0.8)  

 

+ ÷ 

Greibe 2013 Observational 
(n=25) 

Denmark  

No supplements were given by 
investigators, however the 
majority of the participants 
supplemented their diet with a 
daily multivitamin pill 
containing 1.0–4.5 μg vitamin 
B12 

3 samples collected at 2 week (15 ± 7 days), 4 
months (129 ± 12 days), and 9 months (280 ± 15 
days) postpartum. At the day of each visit (or the 
night before), foremilk and hindmilk were 
manually collected by the mothers  

ELISA was used for analysis  

Infants were exclusively breastfed to after 4 
months postpartum  

Plasma collected at the 
same time as breast 
milk sample (n=60)  

Median (range) breast milk vitamin B12 concentration, hindmilk, 2 
weeks: 760 (210, 1880) pmol/l, 4 months: 290 (140, 690) pmol/l, 9 
months: 440 (160, 1940) pmol/l  

Median (range) plasma holotranscobalamin (holoTC) 2 weeks: 
140 (50-360) pmol/l, 4 months: 130 (60, 290) pmol/l, 9 months: 
110 (50-240) pmol/l 

Median (range) plasma vitamin B12,, 2 weeks: 400 (170,790) 
pmol/l, 4 months: 390 (190, 750) pmol/l, 9 months: 420 (160,750) 
pmol/l 

Maternal plasma vitamin B12 was associated with breast milk 
vitamin B12 at 4 months postpartum (r=0.58, p=0.002), however 
not at 2 weeks or 9 months lactation (statistics not reported) 

Maternal plasma holoTC was associated with breast milk vitamin 
B12 at 2 weeks (r=0.45, p=0.02) and at 4 months postpartum 
(r=0.57, p=0.03)  

 

+ ÷ 

Jathar 1970 Observational 
(n=47) 

India 

No supplements were given by 
investigators 

1 sample collected early in the morning before 
feeding the infant, by manual expression (stage 
of lactation not clear) 

Breast milk vitamin B12 was estimated 
microbiologically using Euglena gracilis var. 
bacillaris as the test organism  

Dietary assessment, 
which divided the 
participants into three 
groups, group 1 (n=15): 
lacto-vegetarian, group 
2 (n=16): non-
vegetarian, occasional 
meat eaters, group 3 

Mean (±SE) breast milk folic acid activity group 1: 91.3±17.9 
μg/ml, group 2: 100.6±18.5 μg/ml, group 3: 103.2±20.8 μg/ml 

Maternal meat intake was not associated with breast milk B12 
(statistics not reported) 

÷ 
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(n=17): non-vegetarian, 
frequent meat eaters. 
Data collected at the 
same time as breast 
milk sample 

Neumann 2013 Observational 
(n=138) 

Kenya 

No supplements given by 
investigators  

 

3 samples collected between 0-1 months, 1-4 
months and 4-6 months postpartum. Breast milk 
samples were collected during morning hours in 
the middle of nursing episodes by hand 
expression 

Competitive binding isotope dilution method 

Quantitative weighing 
method and dietary 
recall collected 
monthly from the time 
of measurement  

Mean (±SD) breast milk vitamin B12, 0-1 months: 198.8±167.5 
pg/ml, 1-4 months: 135.9±129.5, 4-6 months: 143.1±152.0 

Mean (±SD) dietary vitamin B12 intake during lactation: 0.70±0.20 
μg/dl 

Maternal dietary vitamin B12 intake was not associated with breast 
milk B12 at 0-1 months (r2=0.27, p=0.08), however it was 
associated at 1-4 months (r2=0.20, p<0.01), and at 4-6 months 
(r2=0.26, p<0.001) 

 

+ ÷ 

Prentice 1983 

 

Pre-post 
intervention, no 
randomisation 
(n=130) 

The Gambia  

Supplements were given 
during lactation, 1.19 μg/day 
of vitamin B12 to all 
participants as a fortified 
biscuit.  

 

2 samples collected pre-supplementation (n=16) 
and post-supplementation (n=22). (stage of 
lactation not clear, however the study was 
confined to only include participants who was in 
the first 6 months of lactation). Milk was 
expressed from each breast before and after a 
mid-afternoon feed on two occasions during Sep 
1979 (pre-supplement) and on two further 
occasions during Sep 1980 (post-
supplementation). Milk was collected four times 
throughout the day, at regular intervals 

Laboratory method used not clear 

Supplementation (Pre-
post intervention 
design, the study used 
pre-supplement 
concentrations as 
comparison group) 

 

Mean (±SE) breast milk vitamin B12 pre-supplementation: 
0.16±0.04 ng/ml, post-supplementation: 0.12±0.02 ng/ml 

Maternal vitamin B12 supplementation during lactation did not 
increase breast milk B12 (p>0.05) 

÷ 

Siddiqua 2015 

 

Randomised, double-
blinded, placebo 
controlled trial 
(n=68) 

Bangladesh  

Supplements were given 
during pregnancy and lactation 
(starting between 11-14 weeks 
gestation and end point was 3 
months postpartum) 250 
μg/day of vitamin B12 or a 
placebo, and both groups 
received a daily dose of 60 mg 
of iron and 400 μg of folic acid 

 

2 samples collected within 72 hours (colostrum) 
and 3 months postpartum. Manually expressed 
breast milk was collected from the participants, 
usually at the end of a breastfeeding session 

Immunoassay was used for analysis 

Supplement group  Mean breast milk vitamin B12 concentration colostrum (72 hours), 
supplemented group (SG): 778 pmol/l, placebo group (PG): 320 
pmol/l, 3 months, SG: 235 pmol/l, PG: 170 pmol/l 

Mean (±SD) plasma vitamin B12 concentration, baseline PG: 
198.7±94.2 pmol/l, SG: 191.6±97.3 pmol/l, median 72 hours after 
birth, PG: 142 pmol/l, SG: 267 pmol/l, 3 months, PG: 242 pmol/l, 
SG: 416 pmol/l  

 

+ 
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Maternal vitamin B12 supplementation during pregnancy and 
lactation increased colostrum B12 (p<0.001) and B12 concentration 
in mature milk (p=0.03) 

 

Sneed 1981 

 

 

 

 

Intervention, no 
randomisation 
(n=16) 

USA  

Supplements were given 
during lactation. Supplemented 
participants (n=9) were given a 
multivitamin tablet (containing 
8 μg/day of vitamin B12) and 
the remaining participants 
(n=7) were given a placebo 

 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals, beginning with the first 
infant feeding of the day. The milk was 
expressed immediately before taking the 
supplement in the morning 

Radioimmunoassay was used for analysis 

Supplement group 

Serum collected at the 
same time as breast 
milk samples 

4-day dietary records 
collected between 4-7 
and 42-45 days 
postpartum 

 

Mean (±SD) breast milk vitamin B12 concentration, 5-7 days, 
supplemented group (SG): 0.91±0.25 μg/l, placebo group (PG): 
0.70±0.19 μg/l. 43-45 days, SG: 0.79±0.24 μg/l, PG: 0.55±0.16 
μg/l 

Mean (±SD) serum vitamin B12, 5-7 days, SG: 682±148 pg/ml, 
PG: 567±59 pg/ml. 43-45 days, SG: 638±155 pg/ml, PG: 666±122 
pg/ml (not significantly different) 

Mean (±SD) dietary vitamin B12 intake, 5-7 days, SG: 12.9±2.2 
µg/day, PG: 7.0±3.1 µg/day. 43-45 days, SG: 11.8±1.0 µg/day, 
PG: 5.2±1.8 µg/day 

Maternal vitamin B12 supplementation increased breast milk 
vitamin B12 at both time-points (p<0.01) 

Maternal serum vitamin B12 was not associated with breast milk 
vitamin B12 at 5-7 days postpartum (r=0.28, p>0.05), or at 43-45 
days (r=-0.18, p>0.05) in participants not supplemented 

Maternal dietary vitamin B12 intake was not associated with breast 
milk vitamin B12 at 5-7 days postpartum (r=0.54, p>0.05), or at 
43-45 days (r=0.41, p>0.05) in participants not supplemented 

 

+ ÷ 

Specker 1990 Observational 
(n=19)  

USA 

 

No supplements were given by 
investigators  

1 sample collected between 2.0 and 13.9 months 
postpartum. Samples were collected at the first 
daylight feeding and were expressed by hand or 
by pump from one breast. Participants were 
asked to express all of the milk 

Radioassay was used for analysis  

Serum collected at the 
same time as breast 
milk sample  

Mean (±SD) breast milk vitamin B12 concentration, vegetarians: 
231±94 pmol/l, omnivorous: 378±75 pmol/l 

Maternal serum vitamin B12 was associated with breast milk B12 
(r=0.787, p<0.001) 

+ 

Thomas 1979  Intervention, no 
randomisation or 
placebo group 
(n=17) 

Supplements were given 
during lactation. Supplemented 
participants (n=10) were given 
a multivitamin tablet 
(containing 8 μg/day of 
vitamin B12), and the 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals. The milk was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 

Supplement group  Mean (±SE) breast milk vitamin B12 concentration, 5-7 days, 
supplemented group (SG): 1.65±0.63 μg/l, not supplemented (NS): 
1.22±0.41 μg/l. 43-45 days, SG: 1.10±0.57 μg/l, NS: 0.61±0.17 
μg/l 

 

+ ÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

USA remaining participants (n=7) 
were not given any 
supplements 

 

supplements expressed milk at corresponding 
times 

Radioimmunoassay was used for analysis 

Maternal vitamin B12 supplementation increased breast milk 
vitamin B12 in mature milk (p<0.05), however not in transitional 
milk (p>0.05) 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation. Supplemented 
participants were given a 
multivitamin tablet (containing 
8 μg/day of vitamin B12) and 
the remaining participants 
were not given any 
supplements 

 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

Radioimmunoassay was used for analysis 

Supplement group Mean (±SD) breast milk vitamin B12 concentration, supplemented 
group 0.866±0.295 μg/l, not supplemented: 0.642±0.098 μg/l 

Maternal vitamin B12 supplementation did not increase breast milk 
vitamin B12 (statistics not reported) 

÷ 

Williams 2016 Observational 
(n=286) 

Kenya  

No supplements were given by 
investigators  

1 sample collected at 6 months postpartum. 
Breast milk was collected while following an 
observed non-breastfeeding period of ≤ 90 min. 
After 1 minute of breastfeeding, study mothers 
hand-expressed 5 ml breast milk from the right 
breast. Collection was restricted to times 
between 09.00 and 12.00 

Solid-phase competitive chemiluminescent 
enzyme immunoassay was used for analysis  

7 day FFQ and 24-hour 
recall collected at the 
same time as the breast 
milk sample 

Median (IQR) breast milk vitamin B12 concentration: 113 (61, 
199) pmol/l 

Median (IQR) dietary vitamin B12 intake: 1.45 (0.31, 9.65) µg/day  

Maternal vitamin B12 intake was not associated with breast milk 
vitamin B12 (β=-0.01 95%CI= -0.03, 0.02) (adjusted for maternal 
age, stage of lactation)  

÷ 

Vitamin C       

Bates 1982 Intervention, no 
randomisation or 
placebo group 
(n=168) 

The Gambia 

Supplements were given 
during pregnancy and lactation 
to women from Keneba, a 
daily tea drink containing 35 
mg of ascorbic acid. Women 
from Manduar received no 
daily fortified tea drink 

 

1 sample collected (breast milk collection 
method not clear) 

Dinitrophenyl hydrazine-based assay was used 
for analysis 

Supplement group Mean (±SD) breast milk vitamin C concentration, supplemented 
group: 4.55±1.59 mg/dl, not supplemented group: 3.43±1.54 
mg/dl 

Maternal supplementation of 35 mg/day during pregnancy and 
lactation increased breast milk vitamin C (p<0.001) 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Bates 1983 Intervention, no 
randomisation 
(n=80) 

The Gambia 

Supplements were given 
during lactation, a daily tea 
drink containing 35 mg of 
ascorbic acid. Additional 
vitamin C was added to the tea 
drink. Group 1: 0 mg, group 2: 
30 mg, group 3: 60 mg, group 
4: 90 mg  

2 samples collected, one before supplementation 
started (baseline), and one 2.5 weeks after 
supplementation started (stage of lactation was 
between 3 and 20 months) (breast milk 
collection method not clear) 

Dinitrophenyl hydrazine-based assay was used 
for analysis 

Supplement group  Mean (±SD) breast milk vitamin C concentration, baseline, group 
1: 3.36±0.13 mg/dl, group 2: 3.95±0.19 mg/dl, group 3: 3.88±0.22 
mg/dl, group 4: 3.70±0.18 mg/dl. 2.5 weeks, group 1: 3.40±0.12 
mg/dl, group 2: 4.74±0.21 mg/dl, group 3: 5.31±0.19 mg/dl, group 
4: 5.51±0.24 mg/dl 

Maternal vitamin C supplementation during lactation increased 
breast milk vitamin C (p<0.05) 

 

+ 

Daneel-Otterbech 
2005 

Intervention, no 
randomisation or 
placebo group (n=) 

Zurich, Switzerland, 
and Abidjan, Côte 
d’Ivoire 

Supplements were given 
during lactation. Study 1 
(n=28): 1000 mg ascorbid 
acid/day for 10 days in 
European and African women. 
Study 2 (n=26): 1, 3 or 5 
serving of orange juice per 
week (approximately 100 mg 
ascorbic acid/serving) (only in 
Africans) (n=13) 

Study 1: 10 samples collected for 10 consecutive 
days. Study 2: Samples of human milk were 
collected weekly during the food 
supplementation (1 sample/week from the 
women receiving 1 serving of orange juice per 
week and 2 samples/week from the women 
served 3 or 5 servings of orange juice per week). 
Sampling method was not standardised, however 
they were collected between 07.00 and 12.00, 
before intake of ascorbic acid supplements or 
orange juice 

A simple analytic technique based on titration 
was used for analysis 

Supplement group Study 1: Mean (±SD) breast milk vitamin C concentration, 
baseline, European: 60±12 mg/kg, African: 19±16 mg/kg. 10 days, 
European: 70±16 mg/kg, African: 60±11 mg/kg 

Study 2: Mean (±SD) breast milk vitamin C concentration, 
baseline, 1 serving: 23±5.3 mg/kg, 3 servings: 16±6.0 mg/kg, 5 
servings: 21±4.3 mg/kg. 6 weeks: 1 serving: 26±7.1 mg/kg, 3 
servings: 32±6.9 mg/kg, 5 servings: 46±6.2 mg/kg 

Maternal ascorbic acid (1000 mg/day) supplementation increased 
breast milk vitamin C (p<0.001)  

Maternal intake of orange juice 3 or 5 servings a week increased 
breast milk vitamin C (p<0.001) 

 

+ 

Deodhar 1960 Observational 
(n=60) 

India  

No supplements were given by 
investigators 

1 sample collected between two feeds at about 3 
p.m. by voluntary expression. The sampling was 
done on three consecutive days and the average 
value for three samples was taken (stage of 
lactation was not clear) 

Laboratory method used not clear 

 

Dietary intake of 1 da, 
which was used to 
divide participants into 
4 groups, according to 
their intake of ascorbic 
acid, with the median 
and the two quartiles 
determined the 
distribution, collected 
at the same time as 
breast milk sample 

Mean breast milk ascorbic acid, group 1: 2.44 mg/100ml, group 2: 
2.70 mg/100ml, group 3: 3.23 mg/100ml, group 4: 4.46 mg/100ml 

Mean dietary ascorbic acid intake, group 1: 0.57 mg/day, group 2: 
2.39 mg/day, group 3: 4.79 mg/day, group 4: 1.34 mg/day 

Maternal dietary ascorbic acid was associated with breast milk 
ascorbic acid (r=0.65, p<0.05) 

+ 

Hankin 1966 Intervention, no 
randomisation 
(n=71) 

Supplements were given 
during pregnancy and 
lactation. One group received a 
daily supplement of 100 mg 

3 samples collected at 5 days, 6 and 12 weeks 
postpartum. The sample was collected around 2 
pm on the day they visited the clinic.  

Supplement group  Mean (±SE) breast milk vitamin C concentration, 5 days, 
supplemented group (SG): 6.6±0.26 mg/100ml, not supplemented 
group (NG): 5.3±0.22 mg/100ml. 6 weeks, SG: 6.4±0.45 

+ 



 
 

66 
 

Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Australia ascorbic acid starting from 
around 20 week gestation and 
continued to lactation ended. 
The second group received no 
supplement. 

 

The dinitrophenylhydrazine method was used for 
analysis 

Plasma collected at the 
same time-points as 
breast milk samples  

mg/100ml, NG: 4.9±0.36 mg/100ml. 12 weeks, 5.7±0.53 
mg/100ml, NG: 4.5±0.53 mg/100ml 

Mean (±SE) plasma ascorbic acid concentration, 5 days, SG: 
0.75±0.08 mg/100ml, NG: 0.38±0.11 mg/100ml. 6 weeks, SG: 
0.54±0.06 mg/100ml, NG: 0.20±0.06 mg/100ml, 12 weeks, SG: 
0.57±0.08 mg/100ml, NG: 0.19±0.09 mg/100ml (significantly 
different) 

Maternal ascorbic acid (100 mg/day) supplementation during 
pregnancy and lactation increased breast milk vitamin C at 5 days 
and 6 weeks postpartum, however not at 12 weeks postpartum 
(statistics not reported) 

Maternal plasma ascorbic acid was associated with breast milk 
vitamin C at 5 days and 6 weeks postpartum (r=0.28, p<0.05 and 
r=0.67, p<0.01, respectively) 

 

Kodentsova 2006 Observational (n=35, 
excluding preterm 
infants) 

 

Russia  

Supplements were not given by 
investigators, however many of 
the participants consumed 
vitamins, which was captured 
in a 24-hour recall. The 
participants were divided into 
two groups, group 1: no 
vitamin supply and group 2: 
adequate vitamin supply 

 

1 sample collected between 3-10 days 
postpartum. The women were fasting when a 
single sample of breast milk was collected 

The method of visual titration was used for 
analysis 

24-hour recall collected 
a few days after birth  

Mean (±SD) breast milk vitamin C concentration, group 1: 32±10 
mg/l, group 2: 85±20 mg/l 

Maternal dietary vitamin C intake was not associated with breast 
milk vitamin C (p>0.05) 

÷ 

Ortega 1998 Observational 
(n=57) 

Spain  

No supplements were given by 
investigators  

2 samples collected at 13-14 (transitional milk) 
and 40 (mature milk) days postpartum. Milk 
samples were collected between 10 and 11 am 
by manual expression of a 5 ml sample from 
each breast at the beginning and end of feed. 5 
ml of foremilk and 5 ml of hindmilk were pooled 

Spectrophotometry was used for analysis 

5-day dietary record 
and FFQs during third 
trimester of pregnancy, 
which was used to 
divide the participants 
into two groups, group 
1: vitamin C intake < 
RI (n=12) and group 2: 
≥ RI (n=45) 

Mean (±SD) transitional breast milk vitamin C concentration, 
group 1: 256±220 μmol/l, group 2: 434±288 μmol/l. Mature milk, 
group 1: 471±385 μmol/l, group 2: 433±338 μmol/l 

Maternal dietary vitamin C intake during third trimester of 
pregnancy was associated with transitional milk vitamin C 
(p<0.05), not with mature milk vitamin C (p>0.05) 

 

+ ÷ 

Salmenpera 1984 Observational 
(n=200) 

No supplements were given by 
investigators  

5 samples collected at 3-4 days and 2, 4, 6, 9 and 
12 months postpartum. (breast milk collection 
method not clear) 

Plasma collected at the 
same time as breast 
milk samples 

Mean (±SD) breast milk vitamin C concentration, colostrum: 
6.18±0.99 mg/100ml, 2 months: 5.91±1.18 mg/100ml, 4 months: 
4.97±1.06 mg/100ml, 6 months: 4.68±1.02 mg/100ml, 9 months: 
4.46±0.56 mg/100ml, 12 months: 4.14±1.13 mg/100ml 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Finland Microfluorometric assay was used for analysis 

Infants were exclusively breastfed 

7-day food 
consumption record 
(n=47) at 1-2 and 4-5 
months postpartum 

Mean (±SD) plasma vitamin C concentration, 3-4 days: 1.03±0.34 
mg/100ml, 2 months: 0.86±0.39 mg/100ml, 4 months: 0.96±0.46 
mg/100ml, 6 months: 0.95±0.43, 9 mg/100ml months: 1.07±0.47 
mg/100ml, 12 months: 1.08±0.47 mg/100ml 

Maternal plasma vitamin C was associated with breast milk 
vitamin C (r=0.60, p=0.001), also after adjusting for milk volume 

Maternal dietary vitamin C intake was associated with breast milk 
vitamin C (r=0.39 to 0.46, p<0.01) 

 

Sneed 1981 Intervention, no 
randomisation 
(n=16) 

USA  

Supplements were given 
during lactation. Supplemented 
participants (n=9) were given a 
multivitamin tablet (containing 
90 mg/day of ascorbic acid), 
and the remaining participants 
(n=7) were given a placebo 

 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals, beginning with the first 
infant feeding of the day. The milk was 
expressed immediately before taking the 
supplement in the morning 

Breast milk ascorbic acid concentration was 
measured photometrically 

Supplement group 

Plasma collected at the 
same time as breast 
milk samples 

4-day dietary records 
collected between 4-7 
and 42-45 days 
postpartum 

 

Mean (±SD) breast milk vitamin C concentration, 5-7 days, 
supplemented group (SG): 64.6±19.9 mg/l, placebo group (PG): 
53.1±17.1 mg/l. 43-45 days, SG: 72.4±19.6 mg/l, PG: 61.0±10.2 
mg/l 

Mean (±SD) plasma ascorbic acid concentration, 5-7 days, SG: 
1.01±0.30 mg/100ml, PG: 0.77±0.59 mg/l. 43-45 days, SG: 
1.17±0.44 mg/l, PG: 0.87±0.26 mg/l (not significantly different) 

Mean (±SD) dietary ascorbic acid intake, 5-7 days, SG: 202±56 
mg/day, PG: 83±55 mg/day. 43-45 days, SG: 193±60 mg/day, PG: 
152±115 mg/day 

Maternal vitamin C supplementation did not increase breast milk 
vitamin C (statistics not reported) 

Maternal plasma ascorbic acid was associated with breast milk 
vitamin C (r=0.60, p<0.05) at 5-7 days postpartum, not at 43-45 
days (r=-0.19, p>0.05) in participants not supplemented 

Maternal dietary vitamin C intake was associated with breast milk 
vitamin C at 5-7 days postpartum (r=0.66, p<0.05), however not at 
43-45 days (r=0.31, p>0.05) in participants not supplemented 

÷ + 

Thomas 1979  Intervention, no 
randomisation or 
placebo group 
(n=17) 

USA 

Supplements were given 
during lactation. Supplemented 
participants (n=10) were given 
a multivitamin tablet 
(containing 90 mg/day of 
ascorbic acid), and the 
remaining participants (n=7) 

2 samples collected at 5-7 days and 43-45 days 
postpartum. Milk was expressed 4 times per day 
at 4-hour intervals, and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 

Supplement group  Mean (±SE) breast milk vitamin C concentration, 5-7 days, 
supplemented group (SG): 58.4±34 mg/l, not supplemented (NS): 
73.3±36 mg/l. 43-45 days, SG: 87.2±50 mg/l, NS: 61.1±36 mg/l 

Maternal vitamin C supplementation did not increase breast milk 
vitamin C  (statistics not reported) 

÷ 
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First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

were not given any 
supplements 

 

supplements expressed milk at corresponding 
times 

Breast milk ascorbic acid concentration was 
measured photometrically 

Thomas 1980 Intervention, no 
randomisation or 
placebo group 
(n=12) 

USA 

Supplements were given 
during lactation. Supplemented 
participants were given a 
multivitamin tablet (containing 
90 mg/day of ascorbic acid), 
and the remaining participants 
were not given any supplement 

1 sample collected 6 months postpartum. Milk 
was expressed 4 times per day at 4-hour intervals 
for three consecutive days,  and was expressed 
immediately before taking the supplement in the 
morning at 0 time and 4, 8, and 12 hour 
thereafter. Those participants not taking 
supplements expressed milk at corresponding 
times 

Breast milk ascorbic acid concentration was 
measured photometrically 

Supplement group Mean (±SD) breast milk vitamin C concentration, supplemented 
group 38.4±12.3 mg/l, not supplemented: 35.2±12.0 mg/l 

Maternal vitamin C supplementation did not increase breast milk 
vitamin C (statistics not reported) 

÷ 

Tawfeek 2002 Observational 
(n=200) 

Iraq 

No supplements were given by 
investigators 

1 sample collected at different stages of lactation 
(between 1-26 weeks postpartum). Midstream 
breast milk samples (2–5 ml) were obtained 
from each participant. All breast milk samples 
were collected between 10:00 and 12:00 hours. 
The samples were manually expressed by the 
participant 

Ascorbic acid was measured 
spectrophotometrically 

24-hour recall collected 
at the same time as 
breast milk sample 

Mean (±SD) breast milk vitamin C concentration, 2 weeks (n=30): 
4.2±2.08 mg/100ml, 3-6 weeks (n=55): 3.8±1.9 mg/100ml, 7-14 
weeks (n=41): 3.2±1.5 mg/100ml, >24 weeks (n=35): 2.5±0.8 
mg/100ml 

Maternal dietary vitamin C intake was associated with breast milk 
vitamin C (r=0.61, p<0.01) 

+ 

Vitamin D       

Ala-Houhala 1988 Intervention, no 
randomisation or 
placebo group 
(n=45) 

Finland  

Supplements were given 
during lactation. Participants 
received either 2000 or 1000 
IU (50 or 25 µg) of 
cholecalciferol per day as a 
single daily dose in 1000-lU 
(25-ag) tablets or they received 
no supplementation  

2 samples collected, at 8 and 15 weeks 
postpartum and at different seasons (collections 
were made in February and May or in September 
and December) Experiment 1: The participants 
collected foremilk and hindmilk samples during 
the first feeding in the morning except in 
February, when only foremilk samples were 
collected during daily examination visits to the 

Supplement group 

Serum collected at 
same time as breast 
milk samples 

Median (range) breast milk vitamin D concentration, week 8 (Feb) 
2000 IU: 403 (75, 1105) pmol/l, 1000 IU: 286 (148, 949) pmol/l, 
no supplement (NS): 333 (174, 762) pmol/l. Week 15 (April) 2000 
IU: 390 (148, 1043) pmol/l, 1000 IU: 367 (112, 751) pmol/l, NS: 
359 (140, 988) pmol/l 

Median (range) breast milk 25-(OH)D, week 8 (Feb) 2000 IU: 993 
(223,2295) pmol/l, 1000 IU: 583 (238, 2163) pmol/l, NS:  393 
(140, 1193) pmol/l. Week 15 (April) 2000 IU: 843 (448, 5700) 

+ ÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

clinic. They were stored at -70 C until analysed. 
Experiment 2: Only hindmilk was collected. 

Laboratory method used not clear 

 

pmol/l, 1000 IU: 773 (403, 2190) pmol/l, NS: 398 (110, 2353) 
pmol/l 

Maternal serum concentrations not reported 

Maternal oral vitamin D supplementation (either 2000 or 1000 IU) 
did not increase breast milk vitamin D concentration (statistics not 
reported) 

Maternal oral vitamin D supplementation (either 2000 or 1000 IU) 
increased breast milk 25-(OH)D concentrations in both February 
and in April (statistics not reported) 

Maternal serum 25-(OH)D was not associated with breast milk 25-
(OH)D or vitamin D (statistics not reported) 

 

Hoogenboezem 
1989 

Observational 
(n=39) 

The Netherlands 

No supplements were given by 
investigators  

7 samples collected at 1, 2, 3, 4, 8, 13 and 21 
weeks postpartum (breast milk collection 
method not clear)  

HPLC was used for analysis  

Infants were exclusively breastfed  

Plasma collected at 
birth and the same time 
as breast milk samples 

Mean breast milk 25-(OH)D concentration: 325 pmol/l (data 
combined) 

Mean plasma 25-(OH)D concentration at birth: 84±6 nmol/l 

Maternal plasma 25-(OH)D was associated with breast milk 25-
(OH)D 1 week after delivery (r=0.62, p<0.05) 

 

+ 

Hollis 2004 Randomised 
controlled trial, no 
placebo group 
(n=18) 

USA 

Supplements were given daily 
during lactation. Group 1: 
1600 IU vitamin D2 and 400 
IU vitamin D3 or group 2: 3600 
IU vitamin D2 and 400 IU 
vitamin D3 for a three month 
period. 

4 samples collected at 1 (baseline), 2, 3 and 4 
months postpartum (breast milk collection 
method not clear)  

HPLC and radioimmunoassay techniques was 
used for analysis 

Infants were exclusively breastfed 

Supplement group  

 

Mean (±SEM) breast milk vitamin D2 concentration, group 1, 
baseline: <0.5, 3 months: 2.2±0.7 ng/ml (p<0.01), group 2, 
baseline: 0.6±0.1 ng/ml, 3 months:6.6±2.4 ng/ml 

Mean (±SEM) breast milk vitamin D3, group 1, baseline: 1.0±0.4 
ng/ml, 3 months: 1.2±1.2 ng/ml, group 2, baseline: 0.9±0.4 ng/ml, 
3 months: 2.8±1.0 ng/ml 

Mean (±SEM) breast milk total 25-(OH)D, group 1, baseline: 
27.6±3.3 ng/ml, 3 months: 36.1±2.3 ng/ml, group 2, baseline: 
32.9±2.4 ng/ml, 3 months: 44.5±3.9 ng/ml 

Maternal vitamin D supplementation (1600 IU and 3600 IU) 
increased breast milk vitamin D2 (p<0.01 and p<0.04, 
respectively) 

Maternal vitamin D supplementation (1600 IU and 3600 IU) did 
not increase breast milk vitamin D3 (p<0.7 and p<0.06, 
respectively) 

+ ÷ 
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Micronutrient supplementation 
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Milk samples Maternal nutritional 
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Main results  Relationship  

Maternal vitamin D supplementation (1600IU and 3600 IU) 
increased breast milk total 25-(OH)D (p<0.05 and p<0.04, 
respectively)  

 

Cancela 1986 

 

Observational 
(n=11) 

France 

No supplements were given by 
investigators  

3 samples collected at 3-5 (visit 1), 15-18 (visit 
2) and 30-45 (visit 3) days postpartum, by 
manual expression (5-10 ml). The sample was 
collected at the end of the first morning fed (first 
visit) or at different times during the mornings 
(second and third visit) 

HPLC was used for analysis 

Infants were exclusively breastfed  

Serum collected at 3-5 
and 30-45 days 
postpartum  

Mean (±SEM) breast milk vitamin D concentration, visit 1: 
0.89±0.32 nmol/l, visit 2: 1.13±0.32 nmol/l, visit 3: 1.12±0.32 
nmol/l 

Mean (±SEM) breast milk 25-(OH)D visit 1: 0.50±0.11 nmol/l, 
visit 2: 0.65±0.11 nmol/l, visit 3: 0.56±0.11 nmol/l 

Mean (±SEM) serum 25-(OH)D visit1: 22.0±2.61 µmol/l, visit3: 
23.97±2.49 µmol/l 

Maternal serum 25-(OH)D was not associated with breast milk 25-
(OH)D (statistics not reported) 

÷ 

Mohamed 2014 Observational study 
(n=102) 

Malaysia  

 

No supplements were given by 
investigators, but <30% of the 
participants were 
supplemented with 
multivitamins during 
pregnancy 

4 samples collected, 1–14 days (delivery) 
(n=101) and 2 (n=90), 6 (n=69) and 12 (n=49) 
months postpartum. Breast milk samples were 
collected using an electric breast pump 

HPLC was used for analysis  

Serum collected during 
second and third 
trimester of pregnancy 

Mean breast milk 25-(OH)D concentration at delivery: 1.26 
nmol/l, 2 months: 1.18 nmol/l, 6 months: 1.01 nmol/l, 12 months: 
1.16 nmol/l 

Mean (±SD) serum 25-(OH)D concentration second trimester: 
28.5±15.3 nmol/l, third trimester: 59.0±20.4 nmol/l 

Maternal serum 25-(OH)D in second trimester was associated with 
breast milk 25-(OH)D at delivery (1-14 days postpartum) 
(β=0.002, p=0.03), however not at 2, 3, 6 or 12 months postpartum 
(adjusted for maternal age and prenatal multivitamin supplement) 

 

+ ÷ 

Oberhelman 2013 Randomised 
controlled trial, no 
placebo group 
(n=40) 

USA 

Supplements were given 
during lactation. Participants 
were administrated 
cholecalciferol either 150,000 
IU at once (n=20) or 5000 
IU/day for 28 days (n=20) 

6 samples collected on day 0, 1, 3, 7, 14, and 28. 
(Stage of lactation not clear, mean age of infants 
13 weeks). Participants collected the sample by 
breast pump or self-expression. 

Isotope dilution liquid chromatography tandem 
mass spectrometry was used for analysis 

Infants were exclusively breastfed  

Supplement groups 

Serum collected at the 
same time as breast 
milk samples 

Mean breast milk cholecalciferol concentration, daily dose, 
baseline: <7 ng/ml, day 1: <0.7 ng/ml, day 3: 8.0±3.7 ng/ml, day 
7: 7.2±4.8 ng/ml, day 14: 8.6±5.4 ng/ml, day 28: 7.7±3.7 ng/ml, 
single dose, baseline: <0.7, day 1: 39.7±16.2 ng/ml, day 3: 
24.6±8.9 ng/ml, day 7: 11.2±4.7 ng/ml, day 14: <0.7 ng/ml, day 
28: <0.7 ng/ml 

Breast milk 25(OH)D was undetectable in all samples. 

Mean (±SD) serum cholecalciferol daily dose, baseline: 2.6±1,4 
ng/ml, day 1: 10.6±3.8  ng/ml (significantly different), single dose, 
baseline: 4.7±6.0 ng/ml, day 1:160.0±38.8 ng/ml (significantly 
different) 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Mean (±SD) serum 25-(OH)D, daily dose, baseline:29.0±8.3 
ng/ml, day 1: 30.7±9.7 ng/ml (not significantly different), single 
dose, baseline: 29.3±7.5 ng/ml, day 1: 43.3±9.7 ng/ml 
(significantly different) 

Maternal daily vitamin D supplementation (5000 IU) increased 
breast milk cholecalciferol at day 3, 14 and 28 (p<0.05) 

Maternal single dose vitamin D supplementation (150,000 UI) 
increased breast milk cholecalciferol at day 1, 3 and 7 (p<0.05) 

Maternal serum cholecalciferol was associated with breast milk 
cholecalciferol at baseline (r=0.38, p=0.02) 

 

Specker 1985 Observational 
(n=25) 

USA 

No supplements were given by 
investigators  

1 sample collected (stage of lactation not clear). 
The sample was collected on the first feeding of 
the day from one breast, 3 ml were collected at 
the beginning, middle and end of the feeding 

Competitive ligand-binding assay was used for 
analysis 

Infants were exclusively breastfed 

3 day food diary 
collected at the same 
time as breast milk 
sample 

Mean breast milk total vitamin D concentration: 315 pg/ml 

Mean breast milk total 25-(OH)D: 188 pg/ml 

Mean vitamin D intake: 457 IU/day 

Maternal dietary vitamin D intake was associated with breast milk 
total vitamin D (r=0.57, p=0.005) 

Maternal dietary vitamin D intake was not associated with breast 
milk 25-(OH)D (r=0.25, p=0.2) 

+ ÷ 

Streym 2016  Observational 
(n=107) 

Denmark 

No supplements were given by 
investigators 

3 samples collected at 2 weeks, 4 and 9 months 
postpartum. Milk samples were collected at the 
day of each visit (or the night before), foremilk 
(milk before feeding the child) and hindmilk 
(milk after feeding the child) were collected 
manually 

liquid chromatography–tandem mass 
spectrometry was used for analysis 

Plasma collected at the 
same time as breast 
milk samples 

Median breast milk vitamin D concentration, 2 weeks, 
foremilk:0.5 nmol/l, hindmilk: 0.7 nmol/l, 4 months foremilk: 0.7 
nmol/l, hindmilk:1.4 nmol/l, 9 months foremilk: 0.9 nmol/l, 
hindmilk: 1.0 nmol/l 

Median breast milk 25-(OH)D (n=106) 2 weeks foremilk: 0.9 
nmol/l, hindmilk: 1.3 nmol/l, 4 months foremilk: 0.8 nmol/l, 
hindmilk: 1.4 nmol/l, 9 months foremilk: 0.9 nmol/l, hindmilk: 1.2 
nmol/l 

Mean (±SD) plasma 25-(OH)D 2 weeks: 73.2±30.6 Streym, 4 
months: 64.9±19.8 Streym, 9 months: 50.7±19.0 Streym 

Maternal plasma 25-(OH)D was associated with breast milk 25-
(OH)D at all three time-points (r=0.51 to 0.74, p<0.01) 

 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Takeuchi 1989 Intervention, no 
randomisation or 
placebo group 
(n=50) 

 

Japan 

Supplements were given 
during lactation from 1 weeks 
to 4 weeks postpartum. 
Participants received a daily 
oral dose of vitamin D2 (1200 
IU/day), and another group of 
women served as control group 
(not given any D2) 

2 samples collected at 1 (baseline) and 4 weeks 
postpartum. The milk was collected manually 
and consisted of an entire expression in the 
morning before feeding 

HPLC was used for analysis 

Supplement group  

Plasma collected at the 
same time as breast 
milk samples 

Mean (±SE) breast milk vitamin D2 concentration, baseline: 11±5 
ng/l, not supplemented group (NS): no detection, supplemented 
group (SG):125±14 ng/l 

Mean (±SE) breast milk vitamin D3, baseline: 117±9 ng/l, NS: 
99±26 ng/l, SG: 122±13 ng/l 

Mean (±SE) breast milk 25-(OH)D3, baseline: 309±28 ng/l, NS: 
348±174 ng/l, SG: 263±33 ng/l 

Mean (±SE) plasma vitamin D2, baseline: 0.3±0.1 ng/ml NS: no 
detection, SG:1,2±0.2 ng/ml 

Mean (±SE) plasma vitamin D3, baseline: 1.1±0.2 ng/ml, NS: 
0.3±0.2 ng/ml, SG: 1.0±0.2 ng/ml 

Mean (±SE) plasma 25-(OH)D3, baseline: 16.9±0.8 ng/ml, NS: 
17.3±2.0 ng/ml, SG: 19.0±1.2 ng/ml 

Maternal vitamin D2 supplementation during lactation increased 
breast milk vitamin D (statistics not reported) 

Maternal vitamin D2 supplementation during lactation did not 
increase breast milk 25-(OH)D (statistics not reported) 

Maternal plasma vitamin D2 and D3 was associated with breast 
milk vitamin D2 and D3 (statistics not reported) 

Maternal plasma 25-(OH)D3 was not associated with breast milk 
25-(OH)D3 

 

+ ÷ 

Wagner 2006  Randomised, double-
blind, placebo 
controlled pilot trial 
(n=19) 

USA 

Supplements were given 
during pregnancy and 
lactation. Group 1: 400 IU 
vitamin D3/day (0 IU vitamin 
D3, placebo and 1 prenatal 
vitamin containing 400 IU 
vitamin D3), or Group 2: 6400 
IU vitamin D3/day (6000 IU 
vitamin D3 and 1 prenatal 
vitamin containing 400 IU 
vitamin D3) 

 

6 samples collected at 1 (baseline), 2, 3, 4, 5, 6 
and 7 months postpartum (breast milk collection 
method not clear) 

HPLC was used for analysis 

Infants were exclusively or fully breastfed  

 

Supplement group  Mean breast milk vitamin D concentration, group 1, baseline: 59.6 
IU/l, group 2: 82.4 IU/l, 2 months group 1: 71.2 IU/l, group 2: 387 
IU/l, 3 months, group 1: 78.6 IU/l, group 2: 370.5 IU/l, 4 months, 
group 1: 45.7 IU/l, group 2: 374.4 IU/l, 5 months, group 1: 68.3 
IU/l, group 2: 555.2 IU/l, 6 months group 1: 69.9 IU/l, group 2: 
624.5 IU/l, 7 months, group 1: 76.3 IU/l, group 2: 873.5 IU/l 

Maternal supplementation of 6400 IU vitamin D3/day during 
pregnancy and lactation increased breast milk vitamin D (statistics 
not reported) 

+ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Vitamin E       

Antonakou 2011 Observational 
(n=126) 

Greece  

No supplements were given by 
investigators  

3 samples collected at 1(n=64), 3 (n=39) and 6 
(n=23) months postpartum. A total of 30 ml of 
foremilk was collected from one breast by an 
electric breast pump. Home visits were made 
during morning hours, and participants were 
instructed not to have breastfed their infants for 
at least two hours prior to using the breast pump 

HPLC was used for analysis  

Infants were exclusively breastfed  

3 day dietary records 
collected at the same 
time as breast milk 
samples 

Mean (±SD) breast milk vitamin  E concentration (sum of α- 
(β+γ)- and δ-tocopherol) at 1 months: 8.9±3.6 µmol/l, 3 months: 
8.7±4.6 µmol/l, 6 months: 9.5±5.6 µmol/l 

Mean (±SD) dietary vitamin E intake, 1 months: 7.2 ± 3.7 mg/day, 
3 months: 6.8 ± 3.5 mg/day, 6 months: 10.9 ± 5.2 mg/day 

Maternal dietary vitamin E intake was not associated with breast 
milk vitamin E at 1, 3 or 6 months of lactation (r=0.002, p<0.7) 

÷ 

Clemente 2015 Randomised double-
blinded controlled 
trial (n=109) 

Brazil 

Supplementation was given 
during lactation. The study 
consisted of group 1: control 
group (n=36), group 2: 
receiving an acetate capsule 
with natural vitamin E (RRR-
α-TOH) (n=40), and group 3: 
receiving an acetate capsule 
with synthetic vitamin E (all-
rac-α-TOH) (n=33). The 
capsule contained either 400 
IU of RRR-α-TOH or 400 IU 
of all-rac-α-TOH 

 

2 samples collected at baseline and 24-hours 
after supplementation (colostrum). Milk samples 
were collected from participants after an 
overnight fast (12 hours postpartum). Colostrum 
was obtained by manual expression at the end of 
breastfeeding. The foremilk was discarded, and 2 
ml colostrum was collected 

HPLC was used for analysis 

Supplement group  

Serum collected at the 
same time as breast 
milk samples 

 

Mean (±SD) breast milk α-tocopherol concentration, baseline, 
group 1: 1665.2±160.2 µg/dl, group 2: 1387.1±176.5 µg/dl, group 
3: 1802±208.1 µg/dl (not significantly different). After 
supplementation, group 1: 1642.5±181.9 µg/dl, group 2: 
2187.2±284.6 µg/dl, group 3: 2508±303.7 µg/dl 

Mean (±SD) serum α-tocopherol concentration, baseline, group 1: 
1016 ± 52 µg/dl, group 2: 1236 ± 51 µg/dl, group 3: 1083 ± 61 
µg/dl (not significantly different) (after supplementation 
concentrations not reported) 

Maternal supplementation of 400 IU of RRR-α-TOH or 400 IU of 
all-rac-α-TOH increased α-tocopherol in colostrum, with RRR-α-
TOH being most efficient (p<0.0001) 

Maternal serum α- tocopherol was not associated with colostrum 
α-tocopherol (r=0.07, p=0.4) 

 

+ ÷ 

de Lira 2013 Observational 
(n=102) 

Brazil 

No vitamin E supplements 
were given by investigators 
(vitamin A supplements were 
given) 

1 sample collected during the first three days 
postpartum. The breast milk sample was 
collected after night-time fasting on the first day 
post-partum. Colostrum was collected for three 
consecutive days. It was collected by manual 
expression of a single breast that had not been 
previously suckled and the first ejection was 
discarded to avoid fluctuations in fat content 

Serum collected on the 
first and second day 
postpartum 

Mean (±SD) breast milk α-tocopherol concentration: 26.1±8.0 
µmol/l 

Maternal serum α-tocopherol was not associated with colostrum α-
tocopherol (r=-0.12, p=0.22) 

 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

HPLC was used for analysis 

Jiang 2016 Observational 
(n=102) 

China  

No supplements were given by 
investigators  

3 samples collected at 1 (colostrum, n=34), 14 
(transitional milk, n=34) and 42 (mature milk, 
n=34) days postpartum. 35 ml was collected 
before breastfeeding, between 10 a.m. and 11 
a.m. 

HPLC was used for analysis 

24-hour recall collected 
at the same time as 
breast milk samples 

Mean (±SD) breast milk α-tocopherol concentration, colostrum: 
612.6±412.3 μg/100g, transitional: 248.5±218.5 μg/100g, mature: 
177.1±109.0 μg/100g 

Maternal dietary vitamin E intake was not associated with breast 
milk vitamin E (p>0.05) 

÷ 

Martysiak-
Zurowska, 2013 

 

Observational 
(n=48) 

Poland 

No supplements were given by 
investigators  

4 samples collected at 2 (colostrum, n=17), 14 
(n=30), 30 (n=27) and 90 (n= 19) days 
postpartum. The breast was fully expressed with 
help from an electric pump 2 hours after the first 
morning feed (between 5 and 7 am.) 

HPLC was used for analysis 

3 day food diary 
collected at the same 
time as breast milk 
samples  

Mean (±SD) breast milk vitamin E concentration, day 2: 
10.13±1.5 mg/l, day 14: 4.59±0.93 mg/l, day 30: 3.00±0.85 mg/l, 
day 90: 2.13±0.67 mg/l 

Mean (±SD) breast milk vitamin E/g total fat concentration, day 2: 
357.4±52.8 µg/g total fat, day 14: 138.0±28.0 µg/g total fat, day 
30: 83.8±23.7 µg/g total fat, day 90: 56.6±17.9 µg/g total fat 

Mean daily intake of vitamin E: 14.9±8.3 mg 

Maternal dietary vitamin E intake was not associated with breast 
milk vitamin E (r=0.034, p=0.2) 

 

÷ 

Ortega 1999 Observational 
(n=57) 

Spain 

No supplements were given by 
investigators, however 3.5% of 
participants took vitamin E 
during pregnancy  

2 samples collected at 13-14 days (transitional) 
and 40 days (mature) postpartum. Milk samples 
were collected between 10 and 11 am by manual 
expression of a 5 ml sample from each breast at 
the beginning and end of feed. 5 ml of foremilk 
and 5 ml of hindmilk were pooled 

HPLC was used for analysis 

5 day dietary record 
and FFQs during third 
trimester of pregnancy, 
which was used to 
divide the participants 
into two groups, group 
1: vitamin E intake < 
75% of RI (n=39) and 
group 2: ≥ 75% RI 
(n=18) 

Mean (±SD) transitional breast milk vitamin E concentration, 
group 1: 3.80±1.32 µmol/l, group 2: 5.01±1.81 µmol/l. Mature 
milk, group 1: 2.20±0.72 µmol/l, group 2: 2.27±0.77 µmol/l 

Maternal dietary vitamin E intake during third trimester was 
associated with transitional milk vitamin E (p<0.05), not mature 
milk (p>0.05) 

 

+ ÷ 

Szlagatys-
Sidorkiewicz 2012 

Observational 
(n=49) 

Poland  

No supplements were given by 
investigators, however vitamin 
supplementation was reported 
by 63.18% and 52% of women 
whose milk samples were 
collected on the 3rd and 30th–

2 samples collected at 3 days (colostrum) and 
between the 30th and 32nd days (mature milk) 
postpartum. The breast was fully expressed with 
help from an electric pump 2 hours after the first 
morning feed (between 5 and 7 a.m.) 

3 day food diary 
collected at the same 
time as breast milk 
samples 

Median (IQR) breast milk vitamin E concentration, colostrum: 
8.86 (5.22, 12.0) mg/l, mature milk: 1.10 (0.74, 3.94) mg/l 

Maternal dietary vitamin E intake was not associated with breast 
milk vitamin E (r=0.034, p=0.2) 

÷ 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

33nd day postpartum, 
respectively 

 

HPLC was used for analysis  

Vitamin K       

Canfield 1991 Observational 
(n=60) 

USA 

No supplements were given by 
investigators 

4 samples collected at 30-81 hours (colostrum), 
1, 3 and 6 months postpartum. Colostrum was 
collected between 0800-1200 am, 2.5-3.5 hours 
after the last nursing. Mature milk samples were 
collected using an electric breast pump, with the 
infant nursing on the alternate breast. Mothers 
were instructed to pump for 15 minutes or until 
milk flow was markedly reduced 

HPLC was used for analysis 

At 1 and 3 months sample collection infants 
were exclusively breastfeed  

FFQ (not clear when 
data was collected) 

Mean(±SD) breast milk vitamin K concentration, colostrum 
(n=15): 7.52±5.90 nmol/l, 1 month (n=15): 6.98 ± 6.36 nmol/l, 3 
months (n=15): 5.14 ± 4.52 nmol/l, 6 months (n=15): 5.76 ± 4.48 
nmol/l 

Maternal dietary vitamin K intake was not associated with breast 
milk vitamin K (statistics not reported) 

÷ 

Greer 1991 Observational 
(n=23) 

USA 

No supplements were given by 
investigators  

 

3 samples collected at 6, 12 and 26 weeks 
postpartum. 10 ml were collected from a 
complete expression of the contents of one 
breast by means of an electric breast pump 

Fluorescence spectrophotometry was used for 
analysis  

3 day dietary recalls  
collected at the same 
time as breast milk 
samples 

Mean (±SD) breast milk vitamin K concentration, 6 weeks: 
0.86±0.52 ng/ml, 12 weeks: 1.14±0.72 ng/ml, 26 weeks: 
0.87±0.50 ng/ml 

Mean (±SD) dietary vitamin K intake, 6 weeks: 302±361 µg/day, 
12 weeks: 296±169 µg/day, 26 weeks: 436±667 µg/day 

Maternal dietary vitamin K intake was not associated with breast 
milk vitamin K (statistics not reported) 

 

÷ 

Greer 1997 Randomised, double-
blind, placebo 
controlled trial 
(n=22) 

USA 

Supplements were given 
during lactation, supplemented 
group: 5 mg/day vitamin K 
(n=11) and a placebo group 
(n=11) 

4 samples collected with 3 days of delivery 
(baseline) and 2, 6 and 12 weeks postpartum. 
Samples were collected 18-24 hours after 
maternal ingestion of vitamin K or the placebo. 
A complete expression of a single breast was 
collected with an electric pump 

Fluorescence spectrophotometry was used for 
analysis  

Supplement group  Mean(±SD) breast milk vitamin K concentration, baseline 
supplemented group (SG): 0.69±0.39 ng/ml, placebo group (PG): 
1.10±0.75 ng/ml (not significantly different), 2 weeks, SG: 
76.53±26.98 ng/ml, PG: 1.17±0.70 ng/ml, 6 weeks, SG: 
75.27±46.23 ng/ml, PG: 1.14±0.46 ng/ml, 12 weeks, SG: 
82.10±40.10 ng/ml, PG: 1.17±0.40 ng/ml 

Mean (±SD) plasma vitamin K concentration, baseline, SG: 
0.28±0.09 ng/ml, PG: 0.28±0.14 ng/ml (not significantly 
different), 2 weeks SG: 11.04±4.66 ng/ml, PG: 0.30±0.19 ng/ml, 6 
weeks, SG: 15.14±17.81 ng/ml, PG: 0.32±0.11 ng/ml, 12 weeks , 
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Table 1. Studies on the relationship between maternal nutritional status or dietary intake and breast milk vitamin concentrations 

First author, year  Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Infants were exclusively breastfed SG: 10.71±10.76 ng/ml, PG: 0.41±0.23 ng/ml (significantly 
different at all-time-points) 

Maternal daily vitamin K supplementation of 5 mg/day increased 
breast milk vitamin K at all time-points (p<0.0001) 

 

Thijssen 2002 Randomised placebo 
controlled trial 
(n=32) 

The Netherlands  

Supplements were given on 
day 4 postpartum and 
continued until day 16 group 1: 
0.0, group 2: 0.8, group 3: 2.0 
and group 4: 4.0 mg vitamin 
K/day 

4 samples collected at 4 (baseline), 8, 16 and 19 
days postpartum, before 11.00 am from the 
breast that had not been used for the previous 
feed. The first 10 ml of the collected milk were 
discarded and the second 5–10ml were taken as a 
sample 

Fluorescence detection following HPLC 
separation was used for analysis  

Supplement group  

Plasma collected at 
baseline and 16 days 
postpartum 

Mean (±SD) breast milk vitamin K concentration, baseline, group 
1: 5.51±2.47 nmol/l, group 2: 6.84±2.29 nmol/l, group 3: 
5.15±2.48 nmol/l, group 4: 6.21±1.86 nmol/l (not significantly 
different). Day 8, group 1: 4.37±3.03 nmol/l, group 2: 
23.33±14.72 nmol/l, group 3: 41.34±36.18 nmol/l, group 4: 
88.72±43.40 nmol/l. Day 16, group 1: 4.87±1.43 nmol/l, group 2: 
24.51±10.14 nmol/l, group 3: 60.64±31.60 nmol/l, group 4: 
139.64±45.83 nmol/l. Day 19, group 1: 4.80±2.96 nmol/l, group 2: 
12.35±12.51 nmol/l, group 3: 12.07±4.64 nmol/l, group 4: 
44.88±39.83 nmol/l 

Mean (±SD) plasma vitamin K concentration, baseline, group 1: 
2.56±1.72 mmol/l, group 2: 2.04±2.03 mmol/l, group 3: 3.10±2.21 
mmol/l, group 4: 2.63±1.76 mmol/l (not significantly different). 
Day 16, group 1: 3.15±1.98 mmol/l, group 2: 9.37±6.75 mmol/l, 
group 3: 15.28±8.08 mmol/l, group 4: 31.64±8.16 mmol/l 
(significantly different) 

Maternal vitamin K supplementation (0.8, 2.0 and 4.0 mg/day) 
significantly increased breast milk vitamin K (p<0.001) 
Maternal plasma vitamin K was not associated with breast milk 
vitamin K (statistics not reported) 

 

+ ÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Calcium  

 

     

Kirksey 1979 Observational  

(n=52) 

 

USA 

No supplements were given by 
investigators, however 64% 
took calcium containing 
supplements  

2 samples collected at 3 and 14 days postpartum 
(n=21). And for a sub-group 3 additional samples 
at 1-3 months (n=6), 5-7 months (n=8) and 1 year 
(n=5). Five to 10 ml of milk were obtained after 
milk let down at the first morning feeding. Samples 
were collected by manual expression into plastic 
vials 

 

Atomic absorption spectrophotometry was used for 
analysis 

 

3 day dietary record 
preceding the day of milk 
sample collection, 
capturing supplement use 

 

Mean (±SD) breast milk calcium concentration, day 3: 236±50 
ppm, day 14: 221±45 ppm, 1-3 months: 190±30 ppm, 5-7 
months: 335±35 ppm, 1 year: 176±28 ppm 

(milk concentrations were not reported according to supplement 
group) 

Mean (±SD) calcium intake day 14 (including supplement use): 
320±60 mg, 1-3 months: 318±59 mg, 5-7 months: 329±58 mg, 
1 year: 250±71mg 

Maternal calcium supplementation use, did not increase breast 
milk calcium (statistics not reported) 

 

÷ 

Kalkwarf 1997 Randomised, 
placebo controlled 

trial (n=87) 

 

USA 

Supplements were given 
during lactation. Calcium or a 
placebo supplement. The 
calcium supplement provided 1 
g of calcium/day  

3 samples collected at 0.5 (n=17), 3 (n=20) and 6 
(n=32) months postpartum. (breast milk sampling 
method not clear) 

 

Atomic-absorption spectroscopy was used for 
analysis 

Supplement group 

 

Mean (±SD) breast milk calcium concentration: 0.5 months, 
supplemented group (SG): 30±3 mg/dl, placebo group (PG): 
28±4 mg/dl, 3 months, SG: 27±5 mg/dl, PG: 28±4 mg/dl, 6 
months, SG: 24±4 mg/dl, PG: 24±4 mg/dl 

Maternal calcium supplementation did not increase breast milk 
calcium at 0.5, 3 or 6 months postpartum (statistics not 
reported) 

 

÷ 

Jarjou 2006 Randomised, 
double-blind, 
placebo controlled 
supplementation 
study (n=125) 

 

The Gambia 

Supplements were given 
during pregnancy (started at 20 
weeks gestation, ended at 
delivery). The calcium 
supplement provided 1500 mg 
of calcium/day. Placebo group 
were given 0 mg of 
calcium/day 

3 samples collected at 2, 13 and 52 weeks 
postpartum. Samples were collected by manual 
expression of 1–2 ml samples directly into low-
calcium tubes 

 

A validated semi-automated micro-method was 
used for analysis  

 

At 3 months of age 30% of infants were 
exclusively breastfed. 

Supplement group 

 

Mean (±SD) breast milk calcium concentration, week 2, 
supplemented group (SG): 250±54 mg/l, placebo group (PG): 
248±47 mg/l. Week 13, SG: 231±34 mg/l, PG: 234±24 mg/l. 
Week 52, SG: 188±34 mg/l, PG:183±24 mg/l 

Geometric mean urinary calcium concentration, baseline, 20 
weeks gestation: 67 mg/day, 36 weeks gestation, SG: 89.1 
mg/day, PG: 49.6 mg/day (significantly different) 

Maternal calcium supplementation during pregnancy did not 
increase breast milk calcium at 2, 13 or 52 weeks postpartum 
(statistics not reported) 

 

÷ 

Ortega 1998 Observational 
(n=57) 

 

No supplements were given by 
investigators  

3 samples collected 13, 14 (transitional milk) and 
40 days postpartum (mature milk). Milk samples 
were collected between 10 and 11 a.m. by manual 

5 days dietary record and 
FFQs during third 
trimester of pregnancy, 
which was used to divide 

Mean (±SD) breast milk calcium concentration, transitional 
milk, group 1: 6.44±2.20 mmol/l, group 2: 6.37±1.96 mmol/l, 
mature milk, group 1: 5.95±1.56 mmol/l, group 2: 6.82±1.31 
mmol/l 

÷ + 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Spain 
expression of a 5 ml sample from each breast at the 
beginning and end of feeds 

the participants into two 
groups, group 1: Calcium 
intake <1100 mg/day 
(n=40), group 2: ≥1100 
mg/day (n=17) 

Maternal dietary calcium intake in third trimester of pregnancy 
was not associated with breast milk calcium in transitional milk 
(p>0.05), however it was associated with calcium concentration 
in mature milk (p<0.05).  

 

Prentice 1995 Randomised 
placebo  
controlled 
supplementation 
study (n=60) 

 

The Gambia 

Supplements were given 
through lactation, starting at 10 
days postpartum for 12 
months. Calcium (1000 mg) or 
placebo, taken 5 days a week 

9 samples collected at 6, 13, 19, 26, 39, 52, 65, 78 
weeks postpartum. 1-2 ml was expressed manually 
from each breast separately into unused, disposable 
polystyrene tubes. No specific sampling protocol 
with respect to time of day or stage of feed was 
adopted 

 

A semiautomated spectrophotometnic method was 
used for analysis 

Supplement group 

 

Mean (±SD) breast milk calcium concentration, 6 weeks 
(groups combined): 5.60±0.78 mmol/l, 13 weeks: 5.23±0.68 
mmol/l, 19 weeks: 5.00±0.68 mmol/l, 26 weeks: 4.68±0.50 
mmol/l, 39 weeks: 4.43±0.63 mmol/l, 52 weeks: 3.98±0.60 
mmol/l, 65 weeks: 3.93±0.65 mmol/l, 78 weeks: 3.73±0.55 
mmol/l (not significantly different) 

Mean (±SD) urinary calcium concentration, 1.5 weeks 
(baseline): SG 1.31±1.09 mmol/day, PG: 1.13±0.92 mmol/day. 
13 weeks SG: 1.82±1.41 mmol/day, PG: 0.62±0.58 mmol/day 
(significantly different), 52 weeks SG: 2.07±1.39 mmol/day, 
PG:0.90±0.72 mmol/day (significantly different), 78 weeks SG: 
1.55±1.43 mmol/day, PG: 1.16±1.20 mmol/day 

Maternal calcium supplementation did not increase breast milk 
calcium at any time-point (statistics not reported) 

 

÷ 

Vaughan 1979 

 

Observational 
(n=38) 

 

USA 

No supplements were given by 
investigators 

Monthly milk samples between 1-31 months 
postpartum. Subjects remained in the study on an 
average of 4 consecutive months. 150-200 ml of 
milk was hand expressed into acid-washed glass. 
Subjects were instructed to collect the milk over a 
period of 3 to 5 days, at morning, afternoon, and 
evening feedings and at random intervals within 
the feeding 

 

Atomic absorption spectrophotometer was used for 
analysis 

 

Serum collected during 
the same 3- to 5-day 
period of milk collection 
for the particular month 
(n=24)  

 

3 day dietary records. 
Intakes were recorded 
during the same 3- to 5-
day period of milk 
collection (n=11) 

 

Mean (±SEM) breast milk calcium concentration, 1-3 months: 
257±29 μg/ml (n=28), 4-6 months: 236±25 μg/ml (n=39) 

Mean serum calcium concentration 4-6 months: 9.9 mg/100ml 

Mean dietary calcium intake 4-6 months: 1402 mg/day 

Maternal serum calcium was not associated with breast milk 
calcium (statistics not reported) 

Maternal dietary calcium intake was not associated with breast 
milk calcium (statistics not reported) 

 

÷ 

Zhao 2014 Observational 
(n=90) 

No supplements were given by 
investigators 

1 sample collected between 5−240 days 
postpartum. All were instructed to empty one 
breast during 6 to 7 a.m. At 9 to 11 a.m., the full 
milk of one breast (which was emptied before) was 

FFQs and 24-hour dietary 
recall collected during 
lactation 

Mean (±SD) breast milk calcium concentration: 5-11 days: 
303.3±52.4 mg/kg, 12-30 days: 293.6±46.7 mg/kg, 31-60 days: 
309.6±43.1 mg/kg, 61-120 days: 287.4±40.0 mg/kg and 121-
240 days: 267.4±43.8 mg/kg 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

China (Beijing, 
Guangzhou and 
Suzhou) 

 

collected using an electric breast pump. Fore and 
hind milk were gently mixed 

Inductively coupled plasma mass spectrometry was 
used for analysis 

 

Maternal dietary calcium intake was not associated with breast 
milk calcium (r=0.016, p>0.05) 

Copper       

Chierici 1999 

 

Intervention, no 
randomisation or 
placebo group 
(n=32) 

Italy 

Supplements were given 
during lactation, containing 2 
mg copper sulphate per day 
(and 116 ug potassium iodide 
and 20 mg zinc sulphate) 

3 samples were collected at 3, 30 and 90 days 
postpartum (n=11). Milk was collected using a 
breast pump after the subjects had cleaned the 
nipple and areola with deionized water. 10 ml milk 
sample was pumped before the baby nursed 

Inorganic mass spectrometer was used for analysis  

Supplement  group  Mean (±SD) breast milk copper concentration, day 3, not 
supplemented group (NS): 0.53±0.12 mg/l, supplemented group 
(SG): 0.52±0.20 mg/l, day 30 group NS: 0.51±0.12 mg/l,, SG: 
0.52±0.16 mg/l,, day 90 NS: 0.39±0.10 mg/l,, SG: 0.42±0.11 
mg/l 

Maternal copper supplementation during lactation did not 
increase breast milk copper concentration (statistics not shown) 

÷ 

Feeley 1983  Observational 
(n=102) 

 

Greece 

No supplements were given by 
investigators, but 38% of 
participants took copper 
supplements of 2 mg/day 
during pregnancy and lactation 

3 samples were collected between 4-7 days (early 
transitional milk), 10-14 days (transitional mil), 30-
45 days postpartum (mature milk). 30 ml was 
collected, with one-third of the sample after let 
down and before feeding (foremilk); one third half-
way through the feeding, and one-third after 
feeding (hindmilk) 

Laboratory method used not clear 

 

Maternal supplementation 
information (self-
reported) was collected at 
the same time as breast 
milk sample collections 

Mean (±SEM) breast milk copper concentration, early 
transitional milk: 104.1±5.4, ug/100g, transitional milk: 
93.9±3.6 ug/100g, mature milk: 84.7±3.8 ug/100g 

Maternal copper supplementation during pregnancy and 
lactation was not associated with breast milk copper (statistics 
not reported) 

÷ 

Higashi 1982 Observational 
(n=65) 

 

Japan 

No supplements were given by 
investigators 

5 samples were collected at the first lactation 
(colostrum), one week (transitional milk), one 
month, 3 months and 5 months postpartum (mature 
milk). Milk were collected at morning by manual 
milking before the baby was due to be fed. App.10 
ml were obtained directly into clean polyethylene 
bottles, after breasts were cleaned twice with 
deionized water 

Serum collected 3 months 
postpartum (n=44) 

Mean (±SD) breast milk copper concentration, colostrum: 
0.45±0.23 mg/l, 1 week: 0.45±0.15 mg/l, 1 month: 0.44±0.10 
mg/l, 3 months: 0.29±0.09 mg/l, 5 months: 0.22±0.08 mg/l 

Mean (±SD) serum copper: 1.29±0.11 mg/l 

Maternal serum copper was not associated with breast milk 
copper (statistics not reported) 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Atomic absorption spectrophotometry was used for 
analysis 

Mahdavi 2010 Observational 
(n=182) 

 

Iran 

No supplements were given by 
investigators 

1 sample collected between 90-120 days 
postpartum. Breast milk (10–15 ml) samples were 
collected before nursing the baby in the morning 

Laboratory method used not clear 

Infants were exclusively breastfed 

 

24-hour recalls for 3 days 
(one weekend day 
included) collected at 
same time as breast milk 
sample collection  

Mean (±SD) breast milk copper concentration: 0.53±0.3 mg/l 

Mean (±SD) dietary copper intake 1.16±0.7 mg/day 

Maternal dietary copper intake was not associated with breast 
milk copper (β=0.8, p=0.17) 

 

÷ 

Rajalakshmi 1980 Observational 
(n=412 from 
urban areas, 
n=208 from rural 
areas)  

 

India 

No supplements were given by 
investigators 

1 sample collected between delivery and 13 months 
postpartum. 24 participants delivered more than 
one sample. Samples were collected by manual 
expression just before the baby was due to feed. 10 
ml were obtained. 

Varian-Techtron-100 atomic absorption flame 
spectrophotometer was used for analysis 

Serum collected between 
1 and 6 months 
postpartum (n=152) 

Mean (±SEM) breast milk copper concentration colostrum 
(n=76): 0.46± 0.019 μg/ml, transitional (n=31) (6-10 days): 
0.50±0.028 μg/ml, 11 days to 1 month (n=28): 0.45±0.028 
μg/ml, 1-3 months (n=77): 0.29±0.01 μg/ml, 4-6 months 
(n=89): 0.21±0.01 μg/ml, 7-12 months (n=88): 0.17±0.009 
ug/ml, 13 months and above (n=23): 0.16±0.014 μg/ml  

Mean (±SEM) serum copper between 1-6 months: 1.73±0.123 
μg/100ml 

Maternal serum copper was not associated with breast milk 
copper between 1-6 months postpartum (β=0.19, p>0.05) 

 

÷ 

Salmenpera 1986 Intervention, (but 
only observational 
results presented) 
(n=200) 

Finland  

Supplements were given 
during lactation, starting after 
delivery, group 1) no 
supplementation, 2) low, 2 mg 
copper/day, 3) high, 4 mg 
copper/day 

9 samples collected at 4-5 days (baseline),  

2, 4, 6, 7.5, 9, 10, 11, and 12 months postpartum. 
The milk samples were collected at home during a 
24-hour period. The milk was manually expressed 
pooling 10 ml of milk from the beginning 
(foremilk) and end (hindmilk) of each feed 

Atomic absorption spectrophotometry was used for 
analysis 

167 infants were exclusively breastfed for 2 
months 140 for 4 months, 116 for 6 months, 36 for 
9 months, and 7 for 12 months. Infants not 
exclusively breastfed were excluded  

Serum collected at 4 
months postpartum  

Median (±SEM) breast milk copper concentration, colostrum: 
0.34± 0.01 mg/l, 9 months: 0.12± 0.01 (copper concentrations at 
the remaining time-points were illustrated in a figure) 

Maternal serum copper was not associated with breast milk 
copper at 4 months postpartum (statistics not reported)  

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Vaughan 1979 

 

Observational 
(n=38) 

 

USA 

No supplements were given by 
investigators 

Monthly milk samples were collected between 1-31 
months postpartum. Participants remained in the 
study on an average of 4 consecutive months. 150-
200 ml of milk was hand expressed into acid-
washed glass. Subjects were instructed to collect 
the milk over a period of 3 to 5 days, at morning, 
afternoon, and evening feedings and at random 
intervals within the feeding 

Atomic absorption spectrophotometer was used for 
analysis 

 

Serum collected during 
the same 3- to 5-day 
period of milk collection 
for the particular month 
(n=24)  

 

Three day dietary records. 
Intakes were recorded 
during the same 3- to 5-
day period of milk 
collection (n=11) 

 

Mean (±SEM) breast milk copper concentration, 1-3 months: 
0.43±0.05 μg/ml (n=28), 4-6 months: 0.33±0.03 μg/ml (n=39) 

Mean serum copper concentration, 1-3 months: 1.5 μg/ml, 4-6 
months: 1.9 μg/ml 

Mean dietary copper intake 4-6 months: 3.64 mg/day 

Maternal serum copper was not associated with breast milk 
copper (statistics not reported) 

Maternal dietary copper intake was not associated with breast 
milk copper (statistics not reported) 

 

÷ 

Vuori 1980 

 

Observational  

(n=27) 

 

Finland 

No supplements were given by 
investigators 

Not clear how many breast milk samples were 
collected and when. Milk aliquots of 8 ml were 
obtained at the beginning and at the end of each 
feed during a period of 24-hours and pooled to one 
sample 

Ash solutions by the flame atomic absorption 
spectrophotometric method was used for analysis 

 

Two 7 day food records. 
The first record from the 
first survey period 
between 6-8 weeks and 
the second record from 
the second survey period 
between 17 to 22 weeks 
postpartum (n=15). 

Mean (±SD) breast milk copper concentration, 6-8 weeks: 
0.36±0.07 mg/l and 17-22 week 0.21±0.07 mg/l 

Mean (±SD) dietary copper intake: 1.88±0.62 mg/day in first 
survey period and 1.73±0.55 mg/day in second survey period 

Maternal dietary copper intake was not associated with breast 
milk copper (statistics not reported) 

÷ 

Wasowicz 2001 Observational 
(n=131) 

 

Poland 

No supplements were given by 
investigators 

 

3 samples collected at 0-4 days (colostrum, n=43), 
5-9 days (transitional milk, n=46)) and 10-30 days 
postpartum (mature milk, n=41). Milk samples (5–
7 ml) were hand expressed after participants 
cleaned the nipple and areola with deionized water 

Inductively coupled plasma–atomic electron 
spectrometry was used for analysis 

 

Plasma collected at 0-4 
days (n=43), 5-9 days 
(n=46) and 10-30 days 
postpartum (n=41) 

Mean (±SD) breast milk copper concentration, colostrum: 
0.45±0.11 mg/l, transitional milk: 0.39±0.091 mg/l, mature 
milk: 0.27±0.09 mg/l 

Mean (±SD) plasma copper, 0-4 days: 1.70±0.55 mg/l, 5-9 
days: 1.38± 0.43 mg/l, 10-30 days: 1.03±0.30 mg/l 

Maternal plasma copper was not associated with breast milk 
copper at any time (statistics not reported) 

÷ 

Zhao 2014 Observational 
(n=90) 

China (Beijing, 
Guangzhou and 
Suzhou) 

 

No supplements were given by 
investigators 

1 sample collected between 5−240 days 
postpartum. All were instructed to empty one 
breast during 6 to 7 a.m. At 9 to 11 a.m., the full 
milk of one breast (which was emptied before) was 
collected using an electric breast pump. Fore and 
hind milk were gently mixed. 

FFQs and one cycle of 
24-hour dietary recall 
during lactation 

Mean (±SD) breast milk copper concentration: 5-11 days: 
0.56±0.15 mg/kg, 12-30 days: 0.50±0.16 mg/kg, 31-60 days: 
0.35±0.09 mg/kg, 61-120 days: 0.31±0.07 mg/kg, 121-240 
days: 0.29±0.16 mg/kg 

 

Maternal dietary copper intake was not associated with breast 
milk copper when adjusting for stage of lactation (r=-0.071, 
p>0.05) 

÷ 
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First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Inductively coupled plasma mass spectrometry was 
used for analysis 

Iodine       

Andersen 2014 

 

Observational 
(n=127) 

Denmark 

No supplements were given by 
investigators, however 83% of 
participants were iodine 
supplement users during 
pregnancy, and 47% took an 
iodine-containing supplement 
during lactation 

1 sample collected 31 days postpartum. Breast milk 
were collected non-fasting. Information on timing 
of sampling in relation to breastfeeding of the 
child, timing of last iodine supplement intake prior 
to sampling, and whether milk was collected from 
one or both breast was collected 

Cerium/arsenite method was used for analysis 

Supplement use during 
lactation (self-reported)  

Spot urine collected 31 
days postpartum  

Median (IQR) breast milk iodine concentration: 83 (61–125) 
μg/l (combined groups), iodine supplemented; 112 (80–154) 
μg/l, unsupplemented: 72 (47–87) μg/l 

Median UIC (IQR): 72 (46–107) μg/l, and in supplemented: 83 
(63–127) μg/l and unsupplemented: 65 (40–91) μg/l 
(significantly different) 

Maternal iodine supplementation during lactation increased 
breast milk iodine (p<0.001) 

Maternal urinary iodine was associated with breast milk iodine 
(r=0.28, p=0.015) 

 

+ 

Bazrafshan 2005 Observational 
(n=100) 

Iran 

No supplements were given by 
investigators  

1 sample collected between 30-180 days 
postpartum. 5-10 ml was collected (breast milk 
collection method not clear) 

Sandell–Kolthoff method was used for analysis 

Spot urine collected 
between 30-180 days 
postpartum. 

Median (range) breast milk iodine concentration: 93.5 (17–696) 
ug/l 

Median (range) urinary iodine concentration (UIC): 259 (35–
519) ug/l 

Maternal UIC was associated with breast milk iodine (r=0.44, 
p<0.0001) 

 

+ 

Bouhouch 2014 Randomised, 
double-blind, 
placebo controlled 
trial (n=239) 

Morocco 
(deficient 
population)   

Supplements were given by 
investigators during lactation. 
Participants were block 
randomised to receive either: 
one dose of 400 mg iodine to 
the mother and placebo to the 
infant (indirect infant 
supplementation), or one dose 
of about 100 mg iodine to the 
infant and placebo to the 

4 samples collected at baseline (≤ 8 weeks 
postpartum), 3, 6 and 9 months postpartum. 5 ml of 
breast milk was collected by manual expression 

Inductively coupled plasma mass spectrometry was 
used for analysis 

Supplement group  

Spot urine collected at 
baseline, 3, 6 and 9 
months postpartum 

Median (IQR) breast milk iodine concentration at baseline, 
supplemented group (SG): 40.8 (26.1, 86.4) μg/l, placebo group 
(PG): 42.8 (25.4, 70.9) μg/l (not significantly different), 3 
months SG: 61.4 (35.8, 94.8) μg/l, PG: 33.2 (18.4, 53.1) μg/l, 6 
months SG: 49.1 (31.3, 70.9), PG: 35.7 (19.1, 52,2) μg/l, 9 
months: SG: 39.4 (23.5, 66.7) μg/l, PG: 26.2 (17.7, 42.7) μg/l 

Median (IQR) urinary iodine concentration (UIC), baseline, SG: 
37 (22-72) μg/l, PG: 30 (18-61) μg/l (not significantly 
different), 3 months, SG: 58 (36-59) ug/l, PG: 34 (23-60) μg/l. 
At 6 months SG: 67 (39, 114), μg/l PG: 44 (25, 75) μg/l, 9 

+ 



 
 

83 
 

Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 
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setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
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Main results  Relationship  

mother (direct infant 
supplementation) 

Exclusive breastfeeding at baseline: 95.8%, 3 
months: 75.0%, 6 months: 66.3% and 9 months: 
70.3% 

months: SG: 58 (34, 135) μg/l, PG: 39 (24, 62) μg/l 
(significantly different) 

Median (IQR) TSH at baseline SG: 0.6 (0.4, 0.8) mU/l, PG: 0.6 
(0.5, 0.9 mU/l), 3 months SG: 0.6 (0.4, 0.8) mU/l, PG: 0.7 (0.6, 
0.9) mU/l, 6 months SG: 0.6 (0.5, 0.8) mU/l, PG: 0.6 (0.5, 0.9) 
mU/l, 9 months SG: 0.5 (0.4, 0.7) mU/l, PG: 0.7 (0.5,0.9) mU/l 
(not significantly different) 

Median (IQR) T4 baseline SG: 88.5 (72.0, 111.5) nmol/l, PG: 
100.0 (81.0, 123.3) nmol/l, 3 months SG: 79.1 (69.0, 94.4) 
nmol/l, PG: 81.0 (67.2, 99.0) nmol/l, 6 months SG: 92.0 (75.0, 
107.0) nmol/l, PG: 88.8 (73.8, 110.0) nmol/l, 9 months SG: 92.8 
(77.2, 114.5) nmol/l, PG: 89.8 (80.5, 110.0) nmol/l (not 
significantly different) 

Maternal iodine supplementation during lactation increased 
breast milk iodine (p<0.0001) 

Maternal UIC was associated with breast milk iodine at all 
time-points (ß=0.675–0.739, p<0·0001). 

 

Chaouki 1994 Intervention, no 
randomisation, or 
placebo group 
(n=1536) 

Algeria (deficient 
population) 

Supplements were given 
during pregnancy, 0.5 ml 
iodised oil (lipiodol, 240 mg of 
iodine, given orally). Group A 
(n=213) participants were 
given iodised oil 1-3 months 
before conception, group B 
(n=190) iodised oil was given 
during first month of 
pregnancy. Group C (n=151), 
iodised oil given during the 
first 3 months of pregnancy. 
Group D (n=982) no treatment 
given 

 

2 samples collected at 1 and 6 months postpartum 
(breast milk collection method not clear)  

Laboratory method used not clear 

Supplement group  Mean (±SEM) breast milk iodine concentration, 1 months, 
group A: 520±11.8 nmol/l, group B: 559±10.8 nmol/l, group C: 
551±13.4 nmol/l, group D: 307±3.2 nmol/l. 6 months, group A: 
307±2.1 nmol/l, group B: 346±2.8 nmol/l, group C: 386±1.8 
nmol/l, group D: 260±1.2 nmol/l 

Mean (±SEM) urinary iodine concentration (UIC) before 
supplementation, group A: 149±0.4 nmol/l, group B: 157±1.6 
nmol/l, group C: 133±3.1 nmol/l, group D: 141±0.7 nmol/l.  At 
delivery, group A: 748±2.1 nmol/l, group B: 803±3.9 nmol/l, 
group C: 780±3.1 nmol/l, group D: 141±0.4 nmol/l (significant 
difference in UIC before and after supplementation for group A, 
B and C), 6 months, group A: 338±2.1 nmol/l, group B: 
378±1.0 nmol/l, group C: 394±2.5 nmol/l, group D: 149±0.7 
nmol/l 

Mean (±SEM) TSH before supplementation, group A: 4.0±0.06 
mU/l, group B: 3.8±0.05 mU/l, group C: 3.6±0.06 mU/l, group 
D: 3.9±0.01 mU/l. At delivery, group A: 2.1±0.001 mU/l, group 
B: 2.1±0.000 mU/l, group C: 1.9±0.001 mU/l, group D: 
4.1±0.001 mU/l (significant difference in TSH before and after 
supplementation for group A, B and C). 6 months postpartum, 

+ 
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First author, year Study design  
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setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

group A: 2.1±0.00 mU/l, group B: 2.1±0.01 mU/l, group C: 
2.0±0.00 mU/l, group D: 4.0±0.00 mU/l 

Mean (±SEM) free T4 before supplementation, group A: 
10.3±0.09 pmol/l, group B: 11.2±0.07 pmol/l, group C: 
11.8±0.13 pmol/l, group D: 11.6±0.06 pmol/l. At delivery, 
group A: 14.1±0.08 pmol/l, group B: 15.2±0.13 pmol/l, group 
C: 16.2±0.12 pmol/l, group D: 11.2±0.00 pmol/l (significant 
difference in T4 before and after supplementation for group A, B 
and C). 6 months postpartum, group A: 12.9±0.04 pmol/l, group 
B: 14.1±0.10 pmol/l, group C: 15.0±0.08 pmol/l, group D: 
11.0±0.05 pmol/l 

Maternal iodine supplementation increased breast milk iodine. 
Breast milk iodine was higher in groups A, B and C compared 
to group D at 1 month (p<0.001) and at 6 months postpartum 
(statistics not shown) 

 

Chierici 1999 

 

Intervention, no 
randomisation or 
placebo group 
(n=32) 

Italy 

Supplements were given 
during lactation containing 116 
ug potassium iodide per day 
(and 20 mg zinc sulphate and  
2 mg copper sulphate) 

3 samples collected at 3, 30 and 90 days 
postpartum (n=10). Milk was collected using a 
breast pump after the subjects had cleaned the 
nipple and areola with deionized water. 10 ml milk 
sample was pumped before the baby nursed 

Inorganic mass spectrometer was used for analysis  

Supplement group Mean (±SD) breast milk iodine concentration day 3 not 
supplemented group (NG): 0.27±0.14 mg/l, supplemented 
group (SG): 0.32±0.55 mg/l, day 30 NG: 0.15±0.09 mg/l, SG: 
0.13±0.08 mg/l, day 90 NS: 0.11±0.04 mg/l, SG: 0.08±0.05 
mg/l 

Maternal iodine supplementation during lactation did not 
increase breast milk iodine (statistics not shown) 

÷ 

Costeira 2009 Observational 
(n=140) 

Portugal (iodine 
deficient 
population) 

No supplements were given by 
investigators  

2 samples collected at 3 days and 3 months 
postpartum. Breast milk samples were collected in 
the morning and, whenever possible, in the fasting 
state, in a screw-capped plastic bottle, with no 
added preservatives 

A modification of the chloric acid digestion 
method was used for analysis  

 

Urine samples collected at 
3 days and 3 months 
postpartum 

Median (IQR) breast milk iodine concentration, day 3: 95 (68, 
143) ug/l, 3 months: 70 (50, 102) ug/l 

Median (IQR) urinary iodine concentration (UIC) 3 days 
(n=88): 35 (15,98) ug/l, 3 months (n=105): 50 (28, 84) ug/l 

Maternal UIC was associated with breast milk iodine at 3 days 
postpartum (r=0.44, p<0.01) and at 3 months postpartum 
(r=0.46, p<0.01)  

+ 

Dold 2017 Observational 
(n=866) 

China, Croatia, 
Philippines 
(iodine sufficient) 

No supplements were given by 
investigators  

1 sample collected at 3 months postpartum. A 10-
ml foremilk sample was obtained by manual 
expression into a plastic container 

Multicollector inductively coupled plasma mass 
spectrometry (MC-ICP- 

MS) was used for analysis 

Spot urine collected at the 
same time as breast milk 
sample 

Median (IQR) breast milk iodine concentration, pooled from 
China, Croatia and Philippines (iodine sufficient): 171 (123, 
335) µg/kg  

Maternal UIC was associated with breast milk iodine at 3 
months postpartum (r=0.11, p<0.001) 

 

+ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

and Morocco 
(iodine deficient)    All infants were exclusively breastfed 

Glinoer 1995 Randomised 
double-bind, 
placebo controlled 
trial (n=180) 

Belgium (iodine 
deficient 
population) 

Supplements were given 
during pregnancy. Group A: 
daily placebo. Group 

B: 131 μg potassium iodide 
(KI) a day, corresponding to 
100 μg iodide a day. Group C: 
a combination of 131 μg KI 
and 

100 L-T4 a day. Supplements 
were given from the day of 
enrolment until delivery 

 

1 sample collected between 2-6 days postpartum. 
(Not clear how breast milk was collected or how 
iodine concentration was analysed) 

Supplement group  

 

Mean (±SEM) breast milk iodine concentration, group A: 29±2 
μg/l, group B: 61±10 μg/l, group C: 45±5 μg/l 

Mean urinary iodine concentration at baseline: 36 μg/l 

Maternal iodine supplementation during pregnancy increased 
breast milk iodine (p<0.001). 

+ 

Gushurst 1984 Observational 
(n=37) 

USA 

No supplements were given by 
investigators  

2 samples collected between 14 days and 3.5 years 
postpartum (max interval between collections was 
1 month). Before nursing their infants, mothers 
manually expressed the milk into a 75-ml plastic 
vial 

Iodide-specific electrode was used for analysis 

 

Dietary questionnaire 
collected at the time of 
the first breast milk 
collection to assess 
iodised salt intake 

Median (range) breast milk iodide concentration 14 days: 108 
(29-450) μg/l, 3.5 years: 85 (32, 731) μg/l 

Mean (±SD) breast milk iodide concentration in women with no 
iodised salt intake (n=6): 113±64 μg/l, in women with low 
iodised salt intake (n=19): 143±105 μg/l, in women with a high 
iodised salt intake (n=11): 270±146 μg/l 

Maternal intake of iodised salt was associated with breast milk 
iodine  (p<0.01) 

Maternal dietary iodine intake was associated with breast milk 
iodine (p<0.01) 

 

+ 

Hannan 2009 Observational 
(n=31)  

USA  

No supplements were given by 
investigators 

2 samples collected between 30-45 days 
postpartum (early lactation) (n=31), and between 
75-90 days postpartum (late lactation) (n=17). 
Approximately 20–30 ml of milk was collected 
either by manual expression into pre-washed 

24-hour recall at two 
time-points in early and 
late lactation  

 

Mean (±SD) breast milk iodine concentration in early lactation: 
47.8±17.1 μg/l and late lactation: 42.3±8.71 μg/l.  

Mean (±SD) dietary iodine intake, early lactating: 75.7±73.5 
μg/day, late lactation 51.5±52.7 μg/day 

 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

plastic vials, or via a pre-washed trace mineral-free 
breast pump and container 

Flame Atomic Absorption Spectrometry and 
Neutron Activation Analysis was used for analysis 

Maternal dietary iodine intake was not associated with breast 
milk iodine in early lactation (r=0.28, p=0.2) or in late lactation 
(r=-0.09, p=0.7) or combined (r=0.22, p=0.2) 

Kirk 2012 Pre-post 
ntervention, no 
randomisation 
(n=13) 

USA 

All participants were given 150 
μg/day of iodine during 
lactation 

4 samples were collected by each subject between 
1 to 8 months postpartum, at different times of day 
for three days in each of three regimens: (a) prior to 
and without iodine supplementation, (b) 150 
μg/day iodine supplement taken in the evening and 
(c) 150 μg/day iodine supplement taken in the 
morning. Collection periods were spaced by at least 
24-hours without supplementation. Subjects were 
asked to alternate between foremilk and hindmilk 
collection. 

Inductively coupled plasma mass spectrometry was 
used for analysis 

Infants were exclusively breastfed 

Supplementation (Pre-
post intervention design, 
the study used pre-
supplement 
concentrations as 
comparison group) 

Self-reported iodised salt 
intake 

 

Mean (±SD) breast milk iodine concentration before 
supplementation 53.0±35.7 μg/l, after supplementation PM: 
56.5±34.5, AM: 56.5±50.4 μg/l 

Mean (±SD) breast milk iodine concentration for users of 
iodised salt: 71.3±26.3 μg/l, non-users: 37.9±14.9 μg/l 

Mean (±SD) total urinary iodine excretion, before 
supplementation 208±146 μg, after supplementation, PM: 
261±173 μg, AM: 245±138 ug 

Maternal iodine supplementation did not increase breast milk 
iodine (p>0.05) 

Maternal iodised salt intake increased breast milk iodine 
(p<0.03) 

 

÷ + 

Leung 2009 Observational 
(n=97)  

USA 

No supplements were given by 
investigators  

1 sample collected within the first 60 hours 
postpartum. 2 ml colostrum by hand expression 
(n=61) 

Spectrophotometric was used for analysis 

Spot urine collected at 
same time as breast milk 
collection  (n=97) 

Median (range) iodine concentration in colostrum: 51.4 (21.3, 
304.2) μmol/l 

Median (range) urinary iodine concentration (UIC): 82.2 (10.3, 
417.1) μmol/l 

Maternal UIC was not associated with breast milk iodine 
(r2=0.006 p=0.5) 

 

÷ 

Leung 2012 Pre-post 
intervention, no 
randomisation 
(n=16) 

USA 

All participants were given a 
supplement of 600 μg of 
potassium iodine, equalling to 
456 μg of iodine during 
lactation 

9 samples collected at baseline (before ingestion of 
supplement) and then hourly for 8 hours. (Not clear 
at what stage of lactation samples were collected) 
(breast milk collection method not clear) 

 

Supplementation (Pre-
post intervention design, 
the study used pre-
supplement 
concentrations as 
comparison group) 

 

Median (IQR) breast milk iodine concentration, baseline: 45.5 
(34.5–169.0) μg/l, after supplementation: 280.5 (71.5–338.0) 
μg/l 

Maternal iodine supplementation increased breast milk iodine 
(p<0.01)  

 

+ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Mekrungcharas20
14 

Observational 
(n=100)  

Thailand  

No supplements were given by 
investigators, however 18% 
and 7% of the participants used 
iodine supplements during 
pregnancy and lactation, 
respectively. 90% of the 
participants used iodised salt 
while 76% use iodised fish 
sauce 

 

1 sample collected between birth and 
approximately 71 days postpartum. Approximately 
10 ml of breast milk was collected (breast milk 
collection method not clear) 

The spectrophotometer kinetic assay method was 
used for analysis 

85% of infants were exclusively breastfed  

FFQ collected at the same 
time as breast milk 
collection  

Median (IQR) breast milk iodine concentration: 129.7 (81.0, 
205.7) mcg/l 

Maternal weekly egg intake (iodised) was associated with breast 
milk iodine (p=0.01) 

 

+ 

Moon 1999 Observational 
(n=50) 

Korea  

No supplements were given by 
investigators  

2 samples collected between 2-5 days and 4 weeks 
postpartum. Milk samples were obtained by 
manual expression. Sampling was done at a mid-
morning feed from both breasts 

Neutron activation analysis was used for analysis 

24-hour recalls (high 
iodine intake from 
seaweed) collected at the 
same time as breast milk 
samples 

Mean (±SD) breast milk iodine concentration, 2-5 days: 
2170.0±1694.9 ug/l, 4 weeks 891.5±1036.7 ug/l 

Mean (±SD) dietary iodine intake 2-5 days: 2744.0±888.4 
μg/day, 4 weeks: 1295.3±946.2 μg/day 

Maternal dietary iodine intake was associated with breast milk 
iodine in early lactation  (r=0.81, p<0.0001) and in later 
lactation (r=0.82, p<0.0001) 

 

+ 

Nohr 1994 Observational 
(n=152)  

Denmark (iodine 
deficient 
population) 

No supplements were given by 
investigators, but 36% of 
participants took iodine 
containing supplements during 
pregnancy and lactation (150 
μg per tablet) 

 

1 sample collected 5 days postpartum (breast milk 
collection method not clear) 

The CE/AS method was used for analysis 

Supplement intake during 
pregnancy and lactation 
(self-reported) 

Median (IQR) breast milk concentration, unsupplemented: 33.6 
(19.1, 56.6) μg/l, supplemented group: 57.0 (33.0, 113.5) μg/l 

Maternal iodine supplementation during pregnancy and 
lactation increased breast milk iodine (p<0.001) 

+ 

Ordookhani 2007 Observational 
(n=48) 

Iran  

No supplements were given by 
investigators  

1 sample collected between 7-30 days postpartum. 
5-10 ml of breast milk was collected (breast milk 
collection method not clear) 

The Sandell–Kolthoff method was used for 
analysis 

Infants were exclusively breastfed  

Urine collected at the 
same time as breast milk 
collection 

Median (range) breast milk iodine concentration: 148 (45–750) 
μg/l 

Median urinary iodine concentration (UIC): 107 (20–710) μg/l 

Median (range) TSH: 1.1 (0.3, 3.3) mIU/l 

Median (range) T4: 10 (5.6, 14) μg/dl 

Median (range) T3: 249 (144, 1212) ng/dl 

Maternal UIC was associated with breast milk iodine (r=0.434, 
p=0.004) 

 

+ 



 
 

88 
 

Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Pearce 2007 Observational 
(n=57) 

USA 

No supplements were given by 
investigators 

1 sample collected between 10-250 days 
postpartum. Approximately 10 ml were collected at 
the start of a feed using either hand expression or a 
breast pump. In a  subset (n=30) breast milk was 
collected at the start of a feed and sequentially 
throughout a single feed  

Spectrophotometric was used for analysis 

 

Spot urine collected at the 
same time as breast milk 
collection 

Median (range) iodine breast milk concentration: 155 (2.7–
1968) μg/l 

Median (range) urinary iodine concentration (UIC): 114 (25–
920) μg/l 

Maternal UIC was not associated with breast milk iodine 
(r2=0.06; p=0.08).  

Maternal urinary iodine per creatinine was associated with 
breast milk iodine (r2=0.27; p=0.0001). 

÷ + 

Pedersen 1993 Randomised 
controlled trial, no 
placebo group 
(n=54) 

Denmark (iodine 
deficient 
population) 

Supplements were given 
during pregnancy and 
lactation. Group A (n=26): 
control group, Group B 
(n=28): 200 μg iodine  a day 
starting from weeks 17-18 of 
pregnancy until 12 months 
postpartum  

1 sample collected 5 days postpartum (breast milk 
collection method not clear) 

The Ceri/Arsenium method was used for analysis  

Supplement group  Median breast milk iodine concentration, group A: 28 μg/l  
group B: 41 μg/l 

Median urinary iodine concentration (UIC) at baseline, group 
A: 51 μg/l, group B: 55 μg/l 

Maternal supplementation during pregnancy and lactation did 
not increase breast milk iodine (p=0.06)  

 

÷ 

Sukkhojaiwaratkul 
2014 

Observational 
(n=87) 

Thailand 

No supplements were given by 
investigators, however 34 
participants took iodine 
supplements during lactation 

1 sample collected at 2 months postpartum (n=57) 
(breast milk collection method not clear) 

The Sandell–Kolthoff method was used for 
analysis 

Supplement intake (self-
reported) 

Median (range) breast milk iodine concentration: 90.8 (0, 
311.5) μg/l, supplemented group: 108.6 (8.8, 311.5) μg/l, 
unsupplemented group: 69.5 (0, 172.4) μg/l 

Median (range) urinary iodine concentration (UIC): 138.0 (26.8, 
735.8) μg/l, supplemented group: 198.8 (31.4, 735.8) μg/l, 
unsupplemented group: 119.8 μg/l (26.7, 620.8) μg/l (not 
significantly different) 

Maternal iodine supplementation during lactation increased 
breast milk iodine (p=0.032) 

 

+ 

Trabzuni 1998 Observational 
(n=104) 

Saudi Arabia  

No supplements were given by 
investigators  

1 sample collected between 6-12 weeks postpartum 
(breast milk collection method not clear) 

The Sandell–Kolthoff method was used for 
analysis 

Urine collected at the 
same time as breast milk 
sample (n=78) 

 

Dietary recall collected at 
the same time as breast 
milk sample 

Mean (±SE) breast milk iodine concentration: 14.24 ±1.00 μg/dl 

Mean (±SE) urinary iodine concentration (UIC): 226.15 ±24.89 
μg/gm creatinine  

Mean dietary intake of iodine: 368.28 μg/day.  

 

+ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Maternal UIC was associated with breast milk iodine (statistics 
not reported) 

Maternal dietary iodine intake (dairy) was associated with 
breast milk iodine (p<0.05)  

 

Wang 2009 Observational 
(n=49) 

China (Yongjin 
county, were 
iodised salt 
coverage rate is 
more than 90%) 

No supplements were given by 
investigators  

1 sample collected before 6 months postpartum 
(stage of lactation and breast milk collection 
method not clear) 

The Sandell–Kolthoff method was used for 
analysis 

Urine collected at the 
same time as breast milk 
sample 

Median breast milk iodine concentration: 240 ug/l 

Mean urinary iodine concentration (UIC): 126 μg/l  

Maternal UIC was not associated with breast milk iodine 
(statistics not reported) 

÷ 

Iron       

Donangelo 1989 Observational 
(n=83) 

Brazil 

No supplements were given by 
investigators 

1 sample collected between 1-180 days between 
9.00 and 10.00 am by manual expression before the 
infant was due to be fed (5-10 ml)  

Infants were exclusively breastfed  

Atomic absorption spectrophotometry was used for 
analysis  

Serum collected at the 
same time as breast milk 
sample 

Mean (±SE) breast milk iron concentration, 1-5 days 
postpartum (n=17): 1.23±0.18 µg/ml, 6-30 days (n=13): 
0.84±0.17 µg/ml, 31-280 days (n=10): 0.42±0.05 µg/ml 

Mean (±SE) serum iron concentration, 1-5 days postpartum 
(n=11): 95.2±16.3 µg/dl, 6-30 days (n=11): 103±14.2 µg/dl, 31-
280 days (n=7): 75.3±16.8 µg/dl 

Maternal serum iron was not associated with breast milk iron at 
any stage of lactation (statistics not reported) 

 

÷ 

El-Farrash 2012 Observational 
(n=80, n=50 
anaemic and n=30 
non-anaemic) 

Egypt 

No supplements were given by 
investigators 

1 sample collected 15 days postpartum. Breast milk 
samples were collected by manual expression. 
Participants were instructed to first clean their 
breasts with a gauge piece soaked with plain water. 
After discarding an initial 4–5 ml of milk, an 
aliquot of 10 ml was collected in deionized glass 
jars and finally transferred to iron-free 
polyethylene tubes 

Blood samples collected 
at delivery. The 
participants were divided 
into 3 groups for analysis: 
Group A haemoglobin 
8.6–10.9 g/dl, mild 
anaemic, n=29), group B  

haemoglobin 8.5–7 g/dl to 
haemoglobin <7 g/dl, 
moderate-severe anaemia, 
n=21), group C 

Mean (±SD) breast milk iron concentration in group C: 
1.6±0.08 mg/L. Group A: 0.78±0.14. Group B: 0.29±0.12. 
There was a significant difference between group A and C 
(p<0.001) 

(Maternal serum iron and haemoglobin concentrations were not 
reported) 

Maternal serum iron was associated with breast milk iron 
(r=0.54, p<0.01) 

Maternal haemoglobin was associated with breast milk iron 
(r=0.563, p<0.01) 

+  
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First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Atomic absorption spectrophotometry was used for 
analysis 

Infants were exclusively breastfed 

haemoglobin ≥ 11 g/dl, 
normal, n=30) 

 

 

Hannan 2009 Observational 
(n=31)  

USA  

No supplements were given by 
investigators 

2 samples collected between 30-45 days 
postpartum (n=31) (early lactation), and between 
75-90 days postpartum (n=17) (late lactation). 
Approximately 20–30 ml of milk was collected 
either by manual expression into pre-washed 
plastic vials, or via a pre-washed trace mineral-free 
breast pump and container 

Flame Atomic Absorption Spectrometry and 
Neutron Activation Analysis was used for analysis 

24-hour recall collected at 
the same time as breast 
milk samples 

 

Mean (±SD) iron concentration in early lactation: 0.5±1.0 mg/l 
and late lactation: 0.4±0.3 mg/l 

Mean (±SD) dietary iron intake, early lactating: 15.6±12.3 
mg/day, late lactation: 10.8±5.8 mg/day 

Maternal dietary intake of iron was not associated with breast 
milk iron in early lactation (r=0.07, p=0.7) or in late lactation 
(r=-0.37, p=0.2) or combined (r=0.08, p=0.6) 

 

÷ 

Kumar 2008 Observational 
(n=75, n=55 
anaemic and n=20 
non-anaemic) 

India  

No supplements were given by 
investigators 

2 samples collected at 3 days postpartum (early 
transitional milk) and 15 days postpartum (late 
transitional milk). Breast milk samples were 
collected by manual expression. Participants were 
instructed to first clean their breasts with a gauge 
piece soaked with plain water. After discarding an 
initial 4 to 5 ml of milk, an aliquot of 10 ml was 
collected in deionized glass jars and finally 
transferred to iron-free polyethylene tubes. Milk 
expression was done from 1 breast only, between 
9:00 am to 12:00 pm, 1.5 to 2.0 hours after the last 
breastfeeding 

Atomic absorption spectrophotometry was used for 
analysis 

Infants were exclusively breastfed  

Blood samples collected 
at delivery. Participants 
were divided into 4 
groups for analysis: group 
1: haemoglobin ≤60 g/l 
(n=21);  

group 2: haemoglobin 
between 61–85 g/l; (n 
=16); group 3: 
haemoglobin between 86–
109 g/l (n=18); and group 
4: haemoglobin ≥110 g/l; 
(n=20) 

 

Mean (±SD) breast milk iron concentration, early transitional 
milk, group 1: 11.543±3.921 μmol/l, group 4:15.231±2.767 
μmol/l, late transitional milk, group 1: 12.293±3.064 μmol/l, 
group 4: 14.901±2.412 μmol/l 

Mean (±SD) serum iron concentration group 1: 4.885±1.461 
μmol/l l, group 4: 18.292±1.452 μmol/l (significantly different). 

Mean (±SD) haemoglobin group 1: 52±7 g/l, group 4: 121±5 g/l 
(significantly different). 

Breast milk iron concentration was reduced in severely anaemic 
mothers compared to non-anaemic mothers, but not in those 
with mild-to-moderate anaemia 

Maternal serum iron was associated with breast milk iron in 
early transitional milk (r=0.439; p<0.001), and late transitional 
milk (r=0.451; p<.001) 

Maternal ferritin was not associated with breast milk iron in 
early transitional milk (r=0.226, p>0.05) but in late transitional 
milk (r=0.251, p<0.05) 

 

+ 

Mahdavi 2010 Observational 
(n=182) 

Iran 

No supplements were given by 
investigators 

1 sample collected between 90-120 days 
postpartum. Breast milk (10–15 ml) samples were 
collected into metal free tubes by self-expression 
before nursing the baby in the morning 

24-hour recalls for three 
days (one weekend day 
included) 

Mean (±SD) breast milk iron concentration: 0.85±0.2 mg/l for 
rural and urban women combined. Rural: 0.9±0.3 mg/l, urban: 
0.81±0.2 mg/l 

÷ 
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Milk samples Maternal nutritional 
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Main results  Relationship  

Infants were exclusively breastfed Mean (±SD) dietary iron intake was 11.8±8.2 mg/day for rural 
and urban combined. Rural: 11.1±8.1 mg/day, urban: 12.6±8.4 
mg/day 

Maternal dietary intake of iron was not associated with breast 
milk iron (β=0.11, p=0.2)  

 

Shashiraj 2006 Observational 
(n=200, 100 
anaemic and 100 
non-anaemic) 

  

India 

All participants were 
supplemented with iron and 
folic acid. Not clear if this was 
given by investigators  

3 samples were collected, 1 day, 14 weeks and 6 
months postpartum. Participants were requested to 
collect the breast milk by manual expression. After 
collecting around 10 ml of foremilk in a sterile 
acid-washed and rinsed iron-free container, the 
baby was breast-fed for about 15 min and thereafter 
an equal volume of hindmilk from the same breast 
was collected, and the samples were mixed 

 

Atomic absorption spectrometry was used for 
analysis 

Blood collected on 1 day 
and 6 months postpartum 

 

 

Mean breast milk iron concentration day 1: 0.89 mg/l in non-
anaemic mothers and 0.86 mg/l in anaemic mothers. At 14 
weeks 0.34 mg/l and 0.33 mg/l, respectively, at 6 months 0.27 
mg/l and 0.26 mg/l, respectively 

Median (IQR) haemoglobin, 12.4 (11.4, 13.1) g/dl in non-
anaemic, 1 day, and 9.7 (9.0, 10.5) g/dl in anaemic. At 6 months 
postpartum 13.1 (12.8, 13.3) g/dl and 12.2 (11.8, 12.8) g/dl, 
respectively 

Median (IQR) serum iron, 76.0 (76.0, 95.3) μg/dl in non-
anaemic 1 day, and 64.0 (56.5, 70.0) μg/dl in anaemic. At 6 
months postpartum 80.0 (72.0, 86.0) μg/dl and 80.0 (74.8, 84.5) 
μg/dl respectively 

Maternal serum iron of both groups (anaemic and non-anaemic) 
was not associated with breast milk iron on 1 day postpartum 
(r=-0.102, p>0.05 and r=0.178, p>0.05, respectively) and the 
same for 6 months (r=-0.141, p>0.05 and r=-0.048, p>0.05, 
respectively).  

Maternal haemoglobin was associated with breast milk iron in 
the anaemic group on 1 day postpartum (r=0.339, p=0.01), but 
not in the non-anaemic group (r=-0.016, p>0.05). No correlation 
at 6 months in the two groups was found (r=-0.012, p>0.05, 
r=0.199, p>0.05 respectively) 

 

÷ + 

Stuetz 2012 (eur) Pre-post 
intervention, no 
randomisation 
(n=86 before 
fortification, n=99 
after fortification) 

 

Iron fortified wheat flour 
(estimated daily intake: 4.5 
mg) was provided for all 
participants (the flour was also 
fortified with other 
micronutrients) 

2 samples were collected, 1 before fortification of 
flour was introduced at 12 weeks postpartum and 1 
sample after flour fortification was introduced at 12 
weeks postpartum (two different groups of 
women). Milk samples were collected by manual 
expression into glass tubes wrapped in aluminium 
foil in order to protect against degradation  

 

Fortification (Pre-post 
intervention design, the 
study used pre-
supplement 
concentrations as 
comparison group)  

 

Geometric mean breast milk iron concentration, before 
fortification: 0.242 mg/l, after fortification: 0.288 mg/l 

Geometric mean serum ferritin, before fortification: 41.8 ug/l, 
after fortification: 38.2 ug/l (not significantly different)  

Mean (±SD) haemoglobin (whole blood), before fortification: 
124.5±11.0 g/l, after fortification: 124.4±9.5 g/l (not 
significantly different).  

+ 
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Thai-Myanmar 
border (Maela 
Refugee camp, 
high prevalence of 
iron deficiency 
and anaemia)  

Inductively coupled plasma optical emission 
spectrometry (ICP-OES) after microwave-heated 
digestion was used for analysis 

Blood collected 12 weeks 
postpartum 

Geometric mean sTfR (soluble transferrin receptor) before 
fortification: 8.06 mg/l, after fortification:7.27 (significantly 
different) 

Maternal intake of fortified flour increased breast milk iron 
(p=0.04) 

Maternal sTfR was associated with breast milk iron (β -0.590, 
p<0.001) 

 

Vaughan 1979 

 

Observational 
(n=38) 

 

USA 

No supplements were given by 
investigators 

Monthly milk samples were collected between 1-31 
months postpartum. Subjects remained in the study 
on an average of 4 consecutive months. 150-200 ml 
of milk was hand expressed into acid-washed glass. 
Subjects were instructed to collect the milk over a 
period of 3 to 5 days, at morning, afternoon, and 
evening feedings and at random intervals within 
the feeding 

Atomic absorption spectrophotometer was used for 
analysis 

Blood collected during 
the same 3 to 5-day 
period of milk collection 
for the particular month 
(n=24)  

 

3 day dietary records. 
Intakes were recorded 
during the same 3 to 5-
day period of milk 
collection (n=11) 

 

Mean (±SEM) breast milk iron concentration 1-3 months: 
0.49±0.05 (unit not clear) (n=28), 4-6 months: 0.43±0.04 
(n=39) 

Mean serum iron concentration 4-6 months: 0.75 (unit not clear) 

Mean dietary iron intake 4-6 months: 39.3 mg/d 

Maternal serum iron was not associated with breast milk iron 
from the same stage of lactation (statistics not reported) 

Maternal dietary intake of iron was not associated with breast 
milk iron from the same stage of lactation (statistics not 
reported) 

 

÷ 

Vuori 1980 Observational  

(n=27) 

 

Finland 

No supplements were given by 
investigators 

2 samples collected between 6-8 and 17-22 weeks 
postpartum. Milk aliquots of 8 ml were obtained at 
the beginning and at the end of each feed during a 
period of 24 hours and pooled to one sample 

Ash solutions by the flame atomic absorption 
spectrophotometric method was used for analysis 

Two 7 day food records. 
The first record from the 
first survey period 
between 6-8 weeks and 
the second record from 
the second survey period 
between 17 to 22 weeks 
postpartum (n=15) 

Mean (±SD) breast milk iron concentration, 6-8 weeks: 0.40± 
0.10 mg/l, 17-22 weeks: 0.29±0.09 mg/l 

Mean (±SD) dietary iron intake, 6-8 weeks: 15.8±2.4 mg/day, 
17-22 weeks: 13.4±2.6 mg/day 

Maternal dietary iron intake was not associated with breast milk 
iron (statistics not reported) 

÷ 

Zapata 1995 Intervention, no 
randomisation or 
placebo group 
(n=28) 

Iron supplements were given 
by investigators during 
lactation for 3 months starting 
at delivery, 40 mg FE/day. 
Participants had taken 30-60 
mg FE/day during last 
trimester of pregnancy  

3 samples collected at 1-2, 30-40, and 90-100 days 
postpartum. Milk samples of 10-15 ml were 
collected between 8:00 and 10:00 am by manual 
expression of both breasts into metal-free plastic 
tubes 

Supplement group  

Plasma collected at 1-2 
days and 90-100 days 
postpartum 

Mean (±SD) breast milk iron concentration 1-2 days (baseline) 
supplemented group (SG):17.7±5.6 μmol/l, not supplemented 
group (NS): 18.3±5.0 μmol/l, 30-40 days SG: 12.5±5.2 μmol/l, 
NS:13.4±6.1 μmol/l, 90-100 days SG: 12.9±7.5 μmol/l, 
NS:10.0±3.4 μmol/l 

Mean (±SD) plasma iron concentration at 1-2 days (baseline) 
SG: 16.3±3.8 μmol/l, NS: 15.8±6.1 μmol/l, 90-100 μmol/l, SG: 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Brazil (low 
prevalence of iron 
deficiency) 

Milk iron was analysed colorimetrically with 
sulfonated bathophenantroline by adaptation of 
methods used for serum iron 

Infants were exclusively breastfed  

 21.9±5.9 μmol/l, NS: 19.9±7.9 μmol/l. (No significant 
difference between supplement groups at any time-point) 

Maternal iron supplementation during lactation did not increase 
breast milk iron at any time-point (statistics not reported)  

Maternal plasma iron was not associated with breast milk iron 
(statistics not reported) 

 

Zavaleta 1995 Intervention, no 
randomisation or 
placebo group 
(n=29) 

Peru (high 
prevalence of iron 
deficiency)  

Iron supplements were given to 
anaemic participants during 
lactation, starting from two 
days postpartum, 100 mg/day. 
Non-anaemic women did not 
receive any supplements 

2 samples collected at 2 and 30 days postpartum. 
10 ml of milk were 

collected at the second nursing of the day using a 
hand pump, with equal volumes of foremilk and 
hindmilk expressed and then mixed 

 

Atomic absorption spectrophotometry was used for 
analysis  

Blood collected at study 
entry and participants 
were divided into two 
groups, group 1: anaemic 
(Hgb <110 g/l, n=19), 
group 2: non-anaemic  
Hgb  ≥110 g/l, n=10)  

Mean (±SD) breast milk iron concentration, 2 days (baseline), 
group 1: 0.9±0.2 μg/ml, group 2: 0.8±0.1 μg/ml, 30 days, group 
1: 0.4±0.1 μg/ml, group 2: 0.4±0.1 μg/ml 

Mean (±SD) lactoferrin, 2 days, groups 1: 6.7±3.4 μg/l, group 2: 
5.3±1.1 μg/l, 30 days, group 1: 3.7±0.9 μg/l, group 2: 4.4±1.1 
μg/l 

Mean haemoglobin in group 1: 92 g/l before treatment and 105 
g/l one months after (significantly different) 

Maternal iron supplementation of anaemic mothers did not 
increase breast milk iron or breast milk lactoferrin (statistics not 
reported) 

Maternal haemoglobin was not associated with breast milk iron 
or breast milk lactoferrin in any of the two groups (statistics not 
reported) 

 

÷ 

Zhao 2014 Observational 
(n=90) 

China (Beijing, 
Guangzhou and 
Suzhou, urban 
areas) 

 

No supplements were given by 
investigators  

1 sample collected between 5−240 days 
postpartum. All participants were instructed to 
empty one breast between 6 to 7 a.m. At 9 to 11 
a.m., the full milk of one breast (which was 
emptied before) was collected using an electric 
breast pump. Foremilk and hindmilk were gently 
mixed 

Inductively coupled plasma mass spectrometry was 
used for analysis 

FFQs and one cycle of 
24-hour dietary recall 
collected at the same time 
as the breast milk sample 

Mean (±SD) breast milk iron concentration: 5-11 days 0.90±0.3 
mg/kg, 12-30 days 1.0±0.7 mg/kg, 31-60 days 1.0±1.0 mg/kg,  
61-120 days 0.9± 0.9 mg/kg, 121-124 days: 1.1± 1.1 mg/kg 

Maternal dietary iron intake was not associated with breast milk 
iron (r=0.089, p=0.06) 

÷ 

Selenium       
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Cumming 1992 Observational 
(n=20) 

Australia 

No supplements were given by 
investigators 

1 sample collected between 6-12 weeks 
postpartum. Approximately 10 ml of breast milk 
were manually expressed at the beginning and end 
of a mid-morning feed, from the first breast offered 
at that feed. Milk samples were collected in acid 
washed containers 

Gamma-spectrometer was used for analysis 

Serum and whole blood 
collected between 6-12 
weeks postpartum 

Mean (±SD) breast milk selenium concentration, foremilk 
(n=19): 10.8±3.5 ng/g, hindmilk (n=13): 13.9±3.5 ng/g, 
combined 11.9±3.5 ng/g 

Mean (±SD) maternal serum selenium 81±15 ng/g 

Mean (±SD) maternal blood selenium 101±19 ng/g 

Maternal serum selenium was not associated with breast milk 
selenium (p=0.9).  

Maternal blood selenium was not associated with breast milk 
selenium (p=0.2) 

 

÷ 

Hannan 2009 Observational 
(n=31)  

USA 

No supplements were given by 
investigators 

2 samples collected between 30-45 days 
postpartum (n=31), and between 75-90 days 
postpartum (n=17). Approximately 20–30 ml of 
milk was collected either by manual expression 
into pre-washed plastic vials, or via a pre-washed 
trace mineral-free breast pump and container 

Flame Atomic Absorption Spectrometry and 
Neutron Activation Analysis was used for analysis 

24-hour recall collected at 
the same time as breast 
milk samples 

 

Mean (±SD) breast milk selenium concentration in early 
lactation: 15.9±4.1 mg/l, late lactation: 15.7±5.3 mg/l 

Mean (±SD) dietary selenium intake in early lactating: 
38.8±26.3 ug/day, late lactation: 35.8±22.3 ug/day 

Maternal dietary selenium intake was not associated with breast 
milk selenium in early lactation (r=-0.10, p=0.7) or in late 
lactation (r=-0.39, p=0.3) or combined (r=-0.18, p=0.4) 

÷ 

Higashi 1983 Observational 
(n=22) 

Japan 

No supplements were given by 
investigators 

5 samples collected: colostrum, 1 week 
(transitional milk), 1 month, 3 months and 5 
months postpartum (mature milk) (n=10). 2 
samples collected from group of participants 1 
month or 3 months postpartum (n=12). Samples 
were collected in the morning by manual 
expression before the baby was due to feed. 
Approximately 10 ml was obtained directly into 
clean polyethylene bottles, after the breasts were 
cleaned twice with deionized water 

Diaminonaphthalene fluorimetric method of 
Watkinson was used for analysis 

Serum collected at 3 
months postpartum 
(n=16) 

Median (range) breast milk selenium concentration, colostrum: 
80 (35-152) ng/ml, 1 week: 29 (15-79 ng/ml), 1 month: 18 (9-
39) ng/ml, 3 months: 17 (6-28) ng/ml, 5 months: 18 (9-33) 
ng/ml 
Mean (±SD) maternal serum selenium: 148±47 ng/ml 

Maternal serum selenium was not associated with breast milk 
selenium at 3 months postpartum (statistics not reported) 

÷ 

Kumpulainen 
1985 

Intervention, no 
randomisation or 

Selenium supplements were 
given during lactation, either 
group 1: no supplement, group 

4 samples collected at 4-5 days (baseline), 2, 4 and 
6 months postpartum. Milk samples were collected 

Supplement group Geometric mean (±SD) breast milk selenium concentration 4-5 
days (baseline) (all groups combined): 11±2 ug/l. Group 1, 6 
months: 7.2±2.5 ug/l  

+ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

placebo group 
(n=200) 

Finland  

2: 100 ug of selenite, group 3: 
100 ug of yeast-selenium. 
Supplementation started 5-6 
days postpartum  

by the mothers by pooling 10 ml of milk from the 
beginning and end of each feed 

Electrothermal atomic absorption spectrometry was 
used for analysis 

167 infants were exclusively breastfed for 2 
months 140 for 4 months, 116 for 6 months. Infants 
not exclusively breastfed were excluded  

 

Blood collected at 3-4 
days (baseline), 2, 4 and 6 
months postpartum  

 

(the remaining milk concentrations were illustrated in a figure) 
Mean (±SD) serum selenium baseline, group 1: 59±13 μg/l, 
group 2: 58±13 μg/l, group 3: 53±11 μg/l. 4 months, group 1: 
29 μg/l, group 2: 51 μg/l, group 3: 86 μg/l 

Maternal selenium supplementation increased breast milk 
selenium (statistics not reported) 
Maternal serum selenium was associated with total breast milk 
selenium excretion (r=0.84, p<0.0001) 

Levander 1987 Observational 
(n=23) 

USA 

No supplements were given by 
investigators 

3 samples collected at 1, 3 and 6 months 
postpartum (breast milk collection method not 
clear) 

Fluorometry of the diaminonaphthalene complex 
was used for analysis 

Duplicate-plate food and 
drink composites and 
dietary records were 
collected daily for 3 days 
at 37 weeks gestation and 
at 1, 3, and 6 months 
postpartum 

Plasma collected at 37 
weeks gestation, and  at 1, 
3, and 6 months 
postpartum 

 

Mean (±SEM) breast milk selenium concentration, 1 month: 
20±1 μg/l, 3 months: 15±1 μg/l, 6 months: 15±1 μg/l 
Mean (±SEM) dietary selenium intake at 37 weeks gestation: 
97±4 μg/day, 1 month: 84±4 μg/day, 3 months: 84±4 μg/day, 6 
months: 87±4 μg/day 
Mean (±SEM) plasma selenium at 37 weeks gestation: 112±5 
μg/l, 1 month: 136±5 μg/l, 3 months: 137±5 μg/l, 6 months: 
138±5 μg/l 

Maternal dietary selenium intake during lactation was not 
associated with breast milk selenium (statistics not reported) 
Maternal plasma selenium during lactation was associated with 
breast milk selenium (r=0.38, p<0.03) 

 

÷ + 

Mannan 1987 Observational 
(n=10) 

USA 

No supplements were given by 
investigators 

4 samples collected at 4, 8, 12 and 16 weeks 
postpartum. Milk samples were collected with 
mechanical pump between 07.00 and 11.00 hours, 
one of foremilk and the other of hindmilk at a 
single nursing period 

Laboratory method used not clear 

Plasma collected at 4 and 
8 weeks postpartum 

Mean breast milk selenium concentration: 16.8 μg/l (pooled 
data).  

Mean (±SE) plasma selenium: 97±6.0  μg/l (data pooled)  

Maternal plasma selenium was associated with breast milk 
selenium (r=0.61, p=0.01) 

 

+ 

Micetic-Turk 
2000 

Observational 
(n=20) 

Slovenia 

No supplements were given by 
investigators  

1 sample collected on the second or third day 
postpartum. Around 6 ml was collected (breast 
milk collection method not clear) 

Flow injection hydride generation atomic 
absorption spectrometry was used for analysis  

Serum collected at birth  Mean (±SD) breast milk selenium concentration (n=18): 29±10 
μg/l 

Mean (±SD) serum selenium (n=20): 62±15 μg/l 

Maternal serum selenium at birth was not associated with breast 
milk selenium in colostrum (r2 =0.0174, p>0.05) 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Moore 2000 Intervention, no 
randomisation 
(n=21) 

China (rural area 
with low selenium 
intake) 

Supplements were given by 
during last trimester of 
pregnancy and 3 months 
postpartum Group 1 (n=10): 
yeast (placebo), group 2 
(n=11): a selenium-enriched 
yeast tablet providing 100 
ug/day of selenium 

6 samples collected at birth, 1, 2, 3, 4 and 12 weeks 
postpartum. The participants cleaned their breasts 
with 75% ethanol and expressed the milk by hand 
into a sterile, 15 ml container. The participants 
expressed approximately 10 ml of foremilk, from 
one breast, at the beginning of a feeding 

A semi-automated fluorimetric method was used 
for analysis 

Supplement group Mean (±SD) breast milk selenium concentration at birth, group 
1: 7.4±1.3 ng/g, group 2: 16.7±1.3 ng/g. Week 1, group 1: not 
reported, group 2: 17.9±1.3 ng/g. Week 2, group 1: not 
reported, group 2: 19.8±1.3 ng/g. Week 3, group 1: 11.7±1.3 
ng/g, group 2: 16.9±1.3 ng/g. Week 4, group 1: 8.4±.1.3 ng/g, 
group 2: 16.2±1.3 ng/g. Week 12, group 1: not reported, group 
2: 9.9±1.3 ng/g 

Maternal selenium supplementation during pregnancy and 
lactation increased breast milk selenium (p=0.04) 

+ 

Trafikowska 1996 Pre-post 
intervention, no 
randomisation 
(n=16) 

Poland 

Supplements were given 
during lactation to all 
participants. Participants were 
given 200 ug/day of selenium 
starting from 3-4 weeks 
postpartum and continued to 3 
months postpartum  

4 samples collected at baseline (3-4 weeks 
postpartum) and after 1, 2 and 3 months of 
supplementation (breast milk collection method not 
clear) 

Fluorometric method of Watkinson was used for  
analysis 

 

Supplementation (pre-
post intervention design, 
the study used pre-
supplement 
concentrations as 
comparison group) 

Blood collected at 
baseline and after 1, 2 and 
3 months of 
supplementation  

Mean (±SD) breast milk selenium concentration 3-4 weeks 
(baseline): 9.20±2.66 ng/ml, 1 month: 15.9±2.85 ng/ml, 2 
months: 15.0±4.18 ng/ml, 3 months: 14.4±6.54 ng/ml 

Mean (±SD) plasma selenium concentration at 3-4 weeks 
(baseline): 54.0±13.2 ng/ml, 1 month: 101±23.6 ng/ml, 2 
months: 127±20.2 ng/ml, 3 months: 116±19.7 ng/ml 

Mean (±SD) whole blood selenium concentration at 3-4 weeks 
(baseline): 77.6±14.4 ng/ml, 1 month: 129±36.9 ng/ml, 2 
months: 148±33.3 ng/ml, 3 months: 147±35.0 ng/ml 

Maternal selenium  supplementation increased breast milk 
selenium (p<0.001) 

Maternal whole blood and plasma selenium was associated with 
breast milk selenium concentration (r=0.591,p<0.0001 and 
r=0.612, p<0.0001, respectively) 

 

+ 

Trafikowska 1998 Intervention, no 
randomisation 
(n=67) 

Poland 

Supplements were given by 
investigators during lactation. 
Group 1 (n=24): 200 Ilg 
selenium per day in the form of 
yeast-rich-Se. Group 2 (n=30): 
200 Ilg selenite-selenium per 
day mixed with baker's yeast. 
Group 3 (n=13): plain brewer's 
yeast with no added Se 
(placebo) 

4 samples collected at baseline (3-5 weeks 
postpartum) and after 1, 2 and 3 months of 
selenium supplementation. Milk samples were 
collected by manual expression prior to the first 
morning feeding of the blood sampling day. About 
10 ml milk was collected in polyethylene bottles 
after the breast had been washed with deionized 
water 

Fluorometric method of Watkinson was used for  
analysis 

Infants were exclusively breastfed 

Supplement group 

Plasma and whole blood 
collected at baseline and 
after 1, 2 and 3 months of 
supplementation  

Mean (±SD) breast milk selenium concentration baseline: 8.9 ± 
2.81 μg/l (no difference between groups). Mean breast milk 
selenium, placebo group, 1 month: 8.1±2.6 μg/l, 3 months: 
7.0±2.5 μg/l (Concentrations for the different groups after 
supplementation are presented in a figure, with no actual 
concentrations reported) 

Mean (±SD) whole blood selenium at baseline 76.6±15.2 μg/l 
and plasma selenium 53.2±14.2 μg/l (Concentrations for the 
different groups after supplementation are presented in a figure, 
with no actual concentrations reported) 

 

+ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Maternal selenium supplementation during lactation increased 
breast milk selenium concentration for group 1 (p<0.0001) and 
group 2 (p<0.001) 

Maternal whole blood selenium was associated with breast milk 
selenium in group 1 (r=0.591, p=0.0001) and in group 2 
(r=0.675, p=0.0001).  

Maternal plasma selenium was associated with breast milk 
selenium in group 1 (r=0.612, p=0.0001) and in group 2 
(r=0.668, p=0.0001) 

 

Valent 2011 Observational 
(n=100) 

Italy 

No supplements were given by 
investigators 

1 sample collected (not clear when it was collected, 
likely 3 months postpartum) Participants were 
allowed to collect their breast milk at any time, no 
indication was provided to them on when to 
express  

Hydride generation-atomic fluorescence 
spectrometry (HGAFS) system was used for 
analysis 

82% of infants were exclusively breastfeed 

FFQ at 3 months 
postpartum asking about 
habitual intake during 
pregnancy and lactation 

Mean (±SD) breast milk selenium concentration: 12.1±3.0 ng/g 

Maternal egg intake during pregnancy was associated with 
breast milk selenium (r=0.20, p=0.04) Maternal fish intake 
during lactation was associated with breast milk selenium 
(r=0.21, p=0.04) 

+ 

Wasowicz 2001 Observational 
(n=131) 

Poland 

No supplements were given by 
investigators 

3 samples collected: 0-4 days (colostrum, n=43), 5-
9 days (transitional milk, n=46)) and 10-30 days 
(mature milk, n=41). Milk samples (5–7 mL) were 
hand expressed after subjects cleaned the nipple 
and areola with deionized water 

The fluorometric method of Watkinson was used 
for analysis 

Plasma collected at 0-4 
days (n=43), 5-9 days 
(n=46) and 10-30 days 
(n=41) 

Mean (±SD) breast milk selenium concentration, colostrum: 
22.8±10.1 μg/l, transitional milk: 11.3±3.8 μg/l, mature milk: 
9.2±3.6 μg/l 

Mean (±SD) plasma selenium concentration: 0-4 days: 
34.9±11.8 μg/l, 5-9 days: 44.6±12.7 μg/l, 10-30 days: 54.3±14.6 
μg/l 

Maternal plasma selenium was associated with transitional milk 
selenium (r=0.310, p<0.05), and  

mature milk selenium (r=0.382, p<0.05). No association was 
found with colostrum (statistics not shown) 

 

+ ÷ 

Zhao 2014 

 

Observational 
(n=90) 

No supplements were given by 
investigators 

1 sample collected between 5−240 days 
postpartum. All were instructed to empty one 
breast during 6 to 7 a.m. At 9 to 11 a.m., the full 

FFQs and one cycle of 
24-hour dietary recall 
during lactation 

Mean (±SD) breast milk selenium concentration: 5-11 days 
21.0±9.1 mg/kg, 12-30 days 17.8±7.5 mg/kg, 31-60 days 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

China (Beijing, 
Guangzhou and 
Suzhou, urban 
areas). 

 

milk of one breast (which was emptied before) was 
collected using an electric breast pump. Foremilk 
and hindmilk were gently mixed. 

Inductively coupled plasma mass spectrometry was 
used for analysis 

19.5±8.5 mg/kg and 61-120 days 15.1±7.5 mg/kg and 121-124 
days: 14.3±7.2 mg/kg 

Maternal dietary selenium intake was not associated with breast 
milk selenium (r=0.055, p=0.26) 

Zinc       

Chierici 1999 Intervention, no 
randomisation or 
placebo group 
(n=32) 

Italy 

Supplements were given by 
investigators during lactation, 
containing 20 mg zinc sulphate 
per day (and 2 mg copper 
sulphate and 116 μg potassium 
iodide) 

3 samples were collected at 3, 30 and 90 days 
postpartum (n=11). Milk was collected using a 
breast pump after the participants had cleaned the 
nipple and areola with deionized water. 10 ml milk 
sample was pumped before the baby nursed 

Inorganic mass spectrometer was used for analysis  

Supplement group Mean (±SD) breast milk zinc concentration, day 3, not 
supplemented group (NS): 8.16±2.96 mg/l, supplemented group 
(SG): 5.89±2.65 mg/l, day 30 NG: 3.99±1.01 mg/l, SG: 
3.36±1.40 mg/l, day 90 NS: 2.87±1.23 mg/l, SG: 2.63±1.23 
mg/l 

Maternal zinc supplementation during lactation did not increase 
breast milk zinc (statistics not shown) 

÷ 

Dijkhuizen 2001 

 

Observational 
(n=155) 

Indonesia  

No supplements were given by 
investigators  

1 sample collected between 2.4-10.5 months 
postpartum. Breast milk was obtained from the 
right breast 45–60 min after the last feeding from 
that breast. The breast was completely expressed 
and all milk was collected 

Flame atomic absorption spectrophotometry was 
used for analysis  

Plasma collected at the 
same time as breast milk 
sample 

Median (IQR) breast milk zinc concentration: 30.3 (20.5, 47.2) 
μmol/l 

Mean (±SD) plasma zinc: 12.6±2.7 μmol/l 

Maternal plasma zinc was not associated with breast milk zinc 
(statistics not shown) 

÷ 

Dijkhuizen 2004 Randomised, 
double-blind, 
placebo controlled 
trial (n=170) 

Indonesia 

Supplements were given daily 
during pregnancy until 
delivery (supplementation 
started <20 weeks gestation). 
Group 1: β-carotene (4.5 mg), 
group 2: zinc (30 mg), group 3: 
β-carotene (4.5mg) and zinc 
(30 mg), group 4: placebo. All 
groups were also given iron 
(30 mg) and folic acid (0.4 mg) 

 

2 samples collected at 1 and 6 months postpartum. 
Breast milk was collected from the right breast 45–
60 min after the last feeding from that breast. The 
breast was completely expressed with the use of a 
manual pump 

 

Supplement group 

Serum collected at 6 
months postpartum  

Median (range) breast milk zinc concentration, 1 month, group 
2: 49.3 (31.3, 62.1) μmol/l, placebo: 42.1 (31.1, 51.7) μmol/l. 6 
months, group 2: 15.3 (11.8, 27.2) μmol/l, placebo: 16.8 (11.2, 
24.3) μmol/l 

Mean (±SD) serum zinc 6 months, group 2: 11.4±1.4, μmol/L 
placebo: 11.7±1.3 (no significant difference between groups) 

Maternal zinc supplementation (30 mg/day) during pregnancy 
did not increase breast milk zinc at 1 or 6 months postpartum 
(statistics not reported) 

÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Donangelo 1989 Observational 
(n=83) 

Brazil 

No supplements were given by 
investigators 

1 sample collected between 9.00 and 10.00 am by 
manual expression before the infant was due to be 
fed (5-1 0ml) (stage of lactation was mixed, 
between 1-180 days)  

Atomic absorption spectrophotometry was used for 
analysis 

Infants were exclusively breastfed  

 

Serum collected at the 
same time as breast milk 
sample 

Mean (±SE) breast milk zinc concentration, 1-5 days 
postpartum (n=17): 5.94±0.55 µg/ml, 6-30 days (n=13): 
2.84±0.37 µg/ml, 31-280 days (n=10): 1.65±0.38 µg/ml 

Mean (±SE) serum zinc concentration, 1-5 days postpartum 
(n=19): 0.54±0.02 µg/ml, 6-30 days (n=18): 0.79±0.04 µg/ml, 
31-280 days (n=12): 0.76±0.05 µg/ml 

Maternal serum zinc was not associated with breast milk zinc at 
any stage of lactation (statistics not reported) 

 

÷ 

Dumrongwongsiri 
2015 

Observational 
(n=176) 

Thailand 

No supplementation were 
given by investigators 

1 sample was collected (n=34) between 4-6 months 
postpartum. Milk collection was done during 2:00-
4:00 p.m. on the visit day using an electric breast 
pump. Nipples and areolas were cleaned with 
deionized water before milk collection. The first 
15-20 ml of from one breast was obtained 

Inductively coupled plasma mass spectrometry was 
used for analysis 

Infants were either breastfed (exclusively and 
predominantly) or mixed feed 

Serum collected between 
4-6 months postpartum 
(n=44) 

Median (max, min) breast milk zinc concentration between 4 
and 6 months: 1.57 (3.2,0.50) mg/l 

Maternal serum zinc was associated with breast milk zinc 
(r=0.56, p=0.016) 

+ 

Feeley 1983 Observational 
(n=102) 

 

Greece 

No supplements were given by 
investigators, but 40% of 
participants took zinc 
supplements of at least 15 
mg/d during pregnancy and 
lactation 

3 samples collected, early transitional milk (days 4 
to 7 postpartum), transitional milk (days 10 to 14 
postpartum), mature milk (days 30 to 45 
postpartum). 30 ml was collected, with one-third of 
the sample after let down and before feeding 
(foremilk); one third half-way through the feeding, 
and one-third after feeding (hindmilk) 

Maternal self-
administered 
supplementation 
information  

Mean (±SEM) breast milk zinc concentrations in early 
transitional milk: 0.52.±0.02 μg/100g, in transitional milk: 
0.41±0.01 μg/100g, in mature milk: 0.29±0.01 μg/100g 

Maternal zinc supplementation (self-reported) did not increase 
breast milk zinc (statistics not reported) 

÷ 

Fung 1997 Observational  
(n=13) 

USA 

No supplements were given by 
investigators, but some of the 
participants consumed zinc 
containing supplements  

1 sample was collected between 7-9 weeks 
postpartum (breast milk collection method not 
clear) 

Laboratory method used not clear 

3 day weighed food 
records collected at the 
same time as breast milk 
sample 

Mean  breast milk zinc concentration: 26.3 μmol/24h 

Mean (±SEM) dietary zinc intake: 14.2±0.7 mg/day including 
zinc supplements 

Mean (±SEM) urinary zinc concentration: 1.18±1.39 μmol/24h 

Mean plasma zinc concentration were not reported  

÷ 
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First author, year Study design  
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setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

 
Urine collected at the 
same time as breast milk 
sample 

Plasma collected at the 
same time as breast milk 
sample 

Maternal plasma zinc was not associated with breast milk zinc 
(statistics not reported) 

Maternal urine zinc was not associated with breast milk zinc 
(statistics not shown) 

Maternal dietary zinc intake was not associated with breast milk 
zinc (statistics not shown) 

 

Gross 1998 Observational 
(n=91) 

Indonesia 

No supplements were given by 
investigators 

5 samples collected from each participant for 5 
consecutive days between 1-5 months postpartum 
(n=91). Milk from one breast was taken by a 
manual pump in the morning between 09.00 and 
11.00. The entire content of one breast was taken 
from the breast that was not last suckled 

Inductively coupled plasma atomic emission 
spectroscopy was used for analysis  

Plasma collected between 
1-5 months postpartum 
(n=86) 

Median (min, max) breast milk zinc concentration: 2.7 (0.5, 
12.8) mg/l 

Mean (±SD) plasma zinc concentration: 855±242 μg/l 

Maternal plasma zinc was not associated with breast milk zinc 
(r=0.10, p>0.05) 

÷ 

Hannan 2009 Observational 
(n=31)  

USA  

No supplements were given by 
investigators 

2 samples collected between 30-45 days 
postpartum (n=31), and between 75-90 days 
postpartum (n=17). Approximately 20–30 ml of 
milk was collected either by manual expression 
into pre-washed plastic vials, or via a pre-washed 
trace mineral-free breast pump and container. 

Flame atomic absorption spectrometry and neutron 
activation analysis was used for analysis 

24-hour recall at two 
time-points 

 

Mean (±SD) breast milk zinc concentration in early lactation: 
2.1±1.4 mg/l and late lactation: 2.0±1.7 mg/l 

Mean (±SD) dietary zinc intake, early lactating: 6.1±4.6 
mg/day, late lactation: 5.0±3.1 mg/day 

Maternal dietary zinc intake was not associated with breast milk 
zinc in early lactation (r=-0.03, p=0.9) however it was in late 
lactation (r=-0.48, p<0.05). 

÷ + 

Higashi 1982 Observational 
(n=65) 

Japan 

No supplements were given by 
investigators 

5 samples collected; at the first lactation 
(colostrum), one week (transitional milk), one 
month, 3 months and 5 months postpartum (mature 
milk). Milk were collected at morning by manual 
milking before the baby was due to be fed. 10 ml 
were obtained directly into clean polyethylene 
bottles, after breasts were cleaned twice with 
deionized water 

Serum collected 3 months 
postpartum (n=44) 

Mean (±SD) breast milk zinc concentration: colostrum: 
10.39±4.43 mg/l, at 1 week: 4.56±3.01 mg/l, 1 month: 
2.66±1.03 mg/l, 3 months: 1.14±0.67 mg/l, 5 months: 1.05±0.46 
mg/l 

Mean (±SD) zinc concentration in serum: 0.76±0.13 μg/l 

Maternal serum zinc was not associated with breast milk zinc 
(statistics not reported) 

÷ 
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Micronutrient supplementation 
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Atomic absorption spectrophotometry was used for 
analysis 

Khosravi 2007 Randomised 
double-blind, 
placebo controlled 
trial (n=138) 

Iran  

Supplements were given 
through lactation. The 
participants were given 100 mg 
of elemental zinc weekly 
(n=67) or a placebo (n=71) 
after 1 week postpartum  

6 samples were collected at 1 week (baseline) and 
1, 2, 3, 4, 5 months postpartum. 5-10 ml milk were 
hand expressed 

Atomic absorption spectrophotometer was used for 
analysis  

Infants were exclusively breastfed  

Supplement group  Mean (±SD) breast milk zinc concentration, 1 week (baseline), 
supplemented group (SG) (n=68): 310±138 μg/dl, placebo 
group (PG) (n=71): 322±161 μg/dl (not statistical significant). 1 
month SG (n=56): 226±84 μg/dl, PG (n=64): 212±90 μg/dl. 2 
months SG (n=49): 182±79 μg/dl, PG (n=59): 152±69 μg/dl. 3 
months, SG (n=48): 159±73 μg/dl, PG (n=58): 129±57 μg/dl. 4 
months, SG (n=45): 111±54 μg/dl, PG (n=56): 103±66 μg/dl. 5 
months, SG (n=43): 118±64 μg/dl, PG (n=56): 109±70 μg/dl 

Maternal zinc supplementation did not increase breast milk zinc 
concentration at 1, 4 or 5 months postpartum (p=0.3, p=0.2, 
p=0.3, p=0.3 respectively). It did increase breast milk zinc at 2 
and 3 months postpartum (p=0.02, p=0.005 respectively)  

 

÷ + 

Kirksey 1979 Observational  

(n=52) 

 

USA 

No supplements were given by 
investigators, however 64% 
took zinc containing 
supplements  

2 samples collected at 3 and 14 days postpartum 
(n=21). And for a sub-group 3 additional samples 
at 1-3 months (n=6), 5-7 months (n=8) and 1 year 
(n=5). Five to 10 mL of milk were obtained after 
milk let down at the first morning feeding. Samples 
were collected by manual expression into plastic 
vials 

Atomic absorption spectrophotometry was used for 
analysis 

 

Maternal self-
administered 
supplementation 
information 

Mean (±SD) breast milk zinc concentration, day 3: 4.61±1.06 
ppm, day 14: 3.12±1.02 ppm, 1-3 months: 2.04±0.54 ppm, 5-7 
months: 0.93±0.47 ppm, 1 year: 0.45±0.16 ppm (milk 
concentrations were not reported according to supplement 
group)  

Maternal zinc supplementation did not increase breast milk zinc 
(statistics not reported) 

÷ 

Krebs 1985 Intervention, no 
randomisation or 
placebo group 
(n=53) 

USA 

Supplements were given 
during lactation. 15 mg of zinc 
was given daily (n=14), or 
nothing (n=39). 43% of 
supplemented participants 
started zinc supplementation 
during first trimester of 
pregnancy, due to participation 
in a different study 

 

Breast milk samples were collected starting from 1 
months postpartum, at monthly intervals thereafter 
until lactation was stopped. Milk samples of 5 ml 
were collected by manual expression directly into 
zinc-free polypropylene containers  

Flame atomic absorption spectrophotometry was 
used for analysis  

 

Supplement group 

 

Mean (±SD) breast milk zinc concentration, 1 month 
supplemented group (SG) (n=14): 2.83±1.05 μg/ml, non-
supplemented group (NG) (n=25): 2.65±0.81μg/ml, 9 months 
SG (n=4): 0.82±0.54 μg/ml, NG (n=8): 0.67±0.40 μg/ml 
(concentrations at the remaining time-points were presented in a 
figure and not readable)  

Maternal zinc supplementation was associated with a rate of 
decline in milk zinc concentration that was significantly less 
than that for the non-supplemented group (p=0.03) 

+ 

Krebs 1995 Randomised, 
double-blind, 

Supplements were given 
through lactation, starting 2 

10 samples collected at 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 
months postpartum. 5-10 ml were hand expressed 

Supplement group  Mean (±SD) breast milk zinc concentration, 0.5 months (data 
pooled, as no difference between the two groups): 59.4±15.1 

÷ 
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placebo controlled 
supplementation 
trial (n=71) 

USA 

weeks after delivery. A 
subgroup of participants were 
enrolled in pregnancy (<20 
weeks of gestation). 
Participants were randomised 
to, group 1:a tablet containing 
15 mg of a day (n=40)  or, 
group 2: a placebo group 
(n=31) 

after subjects cleaned the nipple and areola with 
deionized water. For each of the first 29 
participants, a mid-feeding sample was obtained 
with every feeding and from each breast during 3 
days at 0.5, 3, 5 and 7 months. The remaining 42 
participants collected three mid-feeding samples 
per day, with more or equal to 4 hours between 
samples, during 3 days. For the remaining visits, a 
single sample was obtained  

Flame atomic absorption spectrophotometry was 
used for analysis  

 

Plasma collected at 0.5, 3, 
5 and 7 months 
postpartum (n=71) 

3 day dietary records at 
0.5, 3, 5 and 7 months 
postpartum (n=71) 

 

μmol/l, 1 month: 46.8±17.1 μmol/l, 2 months: 31.2±12.7 
μmol/l, 3 months: 22.6±9.9 μmol/l, 4 months: 22.0±10.1 μmol/l, 
5 months: 17.7±9.5 μmol/l, 6 months: 16.7±10.2 μmol/l, 7 
months: 13.0±7.8 μmol/l, 8 months: 13.3±8.9 μmol/l, 9 months: 
11.9±7.8 μmol/l 

Mean (±SD) plasma zinc, 0.5 months supplemented group 
(SG): 12.2±1.5 μmol/l, placebo group (PG): 12.2±1.0 μmol/l, 3 
months SG: 13.6±1.7 μmol/l, PG: 13.2±2.1 μmol/l, 5 months 
SG: 13.5±1.3 μmol/l, PG: 12.8±1.4 μmol/l, 7 months SG: 
13.6±1.9 μmol/l, PG: 13.3±1.8 μmol/l (significantly different) 

Mean (±SD) dietary zinc intake was overall across the study 
period, SG: 25.7±3.9 mg/day (including the supplement), PG: 
13.0±3.4 mg/day 

Maternal zinc supplementation during pregnancy or lactation 
did not increase breast milk zinc (p>0.05)   

Maternal plasma zinc was not associated with breast milk zinc 
(statistics not reported) 

Maternal dietary zinc intake was not associated with breast milk 
zinc (statistics not reported) 

 

Mahdavi 2010 Observational 
(n=182) 

 

Iran 

No supplements were given by 
investigators 

1 sample collected between 90-120 days 
postpartum. Breast milk (10–15 ml) samples were 
collected into metal free tubes by self-expression 
before nursing the baby in the morning 

Laboratory method used not clear 

Infants were exclusively breastfed 

 

24-hour recall method for 
3 days (one weekend day 
included) 

Mean (±SD) breast milk zinc concentration: 1.93±0.5 mg/l 

Mean (±SD) dietary zinc intake was 6.1±2.5 mg/day 

Maternal dietary intake of zinc was not associated with breast 
milk zinc (β=0.12, p=0.1)  

 

÷ 

Moser 1983 Observational 
(n=23) 

 

USA 

No supplements were given by 
investigators  

3 samples collected at 1, 2, and 6 months 
postpartum. 30 ml of breast milk was collected in 
the morning as a part of the first morning feeding 
after 6 am and contained approximately half 
foremilk and half hindmilk. Samples were hand 
expressed into polypropylene containers 

Atomic absorption spectrophotometry was used for 
analysis 

 

Chemical analysis of 3-
day duplicate plate food 
composites at 1, 3 and 6 
months postpartum  

 

Plasma collected at 1, 3, 
and 6 months postpartum 

Mean (±SEM) breast milk zinc concentration, 1 month: 2.6±0.2 
μg/ml, 2 months: 1.3±0.1 μg/ml, 6 months: 1.1±0.1 μg/ml 
Mean (±SEM) plasma zinc, 1 month: 79.1±1.7 μg/100ml, 3 
months: 87.6±2.2 μg/100ml, 6 months: 84.4±2.4 μg/100ml 
Mean (±SEM) dietary zinc intake, 1 month: 9.4±0.5 mg/day, 3 
months: 12.8±1.8 mg/day, 6 months: 9.6±0.7 mg/day. 

Maternal serum zinc was not associated with breast milk zinc at 
any time-point (statistics not reported) Maternal dietary zinc 

÷ 
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intake was not associated with breast milk zinc at any time-
point (statistics not reported)  

Moser-Villon 
1990 

 

Randomised, 
double-blinded 
controlled trial, no 
placebo group 
(n=40) 

 

USA 

Supplements were given by 
investigators starting from 
delivery to 9 months 
postpartum. Participants were 
given a multiple micronutrient 
tablet daily, that only differed 

in amount of zinc and B6, 
group 1: 0 mg zinc and 0.5 mg 

B6 (n=10), group 2: 0 zinc 

and 4.0 mg B6 (n=10), group 

3: 25 mg zinc and 0.5 mg B6 
(n=10), group 4: 25 mg zinc 

and 4.0 mg B6 (n=10) 

6 samples collected at 1, 2, 4, 12, 24, 36 weeks 
months postpartum. Samples was collected into 
polypropylene containers from the first breastfeed 
of the day, by manually expression. Half from the 
beginning and half from the end of the feeding 

 

Atomic absorption spectrophotometry was used for 
analysis  

Supplement group  

 

Plasma collected at 1 and 
2 weeks and 1, 3, 6 and 9 
months postpartum  

  

 

 

Mean (±SEM) breast milk zinc concentration, 1 week group 1:  
70.6±7.3 μmol/l, group 3: 66.7±9.4 μmol/l, 2 weeks group 1: 
55.5±5.1 μmol/l, group 3: 54.5±5.7 μmol/l, 4 weeks group 1: 
41.8±2.7 μmol/l, group 3: 40.2±4.7 μmol/l, 12 weeks group 1: 
26.3±1.9 μmol/l, group 3: 19.4±3.0 μmol/l, 24 weeks group 1: 
21.0±3.4 μmol/l, group 3: 12.6±2.5 μmol/l, 36 weeks group 1: 
11.3±1.2 μmol/l, group 3: 9.8±0.6 μmol/l 

Mean (±SEM) plasma zinc concentration, 1 week group 1: 
11.8±0.5 μmol/l, group 3: 12.3±0.4 μmol/l, 2 weeks group 1: 
12.1±0.5 μmol/l, group 3: 13.3±0.4 μmol/l, 4 weeks group 1: 
12.3±0.5 μmol/l, group 3: 13.5±0.4 μmol/l, 12 weeks group 1: 
14.4±0.5 μmol/l, group 3: 14.1±0.4 μmol/l, 24 weeks group 1: 
12.2±0.8 μmol/l, group 3: 13.1±1.1 μmol/l, 36 weeks group 1: 
14.7±0.9 μmol/l, group 3: 14.0±1.1 μmol/l (not significantly 
different)  

Maternal zinc supplementation during lactation did not increase 
breast milk zinc (statistics not reported)  

 

÷ 

Ortega 1997 Observational 
(n=57) 

Spain 

 

No supplements were given by 
investigators 

2 samples collected at day 13-14 (transitional milk) 
and 40 days (mature milk) postpartum. Samples 
were collected between 10 and 11 am by manual 
expression of a 5 ml sample from each breast at the 
beginning and end of a feed 

Atomic absorption spectroscopy was used for 
analysis 

 

5 days dietary record and 
FFQs collected during 
third trimester of 
pregnancy, which was 
used to divide the 
participants into two 
groups 1) zinc intake 
<50% of RI, 2) zinc 
intake ≥50% of RI 

Serum collected during 
third trimester of 
pregnancy  

 

Mean (±SD) breast milk zinc concentration, transitional milk, 
group 1: 46.7±7.3 μmol/l, group 2: 51.0±9.2 μmol/l, mature 
milk, group 1: 28.7±6.2 μmol/l, group 2: 33.1±8.0 μmol/l 

Mean (±SD) serum zinc third trimester of pregnancy group 1: 
12.0±1.5 μmol/l, group 2: 13.3±2.6 μmol/l 

Mean (±SD) dietary zinc intake group 1: 8.3±1.0 mg/day, group 
2: 12.3±1.9 mg/day (significantly different) 

Maternal serum zinc during third trimester of pregnancy was 
associated with breast milk zinc in transitional (r=0.5275, 
p<0.05) and mature milk (r=0.6075, p<0.05) 

Maternal dietary zinc intake during third trimester of pregnancy 
was not associated with transitional milk zinc (p>0.05), but with 
mature milk zinc (p<0.05) 

 

+ ÷ 
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Rajalakshmi 1980 Observational 
(n=412 from 
urban areas, 
n=208 from rural 
areas)  

India 

No supplements were given by 
investigators 

1 sample collected between delivery and 13 
months. Some participants delivered more than one 
sample. Samples were collected by manual 
expression just before the baby was due to feed. 10 
ml were obtained and delivered into polyethylene 
centrifuge tubes 

Varian-Techtron-100 atomic absorption flame 
spectrophotometer was used for analysis 

 

Serum collected between 
1 and 6 months 
postpartum (n=152) 

Mean (±SEM) breast milk zinc concentration, colostrum (n=76) 
5.32±0.312 μg/ml, transitional (n=31) (6-10 days): 4.72±0.275 
μg/ml, 11 days to 1 month (n=28): 3.33±0.266 μg/ml, 1-3 
months (n=77): 2.00±0.101 μg/ml, 4-6 months (n=89): 
1.33±0.055 μg/ml, 7-12 months (n=88): 1.12±0.052 μg/ml, 13 
months and above (n=23): 1.16±0.116 μg/ml 

Mean (±SEM) serum zinc, 1-6 months: 118.1±3.990 μg/100ml 

Maternal serum zinc was not associated with breast milk zinc 
between 1 to 6 months postpartum (β=-0.12, p>0.05) 

 

÷ 

Samuel 2014 Observational 
(n=50) 

India  

No supplements were given by 
investigators 

3 samples were collected at 1, 3 and 6 months 
postpartum. Participants provided three mid-
feeding samples of 5 ml, one each in the morning, 
afternoon and evening. Milk samples were 
collected in acid washed plastic bottles by 

hand expression after the nipple and areola were 
cleaned with deionised water 

Flame atomic absorption spectrophotometry was 
used for analysis 

Serum collected at 3 and 
6 months postpartum 

Interviewer-administered 
24-hour recall collected at 
1, 3 and 6 months 
postpartum 

 

Median (IQR) breast milk zinc concentration, 1 month: 2.50 
(2.01, 3.26) mg/l, 3 months: 1.37 (0.89, 1.79) mg/l, 6 months: 
1.17 (0.80, 1.60) mg/l 

Mean (±SD) serum zinc at 3 months: 83.5±26.5 μg/l, 6 months: 
92.2±25.1 μg/l 

Mean (±SD) dietary zinc intake, 1 month: 7.6±2.9 mg/day, 3 
months: 7.7±2.3 mg/day, 6 months:7.8±2.8 mg/day 

Maternal serum zinc was not associated with breast milk zinc 
(statistics not reported)  

Maternal dietary zinc intake was not associated with breast milk 
zinc (statistics not reported)  

 

÷ 

Severi 2013 Observational 
(n=151) 

Uruguay  

No supplements were given by 
investigators  

1 sample collected at 4 months postpartum. After 
washing the breast with de-ionized water, milk 
samples of 5 ml were collected at 5 minutes of 
feeding by manual expression directly into zinc 
free polypropylene containers 

Flame atomic absorption spectrophotometer was 
used for analysis 

 

Plasma collected in early 
pregnancy (<14 weeks 
gestation)) and at 4 
months postpartum 
(n=123) 

(not clear if pregnancy or 
lactation plasma data was 
used to assess association 
with breast milk zinc) 

 

Median breast milk zinc concentration: 1.20 mg/l 

Mean (±SD) plasma zinc in early pregnancy: 85.2±13.6 μg/dl, 4 
months: 84.6±12.2 μg/dl 

Maternal plasma zinc was not associated with breast milk zinc 
(r=-0.02, p>0.05)  

÷ 

Stuetz 2012 (eur) Pre-post 
intervention, no 
randomisation 

Zinc fortified wheat flour 
(estimated daily intake: 2.7 
mg) was provided for all 

2 samples were collected 1 before fortification of 
flour was introduced at 12 weeks postpartum and 1 
sample after flour fortification was introduced (two 

Fortification (Pre-post 
intervention design, the 
study used pre-

Geometric mean breast milk zinc concentration breast milk, 
before fortification: 1.78 mg/l, after fortification: 1.79 mg/l 

÷ 
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(n=86 before 
fortification, n=99 
after fortification) 

Thai-Myanmar 
border (Maela 
Refugee camp)  

participants (the flour was also 
fortified with other 
micronutrients) 

different groups of women). Milk samples were 
collected by manual expression into glass tubes 
wrapped in aluminium foil in order to protect 
against degradation 

Inductively coupled plasma mass spectrometry was 
used for analysis 

 

supplement 
concentrations as 
comparison group) 

 

 

Maternal intake of zinc fortified flour did not influence breast 
milk zinc (p>0.05). 

 

Vaughan 1979 

 

Observational 
(n=38) 

 

USA 

No supplements were given by 
investigators 

Monthly milk samples between 1-31 months 
postpartum. Participants remained in the study on 
an average of 4 consecutive months. 150-200 ml of 
milk was hand expressed into acid-washed glass. 
Participants were instructed to collect the milk over 
a period of 3 to 5 days, at morning, afternoon, and 
evening feedings and at random intervals within 
the feeding 

Atomic absorption spectrophotometer was used for 
analysis 

Serum sample collected 
during the same 3 to 5-
day period of milk 
collection for the 
particular month (n=24)  

3 day dietary records. 
Intakes were recorded 
during the same 3 to 5-
day period of milk 
collection (n=11) 

 

Mean (±SEM) breast milk zinc concentration, 1-3 months: 
1.60±0.23 (unit not clear) (n=28), 4-6 months: 1.05±0.15 (unit 
not clear)  (n=39) 

Mean serum zinc concentration, 1-3 months: 1.7 μg/ml, 4-6 
months: 2.3 μg/ml 

Mean dietary iron intake 4-6 months: 12.7 mg/day  

Maternal serum zinc was not associated with breast milk zinc 
from the same stage of lactation (statistics not reported) 

Maternal dietary intake of zinc was not associated with breast 
milk zinc from the same stage of lactation (statistics not 
reported) 

 

÷ 

Vuori 1980 

 

Observational 
(n=27) 

Finland 

No supplements were given by 
investigators 

Not clear how many breast milk samples was 
collected and when. Milk aliquots of 8 ml were 
obtained at the beginning and at the end of each 
feed during a period of 24-hours and pooled to one 
sample 

Ash solutions by the flame atomic absorption 
spectrophotometric method was used for analysis 

Two 7 day food records. 
The first record from the 
first survey period 
between 6-8 weeks and 
the second record from 
the second survey period 
between 17 to 22 weeks 
postpartum (n=15). 

Mean (±SD) breast milk zinc concentration, 6-8 weeks: 
1.89±0.74 mg/l, 17-22 week: 0.72±0.44 mg/l 

Mean (±SD) dietary zinc intake: 13.7±2.7 mg/day in first survey 
period and 12.8±2.8 mg/day in second survey period 

Maternal dietary zinc intake was not associated with breast milk 
zinc (statistics not reported) 

÷ 

Wasowicz 2001 Observational 
(n=131) 

Poland 

No supplements were given by 
investigators 

 

3 samples collected at 0-4 days (colostrum, n=43), 
5-9 days (transitional milk, n=46) and 10-30 days 
(mature milk, n=41). Milk samples (5–7 ml) were 
hand expressed after subjects cleaned the nipple 
and areola with deionized water 

Inductively coupled plasma–atomic electron 
spectrometry was used for analysis 

 

Plasma collected at 0-4 
days (n=43), 5-9 days 
(n=46) and 10-30 days 
(n=41) 

Mean (±SD) breast milk zinc concentration: colostrum 8.2±2.8 
mg/l, transitional milk: 3.7±1.8 mg/l, mature milk: 1.4±0.7 mg/l 

Mean (±SD) plasma zinc concentration, 0-4 days: 0.51±0.13 
mg/l, 5-9 days: 0.62±0.23 mg/l, 10-30 days: 0.76±0.20 mg/l 

Maternal plasma zinc was associated with breast milk zinc in 
colostrum (r=0.506, p<0.001). No association was found with 
transitional or mature milk (statistics not reported) 

+ ÷ 
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Table 2. Studies on the relationship between maternal nutritional status or dietary intake and breast milk mineral concentrations 

First author, year Study design  
(sample size) and 
setting 

Micronutrient supplementation 
status  

Milk samples Maternal nutritional 
assessment 

Main results  Relationship  

Zhao 2014 

 

Observational 
(n=90) 

China (Beijing, 
Guangzhou and 
Suzhou, urban 
areas). 

 

No supplements were given by 
investigators 

1 sample collected between 5−240 days 
postpartum. All were instructed to empty one 
breast during 6 to 7 a.m. At 9 to 11 a.m., the full 
milk of one breast (which was emptied before) was 
collected using an electric breast pump. Fore and 
hind milk were gently mixed. 

Inductively coupled plasma mass spectrometry was 
used for analysis 

FFQs and one cycle of 
24-hour dietary recall 
during lactation 

Mean (±SD) breast milk zinc concentration, 5-11 days: 3.9±1.5 
mg/kg, 12-30 days: 2.8±1.2 mg/kg, 31-60 days: 2.0±0.7 mg/kg, 
61-120 days: 1.5±0.6 mg/kg, 121-124 days: 1.3±0.5 mg/kg 

Maternal dietary intake of zinc was not associated with breast 
milk zinc after adjusting for stage of lactation (r=-0.063, p=0.2) 

÷ 
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2.3 Discussion 

This systematic literature review included 141 studies, all providing an insight to the influence 

of maternal micronutrient supplementation, food fortification, dietary intake and nutritional 

status on breast milk micronutrient composition in women living in contrasting settings. 

It is clear that all micronutrients in human breast milk are not equally influenced by maternal 

nutritional intake or status. Generally, milk water-soluble vitamin composition was influenced 

by maternal intake and status (except for folate). Less influenced was breast milk fat-soluble 

vitamin composition, likely due to buffering effects of maternal stores, and reasonably unaffected 

was breast milk mineral concentrations (except for iodine and selenium). This overall conclusion 

was also reached by Allen (1994) (121) who non-systematically reviewed the evidence available 

up until 1994.  

For some of the micronutrients, the maternal nutritional influences had a different influence in 

well-nourished compared to poorly-nourished women. For instance, thiamin supplementation 

only influenced the breast milk thiamin concentration of women with a poor thiamin status, as 

opposed to well-nourished women. This suggests that as maternal thiamin intake increases the 

concentration in milk is increased. However for many vitamins, the concentration reaches a 

plateau when the mother is sufficient and does not respond to further supplementation (27). 

A difference in the influence was also seen between maternal status and maternal dietary intake 

for some of the micronutrients. For instance, maternal iodine intake (iodine supplements and 

fortified salt) was overall a better predictor of BMIC than maternal iodine status measured as 

urinary iodine. This is likely due to the uptake of iodine by the mammary gland compensating 

for inadequate maternal iodine status by reducing maternal iodine reserves (273). An association 

between urinary iodine and breast milk concentration is therefore often inconsistent. 

Additional data are however needed to make any causal conclusions. For many of the 

micronutrients (especially the water-soluble vitamins) few studies of high-quality design were 

available. For instance, of the studies exploring the B-vitamins, only 6 out of all 55 included 

studies were RCTs.  

The comparability of the included studies was compromised by their dissimilar design and 

methods, in relation to the following: breast milk collection methods, the time of breast milk 

collection according to stage of lactation, the reference period of maternal status/diet/supplement 
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(on the day of breast milk collection, a week prior to collection or during pregnancy), the lack of 

breast milk volume collection and information on infant feeding practices, the difference in study 

design and statistical methods, and the lack of adjustment for confounding variables in the 

observational studies. Many studies had a small sample size, which may have led to inconsistent 

or null results even with the existence of real associations. 

There were many different breast milk sampling methodologies in the included studies, ranging 

from a full breast expression to before or mid-fed sample. Comparing studies with different 

sample methodologies is especially problematic when measuring breast milk fat-soluble 

vitamins. Fat-soluble vitamin concentrations are strongly associated with milk fat, and are found 

in higher concentrations in hindmilk than foremilk (131, 190, 197). A difference in mineral or 

water-soluble vitamin composition between foremilk and hindmilk has generally not been 

observed (105, 107, 274). A few studies have found higher thiamin and riboflavin concentrations 

in hindmilk (274-276), however the differences were small. Inconsistent differences in the 

composition of breast milk from the right and left breast have been observed (277), although the 

likely reason for this difference is due to mastitis (105). The gold standard collection is collecting 

all breast milk expressed over 24 hours, with multiple collections across lactation from the same 

mother (88). Nevertheless, this is often not feasible, alternatively a full breast expression, 

standardised to time of day can be used (88). No studies from this review used the gold standard 

collection method, and only a few studies used the second best option. 

Comparability was further compromised by inconsistencies among the laboratory methods used. 

Using the example of iodine, it was recently demonstrated that the calorimetric method based on 

the Sandell-Kolthoff reaction, used in five of the included studies measuring breast milk iodine 

(237, 239, 242, 243, 246) is unreliable  (278, 279). ICP-MS is now considered the gold standard 

for breast milk iodine analysis (280), and this method was used in only three of the included 

iodine studies (227, 235, 241). This is also the case for vitamin B12, where a new method was 

developed in 2009, successfully removing vitamin B12 in breast milk from apo-HC (281), 

estimating that previous quantifying methods would have either under- or over reported the 

amount of vitamin B12 in breast milk depending on the method used for pre-treatment and 

subsequent assay (281). 

Almost all the intervention studies included in this review, provided maternal supplementation 

during lactation, and only a few studies investigated the effect of maternal nutrition during 

pregnancy on breast milk micronutrient composition.    
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2.3.1 Conclusion 

In conclusion, this systematic review of the available literature highlights a weakness in the 

evidence for the relationship between maternal nutritional status, intake and breast milk 

micronutrient composition for the majority of micronutrients reviewed, and how difficult and 

problematic it is to compare results across studies. There is a need for more high-quality data 

where breast milk samples are collected longitudinally, and where standard methods for breast 

milk expression, collection, laboratory analysis methods and statistical methods, adjusting for 

important confounding variables, are used. 
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Chapter 3 

Setting: The Gambia 

Data and samples used in Chapters 5 to 8 of this thesis were collected from a randomised trial 

conducted in the rural West Kiang region of The Gambia. The Gambia is a small, low-income 

country in West Africa, with two million inhabitants. Approximately 40% of the population live 

in rural areas (282). 

West Kiang is a rural district in the Lower River Region and the population consists of  

approximately 14,000 people spread across 36 villages (283) (Figure 5). Keneba is the largest 

village in the West Kiang region (283). In the 1940’s a Medical Research Council (MRC) funded 

research programme was established in this area by Professor Sir Ian McGregor, with the explicit 

remit to investigate the relationship between parasitic infections and  malnutrition (284). In 1974, 

a permanent, MRC-funded field station was established in Keneba, initiating a permanent 

research programme alongside the provision of free health care to the West Kiang population 

(284).  

In West Kiang, the majority of the population is of Mandinka ethnicity (80%). The remaining 

ethnicities are Fula (16%), Jola (2.4%) and other (1.3%) (283). The predominantly religion is 

Muslim, and polygamy is widely practised (283). Life expectancy of West Kiang women was 73 

years and 65 years for men in 2013 (283), which is higher than the average life expectancy for 

The Gambia; 67 years for women and 63 years for men (282). This difference is likely due to 

better access to a higher standard of health care (283).  
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Figure 5. Location of MRC Keneba within West Kiang, The Gambia.  

Village circle sizes are proportional to population, and dark grey villages are ‘core’ villages, which are the villages 
closest to the MRC. From Hennig et al (2015) (283). 

The main livelihood in West Kiang is rural subsistence farming, and the country’s economy relies 

predominantly on agriculture, making the population vulnerable to increasingly irregular rainfall 

and drought (285). Women are the main workforce in regards to agricultural labour and cooking 

(286), whereas men are mainly involved in groundnut cultivation, which traditionally is the main 

cash crop. The food consumed in West Kiang is mostly grown locally, and consists of a staple 

(rice, millets or maize) with a sauce made from a limited number of ingredients such as oil, 

ground nuts, green leaves, fish or vegetables (287). Meat intake is low in this population, with 

beef, goat or chicken being consumed only occasionally. Fish is consumed more regularly, due 

to the proximity to the river Gambia. 
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3.1 Seasonality  

The environmental conditions in rural Gambia are characterised by a long, hot and dry season 

from November until May and a shorter wet season from June until October (288) (Figure 6). 

The staple crops are harvested between September and December, so food supplies are particular 

plentiful in November until December. However, because farming is dependent on the rains, 

there is a limited window for agriculture and the resulting crops are not enough to last for the 

entire year, and a ‘hungry season’ develops in June and lasts until October (288). An increase in 

infections are experienced during the wet season, including malaria, pneumonia and diarrhoea 

(289).  

 
Figure 6. The Gambian rainy (a) and dry (b) season in Keneba, West Kiang.  

Original photo source: Andrew Prentice. 

This scarcity of food is further worsened by laborious seasonal farm work, where the land is 

cultivated during the hungry season. This results in an average weight loss of 3-6 kg in women 

in every hungry season (288). Even pregnant and lactating women participate in farm work, 

preparing the land prior to the hungry season, planting and weeding during the hungry season, 

and harvesting in the harvest season (290). The highly labour intensive work compounded by 

food shortage and increased exposure to infections, leads to a weight gain in pregnant women of 

1400 g/month in the dry season and only 400 g/month in the hungry season (291). A difference 

in weight gain during pregnancy according to season has also been demonstrated in a more recent 

study (292).  
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Infants born in the hungry season are exposed to these nutritional stressors in mid-to-late foetal 

life, resulting in a lower birth weight compared with infants born in the harvest season (293). In 

this environment, birth during the annual hungry season is correlated with a higher mortality from 

infectious diseases in young adulthood (294). Seasonal effects have also been observed on 

prematurity and small-for-gestational age births (290).  

3.2 Micronutrient status  

Because of the low intake of fruit, vegetables, and animal source products, diets in West Kiang 

are low in micronutrients and the population has consequently a low status of several 

micronutrients.   

3.2.1 Vitamins 

Most of the work on vitamins in this population dates back to the 1980s. Moderate vitamin A 

deficiency has been recorded in pregnant and lactating women (295), along with riboflavin 

deficiency in infants and young children (81). Vitamin C status in this population is strongly 

determined by seasonal availability of mangoes, which are available during only May and June 

(183). Vitamin D status is adequate due to year long exposure to sunshine (296). 

A more contemporary study by Dominguez-Salas et al (2013) (297) found that the mean dietary 

intake of folate, riboflavin, vitamin B6 and choline in women of reproductive age over a 12 

months period were significantly below the current international recommendations expressed as 

estimated average requirement (EAR). The intake of vitamin B12 was found to be 2.7 μg/day, just 

above the EAR of 2.0 μg/day. The low intake of several micronutrients has resulted in 

deficiencies being commonly experienced. Among these women, Dominguez-Salas et al (2013) 

(297) found that a significant percentage of the study population was below the range of adequacy 

for riboflavin (90%), choline (79%), vitamin B12 (19%) and folate (18%). For total vitamin B6 

the mean concentration was 39.7 nmol/l, however no suitable cut-off for adequacy was identified. 

Thiamin deficiency has historically not been an issue in this setting, however back in 1988 an 

outbreak of beri-beri occurred, which was resolved with distribution of thiamin supplements 

(298). 
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3.2.2 Minerals 

Calcium has been of particular interest in this rural Gambian population, with the implementation 

of several studies over the years (e.g. (211, 212, 299)). Calcium intake and status are low in this 

population; however, a prenatal calcium supplementation did not benefit breast milk calcium 

concentrations, infant weight, growth or bone mineral status (211). Gambian women have likely 

adapted to a low dietary calcium intake (299). Iron physiology and deficiency has also been 

widely investigated in the West Kiang population (e.g (300-303)), especially in pregnant women 

who have high rates of anaemia.  

Iodine status has rarely been investigated in rural Gambia. Initial results from a recent pilot study 

found iodine status to be low in this rural population. School children (n=204) had a median 

urinary iodine concentration of 50 μg/l (cut-off for insufficient intake is a median <100 μ/l) and 

lactation women (n=63) had a concentration of 39 μg/l (cut-off for insufficient iodine intake is a 

median <100 μ/l), indicating persistence of moderate iodine deficiency (R Wegmüller & M 

Andersson, unpublished data). National salt iodisation programmes have been implemented in 

The Gambia, however the coverage of adequate iodised salt is poor. A MICS survey from 2010 

tested iodine levels in household salt, and found that only 22% of the households were using 

adequately iodised salt (304). This percentage is likely to be even lower in rural areas, as here it 

is estimated that 80% of the women locally source their salt by the river instead of purchasing 

the iodised salt available in the local shops (S Dalzell, unpublished data).  

3.3 Infant and childhood growth 

Rural Gambian infants are born small, show catch up growth in the early months, and after around 

three months of life they show growth faltering for the remainder of infancy and early childhood 

(54, 74). A recent retrospective cohort study, which used routine growth monitoring data 

collected from infant welfare clinics in Keneba, showed that between year 2000 and 2012, 30% 

of rural Gambian children were stunted, 11% wasted and 22% underweight at two years of age 

(74). 
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3.4 Aims and objectives (II) 

The systematic literature review presented in Chapter 2, highlighted that human milk 

micronutrient composition is influenced by the mother’s nutritional status and intake of 

especially water-soluble vitamins and iodine and selenium. Micronutrients most important for 

public health nutrition can therefore be divided into two groups; group I nutrients (thiamin, 

riboflavin, vitamin B6, vitamin B12, vitamin A, vitamin D, selenium, and iodine) are of most 

interest because the concentrations are considerably reduced by maternal depletion. In contrast, 

the concentration of group II nutrients (folate, calcium, iron, copper, and zinc) in breast milk is 

relatively unaffected by maternal nutritional status or dietary intake.  

Chapters 6, 7 and 8 of this thesis focus on the following micronutrients: thiamin, riboflavin, 

vitamin B6, vitamin B12, and iodine. These micronutrients were selected because, as shown in 

Chapter 2, maternal nutritional status and intake influence the concentrations of these five 

micronutrients in breast milk. They were furthermore selected because as above presented 

evidence suggests that maternal status and dietary intake of these micronutrients are low in rural 

Gambia, increasing the risk of maternal and infant deficiency of particular these micronutrients.  

From the systematic literature review it is also clear that few studies, and even less trials, exist 

on how maternal nutrition during pregnancy influence breast milk micronutrient composition. As 

presented in the introduction in Chapter 1, prenatal multiple micronutrients supplementation have 

a positive impact on birth outcomes, however whether this positive effect is carried over into the 

lactation period to benefit the mother, breast milk composition and the infant is unclear. 

The remaining research objectives of this thesis are to:  

1. Identify how multiple micronutrient supplementation during pregnancy influences maternal 

iodine status, breast milk iodine concentration and infant iodine status in rural Gambia 

(Chapter 6). 

 

2. Identify how multiple micronutrient supplementation during pregnancy influences maternal 

vitamin B12 status, breast milk vitamin B12 concentration and infant vitamin B12 status in rural 

Gambia (Chapter 7). 
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3. Identify how multiple micronutrient supplementation during pregnancy influences maternal 

riboflavin and vitamin B6 status and breast milk thiamin, riboflavin and vitamin B6 

concentrations in rural Gambia (Chapter 8).
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Chapter 4 

Methods and subjects 

In Chapters 5 to 8, data and samples collected as part of the Early Nutrition and Immune 

Development (ENID) trial, were used. This Chapter provides an overview of the ENID trial, a 

detailed description of the exposure and outcome measures used in this thesis and details of the 

overall statistical methods used. Specific laboratory and statistical descriptions relevant to 

individual Chapters are not described here, but embedded within the relevant Chapters. 

4.1 Study design and population  

The randomised, partially blinded trial, ENID (ISRCTN49285450), was conducted in The 

Gambia between April 2010 and February 2015, with the main outcome to assess the effect of 

combined prenatal and infant nutritional supplementation on infant immune development (305). 

The analyses presented in this thesis use ENID data, however these analyses were not planned in 

the original study design.  

Pregnant women were randomised to a nutritional supplement when they booked for antenatal 

care, which was before 20 weeks of gestation (baseline), with supplementation continuing until 

delivery. Their infants were further randomised from 6 to 12 months of age to a micronutrient 

supplement or placebo (305). In this thesis infant growth data from the ENID-Growth study was 

additionaly used, which was an extension to the main ENID trial, where the infant 

supplementation was continued up to 18 months of age, with infants followed to two years of 

age. In addition maternal biological samples (urine and postpartum blood) that were collected 

from ENID-Bone, an extension to the ENID trial on bone health were used. 
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The trial took place in the West Kiang region of The Gambia a rural, savannah region where the 

community relies on subsistence farming. The trial was based in all 36 villages registered in the 

West Kiang Demographic Surveillance System (DSS) (283). Using the DSS, all women of 

reproductive age (18-45 years) were invited to participate in the ENID trial. The exclusion criteria 

were women: who were currently pregnant (>20 weeks gestation), had a multiple pregnancy, 

currently enrolled in another study, severely anaemic (haemoglobin < 7 g/dl), HIV positive, or 

who had reached the onset of menopause (305). Each month starting from enrolment, a 

fieldworker interviewed participating women, and if menses was missed, a urine sample was 

collected for pregnancy testing. Women that were confirmed to be pregnant (and <20 weeks 

gestation, confirmed by ultrasound), were randomised into the trial and started supplementation 

the following week and continued until delivery (305). 

The ENID, ENID-Growth and ENID-Bone studies were approved by the joint Gambia 

Government/MRC Unit The Gambia Ethics Committee (project numbers SCC1126v2, L2010.77 

and L2009.66, respectively). Written informed consent was obtained from all women prior to 

enrolment into the trial. The trial observed Good Clinical Practice Standards and the current 

version of the Helsinki Declaration and was registered at ISRCTN49285450.  

4.1.1 Intervention in pregnancy and infancy  

Pregnant women were randomised and partially blinded to one of the following four intervention 

arms in early pregnancy (<20 weeks gestation) (305):  

1. Iron-folic acid (FeFol), representing the usual standard of care during pregnancy as per 

Gambian Government Guidelines (iron 60 mg/day, folic acid 400 μ/day) 

2. Multiple micronutrients (MMN), a combination of 15 micronutrients specifically designed 

and formulated by UNICEF, the World Health Organization (WHO) and United Nations 

University (1999) (306) for use during pregnancy in effectiveness trials in resource-poor 

settings. With the exception of iron and folic acid each tablet contained twice the 

recommended daily allowance (RDA) of each micronutrient. The decision to supplement at 

twice the RDA was based on a study from West Africa suggesting that 2xRDA were more 

effective with regard to birth outcomes (307). The FeFol and MMN supplements were 

formulated as tablets and manufactured by Scanpharm, Birkerød, Denmark. 
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3. Protein-energy and iron-folic acid (PE + FeFol), a lipid based nutritional supplement (LNS) 

providing the same amount of iron and folic acid as the FeFol arm but with the addition of 

energy, protein and lipids. The daily supplement contained 746 kilocalories.  

4. Protein-energy and multiple micronutrients (PE+MMN), a micronutrient fortified LNS 

product providing the same level of micronutrients to the MMN arm (including iron and folic 

acid) in addition to energy, protein and lipid content. The two LNS products were 

manufactured by Valid Nutrition, Nairobi, Kenya. Table 3a details the nutrient composition 

of the four pre-natal supplement groups. Table 3b details the nutrient composition of the 

infant supplement. 

Within the ENID study protocol, nurses, midwives, field assistants and community health 

workers were trained in optimal breastfeeding practices. However, no counselling to the 

participating women was implemented, beyond what is standard practice in this baby friendly 

community. ENID participants were encouraged to exclusively breastfeed, and at six months of 

age their infants were randomized to either an unfortified LNS supplement, or to the same LNS 

formulation fortified with multiple micronutrients (total energy of supplement: 108 kcal). Table 

3b details the nutrient composition of the infant supplement. The ENID trial design is illustrated 

in Figure 7. The main focus of this thesis is on the antenatal arm of the ENID trial.   
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Table 3a. Nutritional composition of daily intake of pregnancy supplements. From Moore et al (2012) 
(305). 

  Tablets LNS 

 FeFol MMN PE+FeFol PE+MMN 

Iron (mg) 60 60 60 60 

Folate (µg) 400 400 400 400 

Vitamin A (RE µg)  1600 2.85 1600 

Vitamin D (IU)  400 - 400 

Vitamin E (mg)  20 4.2 20 

Vitamin C (mg)  140 2.25 140 

Vitamin B1 (mg)  2.8 0.3 2.8 

Vitamin B2 (mg)  2.8 0.45 2.8 

Niacin (mg)  36 1.35 36 

Vitamin B6 (mg)  2.8 0.15 2.8 

Vitamin B12 (µg)  5.2 0.1 5.2 

Zinc (mg)  30 3.3 30 

Copper (mg)  4 1.05 4 

Selenium (µg)  130 6.15 130 

Iodine (µg)  300 2.6 300 

Energy (kcal)   746 746 

Protein (g)   20.8 20.8 

Lipids (g)   52.6 52.6 

FeFol, iron-folic acid; MMN, multiple micronutrients; PE, protein-energy. 
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                Table 3b:  Nutritional composition of daily intake of infant supplements. From Moore et al (2012)
   (305). 

 Placebo MMN 

β-Carotene (µg RE) 1.84 400 

Vitamin C (mg) 1.88 30 

Folic acid (µg) 13.1 80 

Thiamine (mg) 0.06 0.3 

Riboflavin (mg) 0.04 0.4 

Vitamin B3 (mg) 0.32 4 

Pantothenic acid (mg) 0.08 1.8 

Vitamin B6 (mg)  0.02 0.3 

Vitamin B12 (µg) 0.06 0.5 

Vitamin D (µg) 0.34 5 

Vitamin E (mg) 0.12 2.7 

Vitamin K (µg) 1.40 10 

Iron (mg) 0.46 9 

Zinc (mg) 0.24 4 

Calcium (mg) 33.1 100 

Potassium (mg) 91.76 152 

Copper (mg) 0.02 0.2 

Selenium (µg) 1.44 10 

Iodine (µg) 1.40 90 

Phosphorus (mg) 42.56 82 

Magnesium (mg) 14.56 16 

Manganese (mg) 0.08 0.08 

Total energy (kcal) 108 108 

Linoleic acid (g) 1.29 1.29 

Linolenic acid (g) 0.29 0.29 
 

     MMN, multiple micronutrients. Data in shaded cells represent MMN content from base ingredients. 
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Figure 7. ENID trial design. 

From Moore et al (2012) (305). 

Antenatal supplements were given on a weekly basis by field workers. Compliance of tablets was 

assessed through a count on remaining tablets at the end of each week, and for the LNS-based 

supplement a score based on the amount of supplement left remaining in the jar was made (empty, 

half-empty, full). Women who received the tablet supplements had higher rates of compliance 

(FeFol and MMN, 95.7% and 93.1%, respectively) than women who received the LNS-based 

supplements (PE and PE+MMN, 81.7 % and 81.2%; p-value for difference between tablet and 

LNS groups p<0.0001) (Moore et al in preparation). 

A total of 2,798 women consented to the study. Of these, 875 were eligible for supplementation. 

A total of 799 had live singleton births, with infants born between August 2010 and February 

2015, and 723 mother-infant pairs completed the study till the one-year follow up. Loss to follow 

up was primarily due to migration, infant death or severe acute malnutrition. Severely 

malnourished infants were withdrawn from the trial and admitted to the MRC-led nutritional 

rehabilitation centre in Keneba. 

Consenting women who fell 

pregnant 

FeFol 

N=250 

MMN 

N=250 

PE 

N=250 

Fortified 

N=100 

Placebo 

N=100 

All West Kiang women of 
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Randomisation of infants at 6 months of age to fortified weaning food or placebo 

Randomisation at <20 weeks of gestation to pre-natal supplement (Baseline) 

Fortified 

N=100 

Placebo 

N=100 

Fortified 
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Placebo 

N=100 

PE+MMN 
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4.2 Post hoc power calculation 

In Chapters 6, 7 and 8, the analyses of blood (maternal and infant), urine (maternal) and breast 

milk only include participants from the tablet arm of ENID (intervention group 1 and 2), 

excluding participants randomised to the prenatal PE arm (intervention group 3 and 4). This was 

done due to the significant difference in compliance between the two study arms. Additionally, 

including only the tablet arm of the study distinguishes the effect of multiple micronutrients and 

thereby, excluding potential influences that PE supplementation may have on the outcome.  

A post-hoc power calculation justified this decision to only include participants form the tablet 

arm of ENID. Using a population variance of 40 (based on previous studies’ standard deviation 

of breast milk iodine concentration, see Chapter 2) a sample size of 200 in each of the tablet 

groups gives 96% power to detect a difference of 15 µg/l or more between FeFol and MMN arms, 

and 71% power to detect a difference of 10 µg/l.  

4.3 Data collection 

Figures 8 and 9 show the complete ENID and ENID-Growth data collection (pre)-pregnancy, at 

delivery and in infancy.  
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Pre-pregnancy Pregnancy Infancy

BMI 
(Monthly)

Baseline, 20 & 30 week gestation:
- Venous blood
- Maternal anthropometry
- BP, urinary dipstick, health check
- Fetal biometry

Dietary 
intake

Dietary 
intake

Weekly 
morbidity

Cord blood & 
placental biopsies

Neonatal 
anthrops
(<72h)

Home
Clinic

 

Figure 8. ENID pre-pregnancy, pregnancy and delivery protocol. 

Clinic visits 1, 8, 12, 24, 52 weeks (ENID)    :
- Venous blood (plasma & DNA)
- Anthropometry
- Breast milk 
- Health check
- EPI vaccines
- Thymic index (not at week 12)

Weekly:
- morbidity
- infant feeding 

Monthly:
- anthropometry
- motor milestones H

om
e

C
linic

Vaccination Vaccination

Clinic visits 78, 104 weeks (ENID-
Growth):
- Venous blood
- Anthropometry

Breast milk intake
Dietary intake
Parental anthrops
SES

 

Figure 9. ENID and ENID-Growth infancy protocol.  
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4.3.1 Anthropometry 

Infants had anthropometric measurements taken at birth (within 72 hours of delivery) and at 

scheduled visits to the MRC Keneba field station at 1, 8, 12, 24, 52, 78 and 104 weeks of age, 

with additional home visits at 16, 20, 32, 40, 65 and 91 weeks by trained field workers (Figures 

8 and 9). An embedded sub-study3 measured approximately 200 infants at the additional time-

points of 4, 28, 36, 44 and 48 weeks of age, using the same procedures and anthropometric 

equipment as the main follow up. Data from all time-points were included in the analysis in 

Chapter 5.  

The following anthropometric measurements were collected at all visits: weight and length, mid-

upper-arm, thigh, head, abdominal-, and waist circumferences, knee-heel length and thigh, 

triceps, biceps, suprailiac and subscapular skinfold thicknesses. All field workers collecting the 

data were trained in infant anthropometric assessments. All weights and lengths were measured 

using electronic scales and length boards, which were precise to 10 g, and to 1 mm. Fixed length 

boards (Seca 417) were used for all clinic visits and field visits after the neonatal home visit, 

where a flexible length mat was used.  

4.3.2 Infant feeding practice and morbidity data 

From birth until the infant reached two years of age, trained field workers collected weekly infant 

feeding data by questionnaire. The infants were seen seven times at the MRC Keneba field station 

(weeks 1, 8, 12, 24, 52, 78 and 104 of infant age), and the remainder of data were collected at 

home visits (Figure 9). Structured questionnaires were used for data collection, and the flow of 

the questions is shown in Figure 10. The mother was asked to recall infant feeding practices in 

the previous seven days, i.e. if the infant was breastfed; if other foods or drinks had been 

introduced; and the frequency of these other foods and/or drinks. The drinks and foods included 

in the questionnaire and are available in Appendix 1 (Breastfeeding questionnaire). The field 

workers were trained in probing techniques, and were instructed to ensure that the mothers fully 

understood the questions asked. Infant feeding data are included in the analysis in Chapter 5.  

                                                 
3 ENID-bioactive investigated the effects of maternal and grand-maternal birth season, and maternal breast milk 
bioactive factors on infant growth and intestinal inflammation. The data for this sub-study was collected in the field 
and not at the MRC Keneba field station. 
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Figure 10. Flow of infant feeding questionnaire in ENID. 

Simultaneously with collecting infant feeding data, the mother was asked if the infant had 

experienced any diarrhoea, vomiting (not associated with eating), cough, rapid breathing, or fever 

in the past seven days. In addition, the mother was asked the number of days the infant had been 

sick, and whether the infants had been taken to a health facility and/or received any treatment 

(Appendix 1. Infant morbidity questionnaire). In the analyses in Chapter 5, infant diarrhoea was 

defined as having three or more loose stools a day and infant morbidity incidence rate was defined 

as combined episodes of either diarrhoea, vomiting, cough, rapid breathing, fever.   

4.3.3 Other anthropometric and demographic variables 

Maternal height and weight were collected at baseline when the mother was less than 20 weeks 

pregnant. Maternal body mass index (BMI) (kg/height2) was calculated post data collection. 

Maternal parity was also collected at baseline and defined as the number of live children, the 

number of children who had died, and the number of stillbirths the enrolled mothers had prior to 

their current pregnancy. Gestational age at birth was calculated using the gestational age at 

baseline assessed by ultrasound. 

In total, participants were from 28 villages in West Kiang, The Gambia. In the analyses in 

Chapters 5, 6, 7, and 8 the variable “village” was defined as participants from one of the four 

‘core’ villages of West Kiang: Jali, Kantong Kunda, Keneba and Manduar, versus participants 

from one of the remaining 24 villages. This division was chosen as the core villages because they 

are situated close to the MRC Keneba field station, and therefore in closest proximity to the MRC 

Keneba clinic with known influence on health seeking behaviour (308). The mothers’ educational 

level was defined as completed years of either English or Arabic schooling. 
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Seasonality was used as a variable in the analyses in Chapters 5, 6, 7 and 8. In this thesis, 

seasonality was defined as the time of year when infant anthropometric measurements or 

biomarkers were collected. As described in Chapter 3, seasonality in rural Gambia has a large 

influence on infant health. Seasonality was included in this thesis as either a binary variable; a 

wet (hungry) season (June to October) and a dry (harvest) season (November to May), or by using 

Fouriers terms (309), which allow the inclusion of the variation across all calendar months. 

Fourier series is a statistical model that allows the decomposition of any periodic function into a 

linear combination of simple oscillating functions (sines and cosines) parametrized by 

coefficients (the Fourier coefficients) (309). The first four sets of Fourier terms were used. 

Seasonality was fitted using Fourier terms in order to include the variation in the outcome 

variables across the calendar months, and not restrict it to the hungry or harvest season. 

Furthermore because the start of the two seasons in The Gambia is slightly different each year, 

as it depends on when the rain comes, using Fourier terms is a more accurate way of capturing 

differences between seasons. 

4.3.4. Biomarkers  

Several biomarkers (blood, breast milk and urine) from both mothers and infants and from several 

time-points are analysed in different chapters in this thesis. For convenience, Table 4 lists the 

biomarkers and the time-points used in Chapters 6, 7 and 8.  

Table 4. Biomarkers and time-points used according to chapters. 

 Chapter 6 (Iodine) Chapter 7 (B12) Chapter 8 (B1, B2, B6) 

Breast 
milk 

 

Week 8,12, 24 postpartum 

 

Week 8,12, 24 postpartum Week 8,12, 24 postpartum 

 

Maternal 
blood  

Serum from baseline and 30 
weeks’ gestation  
 
 

Plasma from baseline, 30 weeks’ 
gestation and 12 weeks 
postpartum 

Plasma from baseline, 30 
weeks’ gestation and 12 weeks 
postpartum 

Maternal 
urine 

Baseline, 30 weeks’ gestation 
and 12 weeks postpartum  
 

  

Infant 
blood 

Serum from cord, 12 and 24 
weeks postpartum 

Plasma from cord, 12 and 24 
weeks postpartum 
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Blood 

A venous blood sample was collected from overnight fasting participants at baseline (enrolment, 

before the commencement of supplementation, <20 weeks gestation), 20 and 30 weeks’ gestation 

(Figure 8). Furthermore a venous blood sample from fasting participants was collected at 12 

weeks postpartum as part of ENID-Bone. Approximately 10 ml of blood was collected from the 

mother at each time-point by trained members of the Keneba nursing staff. The blood samples 

were collected in trace-free tubes and were immediately put on ice. The blood sample was 

centrifuged; plasma and serum aliquots were frozen at -80ºC. In this thesis, the focus is on the 

maternal blood samples collected at baseline, 30 weeks’ gestation and 12 weeks postpartum, to 

see if the supplement had any effect during pregnancy, and how maternal status changed during 

lactation, when supplementation was no longer provided.  

At birth, a sample of blood was obtained from the umbilical cord, and a venous blood sample 

was collected from each participating infant at 12 and 24 weeks postpartum. These samples are 

included in the analyses in Chapters 6, 7 and 8 to investigate infant status across the first six 

months postpartum. A cord blood sample (≤15 ml) was collected immediately after delivery, and 

if the mother delivered at home in her village, a residing field worker attended the delivery and 

collected the cord blood. The cord blood was immediately put on ice, or transported on ice to the 

MRC Keneba field station for processing. On arrival, cord blood was centrifuged and plasma and 

serum aliquots were frozen at -80ºC. At 12 weeks postpartum, 3 ml was collected and at 24 weeks 

5 ml was collected by a trained member of Keneba nursing staff. All blood samples were 

centrifuged, aliquoted and stored at -80ºC at the MRC Keneba field station.  

Urine  

Maternal 24-hour urine samples were collected at baseline, 30 weeks’ gestation and 12 weeks 

postpartum as part of ENID-Bone, and included in the analyses of Chapter 6. All urine excreted 

by participants over 24-hours was collected. A field worker visited the mother’s home every four 

hours (during the day) to collect the urine samples; these were then transported on ice to the MRC 

Keneba field station where they were refrigerated. When in the mother’s home the urine samples 

were similarly stored on ice. At the end of the 24-hours, all urine samples were pooled, and the 

total volume was noted. The samples were aliquoted and stored at -80ºC at the MRC Keneba 

field station. Infant urine was not collected as part of ENID or ENID-Bone. 



 
Chapter 4. Methods 

129 
 

Breast milk  

Breast milk samples were collected from participants at 1, 8, 12, 24, 52, 78 and 104 weeks 

postpartum (Figure 9). The focus of this thesis is on samples collected at 8, 12 and 24 weeks 

postpartum to investigate longitudinal composition changes in mature milk during the first six 

months of lactation.  

Participants provided a 5 ml breast milk sample from each breast, which was manually expressed 

between approximately 9 and 11 am at the MRC Keneba field station. The majority of the women 

were fasting when the sample was collected, as breakfast (provided at the MRC clinic) was served 

after the last sample collection. The breast milk sample was not collected during a feed or 

standardised according to the infant’s last feed. Breast milk volume was not collected as part of 

ENID.  

All breast milk samples used for analyses were aliquoted during late 2014 and early 2015. The 

samples (one from right breast and one from left breast) were first defrosted at room temperature, 

vortexed until thoroughly mixed and then samples from each breast were mixed and aliquoted 

into 2 ml tubes and stored at -80ºC. The breast milk samples used in the analyses in Chapters 6, 

7 and 8 were pooled samples from the left and right breast. 

4.4 Statistical analysis 

Following data extraction from the main ENID database, data were cleaned, managed and 

analysed in STATA version 14 (310). Observations were deleted when infant and maternal ID 

were missing; outliers were removed. After cleaning all data, each data set on feeding data, infant 

growth and time-independent variables were all merged on infant or maternal ID into one STATA 

file.  

Infant weight and length measurements were converted to weight-for-age z-score (WAZ), length-

for-age z-score (LAZ) and weight-for-length z-score (WLZ) according to the WHO growth 

standard using the WHO Anthro program (Version 3.2.2 January 2011). If the difference between 

consecutive observations of the same infant was larger than three z-scores, the outlier was 

recorded as a missing value. In total 135 outliers of LAZ, 158 outliers of WLZ and 133 outliers 

of WAZ were dropped, together with the original length and weight values. 
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4.5 Baseline characteristics of ENID 

Table 5 illustrates the baseline characteristics of ENID according to the tablet (FeFol and MMN) 

and PE arm (PE and PE+MMN), highlighting that there are no differences between the two 

supplement arms.  

Table 5. Baseline characteristics of study population according to tablet and PE arm. 

 Tablet (n=438) PE (n=436) All (n=875) 

Maternal age (years) (n=1 missing) 29.5 (6.7) 29.6 (6.8) 29.6 (6.8) 

Maternal weight (kg) (n=1 missing) 55.2 (9.4) 55.9 (10.0) 55.5 (9.7) 

Maternal height (cm) (n=1 missing) 161.7 (6.0) 161.9 (5.7) 161.8 (5.9) 

Maternal BMI (kg/m2) (n=2 missing) 21.1 (3.5) 21.3 (3.4) 21.2 (3.5)  

Gestational age at enrolment (weeks) (n=2 missing) 13.7 (3.4) 13.6 (3.2) 13.6 (3.3) 

Parity, n (%)    

   Primiparous 56 (12.8) 51 (11.7) 107 (12.2) 

   Multiparous (≥ 1 previous pregnancy) 382 (87.2) 386 (88.3) 768 (87.8) 

Maternal education, n (%)    

   No education  336 (76.7) 346 (79.2) 682 (77.9) 

   Low (1-7 years) 54 (12.3) 54 (12.4) 108 (12.3) 

   Medium (8-14 years) 48 (11.0) 37 (8.5) 85 (9.7) 

Data are presented as mean (SD) unless otherwise stated. PE, protein-energy; n, sample size.
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Chapter 5 

Infant feeding practices and growth 

This Chapter presents an original analysis investigating how exclusive breastfeeding (EBF) 

practices during the first six months of life are associated with longitudinal growth of rural 

Gambian infants from birth to two years of age. Parts of this Chapter are published (311).  

5.1 Methods 

The current analysis used data collected as a part of the ENID trial and the ENID-Growth study. 

Details on the ENID study design, data collection on anthropometry, infant feeding data and other 

demographic variables are all described in detail in Chapter 4 (page 117).  

5.1.1 Infant anthropometry 

Data availability on infant anthropometry according to time-points are detailed in Table 6. Weight 

and length measurements were converted to weight-for-age z-score (WAZ), length-for-age z-

score (LAZ) and weight-for-length z-score (WLZ) according to the WHO growth standard using 

the WHO Anthro program (Version 3.2.2 January 2011). Z-scores were censored (potential 

outliers removed), based on WHO cut-offs: WAZ below -6 or above +5, LAZ below -6 or above 

+6 and WLZ below -5 or above +5 (312). The dataset consisted of more than 11,100 assessments 

of WAZ, LAZ and WLZ with a mean of 14.8 assessments per infant (range 2-19) over a mean of 

23 months (range 0.2-25). 
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             Table 6. Data availability on infant anthropometry according to time-point. 

Weeks postpartum Data availability 
Birth 665 

1 751 
4 220 
8 753 

12 746 
16 735 
20 746 
24 749 
28 262 
32 741 
36 251 
40 735 
44 250 
48 239 
52 719 
65 699 
78 694 
91 689 

104 686 

  The main time-points were birth, 1, 8, 12, 16, 20, 24, 32, 40 and 52 weeks for ENID and 65-104 for ENID-     
  Growth. Additional data were available from an embedded sub-study, making extra data available at 4, 28,    
  36, 44 and 48 weeks. 

5.1.2 Exposure and confounding variables 

Infant feeding practice was defined as exclusively breastfed to six months (EBF-6) (provision of 

breast milk only) versus not exclusively breastfed to six months (nEBF-6). The nEBF-6 infants 

were either predominantly breastfed (15%) (provision of breast milk and liquids only) or partially 

breastfed (85%) (provision of breast milk and solid foods) in the first six months.  

The following variables were investigated as potential confounders or effect modifiers: maternal 

age, parity, weight, height, body mass index (BMI), educational level, and supplementation group 

during pregnancy, village, gestational age at birth and infant diarrhoea and morbidity incidence 

rate. Definitions of these variables are described in Chapter 4 (sections 4.3.2. and 4.3.3).  

5.1.3 Statistical analysis  

The crude association between infant feeding practice and continuous data were investigated 

using t-tests and for categorical data chi-squared tests were used.  

In this analysis, individual age-related trajectories for each of weight, length, WAZ, LAZ and 

WLZ were modelled separately in multilevel models (MLM) with measurement occasion at level 
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one; individuals at level two, incorporating infant feeding practice associations with the sample-

mean growth trajectories and adjustment for confounders and competing effects.  

MLMs are known as hierarchical linear models or mixed effects models, and these models are 

appropriate to use in this analysis as they permit for the clustered structure of longitudinal data, 

with observations nested within individuals (313). The term ‘mixed effects’ is often used to 

describe MLMs, as they handle longitudinal data on a sample of individuals by simultaneously 

estimating random effects, which are allowed to vary between individuals, and fixed effects, 

which apply to all individuals. Fixed effects for instance describe the sample average growth 

curve and random effects are individual departures from the fixed effect (71).  

The MLMs include components at two levels, a level-1 that describes how individuals change 

over time (called within-individual change) and a level-2 that describe how these changes (and 

the intercept) vary across individuals (called between-individual change), which makes MLMs 

superior to many other statistical methods (71). These two components are combined to form the 

composite MLM for change with random intercepts and random coefficients, and with the within-

individual variation representing changes in the outcome over time. Another advantage of MLM, 

which makes it particular applicable for use in this current analysis of Gambian data, is that 

MLMs are not forced to consider time as a categorical variable, which is for instance the case 

with repeated measured ANOVA. Time-varying determinants, such as age at each visit, can be 

included in the models, meaning that MLM can handle variation in the timing of data collection 

(71). Another clear advantage of using MLM in this analysis of longitudinal data, is that missing 

data, which is missing due to for instance drop-outs, are handled by using information from other 

individuals to inform the shape of the curve. This occurs as a result of assuming that the fixed 

effects of the curve are similar across all subjects, and with the assumption that all missing data 

are missing at random (314).  

Using MLM, regression equations can be derived at the individual level, which allows the 

estimation of between-individual differences and within-individual differences over time by 

modelling the variance (71). This makes MLM a powerful tool for modelling growth curves, as 

individual growth curve models only capture the within-individual differences and not between-

individual differences (71). The within-individual difference is often referred to as ‘level one 

residuals’, and the between-individual as ‘level two residuals’. Both levels of residuals should be 

normally distributed, which is an assumption of the model. The residual standard deviation (RSD) 

for level one residuals is further used to quantify the overall goodness of fit of the model (71). 
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The level one residuals capture measurement error, which is the deviation of observed measures 

from values predicted by the model. The aim is to fit a curve with an RSD similar to the 

measurement error of the variable analysed (315). 

In this analysis, MLMs were built up by successfully adding parameters from a variance 

component model to a random intercept model, quadratic polynomial model, cubic polynomial 

model and lastly, for the length and weight measurements, the best fitted model, the Berkey Reed 

growth model (316). For the z-scores the shape of each trajectory was specified as a restricted 

cubic spline, with four knots (0.008, 0.389, 0.797 and 1.993 years). This model was chosen as it 

provided the lowest deviance compared to quadratic-, cubic- and fractional polynomial growth-

curve models. Model fit was compared using likelihood-ratio tests, comparing the difference 

between the log likelihoods of two consecutive models. A p-value of <0.05 was used to denote 

statistical significance. Further, at each step the model with the lowest bayesian information 

criterion was selected, which is a measure of model fit. At each step of the model selection, 

diagnostic plots were generated to check model assumptions and identify outliers. The residuals 

were tested for normality and homogeneity of variance. 

For all of the models included in this analysis (length, weight and z-scores), the constant and the 

(cubic spline) age terms were allowed to have random effect at level-2, allowing deviations from 

the intercept and gradient of the mean trajectory for each infant. Infant feeding practice was 

entered: (i) as a main effect, representing the association of infant feeding practice with the 

outcome at the intercept (i.e at birth); and (ii) as an interaction with the (spline) age terms, 

representing its association with the slope or rate of change in weight, length, WAZ, LAZ and 

WLZ. An unstructured variance-covariance matrix for the level-2 random effects was used.  

Infant feeding data was coded as a binary variable; EBF-6 and nEBF-6. Seasonality of infant 

anthropometric measurements were included in the MLMs, using Fourier’s term (309). The first 

four set of Fourier terms were used. In the weight and length models the seasonality function was 

further fitted as an interaction with age, as seasonality is likely to have a larger impact on growth 

in early life than when the infant reached two years of age. This was however not possible to do 

in the cubic spline models due to convergence. Infant morbidity incidence rate was added to the 

models as a time-dependent variable, and the rest of the potential confounding and competing 

effect variables as time-independent variables. The full model equation for Berkey Reed and the 

restricted cubic splines are detailed in Appendix 2 (model equations). 



 
Chapter 5. Infant growth 

135 
 

Overall model fits were improved by removing all length measurements at birth as the residuals 

were large, assumedly due to high measurement error. Birth measurements of length were often 

taken in the subject’s home and the use of a flexible length mat likely introduced error. Data with 

large level-1 residuals (defined as >2 or <-2 z-score) were removed as they were considered as 

outliers and assumed to reflect large measurement error (WAZ n=8 data points were removed, 

LAZ n=28 and WLZ n=71). For weight and length no additional data points were removed as no 

outliers were detected.  

The final MLMs provided a reasonable fit for the weight and length data with a RSD of 0.31 kg 

and 1.20 cm, respectively, which indicates the overall goodness of fit of the models. The final 

cubic spline models had RSD of 0.38, 0.49 and 0.58 z-score for WAZ, LAZ and WLZ, 

respectively. As indicated by the greater RSD for WLZ, the data did not fit the cubic spline model 

as well as the other z-score measurements. However as WLZ includes two sources of 

measurements errors (in weight and length), the RSD is inevitably larger for this model compared 

to WAZ and LAZ  (71). The obtained RSDs for all models were acceptable and similar to the 

measurement error of the variable analysed. 

The fully adjusted models were used to estimate between infant feeding-group differences at 

selected infant ages (0, 6, 12 and 24 months), which were presented with 95% confidence 

intervals. Furthermore trajectories were plotted according to infant feeding practice.  

5.2 Results  

5.2.1 Maternal and infant characteristics  

A total of 756 mother and infant pairs were included in the analysis (Figure 11). At enrolment 

into the ENID trial (mean gestational age 13.7 weeks), the mothers had a mean (±SD) age of 30 

years (±6.9) (Table 7). The population was lean: nineteen percent of the mothers were 

underweight (BMI <18.5) and only 11% were either overweight or obese (BMI ≥25). Educational 

levels were low, with 78% of women reporting to have received no formal education. The 756 

infants included in this analysis were born with a mean birth weight of 3.02 kg (±0.4), 8% had 

low birth weights (<2.5 kg), and 22% were small for gestational age (Table 8). In the first two 

years of life the mean number of episodes of diarrhoea and other morbidity were 4.3 (±3.5) and 

16.4 (±8.4), respectively. 



 
Chapter 5. Infant growth 

136 
 

 
 
 
 
 
 
 
 
 
 
 

  

Positive hCG test, scanned (n =1195) 

Excluded (n = 320) 
Not pregnant = 41 
Too pregnant = 245 
Twins = 6 
Miscarriage = 1 
Withdrawn = 27 

 
Randomised (n = 875) 

Live births (n =799) 

Excluded (n = 76) 
Miscarriage = 12 
Moved away = 18 
Medical = 6 
Stillbirths = 21 
Other = 19 

 

     

 
Excluded (n=76) 
Moved away = 14 
Died = 23 
SAM = 20 
Other = 19 
 

 

     

 
In cohort to one year (n=723) 

Excluded (n=37) 
Moved away = 4 
Died = 5 
SAM =18 
Other = 10 

 
 

 
In cohort to two years (n=686) 

Included in this analysis (n=756) 

Excluded (n=43) 

No infant feeding data 
and/or infant growth data 
collected = 24 
Missing infant feeding 
data to determine feeding 
status in first six months of 
life =19 

 

Consented to study (n = 2798) 

Figure 11. Flow diagram of included and excluded participants in ENID and in this analysis. 

hCG, human chorionic gonadotropin; SAM; severe acute malnutrition. 

Any excluded participants in ENID, either due to death, SAM, moving away or other reasons, had their data point prior 
to the exclusion included in the presented analyses. 
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Table 7. Maternal characteristics according to infant feeding practice. 

Variable n Exclusively 
breastfed to six 
months  

Not exclusively 
breastfed to six 
months 

All 

 
Maternal age (years) 

 
755 

 
29.9 (6.42) 

 
30.5 (6.89) 

 
30.3 (6.89) 

Maternal weight (kg) 755 55.3 (9.42) 55.7 (9.59) 55.6 (9.53) 

Maternal height (cm)  756 161.7 (5.71) 162.1 (5.89) 162.0 (5.84) 

Maternal BMI 755 21.2 (3.58) 21.2 (3.33) 21.2 (3.41) 

Parity categories, n (%)     

   Primiparous 88 32 (13.5) 56 (10.8) 88 (11.6) 

   Multiparous  668 206 (86.6) 462 (89.2) 668 (88.4) 

Maternal education categories a, n (%)     

   No education  591 192 (80.7) 399 (77.0) 591 (78.2) 

   Low (1-7 years) 94 25 (10.5) 69 (13.3) 94 (12.4) 

   Medium (8-14 years)  71 21 (8.8) 50 (9.7) 71 (9.4) 

Maternal supplementation, n (%)     

   FeFol 191 66 (27.7) 125 (24.1) 191 (25.3) 

   MMN 194 55 (23.1) 139 (26.8) 194 (25.4) 

   PE + FeFol 179 63 (26.5) 116 (22.4) 179 (23.7) 

   PE + MMN 192 54 (22.7) 138 (26.6) 192 (25.4) 

Village b, n (%)     

   Core villages 194 43 (18.1) 151 (29.2)* 194 (25.7) 

   Outreach villages 562 195 (81.9) 367 (70.9) 562 (74.3) 

Data are presented as mean (SD) unless otherwise stated. * Different from infants exclusively breastfed to age six 
months, p≤0.05. 
a Maternal education was defined as completed years of either English or Arabic schooling 
b Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages 
are the remaining 24 villages in West Kiang.   
FeFol, iron-folic acid; MMN, multiple micronutrients; PE, protein-energy.  
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Table 8. Infant characteristics according to infant feeding practice. 

Variable n Exclusively 
breastfed to six 
months  

Not exclusively 
breastfed to six 
months 

All 

Birth weight (kg)  629 3.05 (0.41) 3.00 (0.39) 3.02 (0.40) 

Birth weight categories, n (%)     

   Low birth weight (<2.5 kg) 53 14 (7.2) 39 (9.0) 53 (8.4) 

   Normal birth weight (2.5-3.9 kg) 572 179 (91.8) 393 (90.6) 572 (90.9) 

   High birth weight (≥4.0 kg)  4 2 (1.0) 2 (0.5) 4 (0.6) 

Birth length (cm) a   751 50.5 (2.06) 50.7 (2.08) 50.6 (2.08) 

WAZ at birth   629 -0.55 (0.88) -0.64 (0.87) -0.62 (0.87) 

LAZ at birth  751 -0.62 (0.99) -0.50 (1.03) -0.54 (1.01) 

WLZ at birth 746 -0.55 (1.06) -0.77 (1.07)* -0.70 (1.07) 

Gestational age at birth 750 40.0 (1.44) 40.2 (1.61) 40.2 (1.56) 

Gestational age categories, n (%)     

   <37 weeks  20 7 (3.0) 13 (2.5) 20 (2.7) 

   37-40 weeks 315 104 (44.4) 211 (40.8) 315 (42.0) 

   >40 weeks 415 123 (52.6) 292 (56.6) 415 (55.3) 

Infant season of birth, n (%)     

   Wet season (June/Oct) 290 90 (37.8) 200 (38.6) 290 (38.4) 

   Dry season (Nov/May) 466 148 (62.2) 318 (61.4) 466 (61.6) 

Infant diarrhoea incidence rate (in the 
first two years of life)  

756 4.50 (3.8) 4.21(3.3) 4.30 (3.5) 

Infant morbidity incidence rate (in the 
first two years of life)  

756 16.4 (8.7) 16.3 (8.3) 16.37 (8.4) 

Data are presented as mean (SD) unless otherwise stated. * Different from infants exclusively breastfed to age six 
months, p≤0.05. 
a Birth length used in this analysis is data collected at the second visit  (infant age was between 0.2-1.3 months) 
LAZ, length-for-age z-score; WAZ, weight-for-age z-score; WLZ, weight-for length z-score.  
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5.2.2 Infant feeding practices 

Thirty-two percent of infants were exclusively breastfed at six months of age. Of the remainder, 

9% of infants were given breast milk and liquids only and 59% were given breast milk 

accompanied by food before six months of age (Figure 12). The total mean age for introducing 

anything other than breast milk was 5.2 months, resulting in 67% of infants being exclusively 

breastfed to five months of age. 

Among all infants, 1% were given water at one month of age, increasing to 62% by six months, 

and 1% were given semi-solid foods at one month of age increasing to 51% by six months. Other 

non-breast milk foods introduced to infants before six months of age included sugar water (in 2% 

of infants), tea (4%), cow’s milk (3%), tinned milk (2%), powdered milk (5%), prepared weaning 

foods (4%) and solid foods (5%) although these feeds were given on few occasions. No infant 

formula was given at any time-point. All infants received some breast milk at one year of age 

and 49% of infants were still breastfed at two years of age.   

 

Figure 12. Infants’ feeding practice by age. 
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5.2.3 Infant feeding practices and postnatal growth 

Infants were born with a low mean WAZ, LAZ and WLZ of -0.62 (±0.9), -0.54 (±1.0), and -0.70 

(±1.1), respectively (Table 8), and substantial growth faltering was indicated in the first two years 

of life (Figure 13). Rapid growth was observed in the first few weeks after birth, however growth 

faltering started at around 3.5 months of age (Figure 13). Mean weight and length z-scores 

declined to -1.34 (±0.9) WAZ, -1.31 LAZ (±1.0), -0.93 (±0.9) WLZ at two years of age, and by 

two years of age 26% of infants were stunted (LAZ <-2), 12% were wasted (WLZ<-2) and 23% 

were underweight (WAZ<-2).  

 

 

Figure 13. Infants’ anthropometric measurements by age.  

Values are means ±SD. 

Infant weight and length 

Modelling infant weight and length in the first two years according to infant feeding practice and 

adjusting for potential confounders and competing effects, showed limited evidence for a 

difference in growth between the EBF-6 and nEBF-6 infants (Figure 14). The shape of the 

estimated weight curve differed slightly by feeding status, with the weight curve of the EBF-6 
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average 143 grams heavier (95% CI: -0.024, 0.311, p=0.09) than nEBF-6 infants at two years of 

age, however the difference between the two groups did not reach statistical significance at any 

time point (Table 9). 

Almost no difference was found in the estimated shape of the length curve for EBF-6 and nEBF-

6 infants (Figure 14, Table 9). At birth, and at six months of age EBF-6 infants tended to be 

shorter than nEBF-6 infants. However, at one year of age this reversed, and by two years of age 

EBF-6 infants were on average 2.3 mm longer than nEBF-6 infants. However, this difference at 

two years of age did not reach statistical significance (95% CI: -0.230, 0.686, p=0.3). 

No evidence was found for any interaction between infant feeding practice and the age terms, as 

infant feeding status was not associated with age-related increases (slopes) in any of the outcomes 

(Table 10). This indicates that the effect of infant feeding practice on infant weight or length did 

not vary with infant age. 

 

  



 
Chapter 5. Infant growth 

142 
 

 

 

 

Figure 14. Weight and length by age trajectories between birth and two years of age according to infant 
feeding practice. 

Trajectories are estimated from the multilevel models presented in Table 10 and are adjusted for sex (female: referent), 
village (Jali, Kantong Kunda, Keneba, Manduar) where applicable, morbidity (no incidence), gestational age at birth, 
parity (primiparous), maternal height and BMI. EBF-6, exclusively breastfed to six months; nEBF-6, not exclusively 
breastfed to six months.  
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Table 9. Differences in weight and length by infant feeding status at different ages. 

Weight (kg) a Length (cm) b 

 Estimate c 95% CI p-value Estimate c 95% CI p-value 
At birth 0.050 -0.023, 0.123 0.2 -0.003 -0.328, 0.321 1.0 
At 6 months 0.093 -0.029, 0.217 0.1 -0.022 -0.314, 0.270 0.9 
At 1 year 0.136 -0.017, 0.290 0.08 0.131 -0.217, 0.479 0.5 
At 2 years 0.143 -0.024, 0.311 0.09 0.228 -0.230, 0.686 0.3 

    a Adjusted for infant sex, village, infant morbidity, gestational age at birth, parity, maternal height and BMI.  
   b Adjusted for infant sex, infant morbidity, gestational age at birth, parity, maternal height and BMI.  
   c The estimates show the difference in weight and length between infants who were exclusively breastfed to age  
   six months and infants who were not exclusively breastfed to age six months   
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Table 10. Fully adjusted multilevel model of serial weight and length for infants at birth, with exclusive 
breastfeeding to six months as exposure.  

 Weight (kg) Length (cm) 

 Estimate 95% CI p-value Estimate 95% CI p-value 

FIXED EFFECTS       

Constant  2.757 2.643-2.871 <0.001 48.284 47.864-48.704 <0.001 

Age term a 11.815 11.206-12.424 <0.001 34.864 32.513-37.215 <0.001 

lnage a -43.546 -45.566- -41.526 <0.001 -118.029 -126.409-  -109.649 <0.001 

invage a -47.028 -48.658- -45.399 <0.001 -140.346 -147.451-  -133.240 <0.001 

Sex        

  Female (referent) -- -- -- -- -- -- 

  Male 0.100 0.033-0.167 0.003 0.477 0.176-0.778 0.002 

Sex-by-age 1.706 0.941-2.471 <0.001 4.940 1.985-7.895 0.001 

Sex-by-lnage -7.334 -9.874- -4.794 <0.001 -22.978 -33.511-  -12.445 <0.001 

Sex-by-invage -7.358 -9.411- -5.305 <0.001 -23.464 -32.395-  -14.533 <0.001 

Feeding practice (FP)       
  Not exclusively breastfed    
  to six months (referent) -- -- -- -- -- -- 

  Exclusively breastfed to  
  six months 0.050 -0.022-0.123 0.2 -0.032 -0.338-0.321 0.9 

FP-by-age -0.414 -1.236-0.409 0.3 -1.834 -4.998-1.330 0.3 

FP-by-lnage 1.469 -1.271-4.189 0.3 7.308 -3.979-18.594 0.2 

FP-by-invage 1.023 -1.181-3.227 0.4 6.194 -3.380-15.768 0.2 

Sin1 b 0.092 0.076-0.108 <0.001 0.052 -0.011-0.115 0.1 

Cos1 b -0.059 -0.075-  -0.043 <0.001 -0.172 -0.236-  -0109 <0.001 

Sin2 b 0.004 -0.010-0.018 0.6 -0.104 -0.161-  -0.046 <0.001 

Cos2 b 0.023 0.009-0.037 0.002 0.045 0.012-0.102 0.1 

Sin1-by-age 0.061 0.045-0.077 <0.001 0.031 -0.032-0.093 0.3 

Cos1-by-age 0.018 0.001-0.034 0.03 -0.142 -0.205-  -0.078 <0.001 

Sin2-by-age 0.012 -0.003-0.027 0.1 -0.018 -0.077-0.041 0.6 

Cos2-by-age 0.004 -0.011-0.019 0.6 0.024 -0.035-0.082 0.4 

Maternal height c 0.012 0.007-0.017 <0.001 0.104 0.084-0.125 <0.001 

Maternal BMI c  0.024 0.015-0.034 <0.001 0.029 -0.007-0.065 0.1 

Gestational age c 0.079 0.059-0.100 <0.001 0.340 0.262-0.418 <0.001 

Parity       

  Primiparous (referent) -- -- -- -- -- -- 

  Multiparous 0.160 0.060-0.258 0.002 0.525 0.147-0.902 0.006 

Village       

  Core villages (referent) -- -- -- -- -- -- 

  Outreach villages -0.075 -0.148-  -0.002 0.05 --d -- -- 
Infant morbidity        
  No incidence in the past   
  week (referent) -- -- -- -- -- -- 

  Incidenc in the past  
  week -0.017 -0.035-0.001 0.06 0.036 -0.031-0.104 0.3 

RANDOM EFFECTS       

Variance (age) 4.471 3.943-5.068  9.990 7.704-12.954  

Variance (lnage) 16.554 14.658-18.697  38.894 30.572-49.482  
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Variance (constant) 0.152 0.133-0.174  2.566 2.228-2.954  

Covariance (age, lnage) -8.403 -9.456-  -7.351  -18.448 -23.299-  -13.597  

Covariance (constant, age) -0.092 -0.168-  -0.016  0.673 -0.073-1.419  

Covariance (constant, lnage) 0.154 -0.009-0.300  -1.674 -3.113-  -0.235  

Var (residual) 0.097 0.095-0.100  1.430 1.387-1.475  

Note: The third age term (invage) was not included in the random effect part of the model, because STATA could 
not make such a model converge. Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the 
MRC Keneba. Outreach villages are the remaining 24 villages in West Kiang. 
a Age = age is centered to age at birth, lnage= ln(age+1), invage=(1/(age+1)) – 1 
b sin1= sin*(1*2*π*toy), cos1= cos*(1*2*π *toy), sin2= sin*(2*2*π *toy), cos2= cos*(2*2*π *toy), toy= time of 
year (month) when anthropometric measurements were taken  
c The variable was centred to the mean 
d Village was not associated with length (p>0.05) at any time-point, and thus not included as a potential confounder. 
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Infant z-score 

Modelling infant z-scores in the first two years of life according to infant feeding practice and 

adjusting for potential confounders and competing effects, showed limited evidence for a 

difference in growth between the EBF-6 and nEBF-6 groups of infants (Figure 15). Weak 

evidence suggested that the EBF-6 infants had a higher mean WAZ by 0.147 z-scores compared 

to nEBF-6 at six months of age (95% CI: -0.001, 0.293, p=0.05). For WLZ the observed 

difference between the groups was 0.189 (95% CI: 0.038, 0.341, p=0.01), whereas there was no 

difference in LAZ between EBF-6 and nEBF-6 infants at six months of age (Table 11).  

Investigating the long-term influence of EBF to six months, weak evidence was found for a 

difference in mean WAZ between the two groups at one year of age, where EBF-6 infants were 

marginally heavier for their age (+0.183 WAZ; 95% CI: 0.011, 0.354, p=0.04) compared to 

nEBF-6 infants. A similar result was seen for WLZ, with a difference of 0.175 z-score (0.005, 

0.345, p=0.04) between the two groups at one year of age. By two years of age, the difference in 

WAZ declined to 0.143 (-0.002, 0.283, p=0.05) and for WLZ to 0.097 (95% CI: -0.047, 0.242, 

p=0.2). For LAZ no difference was observed between EBF-6 and nEBF-6 infants at any time-

point (Table 11). 

No evidence was found for any interaction between infant feeding practice and the spline age 

terms, as infant feeding status was not associated with age-related increases (slopes) in any of the 

outcomes (Table 12). This indicates that the effect of infant feeding practice on infant z-scores 

did not vary with infant age. A greater incidence rate of morbidity episodes had a negative 

influence on infant WAZ and WLZ (Table 12). 
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Figure 15. WAZ, LAZ, and WLZ trajectories between birth and 24 months of age according to infant 
feeding practice.  

Trajectories are estimated from the multilevel models presented in Table 12 and were adjusted for sex (female: 
referent), gestational age at birth, infant morbidity (no incidence), maternal height, BMI, parity (primiparous), and 
village (Jali, Kantong Kunda, Keneba, or Manduar), when applicable. EBF-6, infants exclusively breastfed to six 
months; LAZ, length-for-age z-score; nEBF-6, infants not exclusively breastfed to six months; WAZ, weight-for-age 
z-score; WLZ, weight-for-length z-score.
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a Adjusted for sex, village, infant morbidity, gestational age at birth, parity, maternal height and BMI.  
b Adjusted for sex, infant morbidity, gestational age at birth, parity, maternal height and BMI 
c The estimates show the difference in z-score between infants who were exclusively breastfed to six months and infants who were not exclusively breastfed to six     
    months 

  

Table 11. Differences in WAZ, LAZ, WLZ by infant feeding status at different ages. 

 Weight-for-age z-score  a Length-for-age z-score  b Weight-for-length z-score a 

 Estimate c  95% CI p-value Estimate  c 95% CI p-value Estimate c 95% CI p-value 

At birth  0.093 -0.040, 0.226 0.2 -0.037 -0.187, 0.114 0.6 0.166 -0.008, 0.340 0.06 

At 6 months  0.147 -0.001, 0.293 0.05 -0.006 -0.137, 0.125 0.9 0.189 0.038, 0.341 0.01 

At 1 year  0.183 0.011, 0.354 0.04 0.059 -0.085, 0.203 0.4 0.175 0.005, 0.345 0.04 

At 2 years  0.143 -0.002, 0.283 0.05 0.095 -0.047, 0.237 0.2 0.097 -0.047, 0.242 0.2 
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Table 12. Fully-adjusted multilevel model of serial WAZ, LAZ and WLZ for infants at birth, testing exclusive breastfeeding to six months as exposure.  
 Weight-for-age z-score  Length-for-age z-score  Weight-for-length z-score 

 Estimate 95% CI p-value  Estimate 95% CI p-value  Estimate 95% CI p-value 

FIXED EFFECTS            

Constant  -0.710 -0.904-  -0.512 <0.001     -0.604 -0.797-  -0.410 <0.001     -0.494 -0.716-  -0.271 <0.001    

Spline age term 1 (rs1) a 0.171 -0.028-0.369  0.09   0.900 0.656- 1.124 <0.001     0.466 0.173-0.759 0.002    

Spline age term 2 (rs2) a -5.456 -6.390-  -4.522 <0.001    -10.279 -11.604-  -8.955 <0.001     -6.284 -7.873-  -4.696 <0.001    

Spline age term 3  (rs3) a 12.302 10.338-14.266 <0.001     21.698 18.911-24.484 <0.001     14.140 10.808-17.472 <0.001 

Sex             

    Female (referent) -- -- --  -- -- --  -- -- -- 

    Male -0.038 -0.160-0.084 0.5  -0.075 -0.214-0.064 0.3  0.055 -0.106-0.216 0.5 

Sex-by-spline age term 1 -0.482 -0.731-  -0.232 <0.001     -0.217 -0.512-  -0.78 0.2  -0.579 -0.949-  -0.209 0.002  

Sex-by-spline age term 2 1.541 0.360-2.721 0.01    0.066 -1.602- 1.735 0.9  2.473 0.467-4.480 0.02 

Sex-by-spline age term 3 -2.506 -4.988-  -0.240 0.05    0.252 -3.258-3.763 0.9  -4.547 -8.755-  -0.339 0.03 

Feeding practice (FP)            

    Not exclusively breastfed to six      
    months (referent) 

-- -- --  -- -- --  -- -- -- 

    Exclusively breastfed to six    
    months 

0.093 -0.040-0.226 0.2  -0.037 -0.187-0.114 0.6  0.166 -0.008-0.340 0.06 

FP-by-spline age term 1 0.107 -0.163-0.378 0.4  0.026 -0.290-0.342 0.9  0.069 -0.327-0.466 0.7 

FP-by-spline age term 2 0.006 -1.261-1.272 1.0  0.607 -1.178-2.393 0.5  -0.374 -2.521-1.772 0.7 

FP-by-spline age term 3 -0.339 -3.000-2.322 0.8  -1.427 -5.183-2.329 0.5  0.568 -3.932-5.069 0.8 

Sin1 b 0.156 0.144-0.167 <0.001    0.024 0.010-0.039 0.001    0.193 0.176-0.211 <0.001    

Cos1 b -0.057 -0.068-  -0.045 <0.001     -0.108 -0.122-  -0.093 <0.001     0.011 -0.006-0.029 0.2 

Sin2 b 0.013 0.003-0.024 0.02  -0.048 -0.061-  -0.034 <0.001     0.057 0.041-0.074 <0.001    

Cos2 b 0.033 0.023-0.044 <0.001    0.022 0.009-0.036 0.001    0.025 0.008-0.0413 0.003 

Maternal height c 0.029 0.020-0.038 <0.001    0.055 0.046-0.065 <0.001     -0.005 -0.015-0.004 0.3 

Maternal BMI c 0.043 0.027-0.058 <0.001    0.013 -0.003-0.030 0.1  -0.043 0.026-0.059 <0.001 

Gestational age c 0.099 0.065-0.133 <0.001  0.113 0.078-0.149 <0.001  -0.001 -0.038-0.035 0.9 

Parity            
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    Primiparous (referent) -- -- --  -- -- --  -- -- -- 

    Multiparous 0.232 0.068-0.396 0.006  0.199 0.025-0.372 0.03  -0.047 -0.226-0.131 0.6 

Village            

    Core villages (referent) -- -- --  -- d -- --  -- -- -- 

    Outreach villages -0.131 -0.252-  -0.010 0.03  -- -- --  -0.100 -0.232-0.031 0.2 

Infant morbidity  -- -- --  -- -- --  -- -- -- 

    No incidence in the past week  
    (referent) 

-- -- --  -- -- --  -- -- -- 

    Incidence in the past week -0.017 -0.038 – 0.005 0.1  0.018 -0.009-0.046 0.2  -0.041 -0.075-  -0.008 0.02 

RANDOM EFFECTS            

Variance (rs1) 1.700 1.505-1.910   0.989 0.846-1.155   1.979 1.720-2.278  

Variance (rs2 term) 2.809 2.476-3.187   1.091 0.892-1.334   2.771 2.358-3.256  

Variance (constant) 0.647 0.579-0.723   0.729 0.646-0.822   0.941 0.835-1.061  

Covariance (rs1, rs2) -2.076 -2.335-  -1.816   -0.986 -1.164-  -0.808   -2.231 -2.573-  -1.888  

Covariance (rs1, constant) -0.155 -0.244-  -0.066   -0.298 -0.389-  -0.206   -0.519 -0.659-  -0.379  

Covariance (rs2, constant) -0.024 -0.138-0.091   0.176 0.072-0.280   0.286 0.120- 0.453  

Var (residual) 0.149 0.145-0.153   0.242 0.235-0.250   0.343 0.332-0.354  

 
Note: The third spline age term (rs3) was not included in the random effect part of the model, because STATA could not make such a model converge. Core villages are: Keneba, 
Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages are the remaining 24 villages in West Kiang. 
BMI, body mass index; CI, confidence interval; FP, feeding practice; LAZ, length-for-age z-score; WAZ, weight-for-age z-score; WLZ, weigh-for-length z-score. 
a rs1, rs2, rs3 = restricted cubic spline functions produced in STATA with the command: mkspline rs = age cubic nknots(4) displayknots (4 knots; 0.008, 0.389, 0.797 and 1.993 
years). 
b sin1= sin*(1*2*π*toy), cos1= cos*(1*2*π*toy), sin2= sin*(2*2*π*toy), cos2= cos*(2*2*π *toy). toy= time of year (month) when anthropometric measurements were taken 
c The variable was centered to the mean. 
Village was not associated with length-for-age z-score (p>0.05) at any time-point, and thus not included as a potential confounder
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The difference in mean age at discontinuation of EBF between the EBF-6 and nEBF-6 

groups was significant, however small (6.2 vs. 4.7 months). To explore differences 

between groups of infants who were exclusively breastfed for more distinct periods of 

time, a post-hoc MLM analysis with a different exposure variable was conducted; EBF 

to six months (±0.5 months) versus EBF to 3-4 months (±0.5 months) with continued 

mixed feeding (introduction of complementary liquids or solid foods). Using this new 

categorisation of infant feeding practice, the analysis showed no difference in LAZ 

between the two groups at any time-point. For WAZ and WLZ there was a difference 

between the two groups at six month of age, with infants who were exclusively breastfed 

to six months having a higher mean WAZ (+0.216 WAZ; 95%CI: 0.027, 0.404, p=0.03) 

and mean WLZ (+0.289 WLZ; 95% CI: 0.093, 0.485, p=0.004) than infants who were 

exclusively breastfed to 3-4 months (Table 13). However, these differences disappeared 

at one and two years of age, suggesting no longer-term benefit of EBF to six months on 

growth. Only 502 infants were included in this analysis, with 130 infants (26%) being 

exclusively breastfed to 3-4 months.
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     a Adjusted for sex, village, infant morbidity, gestational age at birth, parity, maternal height and BMI.  
       b Adjusted for sex, infant morbidity, gestational age at birth, parity, maternal height and BMI. 
       c The estimates show the difference in z-scores between infants exclusively breastfed to 3-4 months (±0.5 months) and infants exclusively breastfed to  
        six months (±0.5 months).

Table 13. Differences in WAZ, LAZ, WLZ by  exclusive breastfeeding to six months (±0.5 months) and  exclusive breastfeeding 
to 3-4 months (±0.5 months) (referent) 

 Weight-for-age z-score a Length-for-age z-score b Weight-for-length z-score a 

 Estimate c 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value 

At birth  0.071 -0.103, 0.246 0.4 0.030 -0.165, 0.224 0.8 0.082 -0.153, 0.317 0.5 

At 6 months  0.216 0.027, 0.404 0.03 0.005 -0.163, 0.173 0.9 0.289 0.093, 0.485 0.004 

At 12 months  0.120 -0.100, 0.339 0.3 0.101 -0.083, 0.286 0.3 0.099 -0.118, 0.317 0.4 

At 24 months  0.048 -0.139, 0.236 0.6 0.034 -0.150, 0.218 0.7 0.034 -0.158, 0.227 0.7 
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The unexpected difference in WLZ at birth according to feeding practice (Table 8 and 11, Figure 

15) was further explored. It was investigated if this difference was explained by any 

environmental, maternal or infant characteristics, however this was not the case (Appendix 3). 

The possibility of reverse causality was therefore tested. Vail et al (2015) proposed a method for 

assessing reverse causality; including infants who were still exclusively breastfed at a given age 

and testing whether their mean weight, length and z-score change (between birth and a given age) 

were associated with subsequent age of discontinuation of EBF. This was applied here using the 

change in growth between (i) 2 weeks and 3 months of age and (ii) 2 weeks and 4 months of age. 

When applying this method, it was found that growth, either poor or good, in the first three or 

four months of life was not associated with when a mother stopped EBF (Table 14). Another 

method proposed by Kramer et al (2012) (47) in assessing reverse causality was also applied. 

This method did not look at the change in growth as Vail et al (2015) (317), but looked at the 

mean z-score at a given age and investigated how this was associated with a subsequent age at 

discontinuation of EBF. When applying this method in this analysis, it was found that a higher 

mean WLZ at three months of age was associated with a subsequent higher mean age at 

discontinuation of EBF (coefficient 0.064, 95% CI: 0.008, 0.120, p=0.03). No evidence for an 

association was found using WLZ at four months of age (coefficient 0.037, 95% CI: -0.008, 

0.083, p=0.1) or if using other growth outcomes.
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        CI, confidence interval; EBF, exclusive breastfeeding; LAZ, length-for-age z-score; n, sample size; SE, standard error; WAZ, weight-for-age z-score; WLZ, weight-for-length z-score. 
 

Table 14. Change in infant growth between (i) 2-12 weeks and (ii) 2-16 weeks of age and the association with subsequent age of discontinuation of exclusive 
breastfeeding 

 Subsequent age of discontinuation of EBF  Subsequent age of discontinuation of EBF 

 n Coefficient (SE) 95%CI p-value  n Coefficient (SE) 95% CI p-value 

Weight gain (2-12 weeks) 670 0.045 (0.06) -0.06, 0.154 0.4 Weight gain (2-16 weeks) 595 0.002 (0.04) -0.075, 0.078 1.0 

Length gain (2-12 weeks) 673 -0.013 (0.02) -0.051, 0.03 0.5 Length gain (2-16 weeks) 598 -0.005 (0.15) -0.035, 0.024 0.7 

WAZ change (2-12 weeks) 670 0.133 (0.04) -0.070, 0.096 0.8 WAZ change (2-16 weeks) 595 -0.004 (0.03) -0.063, 0.056 0.9 

LAZ change (2-12 weeks) 673 -0.038 (0.04) -0.125, 0.048 0.4 LAZ change (2-16 weeks) 598 0.0002 (0.03) -0.064, 0.064 1.0 

WLZ change (2-12 weeks) 666 0.021 (0.03) -0.036, 0.078 0.5 WLZ change (2-16 weeks) 592 -0.012 (0.02) -0.056, 0.032 0.6 
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5.3 Discussion 

This Chapter analysed how EBF to six months was associated with infant growth from birth to 

two years of age, in a population where growth faltering is common and where food availability 

is limited. The WHO recommends EBF to six months; however, few studies have investigated 

the association between this practice and infant growth in a resource-poor setting where no infant 

formula is available.  

In this analysis of rural Gambian mother-infant pairs, 32% of infants were exclusively breastfed 

to six months, and 67% to five months. This prevalence vastly exceeds estimates from other West 

African countries, for instance in Senegal only 19% of infants are exclusively breastfed to 4-5 

months of age (318). Low prevalence of EBF is also found in many high-income countries, for 

instance in the UK only 1% are exclusively breastfed to six months (319). However, despite these 

impressive EBF practices recorded within this Gambian context substantial growth faltering in 

infants was observed across the first two years of life and, notably, this faltering started while 

most of the infants were still exclusively breastfed. Further high rates of stunting, wasting and 

underweight were found in this analysis, which is in line with previous findings in this rural 

Gambian setting (74), and similar to what has been found in other West African populations 

(320). The differences in weight and length between the infants who were exclusively breastfed 

to six months (EBF-6) versus infants not exclusively breastfed to six months (nEBF-6) were 

small. The observed differences in z-scores were small in magnitude (<0.2 SD at all time-points) 

and far lower than the z-score change indicative of crossing a major centile band (0.67 SD, (321).  

To date, few published trials have investigated how following the WHO recommendation of EBF 

to six months benefits growth in a low-income setting. Only two controlled trials from Honduras 

(67, 68) were available, where mothers were randomised at four months postpartum to either 

continue EBF to six months or to feed solid foods from 4-6 months and continue breastfeeding. 

These data were re-analysed and combined by Kramer and Kakuma (2012) (49), who found that 

EBF to six months compared to EBF to four months did not improve infant weight or length 

between 4-6 months of age and subsequently (6-12 months). Monthly weight gain between 4-6 

month was non-significantly higher among infants exclusively breastfed to six months compared 

to exclusive breastfed to 4 months (mean difference +20.78; 95% CI: -21.99, 63.54 g/month). 

For length, the gain between 4-6 months was almost identical between the two groups, with only 
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1.0 mm/month difference (95% CI: -0.40, 2.40 mm/month) (49). Similar results were found in 

observational studies (69, 70), which were also reanalysed by Kramer and Kakuma (2012) (49).  

Kramer and Kakuma (2012) (49) further re-analysed and combined growth data from the two 

available trials from Honduras (67, 68) and found non-significant higher mean WAZ (+0.18, 95% 

CI: -0.06, 0.41), LAZ (+0.11, 95% CI: -0.11, 0.33) and WLZ (+0.09, 95% CI: -0.13, 0.31) in 

infants at six months of age who were exclusive breastfed to six months versus four months (with 

continued mixed feeding). The magnitude of the difference in z-scores were all small (<0.2 SD), 

which is in agreement with the findings in this analysis. The data presented in this current analysis 

adds to the existing evidence of limited benefit of EBF to six months of age on weight, length 

and z-scores in low-income settings. However, EBF to six months should still be encouraged, as 

following this practice benefits the infant in other aspects. For instance infants who are 

exclusively breastfed to six months are at lower risk of morbidity and mortality, especially due 

to gastrointestinal infections, which is of particular importance in this rural Gambian setting (49). 

There are a number of possible reasons for the lack of a strong association between early infant 

feeding practice and infant growth in this rural Gambian population. Firstly, there was a low 

diversity in feeding behaviour observed in this population. The difference in feeding practice 

between the two groups were modest and the population had a high mean age of discontinuation 

of EBF (5.2 months). Secondly, drivers of growth faltering in this setting are potentially so 

powerful that EBF to six months is not sufficient to improve growth long-term. Several combined 

environmental influences such as a highly infectious disease environment, food insecurity, poor 

hygiene and sanitation standards and low quality of complementary foods could, in this setting, 

play a larger role in poor growth than EBF to six months. Further, a healthy gut microbiome has 

received considerable attention as potentially playing a role in healthy growth (57). These rural 

Gambian infants could possibly have a poor gut environment that is not optimal for healthy 

growth. Additionally, it is likely that mothers in this study population experienced growth 

faltering themselves in early life, increasing the risk of an intergenerational cycle of stunting (3). 

To take into account the lack of heterogeneity between the two infant feeding groups (EBF-6 and 

nEBF-6) in terms of duration of EBF (6.2 months vs. 4.7 months), a post-hoc analysis of the data 

was initiated. It was found that infants exclusively breastfed to six months had a higher mean 

WAZ and WLZ at six months of age compared to infants who were exclusively breastfed to 3-4 

months with continued mixed feeding. This difference had however disappeared by one year of 

age. The difference in z-scores at six months of age were higher than what was found in the 
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original analysis, but still small in magnitude (<0.3SD), and lower than the z-score change 

indicative of crossing a major centile band (0.67 SD, (321)). However, whilst this analysis 

indicated that infants exclusively breastfed to six months had improved growth at six months of 

age, changing the exposure variable meant that a large proportion of infants (36%) were excluded 

from the analysis, as they fell outside the new infant feeding categorisation. The results should 

therefore be interpreted with caution.  

A surprising observation was the difference in WLZ at birth according to infant feeding practice. 

This observation could, firstly, reflect a consequence of some maternal, environmental or infant 

characteristic determining both feeding practice and infant size at birth. However, an analysis of 

predictors did not support this assumption. Secondly, this observation could reflect reverse 

causality, with mothers in this community choosing to continue EBF if their infant was growing 

well. Research from the UK has shown that rapid weight gain between birth and three months of 

age predicted subsequent earlier age of weaning (317). Kramer et al (2012) (47), using data from 

a Belarusian population, found contrary results; a low WAZ (<-1) at one month increased the risk 

of weaning by two months of age. In this analysis of rural Gambian infants, evidence that weight 

gain or loss in the first three or four months of life predicted discontinuation of EBF was not 

found, however a higher mean WLZ at three months of age predicted subsequent higher age at 

discontinuation of EBF. This could suggest that infant size influences EBF practice in this setting 

and not vice versa. This possibility that larger infants are more likely to remain exclusively 

breastfed reinforces the conclusion of this study that EBF to six months does not yield a growth 

benefit. 

An important strength of this study was the comprehensive growth and feeding data collected 

prospectively. Infant feeding data was collected weekly, which made it possible to determine 

feeding practice accurately according to infant age. Weekly interviews of feeding practice are 

better than retrospective collected data, as the mother is only asked to remember what the infant 

consumed during the last week, and not to give an estimate of when EBF was no longer practiced. 

This comprehensive growth and feeding data further allowed the use of multilevel modelling to 

analyse the data longitudinally.  

Further, several limitations of this analysis are acknowledged. Firstly, this is an observational 

study, with well-recognised sources of potential bias, such as confounding and reverse causality. 

Secondly, even though infant feeding practice was determined by weekly interviews, other 

studies have reported that only 70% of participating women accurately self-report breastfeeding 
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practices (322). To collect breastfeeding practises accurately the dose-to-mother deuterium oxide 

method would be needed. 

5.3.1 Conclusion 

In conclusion, these results suggest that EBF to six months has limited benefit to growth in rural 

Gambia; however following the WHO recommendation of EBF to six months is still advised in 

this setting due to other benefits of this practice.  
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Chapter 6 

Iodine 

This Chapter presents how an iodine-containing multiple micronutrient supplement given during 

pregnancy influences maternal status during pregnancy and lactation, breast milk composition 

and infant status in rural Gambia. The background begins with a review of iodine physiology, 

deficiency and iodine in human milk. This is followed by a description of assessment of iodine 

status, definitions of adequate status, intake requirements and epidemiological evidence for the 

importance of iodine. The focus of the background is on all three periods of pregnancy, lactation 

and infancy. The background is followed by a short introduction to the research area, methods, 

results and discussion. 

6.1 Background   

Iodine deficiency used to be a major global public health problem, however noteworthy progress 

has been made in the eradication of iodine deficiency disorders over the past two decades (323). 

In 1993, the World Health Organization (WHO) estimated that 110 countries were affected by 

goitre or other iodine deficiency disorders (324), and this number decreased to 15 in 2015 (325). 

The major contributing factor to this reduction has been the implementation of national salt 

iodisation programmes, with 75% of the global population having access to iodised salt in 2014 

(326). Iodisation of salt is cost-effective, however, some countries experience low coverage of 

national programmes in rural areas. This is seen in The Gambia, as described in Chapter 3, where 

a large proportion of women in rural areas prefer to use locally sourced river salt. Despite the 

progress in national iodisation programmes, iodine deficiency remains a common micronutrient 

deficiency in all parts of the world (327).  
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Iodised salt used as table salt or as salt in food production is not the only source of iodine. Dairy 

products are another common source in some countries, due to iodine supplementation in animal 

feed. The iodine content in conventional cow’s milk, for instance in the UK, is higher during 

winter months where cows are feed iodine fortified fodder (328). Salt-water fish and seafood 

have relatively high iodine content (329) because of their capability to concentrate iodine from 

seawater, however in many places fish and seafood are not consumed on a regular basis which 

makes the contribution of iodine from these sources low (330). Drinking water from certain 

aquifers or water disinfected with iodine can also be a rich source of iodine intake in some 

countries (331). Iodine is also found in soil, however the iodine content in crops is generally low 

and differs according to regions (332).  

6.1.1 Iodine physiology  

Iodine is mainly ingested as inorganic iodide (I-) and iodate (IO3-) and as organic iodine. Iodide 

is directly absorbed in the gastrointestinal track while iodate is reduced to iodide in the gut before 

absorption (333) (Figure 16). Organic iodine is digested before the released iodide is absorbed. 

More than 90% of ingested iodine is absorbed in the intestine, where it enters the plasma as iodide 

(333). From the plasma, iodide is transferred to the thyroid gland with losses mainly through the 

kidneys by excretion in urine; 90% of ingested iodine is excreted in urine in iodine sufficiency 

(333). Renal clearance is generally not influenced by iodine intake, whereas thyroid clearance is 

(334). Within the thyroid gland iodine is organified and used for synthesis of the thyroid 

hormones. A healthy adult has 15-20 mg of iodine, of which around 70-80% is stored in the 

thyroid gland, however in populations with chronic insufficient iodine intake, this storage might 

be as low as 20 µg (335). 
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Figure 16. Iodine absorption and metabolism.  

Adapted from Zimmermann (2012) (333), redrawn by S. Stinca (2016 personal communication, copied with 
permission). 

The transport of iodide from plasma to the thyroid gland is active and mediated by a sodium-

iodide symporter (NIS) (Figure 17). Iodide is transferred to the colloidal follicle lumen at the 

apical membrane, where it is oxidised and combined in thyroglobulin (Tg), which results in the 

formation of the hormone precursors monoiodotyrosine (MIT) and diiodotyrosine (DIT) (336). 

This process is catalysed by the thyroid peroxidate (TPO) enzyme which also catalyses the 

formation of triiodothyronine (T3) and thyroxine (T4). T3 and T4 are synthesised upon demand 

for thyroid hormone secretion that lead to internalisation of thyroglobulin into the follicular cell 

and digested in lysosomes (336). The thyroid stimulating hormone (TSH) is secreted by the 

anterior pituitary gland and regulates thyroid hormone synthesis and secretion (332).  
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Figure 17. Uptake of iodide in the thyroid gland and synthesis of thyroid hormones. 

From Andersen (2015) (337). 

6.1.2 Iodine physiology during pregnancy and lactation 

Iodide is transported to the placenta by NIS during pregnancy (338). In early pregnancy, the 

foetus is dependent on maternal thyroid hormones (339) transported across the placenta (340). 

From around mid-pregnancy, the foetal thyroid gland is increasingly capable of synthesising 

thyroid hormones, however still with a need for transport of iodide from the mother (341).  

Uptake of iodine into the lactating mammary gland is also actively mediated by NIS (338). 

Lactation is associated with changes in maternal iodine metabolism, with iodine concentrated in 

the mammary gland for excretion in breast milk. Around 40-45% of ingested iodine is excreted 

in the milk, and consequently less is excreted in urine (342).  

6.1.3 Iodine deficiency 

Iodine is required for the biosynthesis of thyroid hormones (343), and iodine intake should not 

be below the threshold of what the thyroid needs in order to maintain normal function (335). 

Short-term low intakes of iodine can be buffered by intrathyroidal stores (up to 20 mg in iodine-

replete populations) and increased fractional clearance of circulating iodine (335). In iodine-

deficient populations, thyroidal iodine stores are generally low, making iodine turnover reliant 
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on dietary iodine intake (344). If the combined supply of absorbed dietary iodine and recycled 

endogenous iodine do not meet systemic need for synthesis of thyroid hormones, levels of T3 and 

T4 fall and TSH production increases (Figure 18). During deficiency, the increasing levels of 

TSH hyper-stimulate the thyroid, which in return increases Tg concentrations in the blood (328, 

344). With continued stimulation to the thyroid and inadequate iodine intake, the thyroid can 

become enlarged (344).  

Adequate 
iodine intake

Inadequate iodine intake
(Negative iodine balance)

Thyroid 
dysfunction

Iodine deficiency

↑ Thyroidal iodine 
clearance

Normal thyroid 
function

↓ Thyroid 
hormone

↑ TSH

↑ Thyroid size, ↑ Thyroglobulin 

Iodine sufficiency

Thyroidal iodine stores

Decreasing habitual daily iodine intake

 

Figure 18. The physiological stages of iodine status.  

The figure illustrates a model of human iodine and thyroid status at different stages (left to right) of iodine intake. The 
stages are separated by vertical dashed bars, first stage is sufficient intake, then low intake without thyroid dysfunction 
and lastly low intake with hypothyroidism (indicated by increased TSH and decreased T4 and T3). From Zimmermann 
and Andersson (2012) (344). 

Insufficient iodine supply can result in adverse effects, which are termed iodine deficiency 

disorders (IDD) (334). Table 15 details the health consequences of iodine deficiency by 

population group. Consequences range from goitre to a range of outcomes arising from deficiency 

of the thyroid hormones, including growth impairment and neurodevelopmental damage (345). 
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Changes in thyroid hormones is likely caused by iodine deficiency but can also be due to for 

instance thyroid disease. 

Table 15. Iodine deficiency disorders by population group. From Hetzel (1983) (345). 

Population group Consequences of iodine deficiency 
All  Goitre 

Hypothyroidism (indicated by an increase in TSH and a decrease in T4 
and T3) 

Foetus Abortion 
Stillbirth 
Congenital anomalies 
Perinatal mortality 

Neonate Endemic cretinism  
Infant mortality 

Child and adolescent Impaired mental function 
Delayed physical development 
Iodine-induced hyperthyroidism  

Adult Impaired mental function 
Iodine-induced hyperthyroidism 

6.1.4 Iodine in human milk  

In conditions of iodine adequacy the transport of iodide to human milk is effective and ensures 

an adequate supply of iodine to the breastfeeding newborn. Iodine in human milk is often found 

at concentrations that are 20-50 times higher than in plasma (346). Almost 80% of total iodine in 

mature milk is in the form of iodide and the remainder as organic iodine (347). T3 and T4 are 

present only in small quantities in human milk, constituting a small proportion of the total iodine 

in milk (348).  

Iodine concentration is high in colostrum (219, 229), and reaches a plateau in mature milk (219, 

227, 228, 233, 240). Researchers have found conflicting results regarding iodine concentration 

in foremilk versus hindmilk. Andersen et al (2014) (226) found a higher (however small) 

concentration of iodine in foremilk compared to hindmilk in a replete Danish population, whereas 

others report no difference between foremilk and hindmilk (245, 349). The lower breast milk 

iodine concentration (BMIC) in hindmilk is likely explained by the higher water content of 

foremilk (277). Dold et al (2016) (278) argue that the difference seen between foremilk and 

hindmilk is small, and is likely to be physiological irrelevant in iodine sufficiency. Considerable 
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diurnal and day-to-day variations in BMIC have been reported (350), however no consistent 

tendencies have been demonstrated by time of day or left or right breast (346).  

BMIC is influenced by maternal iodine status and dietary intake as described in Chapter 2. Other 

determinants of breast iodine concentrations are maternal smoking (351), and caesarean section 

(217). Further, some studies have found a positive relationship between breast milk iodine and 

maternal age (238, 245). Gestational age at birth and parity are not associated with BMIC (127, 

229).  

6.1.5 Assessment of iodine status  

The most common methods recommended to assess iodine status in humans are (i) iodine 

concentration in urine (ii) the concentration of thyroid function parameters; TSH, and Tg in serum 

samples and (iii) thyroid size (334, 352). These indicators complement each other with urinary 

iodine concentration (UIC) representing recent iodine intake (within days), Tg the intermediate 

response to inadequate or excessive iodine intake (weeks to months) and the changes in thyroid 

size reflecting long-term iodine intake and status (months to years) (334).  

Urinary iodine concentration  

UIC is a good marker of recent iodine intake. More than 90% of dietary iodine is absorbed and 

in healthy non-lactating adults, more than 90% of the absorbed iodine is excreted through urine 

(344). UIC is used to assess iodine status in populations; however it is not an optimal measure of 

individual status given urinary iodine substantially varies from day-to-day and within days due 

to differences in iodine intake (353). A 24-hour urine sample, expressed as a value of daily 

urinary iodine excretion (UIE) (μg/day), was initially considered as the reference standard for 

iodine status in populations (354). However, this biomarker is not practical in large studies or 

remote areas, and often has poor compliance (334, 354). Instead the use of a single urine spot 

sample is used (expressed as the median UIC, µg/l), and recommended by the WHO as the 

biomarker to use for assessment of iodine deficiency in populations (352).  

Compared to UIC from a spot sample, UIC from 24-hour urine samples is not affected by within-

day variation, and is more accurate and reproducible in assessing population iodine (355). UIC 

from 24-hour samples is correlated with spot UIC, however a noteworthy difference is observed 

in the distribution of the concentrations (355). Both biomarkers are however affected by day-to-
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day variations in iodine intake, and 10 repeat samples are needed to reliably estimate individual 

iodine status and intake (353). 

Urinary iodine can also be expressed in relation to urinary creatinine (µg iodine/g creatinine). 

However, urinary creatinine excretion varies with age, sex and body size, reducing its reliability 

as a denominator for the standardisation of iodine excretion (356, 357). Due to these limitations 

and the extra cost associated with measuring creatinine, expressing urinary iodine as µg/l, and 

not as µg/g creatinine, is now accepted (344, 352). If a large number of samples are analysed (50-

100 as a minimum), the variation in hydration and iodine intake is generally evened out (344).  

Serum thyroid stimulating hormone (TSH) and thyroid hormones (T4 and T3) 

TSH is an insensitive indicator of iodine status, because even with iodine deficiency, TSH only 

increases slightly and often remains within the normal range (352). In general it is not recommend 

to routinely use TSH for monitoring iodine status in the adult population (327). It is however 

valuable to measure TSH, T4 and T3 to identify at-risk women, due to the impact of maternal 

thyroid hormone concentrations for normal foetal brain development (327). Thyroid hormone 

concentrations are poor indicators of iodine status, and it is not recommended to measure these 

for monitoring iodine status (358).  

Serum thyroglobulin (Tg) 

Tg is a thyroid-specific protein synthesised only in the thyroid and is the most abundant 

intrathyroidal protein (359). Serum Tg is elevated during iodine deficiency due to TSH 

hyperstimulation (344, 354). It is considered a robust biomarker of iodine nutrition in 

populations; it is more sensitive than TSH or thyroid hormones, and it reflects subtle changes in 

iodine nutrition over a period of weeks to months (360). Furthermore, assays measuring Tg using 

dried whole-blood spots (DBS) have been developed, making blood collection, storage and 

transport easier (361). Tg correlates well with UIC, thyroid size and thyroid hormones (360, 362-

364) and data from several studies suggest that Tg in combination with UIC could be used as a 

sensitive indicator of iodine status in both children, adults and pregnant women (365, 366). DBS-

Tg is recommended by the WHO for the monitoring of iodine status in school-aged children 

(352). However Tg measurement is technically challenging and inter-assay variability is high 

(367), and not enough studies have been conducted in populations other than school-aged 

children, for the WHO to recommend it as a monitoring biomarker.  
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6.1.6 Criteria for adequate iodine nutrition  

Pregnancy 

WHO recommends the use of UIC in spot samples as an indicator of iodine status in pregnant 

women, with a median UIC <150 μg/l defined as insufficient iodine intake (Table 16) (352). 

Zimmermann and Andersson (2012) (344) argue that even though the WHO indirectly has 

endorsed it, classifying individuals as having an insufficient iodine intake based on their UIC, is 

discouraged. Instead, they suggest to use the median UIC to interpret the iodine status of the 

population, and not calculate the prevalence of individuals below the median, due to the large 

day-to-day variations in iodine intake. Even in populations that are iodine-replete, studies have 

shown an individual day-to-day variation in UIC by 30% to 40% (353).  

Table 16. Criteria for assessing iodine nutrition based on the median UIC (µg/l). From WHO, UNICEF, 
ICCD (2007) (352). 

Median UIC (µg/l) Iodine intake 

Pregnant women 
 

<150 Insufficient 

150-249 Adequate 

250-499 Above requirements 

≥500 Excessive  

Lactating women and children <2 years 
 

<100 Insufficient 

≥ 100 Adequate 

UIC, urinary iodine concentration. 

A newly proposed international reference range (2.5th and 97th percentile) of 0.3-43.5 μg/l for 

DBS-Tg in pregnant women has been suggested by Stinca et al (2017) (366). The authors based 

this reference range on a cross-sectional analysis of 3870 pregnant women from 11 countries. 

Based on the pooled median DBS-Tg of the reference population, they also suggested a median 

DBS-Tg below 10 μg/l to categorise iodine sufficiency in a population of pregnant women. The 

authors did not observe any difference in Tg across pregnancy in iodine-replete women, thus 

recommending a single Tg cut-off over the course of pregnancy. They did not develop a reference 

range for serum Tg, but reported that serum Tg correlated well with DBS-Tg. They further 

reported that over a range of iodine intakes (measured by UIC), DBS-Tg concentrations were u-
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shaped. They measured Tg concentration with the use of a newly developed enzyme-linked 

immunosorbent assay (ELISA) (368).  

Lactation 

WHO recommends UIC from spot samples as an indicator to assess iodine nutrition in lactating 

women, with a median UIC <100 μg/l defining insufficient iodine intake (Table 16) (352). There 

is an ongoing discussion regarding the use of UIC to assess iodine nutrition in lactating women 

(241, 369). A recent study by Dold et al (2017) (241) showed that women, who were iodine 

sufficient and exclusively breastfeeding, had a preferential partitioning of iodine into breast milk, 

and consequently a lower urinary iodine excretion, when dietary iodine intake was low. This 

indicates that the women were adapting to a low iodine intake, by increasing uptake and secretion 

of circulating iodine in the blood by the mammary gland (370). This was only observed in women 

with adequate iodine status; in iodine-deficient women a constant proportion of iodine was 

excreted into breast milk (241). This supports the hypothesis that BMIC is a better indicator of 

iodine status than UIC in exclusively breastfeeding women, especially in those with an iodine 

intake in the medium/lower range (241).  

Further work is required to confirm the findings of Dold et al (2017) (241). In addition breast 

milk is a complex matrix sample, and advanced quantification techniques are needed to measure 

it accurately (241), which lowers the feasibility of BMIC as the monitoring biomarker.  

Infancy 

Tg is widely used in the diagnosis of thyroid diseases, however few studies have used Tg as an 

epidemiological biomarker for iodine status in infancy (360, 362). Sobrero et al (2007) (371) 

found a large variation in Tg concentration in infancy depending on the quantification method 

used, implying large assay variability. The authors also reported large differences according to 

infant age, with higher serum Tg values in early infancy (3-15 days) compared to later infancy 

(16-180 days). Thus, for interpretation of serum Tg levels in infancy, age and quantification 

method should be considered and comparison between studies should be done with caution (367).  
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6.1.7 Iodine intake requirements during pregnancy, lactation and infancy  

Pregnancy 

Iodine requirement increases during pregnancy by approximately 50% (372). This is due to; (i) 

an increase in maternal T4 production to maintain normal metabolism in the mother; (ii) a transfer 

of T4 and iodine to the foetus; and (iii) an increase in renal iodide clearance. Several institutions 

have set a recommended intake for iodine during pregnancy. Table 17 presents the intakes 

recommended by The Food and Nutrition Board of the Institute of Medicine (IOM) of the U.S 

National Academy of Sciences and the WHO.  

The IOM’s dietary iodine intake estimations during pregnancy are based on studies that roughly 

estimated iodine requirement by correlating the effect of iodine supplementation with changes in 

thyroid volume during pregnancy (231, 232, 373). The WHO recommends a daily iodine intake 

of 250 μg/day for pregnant women, a value that is approximately 10% higher than the 

recommended dietary allowance (RDA) suggested by IOM (352).  

Table 17. Recommended dietary iodine intake (μg/day) for pregnant and lactating women and infants by 
IOM (374) and the WHO (352). 

Women of 
reproductive age  

Pregnancy Lactation  Infancy 

IOM WHO IOM WHO IOM WHO IOM WHO 
EAR: 95 - EAR: 160 - EAR: 209 - AI: 110* - 
RDA:150 RNI: 150 RDA: 220  RNI 250 RDA: 290 RNI: 250 - RNI: 90* 

EAR, estimated average requirement (the EAR is the daily dietary intake level of a nutrient expected to satisfy the 
needs of 50% of the population group). RDA, recommended dietary allowance, RNI, recommended nutrient intake, 
AI, average intake (dietary intake believed to be adequate for everyone in the demographic group to maintain health, 
established where no sufficient data to establish EAR are available) IOM, Institute of Medicine, WHO, World Health 
Organization. * The IOM recommendation is for the first six months of infancy, and the WHO recommendation is 
for the first two years of life.  

Lactation 

The IOM’s estimated average requirement (EAR) during lactation (209 µg/day), was established 

based on the average requirement of non-pregnant, non-lactating women (EAR of 95 μg/day) 

plus the average daily iodine excretion in breast milk (374). The average daily breast milk iodine 

excretion was estimated as 114 μg/day, which was the daily median intake of 0-6 month old 
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infants in a test-weighing study (375). The WHO recommends a daily iodine intake of 250 μg/day 

for lactating women, the same recommendation given during pregnancy (352).  

Infancy 

Infants are especially sensitive to iodine deficiency because they have the highest production of 

thyroid hormones per kilogram, and they are born with minimal thyroidal iodine stores (376). 

Exclusively breastfed infants rely on iodine from breast milk alone to cover their high rates of 

thyroid hormone production (334).  

Infant iodine requirements are poorly defined. The average intake (AI) recommended by the IOM 

during the first six months of an infant’s life (110 μg/day) is based on the median breast milk 

iodine concentration of 146 μg/l measured in a small (n=37), single study of American women 

(236) and an average breast milk intake of 0.781 l/day reported by a test-weighing study (375). 

In this American study, breast milk samples were collected between 14 days and 3.5 years 

postpartum in the 1980’s, a period when iodine intake in the United States was considered 

excessive (236).  

In contrast the WHO recommends a daily iodine intake of 90 µg for infants up to two years of 

age (352), based on a calculation that the iodine intake required to achieve positive iodine balance 

is at least 15 µg per kg/day in full term infants (323). However, assessment of iodine requirement 

and prevalence estimates of nutrient deficiencies in populations should ideally be based on an 

EAR (374). Recently, Dold et al (2016) (377) attempted to develop an EAR for iodine in infants. 

They reported an EAR of 72 µg/day for infants between 2-5 months of age. The EAR was 

established by a dose-response metabolic iodine balance study, where daily iodine intake, 

excretion and retention were measured over a range of iodine intakes in Swiss infants who were 

fed infant formula. The authors reported an iodine requirement of 70 μg/day in 2-5 months old 

infants, and by adding an allowance for accumulation of thyroidal stores they recommended an 

EAR of 72 μg/day. If using this EAR, and the estimate that infants consume approximately 0.781 

l of breast milk a day, a BMIC of 92 µg/l is needed to meet an exclusively breastfed infant’s daily 

iodine requirement (377). Further studies are required to support these findings before revised 

values can be accepted.  

In countries that have successfully implemented national salt iodisation programmes, the iodine 

requirement of breastfed infants are predicted to be covered by breast milk; further 

supplementation of the infant is not recommended (352, 369). However, in areas without salt 
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iodisation programmes, the WHO recommends that infants (between 0-6 months of age) who are 

exclusively breastfed, should be supplemented indirectly through breast milk via maternal 

supplementation (352, 369). This recommendation was supported by a recent randomised 

controlled trial (RCT) comparing direct and indirect infant iodine supplementation and showed 

that indirect supplementation was associated with improved infant iodine status (227).  

6.2 Iodine in the first 1000 days  

Iodine is essential during all life stages, however it is especially vital during pregnancy and 

infancy, where the risk of deficiency for infants are high (376).  

6.2.1 Pregnancy iodine status and health outcomes  

Severe iodine deficiency4 in pregnancy causes permanent brain damage with mental retardation 

and neurological abnormalities in the foetus (378). Severe iodine deficiency during pregnancy 

has further been linked to endemic cretinism in neonates, which is the extreme expression of the 

abnormalities and intellectual development caused by iodine deficiency (378, 379). The 

importance of adequate iodine intake was first shown in an intervention study in the 1960’s in a 

severe iodine-deficient area in Papua New Guinea with endemic cretinism. This study showed 

that an injection of iodised oil given before conception or in early pregnancy reduced the 

incidence of cretinism and improved motor and cognitive functions in the offspring (380, 381). 

It has further been highlighted that neurological deficits caused by iodine deficiency in infants 

and young children are best prevented when iodine is given before or in early pregnancy (334, 

382). The risk of infant mortality is further increased in infants born to women whose iodine 

deficiency is not corrected before or during pregnancy (334, 383).  

Whether mild or moderate iodine deficiency during pregnancy5 has the same effect on offspring 

outcomes is not as well established (327, 384). It has been speculated that mild-to-moderate 

iodine deficiency also has detrimental effects on brain development in the offspring (327). This 

is based on a number of trials that have found an improvement on maternal and offspring thyroid 

function with iodine supplementation in mild-to-moderate deficient women (231, 232, 385). 

However, none of these trials investigated the effect of iodine supplementation on offspring brain 

                                                 
4 Severe iodine deficiency exists when more than 30% of children in the population or area have goitre, and the 
population has a median UIC<20 μg/l and pregnant women in the area give birth to cretins (327). 327. Skeaff SA. 
Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients. 2011;3(2):265-73.. 
5 Mild iodine deficiency during pregnancy is defined as a median UIC between 100-150 μg/l (327). 327. Ibid.. 
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development or postnatal growth. An observational study from the UK by Bath et al (2013) (386) 

reported an UIC <150 μg/g Cr during pregnancy to be associated with an increased risk of 

suboptimal cognitive outcomes in the offspring at eight years of age (386).  

These findings warrant additional RCTs in areas of mild-to-moderate iodine deficiency, however 

there is a debate about whether such trials are ethical (384). Trials in iodine poor areas are 

becoming increasingly difficult to justify because of the known harmful effect of iodine 

deficiency during pregnancy and infancy. One RCT has since been implemented, and preliminary 

results go against the speculations of a mild-to-moderate effect (Udomkesmalee et al in 

preparation). Pregnant women from India and Thailand were mildly iodine deficient with a 

median UIC just below 150 μg/l, when randomised to a prenatal iodine supplement of 200 μg/day, 

or a placebo during pregnancy. The authors found that iodine supplementation did not have any 

effect on offspring neuro development at 5-6 years of age (Udomkesmalee et al in preparation). 

In iodine deficiency, the activity of the thyroid hormones is reduced which diminish the effect of 

growth hormone and circulating concentrations of insulin-like growth factor and its binding 

proteins (334, 335). The role of iodine in growth has been documented in goitre endemic areas 

(387). However, few trials have investigated neonatal and postnatal growth as an outcome 

measurement of iodine supplementation during pregnancy in women with mild-to-moderate 

iodine deficiency (384).  

6.2.2 Infancy iodine status and health outcomes  

Iodine deficiency during infancy can also irreversibly impair brain development and increase 

infant mortality (383, 388, 389). A large RCT implemented in Indonesia in an area of iodine 

deficiency found that infants treated with iodine supplements at six weeks of age had a 72% 

decrease in risk of infant death during the first two months of follow up (389). No RCTs 

investigating the effect of infant iodine supplementation on brain development in iodine-deficient 

areas were found. 

6.3 Iodine status of mothers, breast milk and infants   

Maternal iodine status and intake during lactation is of particular importance for exclusively 

breastfed infants who are relying on breast milk as their only source of iodine. As described in 

Chapter 2, several intervention studies have found a positive effect of maternal iodine 
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supplementation on BMIC during lactation, however few studies have investigated the effect of 

maternal supplementation exclusively during pregnancy. In fact of all available intervention 

studies, the majority have (i) not investigated the effect of supplementation exclusively during 

pregnancy (2 out of 7 studies have investigated the effect during pregnancy only (228, 231), (ii) 

not investigated the effect longitudinally across the first six months of lactation (3 out of 7 studies 

have investigated the longitudinal effect (219, 227, 228), and (iii) not investigated the effect 

simultaneously on breast milk iodine concentration and infant iodine status (3 out of 7 studies 

have investigated this (227, 231, 232). The picture is incomplete, and essentially no study has 

investigated the effect of supplementation during pregnancy on BMIC and infant iodine status 

across the first six months postpartum, highlighting the need for further research.  

The existing literature that is available on iodine supplementation during pregnancy only, consists 

of one RCT (228), one intervention study (no randomisation) (231) and one observational study 

(230), where women self-reported their supplement use during pregnancy. In all three studies, a 

prenatal supplement had a positive effect on breast milk iodine concentrations, and some of the 

studies also showed a positive effect on infant neonatal iodine status (228, 231). None of the 

studies investigated longitudinal infant iodine status. These three studies were conducted in 

iodine-deficient populations in Algeria and in Belgium and Denmark, with the two latter studies 

conducted prior to implementation of salt iodisation in both countries. Furthermore, a RCT by 

Pedersen et al (1993) (232) supplemented Danish women with 200 µg/day of iodine, however 

during both pregnancy and lactation, which makes it difficult to conclude if the reported result of 

a borderline effect on median BMIC at 5 days postpartum (41 μg/l vs. 28 μg/l in supplemented 

vs. control women) was due to the iodine supplement received during pregnancy or during the 

first few days of lactation. 

This Chapter presents an original analysis investigating; (i) the effect of an iodine containing 

multiple micronutrient supplementation during pregnancy on breast milk iodine concentration 

and infant thyroglobulin concentration during the first six months of life in rural Gambia; (ii) 

determinants of breast milk iodine concentration and (iii) estimated maternal and infant iodine 

intakes.  

6.4 Methods  

Data and samples for this analysis were collected as part of the ENID trial and the ENID-Bone 

extension to the ENID trial. Maternal urine (from a 24-hour urine collection collected at baseline, 
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30 weeks’ gestation and 12 weeks postpartum), maternal serum during pregnancy (baseline and 

30 weeks’ gestation), breast milk (8, 12 and 24 weeks postpartum) and infant serum (delivery 

(cord blood), 12 and 24 weeks postpartum), were used from participating women and infants in 

the tablet arms of ENID (Iron-folic acid (FeFol) and multiple micronutrients (MMN)). Maternal 

UIC, serum Tg, BMIC and infant serum Tg were analysed. Participant recruitment, maternal 

supplementation, data and sample collection methodologies are all described in detail in Chapter 

4 (page 117).  

6.4.1 Sample analysis  

Serum, urine and breast milk samples were aliquoted and frozen until analysis. Urine and breast 

milk samples were transported to MRC Elsie Widdowson Laboratory (EWL) (Cambridge UK), 

and serum samples were transported to the Human Nutrition Laboratory of ETH Zurich (Zurich, 

Switzerland) for analysis.  

Urinary iodine concentration 

Maternal UIC is presented as 24-hour UIC (µg/l) and not as 24-hour UIE (µg/day), as this 

increases comparability with other studies and with the WHO definition for insufficient iodine 

intake.  

UIC was measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), at MRC 

EWL using a routine in-house method based on published methods (390). Urine aliquots were 

defrosted and immediately prior to taking an aliquot for sample analysis, the sample was 

homogenised by using a vortex mixer. For each sample a 0.4 ml aliquot was pipetted into a 10 

ml tube and diluted (1:10) with a solution of tetramethylammonium hydroxide (0.5%, TMAH), 

which included the internal standard tellurium (20 µg/l), and vortexed before analysis. 

Urine (ClinChek Urine Control for Trace Elements, RECIPE Chemicals+ Instruments GmbH, 

Lot 432) was used for quality control. Table 18 details the inter-assay variability for urine quality 

controls. The certified acceptable range for level 1 and 2 is 90-150 and 373-622 μg/l respectively. 

The coefficients of variation (CV) obtained are of acceptable quality. 
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Table 18. Inter-assay variability of quality controls for urinary iodine.  

 
 Urine (level 1) Urine (level 2) 

n 65 65 
Mean (µg/l) 123 504 
SD 3.8 15.5 
CV (%) 3.1 3.1 

SD, standard deviation; CV, coefficient of variation; n, sample size. 

Breast milk iodine concentration 

BMIC was measured by ICP-MS using a method specifically developed for BMIC measurement 

at MRC EWL. The samples were defrosted, inverted and placed in a rotary mixer for a minimum 

of 15 minutes, and immediately prior to aliquoting, the samples were further homogenised using 

a vortex mixer. For the sample preparation procedure 0.1 ml of each sample was pipetted into a 

10 ml tube. Samples were diluted (1:50) with a solution of ultra-grade TMAH containing 

tellurium as the internal standard (0.5% TMAH, 20 μg/l tellurium). The samples were then 

analysed by ICP-MS along with external matrix-matched calibration standards (commercially 

sourced pooled breast milk, Sera Laboratories international LTD). Serum and whole blood 

(RECIPE Chemicals+, Instruments GmbH and Sero AS) were used as quality controls. Table 19 

presents the inter-assay variability of the quality controls. The certified acceptable range for 

serum level 1 and 2 are 36-55 and 79-118 μg/l respectively, and 95-115 μg/l for whole blood. 

The CVs obtained are of acceptable quality. 

Table 19. Inter-assay variability of quality controls for serum and whole blood iodine.  

 
 Serum (level 1) Serum (level 2) Whole blood 

n 78 78 76 
Mean (µg/l) 50 109 102 
SD 2.5 3.8 3.2 
CV (%) 5.1 3.4 3.0 

SD, standard deviation; CV, coefficient of variation; n, sample size. 

Thyroglobulin 

Tg was measured in maternal and infant serum using a newly developed sandwich serum-Tg 

ELISA at the Institute of Food, Nutrition and Health, ETH Zurich in Switzerland (368). For the 
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current analysis of the maternal serum samples, an identical protocol developed by Stinca et al 

(2016) (368) was used. For the infant samples however, the samples were diluted 1:20 (instead 

of 1:10 as per protocol). For both the maternal and infant serum analyses, the concentrations of 

the controls used to obtain a calibration curve were 5.48, 10, 20, 53.7 and 100 μg/l. Thyroglobulin 

LiquicheckTM Tumor Marker Control (BIO-Rad Laboratories AG, Cressier, Switzerland, LOT. 

19990 and LOT. 19970) was used as the standard.  

Two in-house serum samples (ID 1 and ID 3) and two in house serum samples (ID 1 and ID 2) 

were used for quality controls of the maternal and infant samples. Table 20 details the inter-assay 

variability of the quality controls. The CVs obtained are of acceptable quality. 

Table 20. Inter-assay variability of quality controls for maternal and infant serum Tg.  

 
 Serum maternal ID 1 Serum maternal ID 3 Serum infant ID 1 Serum infant ID 2 

n 24 25 24 21 
Mean (µg/l) 21.3 28.9 19.6 37.0 
SD 3.2 3.4 3.5 4.5 
CV (%) 15.0 11.7 18.0 12.1 

SD, standard deviation; CV, coefficient of variation; n, sample size; Tg, thyroglobulin. 

6.4.2 Statistical analysis  

Baseline characteristics of the study population according to maternal supplement groups were 

assessed by t-tests (continuous outcome data) or ANOVA (categorical outcome data). 

Individual linear mixed effects models for repeated measurements were used to assess the effect 

of maternal supplementation on maternal iodine status, BMIC and infant iodine status. For each 

continuous variable (maternal UIC, Tg, BMIC and infant Tg), an individual linear mixed effects 

model was derived with time (three visits (two for maternal Tg), coded as a categorical variable, 

with the baseline visit as the reference category) and maternal supplementation group (FeFol or 

MMN) as fixed effects. Potential predictors of BMIC were included in the models (based on 

results from section 6.5.2), but this made no substantive difference to the results (data not shown). 

The models were therefore reported without any covariates. 

Between-individual variation was modelled using random effects. The residuals were tested for 

normality and homogeneity of variance using residual plots, and non-normally distributed data 
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were log-transformed and then reanalysed. Outliers were defined as data with residuals larger 

than 3 standard deviations (SD) from the mean in the mixed effect models and were excluded 

from the analysis (maternal UIC n=5 data points removed, maternal Tg n=3, BMIC n=5, infant 

Tg n=5).  

Interactions between time and supplementation for each model were assessed by likelihood-ratio 

tests between two nested linear mixed effects models, one model with and one without the 

interaction terms. The overall supplementation effect for breast milk concentrations were 

assessed by a likelihood-ratio test comparing two nested mixed effects models, one with maternal 

supplement group (and its time interaction) and one without maternal supplement group (i.e. with 

fixed effects for time only). The likelihood-ratio test tests whether the model including maternal 

supplement group as a predictor gave a significantly better fit to the data than the one without. 

For normally distributed data, the mean (SE) concentration at each time-point according to 

supplement group were derived from the mixed effects models that included an interaction term 

between time and supplement group (this was also how the baseline mean concentrations were 

derived). For non-normally distributed data, medians (interquartile range (IQR)) were derived 

from the raw data. The differences in concentrations between supplement groups at each time-

point were derived from the mixed effects models. For log-transformed data the differences were 

reported as percentages, calculated by exponentiating coefficients from the log transformed 

model: 100(𝑒𝑒𝛽𝛽� − 1), where 𝛽̂𝛽 is the estimated difference in log plasma/breast milk concentration 

between groups. For normally distributed data the differences were reported in units (molar or 

mass units). P-values for change in iodine concentration between time-points were derived from 

the mixed effects models.  

Determinants of BMIC at 12 weeks postpartum were examined using linear regression 

(continuous data) and t-tests or ANOVA (categorical data). Non-normally distributed data were 

log-transformed before analysis. Season of breast milk sample collection was categorised as a 

binary variable (dry season, November to May; wet season, June to October). Any crude 

associations between BMIC and exposure variables, identified with a p-value below or equal to 

0.05 were taken forward for multiple linear regression, using step-wise regression. Each variable 

was added one by one to the multiple regression. 

Estimated infant iodine intake was calculated based on the individual BMIC and assuming a 

mean breast milk intake of 0.782 l/day, which represents the estimated mean breast milk volume 
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consumed by Gambian infants at three months of age, assessed by test-weighing (391). This 

estimate is close to the average breast milk intake of 0.781 l/day reported by another test-

weighing study from the United States (375), which is often used by other studies as the mean 

breast milk intake for infants between 0-6 months. Only infants who were exclusively breastfeed 

were included in this analysis.  

Estimated maternal urinary iodine excretion was calculated based on individual UICs assuming 

a median urine excretion of 1.5 l/day (374). Estimated maternal daily iodine intake was calculated 

using total daily iodine excretion (through urine and breast milk) and assuming an average iodine 

bioavailability of 92% (374). The difference in estimated daily iodine intakes and excretions 

according to maternal supplement group were tested using the Mann-Whitney test.  

6.5 Results 

For this analysis, only women and children from the FeFol and MMN arms of ENID were 

included, representing a total of 381 mother and infant pairs (Figure 19). 

At baseline, mean (SD) age of the participating women was 30 (6.8) years (Table 21). The mean 

gestational age at study enrolment was 13.8 (3.4) weeks, and a mean BMI of 21.1 (3.4) kg/m2. 

Nineteen percent of the women were underweight (BMI<18.5 kg/m2) and 10% were overweight 

(BMI ≥ 25 kg/m2). A large percentage of the participating women had received no formal Arabic 

or English schooling (76%). The study population had a mean parity of 4.1 (2.7). 

A large proportion of infants in this cohort were exclusively breastfed, with 97% of infants being 

exclusively breastfed to two months of age, and 93% and 31% to three and six months of age, 

respectively. The mean age of discontinuation of exclusive breastfeeding (EBF) was 5.2 (1.2) 

months. Age of discontinuation of EBF did not differ between supplement groups. As observed 

in Chapter 5, infants in this setting showed growth faltering from early infancy, with a high 

prevalence of stunting and wasting. In this study sample, 23% were stunted and 14% wasted at 

two years of age.  

Maternal median (IQR) UIC at baseline was 51 (33, 82) μg/l, and did not differ between 

supplement groups (p=0.7, Table 22). At baseline, maternal median Tg was 22 (12, 39) μg/l, and 

did not differ between supplement groups (p=0.9, Table 22). At baseline, 24% (42/178) of women 

had elevated Tg (>43.5 µg/l) in the MMN group and 19% (33/170) in the FeFol group (p=0.3).  
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Randomised participants (n=875) 

Excluded (n=9) 
Miscarriage= 2 

Moved= 4 

Stillbirth= 3 

 

 

 Live births (n=208)  

 

Randomised to MMN (n=219)  

 

Randomised to PE or PE + MMN (n=437)  

Randomised to FeFol (n=219)  

 

Live births (n=199)  

 

Excluded (n=20) 
Miscarriage= 2 

Moved= 5 

Stillbirth= 7 

  

Excluded (n=13) 
Withdrawal= 7 

  

 

Maternal UIC or Tg and BMIC data from at least one time-point 

(n=381) 

Excluded (n=13) 
Withdrawal= 4 

  

Figure 19. ENID trial profile and mother-infant pairs included in this analysis.  

In Chapter 7 (vitamin B12), total sample size is n=381, and in Chapter 8 (thiamin, riboflavin and vitamin B6) 
total sample size is n=384 (13 excluded and 5 withdrawals from the MMN group and 13 excluded and 3 
withdrawals from the FeFol group). FeFol, Iron-folic acid; MMN, multiple micronutrients, UIC, urinary iodine 
concentration; BMIC, breast milk iodine concentration; Tg, thyroglobulin; PE, protein-energy  
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Table 21. Baseline characteristics of study population according to intervention arm 

 FeFol (n=186) MMN (n=195) All (n=381) 

Maternal age (years) 30.3 (6.7) 29.1 (6.8) 29.7 (6.8) 

Maternal weight (kg) (n=1 missing) 55.3 (8.8) 55.6 (9.9) 55.4 (9.4) 

Maternal height (cm) 161.9 (6.2) 162.3 (5.6) 162.1 (5.9) 

Maternal BMI (kg/m2) (n=1 missing) 21.1 (3.1) 21.1 (3.7) 21.1 (3.4)  

Gestational age at enrolment (weeks) (n=1 is missing) 13.7 (3.4) 13.8 (3.4) 13.8 (3.4) 

Parity, n (%)    

   Primiparous 19 (10.2) 28 (14.4) 47 (12.3) 

   Multiparous (≥ 1 previous pregnancy) 167 (89.8) 167 (85.6) 334 (87.7) 

Maternal education a, n (%)    

   No education  149 (80.1) 142 (72.8) 291 (76.4) 

   Low (1-7 years) 24 (12.9) 25 (12.8) 49 (12.9) 

   Medium (8-14 years) 13 (7.0) 28 (14.4) 41 (10.8) 

Village, n (%)    

   Core villages b 47 (25.3) 55 (28.2) 102 (26.8) 

   Outreach villages 139 (74.7) 140 (71.8) 279 (73.2) 

Maternal ethnicity, n (%)    

  Mandinka  162 (87.1) 158 (81.0) 320 (84.0) 

  Other 24 (12.9) 37 (19.0) 61 (16.0) 

Data are presented as mean (SD) unless otherwise stated. MMN, multiple micronutrient; FeFol, Iron-folic acid; n, 
sample size. 
a Maternal education was defined as completed years of either English or Arabic schooling. 
b Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages 
are the remaining 24 villages in West Kiang.  
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6.5.1 Supplement effect on iodine status and breast milk concentration 

Maternal iodine status 

Maternal MMN supplementation significantly improved maternal UIC compared with FeFol 

(p<0.001, Table 22, Figure 20). At 30 weeks’ gestation median (IQR) UIC for the FeFol group 

was 41 (29, 76) μg/l and 90 (43, 177) μg/l for the MMN group. Between baseline and 30 weeks’ 

gestation maternal UIC remained unchanged in the FeFol group (p=0.1), and significantly 

increased in the MMN group (p<0.001). Between 30 weeks’ gestation and 12 weeks postpartum 

maternal UIC decreased in both supplement groups (p<0.001 for both groups) and the difference 

in UIC between the groups was not significant at 12 weeks postpartum (p=0.07). Median UIC at 

12 weeks postpartum in the FeFol group was 33 (22, 51) μg/l and 39 (25, 64) μg/l in the MMN 

group. 

The changes observed in maternal UIC in response to supplementation were also reflected in 

maternal serum Tg concentration. Maternal MMN supplementation during pregnancy 

significantly decreased maternal Tg compared with FeFol (p<0.001, Table 22, Figure 21). At 30 

weeks’ gestation median Tg for the FeFol group was 22 (13, 41) μg/l and 17 (9, 33) μg/l for the 

MMN group. Between baseline and 30 weeks’ gestation, Tg increased in the FeFol group 

(p=0.03), and decreased in the MMN group (p<0.001). There was a significant difference in the 

prevalence of elevated Tg at 30 weeks’ gestation between the two supplement groups, 13% 

(23/183) in the MMN group versus 21% (37/175) in the FeFol group (p=0.03). 

Breast milk iodine concentration 

No evidence was found for an overall time by supplement interaction (p=0.3, Table 22, Figure 

22), however there was a significant difference in BMIC that was consistent over time, with a 

higher concentration in the MMN group (p=0.005). Median BMIC at 8 weeks postpartum was 

57 (41, 82) μg/l and 51 (34, 73) μg/l for the MMN and FeFol groups, respectively. BMIC 

decreased between 8 to 24 weeks postpartum in both supplement groups (p<0.001). Median 

BMIC at 24 weeks postpartum was 51 (32, 74) μg/l and 39 (30, 57) μg/l for the MMN and FeFol 

groups, respectively (p=0.001). 
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Infant iodine status 

Maternal MMN supplementation during pregnancy significantly decreased infant serum Tg 

compared with FeFol (evidence for an overall time by supplement interaction) (p<0.001, Table 

22, Figure 23). Median infant cord serum Tg at birth was 100 (51, 140) μg/l in the MMN group 

and 127 (81, 192) μg/l in the FeFol group. A significant difference in infant serum cord Tg 

between the two groups was observed at birth (p<0.001). Median infant serum Tg concentration 

at 24 weeks was 69 (47, 90) μg/l and 66 (43, 92) μg/l for the MMN and FeFol groups, 

respectively. The difference in infant Tg observed at birth was attenuated at 12 and 24 weeks 

postpartum (p=1.0 and p=0.6 respectively). Infant serum Tg concentrations significantly 

decreased between birth and 24 weeks postpartum for both supplement groups (p<0.001).
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Table 22. Maternal UIC, Tg, BMIC and infant Tg concentrations according to maternal supplement group, derived from individual mixed effects models 
Mothers Baseline p-value * 30 weeks’ gestation p-value * 12 weeks postpartum p-value * p-value ** 

Urinary iodine concentration (μg/l)        

  MMN 57 (31, 89)  90 (43, 177)  39 (25, 64)   

  FeFol 48 (35, 80)  41 (29, 76)  33 (22, 51)   

  Difference between supplement groups (%) a 3.2 (-12.2, 21.4) 0.7 95.9 (65.7, 131.7) <0.001 17.1 (-1.2, 38.8) 0.07 <0.001 

Serum thyroglobulin concentration (μg/l)        

  MMN 21.3 (12.1, 41.6)  16.8 (8.6, 32.8)     

  FeFol 21.6 (12.5, 38.0)  22.4 (12.9, 41.2)     

  Difference between supplement groups (%) a -0.8 (-18.5, 20.8) 0.9 -26.9 (-38.8, -11.0) 0.002   <0.001 

Breast milk  8 weeks postpartum  12 weeks postpartum  24 weeks postpartum   

Breast milk iodine concentration (μg/l)        

  MMN 57 (41, 82)   51 (35, 72)  51 (32,74)   

  FeFol 51 (34, 73)  44 (33, 72)   39 (30, 57)    

  Difference between supplement groups (%) a 17.0 (3.3, 32.7) 0.01 9.3 (-3.4, 23.6) 0.2 22.1 (8.0, 37.9) 0.001 0.3 (0.005) 

Infants Birth (cord blood)  12 weeks postpartum  24 weeks postpartum   

Serum thyroglobulin concentration (μg/l)        

  MMN 100.0 (51.1, 140.1)   86.0 (58.7, 126.9)   66.1 (42.6, 91.9)   

  FeFol 126.5 (80.8, 191.6)  87.8 (58.6, 124.4)   69.2 (46.7, 90.2)   

  Difference between supplement groups (%) a -27.7 (-37.5, -16.4) <0.001 3.1 (-9.6, 17.6) 1.0 0.4 (-12.1, 14.8) 0.6 <0.001 

Data presented on concentrations are medians (IQR) (non-normally distributed data), and are derived from raw data, not from the mixed effects models. The difference in concentrations 
between the two supplement groups are presented as the percentage (95% CI) difference between groups calculated by exponentiating coefficients from the log transformed model. All 
data were log-transformed 
a FeFol group is the referent group  
* This p-value tests the difference in concentration between supplement groups at the given time-point. 
** This p-value tests the difference in concentration between the two supplement groups depending on time; in other words the p-value tests an overall time by supplementation 
interaction. For the breast milk analysis the p-value presented in brackets is the overall supplement effect independent of time.
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Figure 20. Longitudinal maternal urinary iodine concentration (UIC) (μg/l) (geometric means) according 
to supplement group at baseline, 30 weeks’ gestation and 12 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p<0.001. 

 

 

Figure 21. Longitudinal maternal thyroglobulin concentration (μg/l) (geometric means) according to 
supplement group at baseline and 30 weeks’ gestation. 

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p<0.001.  
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Figure 22. Longitudinal breast milk iodine concentration (μg/l) (geometric means) according to supplement 
group at 8, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p=0.3. The overall time by supplementation effect p=0.005. 

 

 

 
Figure 23. Longitudinal infant thyroglobulin concentration (μg/l) (geometric means) according to 
supplement group at birth, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p<0.001.  
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6.5.2 Determinants of breast milk iodine concentration 

Maternal BMIC was strongly associated with UIC at 12 weeks postpartum (crude coefficient 

(log-transformed): 0.217, 95%CI: 0.128, 0.306, p<0.001, r=0.290) (Figure 24). The same overall 

results were seen if only including mothers from the FeFol group (data not shown). BMIC at 12 

weeks postpartum was further associated with seasonality (p=0.05) village (p=0.005), maternal 

ethnicity (p=0.008) and infant sex (p=0.01) (Table 23). After adjusting the association between 

maternal BMIC and maternal UIC at 12 weeks postpartum for potential confounders (seasonality, 

village, ethnicity, infant sex), the association remained (adjusted coefficient (log-transformed): 

0.198, 95%CI: 0.106, 0.291, p<0.001, r=0.346) (Table 24). 

Maternal BMIC at 12 weeks postpartum was also associated with maternal UIC in early 

pregnancy (baseline) (crude coefficient (log transformed): 0.154, 95% CI: 0.068, 0.240, p<0.001, 

r=0.210) (Figure 25). Data from both supplement groups were included in this analysis, as there 

were no differences in UIC or BMIC at 12 weeks postpartum between the two groups. The same 

overall results were seen if only including mothers from the FeFol group (data not shown). After 

adjusting the association between maternal BMIC and maternal UIC at baseline for potential 

confounders, the association remained (adjusted coefficient (log-transformed): 0.113, 95%CI: 

0.025, 0.202, p=0.01, r=0.295) (Table 25). 

Mothers who were exclusively breastfeeding their infant at six months postpartum did not have 

a different breast milk iodine concentration compared to mothers who were not exclusively 

breastfeeding (data not shown). 

  



 
Chapter 6. Iodine 

 

187 
 

 

 

Figure 24. Association between maternal urinary iodine concentration (UIC) and breast milk iodine 
concentration (BMIC) at 12 weeks postpartum (n=255).  

All values were log-transformed before analysis. The grey line is the linear regression fit. 

 

 

 

Figure 25. Association between maternal urinary iodine concentration (UIC) at baseline (early pregnancy) 
and breast milk iodine concentration (BMIC) at 12 weeks postpartum (n=275).  

All values were log-transformed before analysis. The grey line is the linear regression fit.  
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Table 23. Determinants of breast milk iodine concentration (BMIC) at 12 weeks postpartum  
 

n BMIC 12 weeks postpartum 

Maternal age, years 323 -0.002 (0.005) 

Maternal weight, kg 322 -0.003 (0.003) 

Maternal height, cm 323 0.002 (0.005) 

Maternal BMI (kg/m2) 322 -0.25 (0.22) 

Parity   

   Primiparous 44 4.04 (0.09) 

   Multiparous (≥ 1 previous   
   pregnancy) 

279 3.93 (0.03) 

Maternal education a   

   No education 244 3.91 (0.58) 

   Low (1-7 years) 43 4.07 (0.55) 

   Medium (8-14 years) 36 4.02 (0.47) 

Gestational age at birth (weeks) 319 0.002 (0.02) 

Season of sample collection   

   Dry season (Nov to May) 193 3.99 (0.04) 

   Wet season (June to Oct) 126 3.87 (0.05)* 

Village    

   Core villages b 80 4.10 (0.06) 

   Outreach villages 243 3.89 (0.04)* 

Maternal ethnicity   

 Mandinka  268 3.90 (0.03) 

 Other 55 4.13 (0.08)* 

Infant sex   

  Female 156 3.86 (0.04) 

  Male 167 4.02 (0.05)* 

Infant age at 12 week visit 316 -0.007 (0.005) 

Non-normal distributed data were log transformed. Continuous data are presented as logged beta coefficient (SE), 
categorical data as logged means (SD). Continuous data were analysed using linear regression and categorical data 
using t-tests or ANOVA. BMIC, breast milk iodine concentration; n, sample size. 
* Evidence for a difference between outcome and exposure variable p≤0.05. 
a Maternal education was defined as completed years of either English or Arabic schooling 
b Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages 
are the remaining 24 villages in West Kiang.   
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 Table 24. Adjusted regression of BMIC and maternal UIC at 12 weeks postpartum 

 n β-coefficient  SE 95% CI p-value 

Maternal UIC 12 weeks postpartum 251 0.198 0.047 0.106, 0.291 <0.001 

Season (referent dry season (Nov to 
May)) 

251 -0.071 0.066 -0.202, -0.060 0.3 

Village (referent core villages a) 251 -0.143 0.076 -0.293, -0.006 0.06 

Maternal ethnicity (referent Mandinka) 251  0.136 0.088  -0.037, 0.309 0.1 

Infant sex (referent female) 251 0.122 0.065 -0.006, 0.250 0.06 

The β-coefficient presented for each of the determinants are all adjusted for the remaining variables in the table. BMIC 
and maternal UIC were logged transformed 
a Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba.  
BMIIC, breast milk iodine concentration; UIC, urinary iodine concentration; SE, standard error; CI, confidence interval; 
n, sample size 

Table 25. Adjusted regression of BMIC at 12 weeks postpartum and maternal UIC at baseline (early 
pregnancy) 

 n β-coefficient  SE 95% CI p-value 

Maternal UIC baseline (early pregnancy) 271 0.113 0.045 0.025, 0.202 0.01 

Season (referent dry season (Nov to 
May)) 

271 -0.073 0.064 -0.199, 0.054 0.3 

Village (referent core villages a) 271 -0.137 0.076 -0.287, 0.012 0.07 

Maternal ethnicity (referent Mandinka) 271  0.201 0.085 0.034, 0.368  0.02 

Infant sex (referent female) 271 0.111 0.063 -0.014, 0.236 0.08 

The β-coefficient presented for each of the determinants are all adjusted for the remaining variables in the table. BMIC 
and maternal UIC were logged transformed.  
a Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba.  
BMIC, breast milk iodine concentration; UIC, urinary iodine concentration; SE, standard error; CI, confidence interval; 
n, sample size 
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6.5.3 Estimated maternal and infant iodine intake 

Estimated average daily iodine intake of mothers during pregnancy and lactation are presented 

in Table 26. The estimated maternal median iodine intake in early pregnancy (baseline) was 83 

μg/day. Using the baseline estimates and the EAR of 160 μg/day for pregnant women developed 

by the IOM, 84% (274/327) had a daily iodine intake below the EAR in early pregnancy. Using 

maternal UIC and BMIC data at 12 weeks postpartum (both supplement groups combined), 

maternal estimated median iodine intake during lactation was 105 μg/day. Using the suggested 

EAR by IOM of 209 μg/day for lactating women, 90% (211/235) of the women had intakes below 

the EAR. 

In exclusively breastfed infants, iodine intake is equal to excretion in breast milk. Table 26 shows 

the estimated average infant iodine intake (μg/day) at the three time-points. The estimated median 

intake of iodine for exclusively breastfed infants was 37 μg/day at 12 weeks postpartum. Eighty-

seven percent (119/137) of the infants from the FeFol group had an estimated iodine intake below 

the EAR of 72 μg/day (developed by Dold et al (2016) (377)) at 12 weeks postpartum, and 85% 

(137/161) from the MMN group.  
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Table 26. Estimated average daily iodine intake for mothers and exclusively breastfed infants (μg/day) at 
varying time-points. 

Maternal 
intake a 

Baseline  30 weeks’ gestation   12 weeks 
postpartum 

FeFol, n=161 78.3 (57.1, 130.4) FeFol, n=149 66.8 (47.3, 123.9) FeFol, n=110 100.5 (70.8, 134.8) 

MMN, n=166 92.9 (50.5, 145.1) MMN, n=154 146.7 (70.1, 288.6)* MMN, n=125 119.8 (77.0, 155.2) 

Total, n=327 c 83.2 (53.8, 133.7) Total, n=303 94.6 (57.1, 190.8) Total, n=235 104.8 (74.5, 144.9) 

Infant intake 
b 

8 weeks 
postpartum 

 12 weeks 
postpartum 

 24 weeks 
postpartum 

FeFol, n=144 39.5 (26.6, 55.5) FeFol, n=137 34.4 (25.8, 55.5) FeFol, n=89 29.7 (23.5, 40.7) 

MMN, n=151 44.6 (32.8, 64.1)* MMN, n=161 39.9 (27.4, 58.7) MMN, n=91 39.1 (24.2, 56.4)* 

Total, n=295 42.2 (28.9, 61.0) Total, n=298 36.8 (26.6, 56.3) Total, n=180 33.6 (23.9, 47.7) 

Data are medians (IQR). *Difference in medians between supplement groups, p≤0.05. Analysed by Mann-Whitney 
test. 
a Calculated for each individual as total estimated daily iodine excretion (through urine and breast milk) divided by 
0.92, where 0.92 refers to 92% iodine bioavailability.   
b Calculated as the concentration excreted in breast milk*0.782 l/day  
c Total = data from both supplement groups. 
MMN, multiple micronutrients; FeFol, iron-folic acid  
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6.6 Discussion  

Supplementing pregnant Gambian women with a multiple micronutrient supplement, containing 

300 µg/day of iodine, resulted in higher maternal UIC and lower maternal serum Tg during 

pregnancy, a lower infant cord Tg concentration at birth, and a modestly higher BMIC across the 

first six months of lactation. The positive effect of supplementation on maternal UIC during 

pregnancy was attenuated during lactation, and no effect of supplementation was observed on 

infant postnatal iodine status (Tg).  

In this rural Gambian population, maternal supplementation starting in early pregnancy had a 

positive effect on maternal IUC and a positive effect on maternal thyroid activity, with a lower 

Tg concentration alongside a reduced prevalence of elevated Tg seen in the MMN group. In 

addition a significant increase in Tg was found in the FeFol group from baseline to 30 weeks’ 

gestation, indicating a generalised increase in maternal thyroid activity over the course of 

pregnancy. This observation could indicate a physiological adaptation of the thyroid to low iodine 

intake by increasing plasma iodide clearance and turnover of thyroidal iodine stores. This 

observation further suggests that Tg is a more sensitive biomarker at the individual level, 

compared to UIC where a significant change between baseline and 30 weeks’ gestation was not 

observed in the FeFol group.  

The supplementation further had an effect on infant cord Tg concentration, with a significant 

lower Tg concentration in the MMN group. Regardless of a large difference in cord Tg 

concentration between the two groups, the effect was not sustained during infancy. No evidence 

for a difference in Tg between the two supplement groups was observed at 12 or 24 weeks 

postpartum. This is in agreement with other studies, finding that maternal iodine supplementation 

during pregnancy is reflective of foetal iodine status at birth (228, 231, 232). For instance an RCT 

supplementing deficient Danish women with a supplement of 200 µg/day of iodine during 

pregnancy (starting from 17-18 weeks gestation) reported a cord serum Tg decrease from 67 μg/l 

to 38 μg/l in the supplemented vs. control group (232). None of the available studies investigated 

any long-term effects on infant iodine status. This indicates that a prenatal supplement have a 

positive effect on infant iodine status at birth. 

In addition, Tg concentration significantly declined during infancy in both groups in this 

population. This is in agreement with the findings from other studies. Several studies have 

reported a physiological rise in newborns’ Tg from right after birth and up to 6 hours post birth, 
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and with a progressive decrease beginning 96 hours after birth until reaching a plateau in later 

infancy (371, 392-394). In fact a study found that Tg concentration did not reach adult 

concentration until eight years of age (393).  

In this Gambian setting, the effect of supplementation during pregnancy was not sustained in the 

mother during lactation. No difference in maternal UIC was observed at 12 weeks postpartum. 

This is in agreement with an RCT finding that maternal UIC fell sharply a few days after delivery 

when supplementation ended in iodine-deficient Belgium women (231). In this rural Gambian 

population a difference in BMIC between the two supplement groups, independent of time was 

found, likely due to carry-over effect of the pregnancy supplementation. This suggest that any 

thyroidal storage obtained during pregnancy is transferred to the milk rather than excreted 

through maternal urine in this population.  

The positive effect observed on BMIC was however modest, and as observed in the infant 

postnatal Tg concentrations, not sufficient to increase infant status. Only two existing 

intervention studies have investigated iodine supplementation during exclusively pregnancy and 

the effect on BMIC (228, 231). One RCT (231) and one intervention study (no randomisation or 

placebo group) (228), conducted in iodine-deficient populations (Algeria and Belgium, 

respectively), found a positive effect of an iodised oil supplementation (equivalent to 240 mg of 

iodine) (228) and a daily iodine tablet supplement (100 µg/day) (231) on BMIC at five days (231) 

and at one and six months postpartum (228). Chaouki et (al 1994) (228) supplemented deficient 

women either in (i) pre-pregnancy, (ii) during the first month of pregnancy or (iii) during the first 

trimester, which increased both maternal UIC at birth and BMIC compared to a control group 

(mean BMIC: (i) 307 nmol/l, (ii) 346 nmol/l, (iii) 386 nmol/l vs. 260 nmol/l at six months 

postpartum). Glinoer et al (1995) (231) supplemented deficient women in their RCT from the 

second trimester, which increased BMIC in early lactation to 61 μg/l in supplemented and 29 μg/l 

in placebo women. Glinoer et al (1995) did not investigate the longitudinal effect on BMIC. This 

indicates that supplementing women of low iodine status during pregnancy has an effect on breast 

milk iodine concentrations, however comparability between these two studies and the results 

presented here are low, as the type of supplement, iodine concentration of the supplement and 

timing of the supplementation were different in all three studies.  

However, the results in this analysis suggest that supplementation during pregnancy alone with 

2xRDA of iodine given as a multiple micronutrient is not sufficient in ensuring adequate iodine 

concentration in breast milk across the duration of EBF in a mild-to-moderate iodine-deficient 
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population as this Gambian population. Evidence suggest that maternal postnatal iodine 

supplementation is needed to increase both maternal status, breast milk iodine and infant status. 

An RCT among iodine deficient women in New Zealand (before iodisation of salt was 

implemented) found that an iodine supplement (150 μg/day) given to the mothers from birth to 

six months postpartum increased milk concentrations by 1.7 times compared to a placebo (395). 

Postnatal supplementation also improved both maternal and infant iodine status across lactation 

in this study. Similar results were observed in the RCT by Bouhouch et al (2014) (227). Here, 

deficient Moroccan women were supplemented with a single dose of 400 mg of iodine (≤8 weeks 

postpartum), which improved both maternal status and BMIC over the course of lactation. 

In addition, median BMIC decreased longitudinally in both supplement groups in this rural 

Gambian population, potentially suggesting physiological changes in BMIC across lactation 

regardless of supplementation. This decline in BMIC according to stage of lactation, has also 

been reported in a recent systematic review on BMIC (396) and in several of the longitudinal 

studies included in Chapter 2. The observed decline could on the other hand imply that in the 

absence of adequate maternal iodine intakes, in an already iodine-deficient population, BMIC 

declines in mature milk across the course of lactation. As reported, in this rural Gambian 

population, maternal supply did not equal the demand in order to sustain breast milk iodine 

concentrations, which may explain the decrease in BMIC across lactation rather than 

physiological changes. Supporting this hypothesis is a recent RCT supplementing deficient 

women from birth to 24 weeks postpartum with either a placebo, 75 μg/day or 150 μg/day of 

iodine, finding that supplementation prevented a BMIC decline over the first six months of 

lactation compared to a placebo (395).  

6.6.1 Iodine deficiency, intake and determinants of BMIC 

The women in this study were considered iodine deficient in early pregnancy according to the 

WHO definition (<150 μg/l), with a median UIC at baseline of 51 μg/l. Similarly, the median 

maternal Tg was 22 μg/l at baseline, which is above the threshold of 10 μg/l suggesting iodine 

deficiency in pregnancy (366). This threshold was developed from DBS-Tg and not serum Tg, 

and although they correlate, interpretation should be made with caution (366). More than 80% of 

women in early pregnancy (baseline) were estimated to be below the IOM’s EAR for iodine 

intake (160 µg/day). 
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A low UIC was observed in pregnancy regardless of supplementation group; the daily 

consumption of 300 µg/iodine did not increase UIC to 150 µg/l at 30 weeks’ gestation. This is 

likely because the women in this study had depleted thyroidal iodine stores when entering 

pregnancy, and parts of the ingested iodine were used to build up their stores. This could imply 

that starting supplementation earlier than ~13 weeks gestation is preferable in order to allow 

enough time to re-build depleted iodine stores, or a higher dose of iodine is required at this level 

of deficiency to reach an acceptable UIC within a short period of time. This is supported by an 

RCT of iodine-deficient Belgium women who were either supplemented from second trimester 

until delivery with 100 µg/day of iodine or a placebo (231). In this study, maternal UIC was 

below 50 µg/l at baseline, and in the third trimester of pregnancy maternal UIC was below 100 

µg/l in both supplement groups (reported in a figure, actual concentrations not reported). This 

indicates that also in this study a higher dose and/or an earlier start of supplementation would be 

needed to ensure adequate maternal status during pregnancy.  

During lactation (12 weeks post-partum) mothers had a median UIC (FeFol group: 33 μg/l, MMN 

group: 39 μg/l) below the WHO cut-off for inadequate iodine intake (<100 μg/l). In addition, the 

median BMIC was between 39 and 57 μg/l for both supplement group across the first six months 

of lactation, which is considered low. For instance Bouhouch et al (2014) (227) reported a median 

UIC and BMIC of 34 µg/l and 33 µg/l, respectively at 3 months postpartum (in unsupplemented 

women, using ICP-MS to measure BMIC) in iodine-deficient Moroccan participants, close to the 

values reported here. Further, a recent study, also using ICP-MS to quantify concentrations, 

reported a pooled median BMIC of 171 ug/l between 2-26 weeks postpartum in replete 

populations (adequate intake of iodized salt) from Croatia, China and the Philippines (241), far 

from the concentrations reported here. Adding the calculations done by Dold et al (2017) (241) 

that a BMIC above 92 µg/l is needed to sustain exclusively breastfed infants’ iodine need in the 

first months of lactation, BMIC is considered low in this population. However, to date no 

consensus exists on an optimal BMIC to define optimal iodine status for lactating women and 

infants. As seen in Chapter 2, large variations are seen in BMIC because of differences in 

maternal diet, iodine status, other environmental factors and differences in collection and 

analytical methods. More research is needed to define adequate BMIC in well-nourished women. 

The interpretation of a low BMIC is supported by the low estimated maternal iodine intake during 

lactation (90% below the IOM’s EAR, 209 µg/day), and low estimated intake of EBF infants, 

regardless of supplementation group (more than 80% below the EAR proposed by Dold et al 

(2016) (377), 72 µg/day). Nevertheless, day-to-day variation in iodine intake was not taken into 
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account in the calculation of these estimated iodine intakes, as the estimation was based on a 

single 24-hour median UIC for the mothers. Further, actual infant breast milk intake was not 

obtained in this analysis, and the daily infant iodine intake is based on an estimate.  

Limited studies have used infant Tg as a biomarker for iodine status in infancy, and even fewer 

have measured Tg in cord blood. There are a few available studies that have reported Tg 

concentrations in cord blood (231, 232, 397), however comparability of the actual concentrations 

is low because of the use of different quantification methods. Tg measurement is technically 

challenging, and comparison between studies should be done with caution (367). Establishing 

reference values for infant Tg across infancy and according to analytical quantification method 

are needed before infant Tg concentrations can be interpreted.  

In this analysis, maternal UIC during lactation correlated with BMIC at 12 weeks postpartum, 

which is in agreement with results from other studies (see Chapter 2). Maternal IUC in early 

pregnancy also correlated with BMIC at 12 weeks postpartum. BMIC was not associated with 

maternal age, gestational age at birth or parity, which is supported by most of the existing 

literature (127, 229). No association between BMIC and EBF was found in this analysis, which 

potentially indicates that BMIC is not determined by breast milk volume in this population. This 

is only plausible if exclusively breastfed children at six months of age had a higher breast milk 

intake compared to non-exclusively breastfed children, which may not be the case. More studies 

investigating the influence of breast milk volume on BMIC are needed. 

6.6.2 Strengths and limitations 

The strengths of this study are the randomised, double-blind design of the ENID trial conducted 

in a moderately deficient population of pregnant and lactating women, measuring the almost 

complete spectra of iodine status and thyroid function parameters along with BMIC. Few 

previous studies have been conducted in areas with moderate iodine deficiency, and even fewer 

studies have covered pregnancy, lactation and infancy and measured the range of biomarkers 

done in this study. This analysis exposed the need to focus on maternal iodine status during both 

periods of pregnancy and lactation, as both are equally important for maternal and infant iodine 

status. Further, this analysis identified the need of further research on definitions of iodine 

deficiency especially of Tg during infancy, and the need to define an adequate BMIC.  
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Advanced laboratory techniques were used to measure iodine status and BMIC and furthermore 

a 24-hour UIC sample was used to assess maternal status rather than a spot UIC. As already 

described, breast milk is a complex matrix hence the laboratory method used contributes to the 

reliability of the results obtained. In the current analysis, IC-PMS was used to measure BMIC, 

which is now considered the gold standard (280). EBF rates were high in this cohort, making it 

possible to estimate infant iodine intake without the need of analysing iodine intake from 

complementary foods. 

The limitations of this study are that maternal or infant thyroid hormones were not investigated, 

which could have supported the interpretation of the severity of iodine deficiency. For instance 

if the mothers’ TSH and T4 were within the normal reference range, it may have explained why 

they were not visible goitres, and supported an interpretation of a mild-to-moderate iodine-

deficient population. Thyroid hormone concentrations could have informed if the maternal 

thyroid, in this population, was able to adapt to meet the increased thyroid hormone requirements 

during pregnancy at mild-to-moderate iodine deficiency. Further, infant UIC was not measured, 

as infant urine was not collected as a part of ENID.  

6.6.3 Conclusion 

In conclusion, a daily multiple micronutrient supplementation (containing 300 µg/day iodine) 

given during pregnancy to mild-to-moderate iodine-deficient Gambian women, was not adequate 

to increase BMIC to a level that could sustain exclusively breastfed infants’ iodine needs in the 

first six months of life. Efforts to increase access to iodine in this community is a high priority. 
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Chapter 7 

Vitamin B12 

This Chapter presents how a vitamin B12-containing multiple micronutrient supplement given 

during pregnancy influences maternal status during pregnancy and lactation, breast milk 

composition and infant status in rural Gambia. The background begins with a review of vitamin 

B12 physiology, deficiency and vitamin B12 in human milk. This is followed by a description of 

assessment of vitamin B12, definitions of adequate status, intake requirements and 

epidemiological evidence for the importance of vitamin B12. The focus of the background is on 

all three periods of pregnancy, lactation and infancy. The background is followed by a short 

introduction to the research area, the methods, results and discussion. 

7.1 Background 

Vitamin B12 deficiency is a public health problem. Clinical vitamin B12 deficiency, such as severe 

anaemia or neurological manifestations in the elderly, is rarely observed, however subclinical 

vitamin B12 deficiency, which is defined as a low or marginal B12 status, affects several 

population groups (398-400). Evidence from recent population-based studies suggests that low 

or marginal vitamin B12 status in either pregnancy or infancy is likely to have detrimental 

consequences for the infant (79, 401-403). Global prevalence data for subclinical vitamin B12 

deficiency are not available, however in the United States, between 3-26% of the general 

population is affected, with a higher proportion in the elderly population. Higher prevalence is 

found in South America, Asia and Africa, where in some population groups more than 40% have 

a low vitamin B12 status, including pregnant women and young children (404).  
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Pregnant and lactating women, infants and the elderly are among the population groups at greatest 

risk of vitamin B12 deficiency. This is especially true in resource-poor settings where intakes of 

animal source foods are low; dietary vitamin B12 is solely available in animal products, such as 

meat, liver, fish, eggs and dairy products (398) (399). Vegans and vegetarians are thus 

particularly at risk of deficiency.  

7.1.1 Vitamin B12 physiology 

Vitamin B12, also known as cobalamin, is a water-soluble vitamin. In food, vitamin B12 is found 

bound to dietary proteins from which the vitamin is released by gastric pepsin in the acidic 

environment of the stomach. The released vitamin then binds to haptocorrin, a glycoprotein 

produced by the salivary gland which shields vitamin B12 from acid degradation (398, 405, 406) 

(Figure 26). In the duodenum haptocorrin is degraded and vitamin B12 binds to the gastric 

intrinsic factor (IF). In the ilium, the IF-B12 complex is taken up by the cubam receptor for 

lysosome processing, and vitamin B12 is transported to the blood by multidrug resistance protein 

1 (MDR1) (398). Vitamin B12 then binds to transcobalamin, the blood carrier of the vitamin 

needed for transport and uptake of vitamin B12 by cells (406, 407). About 20% of vitamin B12 in 

plasma is bound to transcobalamin (called holotranscobalamin), and the remainder is bound to 

haptocorrin, which is taken up by protein receptors in the liver (398, 406). Holotranscobalamin 

is taken up by the cells, and enters lysosomes where it is degraded and vitamin B12 is released 

and converted to its cofactor forms. Around 60-80% of ingested vitamin B12 is excreted through 

faeces (398). 

The average body vitamin B12 is estimated to be 2-3 mg in healthy adults, and around half of this 

is found in the liver, bound to haptocorrin (408, 409). Some of this stored liver vitamin B12 is 

continuously excreted in bile (around 0.15 % of body storage per day), where the majority is 

reabsorbed and enters the enterohepatic circulation (398, 406). This is a mechanism to preserve 

vitamin B12, which means that depletion of vitamin B12, and any onset of vitamin B12 deficiency, 

may take years in adults (399).  
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 Figure 26. Vitamin B12 absorption 

 From Green et al (2017) (398). 

7.1.2 Vitamin B12 physiology during pregnancy and lactation  

Vitamin B12 is transferred across the placenta to the foetus, however there is limited data about 

this transplacental transfer (410). It has been suggested that the placenta is capable of binding 

vitamin B12 to placental haptocorrin and transcobalamin, making vitamin B12 available to the 

foetus and maternal circulation (410). 

In human breast milk vitamin B12 is bound almost exclusively to haptocorrin, and only a small 

amount is bound to transcobalamin (84, 406). The transfer of vitamin B12 from transcobalamin 

in plasma to haptocorrin in milk is thought to occur by a receptor-mediated system, however little 

is known about the mechanisms that mediate the uptake in mammary cells (84). 
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7.1.3 Vitamin B12 deficiency 

Inadequate vitamin B12 consumption leads to vitamin B12 deficiency, however other causes of the 

deficiency also exists, such as insufficient vitamin B12 absorption (pernicious anaemia), genetic 

factors, or gastrointestinal infections (398). The health consequences of vitamin B12 deficiency 

are shown in Table 27, and can have severe consequences for infants, children and adults (398). 

Vitamin B12 serves as a cofactor in important cellular processes; and very importantly in two 

enzymatic reactions (i) the folate-dependent conversion of homocysteine to methionine and (ii) 

mitochondrial metabolism (398). The first process is important for the maintenance of DNA 

synthesis and methylation, and the latter for the oxidation of fatty acids and the breakdown of 

ketogenic amino acids (404).  

Table 27. Vitamin B12 deficiency consequences. From Green et al (2017) (398). 

Population group Consequences of vitamin B12 deficiency 
Infants/children Neural tube defects 

Stunting 
Cerebral atrophy 
Hypotonia 
Developmental delays  

Adult/elderly Contribution to cardiovascular disease 
Contribution to neurodegenerative disorders  
Contribution to the development of diabetes mellitus  
Megaloblastic or macrocytic anaemia 
Cognitive impairment 
Depression 
Bone disease 
Hearing loss 
Macular degeneration  

The risk of vitamin B12 deficiency disorders has been shown to increase if folate status is high 

(411). The mechanisms that causes excess folate to interfere with vitamin B12 metabolism and 

worsen the health outcomes of vitamin B12 deficiency are not yet known (411). This is a cause 

for concern in populations with high prevalence of vitamin B12 deficiency and high exposure of 

folic acid fortifications or supplement use (404). More research in this area is needed to confirm 

the effect of folic acid on vitamin B12 deficiency.  
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7.1.4 Vitamin B12 in human milk 

Vitamin B12 is bound to haptocorrin in breast milk (84), where it exists in two forms: apo-

haptocorrin (apo-HC), the unsaturated form, and holo-haptocorrin, which is saturated with 

vitamin B12 (412). In breast milk, the majority of vitamin B12 is present in the unsaturated form 

(412). 

Vitamin B12 concentration has been reported highest in colostrum and transitional milk (176, 413, 

414) with a decline as lactation progresses to mature milk (175, 176, 414, 415). A recent review 

reported that the decline seen in mature milk was more pronounced in women who had a high 

concentration of vitamin B12 in early lactation (92). Two recent studies have however reported 

an increase in vitamin B12 concentration in mature milk (175, 180).  

One study found that hindmilk contained slightly higher vitamin B12 concentrations than foremilk 

(180), whereas others have not detected this difference (274, 414). Hampel et al (2017) (274) 

reported diurnal changes for vitamin B12, however the variance was considered small. Two 

studies reported no difference in vitamin B12 concentration in breast milk between mothers who 

had given birth pre-term and at term (129, 416), and one study found maternal age to be 

negatively associated with breast milk vitamin B12 concentrations (179). 

As described in Chapter 2, vitamin B12 concentration in breast milk is affected by maternal 

vitamin B12 supplementation, and mixed findings have been reported on the association between 

maternal status and breast milk vitamin B12 concentration. Based on this, breast milk vitamin B12 

is likely driven more by maternal intake than status (417, 418).  

7.1.5 Assessment of vitamin B12 status  

The methods commonly recommended to assess vitamin B12 status in humans are (i) 

serum/plasma vitamin B12, (ii) serum holotranscobalamin (holoTc) (iii) plasma total 

homocysteine (tHcy) and (iiii) serum methylmalonic acid (MMA) (398). The use of at least two 

of these measurements is recommended to diagnose vitamin B12 deficiency, most commonly 

vitamin B12 concentration and MMA or tHcy as the second test (419, 420). Recently this approach 

has been developed further, where a minimum of two of the four biomarkers are included in a 

model which calculates a combined vitamin B12 (cB12) value (421). This is recognised as a 

reliable method to diagnose vitamin B12 status, however more work is needed to confirm the cut-

off for deficiency and the clinical usefulness of this index (421). 
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Serum/plasma vitamin B12  

Serum or plasma total vitamin B12 concentration, usually expressed as pmol/l, is the biomarker 

most often used to assess vitamin B12 status (422). The concentration includes the vitamin B12 

bound to transcobalamin (the active form) and the vitamin B12 bound to haptocorrin. This 

biomarker reflects long-term vitamin B12 status in individuals, and is also used as a biomarker 

for population groups (404). It does not reflect current or immediate vitamin B12 intake, as it can 

take up to several months to react to an increased dietary vitamin B12 intake or to a low dose 

supplement (404). The biomarker is relatively insensitive, especially at low concentrations, and 

so concentrations below the lower limit of the reference interval indicate probable vitamin B12 

depletion or deficiency, whereas a concentration above the limits indicates replete vitamin B12 

status (398). The advantage of this biomarker is that the main laboratory method (protein-binding 

assay) is low in cost and widely available (398, 421).  

Serum holotranscobalamin (holoTc)  

Serum holoTc concentration is a measurement of only the transcobalamin-bound vitamin B12 in 

blood. It was proposed as a more sensitive maker of vitamin B12 status, than total serum or plasma 

vitamin B12 concentrations due to its metabolic functions. However, a recent study showed that 

this biomarker is only marginally better than total vitamin B12 (423). HoloTc is more sensitive to 

recent intake, and will respond to vitamin B12 intake within hours (404). 

Plasma total homocysteine (tHcy) 

Plasma total tHcy is used as a biomarker for vitamin B12 status, as tHcy is increased if vitamin 

B12 status is poor. This is due to vitamin B12’s involvement in methionine synthase where tHcy 

is converted to methionine. However, tHcy is also increased when folate, riboflavin or vitamin 

B6 status is poor, making this biomarker less relevant in populations which are at risk of several 

micronutrient deficiencies (422).  

Serum methylmalonic acid (MMA) 

Serum MMA concentration is the most sensitive single vitamin B12 biomarker, and has been 

referred to as the gold standard (424). MMA is a side-reaction product of methylmalonyl CoA 

metabolism, a process where vitamin B12 serves as a cofactor. MMA increases with poor vitamin 

B12 status, and is not affected by the status of other B-vitamins (404). It can detect vitamin B12 
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stores in the liver, but not recent vitamin B12 intake. The largest disadvantage of this biomarker 

is the high cost of laboratory analysis (424).  

7.1.6 Criteria for adequate vitamin B12 

Criteria for adequate vitamin B12 status for the adult population are available for all four 

biomarkers (398) (Table 28). The intervals and cut-offs for the vitamin B12 biomarkers are 

however still debated, as there is a lack of literature linking these criteria to functional outcomes 

(404). The deficiency cut-off (<148 pmol/l) for vitamin B12 concentration includes both clinical 

and sub-clinical vitamin B12 deficiency, and is based on research showing that below this cut 

point MMA and tHcy concentrations start to markedly increase (425). This criteria for vitamin 

B12 adequacy has been endorsed by the Institute of Medicine (IOM) (1998) (417) and the World 

Health Organization (WHO) (426) (however the WHO use <150 pmol/l instead of <148 pmol/l).  

 Table 28. Vitamin B12 biomarkers’ criteria for deficiency, from Green et al (2017) (398). 

Biomarker; unit Tentative reference 
interval 

Tentative cut-off value 
for B12 deficiency 

Tentative cut-off value 
for B12 repletion 

Vitamin B12; pmol/l 200-600 <148 >221 
Holotranscobalamin; pmol/l 40-100 <35 >40 
Homocysteine; µmol/l 8-15 >15 <8 
Methylmalonic acid; µmol/l 0.04-0.37 >0.37 <0.27 

The reference interval covers 95% of vitamin B12-replete individuals. The deficiency cut-offs includes both clinical 
and sub-clinical deficiency. 

Pregnancy 

The criteria for deficiency in the adult population (Table 28) have often been applied to pregnant 

women. However, several studies have described a consistent physiological decrease in maternal 

vitamin B12 concentration across the duration of a normal pregnancy (175, 427-431), as illustrated 

in Figure 27. A plausible explanation for this includes hemodilution, hormonal changes, vitamin 

B12 transfer to the foetus and changes in vitamin B12 binding proteins during pregnancy (177, 

430, 432, 433). Further, MMA increases during pregnancy in healthy women (Figure 27), which 

could be indicative of mild vitamin B12 depletion in the last stage of pregnancy (398, 427). MMA 

increase is also greater in women with a low holoTC at pre-conception (427). 
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Because of these marked physiological changes in vitamin B12 concentration during pregnancy 

the use of adult criteria for vitamin B12 deficiency during pregnancy is debated (434). Establishing 

specific reference ranges for vitamin B12 adequacy and cut-offs for deficiency in pregnancy are 

needed (398).  

 

Figure 27. Biomarkers of vitamin B12 status during pregnancy and lactation. 

From Green et al (2017) (398). Levels of vitamin B12 biomarkers presented as a percentage of normal levels based on 
a population of 207 non-pregnant, non-lactating women (18-40 years). Data during pregnancy for vitamin B12 and total 
homocysteine are based on Greibe et al (2011) (430); data on MMA are based on Murphy et al (2007) (427); data on 
vitamin B12 status during lactation are based on Bjorke-Monsen et al (2008) (435); data on holotranscobalamin levels 
during pregnancy are based on Murphy et al (2007) (427), and during lactation on Bae et al (2015) (177). Error bars 
represent the 10th and 90th percentiles from the geometric mean. 

Lactation  

Maternal serum vitamin B12 increases again during lactation, and the concentration is likely to be 

higher than before pregnancy (177) (Figure 27). This increase in vitamin B12 concentration 

between pregnancy and lactation is believed to represent the improvement of mobilization of 

maternal vitamin B12 stores for transfer of the vitamin to the milk (398). 

Infancy  

Many studies have applied the adult criteria for vitamin B12 deficiency (Table 28) to infants (434). 

This has been criticised and reference intervals using data from a longitudinal study of well-

nourished Norwegian infants (n=364), have been proposed instead (436). In this study, values of 
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vitamin B12 biomarkers changed significantly from birth to two years of age and were higher in 

non-breastfed children compared to breastfed (436). Table 29 details the tentative reference 

interval developed by Hay et al (2008) (436) for breastfed infants according to age. 

Table 29. Reference intervals for vitamin B12 status of breastfed infants according to age, from Hay et 
al (2008) (436). 
 

Tentative reference interval 
 

At birth 6 months 12 months 24 months 
Vitamin B12; pmol/l 120-686 121-517 165-580 183-621 

7.1.7 Vitamin B12 intake requirements during pregnancy, lactation and infancy 

Pregnancy and lactation 

Vitamin B12 requirements increase during pregnancy and lactation. In pregnancy maternal 

vitamin B12 transferred to the foetus is primarily from newly absorbed vitamin B12, and thus 

maternal stores are a less important source (437). The IOM (1998) (417) suggests an additional 

0.2 µg/day of vitamin B12 during pregnancy to ensure foetal accumulation of 0.1-0.2 μg/day. This 

results in an estimated average requirement (EAR) of 2.2 µg/day for pregnant women (Table 30). 

In lactation, requirements are increased to 2.4 µg/day to account for the transfer of the vitamin to 

breast milk (417).   

Table 30. Recommended dietary vitamin B12 intake (µg/day) for pregnant, lactating women and infants 
between 0-6 months by IOM (417) and WHO/FAO (438). 

 Pregnancy Lactation Infancy 
 IOM WHO IOM WHO IOM WHO 
Vitamin B12 EAR: 2.2 

RDA: 2.6 
- 
RDA: 2.6 

EAR: 2.4 
RDA: 2.8 

- 
RDA: 2.8 

AI: 0.4 AI: 0.4 

EAR, estimated average requirement (the EAR is the daily dietary intake level of a nutrient expected to satisfy the 
needs of 50% of the population group. An intake less than the EAR is considered to be inadequate). RDA, 
recommended dietary allowance (the RDA is defined as equal to the EAR plus twice the coefficient of variation to 
cover the needs of 97-98% of the population group). AI, average intake (dietary intake believed to be adequate for 
everyone in the demographic group to maintain health, established where no sufficient data to establish EAR are 
available). IOM, Institute of Medicine, WHO, World Health Organization. 
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Infancy 

Neonates are particularly vulnerable to vitamin B12 deficiency, because infants are born with 

limited liver vitamin B12 storage, especially if maternal status and intake during pregnancy were 

poor. Infants born to vitamin B12-deficient mothers are at high risk of developing symptoms of 

vitamin B12 deficiency within a few months (439). This is different to how deficiency manifests 

in adults, who may tolerate a low intake of vitamin B12 for several years before symptoms arise. 

Symptoms such as failure to thrive, apathy, feeding difficulties and developmental regression 

have been reported in infants aged 4-10 months (439). An infant born to a vitamin B12-replete 

mother has vitamin B12 liver stores of approximately 25-30 µg (440, 441). These stores are 

adequate to sustain infant vitamin B12 needs in the first few months after birth (442).  

Vitamin B12 requirements for infants are poorly defined. The IOM (1998) (417) and the WHO 

(438) recommend an average intake (AI) of 0.4 µg/day in the first six months of life (Table 30). 

This AI is based on the median breast milk vitamin B12 concentration of 0.42 µg/l from only nine, 

unsupplemented Brazilian mothers (414) and an average breast milk intake of 0.781 l/day 

reported by a test-weighing study (375). However, the validity of the method used to quantify 

breast milk vitamin B12 concentration in this study has been questioned (92). Recent research has 

shown that it is necessary to remove breast milk vitamin B12 from apo-HC to obtain valid 

concentrations, which was not done in this study (281).  

An earlier study, conducted in 1990 in the United States, proposed a cut-off of <362 pmol/l 

(approximately <0.49 µg/l) to define breast milk B12 deficiency (182). This cut-off was based on 

19 vegetarian and omnivorous women’s breast milk vitamin B12 concentration and the threshold 

for when an increase in infant urinary MMA occurred. However, the samples collected in this 

study were spread out over a wide range of months (between 2 and 14 months postpartum), 

potentially introducing bias to the results due to changes in breast milk composition across 

lactation. In addition, this study was conducted in the 1990’s where outdated laboratory methods 

where used, possibly limiting the accuracy of the vitamin B12 measurements. Several studies have 

used this cut-off, but a recent Canadian study (181) showed that in vitamin B12-replete mother-

and-infant-pairs, 50% had breast milk vitamin B12 concentrations below 362 pmol/l, suggesting 

a clear overestimation of deficiency by using this cut-off.  
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7.2 Vitamin B12 in the first 1000 days 

Vitamin B12 is essential during all life stages, but especially during pregnancy and lactation, when 

the risk of infant vitamin B12 deficiency is high (434).  

7.2.1 Pregnancy vitamin B12 status and infant health outcomes  

Few studies examine the effect of maternal vitamin B12 status during pregnancy on infant and 

childhood health outcomes. Poor maternal vitamin B12 status has been linked to neural tube 

defects in infants (443, 444), still birth (79), pre-term birth (445, 446) and intrauterine growth 

restriction (79, 447). The available data on low birth weight is not convincing (448). A recent 

systematic review concluded that the link between maternal vitamin B12 status during pregnancy 

and low birth weight warrants further investigations through high quality designed studies (448). 

Neumann et al (2013) (79) reported no association between vitamin B12 intake during pregnancy 

and infant growth at six months of age.  

In relation to infant brain development, a recent randomised controlled trial (RCT) did not find 

any effect of maternal B12 supplementation during pregnancy and early lactation on infant brain 

development at nine months of age (449). The authors did however find that high maternal tHcy 

status in pregnancy was associated with poorer performance on language based assessments, and 

on fine motor development. In terms of long-term effects of maternal vitamin B12 status during 

pregnancy on childhood cognition, an observational study in India showed that children of 

mothers with a low vitamin B12 status in early pregnancy did less well in attention and memory 

tests at nine years of age compared to children whose mother had a higher vitamin B12 status in 

early gestation (450).  

7.2.2 Infancy vitamin B12 status and health outcomes  

The importance of vitamin B12 intakes during infancy has also been explored. Kvestad et al 

(2015) (402) observed in their RCT an effect of vitamin B12 supplementation on gross motor 

development in Indian infants, and similar effects were observed in an RCT of Norwegian infants 

(451). Another observational study linked higher vitamin B12 status in 12-18 month old Indian 

children to higher mental development scores (403). An observational study investigating long-

term effect linked vitamin B12 status in infancy to cognitive functioning in later childhood in 

Nepalese children (401). They reported that a higher cB12 score (combining plasma vitamin B12, 
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tHcy and MMA) during infancy was associated with a higher Ages and Stages Questionnaire 

score five years later, indicative of better cognitive function.  

The period of exclusive breastfeeding (EBF) is a particularly vulnerable period. Healthy, 

breastfed infants have lower vitamin B12 status than non-breastfed infants, possibly reflecting an 

altered, but appropriate, vitamin B12 status associated with breastfeeding (431, 436, 451). 

However, mothers with depleted vitamin B12 stores, and a habitual low intake of animal source 

foods, are at risk of low breast milk vitamin B12 concentration, from which the exclusively 

breastfed infant is at risk of neurological and growth deficits (439). This has been shown in case 

studies of vegan or vegetarian mothers who were exclusively breastfeeding their infants. The 

deficient infants presented with irritability, anorexia and failure to thrive before being treated 

with a high dose intramuscular and oral vitamin B12. In 40-50% of the cases cognitive and 

developmental retardation persisted (439, 452). Torsvik et al (2015) (453) recently reported that 

breastfeeding compared to formula feeding was associated with poorer gross motor development 

at six months of age in Norwegian infants with a sub-optimal birth weight (2000-3000 g). More 

studies are needed on the relationship between breast milk vitamin B12 concentrations, infant 

vitamin B12 status and postnatal outcomes. 

7.3 Vitamin B12 status of mothers, breast milk and infants 

Ensuring optimal vitamin B12 intakes in exclusively breastfed infants in populations where 

habitual intake of animal food sources is limited, is of great importance. As highlighted in 

Chapter 2, maternal vitamin B12 supplementation during lactation has a positive effect on breast 

milk vitamin B12. However, few intervention studies have investigated the effect of maternal 

supplementation during pregnancy. In fact most  supplementation studies conducted on this topic 

have (i) not investigated the effect of supplementation exclusively during pregnancy (none of the 

7 studies identified investigated the effect during pregnancy only), and (ii) not investigated the 

effect simultaneously on breast milk vitamin B12 concentration and infant status (only 2 out of 7 

studies have investigated this (175, 176)). Most available interventions have investigated the 

effect longitudinally across the first six months of lactation (4 out of 7 studies (161, 163, 175, 

176)). Essentially, no study has investigated how maternal supplementation during pregnancy 

impact breast milk vitamin B12 concentration and infant vitamin B12 status across the first six 

months postpartum, highlighting the need for future research.  
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This Chapter presents an original analysis investigating; (i) the effect of an vitamin B12-

containing multiple micronutrient supplement during pregnancy on breast milk vitamin B12 

concentration and infant vitamin B12 status during in the first six months of life in rural Gambia; 

(ii) determinants of breast milk vitamin B12 concentration and (iii) estimated infant vitamin B12 

intake.  

7.4 Methods 

Data and samples for this analysis were collected as a part of the ENID trial and the ENID-Bone 

extension to the ENID trial. Maternal plasma (from baseline, 30 weeks’ gestation and 12 weeks 

postpartum), breast milk (8, 12 and 24 weeks postpartum) and infant plasma (cord blood, 12 and 

24 weeks postpartum) from participating women and infants in the tablet arm of ENID (Iron-

folic acid (FeFol) and multiple micronutrients (MMN)) were used. Maternal plasma vitamin B12, 

breast milk vitamin B12 concentration and infant plasma vitamin B12 concentration were analysed. 

Participant recruitment, maternal supplementation, data and sample collection methodologies are 

all described in full in Chapter 4 (page 117). 

7.4.1 Sample analysis 

Plasma and breast milk samples were aliquoted and frozen until analysis. Plasma and breast milk 

samples were transported to USDA Western Human Nutrition Research Centre (WHNRC), 

Davis, California, USA, for analysis. 

Plasma vitamin B12 concentration  

Plasma vitamin B12 was measured by chemiluminescence immunoassay on Cobas e411 (Roche 

Diagnostic Corp., Indianapolis, the United States). The samples were defrosted, vortexed and put 

on the instrument for analysis. Roche V0, V1, V2 Varia controls were used with each assay run 

to ensure that parameters of the instrument and the reagents were within Roche’s predetermined 

range. All sample preparations were carried out under subdued light and on ice to protect the 

analytes against degradation. Tables 31 and 32 show the inter-assay variability for the quality 

controls of maternal and infant plasma vitamin B12. The coefficients of variation (CV) obtained 

are of acceptable quality.  



 
Chapter 7. Vitamin B12 

 

211 
 

Table 31. Inter-assay variability of the quality controls for maternal plasma vitamin B12  

 
 Maternal (low) Maternal (medium) Maternal (high) 

n 12 12 12 
Mean (pmol/l) 161.4 365.3 774.5 
SD 12.8 15.5 26.4 
CV (%) 7.9 4.3 3.4 

SD, standard deviation; CV, coefficient of variation; n, sample size. 

Table 32. Inter-assay variability of the quality controls for infant plasma vitamin B12  

 
 Infant (low) Infant (medium) Infant (high) 

n 7 7 7 
Mean (pmol/l) 174.1  370.6 782.2 
SD 19.5 25.4 23.2 
CV (%) 11.2 6.9 3.0 

SD, standard deviation; CV, coefficient of variation; n, sample size. 

Breast milk vitamin B12 concentration  

Breast milk B12 was measured using an IMMULITE 1000 Vitamin B12 solid-phase, competitive 

chemiluminescent enzyme immunoassay, which is an in-house method based on a published 

method (454). Breast milk sample preparation was carried out under subdued light to avoid 

degradation. Breast milk aliquots were defrosted and the samples were centrifuged for 10 minutes 

at 14000 rpm and 4 ºC to remove fat and solids from the sample, and 200 µl of the whey fraction 

was transferred to a polypropylene tube for analysis. Pooled breast milk from one apparently 

healthy donor was used as a quality control. Table 33 presents the inter-assay variability of the 

quality controls reported. The CVs obtained are of high quality. 

Table 33. Inter-assay variability of the quality controls for breast milk vitamin B12  

 
 Vitamin B12 (ID 1) Vitamin B12 (ID 2) Vitamin B12 (ID 3) Vitamin B12 (ID 4) 

n 4 4 4 4 
Mean (pmol/l) 87.5 91.5 95.5 99.5 
SD 1.3 1.3 1.3 1.3 
CV (%) 1.5 1.4 1.4 1.3 

SD; standard deviation, CV; coefficient of variation, n; sample size 
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7.4.2 Statistical analysis 

The same statistical approach was used as described in Chapter 6 (section 6.4.2), with the 

exception that maternal plasma vitamin B12, breast milk vitamin B12 concentration and infant 

plasma vitamin B12 were investigated. 

Outliers were defined as data with residuals >3 standard deviations (SD) from the mean in the 

mixed effects models and were excluded from the analysis (maternal plasma vitamin B12 n=3 

data points removed, breast milk vitamin B12 n=2, infant plasma vitamin B12 n=2). In addition 

the data points that fell below the minimum detection concentration for breast milk vitamin B12 

concentration (n=74) were excluded from the analysis. This was done to decrease the variance in 

the residuals, and to make them normally distributed; with these 74 data points in the model, the 

residuals were far from normally distributed even when logged transformed.  

Individual breast milk vitamin B12 concentrations were converted from pmol/l to µg/l by 

multiplying the concentration by 0.0013554 (calculated by using the molar weight of vitamin 

B12, which is 1355.4 g/mol).  

7.5 Results  

For this analysis women and children from the FeFol and MMN arms of the ENID trial were 

included, representing a total of 381 mother and infant pairs (Figure 19 in Chapter 6, Section 

6.5). Baseline characteristics of the study population according to intervention arm are presented 

in Table 21, in Chapter 6 (Section 6.5).  

Mean (SE) maternal plasma vitamin B12 concentration at baseline was 332 (8.7) pmol/l, and this 

did not differ between supplement groups (p=0.6, Table 34). At baseline, 7% (21/289) had a 

vitamin B12 concentration lower than 148 pmol/l indicating deficiency, and 16% (45/289) had a 

concentration between 148-221 pmol/l, indicating vitamin B12 depletion. 

7.5.1 Supplement effect on vitamin B12 status and breast milk concentration 

Maternal B12 status 

Maternal MMN supplementation significantly improved maternal plasma vitamin B12 

concentration compared with FeFol (p=0.02, Table 34, Figure 28). At 30 weeks’ gestation mean 
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(SE) plasma vitamin B12 for the FeFol group was 264 (12.6) pmol/l and 311 (12.5) pmol/l for the 

MMN group, and were significantly different (p=0.008). Between baseline and 30 weeks’ 

gestation, vitamin B12 concentration decreased in the FeFol group (p<0.001) whereas the decrease 

in the MMN group was non-significant (p=0.2). At 30 weeks’ gestation, 42% (56/132) in the 

FeFol group had plasma vitamin B12 concentrations ≤221 pmol/l and 31% (41/133) in the MMN 

group (p=0.05).  

Between 30 weeks’ gestation and 12 weeks postpartum, plasma vitamin B12 concentration 

increased in both supplement groups (significant for the FeFol group, p=0.03, not for the MMN 

group, p=0.8). The difference in concentration between the groups was not significant at 12 

weeks postpartum (p=0.2). Mean vitamin B12 concentration at 12 weeks postpartum was 304 

(8.3) pmol/l, and 20% (63/320) had a vitamin B12 concentration lower than 148 pmol/l and 11% 

(36/320) had a concentration between 148-221 pmol/l at 12 weeks postpartum.  

Breast milk vitamin B12 concentration 

For breast milk vitamin B12 concentration, no evidence was found for an overall time by 

supplement interaction (p=0.9, Table 34, Figure 29), and no evidence for a difference in 

concentration between the two supplement groups that was consistent over time (p=0.4). Median 

(IQR) breast milk vitamin B12 concentration at 8 weeks postpartum was 179 (100, 233) pmol/l in 

the FeFol group and 183 (144, 259) pmol/l in the MMN group, with an overall median of 181 

(121, 249) pmol/l.  

Breast milk vitamin B12 concentration decreased between 8 and 12 weeks postpartum for both 

groups, however this decrease was not significant (FeFol group, p=0.3, MMN group, p=0.2). 

Between 12 and 24 weeks postpartum breast milk vitamin B12 concentration increased 

significantly for both supplement groups (p<0.001). Median breast milk vitamin B12 at 24 weeks 

was 184 (149, 256) pmol/l for the FeFol group, and 207 (152, 290) pmol/l for the MMN group. 

No significant difference was found in breast milk vitamin B12 concentration by supplement 

group at any of the three time-points.  

Infant vitamin B12 status  

Maternal MMN supplementation during pregnancy did not significantly improve infant plasma 

vitamin B12 concentration over time compared to FeFol (no evidence for an overall time by 

supplement interaction, p=0.2, Table 34, Figure 30). Median infant cord plasma vitamin B12 
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concentration was 353 (224, 530) pmol/l and 368 (270, 604) pmol/l for the FeFol and MMN 

groups, respectively, and decreased to 263 (179, 357) pmol/l in the FeFol group and to 300 (205, 

375) pmol/l in the MMN group at 12 weeks postpartum. A significant difference in cord vitamin 

B12 concentrations between the two groups was observed at birth (p=0.02), which remained to 12 

weeks postpartum (p=0.01). The difference in plasma vitamin B12 concentration observed at birth 

and at 12 weeks postpartum disappeared at 24 weeks postpartum (p=0.4). Infant plasma vitamin 

B12 concentration significantly decreased between birth and 24 weeks postpartum for both 

supplement groups (p<0.001). At 24 weeks of age 5% (17/327) of infants had a plasma vitamin 

B12 concentration below 121 pmol/l.
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 Table 34. Maternal plasma B12, breast milk B12 and infant plasma B12 concentrations according to maternal supplement group and time-point, derived from mixed 
effects models. 
Mothers Baseline p-value * 30 weeks’ gestation p-value * 12 weeks postpartum p-value * p-value ** 

Plasma vitamin B12 concentration (pmol/l) a        

  MMN 326.6 (12.1)  311.3 (12.5)  314.3 (11.6)   

  FeFol 336.4 (12.3)  264.1 (12.6)  293.2 (11.8)   

  Difference between supplement groups (pmol/l) b -9.82 (17.2) 0.6 47.19 (17.8) 0.008 21.17 (16.6) 0.2 0.02 

Breast milk  8 weeks postpartum  12 weeks postpartum  24 weeks postpartum   

Breast milk vitamin B12 concentration (pmol/l) a        

  MMN 183.3 (144.0, 259.0)  169.0 (110.6, 234.7)  206.7 (151.5, 289.9)    

  FeFol 179.1 (99.6, 233.3)  154.3 (86.8, 214,0)   184.2 (148.7, 256.2)   

  Difference between supplement groups (%)b 12.4 (-6.7, 35.4) 0.2 9.8 (-8.2, 31.3) 0.3 9.7 (-7.8, 29.0) 0.3 0.9 (0.4) 

Infants Birth (cord blood)  12 weeks postpartum  24 weeks postpartum   

Plasma vitamin B12 concentration (pmol/l) a        

  MMN 368 (270, 604)  300 (205, 375)   239 (185, 332)   

  FeFol 353 (224, 530)   263 (179, 357)   236 (185, 332)   

  Difference between supplement groups (%)b 16.0 (2.9, 30.8) 0.02 14.0 (2.9, 26.4) 0.01 5.0 (-5.4, 16.4) 0.4 0.2 

Data presented for each supplement groups are medians (IQR) (non-normally distributed data), or means (SE) (normal distributed data). The means are derived from the mixed effect 
models, and the medians are derived from the raw data. For maternal plasma vitamin B12, the difference between the two supplement groups is presented as the difference in mean (95% CI), 
and for breast milk vitamin B12 and infant plasma vitamin B12, the differences are presented as the percentage (95% CI) difference in mean concentrations between groups, calculated by 
exponentiating coefficients from the log transformed model. All data were log-transformed, except for maternal plasma vitamin B12.  
a To convert plasma and breast milk vitamin B12 concentration to µg/l multiply the concentration with 0.0013554 
b FeFol group is the referent group  
* This p-value tests the difference in concentration between supplement groups at the given time-point 
** This p-value tests the difference in concentration between the two supplement groups depending on time; in other words the p-value tests an overall time by supplementation interaction. 
For the breast milk vitamin B12 analysis the p-value presented in brackets is the overall supplement effect independent of time.
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Figure 28. Longitudinal maternal mean plasma vitamin B12 concentration (pmol/l) according to supplement 
group at baseline, 30 weeks’ gestation and 12 weeks postpartum. 

Data were normally distributed and analysed using a mixed effects model. The overall time by supplement 
interaction p=0.02. 

 

 

Figure 29. Longitudinal breast milk vitamin B12 concentration (pmol/l) (geometric means) according to 
supplement group at 8, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall 
time by supplementation interaction p=0.9. The overall time by supplementation effect (consistent over time) p=0.4.  
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Figure 30. Longitudinal infant plasma vitamin B12 concentration (pmol/l) (geometric means) according to 
supplement group at birth, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall 
time by supplementation interaction p=0.2. 
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7.5.2 Determinants of breast milk vitamin B12 concentration 

Maternal plasma B12 concentration at 12 weeks postpartum was weakly associated with breast 

milk vitamin B12 concentration in samples collected at the same time (crude coefficient (log-

transformed): 0.001, 95% CI: 0.0001, 0.001, p=0.02, r=0.15) (Figure 31). Maternal plasma 

vitamin B12 concentration in early pregnancy (baseline) was not associated with breast milk 

vitamin B12 concentration at 12 weeks postpartum (crude coefficient (log-transformed): 0.001, 

95% CI: -0.0001, 0.0014, p=0.09, r=0.11) (Figure 32). Data from both supplement groups were 

included in this analysis as there was no difference in maternal plasma vitamin B12 concentration 

or breast milk vitamin B12 concentration between the two supplement groups at either timepoint. 

Breast milk vitamin B12 concentration at 12 weeks postpartum was also positively associated with 

maternal height (p=0.02) (Table 35). When adding maternal height as a potential confounder of 

the relationship between maternal plasma vitamin B12 at 12 weeks postpartum and breast milk 

vitamin B12 concentration, the association remained (adjusted coefficient (log-transformed): 

0.001, 95% CI: 0.0001, 0.001, p=0.03, r=0.18). 

Mothers who were exclusively breastfeeding their infant at six months postpartum did not have 

a different breast milk vitamin B12 concentration compared to mothers who were not exclusively 

breastfeeding (data not shown).  

Infant vitamin B12 status at 12 weeks postpartum was driven by both maternal plasma vitamin 

B12 and breast milk vitamin B12 (Figure 33). Based on crude estimates, maternal plasma was a 

stronger predictor (r=0.38, p<0.001) of infant status than breast milk vitamin B12 (r=0.14, 

p=0.02). Data from both supplement groups were included in this analysis. 
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Figure 31. Association between maternal plasma vitamin B12 and breast milk vitamin B12 at 12 weeks 
postpartum (n=252).  

Breast milk vitamin B12 values were log-transformed before analysis. The grey line is the linear regression fit.  

 

 

 
Figure 32. Association between maternal plasma vitamin B12 at baseline (early pregnancy) and breast milk 
vitamin B12 at 12 weeks postpartum (n=228).  

Breast milk vitamin B12 values were log-transformed before analysis. The grey line is the linear regression fit.   
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Table 35. Determinants of breast milk vitamin B12 
 

n Breast milk vitamin B12 12 weeks 
postpartum 

Maternal age, years 301 -0.14 (0.01) 

Maternal weight, kg 300 0.0004 (0.01) 

Maternal height, cm 301 0.02 (0.01)* 

Maternal BMI (kg/m2) 300 -0.01 (0.02) 

Parity   

   Primiparous 42 5.13 (0.93) 

   Multiparous (≥ 1 previous pregnancy) 259 4.96 (0.85) 

Maternal education a   

   No education 226 4.98 (0.85) 

   Low (1-7 years) 40 5.15 (0.92) 

   Medium (8-14 years) 35 4.83 (0.90) 

Gestational age at birth (weeks) 298 -0.04 (0.03) 

Season of sample collection   

   Dry season (Nov to May) 188 5.01 (0.07) 

   Wet season (June to Oct) 109 4.95 (0.08) 

Village    

   Core villages b 76 4.94 (0.08) 

   Outreach villages 225 5.00 (0.06) 

Ethnicity   

 Mandinka  250 4.96 (0.06) 

 Other 51 5.09 (0.99) 

Infant sex   

  Female  151 5.02 (0.07) 

  Male 150 4.95 (0.07) 

Infant age at 12 week visit 293 0.001 (0.01) 

Non-normal distributed data were log transformed. Continuous data are presented as logged beta coefficient (SE), 
categorical data as logged means (SD). Continuous data were analysed using linear regression and categorical data 
using t-tests or ANOVA. 
* Evidence for a difference between outcome and exposure variable p≤0.05. 
a Maternal education was defined as completed years of either English or Arabic schooling 
b Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages 
are the remaining 24 villages in West Kiang. n; sample size. 
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Figure 33. Associations between maternal plasma vitamin B12, breast milk vitamin B12 and infant vitamin 
B12 at 12 weeks postpartum.  

Analysed by linear regression.  
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7.5.3 Estimated infant vitamin B12 intake 

In exclusively breastfed infants, vitamin B12 intake is equal to excretion in breast milk. Table 36 

shows the estimated average infant vitamin B12 intakes (µg/day) at three time-points. The 

estimated median intake of vitamin B12 for exclusively breastfed infants was 0.17 µg/day at 12 

weeks postpartum. Ninety-one percent (255/281) of infants had an estimated vitamin B12 intake 

below the AI of 0.4 µg/day at 12 weeks postpartum.  

Table 36. Estimated average daily vitamin B12 intake for exclusively breastfed infants (μg/day) at varying 
time-points a 

  8 weeks postpartum  12 weeks postpartum  24 weeks 
postpartum 

Total 
(n=266) 

0.192 (0.128, 0.263) Total 
(n=281) 

0.172 (0.093, 0.226) Total 
(n=189) 

0.206 (0.161, 0.281) 

Data are medians (IQR). Only exclusively breastfeed infants were included.  
* Difference in medians between supplement groups, p≤0.05. Analysed by Mann-Whitney test. 
a Calculated as the concentration (µg/l) excreted in breast milk*0.782 l/day.  
b Total = data from both supplement groups, n; sample size. 
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7.6 Discussion 

Supplementing pregnant Gambian women with a multiple micronutrient supplement, containing 

5.2 µg/day of vitamin B12, resulted in higher maternal plasma vitamin B12 concentration during 

pregnancy and a higher infant cord blood and infant plasma concentration at 12 weeks 

postpartum. No evidence of an effect was detected on maternal postpartum status or on breast 

milk vitamin B12 concentrations across the first six months of lactation, suggesting that the 

positive effect of supplementation on maternal status during pregnancy was not sustained into 

lactation. 

To the best of my knowledge, this is the first intervention study to have supplemented women 

during pregnancy only and investigated the effect on breast milk and infant plasma vitamin B12 

concentrations. Duggan et al (2014) (175) and Siddiqua et al (2015) (176), randomised and 

supplemented Indian and Bangladeshi women, respectively, during both pregnancy and lactation, 

making it impossible to determine if the observed effects both studies found on breast milk 

concentrations were due to pre- or postnatal supplementation or a combination of both. 

In this study in The Gambia, maternal supplementation starting in early pregnancy had a positive 

effect on maternal plasma vitamin B12 concentration alongside a reduced prevalence of mothers 

with depleted vitamin B12 concentrations in late gestation. MMN supplementation maintained 

maternal plasma vitamin B12 concentrations across pregnancy, whereas a large drop was observed 

in the FeFol group. This decrease in plasma B12 levels of unsupplemented women is consistent 

with observations from the existing literature in both well- and poorly-nourished populations 

(175, 427-431). Further, a study reported that despite equivalent vitamin B12 intakes, women in 

the third trimester of pregnancy had a 21% lower serum B12 levels than non-pregnant women 

(177). This observed decrease during late pregnancy is likely due to normal physiologic changes, 

including hemodilution, an increased supply of vitamin B12 from the mother to the foetus (177), 

and potentially also due to a change in vitamin B12 binding proteins during pregnancy (430). The 

stage at which this decline becomes problematic for the mother’s and infant’s vitamin B12 status, 

and the level at which it is beneficial to prevent a decline are not yet known. 

The results obtained in this analysis indicate that a supplement containing 2xRDA of vitamin B12 

can maintain maternal plasma B12 levels in early pregnancy in this population, and thus prevent 

a decline. Duggan et al (2014) (175) also reported a maintenance, and even an increase, of vitamin 

B12 status with vitamin supplementation across pregnancy. In this study indian women were 
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supplemented from 14 weeks gestation with 50 µg/day (50% had low or depleted status in early 

pregnancy), and baseline maternal plasma B12 concentration was 160 pmol/l, which in the 

supplemented group increased to 216 pmol/l and 184 pmol/l in the second and third trimester, 

respectively. This suggests that a high dose of vitamin B12 supplementation led to increased 

vitamin B12 plasma levels during pregnancy among highly deficient Indian women. However, the 

cut-off currently used to determine vitamin B12 deficiency during pregnancy is the same that is 

used for the general adult population (398). This is not appropriate because of the marked 

physiological changes in status during pregnancy (434). Without a suitable cut-off for vitamin 

B12 deficiency in pregnancy it is not possible to determine if 2xRDA in this analysis or 50 μg/day 

in the study by Duggan et al (2014) (175) are sufficient in increasing maternal plasma to levels 

that are adequate to build up infant stores for healthy development. More research is needed on 

optimal vitamin B12 status during pregnancy.  

The effect of supplementation during pregnancy was not sustained in the women during lactation 

in this rural Gambian population. However, maternal plasma concentrations were non-

significantly higher in the MMN group compared to the FeFol group at 12 weeks postpartum, 

likely due to the carry-over effect of the supplement. Further, plasma concentrations increased 

between 30 weeks’ gestation and 12 weeks postpartum (significantly for the FeFol group, non-

significantly for the MMN group). This observed increase for both groups indicates an improved 

mobilisation of maternal stores during lactation for transfer of the vitamin to breast milk, and a 

return to pre-pregnancy vitamin B12 levels. This increase in status during lactation is consistent 

with other findings (177, 431). Bae et al (2015) (177) reported higher plasma vitamin B12 

concentrations during lactation compared to concentrations during both pre-pregnancy and 

pregnancy in well-nourished women with equivalent vitamin B12 intakes. The size of the increase 

in plasma vitamin B12 concentration during lactation, and whether the concentration surpasses 

pre-pregnancy levels, is hypothesised to depend on maternal status before pregnancy along with 

intake and depletion of stores during pregnancy (398).  

In this analysis, maternal supplementation did not have an effect on breast milk vitamin B12 

concentrations across the first six months of lactation. Evidence suggests that supplementing 

women during lactation improve maternal circulating concentrations of vitamin B12, increasing 

breast milk concentrations and thus benefitting the infant. For instance, an RCT supplemented 

Bangladeshi women with 250 µg/day of vitamin B12 during pregnancy and until 3 months 

postpartum (almost 70% of women had low or depleted vitamin B12 status at baseline) (176). 

This study found a higher increase in maternal plasma B12, breast milk and infant plasma B12 at 
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3 months postpartum compared to the placebo group (maternal plasma: 416 pmol/l vs. 242 

pmol/l, breast milk: 245 pmol/l vs. 170 pmol/l, infant plasma: 328 pmol/l vs. 200 pmol/l). Similar 

results were observed in a comparable study of vitamin B12 deficient Indian women (175). In this 

study a supplement of 50 µg/day given during both pregnancy and lactation improved maternal 

vitamin B12 status during pregnancy, breast milk vitamin B12 concentrations and infant status at 

six weeks postpartum compared to a placebo (breast milk: 136 pmol/l vs. 87 pmol/l, infant 

plasma: 199 pmol/l vs. 139 pmol/l). This indicates that in populations with high maternal vitamin 

B12 deficiency, continuing supplementation during lactation improves both maternal, breast milk 

and infant vitamin B12 status beyond the metabolic adaptations that naturally occur during this 

period. In contrast, an observational study of well-nourished Danish women found that maternal 

supplementation during lactation (1-18 μg/day) from 3 weeks to 9 months postpartum did not 

increase maternal plasma vitamin B12 concentrations in well-nourished Danish women (455). 

Despite clear methodological differences between these two studies, this could suggest that only 

deficient and depleted lactating women benefit from postnatal supplementation.  

An increase in breast milk concentration was observed between 12 and 24 weeks postpartum in 

both groups in this analysis. This increase could potentially be driven by the improved 

mobilisation of maternal stores for transfer to breast milk between 3 and 6 months postpartum. 

However, the few existing studies available on this suggest that the recovery of plasma vitamin 

B12 levels from pregnancy to lactation occurs earlier than between 3 to 6 months of lactation (431, 

455). In Australian women, pregnancy vitamin B12 levels were exceeded at around 14 weeks 

postpartum, and only a small increase in maternal plasma vitamin B12 was observed between 14 

and 27 weeks postpartum (431). Further, maternal serum vitamin B12 did not change between 3 

weeks to 9 months postpartum in a Danish cohort, suggesting that the recovery of maternal 

plasma vitamin B12 occurred before 3 weeks postpartum (455).  

Two other studies have observed a similar increase in mature milk in late lactation (175, 180). 

Duggan et al (2014) (175) reported an increase of 68 pmol/l to 80 pmol/l between 3 and 6 months 

postpartum in unsupplemented Indian women, and a Danish observational study reported an 

increase of 290 pmol/l to 440 pmol/l between 4 and 9 months postpartum (180). Only the Danish 

study analysed maternal plasma vitamin B12 concentration at the same timepoints, and they found 

no significant difference in maternal plasma B12 concentrations between 4 and 9 months. This 

suggests that maternal vitamin B12 status is not directly linked to the increase in breast milk 

concentrations during the same time-period. Other researchers have hypothesised this increase in 

Danish women’s vitamin B12 concentrations in mature milk is caused by a difference in infant 
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milk intake (92). At four months postpartum, the majority of the Danish infants were exclusively 

breastfed, and at nine months all had started complementary feeding, which is generally 

accompanied by a decrease in milk intake. In this Chapter’s analysis a difference in breast milk 

B12 concentration was however not found between exclusively and not-exclusively breastfed 

children at six months postpartum. Furthermore, no published study has to date investigated the 

impact breast milk volume has on breast milk vitamin B12 concentration. More research is needed 

to establish why breast milk vitamin B12 in both well- and poorly nourished populations has been 

reported to increase in late lactation.  

Infant vitamin B12 concentrations in cord blood were significantly different between the two 

supplement groups. This concurs with other studies that have found that maternal vitamin B12 

status during pregnancy is highly reflective of foetal vitamin B12 status at birth (176, 456). 

Siddiqua et al (2015) (176) supplemented pregnant women with 250 µg/day of vitamin B12 during 

pregnancy and lactation and reported a higher infant cord blood vitamin B12 concentration 

compared to placebo (555 pmol/l vs. 208 pmol/l). Further, in this analysis it was found that infant 

plasma vitamin B12 declined across infancy in both supplement groups, which is in agreement 

with other studies’ results (180, 436). This suggests that supplementing mothers during 

pregnancy has beneficial effects on infant status at birth.  

In this analysis, significant differences in infant plasma vitamin B12 were also observed at 12 

weeks postpartum, likely due to a carry-over effect of the supplementation during pregnancy. An 

explanation for this could be that infants born to supplemented mothers were born with a higher 

vitamin B12 liver storage that lasted until 12 weeks postpartum. This is supported by an 

observational analysis in deficient Indian mothers; higher maternal vitamin B12 status during 

pregnancy were associated with increased infant vitamin B12 status and a decreased prevalence 

of deficiency at six weeks of age (457). This highlights the importance of maternal 

supplementation during pregnancy in poorly nourished population, as the beneficial effect is 

likely to lasts beyond the neonatal period.  

7.6.1 Vitamin B12 deficiency, intake and determinants 

According to IOM plasma vitamin B12 cut-off for deficiency, the Gambian women in this analysis 

were considered mildly vitamin B12-deficient in early pregnancy. Seven percent of the included 

women were below 148 pmol/l (deficiency) and 16% between 148-221 pmol/l (depletion). At 30 

weeks’ gestation the percentage of vitamin B12 deficiency and depletion was higher, also in the 



 
Chapter 7. Vitamin B12 

 

227 
 

MMN group (31%). However, interpretation on maternal vitamin B12 status during pregnancy 

should be made with caution. As already described, it is not appropriate to use adult cut-offs 

during pregnancy, and furthermore plasma vitamin B12 is an insensitive biomarker, especially at 

low concentrations  (398). To accurately define maternal vitamin B12 status during pregnancy, 

and the effectiveness of 2xRDA on maternal status during pregnancy, a second (or preferably 

more) biomarker, such as MMA or tHcy, is needed. Future studies should include several 

biomarkers in order to correctly assess maternal status during pregnancy.  

At 12 weeks postpartum the median vitamin B12 breast milk concentration was 154 pmol/l in the 

FeFol group and 169 pmol/l in the MMN group. The adequacy of breast milk vitamin B12 

concentration is difficult to determine as no appropriate cut-off for deficiency is available. If 

using the IOM’s recommended AI for infants, more than 90% of exclusively breastfed infants 

had an estimated intake below 0.4 µg/day, at 12 weeks postpartum in both groups. The AI is 

however based on poor data from a study with a small sample size (n=9), and where outdated 

analytical quantification methods were used (414). Furthermore, actual breast milk intakes were 

not obtained in this analysis, and the daily vitamin B12 intake of exclusively breastfed infants is 

thus based on an estimate. In vitamin B12-replete Canadians whose breast milk samples were 

analysed using the same laboratory technique, concentrations of 698 pmol/l at 8 weeks 

postpartum were observed (181). In comparison, the breast milk vitamin B12 concentrations found 

in rural Gambian women are considered very low. However, limited comparable data is available 

from well-nourished women using appropriate laboratory techniques, making it difficult to 

conclude on breast milk vitamin B12 adequacy in this rural Gambian population. Establishing 

references values for breast milk vitamin B12 adequacy along with vitamin B12 intake requirement 

and long-term outcomes is needed.  

The infants in this analysis were on the contrary considered vitamin B12 sufficient, when applying 

the reference interval developed by Hay et al (2008) (436), who measured healthy Norwegian 

mother-and-infant-pairs. Only 5% of infants in this study were below the lower reference value 

of 121 pmol/l for breastfed infants at six months of age. Nevertheless, the Norwegian study did 

not measure maternal status or breast milk B12 concentrations which makes the interpretation of 

these infant reference values difficult. It is also possible that the lower reference value of 121 

pmol/l proposed by Hay et al (2008) (436) is too low. For instance, in the study by Siddiqua et al 

(2015) (176) mothers in the placebo group had high prevalence of deficient and depleted plasma 

B12 concentrations during both pregnancy and lactation, and infants in this group had a median 

plasma B12 concentration of 200 pmol/l at three months postpartum. Further in the study by 
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Duggan et al (2014) (175) infant plasma concentration was 139 pmol/l at 6 weeks postpartum in 

the placebo group of highly deficient Indian women. More studies are needed to confirm or reject 

the appropriate use of the reference interval developed by Hay et al (2008) (436).  

When infant vitamin B12 status (200 pmol/l at three months postpartum) in this analysis is 

compared with the findings of Siddiqua et al (2015) (176), who analysed plasma samples using 

the same laboratory technique, the Gambian infants’ status is considered moderately low. 

However, there is a lack of literature linking infant vitamin B12 status to functional outcomes, 

making it hard to determine if the values reported in these Gambian infants are adequate for 

healthy development.  

Maternal status during lactation in this analysis was associated with breast milk vitamin B12 

concentration, after adjusting for potential confounders. This is in agreement with some previous 

studies (177, 180-182) (See Chapter 2). Maternal status during pregnancy was not associated 

with vitamin B12 concentration in mature milk, and no other study has been identified measuring 

this (Table 1 in Chapter 2).  

Maternal status during lactation was a stronger predictor of infant vitamin B12 status than breast 

milk concentrations in this analysis. This is in agreement with a study by Deegan et al (2012) 

(458), who found that in Guatemala, infant vitamin B12 status at 12 months of age was predicted 

by maternal status rather than breast milk concentrations, implicating a long-term effect of 

maternal pregnancy status. It is possible that maternal status is a better indicator of infant status 

in the first year of life, as infants born to replete mothers are born with ~25-30 µg vitamin B12 

storage (441), protecting them from inadequacy in early infancy. This hypothesis is also 

supported by the effect of supplementation on infant postnatal plasma B12 and not on breast milk 

concentrations observed in this analysis. 

7.6.2 Strengths and limitations 

These findings expand current knowledge around maternal vitamin B12 status during pregnancy 

and lactation, breast milk vitamin B12 and infant vitamin B12 status in a population with low 

habitual intake of dietary vitamin B12. Limited studies have covered the full period through 

pregnancy, lactation and infancy and measured status concurrently. This analysis exposed the 

need to focus on maternal vitamin B12 status during both periods of pregnancy and lactation, as 

both are important for maternal and infant vitamin B12 status. Further, this analysis has identified 



 
Chapter 7. Vitamin B12 

 

229 
 

the need of additional research on definitions of vitamin B12 deficiency during pregnancy, 

lactation and infancy, and the development of a vitamin B12 infant EAR recommendation during 

the period of EBF.  

A key strength of this study was the use of advanced laboratory techniques to measure vitamin 

B12 in breast milk. Concentrations were quantified using the most up to date analytical method, 

removing vitamin B12 from apo-HC, which is necessary to obtain a reliable concentration of 

vitamin B12 in breast milk (281). 

One limitation of this study was that only one biomarker to assess maternal and infant vitamin 

B12 status was collected. Plasma vitamin B12 is insensitive to especially low concentrations and 

should not be used as a single biomarker to assess status. Analysing MMA or holoTc 

simultaneously with plasma vitamin B12 would have given a more reliable indication of vitamin 

B12 status in this population.  

7.6.3 Conclusion 

In conclusion, a daily multiple micronutrient supplementation (containing 5.2 µg/day vitamin 

B12) given during pregnancy to rural Gambian women increased maternal vitamin B12 status 

during pregnancy and had a carry-over effect on infant plasma vitamin B12 status in the first 12 

weeks of life. Supplementation did not have an effect on breast milk vitamin B12 concentrations, 

suggesting maternal vitamin B12 status during pregnancy might be a stronger predictor of infant 

status than breast milk vitamin B12 concentration in the first 12 weeks postpartum.  
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Chapter 8 

Thiamin, riboflavin and vitamin B6 

This Chapter presents how a thiamin, riboflavin and vitamin B6-containing multiple 

micronutrient supplement given during pregnancy influences maternal status during pregnancy 

and breast milk composition in rural Gambia. The background begins with a review of vitamin 

B1, B2, B6 physiology and deficiency in human milk. This is followed by a description of 

assessment of status of the three B-vitamins, definitions of adequate status, intake requirements 

and epidemiological evidence for the importance of these vitamins. The focus of the background 

is on all three periods of pregnancy, lactation and infancy. The background is followed by a short 

introduction to the research area, methods, results and discussion. 

8.1 Background 

Thiamin (vitamin B1), riboflavin (vitamin B2) and vitamin B6 have been described in the literature 

as neglected vitamins of public health importance (459). Assessment of these vitamins is 

generally not included in population studies, as they are difficult to measure (77), and because 

information about the consequences of marginal or subclinical deficiencies are lacking (459). As 

a result, the global prevalence of thiamin, riboflavin and vitamin B6 deficiency is uncertain (77).  

Deficiencies of these B-vitamins may be of concern especially in resource-poor settings where 

dietary intake of animal products and fruits and vegetables are low (459). The prevalence of 

thiamin deficiency is likely to be high where diets are high in refined or polished grains (460). 

Deficiency of all three B-vitamins often occurs simultaneously within the same population, as 

the food sources of the vitamins are similar (459). Additionally, riboflavin is involved in the 
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metabolism of folic acid, pyridoxine, vitamin D and K, and a low riboflavin status can thus have 

implications for the status of a variety of other vitamins (461). 

8.1.1 B-vitamin physiology 

Thiamin 

Thiamin, also known as vitamin B1, is a water-soluble vitamin. A continuous dietary intake of 

the vitamin is needed to sustain adequate levels as the vitamin is to a large degree not stored in 

any tissue (462). In the diet thiamin mainly exists in the phosphorylated form (463), which is 

converted into free thiamin before absorption. Thiamin is absorbed as thiamin ion (T+) in the 

small intestine by active and passive transport following uptake from the gastrointestinal tract 

and transportation by the blood to several tissues and organs. Active transport occurs at low 

concentrations of thiamin and passive diffusion at higher concentrations (462, 464). After uptake 

into the cell, thiamin is phosphorylated mostly to thiamin pyrophosphate (TPP), and some of the 

TPP is further converted to thiamin triphosphate (TTP) (464). Both free thiamin and thiamin 

monophosphate (TMP) circulate in the blood, bound to albumin. All tissues can take up free 

thiamin and TMP and phosphorylate them to TPP and TTP (465). Thiamin is excreted in the 

urine which occurs when there is excess concentration of T+ and TMP (464).  

TPP is the most abundant form of thiamin in the body, and makes up more than 80% of total 

thiamin (464). Thiamin is involved in the extraction of energy from carbohydrate sources, and in 

amino acid metabolism where TPP is the essential cofactor for enzymes involved in glucose and 

amino acid metabolism. Thiamin is also involved in the regulation of neuronal communication, 

and in several functions in the immune system (464). 

Riboflavin 

Riboflavin, also known as vitamin B2, is an essential water-soluble vitamin. Dietary riboflavin is 

absorbed and processed in the small intestine. Prior to absorption riboflavin from dietary sources, 

which exists most abundantly as flavin mononucleotide (FMN) and flavin adenine dinucleotide 

(FAD), are hydrolysed to free riboflavin (466). When absorbed the conversion of free riboflavin 

to its co-enzyme form mainly takes place in the cytoplasm, where first FMN is generated by 

phosphorylation and then most of the FMN is further reformed to FAD (467). Free riboflavin can 

also be regenerated from FMN and FAD (466). There is little or no storage of riboflavin in the 
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body, and any surplus is excreted in the urine, in the form of free riboflavin and its catabolites 

(467).  

FMN and FAD play a key role in the conversion of folic acid and vitamin B6, and in a variety of 

processes involving carbohydrates, lipids and amino acids (463). Free riboflavin has limited 

biological activity (466). In healthy individuals, the most abundant form in plasma is FAD (468).  

Vitamin B6 

Vitamin B6 is the collective term for pyridoxal (PL), pyridoxamine (PM) and pyridoxine (PN) 

(463). All vitamers also exist in their phosphorylated forms; pyridoxal-5’-phosphate (PLP), 

pyridoxamine-5’-phosphate (PMP) and pyrodixine-5’-phosphate (PNP) (469). 4-pyrodoxic acid 

(4-PA) is the catabolic product of vitamin B6 metabolism. It is metabolically inactive, and is 

excreted in the urine (470, 471). In the diet, vitamin B6 exits both in the free and phosphorylated 

forms, however before absorption all vitamers are hydrolysed to the free form (463). The 

phosphorylation of PL, PM and PN to PLP, PMP and PNP, respectively occurs primarily in the 

liver. PL and PLP are the predominantly vitamers of vitamin B6 in the human body (470).   

PLP is the most biological active form of the vitamin, and acts as a cofactor in many biologically 

processes, such as amino acids transformations, and in the metabolism of carbohydrates and 

lipids (463). PLP is also involved in one-carbon metabolism, where it acts as a coenzyme for four 

different enzymes (470). Dietary sources of vitamin B6 are meat, cereal grains, vegetables and 

nuts (470). 

8.1.2 B-vitamin physiology during lactation  

The transport mechanisms involved in thiamin, riboflavin and vitamin B6 secretion into milk are 

generally unknown. For thiamin and vitamin B6 there is no literature available on the transport 

mechanisms involved in secretion of these vitamins into milk (84). However, one recent study 

found that of all the thiamin vitamers present in milk, only free thiamin concentration increased 

across lactation, suggesting an active transport mechanism (472). TMP may either be actively 

transported into milk, or originate from phosphorylation of free thiamin or hydrolysis of TPP 

(472).  

For riboflavin a little more is known. Free riboflavin and FAD are secreted into milk, and the 

multidrug transporter breast cancer resistance protein (BCRP/ABCDG2) is said to mediate the 
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free riboflavin transport (473). During pregnancy and lactation BCRP is induced and, via an 

ATP-dependent mechanism, free riboflavin is transported into milk. It is also possible that FAD 

is transported by a BCRP-independent active transporter, however not enough is known about 

this mechanism (473). A recent study conducted in humans suggests that FAD is supplied into 

the milk at a constant rate across lactation, and when supplements are taken, an increase in free 

riboflavin occurs, suggesting that free riboflavin is the driving force for the change in total 

riboflavin content in breast milk (472). There seems to be a preferential secretion of the free form 

into breast milk by BCRP.  

8.1.3 B-vitamin deficiency 

Thiamin 

Thiamin deficiency may result from inadequate dietary intake of the vitamin, as well as from 

decreased absorption (462). Consumption of foods high in thiaminases (for instance specific 

plants and fish) or antithiamin compounds (for instance fermented fish, tea leaves and betel nut) 

and extended cooking of foods can also contribute to the deficiency (460). Pregnant women and 

infants are the population groups at highest risk of  deficiency, and severe thiamin deficiency can 

lead to infantile beri-beri which in some affected populations is the leading cause of infant 

mortality (149, 150, 474). Infantile beri-beri often occurs among breastfed infants around three 

months of age, which without treatment can lead to infant death within a few hours (474). 

Maternal thiamin deficiency during pregnancy also places the infants at risk of infantile beri-beri, 

as the foetus is relying on placental thiamin transfer during the third trimester of pregnancy (153). 

This is known because infants born to thiamin sufficient mothers have up to three times higher 

thiamin concentration in umbilical cord blood compared to maternal venous blood at birth (475). 

Beri-beri is characterised by oedema, cardiac failure and neurological symptoms  (476). 

Limited studies have investigated how thiamin deficiency affects infant growth and development. 

It has been hypothesised that thiamin deficiency is linked to intrauterine growth restriction 

(IUGR) with one study reporting that mothers with normal pregnancies had higher erythrocyte 

thiamin concentrations compared to mothers experiencing IUGR (477). Further studies on the 

effect that maternal thiamin deficiency has on infant brain development in high-risk populations 

are warranted (460).  
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Riboflavin 

Riboflavin deficiency results in a range of clinical abnormalities, including degenerative changes 

to the nervous system, endocrine dysfunction, anaemia and skin disorders (466), but isolated 

clinical deficiency of riboflavin is often not recognisable by any physical feature (461). In 

addition to insufficient dietary intakes of riboflavin, deficiency can also be caused by certain 

endocrine abnormalities, for instance thyroid hormone insufficiency (461). Haste et al (1991) 

(478) found that riboflavin intake during pregnancy was positively associated with birth weight, 

which is one of the few studies in the literature that has investigated the effect of riboflavin intake 

on infant growth and development. 

Vitamin B6 

A low dietary intake of vitamin B6 and, as a consequence, vitamin B6 deficiency, is often unheard 

of in the general population (470). However, at risk groups still exist, and among those are 

pregnant and lactating women (470). Symptoms of vitamin B6 deficiency have been reported to 

include weakness, sleeplessness and a loss of appetite (469). In early stages of development the 

vitamin is vital, especially during central nervous system development (469). A few studies have 

also linked vitamin B6 status in infants to poor growth (479-481). For instance, infants born to 

mothers supplemented with vitamin B6 during pregnancy had a higher birth weight (479). 

Additionally, infant plasma PLP concentrations at birth predicted infant growth (480), and a 

slower length-for-age velocity and a poorer weight gain was recorded in infants with low vitamin 

B6 status compared to infants with an adequate status (481). Good quality studies are needed 

assessing vitamin B6 supplementation on infant outcomes to establish the importance of this 

vitamin (77, 482). 

8.1.4 B-vitamins in human milk 

The most prevalent form of thiamin in breast milk is free thiamin and TMP (156, 472). TPP has 

also been found in milk, however only in small concentrations (472). For riboflavin, the most 

prevalent vitamers in breast milk are free riboflavin and FAD (472, 483). For vitamin B6, PL is 

the most dominant form in milk, with possible contributions of PN, pyrodoxamine, pyridocal-

phosphate or pyridoxamine-phosphate, however all in relatively small quantities (164, 484). 

Two longitudinal studies have shown an increase in thiamin concentration in breast milk from 

transitional to mature milk (129, 151), although a more recent study observed a decrease in 
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concentration from transitional to mature milk (153). There is a lack of longitudinal studies 

investigating changes in riboflavin concentration across lactation, the available studies reported 

stable concentrations over the first several weeks of lactation (129, 151, 158). Breast milk vitamin 

B6 concentration increases sharply in the first few weeks of lactation followed by a gradual 

decline in late lactation in unsupplemented women in longitudinal studies (129, 163, 165, 485). 

Hampel et al (2017) (274) found higher thiamin and riboflavin concentrations in hindmilk versus 

foremilk, however the differences were small. No difference in vitamin B6 was reported (274). 

The same research group reported diurnal changes for all three B-vitamins, with riboflavin having 

the largest change in concentrations (274). In addition riboflavin and vitamin B6 had the highest 

range of concentrations throughout one day when a supplement was provided, compared to the 

remainder of the B-vitamins. An increase in concentration of more than 200% of the daily median 

was reported within four hours after the supplement was consumed for both vitamins (274). The 

authors concluded that without consumption of supplements, the morning, early and late 

afternoon and evening hours are acceptable representative times for breast milk collection when 

investigating these vitamins.  

As described in Chapter 2, maternal thiamin, riboflavin and vitamin B6 status and intake influence 

breast milk concentrations. For thiamin, maternal supplementation during lactation had an effect 

on breast milk concentration of women with a poor thiamin status, but this effect was often not 

seen in well-nourished women (see Chapter 2). Similar results were found in rats where thiamin 

concentration in milk decreased when fed a diet low in thiamin, but did not change with a diet 

high in thiamin (486). This suggest a tight regulation of thiamin transfer into milk at high intakes, 

and the existence of a preferential transport of thiamin into breast milk when maternal status is 

poor. The regulation of thiamin in human milk is however a complex process involving several 

vitamin-specific transport systems, that as already described, is yet to be fully understood (84).  

Some researchers have found breast milk thiamin and vitamin B6 concentrations to be associated 

with premature delivery, with lower concentrations in preterm versus term milk (129, 487). This 

association was not observed for riboflavin (129). Data on other environmental influences of 

thiamin, riboflavin and vitamin B6 concentrations in breast milk are lacking. 
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8.1.5 Assessment of B-vitamin status and criteria for adequacy  

Thiamin status is reliably assessed by measuring erythrocyte thiamin diphosphate or erythrocyte 

thiamin transketolase activity and erythrocyte thiamin transketolase activity coefficient (aETK) 

(156, 488, 489). There is generally a lack of established and agreed upon cut-offs for these 

biomarkers except for aETK, with values higher than 1.25 implying deficiency (417).  

The traditionally used method for measuring riboflavin status is by the erythrocyte glutathione 

reductase activation coefficient (EGRAC) assay (490), which measures the ratio of glutathione 

reductase activity in the presence and absence of added flavin adenine dinucleotide. It is 

measured in red blood cells, and reflects long-term riboflavin status (461). An EGRAC higher 

than 1.4 defines deficiency (417). Plasma and serum concentration of free riboflavin, FAD and 

FMN have also more recently been used to assess riboflavin status, however cut-offs for 

deficiency has not yet been established (490).  

For vitamin B6, plasma PLP concentration is the most commonly used biomarker to measure 

status (491). Some studies have measured total plasma B6, a mixture of a combined measurement 

of all vitamin B6 derivatives, and as a ratio of concentrations in plasma (PLP+PL+PA) (492). 

However, these biomarkers were recently found to not assess vitamin B6 status accurately (491). 

Analytical methods used for assessment of plasma PLP include HPLC and LC-MS/MS based 

assays. It has been proposed that a cut-off for plasma PLP of <20 nmol/l in the adult population 

indicates vitamin B6 deficiency (417), a concentration in the range of 20-30 nmol/l indicates 

marginal status, and >30 nmol/l suggests vitamin B6 sufficiency (470). A cut-off for plasma PLP 

to indicate vitamin B6 deficiency during pregnancy has not been defined. 

The most reliable method to assess breast milk concentration of all three vitamins is ultra-

performance liquid-chromatography tandem mass spectrometry (UPLC-MS/MS) (469). For 

thiamin, high-performance liquid-chromatography-fluorescence detection (HPLC-FLD) has 

furthermore been considered a valid method (472). The research group at USDA Western Human 

Nutrition Research Centre (WHNRC) in California, developed both of these analytical 

techniques (472, 493). Riboflavin and vitamin B6 are analysed simultaneously, improving 

resolution, speed and sensitivity compared to other analysis methods where each vitamin are 

analysed separately (494). 
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8.1.6 Intake requirements during pregnancy, lactation and infancy 

Pregnancy and lactation 

The dietary requirement of thiamin, riboflavin and vitamin B6 all increase during pregnancy and 

lactation to account for the vitamin transfer to the placenta, for foetal uptake and for the transfer 

of the vitamins to breast milk during lactation (417).  

The estimated average requirement (EAR) recommended by the Food and Nutrition Board of the 

Institute of Medicine (IOM) of the U.S National Academy of Sciences during pregnancy is 1200 

µg/day for thiamin and riboflavin (417) (Table 37). The EAR for vitamin B6 during pregnancy is 

estimated at 1600 µg/day. Studies have found plasma vitamin B6 to decrease during pregnancy, 

especially in the third trimester compared to non-pregnant women (495, 496), with the drop in 

plasma concentration being driven by a drop in PLP. This drop is likely due to physiological 

changes during pregnancy, however this has not been fully investigated (417). The cut-off for 

plasma PLP of <20 nmol/l along with an assumed bioavailability of vitamin B6 of 75% from the 

diet was used in the calculations of the EAR (417).  

Table 37. Recommended dietary thiamin, riboflavin and vitamin B6 intake (µg/day) for pregnant, lactating 
women and infants between 0-6 months by IOM (417) and WHO/FAO (438) 

 Pregnancy Lactation Infancy 
 IOM WHO IOM WHO IOM WHO 
Thiamin EAR: 1200 

RDA: 1400 
- 
RDA: 1400 

EAR: 1200 
RDA: 1400 

- 
RDA: 1500 

AI: 200  AI: 200 

Riboflavin EAR: 1200 
RDA: 1400 

- 
RDA: 1400 

EAR: 1300 
RDA: 1600 

- 
RDA: 1600 

AI: 300 AI: 300 

Vitamin B6 EAR: 1600 
RDA: 1900 

- 
RDA:1900 

EAR:1700 
RDA 2000 

- 
RDA: 2000 

AI: 100 AI: 100 

EAR, estimated average requirement (the EAR is the daily dietary intake level of a nutrient expected to satisfy the 
needs of 50% of the population group); RDA, recommended dietary allowance (the RDA is defined as equal to the 
EAR plus twice the coefficient of variation to cover the needs of 97-98% of the population group); AI, average intake 
(dietary intake believed to be adequate for everyone in the demographic group to maintain health, established where 
no sufficient data to establish EAR are available); IOM, Institute of Medicine; WHO, World Health Organization. 

Infancy 

Infant thiamin, riboflavin and vitamin B6 requirements in the first six months of life is presented 

in Table 37. The World Health Organization (WHO) based their recommendations on those from 

the IOM  (438). The infant requirements are poorly defined, and they are all based on an average 
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intake (AI) and not on an EAR, which is preferable (374). An AI should only be interpreted as a 

guideline for dietary nutrient intake.  

For thiamin, the infant AI of 200 µg/day is based on the mean breast milk concentration of 210 

µg/l from two studies conducted during the 1980s in the United States including only 24 women 

(151, 152), and an infant intake of 0.781 litres of milk per day (375). The AI was rounded up 

from 164 to 200 µg/day. For riboflavin, the infant AI was previously based on the same two 

studies used to determine thiamin AI (151, 152), but in 1990 it was highlighted that these two 

studies failed to detect FAD in breast milk, underestimating the total riboflavin concentration 

needed (483). Thereafter the AI was set to 300 µg/day based on five women’s breast milk 

roboflavin concentrations (483) and microbiological determined riboflavin concentration in milk 

(497) (350 µg/l). For vitamin B6 the recommended infant AI is based on a study from 1976 

including only 19 American women’s breast milk vitamin B6 concentration (130 µg/l) (166).  

8.2 B-vitamin status of mothers and concentrations in breast milk 

Limited studies have examined the effect of maternal thiamin, riboflavin and vitamin B6 status 

during pregnancy on breast milk concentrations (see Chapter 2). This makes it difficult to 

conclude on how adequate infant intake of these vitamins are ensured during the period of 

exclusive breastfeeding (EBF), especially in settings where the lactating mother is at risk of 

deficiency. Apart from being of low-quality design, most identified interventions on this topic 

have (i) not investigated the effect of supplementation or fortification exclusively during 

pregnancy (only 1 out of 12 studies have investigated this (150)), and (ii) only half have 

investigated the effect of supplementation or fortification longitudinally across the first six 

months of lactation (6 out of 12 studies have investigated the longitudinal effect (151, 157, 159-

161, 163)). Essentially no randomised controlled trial (RCT) investigating the effect of 

supplementation during pregnancy on breast milk thiamin, riboflavin and vitamin B6 across the 

first six months of lactation has been conducted, highlighting the need for further research.  

The existing literature available on supplementation or fortification interventions on thiamin, 

riboflavin or vitamin B6 during pregnancy, consist of two studies (148, 150). The most recent 

study, conducted in 2016, found perinatal consumption of thiamin fortified fish sauce increased 

maternal thiamin status, breast milk concentration and infant thiamin status in rural Cambodian 

women (148). However, this study supplemented women during both pregnancy and lactation, 

which makes it impossible to conclude if the effect observed was due to pre- or postnatal thiamin 
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intake. McGready et al (2001) (150) did, as the only identified intervention study, supplement 

women during pregnancy only. However, in this study thiamin-deficient women were 

supplemented and the control women were thiamin-replete, making comparisons in breast milk 

concentrations across the two groups problematic. Neither of the two studies described here (148, 

150) investigated longitudinal effects on breast milk concentration or infant status.  

This Chapter presents an original analysis investigating; (i) the effect of a thiamin, riboflavin and 

vitamin B6 containing multiple micronutrient supplement given during pregnancy on breast milk 

thiamin, riboflavin and vitamin B6 concentrations; (ii) determinants of breast milk thiamin, 

riboflavin and vitamin B6 concentrations and (iii) estimated infant intakes of these B-vitamins. 

8.3 Methods 

Data and samples for this analysis were collected as a part of the ENID trial and the ENID-Bone 

extension to the ENID trial. Maternal plasma (from baseline and 30 weeks’ gestation) and breast 

milk (8, 12 and 24 weeks postpartum) were used from participating women and infants in the 

tablet arm of ENID (Iron-folic acid (FeFol) and multiple micronutrients (MMN)). Maternal status 

was only assessed in around half of the mothers from the tablet arm (n=183), selected according 

to availability of samples. Maternal plasma riboflavin and vitamin B6 were analysed, whereas 

maternal plasma thiamin and FAD were not. Plasma thiamin concentrations were not analysed 

because the development of the quantification method was not successful at the Medical Research 

Council (MRC) Elsie Widdowson Laboratory (EWL). FAD was analysed but was later discarded 

because obtained values were incorrect due to unviable standard values. Further, infant status of 

these three B-vitamins were not assed. Participant recruitment, maternal supplementation, data 

and sample collection methodologies are all described in full in Chapter 4 (page 117). 

8.3.1 Sample analysis 

Plasma and breast milk samples were aliquoted and frozen until analysis. Plasma samples were 

transported to MRC EWL (Cambridge, UK) and breast milk samples were transported to USDA 

WHNRC, Davis, California, the United States, for analysis. 
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Plasma riboflavin and vitamin B6 concentration  

Plasma riboflavin concentration was measured by a liquid chromatography-tandem mass 

spectrometry (LCMS/MS) method, developed specifically for this study, inspired by existing 

methods (493, 498). The samples and plasma controls were defrosted on a rotary mixer for a 

minimum of 15 minutes. For each sample an aliquot (200 μl) of plasma was combined with 

trichloroacetic acid (10%) (100 μl) in a screw cap plastic tube (2 ml) and briefly mixed on a 

vortex mixer. Internal standard (an aqueous solution of isotopically labelled riboflavin) (20 μl) 

was added and the mixture briefly vortex mixed once more. Each tube was centrifuged for 15 

minutes to spin down the protein precipitate. The resultant aqueous layer was transferred into an 

amber vial and injected onto the LCMS/MS. Pooled plasma was used for quality control. All 

sample handling procedures were conducted under subdued light. It was only possible to measure 

plasma riboflavin concentration and not FAD in this analysis. 

To determine plasma PLP a reverse-phase high performance liquid chromatography (HPLC) 

method with post column derivatisation and fluorimetric detection was used. The 

chromatographic conditions employed are based upon a published method (499). The samples 

were previously processed for riboflavin analysis and the same extracts were injected onto the 

HPLC for PLP analysis. Pooled plasma (at two concentration levels) were used as quality 

controls. All sample handling procedures were conducted under subdued light. Table 38 details 

the inter-assay variability of the quality controls for the plasma vitamers. The coefficients of 

variation (CV) obtained are of acceptable quality.  

Table 38. Inter-assay variability of the quality controls for plasma riboflavin and vitamin B6.  

 
 Riboflavin PLP (level 1) PLP (level 2) 

n 26 24 24 
Mean (µg/l) 5.9 12.1 6.8 
SD 0.7 0.5 0.4 
CV (%) 12.3 4.1 5.2 

PLP, pyridoxal-5-phosphate; SD, standard deviation; CV, coefficient of variation; n, sample size. 

Plasma riboflavin concentrations that fell below the minimum detection concentration (2.5 

nmol/l) was reported in the analysis as 1.25 nmol/l, which is half of the minimum detection 

concentration. This was the case for five data-points at 8 weeks postpartum. No samples fell 

below the minimum detection concentration for plasma PLP.  
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Breast milk thiamin, riboflavin and vitamin B6 concentration  

TPP, TMP and free thiamin were measured as their respective thiochrome esters by HPLC-FLD 

as previously described (472). After protein precipitation and fat-removal, samples were 

subjected to a pre-column thiochrome derivatization prior to analysis. Pooled breast milk from 

one apparently healthy donor was used as quality control. All sample preparations were carried 

out under subdued light and on ice to protect the analytes against degradation.  

The concentration of total riboflavin (free riboflavin and FAD) and total vitamin B6 (PL and PN) 

in breast milk were assessed by UPLC-MS/MS. The B-vitamins were analysed simultaneously. 

Samples were subjected to protein precipitation and non-polar constituents were removed by 

liquid-liquid extraction before analysis. As internal standards 13C4,15N2-riboflavin and 2H3-

pyridoxal hydrochloride were added to the samples for quantification. Pooled breast milk from 

one apparently healthy donor was used as a quality control. All sample preparations were carried 

out under subdued light and on ice to protect the analytes against degradation. Table 39 details 

the inter-assay variability of the quality controls for all breast milk vitamers. The CVs obtained 

are of acceptable quality.  

Table 39. Inter-assay variability of quality controls for breast milk thiamin, riboflavin and vitamin B6.  

 
 

Free ribo-
flavin FAD PL PN TPP TMP Free 

thiamin 
n 186 186 186 186 61 61 61 
Mean (µg/l) 459.9 45.1 403.2 1.8 22.5 123.0 44.6 
SD 26.9 5.0 22.7 0.2 2.3 11.5 4.0 
CV (%) 5.8 11.2 5.6 8.9 10.4 9.3 8.9 

FAD, flavin adenine dinucleotide; PL, pyridoxal; PN, pyridoxine; TPP, thiamin pyrophosphate; TMP, thiamin  
monophosphate; SD, standard deviation; CV, coefficient of variation; n, sample size. 

Total breast milk thiamin concentration was used in this analysis, which was calculated as the 

sum of combined free thiamin, TMP and TPP concentrations based on molecular weights: total 

thiamin = free thiamin + (TMP x 0.871) + (TPP x 0.707). Total breast milk riboflavin 

concentration was calculated as the sum of the combined free riboflavin and FAD concentrations, 

based on molecular weights: total riboflavin = free riboflavin + (FAD x 0.479), and total breast 

milk B6 concentration, was calculated as the sum of PL and PN: total vitamin B6= PL+PN. The 

reason why total vitamin B6 concentration is not based on molecular weights, is because PL and 

PN’s molecular weights are almost identical (PL=167.2 g/mol, PN=169.2 g/mol). Samples where 
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breast milk vitamin B6 concentrations fell below the minimum detection concentration (1 µg/l), 

were reported as 0.5 µg/l, which is half of the minimum detection concentration. This was the 

case for six data points at 8 weeks postpartum. No concentrations for breast milk thiamin or 

riboflavin fell below the minimum detection concentration. 

8.3.2. Statistical analysis 

The same statistical approach was used as described in Chapter 6 (section 6.4.2), with the 

exception that maternal plasma riboflavin, plasma PLP and breast milk thiamin, riboflavin and 

vitamin B6 concentrations were investigated.  

Outliers were defined as data with residuals >3 standard deviations (SD) from the mean in the 

mixed effect models and were excluded from the analysis (maternal plasma riboflavin n=3 data 

points removed, maternal plasma PLP n=0, breast milk thiamin n=3, breast milk riboflavin n=1, 

breast milk total vitamin B6 n=11).  

8.4 Results  

For this analysis women and children from the FeFol and MMN arms of ENID were included, 

representing a total of 384 mother and infant pairs (Figure 19 in Chapter 6, Section 6.5). Baseline 

characteristics of study population according to intervention arm are presented in Table 12, in 

Chapter 6 (Section 6.5). 

Median (IQR) plasma riboflavin concentration was 9 (5, 16) nmol/l at baseline, and did not differ 

between supplement groups (p=0.3, Table 40). Median (IQR) plasma PLP concentration was 15 

(12, 20) nmol/l at baseline, and did not differ between supplement groups (p=0.5, Table 40). At 

baseline, 75% (129/173) of the women in both supplement groups had PLP concentrations below 

20 nmol/l.   

8.4.1 Supplement effect on maternal status and breast milk concentration 

Maternal riboflavin and vitamin B6 status 

Maternal MMN supplementation significantly improved maternal plasma riboflavin 

concentration compared with FeFol (p<0.001, Table 40, Figure 34). At 30 weeks’ gestation 

median plasma riboflavin for the FeFol group was 7 (5, 11) nmol/l and 20 (11, 28) for the MMN 
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group. Between baseline and 30 weeks’ gestation, plasma riboflavin concentration increased in 

the MMN group (p<0.001) and did not change in the FeFol group (p=0.2). 

Maternal MMN supplementation had a significant effect on plasma PLP concentration compared 

with FeFol (p<0.001, Table 40, Figure 35). At 30 weeks’ gestation the median plasma PLP for 

the MMN group was 15 (10, 22) nmol/l and 8 (6, 10) nmol/l for the FeFol group. Between 

baseline and 30 weeks’ gestation, plasma PLP concentration decreased in the FeFol group 

(p<0.001), and did not change in the MMN group (p=0.2). At 30 weeks’ gestation, 71% (60/85) 

of the women from the MMN group and 99% (83/84) from the FeFol group had PLP 

concentrations below 20 nmol/l/. 

Breast milk thiamin, riboflavin and vitamin B6 concentrations 

Thiamin 

Free thiamin was the main form of thiamin in breast milk at 8 weeks postpartum, constituting 

52% of total thiamin. TMP was present in smaller amounts, 41% of total thiamin and TPP even 

less, constituting only 7% of total thiamin. Table 41 details the vitamer distribution according to 

supplement group. 

No evidence was found for an overall time by supplement interaction (p=0.7, Table 40, Figure 

36), and no evidence for a difference between the two supplement groups that was consistent 

over time (p=0.2). Mean (SE) breast milk total thiamin concentration at 8 weeks postpartum was 

117 (1.9) µg/l for both groups combined.  

Breast milk thiamin concentration was similar at 8 and 12 weeks postpartum for both supplement 

groups, however between 12 and 24 weeks postpartum, the concentration significantly decreased 

in both groups (FeFol: p=0.003, MMN: p<0.001). Mean breast milk thiamin at 24 weeks was 107 

(2.6) µg/l for the FeFol group and 100 (2.5) µg/l for the MMN group. 

Riboflavin 

The major form of riboflavin in breast milk was FAD, which contributed to 83% of the total 

riboflavin concentration at 8 weeks postpartum. Free riboflavin made up the remaining 17% 

(Table 41). 



 
Chapter 8. Vitamin B1, B2 and B6 

 

244 
 

No evidence was found for an overall time by supplement interaction (p=0.6, Table 40, Figure 

37), however there was a significant difference in breast milk riboflavin concentration that was 

consistent over time, with a higher concentration in the MMN group (p=0.003). Median breast 

milk total riboflavin concentration at 8 weeks postpartum was 228 (170, 283) µg/l in the FeFol 

group and 265 (207, 332) µg/l in the MMN group.  

Between 8 and 12 weeks postpartum, total breast milk riboflavin concentration increased in both 

supplement groups (p<0.001 for both groups). Between 12 and 24 weeks postpartum, breast milk 

total riboflavin concentration did not change (FeFol: p=0.8, MMN: p=0.4). Median breast milk 

total riboflavin at 24 weeks was 283 (200, 373) µg/l in the FeFol group and 300 (207, 422) µg/l 

in the MMN group. 

Vitamin B6 

The major form of vitamin B6 in breast milk was PL, which contributed to about 99.6% of the 

total vitamin B6 breast milk concentration at 8 weeks postpartum, with PN making up the 

remainder (Table 41). 

There was no evidence for an overall time by supplement interaction (p=0.5, Table 40, Figure 

38), and no evidence for a difference between the two supplement groups that was consistent 

over time (p=0.6). Median breast milk total vitamin B6 at 8 weeks postpartum was 21 (13, 32) 

µg/l in both groups combined.  

Breast milk total vitamin B6 concentration significantly decreased between 8 and 12 weeks 

postpartum for both supplement groups (FeFol: p=0.05, MMN: p=0.004), and between 12 and 

24 weeks postpartum, the concentration significantly increased in both supplement groups 

(p<0.001). Median breast milk total vitamin B6 at 24 weeks was 30 (18, 46) µg/l for the FeFol 

group and 28 (17, 42) µg/l for the MMN group.
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Data presented on concentrations are medians (IQR) (non-normally distributed data), or means (SE) (normal distributed data). The means are derived from the mixed effects models, and 
the medians are derived from raw data. For breast milk total thiamin, the difference in concentration between the two supplement groups is presented as the difference in means (95% 
CI), and for maternal plasma and breast milk riboflavin and vitamin B6, the differences are presented as the percentage (95% CI) difference in mean concentrations between groups, 
calculated by exponentiating coefficients from the log transformed model. All data were log-transformed, except for breast milk thiamin concentration. 
a Plasma riboflavin is free riboflavin only. It was not possible to include plasma FAD in this analysis. 

Table 40. Maternal and breast milk B-vitamin concentrations according to maternal supplement group, derived from individual mixed effects models 
Mothers Baseline p-value * 30 weeks’ gestation p-value * 12 weeks postpartum p-value * p-value ** 

Plasma riboflavin concentration (nmol/l) a        

  MMN 10.4 (5.34, 17.1)  19.8 (11.1, 28.0)     

  FeFol 7.98 (4.65, 15.8)  7.15 (4.56, 10.9)     

Difference between supplement groups (%) b  14.5 (-10.9, 47.3) 0.3 135.0 (82.9, 201.8) <0.001   <0.001 

Plasma PLP concentration (nmol/l)        

  MMN 15.5 (11.4, 20.6)  15.2 (9.6, 21.9)     

  FeFol 14.6 (11.9, 19.4)  7.8 (5.7, 10.1)     

Difference between supplement groups (%)  4.24  (-8.7, 19.0) 0.5 92.2  (68.1, 119.7) <0.001   <0.001 

Breast milk 8 weeks postpartum  12 weeks postpartum  24 weeks postpartum   

Breast milk total thiamin concentration (µg/l) c        

  MMN 114.9 (2.6)  113.3 (2.5)  100.4 (2.5)   

  FeFol 118.9 (2.7)  117.1 (2.7)  107.4 (2.6)   

Difference between supplement groups (µg/l)  -3.99 (-11.4, 3.4) 0.3 -3.76 (-11.0, 3.4) 0.3 -7.01 (-14.1, 0.08) 0.05 0.7 (0.2) 

Breast milk total riboflavin concentration (µg/l) d        

  MMN 265.3 (206.6, 331.6)  309.1 (233.2, 408.0)  299.5 (206.5, 421.5)   

  FeFol 227.7 (169.5, 282.8 )  285.5 (202.4, 361.5)  282.8 (200.2, 372.5)   

Difference between supplement groups (%)  17.9 (7.04, 29.9) 0.001 14.1 (3.71, 25.4) 0.007 11.0 (1.03, 44.8) 0.03 0.6 (0.003) 

Breast milk total B6 concentration (µg/l) e        

  MMN 21.4 (11.9, 31.0)  17.6 (12.2, 25.8)  28.2 (17.0, 42.2)   

  FeFol 21.4 (13.8, 33.5)  19.5 (11.6, 28.2)  30.0 (17.8, 46.3)   

Difference between supplement groups (%)  -4.02 (-18.7, 13.3) 0.6 -9.48 (-22.9, 6.3) 0.2 1.12 (-13.7, 18.5) 0.9 0.5 (0.6) 
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b FeFol group is the referent group 
c Total breast milk thiamin concentrations are expressed as free thiamin, and are calculated as the sum of combined free thiamin, TMP and TPP concentrations based on molecular 
weights: total thiamin=free thiamin + (TMP x 0.871) + (TPP x 0.707). To convert total thiamin concentration to nmol/l divide total thiamin with 0.26535. 
d Total breast milk riboflavin concentrations are expressed as free riboflavin and are calculated as the sum of combined free riboflavin and FAD concentrations based on molecular 
weights: total riboflavin=free riboflavin + (FAD*0.479). To convert total breast milk riboflavin concentrations to nmol/l divide total breast milk riboflavin with 0.37637. 
e Total breast milk vitamin B6 concentrations are calculated as the sum of PL and PN: total B6=PL+PN (it is not based on molecular weights, as PL and PN’s molecular weights are 
almost identical). To convert total breast milk vitamin B6 concentrations to nmol/l, divide total breast milk vitamin B6 with 0.1672. 
* This p-value tests the difference in concentration between supplement groups at the given time-point. 
** This p-value tests the difference in concentration between the two supplement groups depending on time; in other words the p-value tests an overall time by supplementation 
interaction. For the breast milk analyses the p-value presented in brackets is the overall supplement effect independent of time. 
PLP, pyridoxal-5-phosphate; FeFol, Iron-folic acid; MMN, multiple micronutrient  
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Table 41. Breast milk vitamer distribution according to supplement group. 

 Breast milk B6 
 

 Breast milk  thiamin  Breast milk riboflavin 

 PL  PN  Free 
thiamin 

 TMP  TPP  Free 
riboflavin 

 FAD 

              
 
FeFol 

    
 

 
 

 
 

    

  8 weeks  100%  0%  52%  41%  7%  17%  83% 

  12 weeks 99%  1%  53%  40%  6%  10%  90% 

  24 weeks 100%  0%  47%  46%  6%  9%  91% 

MMN     
 

 
 

 
 

    

  8 weeks  100%  0%  51%  42%  7%  16%  84% 

  12 weeks 99%  1%  55%  38%  6%  11%  89% 

  24 weeks 100%  1%  47%  47%  6%  9%  91% 
 

Example of calculations: Breast milk PL (%): (mean breast milk PL/mean total breast milk B6)*100. Breast milk TMP (%): ((mean TMP x 0.871)/ total breast milk 
thiamin)*100. Breast milk FAD (%): ((mean FAD*0.479)/mean total breast milk riboflavin)*100.  
FAD, flavin adenine dinucleotide; PL, pyridoxal; PN, pyridoxine; TPP, thiamin pyrophosphate; TMP, thiamin monophosphate; FeFol, Iron-folic acid; MMN, multiple 
micronutrient. 
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Figure 34. Longitudinal maternal plasma riboflavin concentration (nmol/l) (geometric means) according 
to supplement group at baseline and 30 weeks’ gestation.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p<0.001.  

 

 

Figure 35. Longitudinal maternal plasma PLP concentration (nmol/l) (geometric means) according to 
supplement group at baseline and 30 weeks’ gestation.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p<0.001.  
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Figure 36. Longitudinal breast milk total thiamin concentrations (µg/l) (means) according to supplement 
group at 8, 12 and 24 weeks postpartum.  

Data were normally distributed and analysed using a mixed effects model. The overall time by supplementation 
interaction p=0.7. The overall time by supplementation effect (consistent over time) p=0.2 

 

 

Figure 37. Longitudinal breast milk total riboflavin concentrations (µg/l) (geometric means) according to 
supplement group at 8, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p=0.6. The overall time by supplementation effect (consistent over time) p=0.003.   
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Figure 38. Longitudinal breast milk total vitamin B6 concentration (µg/l) (geometric means) according to 
supplement group at 8, 12 and 24 weeks postpartum.  

Data were log-transformed and analysed using a mixed effects model. Values on y-axis are unlogged. The overall time 
by supplementation interaction p=0.5. The overall time by supplementation effect (consistent over time) p=0.6. 
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8.4.2 Determinants of breast milk thiamin, riboflavin and vitamin B6 concentrations 

Breast milk total thiamin at 12 weeks postpartum was positively associated with maternal age 

(p<0.001) and seasonality (p<0.001), when looking at the crude estimates (Table 42). Data from 

both supplement groups were included in this analysis, because no difference in thiamin 

concentration in breast milk between groups was found. However, if only including mothers from 

the FeFol group the associations remained (data not shown).  

Maternal breast milk riboflavin was not associated with maternal riboflavin status in early 

pregnancy (baseline) (crude coefficient (log-transformed): 0.058, 95%CI: -0.045, 0.163, p=0.3, 

r=0.121) (Figure 39). Breast milk total riboflavin at 12 weeks postpartum was associated with 

maternal age (p=0.003), gestational age at birth (p=0.01) and seasonality (p=0.03), based on the 

crude associations (Table 42). Only data from the FeFol group were included in these analyses, 

because a difference in riboflavin concentration at 12 weeks postpartum was found.  

Maternal breast milk vitamin B6 was associated with maternal PLP concentration in early 

pregnancy (baseline) (crude coefficient (log-transformed): 0.250, 95%CI: 0.017, 0.483, p=0.04, 

r=0.142) (Figure 40). Data from both supplement groups were included in this analysis, as there 

was no difference in plasma PLP at baseline or breast milk vitamin B6 at 12 weeks postpartum 

between supplement groups. If only including mothers from the FeFol group, the association 

however disappeared (data not shown). Breast milk total vitamin B6 was further negatively 

associated with maternal age (p=0.05), based on the crude estimates (Table 42). After adjusting 

the association between breast milk total vitamin B6 and maternal PLP for maternal age, the 

association was slightly attenuated, with borderline significance (adjusted coefficient (log-

transformed): 0.222, 95%CI: -0.013, 0.457, p=0.06, r=0.168) (Table 43). 

None of the three B-vitamin concentrations in breast milk were associated with EBF to six 

months; mothers who were EBF their infant at six months postpartum did not have a different 

breast milk concentration compared to mothers who were not exclusively breastfeeding at six 

months (data not shown).  
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Table 42. Determinants of breast milk thiamin, riboflavin and vitamin B6 concentrations at 12 weeks 
postpartum. 
 

n Breast milk 
thiamin  

n Breast milk 
riboflavin a 

n Breast milk 
vitamin B6 

Maternal age, years 337 1.10 (0.26)* 160 0.02 (0.006)* 337 -0.011 (0.006)* 

Maternal weight, kg 336 0.17 (0.19) 159 -0.002 (0.002) 336 -0.004 (0.004) 

Maternal height, cm 337 -0.37 (0.30) 160 0.002 (0.006) 337 -0.012 (0.006) 

Maternal BMI (kg/m2) 336 0.78 (0.52) 159 -0.008 (0.01) 336 -0.003 (0.01) 

Parity       

   Primiparous 44 108.8 (30.73) 17 5.39 (0.10) 44 3.07 (0.11) 

   Multiparous (≥ 1 previous   
   pregnancy) 

293 115.4 (33.03) 143 5.61 (0.04) 293 2.86 (0.04) 

Maternal education b       

   No education 255 115.8 (33.40) 127 5.63 (0.47) 256 2.89 (0.74) 

   Low (1-7 years) 46 115.5 (30.32) 23 5.37 (0.54) 46 2.85 (0.62) 

   Medium (8-14 years) 36 104.4 (30.16) 10 5.54 (0.36) 35 2.94 (0.56) 

Gestational age at birth (weeks) 333 -0.049 (1.08) 159 0.06 (0.02)* 333 -0.005 (0.02) 

Season of sample collection       

   Dry season (Nov to May) 205 119.9 (2.21)* 105 5.53 (0.05)* 204 2.86 (0.69) 

   Wet season (June to Oct) 128 105.7 (2.92) 54 5.71 (0.06) 129 2.91 (0.73) 

Village        

   Core villages c 85 115.8 (37.22) 39 5.63 (0.07) 85 2.82 (0.08) 

   Outreach villages 252  114.1 (31.20) 121 5.57 (0.04) 252 2.91 (0.71) 

Maternal ethnicity       

 Mandinka  280 114.5 (1.97) 138 5.58 (0.04) 280 2.86 (0.70) 

 Other 57 114.7 (4.21) 22 5.66 (0.10) 57 3.03 (0.69) 

Infant sex       

  Female 164 112.8 (2.46) 75 5.59 (0.06) 164 2.89 (0.06) 

  Male 173 116.2 (2.58) 85 5.59 (0.05) 173 2.89 (0.05) 

Infant age at 12 week visit 329 -0.46 (0.26) 158 0.005 (0.005) 329 0.001 (0.005) 

Non-normal distributed data were log transformed (breast milk riboflavin and breast milk vitamin B6). Continuous 
data are presented as logged beta coefficient (SE), categorical data as logged means (SD). Continuous data were 
analysed using linear regression and categorical data using t-tests or ANOVA. 
* Evidence for a difference between outcome and exposure variable p≤0.05. 
a only data from the FeFol group was included in this analysis 
b Maternal education was defined as completed years of either English or Arabic schooling 
c Core villages are: Keneba, Jali, Kantong Kunda and Manduar situated close to the MRC Keneba. Outreach villages 
are the remaining 24 villages in West Kiang.  
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Figure 39. Association between maternal plasma riboflavin at baseline (early pregnancy) and breast milk 
riboflavin at 12 weeks postpartum (n=82).  

All values were log-transformed before analysis. The grey line is the linear regression fit. Only mothers from the FeFol 
group was included in this regression analysis. 

 

 

Figure 40. Association between maternal plasma PLP at baseline (early pregnancy) and breast milk total 
B6 at 12 weeks postpartum (n=171).  

All values were log-transformed before analysis. The grey line is the linear regression fit.  

4
5

6
7

Br
ea

st
 m

ilk
 ri

bo
fla

vi
n 

(μ
g/

l) 
12

 w
ee

ks
 p

os
tp

ar
tu

m

0 1 2 3 4

Maternal plasma riboflavin (nmol/l) baseline

0
1

2
3

4
5

Br
ea

st
 m

ilk
 to

ta
l B

6 
(µ

g/
l) 

12
 w

ee
ks

 p
os

tp
ar

tu
m

1.5 2 2.5 3 3.5 4

Maternal plasma PLP (nmol/l) baseline

r=0.121 
 p=0.3 

r=0.142 
 p=0.04 



 
Chapter 8. Vitamin B1, B2 and B6 

 

254 
 

Table 43. Adjusted regression of breast milk total vitamin B6 at 12 weeks postpartum and maternal 
PLP at baseline (early pregnancy). 

 n β-coefficient  SE 95% CI p-value 

Maternal plasma PLP in early pregnancy 171 0.222 0.119 -0.013, 0.457 0.06 

Maternal age 171 -0.013 0.008 -0.030, 0.004 0.1 

The β-coefficient presented for each of the determinants are all adjusted for the remaining variables in the table. 
Breast milk total vitamin B6 was logged transformed.  
SE, standard error; CI, confidence interval; n, sample size; PLP, pyridoxal-5-phosphate. 
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8.4.3 Estimated infant B-vitamin intake 

In exclusively breastfed infants, thiamin, riboflavin and vitamin B6 intakes are equal to excretion 

in breast milk. Table 44 details the estimated average infant thiamin, riboflavin and vitamin B6 

intakes (μg/day) at three time-points. 

The estimated median intake of thiamin for infants was 90 μg/day at 12 weeks postpartum. All 

infants from both supplement groups (312/312) had an estimated thiamin intake below the AI of 

200 μg/day at 12 weeks postpartum. The estimated median infant intake of riboflavin in the FeFol 

groups was 221 μg/day at 12 weeks postpartum. Eighty-one percent (120/148) of the infants from 

the FeFol group and 71% (116/163) from the MMN group had an estimated riboflavin intake 

below the AI of 300 μg/day at 12 weeks postpartum. The estimated median intake of infant 

vitamin B6 was 14 μg/day at 12 weeks postpartum. Almost 100% (311/312) of the infants from 

both supplement groups had an estimated vitamin B6 intake below the AI of 100 μg/day at 12 

weeks postpartum.   
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Table 44. Estimated average daily thiamin, riboflavin and vitamin B6 intake for exclusively breastfed 
infants (μg/day) at varying time-points.  

B1 intake a 8 weeks postpartum  12 weeks postpartum  24 weeks postpartum 

Total b 
n=304 

90.8 (69.1, 110,4) Total  
n=312 

88.8 (71.8, 106.5) Total 
n=190 

78.4 (64.6, 98.6) 

B2 intake a 8 weeks postpartum  12 weeks postpartum  24 weeks postpartum 

FeFol  
n=150 

179.2 (132.6, 221.2) FeFol 
n=148 

220.9 (156.4, 282.2) FeFol 
n=95 

221.1 (156.6, 282.0) 

MMN 
n=256 

207.4 (160.6, 258.4)* MMN 
n=163 

239.1 (180.9, 319.1)* MMN 
n=94 

249.2 (185.7, 354.8)* 

Total  
n=306 

190.4 (146.5, 242.7) Total  
n=311 

234.2 (169.0, 297.1) Total 
n=189 

229.5 (167.5, 315.3) 

B6 intake a 8 weeks postpartum  12 weeks postpartum  24 weeks postpartum 

Total  
n=298 

16.7 (9.9, 24.7) Total  
n=312 

14.1 (9.2, 21.7) Total 
n=190 

22.6 (13.5, 39.2) 

Data are medians (IQR). Only riboflavin intake is presented according to supplement group, as this is the only 
vitamin with a difference in breast milk concentration according to supplement group.  
* Difference in medians between supplement groups, p≤0.05. Analysed by Mann-Whitney test. 
a Calculated as the concentration excreted in breast milk*0.782 l/day 
b Total = data from both supplement groups. 
FeFol, iron-folic acid; MMN, multiple micronutrients; n, sample size.   
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8.5 Discussion 

A multiple micronutrient supplement given daily during pregnancy, containing 2.8 mg of each 

of thiamin, riboflavin and vitamin B6, resulted in higher maternal plasma riboflavin and PLP 

during pregnancy and a modestly higher riboflavin concentration in breast milk across the first 

six months of lactation. No effect was seen on breast milk thiamin or vitamin B6 concentrations 

across the first six months of lactation. 

To the best of my knowledge, this is the first intervention study to have supplemented women 

during pregnancy and investigated the effect on breast milk thiamin, riboflavin and vitamin B6 

concentrations across the first six months of lactation. The study by McGready et al (2001) (150), 

is the only identified intervention that supplemented women during pregnancy only. The authors 

supplemented thiamin-deficient pregnant women (100 mg/day thiamin), and the control group 

were unsupplemented thiamin-replete women (defined as having no physical symptoms of 

deficiency), which makes it difficult to compare breast milk thiamin concentrations according to 

supplement use in this study. In this study by McGready et al (2001) (150), the median thiamin 

breast milk concentration was 128 µg/l in the supplemented group and 117 µg/l in the 

unsupplemented group (not significantly different) at three months postpartum, possibly 

illustrating that supplementation during pregnancy can increase breast milk thiamin for thiamin-

deficient women to the same concentration as thiamin-replete women. No comparable 

interventions studies were identified on riboflavin or vitamin B6. More studies on breast milk 

composition of these investigated B-vitamins and the effect of maternal supplementation during 

pregnancy are warranted, especially in populations where maternal status is considered marginal.  

In this analysis, maternal plasma riboflavin concentration significantly increased with 

supplementation, whereas PLP was constant across pregnancy in the MMN group, and decreased 

in the FeFol group. This observed decrease in PLP during pregnancy in the FeFol group is 

consistent with the findings from other studies of unsupplemented pregnant women (495, 496, 

500). This drop was also observed in maternal plasma vitamin B12 concentrations during 

pregnancy in this rural Gambian population (Chapter 7, Section 7.5.1), suggesting similar 

mechanisms for vitamin B12 and B6 during pregnancy. However, it is not clear why this decrease 

occurs. Possibly, it is due to the same hypothesised reasons reported for vitamin B12: 

haemodilution, and/or an increased supply of vitamin B6 from the mother to the foetus (177). 
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The maintenance of PLP concentration in the MMN group across pregnancy in this Gambian 

population indicates that 2xRDA (2.8 mg/day) is sufficient in this population to prevent a decline 

in PLP. An intervention study in well-nourished American women found that at least 5 mg/day 

of vitamin B6 was needed to prevent a decrease in PLP (500). With 5 mg/day PLP concentration 

increased from 32 nmol/l at baseline (<22 weeks’ gestation) to 47 nmol/l at 30 weeks’ gestation. 

A dose of 2.6 mg/day was not able to prevent the PLP decline (500). This indicates that regardless 

of a considerably lower baseline vitamin B6 status in this rural Gambian population (15 nmol/l), 

a lower dose was needed to maintain PLP across pregnancy compared to well-nourished 

American women. Nevertheless, the trial by Schulster et al (1984) (500) only had a sample size 

of 10 or less in their supplement arms, decreasing the accuracy of the reported results.  

Further, it is not known if this decrease in PLP levels across pregnancy constitute vitamin B6 

deficiency, and what the desired maternal PLP status is during pregnancy to prevent maternal, 

foetal and infant deficiency. Existing literature report that a decrease in PLP levels during 

pregnancy is potentially due to normal physiologic changes, as the decrease has previously been 

reported in studies of healthy and vitamin B6-replete women (495, 496, 500). One study further 

found an increase in plasma PL during pregnancy compared to non-pregnant controls, offsetting 

the PLP decrease (495). PL may serve as an available source of vitamin B6 to meet the increased 

metabolic demands during pregnancy suggesting that an adequate total vitamin B6 concentration 

is of more importance than an adequate PLP concentration. More knowledge is needed about 

which concentrations of PLP, PL and total vitamin B6 that constitutes deficiency during 

pregnancy. 

The longitudinal pattern of the three breast milk B-vitamin concentrations identified in this 

analysis were all different in this population. Total breast milk thiamin concentrations were stable 

between weeks 8 and 12 of lactation and decreasing between 12 and 24 weeks of lactation. 

Riboflavin concentrations increased in early lactation (between 8 and 12 weeks postpartum) and 

then remained stable between 12 and 24 weeks. Finally, vitamin B6 concentration decreased 

modestly in early lactation followed by an increase in late lactation (between 12 and 24 weeks 

postpartum). Few longitudinal studies exist on thiamin, riboflavin and vitamin B6 concentrations 

in mature milk, which makes it difficult to conclude if these patterns are normal physiological 

changes, or if they are driven by maternal nutritional status. Nevertheless, vitamin B6 seems to 

behave like vitamin B12 as described in Chapter 7 (see section 7.6), with an increase in 

concentrations around six months postpartum, indicating that similar mechanisms occurs for 
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these two vitamins. As discussed in Chapter 7, this could potentially be due to recovery of 

maternal status during lactation.  

The longitudinal pattern of breast milk thiamin concentrations seen in this analysis may reflect 

good maternal status in pregnancy; enough to maintain a good supply in breast milk in early 

pregnancy until 12 weeks postpartum. Supporting this is the findings by McGready et al (2001) 

(150), who reported milk concentrations from thiamin-replete women living near the 

Thai/Burmese border. The authors reported milk thiamin concentrations of 117 µg/l at 12 weeks 

postpartum, identical to the concentrations found in this study (117 µg/l in the FeFol group). This 

is the only available study of thiamin-replete women where breast milk concentrations were 

measured around three months postpartum. However, these women were categorised as thiamin-

replete based only on the absence of physical symptoms of thiamin deficiency. These women 

could thus be mild or moderately deficient. Further, the decline observed in breast milk thiamin 

concentration between 3-6 months of lactation in this analysis could indicate that maternal status 

during pregnancy is not sufficient to maintain adequate thiamin supply to the infant across the 

entire duration of EBF in this population. 

The change observed in breast milk riboflavin concentrations across the first six months of 

lactation may, as seen with vitamin B6 and B12, reflect recovery of maternal status during 

lactation. This is however difficult to determine in this analysis, firstly because maternal 

riboflavin status was not measured during lactation, and secondly because no study has 

investigated the difference in riboflavin status in non-pregnant, pregnant and lactating women. 

More studies are needed on longitudinal changes in B-vitamin concentrations across lactation in 

replete-populations.  

8.5.1 Deficiency, intake and determinants of breast milk B-vitamin concentrations 

In this population, maternal vitamin B6 status during pregnancy was low, with 75% of the women 

being below the cut-off for deficiency (PLP <20 nmol/l) in early pregnancy (baseline). High rates 

of deficiency were observed in both supplement groups at 30 weeks’ gestation, even in the MMN 

group (71%). This suggests that 2xRDA is not sufficient in increasing vitamin B6 concentrations 

to sufficient levels in this rural Gambian population. Nevertheless, the reliability of PLP as a 

vitamin B6 status biomarker has been questioned, and especially during pregnancy as plasma 

fluctuations are not taken into account (470).  
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The existing literature on breast milk concentrations of the three investigated B-vitamins are 

sparse. As a consequence, the infants’ AIs for thiamin, riboflavin and vitamin B6 are derived from 

poor data. If using the existing AIs, almost all exclusively breastfed infants in this rural Gambian 

population had estimated thiamin and vitamin B6 intakes below the respective AIs at 12 weeks 

postpartum and more than 80% had estimated riboflavin intakes below the AI. This is however 

estimates, as actual breast milk intakes were not obtained in this analysis. A study from 2012, 

using the same laboratory techniques to measure breast milk concentrations as in this analysis, 

analysed breast milk thiamin, riboflavin and vitamin B6 from five different countries (high and 

low-income countries) and highlighted the high variance of concentrations in breast milk across 

regions (493). Almost all of the median breast milk concentrations reported in this study were 

lower than the concentration required to reach the infant AIs (493). This large discrepancy 

between recent analysed milk concentrations and the infant AIs are likely explained by a 

combination of less sensitive analytical techniques for quantification and a small sample size. 

Infant requirements of all three B-vitamins need to be revisited with the intention of deriving 

EARs for exclusively breastfed infants.  

In comparison to other studies, breast milk thiamin concentrations are considered sufficient up 

until 12 weeks postpartum in this rural Gambian population, as already described. With 

riboflavin, concentrations in milk are considered moderately low in this population in comparison 

with the only available study measuring mature milk concentrations in a replete population (158). 

This study reported riboflavin breast milk concentrations of 996 nmol/l (375 µg/l) at 6 weeks 

postpartum in riboflavin-replete Spanish women (EGRAC <1.2 in third trimester). This is 

moderately higher than this study’s findings of 265 μg/l in the MMN group and 228 μg/l in the 

FeFol group at 8 weeks postpartum, suggesting that 2xRDA supplementation during pregnancy 

is likely not sufficient in increasing riboflavin concentrations in breast milk to adequate 

concentrations. However, this study by Ortega et al (1999) (158) did not use the same analytical 

techniques to determine concentration, decreasing the comparability of the results. 

For vitamin B6, reported concentrations in rural Gambian women’s milk were considered low. In 

this study milk concentrations were 21 μg/l for both supplement groups at 8 weeks postpartum. 

Thomas et al (1979) (163) reported vitamin B6 concentrations of 204 µg/l at 6 weeks postpartum 

in well-nourished American women, suggesting low milk levels in rural Gambian women. 

Nevertheless, the study by Thomas et al (1979) (163) had a small sample size (n=17) and used a 

different analytical technique to quantify milk concentrations than what was used in this analysis, 
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limiting the comparability of the results. This is however the only study available from a replete 

population measuring mature milk vitamin B6 concentrations.   

These low breast milk concentrations, even in the MMN supplemented group, imply that to 

ensure adequate breast milk thiamin, riboflavin and vitamin B6 concentrations, maternal prenatal 

supplementation is not sufficient in this population. To increase breast milk concentration, 

maternal postnatal supplementation is needed. This is supported by a recent RCT, where thiamin 

fortified fish sauce were provided during pregnancy and early lactation in Cambodia (148). This 

study reported improved maternal thiamin status, breast milk concentrations and infant status 

compared to a placebo group (breast milk thiamin: 177 µg/l vs. 144 µg/l) (148). For vitamin B6, 

the only available RCT supplemented American women during lactation (from delivery to nine 

months postpartum) with a multiple micronutrient that between study arms was different in 

vitamin B6 concentration (159). One group of women were given a supplement containing 0.5 

mg/day pyridoxine and another group 4 mg/day. Postnatal supplementation of 4 mg/day 

increased maternal vitamin B6 status and breast milk concentrations compared to 0.5 mg/day 

(breast milk total vitamin B6 1317 nmol/l (220 µg/l) vs. 2666 nmol/l (446 µg/l) at six months 

postpartum). No RCT was found supplementing women with riboflavin during lactation. This 

indicates that breast milk concentration of thiamin and vitamin B6 can be increased by maternal 

supplementation during lactation.  

In this analysis, maternal plasma riboflavin in early pregnancy was not correlated with breast 

milk riboflavin at 12 weeks postpartum. This is in contrast with one available study reporting an 

association between maternal EGRAC during third trimester of pregnancy and breast milk 

riboflavin in mature milk (158). The lack of an association in this analysis could be because total 

plasma riboflavin was not measured. Further, maternal plasma PLP in early pregnancy was 

correlated with breast milk vitamin B6, however when adjusting for confounding variables, only 

evidence for a borderline association remained. No other studies were found investigating this. 

Breast milk thiamin concentrations were in this analysis associated with seasonality of breast 

milk sample collection. This is in agreement with findings from a previous study in rural Gambia 

(297). Dominguez-Salas et al (2013) (297) reported a marked difference in rural Gambian 

women’s status of several B-vitamins according to season. During the wet season (June-Oct) 

riboflavin, folate and vitamin B6 biomarkers (thiamin was not investigated) were lower than 

during the dry season (Nov-May), mainly due to a low dietary intake of the vitamins.  
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Further, breast milk riboflavin was positively associated with maternal age and with gestational 

age at birth in this analysis. No association between the three B-vitamin concentrations in breast 

milk and mothers who were EBF to six months were found in this analysis.  

8.5.2. Strengths and limitations 

These findings expand current knowledge around maternal vitamin B6 status during pregnancy 

and breast milk thiamin, riboflavin and vitamin B12 concentrations in a population with low 

habitual intake of animal food sources. This analysis exposed the need to focus on these 

important, but often, neglected micronutrients. This analysis further identified the need for 

research on vitamin B6 deficiency during pregnancy, and on the development of infant EAR 

recommendations for the investigated B-vitamins during the period of EBF.  

A key strength of this analysis was the use of advanced laboratory techniques to measure these 

complex B-vitamins in breast milk, increasing reliability of the obtained results. One limitation 

of this analysis was that maternal status was only measured in half of the women from the tablet 

arm of ENID. This was due to low sample availability. However, measuring maternal status in 

all mothers would likely not have altered the results, because of the highly controlled 

supplementation and high compliance in this study.  

In addition, maternal plasma thiamin and FAD concentrations were not analysed, limiting the 

interpretation of how maternal thiamin and riboflavin status were affected by supplementation 

and also the ability to determine if the women had a poor status of these micronutrients. Further, 

maternal riboflavin was not measured using the gold standard method, EGRAC, as red blood 

cells were not collected as a part of ENID. Lastly, maternal status of the three B-vitamins during 

lactation and infant status of the three B-vitamins were not measured, due to low sample 

availability. This limited the interpretation of the impact of the maternal micronutrient 

supplement on maternal pstpartum and infant status. 

8.5.3 Conclusion 

In conclusion, a daily multiple micronutrient supplementation (2.8 mg of each of thiamin, 

riboflavin and vitamin B6) given during pregnancy to rural Gambian women increased breast 

milk concentration of riboflavin, but not thiamin or vitamin B6 concentrations.
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Chapter 9 

Discussion 

The aim of this thesis was to explore maternal nutrition, breast milk micronutrient composition 

and infancy growth and nutritional status in a rural Gambian population with a history of poor 

growth and inadequate micronutrient status. In particular the focus was on the period of exclusive 

breastfeeding (EBF) and the influence of maternal nutritional status on human milk composition 

of essential micronutrients.  

This research highlighted the importance of maternal nutrition on breast milk micronutrient 

status, and identified many important gaps in the existing knowledge base. Original research 

using trial data from rural Gambia showed that a prenatal supplement, containing twice the 

recommended dietary allowance (RDA) of 15 micronutrients, only moderately increased breast 

milk concentrations of iodine and riboflavin over the first six months of lactation, and no effect 

was seen on thiamin, vitamin B6 and B12 concentrations in breast milk. These observations of 

poor breast milk micronutrient concentrations may impact on the benefit of following the World 

Health Organization’s (WHO) recommendation of EBF to six months in settings where the 

mother enters pregnancy and lactation with a poor nutritional status. This highlights the need for 

nutrition interventions during this critical period of growth and development. Further, these 

observations may explain, in part, the lack of benefit of EBF to six months on growth in this 

population of Gambian infants. In this final section of this thesis, these findings are put into the 

context of existing literature and the public health implications of the research are discussed. 
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9.1 Infant growth  

Growth faltering remains highly prevalent across infancy and young childhood in many low-and 

middle-income settings, including this rural Gambian population (2, 74). Optimal breastfeeding 

practices, including EBF to six months, is advocated to promote healthy growth (15). However, 

despite impressive EBF practices in this rural Gambian population, with 32% of infants receiving 

only breast milk in the first six months of life, substantial growth faltering was observed in early 

infancy and 26% of children were stunted by two years of age. In this population, EBF to six 

months had limited impact on the growth of infants in the first two years of life. The observed 

improvements in weight, length, weight-for-age (WAZ), length-for-age (LAZ) and weight-for-

length z-score (WLZ) in the group who were exclusively breastfed to six months were all small 

in magnitude. This is in agreement with results from other studies conducted in populations living 

under similarly resource-constrained conditions (49, 67-70). Even though no impact was seen on 

growth in this setting, it is still recommended to EBF to six months, as EBF has other important 

health benefits, especially in settings with a high infectious burden.  

Several preventative interventions against growth faltering have been implemented in rural 

Gambia over the years. The Medical Research Council (MRC) have been working in the West 

Kiang region since the 1940’s, and in the 1970’s a permanent field station and clinic was set up 

in rural Keneba, offering the local population and surrounding villages, access to free primary 

health care. A supplement centre was later implemented providing treatment for severely 

malnourished children (74). Further this population has benefitted from free access to 

comprehensive immunisation, malaria treatment, improved water and sanitation facilities (74), 

health and nutrition education (501, 502), and national coverage of The Baby Friendly 

Community Initiative (503). These changes have occurred alongside the implementation of a 

large number of supplementation trials assessing the benefit of a range of interventions during 

pregnancy and early infancy (288, 299, 305, 504, 505). Despite large improvements in childhood 

mortality (506) and reductions in the prevalence of diarrhoea, malaria and other infections over 

the years (74, 288, 507), the scale of malnutrition, in particular stunting, has in this population 

remained unacceptably high; longitudinal data collected between 2000-2012 illustrated that 30% 

of infants remain stunted, 22% underweight and 11% wasted (74).  

Developing interventions to alleviate growth faltering remains a priority research and 

programmatic focus globally. Several large trials have tested prenatal supplementation (reviewed 

in (21)), pre- and postnatal supplementation (508), fortification of infant complementary foods 
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(509, 510) and a combination of all; maternal pre- and postnatal and infant supplementation (511, 

512), but with limited effect. This lack of effect is likely due to the high burden of multiple 

stressors that impact on growth such as the intrauterine environment, infant and young child 

feeding practices, hygiene and sanitation, and infections. In environments where these factors are 

sub-optimal, nutrition interventions alone are unlikely to yield benefit and multiple stressors may 

need to be targeted simultaneously to advance healthy growth (54, 74, 513). Countries that have 

gone through an economic transition and poverty reduction have simultaneously experienced 

rapid declines in stunting prevalence (514), demonstrating that economic development is a key 

underlying determinant of healthy growth (74). 

The consequences of poor growth can further extend to the next generation, as maternal short 

stature is associated with offspring stunting (4, 5), increasing the risk of an intergenerational cycle 

of stunting (3). In addition, there is expanding evidence supporting the concept that infant growth 

is modified by an epigenetically imprinted history of the privious generations’ nutritional 

exposure (515-517). In rural Gambia, the seasonally-driven alterations in food availability expose 

unborn children to in utero energy and nutrient restriction and this has been shown to impact on 

several generation’s growth (76). This highlights the importance of an in utero environment free 

from nutritional stressors in order to achieve healthy growth of future generations. It further 

supports the argument that high-intensity, multifaceted interventions across multiple generations 

are needed to overcome growth faltering in these settings. 

The role of breast milk micronutrients in infant growth has, to some degree, been neglected until 

recently. No intervention study or trial has, to date, examined the effect of a maternal postnatal 

supplement on breast milk micronutrient concentrations, with the specific objective to improve 

micronutrient status and infant growth. Some indirect evidence comes from nutrition intervention 

trials, where women are randomised to supplements during pregnancy and lactation. Christian et 

al (2016) (508) supplemented mothers during pregnancy and lactation (to three months 

postpartum) with a multiple micronutrient supplement (15 micronutrients, 1xRDA) in 

Bangladesh. Supplementation led to a higher infant LAZ and lower stunting prevalence through 

three months of age, compared to the control group (iron-folic acid). In contrast, Dewey et al 

(2017) (512) did not find an effect of a combined maternal pre-and postnatal lipid-based nutrient 

(LNS) supplement (containing 21 micronutrients and 118 kcal daily) on infant growth between 

birth and six months of age. However, neither maternal micronutrient status or breast milk 

micronutrient composition were investigated in either of these trials, making it impossible to 
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determine if the supplement had any effect on breast milk micronutrient concentrations and how 

these concentrations were related to infant growth.   

Within the context of a resource-constrained environment, poor maternal nutritional status 

leading to poor breast milk micronutrient composition may be one of a number of contributing 

factors leading to poor growth in infants and young children. More exploratory research on the 

underlying biological factors is needed in this area to determine causal determinants of the 

observed growth faltering, so that targeted interventions can be more effectively developed and 

implemented. Novel research investigating the impact of maternal pre- and postnatal 

supplementation on breast milk micronutrient composition and, in turn, infant growth, is 

warranted.  

9.2 Breast milk micronutrients  

Micronutrient deficiencies are often referred to as ‘hidden hunger’ as many children suffering 

from vitamin or mineral deficiencies do not show symptoms typically associated with 

malnutrition (518). Nevertheless, suffering from micronutrient deficiencies can have long lasting 

consequences. For example, iodine deficiency during pregnancy and infancy can lead to growth 

retardation and reduced cognitive function in the infant (345), while vitamin B12 deficiency is 

linked to neurological, motor and cognitive impairment (398). The combined effect of multiple 

deficiencies, which is highly likely as several micronutrients are found in the same foods, may 

contribute to even worse effects (459). Further, it is possible that there are more subtle 

consequences of moderate deficiencies that are yet to be identified.  

In their 2002 evaluation report on the optimal duration of EBF, the WHO concluded that, apart 

from a possible negative effect of EBF to six months on infant iron status in poorly nourished 

populations, “the available evidence is grossly inadequate to assess risk of deficiency in other 

micronutrients” (48). This WHO evaluation has not been updated since and, as highlighted in this 

thesis, studies conducted since this time are insufficient to make any substantive contribution to 

the evidence base, other than reinforcing that maternal undernutrition may be a risk factor for 

poor concentrations of certain micronutrients in breast milk. 

The research presented in this thesis highlights a number of factors contributing to the lack of 

data in this important area. First, breast milk micronutrient concentrations are difficult to 

measure, and only recently have valid, high sensitivity quantification methods been developed. 
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Further, the available data on most micronutrients remain limited, and it is not known what the 

optimal micronutrient concentrations are in breast milk for healthy growth and development of 

the infant. In addition, it is plausible that because milk concentrations of some micronutrients are 

very low in breast milk and are not influenced by maternal status or dietary intake, researchers 

have considered pregnancy as a more important time-period to ensure adequate infant 

micronutrient status than the early postpartum days, limiting the focus on the lactation period. 

Iron offers the best example of this, since milk iron concentrations cannot meet infant iron 

requirements at any stage of lactation (50). Instead, infants are born with an iron endowment 

obtained from maternal stores during pregnancy, which is able to sustain infant iron requirements 

during the period of EBF if maternal stores during pregnancy are adequate (50). This might give 

the impression that maternal status during pregnancy is of more importance than her nutritional 

status during lactation. However, iron is an exception. As described in Sections 6.1, 7.1, and 8.1 

infant postnatal status is, for several micronutrients, dependent on adequate maternal pre- and 

postnatal micronutrient status. 

9.2.1 Maternal nutritional influences on breast milk micronutrients 

Chapter 2 of this thesis highlighted a paucity of comparable data to describe the relationship 

between maternal micronutrient status, dietary intake and breast milk micronutrient composition. 

Most studies included in the systematic review investigated small numbers of women, often from 

non-representative population groups. Further, many studies had poorly-defined collection 

methods and used outdated and likely invalid analytical quantification methods. Nevertheless, in 

the few examples where data is available from different populations for the same micronutrient, 

breast milk concentrations are higly variable, suggesting a key role of maternal nutritional status. 

For example, Figures 41 and 42 show breast milk B-vitamin concentrations at 12 weeks 

postpartum from 13 different populations of unsupplemented women all analysed at the USDA 

Western Human Nutrition Research Centre (data presented in this thesis is included, and the 

remaining data is mostly unpublished). These Figures clearly illustrate the high variability of 

breast milk micronutrient composition across populations, likely because of different maternal 

dietary intakes. It further indicates the importance of taking into account maternal nutritional 

status and intake during lactation, when investigating breast milk micronutrient concentrations. 

These figures also highlight that few populations have breast milk B-vitamin concentrations 

reaching IOM’s average intake (AI) recommendations for infants aged 0-6 months. Even 

populations with assumed adequate dietary intakes (e.g. Davis, California) have concentrations 
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below the AIs for most of the B-vitamins. This suggests that the infant AIs are based on poor 

data and are likely overestimating infant needs.  

 

Figure 41. Breast milk vitamin B12 concentrations according to infant average intake (AI) 
recommendations.  
The percentage AIs are based on median breast milk concentrations from unsupplemented women at 12 weeks 
postpartum. All data were analysed at the USDA Western Human Nutrition Research Centre, California USA. Data 
shared by Dr Lindsay Allen. 

 

Figure 42. Breast milk vitamin B1, B2, B3 and B6 concentrations according to infant average intake (AI) 
recommendations.  
The percentage AIs are based on median breast milk concentrations from unsupplemented women at 12 weeks 
postpartum. All data were analysed at the USDA Western Human Nutrition Research Centre, California USA. Data 
shared by Dr Lindsay Allen. 
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9.2.2 Adequacy of micronutrients in breast milk  

As highlighted in this thesis (Sections 6.5.1, 7.5.1, 8.4.1), prenatal supplementation with multiple 

micronutrients (MMN) had a modest effect on breast milk iodine and riboflavin concentrations, 

but no effect on thiamin, vitamin B6 or vitamin B12. The increase observed in milk concentrations 

of iodine and riboflavin were, however, too low to sustain infant requirements during the period 

of EBF. For iodine, 85% of exclusively breastfed infants from the MMN-supplemented group 

had estimated intakes at 12 weeks of age below the recently developed estimated average 

requirement (EAR) (377). Further, when comparing against breast milk concentrations obtained 

from iodine replete populations (pooled milk concentration from women from China, Croatia and 

Philippines; median 171 ug/l at 2-26 weeks postpartum) (241), the values from this Gambian 

population were low (51-57 μg/l at 8-24 weeks postpartum). For riboflavin, there is currently no 

recommendation for an EAR. However, comparing milk concentrations from the MMN-

supplemented group (265 μg/l at 8 weeks postpartum) to concentrations obtained from a study 

by Ortega et al (1999) (158) of riboflavin replete Spanish women (375 μg/l, at 6 weeks 

postpartum), concentrations appear moderately low.  

No effect of prenatal supplementation was observed on breast milk concentrations of thiamin and 

vitamins B6 and B12 among this Gambian population at any stage of lactation. For all three of 

these B-group vitamins, no EAR for infants (0-6 months) exist, only an AI recommendation 

which is based on poor data. Furthermore, comparable data from both resource-poor and affluent 

populations are limited. The few studies available have a low sample size and often used different 

analytical quantification methods. In comparison to the available data, concentrations of breast 

milk vitamin B12 and B6 were considered low (Sections 7.6 and 8.5), while thiamin appeared to 

be adequate in the first 12 weeks postpartum, however likely not to 24 weeks (Section 8.5). 

Overall breast milk concentrations of iodine, thiamin, riboflavin, vitamin B6 and B12 were 

considered low across the first six months of EBF in this rural Gambian population, even among 

women who received a prenatal supplement containing these micronutrients. However, the lack 

of robust data on breast milk composition of all these micronutrients from well-nourished 

populations makes it difficult to accurately determine the level of inadequacy in this population.  

Despite these concerns, and because of the other known benefits of breastfeeding for both the 

infant and the mother, breast milk is still considered the optimal food for infants during the first 

six months of life. However, this thesis highlights the need for high quality data to inform our 
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knowledge on breast milk concentrations of micronutrients to meet infants’ needs. These data 

would provide a reference which interventions to improve breast milk micronutrient 

concentrations could be assessed against. 

9.2.3 Interventions to improve breast milk micronutrients  

To improve breast milk micronutrient concentrations, interventions should be focused on 

improving maternal status both pre- and postnatally. A prenatal supplement, while effective in 

improving maternal status during pregnancy and infant micronutrient status at birth for some 

micronutrients, is not effective in increasing breast milk concentrations and infant status to 

appropriate levels for the first six months of lactation, as illustrated in this thesis. Despite the 

paucity of the evidence on the effect of maternal postnatal supplementation on breast milk 

composition and infant status, the available data would support that a combination of a pre-and 

postnatal supplementation (175, 176) or a postnatal supplementation alone (148, 159, 227, 395) 

is effective in improving maternal status, breast milk concentrations and infant status during the 

months of EBF. 

In the first few months of life, infants are dependent on nutrient stores acquired by placental 

transfer and, in the case of exclusively breastfed infants, nutrient intake from human milk to 

ensure adequate micronutrient status. Using vitamin B12 as an example, if maternal intake of the 

vitamin during pregnancy is adequate, infants are born with adequate liver storage (440, 441), 

which can maintain infant B12 status in the first few months of life. However, as reported (Section 

7.1), these stores become depleted, and breast milk vitamin B12 is then needed to sustain infant 

status across the entire duration of EBF. In situations of maternal deficiency, milk supplies are 

likely to be inadequate to match this demand, especially if the initial endowment to the infant’s 

liver stores are low, as a consequence of maternal prenatal deficiency. This emphasises the 

importance of ensuring adequate maternal nutritional status both pre- and postnatally.  

To ensure adequate postnatal supply of micronutrients to the infant, it has been suggested that 

indirect supplementation via the mother may be preferable over direct supplementation to the 

infant. In a recent RCT of iodine supplementation in Morocco, maternal postpartum 

supplementation was shown to be superior in improving infant iodine status and postpartum 

growth, compared to direct supplementation to the infant (227). The authors discussed that this 

reflect the more natural route of ensuring optimal intake of iodine to infants, with breastfeeding 

providing iodine in a constant and regulated supply. In addition to optimising infant status, 
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indirect supplementation via the mother would also offer benefit to maternal iodine status and 

encourage the maintenance of EBF for longer durations.    

In populations at high risk of micronutrient deficiency, improving maternal status both pre- and 

postnatally would help improve breast milk micronutrient status, and offer short and longer-term 

benefit to both mother and infant.  

9.3 Strengths and limitations 

The research presented in this thesis used data and samples from a completed randomised trial in 

rural Gambia (the ENID Trial) (305). An important strength of ENID to meet the objectives of 

this thesis was that women and their infants were followed longitudinally from early pregnancy, 

through lactation and until the children reached two years of age. This allowed a direct 

investigation of the effect of supplementation on maternal status, breast milk concentrations and 

infant status, across two equally important periods for healthy growth and development, and in a 

population at high risk of nutritional deficiency. The data presented in this thesis enhance existing 

knowledge, especially since much of the existing evidence comes from cross-sectional studies, 

or from studies that focus on discrete periods during pregnancy or lactation. 

The use of a randomised, controlled design in the ENID trial is an important strength for the 

hypotheses tested, as this design is considered the gold standard of epidemiological studies, and 

provides strong evidence of causal relationships (519). Participants in ENID were successfully 

randomised to each trial arm, which along with the successful blinding and allocation 

concealment, minimised selection bias and confounding (519). This implies that the relationships 

analysed in the last three Chapters of this thesis, between prenatal supplementation and maternal 

status, breast milk composition and infant status, can be considered causal. However, a limitation 

is that the research objectives included in this thesis are secondary, as the initial study was not 

designed with these specific objectives in mind.  

The infant growth data presented in Chapter 5 were analysed longitudinally using complex 

multilevel models, which is the optimal analytical method to apply when analysing longitudinal 

growth data (71). However, in this analysis, infant feeding status was used as the exposure 

variable instead of the trial design, and so the results obtained must be considered as 

observational. Several limitations and biases are linked to an observational study design, with 

confounding as one of the greatest (519). Breastfeeding status and growth outcomes are 
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especially prone to be confounded by social pattern, and even though the results in this thesis 

were adjusted for socio economic variables (i.e. maternal education), the results may still be 

affected by residual confounding.  

Reverse causality is another important bias that observational studies cannot avoid (519). Growth 

and breastfeeding are dynamic processes influencing each other, and with an observational study 

design it is not possible to determine the temporal sequence. In the results presented in this thesis, 

evidence was found to suggest that poor infant growth determined cessation of EBF, rather than 

the reverse. However, and because of the ethical implications of randomising infants to either 

breastfeeding or formula feeding, it is unlikely that future work will be able to fully address this 

question.  

The sample size included in this thesis was large, with power to detect reasonable differences in 

breast milk composition between the two study arms (Section 4.2), and in infant growth 

according to breastfeeding practices. In the analysis of breastfeeding practices and growth, the 

high proportion of infants who remained exclusively breastfed to six months enabled a robust 

analysis within the limits of the sample size available. Few other settings would have enough 

women maintaining EBF to six months to allow this analysis within a cohort of this size, as the 

sample size in the EBF group would be too small for any meaningful analysis.  

A limitation of embedding these research questions within ENID is that the intervention of focus 

was a multiple micronutrient, and not a trial of the individual micronutrients studied (iodine, 

thiamin, riboflavin, vitamin B6 or vitamin B12). The results obtained could therefore be influenced 

by known or unknown interactions between micronutrients. For instance, it is known that, besides 

iodine, selenium also plays an essential role in thyroid hormone metabolism (520). The extent of 

any such interactions are not possible to discern. Further, the use of a multiple micronutrient 

precluded the study of any potential effects of, for example, iodine or vitamin B12 on infant 

functional outcomes, such as growth or cognitive development.  

The ENID trial was not set up a priori to investigate dose effects of maternal micronutrients 

given during pregnancy in this rural Gambian setting. The UNIMMAP supplementation, which 

is 1xRDA of 15 micronutrients, was developed and formulated in 1999 by UNICEF, WHO and 

United Nations University for use in pregnancy in populations at risk of multiple micronutrient 

deficiencies, and to potentially replace the recommended iron-folic acid supplement (306). In 

ENID it was decided to supplement with 2xRDA, as this dose increased birth weight by 177 g 

compared to 1xRDA in infants born to women from Guinea-Bissau (307). It is therefore of note 
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that, even at intakes of 2xRDA in ENID, this level of supplementation was not sufficient to 

increase maternal status to acceptable levels for almost all micronutrients investigated. For 

example, maternal urinary iodine concentration (UIC) in late pregnancy in the MMN-

supplemented group was below the UIC cut-off for adequate iodine intake. This could reflect 

that, either, the dose given was too low to ensure sufficiency in these women, or that the 

intervention period was too short to re-build depleted iodine stores. It is possible that the use of 

a standard formulation of multiple micronutrients, instead of a supplement tailored to meet the 

needs of the individual micronutrients investigated in this thesis, impacted on the results obtained. 

Future studies should incorporate a specific focus on dose effects when investigating breast milk 

micronutrients. 

Another potential limitation relates to the method of milk collection. Within ENID, samples were 

not obtained from a full breast expression, and collection was not standardised according to the 

infant’s last feed, which is advised when investigating breast milk composition (88). Instead, a 

hand-expressed 5 ml sample was obtained from each breast and the collection was only 

standardised to a specific time of day (between 9 and 11 am). Thus, the breast milk samples 

analysed in this thesis most likely had a higher content of foremilk than hindmilk, which is not 

representative of usual milk content. This could have implications for the measured breast milk 

iodine concentrations (226), however this would unlikely have had any impact on the overall trial 

results.  

One final limitation was that breast milk volume was not collected in ENID. It is well known that 

there is a large between-infant variation in daily breast milk intakes, for example ranging from 

450 to 1300 ml/day in healthy infants across the first six months of EBF (99). However, the 

impact of this variation on breast milk concentration of micronutrients is not fully understood. 

Adding this information into the current analysis would have strengthened the data obtained, and 

increased our understanding of the relationship between milk volume and breast milk 

micronutrient concentrations.  
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9.4 Future work 

The research in this thesis has identified that there is limited valid data available on breast milk 

micronutrient composition during the first six months of lactation when breast milk is 

recommended as the infant’s only source of nutrients. This is especially true for populations from 

resource-constrained settings, where many women are at risk from micronutrient deficiencies. 

More research in this area would help ensure interventions were appropriately developed and 

targeted to ensure infants can be exclusively breastfed to six months, without placing them at risk 

of micronutrient deficiency.  

A more robust evidence base on breast milk micronutrient concentrations from well-nourished 

populations would further enable the development of infant EAR recommendations where this 

information is currently lacking. For the B-vitamins investigated in this thesis, only an AI is 

available. The AIs are based on limited data from studies with small sample sizes. Invalid 

quantification methods were in most occasions used, and maternal intake or status of the 

micronutrient were not considered. A longitudinal study with the objective to develop valid 

reference values for micronutrient concentrations in breast milk and use these values to develop 

EAR recommendations for infants between 0-6 months, is urgently needed. This research need 

will be met by a recently initiated longitudinal cohort study (ttrial registration number: 

NCT03254329) (521), The MILW (Mothers, Infants and Lactation Quality) study will follow 

healthy unsupplemented mothers from four countries (Denmark, Brazil, Bangladesh and The 

Gambia) with adequate micronutrient status across the first 8.5 months of lactation. The overall 

objective of this study is to develop reference values for breast milk micronutrient concentrations 

across lactation and relate it to maternal and infant nutritional status and infant functional 

outcomes. These data will allow a reference against which low breast milk micronutrient 

concentrations can be identified. This will make it possible to intervene with postnatal 

supplementation where needed and thereby prevent both maternal and infant micronutrient 

deficiencies during the lactation period. 

The data presented from the ENID trial in this thesis represents one of the few examples of a 

study specifically investigating the effect of a prenatal micronutrient supplement on breast milk 

micronutrient composition during the first six months of lactation. More data exists from trials 

of postnatal supplementation, or trials examining the combined effect of pre- and postnatal 

supplementation. However, there is a lack of data from studies conducted in resource-poor 

countries. Work to extend the results obtained in this thesis should focus on dose response trials, 
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examining interventions during both pregnancy and lactation with the aim of establishing the 

optimal dose required to ensure adequate breast milk micronutrient status in micronutrient 

deficient populations, such as rural Gambia. 

Such a study could further highlight how suitable the universal UNIMMAP supplement is with 

its predefined content and dose, compared to a context-specific supplement, where the content 

and dose of the supplement are based on specific needs of the population. A universal multiple 

micronutrient supplement, such as UNIMMAP, is unlikely to be the most effective solution, 

specifically as a woman’s pre-pregnancy micronutrient status and dietary intake prior to and 

during pregnancy most likely plays a significant role in how she responds to different doses of a 

micronutrient supplement. 

There is a need for pregnancy and lactation specific cut-offs for deficiency, especially of the B-

vitamins, where more work is urgently needed. The cut-off for maternal plasma vitamin B12 and 

B6 status is currently the same for women of reproductive age, pregnant and lactating women, 

even though large physiological changes occur during these periods. The cut-offs for infant 

deficiency is also poor for all the micronutrients in focus in this thesis. There is, for instance, no 

international endorsed cut-off or reference values for infant serum thyroglobulin concentration, 

which needs to be both age-appropriate and method-specific (371). The same is the case for infant 

plasma vitamin B12 concentrations where currently adult cut-offs are used for infants, which is 

not recommended (434).  

Finally, further research should focus specifically on the relationship between breast milk 

micronutrient status and infant growth and development. There is a possibility that poor maternal 

nutritional status and intake of important micronutrients during lactation play a role in infant 

growth faltering in The Gambia, however it is unlikely the only cause. Many trials continue to 

provide conflicting conclusions about the effectiveness of different interventions to improve 

growth in resource-poor settings and, if any positive effect is seen, the magnitude continues to be 

moderate. Undoubtedly, more attention needs to be paid to the underlying biological factors and 

mechanisms that may be involved in growth faltering.   
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9.5 Conclusion 

In conclusion, this thesis expands current knowledge around maternal nutrition during pregnancy 

and lactation, breast milk micronutrients and infant nutritional status and growth in a rural 

Gambian population where food availability and nutritional status are poor. Infant growth faltered 

in this population despite high EBF rates, and EBF to six month did not impact infant weight, 

length or z-scores in the first two years of life. Maternal nutritional status and dietary intake 

influenced several breast milk micronutrients, which in a resource-poor setting, such as The 

Gambia, is likely to have detrimental implications for infant health. A prenatal multiple 

micronutrient supplementation improved maternal micronutrient status during pregnancy and 

infant status in the immediate neonatal period. However, a prenatal supplement was not sufficient 

in increasing breast milk micronutrient concentrations to appropriate levels across the period of 

EBF, suggesting the need for additional maternal supplementation during lactation. The content 

and dose of any future recommended pre- and postnatal supplement for use in micronutrient 

deficient contexts requires further study. Future supplementation needs to be population specific, 

such that maternal status and food availability are taken into consideration. This thesis further 

supports the continued promotion of EBF for six months in rural Gambia, to benefit the health of 

both mothers and children.  
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FORM MC11 - [Ver. 03] Printed on: 11/04/2013 07:30 AM

Name: #Name? Date of Birth: #Name?

Mother: #Name?

Village: #Name? Compound: #Name?

Father: #Name?

Baby's WKNO: #Name? Infant ID: #Name?

Date of Visit: |__|__|/|__|__|/|__|__|__|__|

Has it been decided to withdraw the baby from study? Yes No

If yes, what is the reason?

Date of Withdrawal: |__|__|/|__|__|/|__|__|__|__|

Mother/Guardian Decision Moved Away Died Other: _______________________________________

Comments:  

Sex: #Name?

Visited by: __________________________________

Has the infant been sick in the past 7 days? Yes No

Infant Morbidity

If yes, please complete the table below:

Diarrhoea (>2 loose stools/day)

Cough

Rapid breathing

Fever

Other, Specify)..............................................

YES

 

 

 

 

NO

 

 

 

 

Number of 
Days [0 - 7]

 

 

 

 

 

Health facility visited and/or
Treatment taken (details)

 

 

 

 

 

Vomiting (not associated with feeding)     

IF THE BABY IS CURRENTLY SICK AND REQUIRES URGENT MEDICAL ATTENTION, PLEASE INFORM THE 
STUDY MIDWIFE OR TREKKING NURSE ON CALL.

Age (Weeks): #Name? Form Number:

Infant Weekly Morbidity Form



FORM MC11 - [Ver. 03] Printed on: 11/04/2013 07:30 AM

1. Are you currently breastfeeding your infant? Yes No

2. In the past 7 days, have you given your infant anything other than breast milk? Yes No

If no, the questions are completed. If yes, please proceed to Question 3.

3. What other foods/drinks have been given, in the past 7 days

Once > Once Most days NeverWater

Once > Once Most days NeverGlucose water

Once > Once Most days NeverCows milk

Once > Once Most days NeverPowdered milk

Once > Once Most days NeverTinned milk

Once > Once Most days NeverTea

Once > Once Most days NeverOther liquids

Drinks

Semi-solids

Mono/Jidiyo (circle type)

Once > Once Most days Never
Sanyo/mani/kinti/findi/tubanyo/
dukala/Tiakere churo/sunno

Once > Once Most days Never
Pre-prepared weaning foods (e.g. 
Cerelac, Nuturelle etc)

Comments

Once > Once Most days Never

Once > Once Most days Never

Once > Once Most days Never

Once > Once Most days Never

Solids (mother to list)

...............................................................

...............................................................

...............................................................

...............................................................

Breastfeeding questionnaire

Once > Once Most days Never

Once > Once Most days Never

Once > Once Most days Never

Once > Once Most days Never

Other (details:

...............................................................

...............................................................

...............................................................

...............................................................

Expected date of submission: 25/04/2013



Appendix 2. Model equations 

Model equation for Berkey reed growth model: 

 

Weightij/lengthij  = β0j + β1jageij + β2jlnageij + β3invageij + β4sexj + β5sexj*ageij + β6sexj*lnageij  

+ β7sexj*invageij + β8FPj + β9FPj* ageij + β10FPj*lnageij + β11FPj*invageij + β12sin1ij + β13cos1ij + 

β14sin2ij +  β15cos2ij + β16sin1ij*ageij + β17cos1ij*ageij + β18sin2ij*ageij +     β19cos2ij*ageij + 

β20m_heightj + β21m_bmij + β22GAj + β23parityj + β24villagej + β25morbidityij + eij 

          β0j  = β0 + μ0j                                            

          β1j = β1 + μ1j 

          β2j = β2 + μ2j 

 

 

 

 

 

 

 

Model equation for restricted cubic spline (4 knots): 

 

          Z-scoreij  =  β0j + β1jrs1ij + β2jrs2ij + β3rs3ij + β4sexj + β5sexj*rs1ij + β6sexj*rs2ij +    

                              β7sexj*rs3ij + β8FPj + β9FPj*rs1ij + β10FPj*rs2ij + β11FPj*rs3ij + β12sin1ij +     

                              β13cos1ij + β14sin2ij + β15cos2ij + β16m_heightj + β17m_bmij + β18GAj +        

                              β19parityj + β20villagej + β21morbidityij + eij 

        β0j = β0 + μ0j  

        β1j = β1 + μ1j 

        β2j = β2 + μ2j 

 

 

 

 

 

 

lnage= ln(age+1) 

invage=(1/(age+1)) – 1 

rs1, rs2, rs3 = restricted cubic spline functions produced in stata with the command: mkspline rs  

= age , cubic nknots(4) displayknots. (4 knots; 0.008, 0.389, 0.797 and 1.993 years)  

FP = feeding practice (EBF-6 or nEBF-6) 

sin1= sin(1*2*π*toy) 

cos1= cos(1*2*π*toy) 

sin2= sin(2*2*π*toy) 

cos2= cos(2*2*π*toy), toy= time of year when infant anthropometric measurements were 

taken. 

m_height = maternal height 

m_bmi= maternal BMI 

GA = gestational age at birth 

morbidity = infant morbidity (experienced in the past week) 

Z-scoreij is the z-score of the infant j at occasion i. β0j is the intercept and β1j and β2j are regression 

coefficients. β0j, β1j and β2j have mixed effects that comprise a sample average fixed effect (β) 

and a subject specific random effect (uj), and eij is the residual error. In the two models above, 

         (

μ
0j 

μ
1j

μ
2j

) ~ N{(
0
0
0

) ,  (

𝜎𝜇0
2 . .

𝜎𝜇01 𝜎𝜇1
2 .

𝜎𝜇02 𝜎𝜇12 𝜎𝜇2
2

)}      

         (

μ
0j 

μ
1j

μ
2j

) ~ N{(
0
0
0

) ,  (

𝜎𝜇0
2 . .
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2 .

𝜎𝜇02 𝜎𝜇12 𝜎𝜇2
2

)}     

𝑒𝑖𝑗  ~ 𝑁 (0, 𝜎𝑒
2) 

𝑒𝑖𝑗  ~ 𝑁 (0, 𝜎𝑒
2) 



the fixed effects together describe the sample average curve and the random effects are individual 

departures from the intercept and slope of that curve. The formula therefore describes the growth 

curve of every infant. Because each model parameter takes different values for each infant, each 

parameter demonstrates variance and there is covariance between parameters. The underlying 

variance-covariance structure of these data is described by the matrix above. Where, 𝜎𝜇0 
2  𝜎𝜇1

2  

𝜎𝜇2
2  are the variances of the three random effects and 𝜎𝜇01 𝜎𝜇12 𝜎𝜇02 are the co-variances between 

the random effects. μ0j  μ1j μ2j are assumed to follow a multivariate normal distribution, the eij to 

be normally distributed and μ0j  μ1j μ2j are assumed to be independent of eij. 

  



Appendix 3. Linear regression of WLZ and EBF to six months 

 

           WLZ, weight-for-length z-score; BMI, body mass index; EBF, exclusive breastfeeding. 

   

Table 1. Crude and adjusted regressions of infant WLZ at birth and EBF to six months 

Association  coefficient p-value 

Crude association between infant birth WLZ and EBF to six months -0.1926 0.02 

Association adjusted for maternal age -0.1956 0.02 

Association adjusted for maternal weight at baseline -0.1977 0.02 

Association adjusted for maternal height -0.1847 0.02 

Association adjusted for maternal BMI -0.1914 0.02 

Association adjusted for maternal education  -0.1969 0.02 

Association adjusted for maternal prenatal supplementation -0.1991   0.02 

Association adjusted for parity -0.1971   0.02 

Association adjusted for gestational age at birth -0.1853 0.03 

Association adjusted for infant sex -0.1931 0.02 

Association adjusted for infant season of birth -0.1958 0.02 

Association adjusted for infant diarrhoea incidence -0.1928 0.02 

Association adjusted for infant morbidity incidence -0.1902 0.02 



Appendix 4. Abstracts, presentations and awards 

Abstracts and presentations 

March 2015: Oral presentation at the MRC International Nutrition Group (ING) annual 

meeting in Keneba, The Gambia. Presentation: How does maternal 

nutritional status and dietary intake influence breast milk concentration? 

November 2015:  Abstract and oral presentation at the 9th World Congress on Developmental 

Origins of Health and Disease (DOHaD) in Cape Town, South Africa. 

Abstract title: The impact of exclusive breastfeeding on growth in rural 

Gambian infants: Data from the ENID trial. 

March 2016:  Abstract and poster presentation at the 18th International Society for 

Research in Human Milk and Lactation (ISRHML) conference in 

Stellenbosch, South Africa. Abstract title: Benefits and determinants of 

exclusive breastfeeding in a rural West African setting: Data from the ENID 

trial. 

April 2016:  Oral presentation at the MRC ING annual meeting in Keneba, The Gambia. 

Presentation: Multiple micronutrient supplementation in rural Gambian 

women: impact on micronutrient breast milk concentration and nutritional 

status. 

October 2016: Abstract and oral presentation at the Micronutrient Forum Global 

Conference in Cancun, Mexico (invited speaker). Abstract title: Effects of 

maternal micronutrient supplementation on breast milk micronutrients in 

the Gambia – Focus on iodine, B1, B2, B6 and B12. 

October 2017:  Abstract and poster presentation at the IUNS-ICN 21st International 

Congress of Nutrition in Buenos Aires, Argentina. Abstract title: Maternal, 

breast milk and infant vitamin B12 status in rural Gambia. 

 

Awards 

November 2015:      Society for the Study of Human Biology Travel Award (£750) 

March 2016:       ISRHML Trainee Travel Award (US$1000) 

August 2016:  MRC Doctoral Training Partnership Flexible Supplement. Skills and 

Partnership Training Funding 2016 (£5000). Went to ETH Zurich in 

Switzerland for two months (August and September 2016) to analyse 

ENID infant and maternal thyroglobulin concentrations with guidance 

from Dr Maria Andersson and Professor Michael Zimmermann  
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