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Abstract

We construct the compatible system of l-adic representations associated to a regular
algebraic cuspidal automorphic representation of GLn over a CM (or totally real) field
and check local–global compatibility for the l-adic representation away from l and a
finite number of rational primes above which the CM field or the automorphic
representation ramifies. The main innovation is that we impose no self-duality
hypothesis on the automorphic representation.
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Introduction
Our main theorem is as follows (see Corollary 7.14).
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Theorem A Let p denote a rational prime and let ı : Qp
∼→ C. Suppose that E is a CM

(or totally real) field and that π is a cuspidal automorphic representation of GLn(AE) such
that π∞ has the same infinitesimal character as an irreducible algebraic representation
ρπ of RSEQGLn. Then there is a unique continuous semi-simple representation

rp,ı(π ) : GE −→ GLn(Qp)

such that, if q �= p is a rational prime above which π is unramified and if v|q is a prime of
E, then rp,ı(π ) is unramified at v and

rp,ı(π )|ssWEv
= ı−1 recEv

(
πv| det |(1−n)/2

v

)
.

Here recEv denotes the local Langlands correspondence for Ev . It may be possible to
extend the local–global compatibility to other primes v. Ila Varma is considering this
question.
The key point is that we make no self-duality assumption on π . In the presence of

such a self-duality assumption (‘polarizability’, see [9]) the existence of rp,ı(π ) has been
known for some years (see [18,51]). In almost all polarizable cases rp,ı(π ) is realized in
the cohomology of a Shimura variety, and in all polarizable cases rp,ı(π )⊗2 is realized in
the cohomology of a Shimura variety (see [16]). In contrast, according to unpublished
computations of one of us (M.H.) and of Laurent Clozel, in the non-polarizable case the
representation rp,ı(π ) will never occur in the Betti or etale cohomology of a Shimura
variety. Rather we construct it as a p-adic limit of representations which do occur in such
cohomology groups.
We sketch our argument. We may easily reduce to the case of an imaginary CM field

F which contains an imaginary quadratic field in which p splits. For all sufficiently large
integersN , we construct a 2n-dimensional representation Rp(ı−1(π || det ||N )∞) such that
for good primes v we have

Rp
(
ı−1 (π || det ||N )∞

)
|ssWFv

∼= ı−1 recFv
(
πv| det |N+(1−n)/2

v
)
⊕ ı−1 recFv

(
πv| det |N+(1−n)/2

v
)∨,c

ε1−2n
p ,

as a p-adic limit of (presumably irreducible) p-adic representations associated to polar-
izable, regular algebraic cuspidal automorphic representations of GL2n(AF ). It is then
elementary algebra to reconstruct rp,ı(π ).
We work on the quasi-split unitary similitude groupGn associated to F2n. Note thatGn

has a maximal parabolic subgroup P+n,(n) with Levi component

Ln,(n) ∼= GL1 × RSFQGLn.

(We will give all these groups integral structures.) We set

Π (N ) = IndGn(A∞,p)
P+n,(n)(A∞,p)

(
1× ı−1

(
π || det ||N

)∞,p)
.

Then our strategy is to realizeΠ (N ), for sufficiently largeN , in a space of overconvergent
p-adic cusp forms for Gn of finite slope. Once we have done this, we can use an argument
of Katz (see [35]) to find congruences modulo arbitrarily high powers of p to classical
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(holomorphic) cusp formsonGn (of otherweights). (Alternatively it is presumablypossible
to construct an eigenvariety in this setting, butwehavenot carried this out.)One canattach
Galois representations to these classical cusp forms by using the trace formula to lift them
to polarizable, regular algebraic, discrete automorphic representations of GL2n(AF ) (see,
e.g., [52]) and then applying the results of Chenevier and Harris [18], Shin [51].
We learnt the idea that one might try to realize Π (N ) in a space of overconvergent

p-adic cusp forms for Gn (of finite slope) from Chris Skinner. The key problem was how
to achieve such a realization. To sketch our approach we must first establish some more
notation.
To a neat open compact subgroup U of Gn we can associate a Shimura variety

Xn,U/SpecQ. It is a moduli space for abelian n[F : Q]-folds with an isogeny action of
F and certain additional structures. It is not proper. It has a canonical normal compacti-
fication Xmin

n,U and, to certain auxiliary data Δ, one can attach a smooth compactification
Xn,U,Δ which naturally lies over Xmin

n,U and whose boundary is a simple normal crossings
divisor. To a representationρ ofLn,(n) (overQ) one can attach a locally free sheafEU,ρ/Xn,U
together with a canonical (locally free) extension EU,Δ,ρ to Xn,U,Δ, whose global sections
are holomorphic automorphic forms onGn ‘of weight ρ and levelU ’. (The space of global
sections does not depend onΔ.) The product of EU,Δ,ρ with the ideal sheaf of the bound-
ary of Xn,U,Δ, which we denote E sub

U,Δ,ρ , is again locally free, and its global sections are
holomorphic cusp forms on Gn ‘of weight ρ and level U ’ (and again the space of global
sections does not depend on Δ).
To the schemes Xn,U , Xmin

n,U and Xn,U,Δ one can naturally attach dagger spaces X†n,U ,
Xmin,†
n,U and X†n,U,Δ in the sense of Grosse-Klönne [27]. These are like rigid analytic spaces

except that one consistently works with overconvergent sections. If U is the product of
a neat open compact subgroup of Gn(A∞,p) and a suitable open compact subgroup of
Gn(Qp), then one can define admissible open subdagger spaces (‘the ordinary loci’)

Xord,†
n,U ⊂ X†n,U

and

Xord,min,†
n,U ⊂ Xmin,†

n,U

and

Xord,†
n,U,Δ ⊂ X†n,U,Δ.

By an overconvergent cusp form of weight ρ and levelU one means a section of E sub
U,ρ over

Xord,†
n,U,Δ. (Again this definition does not depend on the choice of Δ.)
We write G(m)

n for the semi-direct product of Gn with the additive group with Q-points
HomF (Fm, F2n), and P(m),+

n,(n) for the pre-image of P+n,(n) in G(m)
n . We also write L(m)

n,(n) for the
semi-direct product of Ln,(n) with the additive group with Q-points HomF (Fm, Fn), which
is naturally a quotient of P(m),+

n,(n) . (Again we will give these groups integral structures.) To
a neat open compact subgroup U ⊂ G(m)

n (A∞) with projection U ′ in Gn(A∞) one can
attach a (relatively smooth, projective) Kuga–Sato variety A(m)

n,U/Xn,U ′ . For a cofinal set of
U it is an abelian scheme isogenous to the m-fold self-product of the universal abelian
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scheme over Xn,U ′ . To certain auxiliary dataΣ one can attach a smooth compactification
A(m)
n,U,Σ ofA(m)

n,U whose boundary is a simple normal crossings divisor; which lies over Xmin
n,U ;

and which, for suitable Σ depending on Δ, lies over Xn,U ′ ,Δ. Thus

A(m)
n,U ↪→ A(m)

n,U,Σ
↓ ↓

Xn,U ′ ↪→ Xn,U ′ ,Δ
|| ↓

Xn,U ′ ↪→ Xmin
n,U ′ .

We define A(m),ord,†
n,U and A(m),ord,†

n,U,Σ to be the pre-image of Xord,min,†
n,U ′ in the dagger spaces

associated to A(m)
n,U and A(m)

n,U,Σ .
We will define

Hi
c−∂

(
A(m),ord
n,U ,Qp

)

to be the hypercohomology of the complex on A(m),ord,†
n,U,Σ which is the tensor product of

the de Rham complex with log poles towards the boundary, A(m),ord,†
n,U,Σ − A(m),ord,†

n,U , and
the ideal sheaf defining the boundary. We believe it is a sort of rigid cohomology of the
ordinary locus A(m),ord

n,U in the special fibre of an integral model of A(m)
n,U ; more specifically,

cohomology with compact support towards the toroidal boundary, but not towards the
non-ordinary locus, hence our notation. However we have not bothered to verify that this
group only depends on ordinary locus in the special fibre. The theory of Shimura varieties
provides us with sufficiently canonical lifts that this will not matter to us. Our proof that
forN sufficiently largeΠ (N ) occurs in the space of overconvergent p-adic cusp forms for
Gn proceeds by evaluating Hi

c−∂ (A
(m),ord
n,U ,Qp) in two ways.

Firstly we use the usual Hodge spectral sequence. The higher direct images from A(m)
n,U,Σ

to Xn,U ′ ,Δ of the tensor product of the ideal sheaf of the boundary and the sheaf of
differentials of any degree with log poles along the boundary, are canonically filtered with
graded pieces sheaves of the form E sub

U ′ ,Δ,ρ . Thus H
i
c−∂ (A

(m),ord
n,U ,Qp) can be computed in

terms of the groups

Hj
(
Xord,†
n,U,Δ, E sub

U,Δ,ρ

)
.

A crucial observation for us is that for j > 0 this group vanishes (see Theorem 5.4 and
Proposition 6.12). This observation seems to have been made independently, at about the
same time, by Andreatta, Iovita and Pilloni (see [1,2]). It seems quite surprising to us. It
is false if one replaces E sub

U,Δ,ρ with Ecan
U,Δ,ρ . Its proof depends on a number of apparently

unrelated facts, including:

• Xord,min,†
n,U is affinoid.

• The stabilizer in GLn(OF ) of a positive definite hermitian n× nmatrix over F is finite.
• Certain line bundles on self-products A of the universal abelian scheme over Xn′ ,U ′ (for

n′ < n) are relatively ample for A/Xn′ ,U ′ .

This observation implies that Hi
c−∂ (A

(m),ord
n,U ,Qp) can be computed by a complex whose

terms are spaces of overconvergent cusp forms. Hence it suffices for us to show that, for
N sufficiently large, Π (N ) occurs in
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Hi
c−∂

(
A(m),ord
n ,Qp

)
= lim→U,Σ

Hi
c−∂

(
A(m),ord
n,U ,Qp

)

for somem and i (depending on N ).
To achieve this we use a second spectral sequence which computes the cohomology

group Hi
c−∂ (A

(m),ord
n,U ,Qp) in terms of the rigid cohomology of A(m),ord

n,U,Σ and its various
boundary strata. See Sect. 6.5. This is an analogue of the spectral sequence

Ei,j
1 = Hj(Y (i),C) ⇒ Hi+j

c (Y − ∂Y,C),

where Y is a proper smooth variety over C, where ∂Y is a simple normal crossings divi-
sor on Y , and where Y (i) is the disjoint union of the i-fold intersections of irreducible
components of ∂Y . (So Y (0) = Y .) Some of the terms in this spectral sequence seem a
priori to be hard to control, e.g. Hi

rig(A
(m),ord
n,U,Σ ). However employing theorems about rigid

cohomology due to Berthelot and Chiarellotto, we see that the eigenvalues of Frobenius
on Hi

c−∂ (A
(m),ord
n,U,Σ ,Qp) are all Weil pj-numbers for j ≥ 0. Moreover the weight 0 part,

W0Hi
c−∂ (A

(m),ord
n,U ,Qp), equals the cohomology of a complex only involving the rigid coho-

mology in degree 0 ofA(m),ord
n,U and its various boundary strata. (See Proposition 6.24.) This

should have a purely combinatorial description. More precisely we define a simplicial
complex S(∂A(m),ord

n,U,Σ ) whose vertices correspond to boundary components of A(m),ord
n,U,Σ and

whose j-faces correspond to j-boundary components with non-trivial intersection. For
i > 0 we obtain an isomorphism

Hi
(∣∣∣S
(
∂A(m),ord

n,U,Σ

)∣∣∣ ,Qp

) ∼= W0Hi+1
c−∂

(
A(m),ord
n,U ,Qp

)
.

Thus it suffices to show that for N sufficiently large Π (N ) occurs in

Hi
(∣∣∣S
(
∂A(m),ord

n

)∣∣∣ ,Qp

)
= lim→U,Σ

Hi
(∣∣∣S
(
∂A(m),ord

n,U,Σ

)∣∣∣ ,Qp

)

for somem and some i > 0 (possibly depending on N ).
The boundary of A(m),ord

n,U,Σ comes in pieces indexed by the conjugacy classes of maximal
parabolic subgroups of Gn. We shall be interested in the union of the irreducible compo-
nents which are associated to P+n,(n). These correspond to an open subset |S(∂A(m),ord

n,U,Σ )|=n

of |S(∂A(m),ord
n,U,Σ )|. As |S(∂A(m),ord

n,U,Σ )| is compact, the interior cohomology

Hi
Int

(∣∣∣S
(
∂A(m),ord

n

)∣∣∣=n
,Qp

)
= lim→U,Σ

Hi
Int

(∣∣∣S
(
∂A(m),ord

n,U,Σ

)∣∣∣=n
,Qp

)

is naturally a subquotient of Hi(|S(∂A(m),ord
n )|,Qp). (By interior cohomology we mean

the image of the cohomology with compact support in the cohomology. The interior
cohomology of an open subset of an ambient compact Hausdorff space is naturally a
subquotient of the cohomology of that ambient space.) Thus it even suffices to show that
for N sufficiently large Π (N ) occurs in

Hi
Int

(∣∣∣S
(
∂A(m),ord

n

)∣∣∣=n
,Qp

)

for somem and some i > 0 (possibly depending on N ).
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However the data Σ are a G(m)
n (Q)-invariant (glued) collection of polyhedral cone

decompositions and S(∂A(m),ord
n ) is obtained from Σ by replacing 1-cones by vertices,

2-cones by edges, etc. The cones corresponding to |S(∂A(m),ord
n )|=n are a disjoint union of

polyhedral cones in the space of positive definite hermitian forms on Fn. From this one
obtains an equality
∣∣∣S
(
∂A(m),ord

n

)∣∣∣=n
=

∐

h∈P+n,(n)(A∞,p)\Gn(A∞,p)/Up

T
(m)
(n),hUh−1∩P(m),+

n,(n) (A∞)
,

where

T
(m)
(n),U ′ = L(m)

n,(n)(Q)
∖
L(m)
n,(n)(A)

/
U ′ (R×

>0 ×
(
U (n)[F

+:Q]R×
>0

))
,

with U (n) denoting the usual n× n compact unitary group. We deduce that

Hi
Int

(∣∣∣S
(
∂A(m),ord

n

)∣∣∣=n
,Qp

)
= IndGn(A∞,p)

P+n,(n)(A∞,p)H
i
Int

(
T
(m)
(n) ,Qp

)Z×
p ,

where

Hi
Int

(
T
(m)
(n) ,Qp

)
= lim

→U ′ H
i
Int

(
T
(m)
(n),U ′ ,Qp

)

as U ′ runs over neat open compact subgroups of L(m)
n,(n)(A

∞). (The Z×
p -invariants result

from a restriction on the open compact subgroups of Gn(A∞) that we are consid-
ering.) Thus it suffices to show that for all sufficiently large N , the representation
1×(π || det ||N )∞,p occurs inHi

Int(T
(m)
(n) ,C) for some i > 0 and somem (possibly depending

on N ).
We will write simply T(n),U ′ for T(0)

(n),U ′ , a locally symmetric space associated to Ln,(n) ∼=
GL1 × RSFQGLn. If ρ is a representation of Ln,(n) over C, then it gives rise to a locally
constant sheaf Lρ,U ′ over T(n),U ′ . We set

Hi
Int
(
T(n),Lρ

) = lim
→U ′ H

i
Int
(
T(n),U ′ ,Lρ,U ′

)
,

a smooth Ln,(n)(A∞)-module. The space T(m)
(n),U ′ is an (S1)nm[F :Q]-bundle over the locally

symmetric space T(0)
(n),U ′ and if π (m) denotes the fibre map then

Rjπ (m)∗ C ∼= L∧jHomF (Fm,Fn)∨⊗QC,U ′ ,

where Ln,(n) acts onHomF (Fm, Fn) via projection to RSFQGLn. Moreover the Leray spectral
sequence

Ei,j
2 = Hi

Int

(
T(n),L∧jHomF (Fm,Fn)∨⊗QC

)
⇒ Hi+j

Int

(
T
(m)
(n) ,C
)

degenerates at the second page. (This can be seen by considering the action of the centre
of Ln,(n)(A∞).) Thus it suffices to show that for all sufficiently large N , we can find non-
negative integers j and m and an irreducible constituent ρ of ∧jHomF (Fm, Fn)∨ ⊗Q C

such that the representation 1× (π || det ||N )∞,p occurs inHi
Int(T(n),Lρ) for some i ∈ Z>0.
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Clozel [20] checked that (for n > 1) this will be the case as long as 1×(π || det ||N )∞ has the
same infinitesimal character as some irreducible constituent of ∧jHomF (Fm, Fn) ⊗Q C,
i.e. if ρπ ⊗ (NF/Q ◦ det)N occurs in ∧jHomF (Fm, Fn)⊗Q C. FromWeyl’s construction of
the irreducible representations ofGLn, for large enoughN this will indeed be the case for
somem and j.
We remark it is essential to work with N sufficiently large. It is not an artefact of

the fact that we are working with Kuga–Sato varieties rather than local systems on the
Shimura variety. We can twist a local system on the Shimura variety by a power of the
multiplier character ofGn. However the restriction of themultiplier factor ofGn toLn,(n) ∼=
GL1 × RSFQGLn factors through the GL1-factor and does not involve the RSFQGLn factor.
We learnt from the series of papers [30–32] the key observation that |S(∂A(m)

n,U,Σ )| has
a nice geometric interpretation involving the locally symmetric space for Ln,(n) and that
this could be used to calculate cohomology.
Although the central argument we have sketched above is not long, this paper has

unfortunately become very long. If we had only wanted to construct rp,ı(π ) for all but
finitely many primes p, then the argument would have been significantly shorter as we
could have worked only with Shimura varieties Xn,U which have good integral models
at p. The fact that we want to construct rp,ı(π ) for all p adds considerable technical
complications and also requires appeal to the recent work [44]. (Otherwise we would only
need to appeal to [41,42].)
Another reason this paper has grown in length is the desire to use a language to describe

toroidal compactifications of mixed Shimura varieties that is different from the language
used in [41,42,44]. We do this because at least one of us (R.T.) finds this language clearer.
In any case it would be necessary to establish a substantial amount of notation regarding
toroidal compactifications of Shimura varieties, which would require significant space.
We hope that the length of the paper, and the technicalities with which we have to
deal, won’t obscure the main line of the argument. On a first reading the reader might
like to start with “Appendix A”, which summarizes the extensive notation we use, and
then turn to Sects. (5 and) 6 and 7. These sections will provide reference back to the
key results from earlier sections. We have added “Appendix B” to help comparison
between the notation of this paper and the notation of [41,42,44], which we hope will
make life easier for those readers that want to follow-up on our many references to these
papers.
After we announced these results, but while we were writing up this paper, Scholze

found another proof of Theorem A, relying on his theory of perfectoid spaces. His argu-
ments seem to be in many ways more robust. For instance, he can handle torsion in
the cohomology of the locally symmetric varieties associated to GLn over a CM field.
Scholze’s methods have some similarities with ours. Both methods first realize the Hecke
eigenvalues of interest in the cohomology with compact support of the open Shimura
variety by an analysis of the boundary and then show that they also occur in some space
of p-adic cusp forms. We work with the ordinary locus of the Shimura variety, which for
the minimal compactification is affinoid. Scholze works with the whole Shimura variety,
but at infinite level. He (very surprisingly) shows that at infinite level, as a perfectoid
space, (some compactification of) the Shimura variety has a Hecke invariant affinoid
cover.
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Notation

If G →→ H is a surjective group homomorphism and if U is a subgroup of G we will
sometimes use U to also denote the image of U in H .
If f : X → Y and f ′ : Y → Z then we will denote by f ′ ◦ f : X → Z the composite map

f followed by f ′. In this paper we will use both left and right actions. Suppose that G is a
group acting on a set X and that g, h ∈ G. If G acts on X on the left we will write gh for
g ◦ h. If G acts on X on the right we will write hg for g ◦ h.
If f is an automorphism of Hom(X, Y ) we will sometimes use (◦f ) to denote the map

Hom(X, Y ) −→ Hom(X, Y )
h �−→ h ◦ f.

We will sometimes use / to denote a quotient, and sometimes we will use it to denote
the fact that the object to the left lives ‘over’ the object to the right. Both these usages are
standard, and we hope no confusion will arise.
If G is a group (or group scheme) then Z(G) will denote its centre.
We will write Sn for the symmetric group on n letters. We will writeU (n) for the group

of n× n complex matrices h with th(ch) = 1n.
If G is an abelian group we will write G[∞] for the torsion subgroup of G, G[∞p]

for the subgroup of elements of order prime to p, and GTF = G/G[∞]. We will write
TG = lim←N G[N ] and TpG = lim←p � |N G[N ]. We will also write VG = TG ⊗Z Q and
VpG = TpG ⊗Z Q.
If A is a ring, if B is a locally free, finite A-algebra, and if X/SpecB is a quasi-projective

scheme; then we will let RSBAX denote the restriction of scalars (or Weil restriction) of X
from B to A. (See, for instance, section 7.6 of [12].)
By a p-adic formal scheme we mean a formal scheme such that p generates an ideal of

definition.
If X is an A-module and B is an A-algebra, we will sometimes write XB for X ⊗A B. If

X is reflexive over A, then we will also use X to denote the additive group scheme over A
defined by

X(B) = X ⊗A B = XB

for all A-algebras B.
If X is a locally free OF -module we will write GL(X/OF ) for the group scheme over Z

defined by

GL(X/OF )(A) = Aut ((X ⊗Z A) / (OF ⊗Z A)) .

If Y is a scheme and if G1, G2/Y are group schemes then we will let

Hom(G1, G2)

denote the Zariski sheaf on Y whose sections over an openW are

Hom(G1|W ,G2|W ).
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If in addition R is a ring then we will let Hom(G1, G2)R denote the tensor product of
sheavesHom(G1, G2)⊗Z R and we will let Hom(G1, G2)R denote the R-module of global
sections of Hom(G1, G2)R. If Y is noetherian this is the same as Hom(G1, G2) ⊗Z R, but
for a general base Y it may differ.
If S is a simplicial complex we will write |S| for the corresponding topological space.
If F is a field then GF will denote its absolute Galois group. If F is a number field and

F0 ⊂ F is a subfield and S is a finite set of primes of F0, then we will denote by GS
F the

maximal continuous quotient of GF in which all primes of F not lying above an element
of S are unramified.
Suppose that F is a number field and that v is a place of F . If v is finite we will write �v

for a uniformizer in Fv and k(v) for the residue field of v. We will write | |v for the absolute
value on F associated to v and normalized as follows:

• if v is finite then |�v|v = (#k(v))−1;
• if v is real then |x|v = ±x;
• if v is complex then |x|v = cxx.

We write

|| ||F =
∏
v
| |v : A×

F −→ R×
>0.

We will writeD−1
F for the inverse different ofOF .

If w ∈ Z and p is a prime number then by a Weil pw-number we mean an element
α ∈ Qwhich is an integer away from p and such that for each infinite place v ofQwe have
|α|v = pw .
Suppose that v is finite and that

r : GFv −→ GLn(Ql)

is a continuous representation, which in the case v|l we assume to be de Rham. Then we
will write WD(r) for the corresponding Weil–Deligne representation of the Weil group
WFv of Fv (see, for instance, section 1 of [56]). If π is an irreducible smooth representation
of GLn(Fv) over C we will write recFv (π ) for the Weil–Deligne representation of WFv
corresponding to π by the local Langlands conjecture (see, for instance, the introduction
to [29]). If πi is an irreducible smooth representation of GLni (Fv) over C for i = 1, 2 then
there is an irreducible smooth representation π1 � π2 of GLn1+n2 (Fv) over C satisfying

recFv (π1 � π2) = recFv (π1)⊕ recFv (π2).

Suppose thatG is a reductive group over Fv and that P is a parabolic subgroup ofG with
unipotent radicalN andLevi componentL. Suppose also thatπ is a smooth representation
of L(Fv) on a vector spaceWπ over a field Ω of characteristic 0. We will define

IndG(Fv)
P(Fv)π

to be the representationofG(Fv) by right translationon the set of locally constant functions

ϕ : G(Fv) −→ Wπ
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such that

ϕ(hg) = π (h)ϕ(g)

for all h ∈ P(Fv) and g ∈ G(Fv). In the case Ω = C we also define

n-IndG(Fv)
P(Fv)π = IndG(Fv)

P(Fv)

(
π ⊗ δ

1/2
P

)

where

δP(h)1/2 =
∣∣det (ad(h)|LieN )

∣∣1/2
v .

IfG is a linear algebraic group over F then the concept of a neat open compact subgroup
of G(A∞

F ) is defined, for instance, in section 0.6 of [49].

1 Some algebraic groups and automorphic forms
For the rest of this paper fix the following notation. Let F+ be a totally real field and
F0 an imaginary quadratic field, and set F = F0F+. Write c for the non-trivial element
of Gal(F/F+). Also choose a rational prime p which splits in F0 and choose an element
δF ∈ OF,(p) with trF/F+δF = 1 (which is possible as p is unramified in F/F+).
Fix an isomorphism ı : Qp

∼→ C. Fix a choice of√p ∈ Qp by ı
√p > 0. If v is a prime of

F and π an irreducible admissible representation of GLm(Fv) over Qp define

recFv (π ) = ı−1 recFv (ıπ )

a Weil–Deligne representation of WFv over Qp.
Let n be a non-negative integer. We will often attach n as a subscript to other notation,

when we need to record the particular choice of n we are working with, but, at other times
when the choice of n is clear, we may drop it from the notation.

1.1 Three algebraic groups

Write Ψn for the n× n-matrix with 1’s on the anti-diagonal and 0’s elsewhere, and set

Jn =
(

0 Ψn
−Ψn 0

)
∈ GL2n(Z).

Let

Λn =
(
D−1

F

)n ⊕On
F ,

and define a perfect pairing

〈 , 〉n : Λn ×Λn −→ Z

by

〈x, y〉n = trF/Q

(txJncy
)
.
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We will write Vn for Λn ⊗ Q. Let Gn denote the group scheme over Z defined by

Gn(R) =
{
(g,μ) ∈ Aut((Λn ⊗Z R)/(OF ⊗Z R))× R× : t gJncg = μJn

}
,

for any ring R, and let ν : Gn → GL1 denote the multiplier character which sends (g,μ)
to μ. Then Gn is a quasi-split connected reductive group scheme over Z[1/DF/Q] (where
DF/Q denotes the discriminant of F/Q) and splits overOFnc [1/DF/Q] (where Fnc denotes
the normal closure of F/Q). In particular G0 will denote GL1 and ν : G0 → GL1 is the
identity map.
If n > 0 set

Cn = Gm × ker
(
NF/F+ : RSOF

Z Gm −→ RSOF+
Z Gm

)
.

Then there is a natural map

Gn −→ Cn
(g,μ) �−→ (μ,μ−n det g).

If n = 0 we set C0 = Gm and let G0 −→ C0 denote the map ν. In either case this map
identifies Cn with Gn/[Gn,Gn].
We will write Λn,(i) for the submodule of Λn consisting of elements whose last 2n − i

entries are 0, and Vn,(i) for Λn,(i) ⊗ Q. If W is a submodule of Λn we will write W⊥ for
its orthogonal complement with respect to 〈 , 〉n. Thus Λ⊥

n,(i) is the submodule of Λn
consisting of vectors whose last i entries are 0. Also write

Λ(m)
n = Hom

(
Om

F ,Z
)⊕Λn,

and set V (m)
n = Λ

(m)
n ⊗Z Q. Throughout this paper there will be various objects indexed by

a superscript (m). In the case m = 0 we will sometimes simply drop it from the notation.
For example, Λn = Λ

(0)
n .

Define an additive group scheme Hom(m)
n over Z by

Hom(m)
n (R) = HomOF

(
Om

F ,Λn
)⊗Z R.

Then Hom(m)
n has an action of Gn × RSOF

Z GLm given by

(g, h)f = g ◦ f ◦ h−1.

Also define a perfect pairing

〈 , 〉(m)
n : Hom(m)

n (R)×Hom(m)
n (R) −→ R

by

〈
f, f ′
〉(m)
n =

m∑
i=1

〈
fei, f ′ei
〉
n ,

where e1, . . . , em denotes the standard basis ofOm
F . We have

〈
(g, h)f, f ′

〉(m)
n = ν(g)

〈
f,
(
g−1, c,th

)
f ′
〉(m)
n .
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Moreover Gn(R) is identified with the set of pairs

(g,μ) ∈ GL
(
HomOF

(
Om

F ,Λn
)
/OF
)
(R)× R×

such that g commutes with the action of GLm(OF ⊗Z R) and such that

〈gf, gf ′〉(m)
n = μ〈f, f ′〉(m)

n

for all f, f ′ ∈ HomOF (Om
F ,Λn)(R). We set

G(m)
n = Gn � Hom(m)

n .

Then G(m)
n has an action of RSOF

Z GLm by

h(g, f ) = (g, (1, h)f ).

Moreover G(m)
n acts on Λ

(m)
n , by letting f ∈ Hom(m)

n act by

f : (h, x) �−→ (h+ 〈x, f 〉n, x)

and g ∈ Gn act by

g : (h, x) �−→ (h, gx).

Moreover RSOF
Z GLm acts on Λ

(m)
n by

γ : (h, x) �−→ (h ◦ γ−1, x).

We have γ ◦ g = γ (g) ◦ γ .
Ifm1 ≥ m2 we embedOm2

F ↪→ Om1
F via

im2 ,m1 : (x1, . . . , xm2 ) �−→ (x1, . . . , xm2 , 0, . . . , 0).

This gives rise to maps

i∗m2 ,m1 : Hom(m1)
n −→ Hom(m2)

n

and

i∗m2 ,m1 : G
(m1)
n −→ G(m2)

n .

It also gives rise to

i∗m2 ,m1 : Λ
(m1)
n →→ Λ(m2)

n .

Suppose that R is a ring and that X is anOF ⊗Z R-module. We will write HermX for the
R-module of R-bilinear pairings

( , ) : X × X −→ R

which satisfy
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(1) (ax, y) = (x, cay) for all a ∈ OF and x, y ∈ X ;
(2) (x, y) = (y, x) for all x, y ∈ X .

If z ∈ HermX we will sometimes denote the corresponding pairing ( , )z . If S is an
R-algebra we have a natural map

HermX ⊗R S −→ HermX⊗RS.

If X = Om
F ⊗Z R then we will write

Herm(m)(R) = HermOm
F
⊗Z R −→ HermOm

F ⊗ZR.

If X → Y then there is a natural map HermY → HermX . In particular if m1 ≥ m2, then
there is a natural map

Herm(m1) −→ Herm(m2)

induced by themapO(m2)
F ↪→ O(m1)

F described in the last paragraph. The groupGL(X/OF )
acts on the left on HermX by

(x, y)hz = (h−1x, h−1y)z.

There is a natural isomorphism

HermX⊕Y ∼= HermX ⊕HomR
(
X ⊗OF⊗R,c⊗1 Y, R

)⊕HermY ,

under which an element (z, f, w) of the right hand side corresponds to

((x, y), (x′, y′))(z,f,w) = (x, x′)z + f (x ⊗ y′)+ f (x′ ⊗ y)+ (y, y′)w.

If X is anOF ⊗Z R-module, there is a natural pairing

(X ⊗OF⊗R,c⊗1 X)×HermX −→ R
(x ⊗ y, z) �−→ (x, y)z .

We further define

sw : (X ⊗OF⊗R,c⊗1 X) −→ (X ⊗OF⊗R,c⊗1 X)
x ⊗ y �−→ y⊗ x,

and

S(X) = (X ⊗OF⊗R,c⊗1 X)/(sw − 1).

There is a natural map in the other direction

S(X) −→ X ⊗OF⊗R,c⊗1 X
w �−→ w + sw(w),

such that the composite S(X) → X⊗OF⊗R,c⊗1X → S(X) is multiplication by 2. Note that
if F/F+ is ramified above 2 then S(Om

F ) can have 2-torsion, but that S(Om
F,(p)) is torsion
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free. (Either p > 2 or by assumption F/F+ is not ramified above 2.) There is a perfect
duality

S(Om
F )

TF ×Herm(m)(Z) −→ Z.

We will write

e =
m∑
i=1

ei ⊗ ei ∈ Om
F ⊗OF ,c Om

F ,

where e1, . . . , em denotes the standard basis ofOm
F .

Set N (m)
n (Z) to be the set of pairs

(f, z) ∈ HomOF (Om
F ,Λn)⊕

(
1
2
Herm(m)(Z)

)

such that

(x, y)z − 1
2
〈fx, fy〉n ∈ Z

for all x, y ∈ Om
F . We define a group scheme N (m)

n /SpecZ by setting N (m)
n (R) to be the set

of pairs

(f, z) ∈ N (m)
n (Z)⊗Z R

with group law given by

(f, z)(f ′, z′) =
(
f + f ′, z + z′ + 1

2
(〈f , f ′ 〉n − 〈f ′ , f 〉n

))
,

where by 〈f , f ′ 〉n − 〈f ′ , f 〉n we mean the hermitian form

(x, y) �−→ 〈f (x), f ′(y)〉n − 〈f ′(x), f (y)〉n.

Note that (f, z)−1 = (−f,−z). Thus there is an exact sequence

(0) −→ Herm(m) −→ N (m)
n −→ Hom(m)

n −→ (0).

In fact, Z(N (m)
n ) = Herm(m). The commutator in N (m)

n induces an alternating map

Hom(m)
n (R)×Hom(m)

n (R) −→ Herm(m)(R)

under which (f, f ′) maps to the pairing

(x, y) �−→ 〈f (x), f ′(y)〉n −
〈
f ′(x), f (y)

〉
n .

Ifm1 ≥ m2 there is a natural map

N (m1)
n −→ N (m2)

n
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compatible with the previously described maps

Hom(m1)
n → Hom(m2)

n

and

Herm(m1) → Herm(m2).

Note that Gn × RSOF
Z GLm acts on N (m)

n from the left by

(g, h)(f, z) = (g ◦ f ◦ h−1, ν(g)hz
)
.

If 2 is invertible in R we see that

Herm(m)(R) =
{
g ∈ N (m)

n (R) : (−1m)(g) = g
}

and

Hom(m)
n (R) =

{
g ∈ N (m)

n (R) : (−1m)(g) = g−1
}
.

Set

G̃(m)
n = Gn � N (m)

n ,

which has an RSOF
Z GLm-action via

h(g, u) = (g, h(u)).

Ifm1 ≥ m2 then we get a natural map G̃(m1)
n → G̃(m2)

n . Note that

G(m)
n

∼= G̃(m)
n /Herm(m).

Let Bn denote the subgroup of Gn consisting of elements which preserve the chain
Λn,(n) ⊃ Λn,(n−1) ⊃ · · · ⊃ Λn,(1) ⊃ Λn,(0) and let Nn denote the normal subgroup of
Bn consisting of elements with ν = 1, which also act trivially on Λn,(i)/Λn,(i−1) for all
i = 1, . . . , n. Let Tn denote the group consisting of the diagonal elements of Gn and let
An denote the image of Gm in Gn via the embedding that sends t onto t12n. Over Q we
see that Tn is a maximal torus in a Borel subgroup Bn of Gn and that Nn is the unipotent
radical of Bn. Moreover An is a maximal split torus in the centre of Gn.
If Ω is an algebraically closed field of characteristic 0 then set

X∗(Tn,/Ω ) = Hom (Tn × SpecΩ ,Gm × SpecΩ) .

Also let Φn ⊂ X∗(Tn,/Ω ) denote the set of roots of Tn on LieGn; let Φ+
n ⊂ Φn denote the

set of positive roots with respect to Bn and letΔn ⊂ Φ+
n denote the set of simple positive

roots. We will write �n for half the sum of the elements of Φ+
n . If R ⊂ R is a subring

then X∗(Tn,/Ω )+R will denote the subset of X∗(Tn,/Ω )R consisting of elements which pair
non-negatively with the coroot α̌ ∈ X∗(Tn,/Ω ) corresponding to each α ∈ Δn. We will
write simply X∗(Tn,/Ω )+ for X∗(Tn,/Ω )+Z . If λ ∈ X∗(Tn,/Ω )+ we will let ρn,λ (or simply ρλ)
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denote the irreducible representation of Gn with highest weight λ. When ρλ is used as a
subscript we will sometimes replace it by just λ.
There is a natural identification

Gn × SpecΩ ∼=
{
(μ, gτ ) ∈ Gm × GLHom(F,Ω)

2n : gτc = μJntg−1
τ Jn ∀τ

}
.

This gives rise to the further identification

Tn × SpecΩ ∼=
{
(t0, (tτ ,i)) ∈ Gm × (G2n

m
)Hom(F,Ω) : tτ ,itτc,2n+1−i = t0 ∀τ , i

}
.

We will use this to identify X∗(Tn,/Ω ) with a quotient of

X∗ (Gm × (G2n
m
)Hom(F,Ω)) ∼= Z ⊕ (Z2n)Hom(F,Ω).

Under this identification X∗(Tn,/Ω )+ is identified to the image of the set of

(a0, (aτ ,i)) ∈ Z ⊕ (Z2n)Hom(F,Ω)

with

aτ ,1 ≥ aτ ,2 ≥ · · · ≥ aτ ,2n

for all τ .
If R is a subring of R and H an algebraic subgroup of G̃(m)

n we will write H (R)+ for
the subgroup ofH (R) consisting of elements with positive multiplier. ThusGn(R)+ (resp.
G(m)
n (R)+, resp. G̃(m)

n (R)+) is the connected component of the identity in Gn(R) (resp.
G(m)
n (R), resp. G̃(m)

n (R)).
Let

Un,∞ = (U (n)2)Hom(F+ ,R) � {1, j}

with j2 = 1 and j(Aτ , Bτ )j = (Bτ , Aτ ). Embed Un,∞ in Gn(R) by sending (Aτ , Bτ ) ∈
(U (n)2)Hom(F+ ,R) to
(
1,
((

(Aτ + Bτ )/2 (Aτ − Bτ )Ψn/2i
Ψn(Bτ − Aτ )/2i Ψn(Aτ + Bτ )Ψn/2

))

τ

)

∈ Gn(R) ⊂ R× ×∏τ∈Hom(F+ ,R)GL2n(F ⊗F+ ,τ R),

and sending j to
(
−1,
((

−1n 0
0 1n

))

τ

)
.

(This map depends on identifications F ⊗F+ ,τ R ∼= C, but the image of the map does not,
and this image is all that will concern us.) Then Un,∞ is a maximal compact subgroup
of Gn(R) (and even of G̃(m)

n (R)). If L ⊃ Tn × SpecR is a Levi component of a parabolic
subgroup P ⊃ Bn × SpecR then Un,∞ ∩ L(R) is a maximal compact subgroup of L(R).
The connected component of the identity of Un,∞ is U0

n,∞ = Un,∞ ∩ Gn(R)+.
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We will write pn for the set of elements of LieGn(R) of the form
⎛
⎝0,
((

Aτ BτΨn
ΨnBτ ΨnAτΨn

))

τ∈Hom(F+ ,R)

⎞
⎠ ,

where c,tAτ = Aτ and c,tBτ = Bτ for all τ . Then

LieGn(R) = pn ⊕ Lie (Un,∞An(R)).

We give the real vector space pn a complex structure by letting i act by

i0 : (Aτ , Bτ )τ∈Hom(F+ ,R) �−→ (Bτ ,−Aτ )τ∈Hom(F+ ,R).

We decompose

pn ⊗R C = p+n ⊕ p−n

by setting

p±n = (pn ⊗R C)i0⊗1=±1⊗i.

We also set

qn = p−n ⊕ Lie (Un,∞An(R))⊗R C.

It is a parabolic subalgebra of (LieGn(R))⊗R C with unipotent radical p−n and Levi com-
ponent Lie (Un,∞An(R))⊗R C. We will write Qn for the parabolic subgroup of Gn ×Q C

with Lie algebra qn. Note that

Qn(C) ∩ Gn(R) = U0
n,∞An(R)0.

LetH+
n (resp.H±

n ) denote the set of I inGn(R) withmultiplier 1 such that I2 = −12n and
such that the symmetric bilinear form 〈I , 〉n onΛn⊗Z R is positive definite (respectively
positive or negative definite). Then Gn(R) (resp. Gn(R)+) acts transitively on H±

n (resp.
H+
n ) by conjugation. Moreover Jn ∈ H+

n has stabilizer U0
n,∞An(R)0 and so we get an

identification of H±
n (resp. H+

n ) with Gn(R)/U0
n,∞An(R)0 (resp. Gn(R)+/U0

n,∞An(R)0).
The natural map

H±
n = Gn(R)

/
U0
n,∞An(R)0 ↪→ Gn(C)/Qn(C)

is an open embedding and gives H±
n the structure of a complex manifold. The action of

Gn(R) is holomorphic, and the complex structure induced on the tangent space TJnH
±
n
∼=

pn is the complex structure described in the previous paragraph.
If ρ is a finite dimensional algebraic representation of Qn on a C-vector space Wρ ,

then there is a holomorphic vector bundle Eρ/H
±
n together with a holomorphic action of

Gn(R), defined as the pull-back to H± of (Gn(C)×Wρ)/Qn(C), where

• h ∈ Qn(C) sends (g, w) to (gh, h−1w),
• and where h ∈ Gn(R) sends [(g, w)] to [(hg, w)].



Harris et al. Res Math Sci (2016) 3:37 Page 19 of 308

If N2 ≥ N1 ≥ 0 are integers we will write Up(N1, N2)n for the subgroup of Gn(Zp)
consisting of elements whose reduction modulo pN2 preserves

Λn,(n) ⊗Z

(
Z/pN2Z

)
⊂ Λn ⊗Z

(
Z/pN2Z

)

and acts trivially on Λn/(Λn,(n) + pN1Λn). If N2 ≥ N1 ≥ N ′
1 ≥ 0 then Up(N1, N2)n is a

normal subgroup of Up(N ′
1, N2)n and

Up(N ′
1, N2)n/Up(N1, N2)n ∼= ker

(
GLn
(
OF/pN1

)
→ GLn

(
OF/pN

′
1
))

.

We will also set

Up(N1, N2)(m)
n = Up(N1, N2)n � HomOF,p

(
Om

F,p,Λn,(n) + pN1Λn
)

⊂ G(m)
n (Zp)

and set Ũp(N1, N2)(m)
n to be the pre-image ofUp(N1, N2)(m)

n in G̃(m)
n (Zp). Pictorially we can

think of Up(N1, N2)n as
(
μ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)

and of Up(N1, N2)(m)
n as

(
μ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)(
∗

0 mod pN1

)

IfUp is an open compact subgroup ofGn(A∞,p) (resp. ofG(m)
n (A∞,p), resp. of G̃(m)

n (A∞,p))
we will set Up(N1, N2) to be Up × Up(N1, N2)n (resp. Up × Up(N1, N2)(m)

n , resp. Up ×
Ũp(N1, N2)(m)

n ), a compact open subgroup of Gn(A∞) (resp. G(m)
n (A∞), resp. G̃(m)

n (A∞)).

1.2 Maximal parabolic subgroups

We will write P+n,(i) (resp. P
(m),+
n,(i) , resp. P̃(m),+

n,(i) ) for the subgroup of Gn (resp. G(m)
n , resp.

G̃(m)
n ) consisting of elements which (after projection to Gn) take Λn,(i) to itself. We will

also write N+
n,(i) (resp. N

(m),+
n,(i) , resp. Ñ (m),+

n,(i) ) for the subgroups of P+n,(i) (resp. P
(m),+
n,(i) , resp.

P̃(m),+
n,(i) ) consisting of elements which act trivially on Λn,(i) and Λ⊥

n,(i)/Λn,(i) and Λn/Λ⊥
n,(i).

Over Q the groups P+n,(i) (resp. P
(m),+
n,(i) , resp. P̃(m),+

n,(i) ) are maximal parabolic subgroups of
Gn (resp.G(m)

n , resp. G̃(m)
n ) containing the pre-image of Bn. The groupsN+

n,(i) (resp.N
(m),+
n,(i) ,

resp. Ñ (m),+
n,(i) ) are their unipotent radicals.

In some instances it will be useful to replace these groups by their ‘hermitian part’. We
will write Pn,(i) for the normal subgroup of P+n,(i) consisting of elements which act trivially
on Λn/Λ⊥

n,(i). We will also write P(m)
n,(i) for the normal subgroup

Pn,(i) � HomOF

(
Om

F ,Λ
⊥
n,(i)

)

of P(m),+
n,(i) , and P̃(m)

n,(i) for the pre-image of P(m)
n,(i) in P̃(m),+

n,(i) . We will let

Nn,(i) = N+
n,(i)
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and

N (m)
n,(i) = N (m),+

n,(i) ∩ P(m)
n,(i)

and

Ñ (m)
n,(i) = Ñ (m),+

n,(i) ∩ P̃(m)
n,(i).

Over Q these are the unipotent radicals of Pn,(i) (resp. P
(m)
n,(i), resp. P̃

(m)
n,(i)).

Pictorially one can think of P+n,(i) and Pn,(i) as matrices of the following shapes
⎛
⎜⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞
⎟⎠

and ⎛
⎜⎝

ν(g)1i ∗ ∗
0 g ∗
0 0 1i

⎞
⎟⎠

respectively. If we picture an element of G(m)
n as a pair of matrices

⎛
⎜⎝

⎞
⎟⎠

⎛
⎜⎝

⎞
⎟⎠

(the first 2n×2n and the second 2n×m) then we can picture P(m),+
n,(i) and P(m)

n,(i) as consisting
of matrices of the shape
⎛
⎜⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞
⎟⎠

⎛
⎜⎝
∗
∗
∗

⎞
⎟⎠

and ⎛
⎜⎝

ν(g)1i ∗ ∗
0 g ∗
0 0 1i

⎞
⎟⎠

⎛
⎜⎝
∗
∗
0

⎞
⎟⎠

respectively.
We have an isomorphism

Pn,(i) ∼= G̃(i)
n−i.

To describe it let Λ′
n,(i) denote the subspace of Λn consisting of vectors with their first

2n− i entries 0, so that

Λ′
n,(i)

∼= Oi
F

and

Λn−i ∼= Λ⊥
n,(i) ∩
(
Λ′

n,(i)

)⊥ ∼−→ Λ⊥
n,(i)

/
Λn,(i).
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We define

Gn−i ↪→ Pn,(i)

by letting g ∈ Gn−i act as ν(g) onΛn,(i), as g onΛn−i ∼= Λ⊥
n,(i) ∩ (Λ′

n,(i))
⊥ and as 1 onΛ′

n,(i),
i.e.

g �−→
⎛
⎜⎝

ν(g)1i 0 0
0 g 0
0 0 1i

⎞
⎟⎠ ∈ Pn,(i).

We define

Nn,(i) −→ Hom(i)
n−i

by sending h to the map

Oi
F
∼= Λ′

n,(i)
h−12n−→ Λ⊥

n,(i) →→ Λn−i.

We also define

Z(Nn,(i))
∼−→ HermΛ′

n,(i)
∼= Herm(i)

by sending z to the pairing

(x, y)z =
〈
(z − 12n)x, y

〉
n

on Λ′
n,(i). In the other direction (f, z) ∈ N (i)

n−i is mapped to

⎛
⎜⎝
1i Ψi c,t f Jn−i Ψit

(
z − 1

2
t f Jn−i cf

)
0 12(n−i) f
0 0 1i

⎞
⎟⎠ ∈ Nn,(i),

where we think of f ∈ M2(n−i)×i(F ) with first n− i rows in (D−1
F )i and second (n− i) rows

inOi
F , and we think of z ∈ Mi×i(F )t=c .

We also have isomorphisms

P(m)
n,(i)

∼= G̃(i+m)
n−i

/
Herm(m)

and

P̃(m)
n,(i)

∼= G̃(i+m)
n−i .

We will describe the second of these isomorphisms. Suppose f ∈ Hom(i)
n−i and g ∈

Hom(m)
n−i. Also suppose that z ∈ 1

2Herm(i) and w ∈ 1
2Herm(m) and

u ∈ 1
2
Hom
(
Oi

F ⊗OF ,c Om
F ,Z
)
,
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so that

((f, g), (z, u, w)) ∈ N (i+m)
n−i .

Let h(f, z) denote the element of Pn,(i) corresponding to (f, z) ∈ Nn,(i). Think of g as a map

g : Om
F −→ Λn−i ∼= Λ⊥

n,(i) ∩
(
Λ′

n,(i)

)⊥ ⊂ Λn.

Define j(f, g, u) ∈ Hom(Om
F ,Λn,(i)) by

〈y, j(f, g, u)(x)〉n = 1/2〈f (y), g(x)〉n−i − u(y⊗ x)

for all x ∈ Om
F and y ∈ Λ′

n,(i)
∼= Oi

F . Then

((f, g), (z, u, w)) �−→ h(f, z)(g + j(f, g, u), w) ∈ Nn,(i) � Ñ (m)
n .

Note that

Z
(
Ñ (m)
n,(i)

) ∼= Herm(i+m)

and that

Z
(
N (m)
n,(i)

) ∼= Herm(i+m)/Herm(m).

Write Ln,(i),lin for the subgroup of P+n,(i) consisting of elements with ν = 1which preserve
Λ′

n,(i) ⊂ Λn and act trivially on Λ⊥
n,(i)/Λn,(i). We set N (L(m)

n,(i),lin) to be the additive group
scheme over Z associated to

HomOF

(
Om

F ,Λ
′
n,(i)

)
,

and write L(m)
n,(i),lin for

Ln,(i),lin � N
(
L(m)
n,(i),lin

)
⊂ P(m),+

n,(i)

and L̃(m)
n,(i),lin for

Ln,(i),lin � N
(
L(m)
n,(i),lin

)
⊂ P̃(m),+

n,(i) .

Note that

P+n,(i) = Ln,(i),lin � Pn,(i)

and

P(m),+
n,(i) = L(m)

n,(i),lin � P(m)
n,(i)

and

P̃(m),+
n,(i) = L̃(m)

n,(i),lin � P̃(m)
n,(i).
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Also note that

Ln,(i),lin ∼= RSOF
Z GLi

via its action on Λ′
n,(i)

∼= Oi
F , and that

L̃(m)
n,(i),lin

∼−→ L(m)
n,(i),lin

∼=
(
RSOF

Z GLi
)

� HomOF

(
Om

F ,Oi
F

)
.

Pictorially we can think of Ln,(i),lin as consisting of matrices of the form

⎛
⎜⎝

Ψi c,th−1 Ψn 0 0
0 12(n−i) 0
0 0 h

⎞
⎟⎠

and L(m)
n,(i),lin as consisting of matrices of the form
⎛
⎜⎝

Ψi c,th−1 Ψn 0 0
0 12(n−i) 0
0 0 h

⎞
⎟⎠

⎛
⎜⎝
0
0
∗

⎞
⎟⎠ .

We let Ln,(i),herm denote the subgroup of Pn,(i) consisting of elements which preserve
Λ′

n,(i). Thus

Ln,(i),herm ∼= Gn−i.

In particular

ν : Ln,(n),herm
∼−→ Gm.

Pictorially we can think of Ln,(i),herm as consisting of matrices of the form

⎛
⎜⎝

ν(g)1i 0 0
0 g 0
0 0 1i

⎞
⎟⎠ .

Over Q it is a Levi component for Pn,(i) and P(m)
n,(i) and P̃(m)

n,(i), so in particular

Pn,(i) = Ln,(i),herm � Nn,(i)

and

P(m)
n,(i) = Ln,(i),herm � N (m)

n,(i)

and

P̃(m)
n,(i) = Ln,(i),herm � Ñ (m)

n,(i).

We also set

Ln,(i) = Ln,(i),herm × Ln,(i),lin
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and

L(m)
n,(i) = Ln,(i),herm × L(m)

n,(i),lin

and

L̃(m)
n,(i) = Ln,(i),herm × L̃(m)

n,(i),lin.

Over Q we see that Ln,(i) is a Levi component for each of P+n,(i) and P(m),+
n,(i) and P̃(m),+

n,(i) .
Moreover

P+n,(i) = Ln,(i) � Nn,(i)

and

P(m),+
n,(i) = L(m)

n,(i) � N (m)
n,(i)

and

P̃(m),+
n,(i) = L̃(m)

n,(i) � Ñ (m)
n,(i).

Wewill occasionallywriteP(m),−
n,(i) (resp.L−n,(i),herm) for the kernel of themapP(m)

n,(i) → Cn−i
(resp. Ln,(i),herm → Cn−i).
We will write Rn,(n),(i) for the subgroup of Ln,(n) mapping Λn,(i) to itself. We will write

N (Rn,(n),(i)) for the subgroup of Rn,(n),(i) which acts trivially on Λn,(i) and Λ⊥
n,(i)/Λn,(i) and

Λn/Λ⊥
n,(i).

We will also write R(m)
n,(n) for the semi-direct product

Ln,(n) � HomOF

(
Om

F ,Λn,(n)
)
.

If m′ ≤ m we will fix Zm →→ Zm−m′ to be projection onto the last m −m′ coordinates
and define Qm,(m′) for the subgroup of GLm consisting of elements preserving the kernel
of this map. We also define Q′

m,(m′) to be the subgroup of Qm,(m′) consisting of elements
which induce 1

Zm−m′ on Zm−m′ . Thus there is an exact sequence

(0) −→ Hom
(
Zm−m′

,Zm′) −→ Q′
m,(m′) −→ GLm′ −→ {1}.

Moreover

L̃(m)
n,(i),lin

∼= L(m)
n,(i),lin

∼= RSOF
Z Q′

m+i,(i).

Wewill also write An,(i),lin (resp. An,(i),herm) for the image of the map from Gm to Ln,(i),lin
(resp. Ln,(i),herm) sending t to t1i (resp. (t2, t12(n−i))). Moreover write An,(i) for An,(i),lin ×
An,(i),herm. OverQ the groupAn,(i) (resp.An,(i),lin, resp.An,(i),herm) is themaximal split torus
in the centre of Ln,(i) (resp. Ln,(i),lin, resp. Ln,(i),herm).
Again suppose that Ω is an algebraically closed field of characteristic 0. Let Φ(n) ⊂ Φn

denote the set of roots of Tn on Lie Ln,(n), and setΦ+
(n) = Φ+

n ∩Φ(n) andΔ(n) = Δn ∩Φ(n).
We will write �n,(n) for half the sum of the elements of Φ+

(n). If R ⊂ R then X∗(Tn,/Ω )+(n),R
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will denote the subset of X∗(Tn,/Ω )R consisting of elements which pair non-negatively
with the coroot α̌ ∈ X∗(Tn,/Ω ) corresponding to each α ∈ Δ(n). We write X∗(Tn,/Ω )+(n) for
X∗(Tn,/Ω )+(n),Z. If λ ∈ X∗(Tn,/Ω )+(n) we will let ρ(n),λ denote the irreducible representation
of Ln,(n) with highest weight λ.When ρ(n),λ is used as a subscript we will sometimes replace
it by just (n), λ.
Note that LiePn,(n)(C) and qn are conjugate under Gn(C) and hence we obtain an iden-

tification (‘Cayley transform’) of (LieUn,∞An(R)) ⊗R C and Lie Ln,(n)(C), which is well
defined up to conjugation by Ln,(n)(C). SimilarlyQn andPn,(n)(C) are conjugate inGn×QC.
Thus Ln,(n)(C) can be identified with Qn modulo its unipotent radical, canonically up to
Ln,(n)(C)-conjugation. Thus if ρ is a finite dimensional algebraic representation of Ln,(n)
over C, we can associate to it a representation ofQn and of qn, and hence a holomorphic
vector bundle Eρ/H

±
n with Gn(R)-action.

The isomorphism Ln,(n) ∼= GL1 × RSOF
Z GLn gives rise to a natural identification

Ln,(n) × SpecΩ ∼= GL1 × GLHom(F,Ω)
n ,

and hence to identifications

Tn × SpecΩ ∼= GL1 ×
(
GLn1
)Hom(F,Ω)

and

X∗(Tn,/Ω ) ∼= Z ⊕ (Zn)Hom(F,Ω).

Under this identification X∗(Tn,/Ω )+(n) is identified to the set of

(b0, (bτ ,i)) ∈ Z ⊕ (Zn)Hom(F,Ω)

with

bτ ,1 ≥ bτ ,2 ≥ · · · ≥ bτ ,n

for all τ .
To compare this parametrization of X∗(Tn,/Ω ) with the one introduced in Sect. 1.1 note

that the map

GL1 × GLHom(F,Ω)
n ↪→

{
(μ, gτ ) ∈ Gm × GLHom(F,Ω)

2n : gτc = μJntg−1
τ Jn ∀τ

}

coming from Ln,(n) ↪→ Gn sends

(μ, (gτ )τ∈Hom(F,Ω)) �−→
⎛
⎝μ,
((

μΨntg−1
τc Ψn 0
0 gτ

))

τ∈Hom(F,Ω)

⎞
⎠ .

Thus the map

Z ⊕ (Z2n)Hom(F,Ω) →→ X∗(Tn,/Ω ) ∼= Z ⊕ (Zn)Hom(F,Ω)
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sends

(
a0, (aτ ,i)τ∈Hom(F,Ω);i=1,...,2n

) �−→
⎛
⎝a0 +
∑
τ

n∑
j=1

aτ ,j , (aτ ,n+i − aτc,n+1−i)τ ,i

⎞
⎠ .

A section is provided by the map

(b0, (bτ ,i)) �−→
(
b0, (0, . . . , 0, bτ ,1, . . . , bτ ,n)τ

)
.

In particular we see that X∗(Tn,/Ω )+ ⊂ X∗(Tn,/Ω )+(n) is identified with the set of

(b0, (bτ ,i)) ∈ Z ⊕ (Zn)Hom(F,Ω)

with

bτ ,1 ≥ bτ ,2 ≥ · · · ≥ bτ ,n

and

bτ ,1 + bτc,1 ≤ 0

for all τ .
Note that

2(�n − �n,(n)) =
(
n2[F+ : Q], (−n)τ ,i

)
.

We write Std for the representation of Ln,(n) on Λn/Λn,(n) over Z, and if τ : F ↪→ Q we
write Stdτ for the representation of Ln,(n) on (Λn/Λn,(n))⊗OF ,τ OQ. IfΩ is an algebraically
closed field of characteristic 0 and if τ : F ↪→ Ω we will sometimes write Stdτ for the
representation of Ln,(n) on (Λn/Λn,(n))⊗OF ,τ Ω . We hope that context will make clear the
distinction between these two slightly different meaning of Stdτ . We also let KS denote
the representation

S(Std∨)⊗ ν

of Ln,(n) over Z. (See Sect. 1.1.) Note that over Q the representation Std∨τ is irreducible
and in our normalizations has highest weight (0, bτ ′ ) where

bτ = (0, . . . , 0,−1)

but bτ ′ = 0 for τ ′ �= τ . Similarly the representation∧n[F :Q]Std∨ is irreducible with highest
weight

(0, (−1, . . . ,−1)τ ).

Finally KS is the direct sum of the [F+ : Q] irreducible representations indexed by τ ∈
Hom(F+,Q) with highest weights (1, bτ ′ ), where

bτ ′ = (0, . . . , 0,−1)
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if τ ′ extends τ , and bτ ′ = 0 otherwise.
We will let ςp ∈ Ln,(n),herm(Qp) ∼= Q×

p denote the unique element with multiplier p−1.
Set

Up(N )n,(i) = ker
(
Ln,(i),lin(Zp) → Ln,(i),lin(Z/pNZ)

)

and

Up(N )(m)
n,(i) = ker

(
L(m)
n,(i),lin(Zp) → L(m)

n,(i),lin(Z/pNZ)
)
.

Also set

Up(N1, N2)(m)
n,(i) = Up(N1, N2)n−i ×Up(N1)(m)

n,(i) ⊂ L(m)
n,(i)(Zp)

and

Ũp(N1, N2)(m),+
n,(i) = Up(N1)(m)

n,(i) � Ũp(N1, N2)(m+i)
n−i ⊂ P̃(m),+

n,(i) (Zp)

and

Up(N1, N2)(m),+
n,(i) = Ũp(N1, N2)(m),+

n,(i)

/
HermOm

F,p
⊂ P(m),+

n,(i) (Zp).

LetUp be anopen compact subgroupofLn,(i)(A∞,p) (resp.L(m)
n,(i),lin(A

∞,p), resp.L(m)
n,(i)(A

∞,p),

resp. (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞,p), resp. P(m),+

n,(i) (A∞,p), resp. P̃(m),+
n,(i) (A∞,p)). Then set

Up(N1, N2) = Up ×Up(N1, N2)n,(i) ⊂ Ln,(i)(A∞)

(resp.

Up(N ) = Up ×Up(N )n,(i),

resp.

Up(N1, N2) = Up ×Up(N1, N2)(m)
n,(i) ⊂ L(m)

n,(i)(A
∞),

resp.

Up(N1, N2) = Up ×
(
Up(N1, N2)(m),+

n,(i)

/
Z
(
N (m)
n,(i)

)
(Zp)
)
⊂ P(m),+

n,(i)

/
Z
(
N (m)
n,(i)

)
(A∞),

resp.

Up(N1, N2) = Up ×Up(N1, N2)(m),+
n,(i) ⊂ P(m),+

n,(i) (A∞),

resp.

Up(N1, N2) = Up × Ũp(N1, N2)(m),+
n,(i) ⊂ P̃(m),+

n,(i) (A∞)
)
.

In the case i = n these groups do not depend on N2, so we will write simply Up(N1).
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For the study of the ordinary locus we will need a variant ofGn(A∞) andG(m)
n (A∞) and

G̃(m)
n (A∞). More specifically define a semigroup

G̃(m)
n (A∞)ord = G̃(m)

n (A∞,p)×
(
ς

Z≥0
p P̃(m),+

n,(n) (Zp)
)
.

Its maximal sub-semigroup that is also a group is

G̃(m)
n (A∞)ord,× = G̃(m)

n (A∞,p)× P̃(m),+
n,(n) (Zp).

If H is an algebraic subgroup of G̃(m)
n (over SpecQ) we set

H (A∞)ord = H (A∞) ∩ G̃(m)
n (A∞)ord.

Its maximal sub-semigroup that is also a group is

H (A∞)ord,× = H (A∞) ∩ G̃(m)
n (A∞)ord,×.

Thus

Gn(A∞)ord,× = Gn(A∞,p)× P+n,(n)(Zp)

and

G(m)
n (A∞)ord,× = G(m)

n (A∞,p)× P(m),+
n,(n) (Zp).

If Up is an open compact subgroup of H (A∞,p), we set

Up(N ) = H (A∞)ord,× ∩
(
Up × Ũp(N,N ′)(m),+

n,(n)

)

for any N ′ ≥ N . The group does not depend on the choice of N ′.

1.3 Base change

We will write BGLm for the subgroup of upper triangular elements of GLm and TGLm for
the subgroup of diagonal elements of BGLm .
We will also let G1

n denote the group scheme overOF+ defined by

G1
n(R) =

{
g ∈ Aut

((
Λn ⊗OF+ R

)/(
OF ⊗OF+ R

))
: t gJncg = Jn

}
.

Thus

ker ν ∼= RSOF+
Z G1

n.

Wewill writeB1
n for the subgroup ofG1

n consisting of upper triangularmatrices andT 1
n for

the subgroup ofB1
n consisting of diagonalmatrices. There is a natural projectionB1

n →→ T 1
n

obtained by setting the off diagonal entries of an element of B1
n to 0.
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Suppose that q is a rational prime. Let u1, . . . , ur denote the primes of F+ above q which
split ui = wicwi in F and let v1, . . . , vs denote the primes of F+ above q which do not split
in F . Then

Gn(Qq) ∼=
r∏

i=1
GL2n(Fwi )×H

where

H =
{
(μ, gi) ∈ Q×

q ×
s∏

i=1
GL2n(Fvi ) :

t giJncgi = μJn ∀i
}
⊃

s∏
i=1

G1
n
(
F+vi
)
.

If Π is an irreducible smooth representation of Gn(Qq) then

Π =
( r⊗

i=1
Πwi

)
⊗ΠH .

We define BC(Π )wi = Πwi and BC(Π )cwi = Π∨,c
wi . Note that this does not depend on the

choice of primes wi|ui. We will say that Π is unramified at wi if BC(Π )GL2n(OF,wi )wi �= (0).
We will say that Π is unramified at vi if vi is unramified in F and

Π
G1
n(OF+ ,vi

) �= (0).

We will say thatΠ is unramified at q ifΠ is unramified at all primes above q and either q
splits in F0 or q is unramified in F .
Suppose that Π is unramified at vi. Then there is a character χ of the quotient

T 1
n (F+vi )/T

1
n (OF+ ,vi ) such thatΠ |G1

n(F
+
vi )

and n-Ind
G1
n(F+vi )

B1n(F
+
vi )

χ share an irreducible subquotient

with a G1
n(OF+ ,vi )-fixed vector. Moreover this character χ is unique modulo the action of

the normalizerNG1
n(F

+
vi )
(T 1

n (F+vi ))/T
1
n (F+vi ). (If π and π ′ are two irreducible subquotients of

ΠH |G1
n(F

+
vi )

then we must have π ′ ∼= π
ς−1
vi where

ςvi =
(
�−1

vi 1n 0
0 1n

)
∈ GL2n(Fvi ).

However
(
n-Ind

G1
n(F+vi )

B1n(F
+
vi )

χ

)ς−1
v ∼= n-Ind

G1
n(F+vi )

B1n(F
+
vi )

χ .
)

Let

N : TGL2n (Fvi ) −→ T 1
n (F+vi )

diag(t1, . . . , t2n) �−→ diag(t1/ct2n, . . . , t2n/ct1).

Then we define BC(Π )vi to be the unique subquotient of

n-IndGL2n(Fvi )BGL2n (Fvi )
(χ ◦N)

with a GL2n(OF,vi )-fixed vector. The next lemma is easy to prove.
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Lemma 1.1 Suppose that ψ ⊗ π is an irreducible smooth representation of

Ln,(n)(Qq) ∼= Ln,(n),herm(Qq)× Ln,(n),lin(Qq) = Q×
q × GLn(Fq).

(1) If v is unramified over F+ and πv is unramified then n-IndGn(Qq)
Pn,(n)(Qq)(ψ ⊗π ) has a sub-

quotientΠ which is unramified at v. Moreover BC(Π )v is the unramified irreducible
subquotient of n-IndGL2n(Fv)Q2n,(n)(Fv)

(π∨,c
v ⊗ πv).

(2) If v is split over F+ and Π is an irreducible subquotient of the normalized
induction n-IndGn(Qq)

Pn,(n)(Qq)(ψ ⊗ π ), then BC(Π )v is an irreducible subquotient of

n-IndGL2n(Fv)Q2n,(n)(Fv)
((πcv)∨,c ⊗ πv).

Note that in both cases BC(Πv) does not depend on ψ .

In this paragraph let K be a number field, m ∈ Z>0, and write UK,∞ for a maximal
compact subgroup of GLm(K∞). We shall (slightly abusively) refer to an admissible

Gn(A∞)× ((LieGn(R))C, Un,∞)

(resp.

Ln,(i)(A∞)× ((Lie Ln,(i)(R)
)
C
, Un,∞ ∩ Ln,(i)(R)

)
,

resp.

GLm
(
A∞
K
)× ((LieGLm(K∞))C, UK,∞))

module as an admissible Gn(A)-module (resp. Ln,(i)(A)-module, resp. GLm(AK )-module).
By a square integrable automorphic representation of Gn(A) (resp. Ln,(i)(A), resp.
GLm(AK )) we shall mean the twist by a character of an irreducible admissible Gn(A)-
module (resp.Ln,(i)(A)-module, resp.GLm(AK )-module) that occurs discretely in the space
of square integrable automorphic forms on the double coset space Gn(Q)\Gn(A)/An(R)0

(respectively Ln,(i)(Q)\Ln,(i)(A)/An,(i)(R)0 orGLm(K )\GLm(AK )/R×
>0). By a cuspidal auto-

morphic representation of Gn(A) (resp. Ln,(i)(A), resp. GLm(AK )) we shall mean an
irreducible admissible Gn(A)-submodule (resp. Ln,(i)(A)-submodule, resp. GLm(AK )-
submodule) of the space of cuspidal automorphic forms on Gn(A) (resp. Ln,(i)(A), resp.
GLm(AK )).

Proposition 1.2 Suppose that Π is a square integrable automorphic representation of
Gn(A) and that Π∞ is cohomological. Then there is an expression

2n = m1n1 + · · · +mrnr

with mi, ni ∈ Z>0 and cuspidal automorphic representations Π̃i of GLmi (AF ) such that

• Π̃∨
i
∼= Π̃ c

i ;
• Π̃i|| det ||(mi+ni−1)/2 is cohomological;
• if v is a prime of F above a rational prime q such that
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• either q splits in F0,
• or F and Π are unramified above q,

then

BC(Πq)v = �r
i=1 �ni−1

j=0 Π̃i,v| det |(ni−1)/2−j
v .

Proof This follows from the main theorem of [52] and the classification of square inte-
grable automorphic representations of GLm(AF ) in [48]. (Here we are using our assump-
tion that F contains an imaginary quadratic field.) ��

Corollary 1.3 Keep the assumptions of the proposition. Then there is a continuous, semi-
simple, algebraic (i.e. unramified almost everywhere and de Rham above p) representation

rp,ı(Π ) : GF −→ GL2n(Qp)

with the following property: If v is a prime of F above a rational prime q �= p such that

• either q splits in F0,
• or F and Π are unramified above q,

then

ıWD
(
rp,ı(Π )|GFv

)ss ∼= recFv
(
BC(Πq)v| det |(1−2n)/2

v

)
.

Proof Combine the proposition with, for instance, theorem 1.2 of [11] and theorem A
of [10]. (These results are due to many people and we simply choose these particular
references for convenience.) ��

1.4 Spaces of hermitian forms

IfR ⊂ R thenwewill denote byHerm>0
X (resp. Herm≥0

X ) the set of pairings ( , ) inHermX
such that

(x, x) > 0

(resp. ≥ 0) for all x ∈ X − {0}. We will denote by S(Fm)>0 (resp. S(Fm)≥0) the set of
elements a ∈ S(Fm) such that for each τ : F ↪→ C the image of a under the map

S(Fm) −→ Mm(F )t=c

x ⊗ y �−→ x c,ty+ y c,tx

is positive definite (resp. positive semi-definite), i.e. all the roots of its characteristic poly-
nomial are strictly positive (resp. non-negative) real numbers. Then S(Fm)>0 is the set
of elements of S(Fm) whose pairing with every nonzero element of Herm≥0

Fm is strictly
positive, and Herm>0

Fm is the set of elements of HermFm whose pairing with every nonzero
element of S(Fm)≥0 is strictly positive. We will also write

S
(
Om

F,(p)

)>0 = S
(
Om

F,(p)

)
∩ S(Fm)>0.
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We will next turn to the study of certain spaces which play a key role in the definition
of the auxiliary data controlling toroidal compactifications.
Suppose thatW ⊂ Vn is an isotropic F-direct summand. We set

C(m)(W ) = (HermVn/W⊥ ⊕HomF (Fm,W )
)⊗Q R.

Ifm = 0 we will drop it from the notation. Note that we have a natural identification

C(m)(Vn,(i)) ∼= Z
(
N (m)
n,(i)

)
(R).

There is also a natural map

C(m)(W ) −→ C(W ).

Note that if f ∈ HomF (Fm,W ) we can define f ′ ∈ Hom(Fm ⊗F,c (Vn/W⊥),Q) by

f ′(x ⊗ y) = 〈f (x), y〉n.

This establishes an isomorphism

HomF (Fm,W ) ∼−→ Hom
(
Fm ⊗F,c (Vn/W⊥),Q

)

and hence an isomorphism

C(m)(W ) ∼−→ (HermVn/W⊥⊕Fm/HermFm )⊗Q R.

Thus

C(m)(Vn,(i)) ∼= Z
(
N (m)
n,(i)

)
(R).

If g ∈ Gn(Q) we define

g : C(m)(W ) −→ C(m)(gW )
(z, f ) �−→ (gz, g ◦ f ),

where

(x, y)gz = |ν(g)| (g−1x, g−1y
)
z .

We extend this to an action of G(m)
n (Q) as follows: If g ∈ HomF (Fm, Vn) then we set

g(z, f ) = (z, f − θz ◦ g)

where θz : Vn → W satisfies
(
x mod W⊥, y mod W⊥)

z
= 〈θz(x), y〉n

for all x, y ∈ Vn. IfW ′ ⊂ W there is a natural embedding

C(m)(W ′) ↪→ C(m)(W ).



Harris et al. Res Math Sci (2016) 3:37 Page 33 of 308

We will write C>0(W ) = Herm>0
Vn/W⊥⊗QR

and C≥0(W ) = Herm≥0
Vn/W⊥⊗QR

. We will
also write C(m),>0(W ) (resp. C(m),≥0(W )) for the pre-image of C>0(W ) (resp. C≥0(W )) in
C(m)(W ). Moreover we will set

C(m),�0(W ) =
⋃

W ′⊂W
C(m),>0(W ′),

and C�0(W ) = C(0),�0(W ). Thus

C(m),>0(W ) ⊂ C(m),�0(W ) ⊂ C(m),≥0(W ).

Note that the natural map C(m)(W ) →→ C(W ) gives rise to a surjection

C(m),�0(W ) →→ C�0(W )

and that the pre-image of a point in C>0(W ′) is HomF (Fm,W ′) (and in particular the
pre-image of (0) is (0)). Also note that ifW ′ ⊂ W then there is a closed embedding

C(m),�0(W ′) ↪→ C(m),�0(W ).

Finally note that the action of G(m)
n (Q) takes C(m),�0(W ) (resp. C(m),>0(W ), resp.

C(m),≥0(W )) to C(m),�0(gW ) (resp. C(m),>0(gW ), resp. C(m),≥0(gW )).
Note that L(m)

n,(i)(R) acts on

π0(Ln,(i),herm(R))× C(m)(Vn,(i))

and preserves

π0(Ln,(i),herm(R))× C(m),>0(Vn,(i)).

Moreover L(m)
n,(i)(Q) preserves

π0(Ln,(i),herm(R))× C(m),�0(Vn,(i)).

In fact, L(m)
n,(i)(R) acts transitively on π0(Ln,(i),herm(R))× C(m),>0(Vn,(i)). For this paragraph

let ( , )0 ∈ C>0(Vn,(i)) denote the pairing on (Vn/V⊥
n,(i)⊗Q R)2 induced by 〈Jn , 〉n. Then

the stabilizer of 1× (( , )0, 0) in L(m)
n,(i)(R) is

Ln,(i),herm(R)ν=1
(
Un,∞ ∩ L(m)

n,(i),lin(R)
)
An(R)0.

Thus we get an L(m)
n,(i)(R)-equivariant identification

π0(Ln,(i),herm(R))× C(m),>0(Vn,(i))
/

R×
>0

∼= L(m)
n,(i)(R)
/
Ln,(i),herm(R)+

(
Un,∞ ∩ L(m)

n,(i),lin(R)
)0

An,(i)(R)0.

We define C(m) to be the topological space
(⋃

W
C(m),�0(W )

)/
∼,
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where∼ is the equivalence relation generated by the identification of C(m),�0(W ′) with its
image in C(m),�0(W ) whenever W ′ ⊂ W . (This is sometimes referred to as the ‘conical
complex’.) Thus as a set

C(m) =
∐
W

C(m),>0(W ).

We will let C(m)
=i denote

∐
dimF W=i

C(m),>0(W ).

Note that C(m)=n is a dense open subset of C(m). Ifm = 0 we drop it from the notation.
The space C(m) has a natural, continuous, left action of G(m)

n (Q) × R×
>0. (The second

factor acts on each C(m),�0(W ) by scalar multiplication.)
We have homeomorphisms

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
U × π0(Gn(R))× C

(m)
=i

/
R×

>0

)

∼= P(m),+
n,(i) (Q)

∖(
G(m)
n (A∞)

/
U × π0(Gn(R))×

(
C(m),>0(Vn,(i))

/
R×

>0

))

∼=∐h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/(

hUh−1 ∩ P(m),+
n,(i) (A∞)

)

Ln,(i),herm(R)+
(
L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0.

(Use the fact, strong approximation for unipotent groups, that

N (m),+
n,(i) (A∞) = V + N (m),+

n,(i) (Q)

for any open compact subgroup V of N (m),+
n,(i) (A∞).) If g ∈ G(m)

n (A∞) and if g−1Ug ⊂ U ′

then the right translation map

g : G(m)
n (Q)\

(
G(m)
n (A∞)/U × π0(Gn(R))× C

(m)
=i /R

×
>0

)
.

−→ G(m)
n (Q)\

(
G(m)
n (A∞)/U ′ × π0(Gn(R))× C

(m)
=i /R

×
>0

)
.

corresponds to the coproduct of the right translation maps

g ′ : L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/(

hUh−1 ∩ P(m),+
n,(i) (A∞)

)
Ln,(i),herm(R)+(

L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0

−→ L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/(

h′U ′(h′)−1 ∩ P(m),+
n,(i) (A∞)

)
Ln,(i),herm(R)+(

L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0

where hg = g ′h′u′ with g ′ ∈ P(m),+
n,(i) (A∞) and u′ ∈ U ′.

When considering compactifications of just the ordinary locus we will need a variant of
the above discussion.
We set
(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord
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to be the subset ofG(m)
n (A∞)× π0(Gn(R))×C(m) consisting of elements (g, δ, x) such that

for someW we have

x ∈ C(m),�0(W )

and

W ⊗Q Qp = gp(Vn,(n) ⊗Q Qp).

It has a left action of G(m)
n (Q) and a right action of G(m)

n (A∞)ord × R×
>0. We define

(
G(m)
n (A∞)× π0(Gn(R))× C

(m)
=i

)ord

similarly. We also set

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C(m)

)ord

(resp.

G(m)
n (Q)
∖ (

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord)

to be the image of (G(m)
n (A∞)× π0(Gn(R))× C(m))ord in

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C(m)

)

(resp.

G(m)
n (Q)
∖ (

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

))
.

Then as a set

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C(m)

)ord

=∐i G
(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord
.

In the case i = n we have a simpler description of

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord
.

Lemma 1.4

G(m)
n (Q)
∖(

G(m)
n (A∞)× π0(Gn(R))× C

(m)=n
)ord/

Up(N1)
∼−→ G(m)

n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)=n
)ord

.



Harris et al. Res Math Sci (2016) 3:37 Page 36 of 308

Proof There is a natural surjection.Wemust check that it is also injective. The right hand
side equals

P(m),+
n,(n) (Q)

∖(
G(m)
n (A∞,p)

/
Up ×
(
P(m),+
n,(n) (Qp)Up(N1, N2)(m)

n
)/

Up(N1, N2)(m)
n

×π0(Gn(R))× C(m),>0(Vn,(n))
)

∼= P(m),+
n,(n) (Q)

∖(
G(m)
n (A∞)ord

/
Up(N1)× π0(Gn(R))× C(m),>0(Vn,(n))

)
,

which is clearly isomorphic to the left hand side. ��
There does not seem to be such a simple description of

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

for i �= n. However the interested reader can see the end of this section for a partial result,
with a very unpleasant proof.
We set

T
(m),ord
Up(N1),=n = G(m)

n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C(m)=n

)ord/
R×

>0.

If U is a neat open compact subgroup of L(m)
n,(i)(A

∞), set

T
(m)
(i),U = L(m)

n,(i)(Q)
∖
L(m)
n,(i)(A)
/
ULn,(i),herm(R)0

(
L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(n)(R)0.

Corollary 1.5

T
(m),ord
Up(N1),=n

∼=
∐

h∈P(m),+
n,(n) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)

T
(m)
(n),
(
hUph−1∩P(m),+

n,(n) (A∞,p)
)
Z
×
p Up(N1)(m)

n,(n)
.

If Y is a locally compact, Hausdorff topological space then we write Hi
Int(Y,C) for the

image of

Hi
c(Y,C) −→ Hi(Y,C).

We define

Hi
Int

(
T(m),ord=n ,Qp

)
= lim→Up,N

Hi
Int

(
T
(m),ord
Up(N ),=n,Qp

)

a smooth G(m)
n (A∞)ord-module, and

Hi
Int

(
T
(m)
(n) ,Qp

)
= lim→U

Hi
Int

(
T
(m)
(n),U ,Qp

)

a smooth L(m)
n,(n)(A

∞)-module. Note that

Hi
Int

(
T
(m)
(n) ,Qp

)Z×
p = lim→Up,N

Hi
Int

(
T
(m)
(n),UpUp(N )(m)

n,(n)Z
×
p
,Qp

)

as N runs over positive integers and Up runs over neat open compact subgroups of
L(m)
n,(n)(A

∞,p). With these definitions we have the following corollary.
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Corollary 1.6 There is a G(m)
n (A∞)ord-equivariant isomorphism

IndG
(m)
n (A∞,p)

P(m),+
n,(n) (A∞,p)

Hi
Int

(
T
(m)
(n) ,Qp

)Z×
p ∼= Hi

Int

(
T(m),ord=n ,Qp

)
.

Interior cohomology has the following property which will be key for us.

Lemma 1.7 Suppose that G is a locally compact, totally disconnected topological group.
Suppose that for any sufficiently small open compact subgroup U ⊂ G we are given a com-
pact Hausdorff space ZU and an open subset YU ⊂ ZU . Suppose moreover that whenever
U, U ′ are sufficiently small open compact subgroups of G and g ∈ G with g−1Ug ⊂ U ′,
then there is a proper continuous map

g : ZU −→ ZU ′

with gYU ⊂ YU ′ . Also suppose that g ◦ h = hg whenever these maps are all defined and
that if g ∈ U then the map g : ZU → ZU is the identity.
If Ω is a field, set

Hi(Z,Ω) = lim→U
Hi(ZU ,Ω)

and

Hi
Int(Y,Ω) = lim→U

Hi
Int(YU ,Ω).

These are both smooth G-modules. Moreover Hi
Int(Y,Ω) is a subquotient of Hi(Z,Ω) as

G-modules.

Proof Note that the diagram

Hi
c(YU ,Ω) −→ Hi(YU ,Ω)

↓ ↑
Hi
c(ZU ,Ω) = Hi(ZU ,Ω)

is commutative. Set

A = lim→U
Im
(
Hi
c(YU ,Ω) −→ Hi

c(ZU ,Ω) = Hi(ZU ,Ω)
)

and

B = lim→U
Im
(
ker
(
Hi
c(YU ,Ω) −→ Hi(YU ,Ω)

)
−→ Hi(ZU ,Ω)

)
.

Then

B ⊂ A ⊂ Hi(Z,Ω)

are G-invariant subspaces with

A/B ∼−→ Hi
Int(Y,Ω).

��
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We finish this section with our promised generalization of Lemma 1.4. This generaliza-
tion is not needed for the proofs of the main results of this paper, but we include it for
completeness sake. The reader may wish to skip the proof.

Lemma 1.8 There is a natural homeomorphism

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼=∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)
L(m)
n,(i)(Q)

∖
L(m)
n,(i)(A)
/(

(hUp(N1)h−1∩P(m),+
n,(i) (A∞)ord,×

)

L−n,(i),herm(Zp)Ln,(i),herm(R)0
(
L(m)
n,(i),lin(R)∩U0

n,∞
))

where Up(N1) ⊂ G(m)
n (A∞)ord,×.

In particular

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

and

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m)

)ord

are independent of N2 ≥ N1.

Proof Firstly we have that

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼= P(m),+
n,(i) (Q)

∖(
G(m)
n (A∞,p)

/
Up

×
(
P(m),+
n,(i) (Q)P(m),+

n,(n) (Qp)Up(N1, N2)(m)
n
)/

Up(N1, N2)(m)
n

×π0(Gn(R))× C(m),>0(Vn,(i))
)
.

We can replace the second P(m),+
n,(i) (Q) by P(m),+

n,(i) (Qp), and then, using in particular the
Iwasawa decomposition for Ln,(n)(Qp), replace P(m),+

n,(n) (Qp) by P(m),+
n,(n) (Zp). Next we can

replace P(m),+
n,(i) (Qp) by P(m),+

n,(i) (Zp) as long as we also replace P(m),+
n,(i) (Q) by P(m),+

n,(i) (Z(p)). This
gives

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼= P(m),+
n,(i) (Z(p))

∖(
G(m)
n (A∞,p)

/
Up

×
(
P(m),+
n,(i) (Zp)P(m),+

n,(n) (Zp)Up(N1, N2)(m)
n
)/

Up(N1, N2)(m)
n

×π0(Gn(R))× C(m),>0(Vn,(i))
)
.

Note that

P+n−i,(n−i)(Zp) →→ Cn−i(Zp).
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[This follows from the fact that primes above p of F+ are unramified in F , which implies
that

ker
(
NF/F+ : O×

F,p → O×
F+ ,p

)
=
{
cxx−1 : x ∈ O×

F,p

}
.
]

Thus

L−n,(i),herm(Zp)P+n−i,(n−i)(Zp) = Ln,(i),herm(Zp)

and

P(m),+
n,(i) (Zp)P(m),+

n,(n) (Zp) = P(m),−
n,(i) (Zp)P(m),+

n,(n) (Zp).

Moreover, by strong approximation, P(m),−
n,(i) (Z(p)) (resp. L−n,(i),herm(Z(p))) is dense in

P(m),−
n,(i) (A∞,p × Zp) (resp. L−n,(i),herm(A

∞,p × Zp)). Thus

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼= P(m),+
n,(i) (Z(p))

∖(
G(m)
n (A∞,p)

/
Up

×
(
P(m),−
n,(i) (Zp)P(m),+

n,(n) (Zp)Up(N1, N2)(m)
n
)/

Up(N1, N2)(m)
n

×π0(Gn(R))× C(m),>0(Vn,(i))
)

∼= L(m)
n,(i)(Z(p))

∖((
P(m),−
n,(i) (A∞,p)

∖
G(m)
n (A∞,p)

/
Up
)

×
(
P(m),−
n,(i) (Zp)

∖(
P(m),−
n,(i) (Zp)P(m),+

n,(n) (Zp)Up(N1, N2)(m)
n
)/

Up(N1, N2)(m)
n
)

×π0(Gn(R))× C(m),>0(Vn,(i))
)
.

Next we claim that the natural map
(
P(m),−
n,(i) ∩ P(m),+

n,(n)

)
(Zp)
∖
P(m),+
n,(n) (Zp)

/(
Up(N1)(m)

n,(n)Z
×
p N

(m)
n,(n)(Zp)

)

−→ P(m),−
n,(i) (Zp)

∖(
P(m),−
n,(i) (Zp)P(m),+

n,(n) (Zp)Up(N1, N2)(m)
n
)/

Up(N1, N2)(m)
n

is an isomorphism. It suffices to check this modulo pN2 , where the map becomes
(
P(m),−
n,(i) ∩ P(m),+

n,(n)

)
(Z/pN2Z)

∖
P(m),+
n,(n) (Z/pN2Z)

/(
Up(N1)(m)

n,(n)Z
×
p N

(m)
n,(n)(Zp)

)

−→ P(m),−
n,(i) (Z/pN2Z)

∖(
P(m),−
n,(i) (Z/pN2Z)P(m),+

n,(n) (Z/pN2Z)
/(

Up(N1)(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)

)
,

which is clearly an isomorphism. Thus we have

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼= L(m)
n,(i)(Z(p))

∖((
P(m),−
n,(i) (A∞,p)

∖
G(m)
n (A∞,p)

/
Up
)

×
((

P(m),−
n,(i) ∩ P(m),+

n,(n)

)
(Zp)
∖
P(m),+
n,(n) (Zp)

/(
Up(N1)(m)

n,(n)Z
×
p N

(m)
n,(n)(Zp)

))

×π0(Gn(R))× C(m),>0(Vn,(i))
)
,

where γ ∈ L(m)
n,(i)(Z(p)) acts on (P(m),−

n,(i) ∩ P(m),+
n,(n) )(Zp)\P(m),+

n,(n) (Zp) via an element of
P+n−i,(n−i)(Zp)× Ln,(i),lin(Zp) with the same image in Cn−i(Zp)× Ln,(i),lin(Zp).
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Note that

P(m),−
n,(i) (A∞,p)

∖
G(m)
n (A∞,p)/Up = ∐h∈P(m),+

n,(i) (A∞,p)\G(m)
n (A∞,p)/Up

L(m),−
n,(i),herm(A

∞,p)
∖
L(m)
n,(i)(A

∞,p)
/(

hUph−1 ∩ P(m),+
n,(i) (A∞,p)

)
.

Also note that, if we set Up = (Up(N1)(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)), then

(
P(m),−
n,(i) ∩ P(m),+

n,(n)

)
(Zp)
∖
P(m),+
n,(n) (Zp)

/
Up = ∐h∈(P(m),+

n,(i) ∩P(m),+
n,(n) )(Zp)\P(m),+

n,(n) (Zp)/Up(
L(m)
n,(i),lin(Zp)× Im

(
Pn−i,(n−i)(Zp) → Cn−i(Zp)

))/(
hUph−1 ∩ P(m),+

n,(i) (Zp)
)
.

However as the primes above p split in F+ split in F we see that

Im
(
Pn−i,(n−i)(Zp) → Cn−i(Zp)

) = Ln,(i),herm(Zp)/L−n,(i),herm(Zp),

and so(
P(m),−
n,(i) ∩ P(m),+

n,(n)

)
(Zp)
∖
P(m),+
n,(n) (Zp)

/
Up = ∐h∈(P(m),+

n,(i) ∩P(m),+
n,(n) )(Zp)\P(m),+

n,(n) (Zp)/Up

L(m)
n,(i)(Zp)

/
L−n,(i),herm(Zp)

(
hUph−1 ∩ P(m),+

n,(i) (Zp)
)
.

Thus we see that

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼=∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)
L(m)
n,(i)(Z(p))∖(

L(m)
n,(i)(A

∞,p × Zp)
/
L−n,(i),herm(A

∞,p × Zp)(
hUp(N1)h−1 ∩ P(m),+

n,(i) (A∞)ord,×
)
× π0(G(m)

n (R))× C(m),>0(Vn,(i))
)
.

As L−n,(i),herm(Z(p)) acts trivially on

(
L(m)
n,(i)(Zp)/L−n,(i),herm(Zp)

)
× π0(G(m)

n (R))× C(m),>0(Vn,(i))

and is dense in L−n,(i),herm(A
∞,p), we further see that

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord

∼=∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)

L(m)
n,(i)(Z(p))

∖(
L(m)
n,(i)(A

∞,p × Zp)
/
L−n,(i),herm(Zp)(

hUp(N1)h−1 ∩ P(m),+
n,(i) (A∞)ord,×

)

×π0
(
G(m)
n (R)
)
× C(m),>0(Vn,(i))

)

∼=∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)

L(m)
n,(i)(Z(p))

∖
L(m)
n,(i)(A

p × Zp)
/(

(hUp(N1)h−1 ∩ P(m),+
n,(i) (A∞)ord,×

)

L−n,(i),herm(Zp)Ln,(i),herm(R)0
(
L(m)
n,(i),lin(R) ∩U0

n,∞
))

,
∼=∐h∈P(m),+

n,(i) (A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/((

hUp(N1)h−1∩P(m),+
n,(i) (A∞)ord,×

)

L−n,(i),herm(Zp)Ln,(i),herm(R)0
(
L(m)
n,(i),lin(R)∩U0

n,∞
))

,

as desired. ��
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Abusing notation slightly, we will write

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1)× π0(Gn(R))× C

(m)
=i

)ord

for

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C

(m)
=i

)ord
,

and

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1)× π0(Gn(R))× C(m)

)ord

for

G(m)
n (Q)
∖(

G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m)

)ord
.

1.5 Locally symmetric spaces

In this section we will calculateHi
Int(T

(m)
(n) ,Qp) in terms of automorphic forms on Ln,(n)(A).

Ourmain resultwill be the following,whichwill be an immediate consequenceofCorollary
1.12 and Lemma 1.13 below.

Corollary 1.9 Suppose that n > 1 and that ρ is an irreducible algebraic representation
of Ln,(n),lin on a finite dimensional C-vector space. Suppose also that π is a cuspidal auto-
morphic representation of Ln,(n),lin(A) such that π∞ has the same infinitesimal character
as ρ∨ and that ψ is a continuous character of Q×\A×/R×

>0. Then for all sufficiently large
integers N there are integers m(N ) ∈ Z≥0 and i(N ) ∈ Z>0, and an Ln,(n)(A∞)-equivariant
embedding

(π∞|| det ||N )× ψ∞ ↪→ Hi(N )
Int

(
T
(m(N ))
(n) ,C

)
.

If m = 0 we will write T(n) for T
(0)
(n). Let Ω denote an algebraically closed field of

characteristic 0. If ρ is a finite dimensional algebraic representation of Ln,(n) on aΩ-vector
spaceWρ then we define a locally constant sheaf Lρ,U/T(n),U as

Ln,(n)(Q)
∖(

Wρ × Ln,(n)(A)
/
U
(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0

)

↓
Ln,(n)(Q)

∖
Ln,(n)(A)

/
U
(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0.

The system of sheaves Lρ,U has a right action of Ln,(n)(A∞). We define

Hi
Int(T(n),Lρ) = lim→U

Hi
Int(T(n),U ,Lρ,U ),

smooth Ln,(n)(A∞)-module. Note that if ρ has a central character χρ then,

α ∈ Z(Ln,(n))(Q)+ ⊂ Ln,(n)(A∞)

acts on Hi
Int(T(n),Lρ) via χρ(α)−1. (Use the fact that Z(Ln,(n))(Q)+ ⊂ (Ln,(n)(R) ∩

U0
n,∞)An,(n)(R)0.)
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The natural map L(m)
n,(n) → Ln,(n) gives rise to continuous maps

π (m) : T(m)
(n),U −→ T(n),U

compatible with the action of L(m)
n,(n)(A

∞).

Lemma 1.10 (1) The maps π (m) are real-torus bundles (i.e. (S1)r-bundles for some r),
and in particular are proper maps.

(2) There are L(m)
n,(n)(A

∞)-equivariant identifications

Riπ (m)∗ Ω ∼= L∧i(⊕τ :F ↪→Ω Std⊕m
τ )∨ .

In particular the action of L(m)
n,(n)(A

∞) on the relative cohomology sheaf Riπ (m)∗ Ω factors
through Ln,(n)(A∞).

Proof Recall that

N
(
L(m)
n,(n),lin

)
= ker
(
L(m)
n,(n) → Ln,(n)

)
.

Suppose thatU is a neat open compact subgroupofL(m)
n,(n)(A

∞)with imageU ′ inLn,(n)(A∞).
Then Ln,(n)(Q)×U ′ acts freely on

Ln,(n)(A)
/(

Ln,(n)(R) ∩U0
n,∞
)
An,(n)(R)0.

Thus it suffices to prove that the map π̃ (m)

N
(
L(m)
n,(n),lin

)
(Q)
∖
L(m)
n,(n)(A)
/(

U ∩ N
(
L(m)
n,(n),lin

)
(A∞)
) (

Ln,(n)(R) ∩U0
n,∞
)
An,(n)(R)0

↓
Ln,(n)(A)/

(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0

is a real-torus bundle and that there are Ln,(n)(Q)× L(m)
n,(n)(A

∞)-equivariant isomorphisms

Riπ̃ (m)∗ Ω ∼= L∧i(⊕τ Std
⊕m
τ )∨ .

Using the identification of spaces (but not of groups) that comes from the group product

L(m)
n,(n)(A) = N

(
L(m)
n,(n),lin

)
(A)× Ln,(n)(A),

we see that π̃ (m) can be identified with the map

(
N
(
L(m)
n,(n),lin

)
(Q)
∖
N
(
L(m)
n,(n),lin

)
(A)
/(

U ∩ N
(
L(m)
n,(n),lin

)
(A∞)
))

×
(
Ln,(n)(A)

/(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0

)

↓
Ln,(n)(A)

/(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0,
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or, using the equalityN (L(m)
n,(n),lin)(A

∞) = N (L(m)
n,(n),lin)(Q)(U ∩N (L(m)

n,(n),lin)(A
∞)), even with

((
N
(
L(m)
n,(n),lin

)
(Q)∩U

)∖
N
(
L(m)
n,(n),lin

)
(R)
)
×
(
Ln,(n)(A)

/(
Ln,(n)(R)∩U0

n,∞
)
An,(n)(R)0

)

↓
Ln,(n)(A)

/(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0,

The right L(m)
n,(n)(A

∞)-action is by right translation on the second factor. The left action of
Ln,(n)(Q) is via conjugation on the first factor and left translation on the second.
The first part of the lemma follows, and we see that

Riπ̃ (m)∗ Ω

is Ln,(n)(Q)× L(m)
n,(n)(A

∞) equivariantly identified with the locally constant sheaf

(
∧iN
(
L(m)
n,(n),lin

)
(Ω)∨
)
×
(
Ln,(n)(A)

/(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0

)

↓
Ln,(n)(A)

/(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0.

The lemma follows. ��

Lemma 1.11 There is an L(m)
n,(n)(A

∞)-equivariant isomorphism

Hk
Int

(
T
(m)
(n) ,Ω
) ∼=
⊕
i+j=k

Hi
Int

(
T(n),L∧j(⊕τ Std

⊕m
τ )∨
)
.

Proof There is an L(m)
n,(n)(A

∞)-equivariant spectral sequence

Ei,j
2 = Hi

(
T(n),L∧j(⊕τ Std

⊕m
τ )∨
)
⇒ Hi+j

(
T
(m)
(n) ,Ω
)
.

Ifα ∈ Q×
>0 ⊂ Z(Ln,(n),lin)(A∞), thenα acts onEi,j

2 viaαj .Wededuce that all the differentials
(on the second and any later page) vanish, and so the spectral sequence degenerates on the
second page.Moreover theα �→ αj eigenspace inHi+j(T(m)

(n) ,Ω) is naturally identifiedwith
Hi(T(n),L∧j(

⊕
τ Std

⊕m
τ )∨ ). (This standard argument is sometimes referred to as ‘Lieberman’s

trick’.)
As the maps π (m) are proper, there is also an L(m)

n,(n)(A
∞)-equivariant spectral sequence

Ei,j
c,2 = Hi

c

(
T(n),L∧j(⊕τ Std

⊕m
τ )∨
)
⇒ Hi+j

c
(
T
(m)
(n) ,Ω
)

andα ∈ Q×
>0 ⊂ Z(Ln,(n),lin)(A∞) acts onEi,j

c,2 viaαj . Againwe see that the spectral sequence
degenerates on the second page and that the α �→ αj eigenspace in Hi+j

c (T(m)
(n) ,Ω) is

naturally identified with Hi
c(T(n),L∧j(

⊕
τ Std

⊕m
τ )∨ ).

The lemma follows. ��

Corollary 1.12 Suppose thatρ is an irreducible representation of Ln,(n),lin overΩ , whichwe
extend to a representation of Ln,(n) by letting it be trivial on Ln,(n),herm. Let d = NF/Q ◦det :
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Ln,(n),lin → Gm. Then for all N sufficiently large there are j(N ), m(N ) ∈ Z≥0 such that, for
all i,

Hi
Int(T(n),Lρ⊗d−N )

is an Ln,(n)(A∞)-direct summand of

Hi+j(N )
Int

(
T
(m(N ))
(n) ,Ω

)
.

Proof It follows fromWeyl’s construction of the irreducible representations of GLn that,
for N sufficiently large, ρ ⊗ d−N is a direct summand of

⊗
τ

(
Std∨τ
)⊗mτ (N )

for certain non-negative integers mτ (N ). Hence for N sufficiently large and m(N ) =
max{mτ (N )} the representation ρ ⊗ d−N is also a direct summand of

∧
∑

τ mτ (N )
(⊕

τ

Std⊕m(N )
τ

)∨
.

��

Lemma 1.13 Suppose that ρ is an irreducible algebraic representation of Ln,(n) on a finite
dimensional C-vector space.

(1) Then

⊕
Π

Π∞⊗Hi (Lie Ln,(n),
(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0,Π∞ ⊗ ρ

)
↪→ Hi

Int(T(n),Lρ),

where Π runs over cuspidal automorphic representations of Ln,(n)(A).
(2) If n > 1 and ifΠ is a cuspidal automorphic representation of Ln,(n)(A) such thatΠ∞

has the same infinitesimal character as ρ∨, then

Hi (Lie Ln,(n),
(
Ln,(n)(R) ∩U0

n,∞
)
An,(n)(R)0,Π∞ ⊗ ρ

) �= (0)

for some i > 0.

Proof The first part results from [13], more precisely from combining theorem 5.2, the
discussion in section 5.4 and corollary 5.5 of that paper. The second part results from [20],
see the proof of theorem 3.13, and in particular lemma 3.14, of that paper. ��

We are now in a position to deduce Corollary 1.9, which we stated at the start of this
section.
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2 Tori, torsors and torus embeddings
Themain aimof this section is to recall somebasic facts about relative torus embeddings of
tori torsors, whichwill provide localmodels for the boundary of toroidal compactifications
of Shimura and Kuga–Sato varieties. Much of this material is in some sense standard, but
we need to work with infinite cone decompositions, which are not treated in much of the
literature. It will also be convenient to use a notation which emphasizes the boundary
of the torus embedding and the completion of the torus embedding along the boundary.
These seem to be more naturally parameterized by certain partial fans rather than fans.
In Sect. 2.4 we compute certain cohomology groups. For finite fans (or partial fans) such
results are fairly standard, but we found it quite tricky to formulate and prove the results
we need in the presence of infinitely many cones. Maybe this is just our incompetence.
Throughout this section let R0 denote an irreducible noetherian ring (i.e. a noetherian

ring with a unique minimal prime ideal). In the applications of this section elsewhere in
this paper it will be either Q or Z(p) or Z/prZ for some r. We will consider R0 endowed
with the discrete topology so that Spf R0 ∼= SpecR0.

2.1 Tori and torsors

If S/Y is a torus (i.e. a group scheme etale locally on Y isomorphic toGN
m for someN ) then

we can define its sheaf of characters X∗(S) = Hom(S,Gm) and its sheaf of cocharacters
X∗(S) = Hom(Gm, S). These are locally constant sheaves of free Z-modules in the etale
topology on Y . They are naturally Z-dual to each other. More generally if S1/Y and S2/Y
are two tori then Hom(S1, S2) is a locally constant sheaf of free Z-modules in the etale
topology on Y . In fact,

Hom(S1, S2) = Hom (X∗(S1), X∗(S2)) = Hom
(
X∗(S2), X∗(S1)

)
.

By a quasi-isogeny (resp. isogeny) from S1 to S2 we shall mean a global section of the sheaf
Hom(S1, S2)Q (resp. Hom(S1, S2)) with an inverse in Hom(S2, S1)Q. We will write [S]isog
for the category whose objects are tori over Y quasi-isogenous to S and whosemorphisms
are isogenies. The sheaves X∗(S)Q and X∗(S)Q only depend on the quasi-isogeny class of
S so we will write X∗([S]isog)Q and X∗([S]isog)Q.
If y is a geometric point of Y then we define

TSy = lim←−
N

S[N ](k(y))

and

TpSy = lim←−
p � |N

S[N ](k(y))

with the transition map fromMN to N being multiplication byM. (The Tate modules of
S.) Also define

VSy = TSy ⊗Z Q

and

VpSy = TpSy ⊗Z Q.
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If Y is a scheme over SpecQ then

TSy ∼= X∗(S)y ⊗Z Ẑ(1).

If Y is a scheme over SpecZ(p) then

TpSy ∼= X∗(S)y ⊗Z Ẑp(1).

Now suppose that S is split, i.e. isomorphic to GN
m for some N . By an S-torsor T/Y we

mean a scheme T/Y with an action of S, which locally in the Zariski topology on Y is
isomorphic to S. By a rigidification of T along e : Y ′ → Y we mean an isomorphism of
S-torsors e∗T ∼= S over Y ′. If U is a connected open subset of Y then

T |U = Spec
⊕

χ∈X∗(S)(U )
LT (χ ),

where LT (χ ) is a line bundle on U . If Z is any open subset of Y and if χ ∈ X∗(S)(Z) then
there is a unique line bundle LT (χ ) on Z whose restriction to any connected open subset
U ⊂ Z is LT (χ |U ). Multiplication gives isomorphisms

LT (χ1)⊗ LT (χ2)
∼−→ LT (χ1 + χ2).

The map

T �−→ L∨
T,1

gives a bijection between isomorphism classes of Gm-torsors and isomorphism classes of
line bundles on Y . The inverse map sends L to

Spec
⊕
N∈Z

L∨,⊗N .

If α : S → S′ is amorphism of split tori and ifT/Y is an S-torsor we can form a push-out
α∗T , an S′ torsor on Y defined as the quotient

(S′ ×Y T )/S

where S acts by

s : (s′, t) �−→ (s′s, s−1t).

There is a natural map T → α∗T compatible with α : S → S′. If α is an isogeny then

α∗T = (ker α)\T.

If T1 and T2 are S-torsors over Y we define

(T1 ⊗S T2)/Y
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to be the S-torsor

(T1 ×Y T2)/S

where S acts by

s : (t1, t2) �−→ (st1, s−1t2).

If T is an S-torsor on Y we define an S-torsor T∨/Y by taking T∨ = T as schemes but
defining an S action . on T∨ by

s.t = s−1t,

i.e. T∨ = [−1]S,∗T . Then

T∨ ⊗S T ∼= S

via the map that sends (t1, t2) to the unique section s of S with st1 = t2.

2.2 Log structures

We will call a formal scheme

X −→ Spf R0

suitable if it has a cover by affine opens Ui = Spf (Ai)∧Ii , where Ai is a finitely generated
R0-algebra and Ii is an ideal of Ai whose inverse image in R0 is (0).
By a log structure on a scheme X (resp. formal scheme X) we mean a sheaf of monoids

M on X (resp. X) together with a morphism

α : M −→ (OX ,×)

(resp.

α : M −→ (OX,×))

such that the induced map

α−1O×
X −→ O×

X

(resp.

α−1O×
X −→ O×

X)

is an isomorphism. We will refer to a scheme (resp. formal scheme) endowed with a log
structure as a log scheme (resp. log formal scheme). By a morphism of log schemes (resp.
morphism of log formal schemes)

(φ,ψ) : (X,M,α) −→ (Y,N ,β)
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(resp.

(φ,ψ) : (X,M,α) −→ (Y,N ,β) )

we shall mean a morphism φ : X → Y (resp. φ : X → Y) and a map

ψ : φ−1N −→ M

such that φ∗ ◦φ−1(β) = α ◦ψ . We will consider R0 endowed with the trivial log structure
(O×

SpecR0 , 1) (resp. (O
×
Spf R0 , 1)). We will call a log formal scheme (X,M,α)/Spf R0 suitable

if X/Spf R0 is suitable and if, locally in the Zariski topology, M/α−1O×
X is finitely gen-

erated. (In the case of schemes these definitions are well known: See, for example, [34].
We have not attempted to optimize the definition in the case of formal schemes. We are
simplymaking a definition which works for the limited purposes of this article. The reader
might like to compare our definitions with those in [5].)
If D is a closed subscheme of X we define a log structureM(D) on X by setting

M(D)(U ) = OX (U ) ∩OX (U − D)×.

If X/SpecR0 is a scheme of finite type and if Z ⊂ X is a closed subscheme which is flat
over SpecR0, then the formal completion X∧

Z is a suitable formal scheme. Let i∧ denote
the map of ringed spaces X∧

Z → X . If (M,α) is a log structure on X , then we get a map

(i∧)−1(α) : (i∧)−1M −→ OX∧
Z
.

It induces a log structure (M∧,α∧) on X∧
Z , whereM∧ denotes the push-out

((i∧)−1(α))−1O×
X∧
Z

↪→ (i∧)−1M
↓ ↓

O×
X∧
Z
−→ M∧.

If

(φ,ψ) : (X,M,α) −→ (Y,N ,β)

is a morphism of schemes with log structures over SpecR0 then there is a right exact
sequence

φ∗Ω1
Y (logN ) −→ Ω1

X (logM) −→ Ω1
X/Y (logM/N ) −→ (0)

of sheaves of log differentials. If the map (φ,ψ) is log smooth then this sequence is also
left exact and the sheafΩ1

X/Y (logM/N ) is locally free. (See, e.g., [34].) As usual, we write
Ω i

X (logM) = ∧iΩ1
X (logM) and Ω i

X/Y (logM/N ) = ∧iΩ1
X/Y (logM/N ).

By a coherent sheaf of differentials on a formal schemeX/Spf R0 wewill mean a coherent
sheaf Ω/X together with a differential d : OX → Ω which vanishes on R0. By a coherent
sheaf of log differentials on a log formal scheme (X,M,α)/Spf R0 we shall mean a coherent
sheaf Ω/X together with a differential, which vanishes on R0,

d : OX −→ Ω ,
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and a homomorphism

dlog : M −→ Ω

such that

α(m)dlogm = d(α(m)).

By a universal coherent sheaf of differentials (resp. universal coherent sheaf of log differ-
entials) we shall mean a coherent sheaf of differentials (Ω , d) (resp. a coherent sheaf of
log differentials (Ω , d, dlog)) such that for any other coherent sheaf of differentials (Ω ′, d′)
(resp. a coherent sheaf of log differentials (Ω ′, d′, dlog′)) there is a uniquemap f : Ω → Ω ′

such that f ◦ d = d′ (resp. f ◦ d = d′ and f ◦ dlog = dlog′).
Note that if a universal coherent sheaf of differentials (resp. universal coherent sheaf of

log differentials) exists, it is unique up to unique isomorphism.

Lemma 2.1 Suppose that R0 is a discrete, noetherian topological ring.

(1) A universal sheaf of coherent differentials Ω1
X/Spf R0 exists for any suitable formal

scheme X/Spf R0.
(2) If X/SpecR0 is a scheme of finite type and if Z ⊂ X is flat over R0 then

Ω1
X∧
Z /Spf R0

∼=
(
Ω1

X/SpecR0

)∧
.

(3) A universal sheaf of coherent log differentialsΩ1
X/Spf R0 (logM) exists for any suitable

log formal scheme (X,M,α)/Spf R0.
(4) Suppose that X/SpecR0 is a scheme of finite type, that Z ⊂ X is flat over R0 and

that (M,α) is a log structure on X such that Zariski locally M/α−1O×
X is finitely

generated. Then

Ω1
X∧
Z /Spf R0 (logM

∧) ∼=
(
Ω1

X/SpecR0 (logM)
)∧

.

Proof Consider the first part. Suppose that U = Spf A∧
I is an affine open in X, where A is

a finitely generated R0-algebra and I is an ideal of A with inverse image (0) in R0. Then
there exists a universal finite module of differentialsΩ1

U for U, namely the coherent sheaf
ofOU-modules associated to (Ω1

A/R0 )
∧
I . (See sections 11.5 and 12.6 of [40].)Wemust show

that if U′ ⊂ U is open then Ω1
U|U′ is a universal finite module of differentials for U′. For

then uniqueness will allow us to glue the coherent sheaves Ω1
U to form Ω1

X.
So suppose that (Ω ′, d′) is a finite module of differentials for U′. We must show that

there is a unique map ofOU′-modules

f : Ω1
U|U′ −→ Ω ′

such that d′ = f ◦ d. We may cover U′ by affine opens of the form Spf (Ag )∧I and it will
suffice to find, for each g , a unique

fg : Ω1
U

∣∣
Spf (Ag )∧I

−→ Ω ′|Spf (Ag )∧I
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with d′ = fg ◦ d. Thus we may assume that U′ = Spf (Ag )∧I . But in this case we know Ω1
U′

exists, and is the coherent sheaf associated to
(
Ω1

Ag/R0

)∧
I
∼=
(
Ω1

A/R0 ⊗A Ag
)∧
I
.

On the other hand Ω1
U|U′ is the coherent sheaf associated to

(
Ω1

A/R0

)∧
I
⊗A∧

I
(Ag )∧I .

Thus

Ω1
U′

∼−→ Ω1
U|U′

and the first part follows. The second part also follows from the proof of the first part.
For the third part, because of uniqueness, it suffices towork locally. Thuswemay assume

that there are finitely many sections m1, . . . , mr ∈ M(X), which together with α−1O×
X

generateM. Then we define Ω1
(X,M,α) to be the cokernel of the map

O⊕r
X −→ Ω1

X ⊕O⊕r
X

(fi)i �−→
(−∑i fidα(mi), (fiα(mi))i

)
.

It is elementary to check that this has the desired universal property. The fourth part is
also elementary to check. ��
If

(φ,ψ) : (X,M,α) −→ (Y,N ,β)

is a map of suitable log formal schemes over Spf R0 then we set

Ω1
X/Y(logM/N ) = Ω1

X/Spf R0 (logM)
/
φ∗Ω1

Y/Spf R0 (logN ).

We also set

Ω i
X/Spf R0 = ∧iΩ1

X/Spf R0

and

Ω i
X/Spf R0 (logM) = ∧iΩ1

X/Spf R0 (logM)

and

Ω i
X/Y(logM/N ) = ∧iΩ1

X/Y(logM/N ).

Corollary 2.2 Suppose that R0 is a discrete, noetherian topological ring; that

(X,M,α) → (Y,N ,β)

is a map of log schemes over SpecR0; and that Z ⊂ X and W ⊂ Y are closed subschemes
flat over SpecR0 which map to each other under X → Y . Suppose moreover that X and
Y have finite type over SpecR0 and that M/α−1O×

X and N /β−1O×
Y are locally (in the

Zariski topology) finitely generated. Then

Ω1
(X∧

Z ,M∧ ,α∧)/(Y∧
W ,N∧ ,β∧)

∼= (Ω1
X/Y (logM/N ))∧Z.
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Proof This follows from the lemma and from the exactness of completion. ��
If Y is a scheme we will let

Affn
Y = SpecOY [T1, . . . , Tn]

denote affine n-space over Y and

CoordnY = SpecOY [T1, . . . , Tn]/(T1 . . .Tn) ⊂ Affn
Y

denote the union of the coordinate hyperplanes in Affn
Y . Now suppose that X → Y is

a smooth map of schemes of relative dimension n. By a simple normal crossings divisor
in X relative to Y we shall mean a closed subscheme D ⊂ X such that X has an affine
Zariski-open cover {Ui} such that eachUi admits an etale map fi : Ui → Affn

Y so thatD|Ui

is the (scheme-theoretic) pre-image of CoordnY . In the case that Y is just the spectrum of
a field we will refer simply to a simple normal crossings divisor in X .
Suppose that Y is locally noetherian and separated and that the connected components

of Y are irreducible. If S is a finite set of irreducible components of D we will set

DS =
⋂
E∈S

E.

It is smooth over Y . We will also set

D(s) =
∐
#S=s

DS.

If E is an irreducible component of D(s) then the set S(E) of irreducible components of D
containing E has cardinality s. If≥ is a total order on the set of irreducible components of
D, we can define a delta set S(D,≥), or simply S(D), as follows. (For the definition of ‘delta
set’, see, for instance, [25]. We can, if we prefer to be more abstract, replace S(D,≥) by
the associated simplicial set.) The n cells consist of all irreducible components of D(n+1).
If E is such an irreducible component and if i ∈ {0, . . . , n} then the image of E under the
face map di is the unique irreducible component of
⋂

F∈S(E)i
F

which contains E. Here S(E)i equals S(E) with its (i+1)th smallest element removed. The
topological realization |S(D,≥)| does not depend on the total order ≥, so we will often
write |S(D)|.
We record a general observation about log de Rham complexes and divisors with simple

normal crossings, which is probably well known.We include a proof because it is of crucial
importance for our argument.

Lemma 2.3 Suppose that Y is a smooth scheme of finite type over a field k and that Z ⊂ Y
is a divisor with simple normal crossings. Let Z1, . . . , Zm denote the distinct irreducible
components of Z and set

ZS =
⋂
j∈S

Zj ⊂ Y
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(in particular Z∅ = Y ), and

Z(s) =
∐
#S=s

ZS.

Let iS (resp. i(s)) denote the natural maps ZS → Y (resp. Z(s) → Y ). Also let IZ denote the
ideal of definition of Z.
There is a double complex

i(s)∗ Ωr
Z(s)

with maps

d : i(s)∗ Ωr
Z(s) −→ i(s)∗ Ωr+1

Z(s)

and

i(s)∗ Ωr
Z(s) −→ i(s+1)∗ Ωr

Z(s+1)

being the sum of the maps

iS,∗Ωr
ZS

−→ iS′ ,∗Ωr
ZS′ ,

which are

• 0 if S �⊂ S′,
• and (−1)#{i∈S:i<j} times the natural pull-back if S ∪ {j} = S′.

The natural inclusions

Ωr
Y (logM(Z))⊗ IZ −→ Ωr

Y

give rise to a map of complexes

Ω•
Y (logM(Z))⊗ IZ −→ Ω•

Y = i(0)∗ Ω•
Z(0) .

For fixed r the simple complexes

(0) −→ Ωr
Y (logM(Z))⊗ IZ −→ i(0)∗ Ωr

Z(0) −→ i(1)∗ Ωr
Z(1) −→ · · ·

are exact.

Proof Only the last assertion is not immediate. So consider the last assertion.We canwork
Zariski locally, so we may assume that the complex is pulled back from the corresponding
complex for the case Y = Spec k[X1, . . . , Xd] and Z is given by X1X2 . . .Xm = 0. In this
case we take Zj to be the scheme Xj = 0, for j = 1, . . . , m. In this case

Ωr
Y (logM(Z))⊗ IZ =

⊕
T

k[X1, . . . , Xd]

⎛
⎝

m∏
j=1, j /∈T

Xj

⎞
⎠∧

j∈T
dXj
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where T runs over r element subsets of {1, . . . , d}. On the other hand

iS,∗Ωr
ZS

=
⊕
T

k[X1, . . . , Xd]/(Xj)j∈S
∧
j∈T

dXj

where T runs over r element subsets of {1, . . . , d} − S. Thus it suffices to show that, for
each subset T ⊂ {1, . . . , d} the sequence

(0) −→
(∏m

j=1, j /∈T Xj
)
k[X1, . . . , Xd] −→ k[X1, . . . , Xd] −→ · · ·

· · · −→⊕#S=s, S∩T=∅ k[X1, . . . , Xd]/(Xj)j∈S −→ · · ·

is exact, where S ⊂ {1, . . . , m}. The sequence for T ⊂ {1, . . . , d} is obtained from the
sequence for ∅ ⊂ {1, . . . , m} − T by tensoring over k with k[Xj]j∈T∪{m+1,...,d}, and so we
only need treat the casem = d and T = ∅.
If μ is a monomial in the variables X1, . . . , Xm, let R(μ) denote the subset of {1, . . . , m}

consisting of the indices j for whichXj does not occur inμ. Then our complex is the direct
sum over μ of the complexes

(0) −→ Aμ −→ k −→ · · · −→
⊕

S⊂R(μ), #S=s
k −→ · · ·

where Aμ = k if R(μ) = ∅ and = (0) otherwise. So it suffices to prove this latter complex
exact for all μ. If R(μ) = ∅ then it becomes

(0) −→ k −→ k −→ (0) −→ (0) −→ · · · ,

which is clearly exact. If R(μ) �= ∅, our complex becomes

(0) −→ k −→
⊕

S⊂R(μ), #S=1
k −→ · · · −→

⊕
S⊂R(μ), #S=s

k −→ · · · .

If we suppress the first k , this is the complex that computes the simplicial cohomology
with k-coefficients of the simplex with #R(μ) vertices. Thus it is exact everywhere except⊕

S⊂R(μ), #S=1 k and the kernel of

⊕
S⊂R(μ), #S=1

k −→
⊕

S⊂R(μ), #S=2
k

is just k . The desired exactness follows. ��

2.3 Torus embeddings

We will now discuss relative torus embeddings, crucially in the context of infinite fans.
IfW is a real vector space with dualW∨ and if A ⊂ W is a subspace we set

A∨ = {χ ∈ W∨ : χ (A) ⊂ R≥0
}

and

A∨,0 = {χ ∈ W∨ : χ (A− {0}) ⊂ R>0
}
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and

A⊥ = {χ ∈ W∨ : χ (A) = {0}} .

Wewill suppose that Y /SpecR0 is flat and locally of finite type. To simplify the notation,
for now we will restrict to the case of a split torus S/Y with Y connected. We will record
the (trivial) generalization to the case of a disconnected base below. Thus we can think
of X∗(S) and X∗(S) as abelian groups, rather than as locally constant sheaves on Y , i.e. we
replace the sheaf by its global sections over Y . We will let T/Y denote an S-torsor.
By a rational polyhedral cone σ ⊂ X∗(S)R we mean a non-empty subset consisting of

all R≥0-linear combinations of a finite set of elements of X∗(S), but which contains no
complete line through 0. (We include the case σ = {0}. The notion we define here is
sometimes called a ‘non-degenerate rational polyhedral cone’.) By the interior σ 0 of σ we
shall mean the complement in σ of all its proper faces. (We consider σ as a face of σ ,
but not a proper face.) We call σ smooth if it consists of all R≥0-linear combinations of a
subset of a Z-basis of X∗(S). Note that any face of a smooth cone is smooth. Moreover we
set

Tσ = Spec
⊕

χ∈X∗(S)∩σ∨
LT (χ ).

Then Tσ is a scheme over Y with an action of S and there is a natural S-equivariant dense
open embeddingT ↪→ Tσ . If σ ′ ⊂ σ there is a naturalmapTσ ′ → Tσ compatible with the
embeddings of T . If f : Y ′ → Y then Tσ /Y pulls back under f to (f ∗T )σ /Y ′ compatibly
with the maps Tσ ′ ↪→ Tσ for σ ′ ⊂ σ .
Suppose that Σ0 is a set of faces of σ such that

• {0} /∈ Σ0,
• and, if τ ′ ⊃ τ ∈ Σ0, then τ ′ ∈ Σ0.

In this case define

|Σ0|0 = σ −
⋃
τ /∈Σ0

τ .

Thus

|Σ0|0,∨,0 ∩ σ∨ = σ∨ −
⋃
τ∈Σ0

τ⊥.

Then we define ∂Σ0Tσ ⊂ Tσ to be the closed subscheme defined by the sheaf of ideals

⊕

χ∈X∗(S)∩|Σ0|0,∨,0∩σ∨
LT (χ ) ⊂

⊕
χ∈X∗(S)∩σ∨

LT (χ ).

If Σ0 contains all the faces of σ other than {0} we will write ∂Tσ for ∂Σ0Tσ . Note that
∂∅Tσ = ∅. If σ ′ is a face of σ then under the open embedding

Tσ ′ ↪→ Tσ
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∂Σ0Tσ pulls back to ∂{τ∈Σ0:τ⊂σ ′}Tσ ′ .
By a fan in X∗(S)R we shall mean a non-empty collectionΣ of rational polyhedral cones

σ ⊂ X∗(S)R which satisfy

• if σ ∈ Σ , so is each face of σ ,
• if σ , σ ′ ∈ Σ then σ ∩ σ ′ is a face of σ and of σ ′.

Note that unless otherwise stated we will not assume that Σ is finite.We call Σ smooth if
each σ ∈ Σ is smooth.We will callΣ full if every element ofΣ is contained in an element
of Σ with the same dimension as X∗(S)R. Define

|Σ | =
⋃
σ∈Σ

σ .

We call Σ ′ a refinement of Σ if each σ ′ ∈ Σ ′ is a subset of some element of Σ and each
element σ ∈ Σ is a finite union of elements of Σ ′.

Lemma 2.4 (1) If Σ is a fan and Σ ′ ⊂ Σ is a finite cardinality subfan then there is a
refinement Σ̃ of Σ with the following properties:

• any element of Σ which is smooth also lies in Σ̃ ;
• any element of Σ̃ contained in an element of Σ ′ is smooth;
• and if σ ′ ∈ Σ − Σ̃ then σ ′ has a non-smooth face lying in Σ ′.

(2) Any fan Σ has a smooth refinement Σ ′ such that every smooth cone σ ∈ Σ also lies
in Σ ′.

Proof The first part is proved just as for finite fans by making a finite series of elementary
subdivisions by 1 cones that lie in some element σ ′ ∈ Σ ′ but not in any of its smooth
faces. See, for instance, section 2.6 of [26].
For the second part, consider the set S of pairs (Σ̃ ,Δ) where Σ̃ is a refinement of Σ

and Δ is a subfan of Σ such that

• every smooth element of Σ lies in Σ̃ ;
• and if σ ∈ Σ̃ is contained in an element of Δ then σ is smooth.

It suffices to show that S contains an element (Σ̃ ,Δ) with Δ = Σ .
If (Σ̃ ,Δ) ∈ S and σ ∈ Σ we define Σ̃(σ ) to be the set of elements of Σ̃ contained in

σ . We define a partial order on S by decreeing that (Σ̃ ,Δ) ≥ (Σ̃ ′,Δ′) if and only if the
following conditions are satisfied:

• Σ̃ refines Σ̃ ′;
• Δ ⊃ Δ′;
• Σ̃ ′(σ ) = Σ̃(σ ) unless σ has a face that is contained in an element ofΔ but in no element

of Δ′.

Suppose that S ′ ⊂ S is totally ordered. Set

Δ =
⋃

(Σ̃ ′ ,Δ′)∈S ′
Δ′,
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and let Σ̃ denote the set of cones σ ′ which lie in Σ̃ ′ for all sufficiently large elements of
(Σ̃ ′,Δ′) ∈ S ′. If σ ∈ Σ then we can choose (Σ̃ ′,Δ′) ∈ S ′ so that the number of faces of σ
in Δ′ is maximal. If (Σ̃ ′,Δ′) ≤ (Σ̃ ′′,Δ′′) ∈ S ′ then Σ̃ ′(σ ) = Σ̃ ′′(σ ). Thus Σ̃(σ ) = Σ̃ ′(σ ).
We conclude that Σ̃ is a refinement of Σ . Thus (Σ̃ ,Δ) ∈ S and it is an upper bound for
S ′.
By Zorn’s lemma S has a maximal element (Σ̃ ,Δ). We will show that Δ = Σ , which

will complete the proof of the lemma. Suppose not. Choose σ ∈ Σ −Δ. Set Δ′ to be the
union of Δ and the faces of σ . Let Σ̃ ′ be a refinement of Σ̃ such that

• any element of Σ̃ which is smooth also lies in Σ̃ ′;
• any element of Σ̃ ′ contained in σ is smooth;
• and if σ ′ ∈ Σ̃ − Σ̃ ′ then σ ′ has a non-smooth face contained in σ .

Then (Σ̃ ′,Δ′) ∈ S and (Σ̃ ′,Δ′) > (Σ̃ ,Δ), a contradiction. ��

To a fan Σ one can attach a connected scheme TΣ that is separated, locally (on TΣ )
of finite type and flat over Y of relative dimension dimR X∗(S)R, together with an action
of S and an S-equivariant dense open embedding T ↪→ TΣ over Y . The scheme TΣ has
an open cover by the Tσ for σ ∈ Σ such that Tσ ′ ⊂ Tσ if and only if σ ′ ⊂ σ . We write
OTΣ for the structure sheaf of TΣ . IfΣ is smooth then TΣ/Y is smooth. IfΣ is finite and
|Σ | = X∗(S)R, then TΣ/Y is proper. If Σ ′ ⊂ Σ then TΣ ′ can be identified with an open
subscheme of TΣ . If Σ ′ refines Σ then there is an S-equivariant proper map

TΣ ′ → TΣ

which restricts to the identity on T : Its restriction to Tσ ′ equals the map

Tσ ′ −→ Tσ ↪→ TΣ

where σ ′ ⊂ σ ∈ Σ .
By boundary data for Σ we shall mean a proper subset Σ0 ⊂ Σ such that Σ −Σ0 is a

fan. (Note thatΣ0 may not be closed under taking faces.) IfΣ0 is boundary data we define
∂Σ0TΣ to be the closed subscheme of TΣ with

(∂Σ0TΣ ) ∩ Tσ = ∂{τ∈Σ0:τ⊂σ }Tσ .

Note that

∂Σ0TΣ ⊂
⋃

σ∈Σ0

Tσ .

Thus ∂Σ0TΣ has an open cover by the sets

(∂Σ0TΣ )σ = Tσ ∩ ∂Σ0TΣ

as σ runs over Σ0. We write I∂Σ0TΣ for the ideal sheaf in OTΣ defining ∂Σ0TΣ . If Σ0 ⊂
Σ ′ ⊂ Σ then

∂Σ0TΣ ′
∼−→ ∂Σ0TΣ .
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Note that I∂Σ0TΣ |Tσ corresponds to the ideal

⊕
χ∈XΣ0 ,σ ,1

LT (χ )

of
⊕

χ∈X∗(S)∩σ∨
LT (χ ),

where

XΣ0 ,σ ,1 = X∗(S) ∩ σ∨ −
⋃

τ∈Σ0 ,τ⊂σ

τ⊥

and τ⊥ denotes the annihilator of τ in X∗(S)R. If we let XΣ0 ,σ ,m denote the set of sums of
m elements of XΣ0 ,σ ,1, then Im

∂Σ0TΣ
|Tσ corresponds to the ideal

⊕
χ∈XΣ0 ,σ ,m

LT (χ ).

If σ /∈ Σ0 then

XΣ0 ,σ ,m = X∗(S) ∩ σ∨

for allm. If on the other hand σ ∈ Σ0 then
⋂
m

XΣ0 ,σ ,m = ∅.

(For if χ ∈ σ 0 ∩ X∗(S) then χ ≥ m on XΣ0 ,σ ,m.)
In the special case Σ0 = Σ − {{0}} we will write ∂TΣ for ∂Σ0TΣ and I∂TΣ for I∂Σ0TΣ .

Then

T = TΣ − ∂TΣ .

We will writeMΣ → OTΣ for the log structure corresponding to the closed embedding
∂TΣ ↪→ TΣ . We will writeΩ1

TΣ/SpecR0 (log∞) for the log differentials previously denoted
Ω1

TΣ/SpecR0 (logMΣ ).
If Σ is smooth then ∂TΣ is a simple normal crossings divisor on TΣ relative to Y .
If Σ0 is boundary data for Σ we will set

|Σ0| = {0} ∪
⋃

σ∈Σ0

σ .

and

|Σ0|0 = |Σ0| −
⋃

σ∈Σ−Σ0

σ .

We will call Σ0
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• open if |Σ0|0 is open in X∗(S)R;
• finite if it has finite cardinality;
• locally finite if for every rational polyhedral cone τ ⊂ |Σ0| (not necessarily in Σ0)

the intersection τ ∩ |Σ0|0 meets only finitely many elements of Σ0. (We remark that
although this condition may be intuitive in the case |Σ0|0 = |Σ0|, in other cases it may
be less so.)

Let Σ continue to denote a fan and Σ0 boundary data for Σ . If σ ∈ Σ we write

Σ(σ ) = {τ ∈ Σ : τ ⊃ σ } .

If σ �= {0}, then this is an example of boundary data for Σ . If σ ∈ Σ0 then

Σ(σ ) = {τ ∈ Σ0 : τ ⊃ σ }

and we will sometimes denote it Σ0(σ ). If Σ0 is locally finite then Σ0(σ ) is finite for all
σ ∈ Σ0. If {0} �= σ ∈ Σ we write

∂σTΣ = ∂Σ(σ )TΣ

and

∂0σTΣ = ∂σTΣ −
⋃
σ ′�σ

∂σ ′TΣ

Sometimes we also write

∂0{0}TΣ = T.

IfΣ0 is locally finite then the ∂σTΣ for σ ∈ Σ0 form a locally finite closed cover of ∂Σ0TΣ .
Set theoretically we have

∂σTΣ =
∐

σ ′∈Σ(σ )
∂0σ ′TΣ

and

(∂Σ0TΣ )σ =
∐

σ ′∈Σ0
σ ′⊂σ

∂0σ ′TΣ

and

Tσ =
∐
σ ′⊂σ

∂0σ ′TΣ

and

∂Σ0TΣ =
∐

σ ′∈Σ0

∂0σ ′TΣ .

If dim σ = 1 then ∂0σTΣ = ∂Tσ .
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Keep the notation of the previous paragraph. We define S(σ ) to be the split torus with
cocharacter group X∗(S) divided by the subgroup generated by σ ∩ X∗(S), and T (σ ) to
be the push-out of T to S(σ ). We also define Σ(σ ) to be the set of images in X∗(S(σ ))R
of elements of Σ(σ ). It is a fan for X∗(S)R/〈σ 〉R. [The main point to check is that if
τ , τ ′ ∈ Σ(σ ) then (τ ∩ τ ′) + 〈σ 〉R = (τ + 〈σ 〉R) ∩ (τ ′ + 〈σ 〉R). To verify this suppose
that x ∈ τ and y ∈ τ ′ with x − y ∈ 〈σ 〉R. Then x − y = z − w with z, w ∈ σ . Thus
x + w = y + z ∈ τ ∩ τ ′ and x + 〈σ 〉R = (x + w) + 〈σ 〉R.] If σ ∈ Σ0 we will sometimes
write Σ0(σ ) for Σ(σ ), as it depends only on Σ0 and not on Σ . Then

∂0σTΣ
∼= T (σ ) ⊂ T (σ )Σ(σ )

∼= ∂σTΣ .

Thus ∂σTΣ is separated, locally (on the source) of finite type and flat over Y . The closed
subscheme ∂σTΣ has codimension in TΣ equal to the dimension of σ . If Σ(σ ) is smooth
then ∂σTΣ is smooth over Y .
If Σ(σ ) is open then ∂σTΣ satisfies the valuative criterion of properness over Y . If in

additionΣ(σ ) is finite then ∂σTΣ is proper over Y . IfΣ0 is open, then ∂Σ0TΣ satisfies the
valuative criterion of properness over Y . If in addition Σ0 is finite then ∂Σ0TΣ is proper
over Y .
The schemes ∂σ1TΣ , . . . , ∂σsTΣ intersect if and only if σ1, . . . , σs are all contained in

some σ ∈ Σ . In this case the intersection equals ∂σTΣ for the smallest such σ . We set

∂iTΣ =
∐

dim σ=i
∂σTΣ .

If Y is irreducible then TΣ and each ∂σTΣ is irreducible. Moreover the irreducible
components of ∂TΣ are the ∂σTΣ as σ runs over one-dimensional elements of Σ . If Σ is
smooth then we see that S(∂TΣ ) is the delta set with cells in bijection with the elements of
Σ − {{0}} and with the same ‘face relations’. In particular it is in fact a simplicial complex
and

|S(∂TΣ )| = (|Σ | − {0})/R×
>0.

We say that (Σ ′,Σ ′
0) refines (Σ ,Σ0) if Σ ′ refines Σ and Σ ′ −Σ ′

0 is the set of elements
of Σ ′ contained in some element of Σ −Σ0. In this case ∂Σ ′

0
TΣ ′ maps to ∂Σ0TΣ , and in

fact set theoretically ∂Σ ′
0
TΣ ′ is the pre-image of ∂Σ0TΣ in TΣ ′ .

IfΣ is a fan, then by line bundle data forΣ wemean a continuous functionψ : |Σ | → R,
such that for each cone σ ∈ Σ , the restriction ψ |σ equals some ψσ ∈ X∗(S). To ψ

we can attach a line bundle Lψ on TΣ : On Tσ (with σ ∈ Σ) it corresponds to the⊕
χ∈σ∨∩X∗(S) LT (χ )-module

⊕
χ∈X∗(S)

χ−ψ≥0 on σ

LT (χ ).

Note that there are natural isomorphisms

Lψ ⊗ Lψ ′ ∼= Lψ+ψ ′ ,
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and that

L⊗−1
ψ

∼= L−ψ .

We have the following examples of line bundle data.

(1) OTΣ is the line bundle associated to ψ ≡ 0.
(2) If Σ is smooth then I∂TΣ is the line bundle associated to the unique such function

ψΣ which for every one-dimensional cone σ ∈ Σ satisfies

ψΣ (X∗(S) ∩ σ ) = Z≥0.

Suppose that α : S →→ S′ is a surjective map of split tori over Y . ThenX∗(α) : X∗(S′) ↪→
X∗(S) and X∗(α) : X∗(S) → X∗(S′), the latter with finite cokernel. We call fans Σ for
X∗(S) andΣ ′ for X∗(S′) compatible if for all σ ∈ Σ the image X∗(α)σ is contained in some
element of Σ ′. In this case the map α : T → α∗T extends to an S-equivariant map

α : TΣ −→ (α∗T )Σ ′ .

We will write

Ω1
TΣ/(α∗T )Σ ′ (log∞) = Ω1

TΣ/(α∗T )Σ ′ (logMΣ/MΣ ′ ).

If for all σ ′ ∈ Σ ′ the pre-image X∗(α)−1(σ ′) is a finite union of elements of Σ , then
α : TΣ → (α∗T )Σ ′ is proper.
If α is an isogeny, if Σ and Σ ′ are compatible, and if every element of Σ ′ is a finite

union of elements of Σ , then we call Σ a quasi-refinement of Σ ′. In that case the map
α : TΣ → (α∗T )Σ ′ is proper.

Lemma 2.5 If α is surjective and #cokerX∗(α) is invertible on Y then

α : (TΣ ,MΣ ) → ((α∗T )Σ ′ ,MΣ ′ )

is log smooth, and there is a natural isomorphism

(X∗(S)/X∗(α)X∗(S′))⊗Z OTΣ

∼−→ Ω1
TΣ/(α∗T )Σ ′ (log∞).

Proof We can work Zariski locally on TΣ . Thus we may replace TΣ by Tσ and (α∗T )Σ ′

by (α∗T )σ ′ for cones σ and σ ′ with X∗(α)σ ⊂ σ ′. Wemay also replace Y by an affine open
subsetU such thatT |U is trivial, i.e. eachLT (χ ) ∼= OY compatiblywithLT (χ )⊗LT (χ ′) ∼→
LT (χ +χ ′). Then the log structure on Tσ has a chart Z[σ∨ ∩X∗(S)] → OTσ sending χ to

1 ∈ OY (Y ) ∼= LT (χ ).

Similarly the log structure on (α∗T )σ ′ has a chart Z[(σ ′)∨ ∩ X∗(S′)] → O(α∗T )σ ′ sending
χ to

1 ∈ OY (Y ) ∼= Lα∗T (χ ).
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The lemma follows because

X∗(α) : X∗(S′) −→ X∗(S)

is injective and the torsion subgroup of the cokernel is finite with order invertible on Y . ��
We will call pairs (Σ ,Σ0) and (Σ ′,Σ ′

0) of fans and boundary data for S and S′, respec-
tively, compatible ifΣ andΣ ′ are compatible and if no cone ofΣ0 maps into any cone of
Σ ′ −Σ ′

0. In this case

∂Σ0TΣ −→ ∂Σ ′
0
(α∗T )Σ ′ .

Wewill call them strictly compatible if they are compatible andΣ −Σ0 is the set of cones
in Σ mapping into some element of Σ ′ −Σ ′

0.

Lemma 2.6 Suppose that α : S →→ S′ is a surjective map of split tori, that T/Y is an
S-torsor and that (Σ ,Σ0) and (Σ ′,Σ ′

0) are strictly compatible fans with boundary data for
S and S′, respectively. Then locally on TΣ there is a strictly positive integer m such that

α∗I∂Σ ′
0
(α∗T )Σ ′ ⊃ Im

∂Σ0TΣ

and

I∂Σ0TΣ ⊃ α∗I∂Σ ′
0
(α∗T )Σ ′ .

Proof We may work locally on Y and so we may suppose that Y = SpecA is affine and
that each LT (χ ) is trivial. It also suffices to check the lemma locally on TΣ . Thus we may
suppose that Σ consists of a cone σ and all its faces. Let σ ′ denote the smallest element
ofΣ ′ containing the image of σ . Then we may further suppose thatΣ ′ consists of σ ′ and
all its faces. We may further suppose that σ ∈ Σ0 and σ ′ ∈ Σ ′

0, else there is nothing to
prove.
Then

TΣ = Spec
⊕

χ∈X∗(S)∩σ∨
LT (χ )

and ∂Σ0TΣ is defined by
⊕

χ∈X∗(S)∩|Σ0|0,∨,0
LT (χ ).

Moreover TΣ ×(α∗T )Σ ′ ∂Σ ′
0
(α∗T )Σ ′ is defined by

⊕

χ1∈X∗(S′)∩|Σ ′
0|0,∨,0

χ2∈X∗(S)∩σ∨

LT (X∗(α)χ1 + χ2).

Thus it suffices to show that for some positive integerm we have

X∗(S) ∩ |Σ0|0,∨,0 ⊃ X∗(α)(X∗(S′) ∩ |Σ ′
0|0,∨,0)+

(
X∗(S) ∩ σ∨)

⊃ m(X∗(S) ∩ |Σ0|0,∨,0).
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This is equivalent to

|Σ0|0,∨,0 = X∗(α)|Σ ′
0|0,∨,0 + σ∨.

Suppose that χ1 ∈ |Σ ′
0|0,∨,0 and χ2 ∈ σ∨. Then

X∗(α)(χ1)(σ − |Σ −Σ0|) = χ1(X∗(α)(σ − |Σ −Σ0|)) ⊂ χ1(σ ′ − |Σ ′ −Σ ′
0|) ⊂ R>0

and so

(X∗(α)(χ1)+ χ2)(σ − |Σ −Σ0|) ⊂ R>0.

Thus

|Σ0|0,∨,0 ⊃ X∗(α)|Σ ′
0|0,∨,0 + σ∨.

Conversely suppose that χ ∈ |Σ0|0,∨,0. Let τ denote the face of σ , where χ = 0. Then
τ ∈ Σ −Σ0. Let τ ′ denote the smallest face of σ ′ containing X∗(α)τ . Then τ ′ ∈ Σ ′ −Σ ′

0.
We can find χ1 ∈ |Σ ′

0|0,∨,0 with χ1(τ ′) = {0}. Note that if a ∈ σ and χ (a) = 0 then
(X∗(α)(χ1))(a) = 0. Thus we can find ε > 0 such that

χ − X∗(α)(εχ1) ∈ σ∨.

It follows that

|Σ0|0,∨,0 ⊂ X∗(α)|Σ ′
0|0,∨,0 + σ∨.

The lemma follows. ��

Suppose that (Σ ,Σ0) and (Σ ′,Σ ′
0) are strictly compatible. We will say that

• Σ0 is open over Σ ′
0 if |Σ0|0 is open in X∗(α)−1|Σ ′

0|0;
• and thatΣ0 is finite overΣ ′

0 if only finitely many elements ofΣ0 map into any element
of Σ ′

0.

If α is an isogeny, if Σ is a quasi-refinement of Σ ′ and if (Σ ,Σ0) and (Σ ′,Σ ′
0) are strictly

compatible, then we call (Σ ,Σ0) a quasi-refinement of (Σ ′,Σ ′
0). In this case Σ0 is open

and finite over Σ ′
0.

Lemma 2.7 Suppose that α : S →→ S′ is a surjective map of split tori, that T/Y is an
S-torsor, and that (Σ ,Σ0) and (Σ ′,Σ ′

0) are strictly compatible fans with boundary data
for S and S′, respectively. If Σ0 is locally finite and Σ0 is open over Σ ′

0 then

∂Σ0TΣ −→ ∂Σ ′
0
(α∗T )Σ ′

satisfies the valuative criterion of properness. If in addition Σ0 is finite over Σ ′
0 then this

morphism is proper.
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Proof It suffices to show that if σ ∈ Σ0 and if σ ′ is the smallest element ofΣ ′
0 containing

X∗(α)σ , then

∂σTΣ −→ ∂σ ′ (α∗T )Σ ′

satisfies the valuative criterion of properness. However this is the map of toric varieties

T (σ )Σ0(σ ) −→ (α∗T )(σ ′)
Σ

′
0(σ ′).

As Σ0(σ ) is finite, it suffices to check that

⋃

τ ′⊃σ ′
τ ′∈Σ ′

0

X∗(α)−1 ((τ ′)0 + 〈σ ′〉R
) =
⋃
τ⊃σ
τ∈Σ0

(
τ 0 + 〈σ 〉R

)
.

Choose a point P ∈ σ 0 such that

X∗(α)P ∈ (X∗(α)σ )0 ⊂ (σ ′)0.

Then

〈σ ′〉R = σ ′ + RX∗(α)(P).

[To see this choose nonzero vectors vi in each one-dimensional face of σ ′. Then we can
write X∗(α)(P) = ∑i μivi with each μi > 0. If λi ∈ R, then for λ sufficiently large
λi + λμi ∈ R>0 for all i, and so

∑
i

λivi =
∑
i
(λi + λμi)vi − λX∗(α)(P) ∈ σ ′ + RX∗(α)(P).

]

Thus

〈σ ′〉R = σ ′ + X∗(α)〈σ 〉R.

Hence for all τ ′ ∈ Σ ′
0 with τ ′ ⊃ σ ′, we have

(τ ′)0 + 〈σ ′〉R = (τ ′)0 + X∗(α)〈σ 〉R

and so

X∗(α)−1((τ ′)0 + 〈σ ′〉R) = 〈σ 〉R + X∗(α)−1(τ ′)0.

We deduce that it suffices to check that

〈σ 〉R +
⋃

τ ′⊃σ ′
τ ′∈Σ ′

0

X∗(α)−1(τ ′)0 = 〈σ 〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.
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The left hand side certainly contains the right hand side, so it suffices to prove that for all
τ ′ ∈ Σ ′

0 with τ ′ ⊃ X∗(α)σ we have

〈σ 〉R + X∗(α)−1τ ′ ⊂ 〈σ 〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.

Let π denote the map

π : X∗(S)R →→ X∗(S)R/〈σ 〉R.

Because X∗(α)−1τ ′ and
⋃

τ⊃σ
τ∈Σ0

τ 0 are invariant under the action of R×
>0 it suffices to find

an open set U ⊂ X∗(S)R containing P such that

(πU ) ∩ πX∗(α)−1τ ′ ⊂ π
⋃
τ⊃σ
τ∈Σ0

τ 0,

or equivalently such that

U ∩ (〈σ 〉R + X∗(α)−1τ ′) ⊂ 〈σ 〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.

Thus it suffices to find an open set U ⊂ X∗(S)R containing P such that

(1) U ∩ X∗(α)−1|Σ ′
0|0 ⊂
⋃

τ⊃σ
τ∈Σ0

τ 0;

(2) U ∩ X∗(α)−1τ ′ ⊂ X∗(α)−1|Σ ′
0|0;

(3) and for all open U ′ ⊂ U containing P we have U ′ ∩ (〈σ 〉R + X∗(α)−1τ ′) = U ′ ∩
X∗(α)−1τ ′.

Moreover in order to find such a U # P it suffices to find one satisfying each property
independently and take their intersection.
One can find an open set U # P satisfying the first property because
⋃
τ⊃σ
τ∈Σ0

τ 0 ⊂ |Σ0|0 ⊂ X∗(α)−1|Σ ′
0|0

are both open inclusions.
To find U # P satisfying the second condition we just need to avoid the faces of

X∗(α)−1τ ′ which do not contain P.
It remains to check that we can find an openU # P satisfying the last condition. Suppose

that X∗(α)−1τ ′ is defined by inequalities χi ≥ 0 for i = 1, . . . , r with χi ∈ X∗(S)R. Suppose
that χi = 0 on σ for i = 1, . . . , s, but that χi(P) > 0 for i = s + 1, . . . , r. It suffices to
choose U so that χi > 0 on U for i = s+ 1, . . . , r. For then if x ∈ X∗(α)−1τ ′ and y ∈ 〈σ 〉R
with x + y ∈ U we see that

χi(x + y) = χi(x) ≥ 0

for i = 1, . . . , s, while χi(x + y) > 0 for i = s + 1, . . . , r. Thus for U ′ ⊂ U we have

U ′ ∩ (〈σ 〉R + X∗(α)−1τ ′
) = U ′ ∩ X∗(α)−1τ ′,

as desired. ��
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By a partial fan we will mean a collection Σ0 of rational polyhedral cones satisfying

• (0) /∈ Σ0;
• if σ1, σ2 ∈ Σ0, then σ1 ∩ σ2 is a face of σ1 and of σ2;
• if σ1, σ2 ∈ Σ0, and if σ ⊃ σ2 is a face of σ1, then σ ∈ Σ0.

(Again note that Σ0 may not be closed under taking faces.) In this case we will let Σ̃0
denote the set of faces of elements of Σ0 together with {0}. Then Σ̃0 and Σ̃0 − Σ0 are
fans, and Σ0 is boundary data for Σ̃0. [To see this suppose that τi is a face of σi ∈ Σ0 for
i = 1, 2. Then σ1 ∩ σ2 is a face of σ1 and so τ1 ∩ σ2 = τ1 ∩ (σ1 ∩ σ2) is a face of σ1 ∩ σ2 and
hence of σ2. Thus τ1 ∩ τ2 = τ2 ∩ (τ1 ∩ σ2) is a face of τ2.] IfΣ is a fan andΣ0 is boundary
data for Σ , then Σ0 is a partial fan, and Σ ⊃ Σ̃0. Thus

∂Σ0TΣ
∼= ∂Σ0TΣ̃0 .

If Σ0 and Σ ′
0 are partial fans we will say that Σ0 refines Σ ′

0 if every element of Σ0 is
contained in an element of Σ ′

0 and if every element of Σ ′
0 is a finite union of elements of

Σ0. In this case Σ̃0 also refines Σ̃ ′
0.

If Σ0 is a partial fan we will set

|Σ0| = {0} ∪
⋃

σ∈Σ0

σ = |Σ̃0|.

and

|Σ0|0 = |Σ0| −
⋃

σ∈Σ̃0−Σ0

σ .

We will call Σ0

• smooth if each σ ∈ Σ0 is smooth;
• full if every element ofΣ0 which is not a face of any other element ofΣ0, has the same

dimension as S;
• open if |Σ0|0 is open in X∗(S)R;
• finite if it has finite cardinality;
• locally finite if for every rational polyhedral cone τ ⊂ |Σ0| (not necessarily in Σ0) the

intersection τ ∩ |Σ0|0 meets only finitely many elements of Σ0.

If Σ0 is smooth, so is Σ̃0.
Suppose that Σ0 is a partial fan. If Σ ⊃ Σ̃0 is a fan then the natural maps

∂Σ0TΣ̃0 −→ ∂Σ0TΣ

and
(
TΣ̃0

)∧
∂Σ0T

−→ (TΣ )∧∂Σ0T

are isomorphisms, and we will denote these schemes/formal schemes ∂Σ0T and T∧
Σ0

,
respectively. Moreover the log structures induced on T∧

Σ0
by MΣ̃0 and by MΣ are the

same and we will denote them M∧
Σ0

. If Σ ′
0 ⊂ Σ0 is also a partial fan, then T∧

Σ ′
0
can be

identified with the completion of T∧
Σ0

along ∂Σ ′
0
T , and M∧

Σ0
induces M∧

Σ ′
0
. If σ ∈ Σ̃0

then we will let
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(
T∧
Σ0

)
σ

denote the restriction of T∧
Σ0

to the topological space (∂Σ0TΣ̃0 )σ . Thus the (T∧
Σ0

)σ for
σ ∈ Σ0 form an affine open cover of T∧

Σ0
. We have

(
T∧
Σ0

)
{0} = ∅

and

(
T∧
Σ0

)
σ1
∩ (T∧

Σ0

)
σ2
= (T∧

Σ0

)
σ1∩σ2 .

If Σ ′
0 refines Σ0 then there is an induced map

T∧
Σ ′

0
−→ T∧

Σ0 .

Continue to suppose that Σ0 is a partial fan. We will call Σ1 ⊂ Σ0 boundary data if,
whenever σ ∈ Σ0 contains σ ′ ∈ Σ1, then σ ∈ Σ1. In this case Σ1 is a partial fan and T∧

Σ1
is canonically identified with the completion of T∧

Σ0
along ∂Σ1TΣ̃0 .

We will also use the following notation.

• OT∧
Σ0

will denote the structure sheaf of T∧
Σ0

.
• IT∧

Σ0
will denote the completion of I∂Σ0TΣ̃0

, an ideal of definition for T∧
Σ0

.
• I∧∂ ,Σ0

will denote the completion of I∂TΣ̃0
. Thus IT∧

Σ0
⊃ I∧∂ ,Σ0

.
• Ω1

T∧
Σ0

/Spf R0
(log∞) will denote Ω1

T∧
Σ0

/Spf R0
(logM∧

Σ ), which is isomorphic to the com-

pletion of Ω1
TΣ̃0/SpecR0

(log∞).

For σ ∈ Σ̃0 recall that Im
∂Σ0TΣ̃0

|Tσ corresponds to the ideal

⊕
χ∈XΣ0 ,σ ,m

LT (χ )

of

⊕
χ∈σ∨∩X∗(S)

LT (χ ).

Also recall that if σ /∈ Σ0 then

XΣ0 ,σ ,m = σ∨ ∩ X∗(S)

for allm, while if σ ∈ Σ0 then

⋂
m

XΣ0 ,σ ,m = ∅.

By line bundle data forΣ0 we mean a continuous function ψ : |Σ0| → R, such that for
each cone σ ∈ Σ̃0, the restriction ψ |σ equals some ψσ ∈ X∗(S). This is the same as line
bundle data for the fan Σ̃0, and we will write L∧

ψ for the line bundle on T∧
Σ0

, which is the
completion of Lψ/TΣ̃0 . Note that
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L∧
ψ ⊗ L∧

ψ ′ = L∧
ψ+ψ ′ ,

and that

(L∧
ψ )

⊗−1 = L∧−ψ .

We have the following examples of line bundle data.

(1) OT∧
Σ0

is the line bundle associated to ψ ≡ 0.
(2) If Σ0 is smooth then I∧∂ ,Σ0

is the line bundle associated to the unique such function
ψΣ̃0 which for every one-dimensional cone σ ∈ Σ̃0 satisfies

ψΣ̃0 (X∗(S) ∩ σ ) = Z≥0.

Suppose that α : S →→ S′ is a surjective map of tori, and that Σ0 (resp. Σ ′
0) is a partial

fan for S (resp. S′). We callΣ0 andΣ ′
0 compatible if for every σ ∈ Σ0 the image X∗(α)σ is

contained in some element ofΣ ′
0 but in no element of Σ̃ ′

0 −Σ ′
0. In this case (Σ̃0,Σ0) and

(Σ̃ ′
0,Σ

′
0) are compatible, and there is a natural morphism

α :
(
T∧
Σ0 ,M

∧
Σ0

) −→
(
(α∗T )∧

Σ ′
0
,M∧

Σ ′
0

)
.

We will write

Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(log∞) = Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(
logM∧

Σ0/M
∧
Σ ′

0

)
.

The following lemma follows immediately from Lemma 2.5.

Lemma 2.8 If α is surjective and #cokerX∗(α) is invertible on Y then there is a natural
isomorphism

(X∗(S)/X∗(α)X∗(S′))⊗Z OT∧
Σ0

∼−→ Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(log∞).

We will call Σ0 and Σ ′
0 strictly compatible if they are compatible and if an element of

Σ̃0 lies in Σ0 if and only if it maps to no element of Σ̃ ′
0 − Σ ′

0. In this case (Σ̃0,Σ0) and
(Σ̃ ′

0,Σ
′
0) are strictly compatible. We will say that

• Σ0 is open over Σ ′
0 if |Σ0|0 is open in X∗(α)−1|Σ ′

0|0;
• and thatΣ0 is finite overΣ ′

0 if only finitely many elements ofΣ0 map into any element
of Σ ′

0.

If α is an isogeny, ifΣ0 andΣ ′
0 are strictly compatible and if every element ofΣ ′

0 is a finite
union of elements ofΣ0, then we callΣ0 a quasi-refinement ofΣ ′

0. In this caseΣ0 is open
and finite over Σ ′

0. The next lemma follows immediately from Lemmas 2.6 and 2.7.

Lemma 2.9 Suppose that Σ ′
0 and Σ0 are strictly compatible.

(1) T∧
Σ0

is the formal completion of TΣ̃0 along ∂Σ ′
0
(α∗T ), and T∧

Σ0
is locally (on the source)

topologically of finite type over (α∗T )∧
Σ ′

0
.

(2) If Σ0 is locally finite and if it is open and finite over Σ ′
0 then T∧

Σ0
is proper over

(α∗T )∧
Σ ′

0
.



Harris et al. Res Math Sci (2016) 3:37 Page 68 of 308

Corollary 2.10 If α is an isogeny, if Σ0 is locally finite and if Σ0 is a quasi-refinement of
Σ ′

0 then T∧
Σ0

is proper over (α∗T )∧
Σ ′

0
.

If Σ0 and Σ ′
0 are compatible partial fans and if Σ ′

1 ⊂ Σ ′
0 is boundary data then Σ0(Σ ′

1)
will denote the set of elements σ ∈ Σ0 such that X∗(α)σ is contained in no element of
Σ ′

0 − Σ ′
1. It is boundary data for Σ0. Moreover the formal completion of T∧

Σ0
along the

reduced subscheme of (α∗T )∧
Σ ′

1
is canonically identified with T∧

Σ0(Σ ′
1)
. If Σ ′

1 = {σ ′} is a
singleton we will write Σ0(σ ′) for Σ0({σ ′}).

2.4 Cohomology of line bundles

In this section we will compute the cohomology of line bundles on formal completions
of torus embeddings. We will work throughout over a base scheme Y which is connected,
separated and flat and locally of finite type over SpecR0.
We start with some definitions. We continue to assume that S/Y is a split torus, that

T/Y is an S-torsor, thatΣ0 is a partial fan and thatψ is line bundle data forΣ0. If σ ∈ Σ̃0
then we set

XΣ0 ,ψ ,σ ,0 =
{
χ ∈ X∗(S) ∩ σ∨ : χ ≥ ψ on σ

}
.

For m > 0 we define XΣ0 ,ψ ,σ ,m to be the set of sums of an element of XΣ0 ,ψ ,σ ,0 and an
element of XΣ0 ,σ ,m. If σ /∈ Σ0 then

XΣ0 ,ψ ,σ ,m = XΣ0 ,ψ ,σ ,0

for allm, while if σ ∈ Σ0

⋂
m

XΣ0 ,ψ ,σ ,m = ∅.

Further suppose that χ ∈ X∗(S).

• Set Yψ (χ ) = {x ∈ X∗(S)R : (ψ − χ )(x) > 0}.
• If U ⊂ Y is open let Hj

Σ0 ,ψ ,m(χ )(U ) denote the jth cohomology of the Cech complex
with ith term

∏

(σ0 ,...,σi)∈Σ i+1
0

χ∈XΣ0 ,ψ ,σ0∩···∩σi ,0
χ /∈XΣ0 ,ψ ,σ0∩···∩σi ,m

LT (χ )(U ).

Note the examples:

(1) Y0(χ ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨.
(2) YψΣ̃0

(χ ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨,0.

Also note that ifΣ0 is finite then, form large enough,Hj
Σ0 ,ψ ,m(χ )(U ) does not depend on

m. We will denote it simply Hj
Σ0 ,ψ (χ )(U ). It equals the cohomology of the Cech complex
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∏

(σ0 ,...,σi)∈Σ i+1
0

σ0∩···∩σi∈Σ0

LT (χ )(U ).

Lemma 2.11 If U is connected then

Hi
Σ0 ,ψ (χ )(U ) = Hi

|Σ0|0−Yψ (χ )
(|Σ0|0,LT (χ )(U )

)
.

Proof WriteM forLT (χ )(U ). We follow the argument of section 3.5 of [26]. As σ0∩ · · ·∩
σi ∩ |Σ0|0 and σ0 ∩ · · · ∩ σi ∩ |Σ0|0 ∩ Yψ (χ ) are convex, we see that

Hj
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,M

)

=
{
M if j = 0 and

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0

) ∩ Yψ (χ ) = ∅
(0) otherwise.

(See the first paragraph of section 3.5 of [26].) Thus the ith term of our Cech complex
becomes

∏

(σ0 ,...,σi)∈Σ i+1
0

H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,M

)
.

Thus it suffices to show that the Cech complex with ith term

∏

(σ0 ,...,σi)∈Σ i+1
0

H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,M

)

computes

Hi
|Σ0|0−Yψ (χ )(|Σ0|0,M).

To this end choose an injective resolution

M −→ I0 −→ I1 −→ · · ·

as sheaves of abelian groups on |Σ0|0, and consider the double complex

∏

(σ0 ,...,σi)∈Σ i+1
0

H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,I j

)
.

We compute the cohomology of the corresponding total complex in two ways. Firstly the
jth cohomology of the complex

H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,I0)

↓
H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,I1)

↓
...
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equals

Hj
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,M

)
.

(See theorem 4.1, proposition 5.3 and theorem 5.5 of chapter II of [14].) This vanishes for
j > 0, and so the cohomology of our total complex is the same as the cohomology of the
Cech complex with ith term

∏

(σ0 ,...,σi)∈Σ i+1
0

H0
(σ0∩···∩σi∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ · · · ∩ σi ∩ |Σ0|0,M

)
.

Thus it suffices to identify the cohomology of our double complex with

Hi
|Σ0|0−Yψ (χ )(|Σ0|0,M).

For this it suffices to show that

(0) −→ H0
|Σ0|0−Yψ (χ )

(|Σ0|0,I j) −→∏σ0∈Σ0 H
0
σ0∩|Σ0|0−Yψ (χ )

(
σ0 ∩ |Σ0|0,I j)

−→∏(σ0 ,σ1)∈Σ2
0
H0
(σ0∩σ1∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ σ1 ∩ |Σ0|0,I j) −→ · · ·

is exact for all j. Let Ĩ j denote the sheaf of discontinuous sections of I j , i.e. Ĩ j(V ) denotes
the set of functions which assign to each point of x ∈ V an element of the stalk I j

x of I j at
x. Then I j is a direct summand of Ĩ j so it suffices to show that

(0) −→ H0
|Σ0|0−Yψ (χ )

(|Σ0|0, Ĩ j) −→∏σ0∈Σ0 H
0
σ0∩|Σ0|0−Yψ (χ )

(
σ0 ∩ |Σ0|0, Ĩ j)

−→∏(σ0 ,σ1)∈Σ2
0
H0
(σ0∩σ1∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ σ1 ∩ |Σ0|0, Ĩ j) −→ · · ·

is exact for all j. However Ĩ j is the direct product over x in |Σ0|0 of the sky-scraper I j
x

sheaf at x with stalk I j
x. Thus it suffices to show that

(0) −→ H0
|Σ0|0−Yψ (χ )

(
|Σ0|0,I j

x

)
−→∏σ0∈Σ0 H

0
σ0∩|Σ0|0−Yψ (χ )

(
σ0 ∩ |Σ0|0,I j

x

)

−→∏(σ0 ,σ1)∈Σ2
0
H0
(σ0∩σ1∩|Σ0|0)−Yψ (χ )

(
σ0 ∩ σ1 ∩ |Σ0|0,I j

x

)
−→ · · ·

is exact for all x ∈ |Σ0|0 and for all j. If x ∈ Yψ (χ ) ∩ |Σ0|0 all the terms in this sequence
are 0, so the sequence is certainly exact. If x ∈ |Σ0|0 − Yψ (χ ), this sequence equals

(0) −→ I j
x −→

∏
σ0∈Σ0x∈σ

I j
x −→

∏

(σ0 ,σ1)∈Σ2
0

x∈(σ0∩σ1)

I j
x −→ · · ·

A standard argument shows that this is indeed exact: Choose σ ∈ Σ0 with x ∈ σ .
Suppose

(a(σ0, . . . , σi)) ∈ ker

⎛
⎜⎜⎜⎝
∏

(σ0 ,...,σi)∈Σ i+1
0

x∈σ0∩···∩σi

I j
x −→

∏

(σ0 ,...,σi+1)∈Σ i+2
0

x∈σ0∩···∩σi+1

I j
x

⎞
⎟⎟⎟⎠ .
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Define

(
a′(σ0, . . . , σi−1)

) ∈
∏

(σ0 ,...,σi−1)∈Σ i
0

x∈σ0∩···∩σi−1

I j
x

by

a′(σ0, . . . , σi−1) = a(σ0, . . . , σi−1, σ ).

If ∂a′ denotes the image of a′ in
∏

(σ0 ,...,σi)∈Σ i+1
0

x∈σ0∩···∩σi

I j
x

then

(∂a′)(σ0, . . . , σi) =
i∑

k=0
(−1)ka(σ0, . . . , σ̂k , . . . , σi, σ ) = (−1)ia(σ0, . . . , σi),

i.e. a = (−1)i∂a′. ��
In general we will let Hi

|Σ0|0−Yψ (χ )
(|Σ0|0,LT (χ )) denote the sheaf ofOY -modules on Y

associated to the pre-sheaf

U �−→ Hi
|Σ0|0−Yψ (χ )

(|Σ0|0,LT (χ )(U )
)
.

Lemma 2.12 Let Y be a connected, separated scheme which is flat and locally of finite
type over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y be an S-torsor,
let Σ0 be a partial fan for S, let ψ be line bundle data for Σ0, and let π∧

Σ0
denote the map

T∧
Σ0

→ Y . Suppose that Σ0 is finite, non-empty and open. Then

Riπ∧
Σ0 ,∗L

∧
ψ =
∏

χ∈X∗(S)
Hi
|Σ0|0−Yψ (χ )

(|Σ0|0,LT (χ )
)
.

(Note that Riπ∧
Σ0 ,∗L

∧
ψ maynot be quasi-coherent onY . Infinite products of quasi-coherent

sheaves may not be quasi-coherent.)

Proof The left hand side is the sheaf associated to the pre-sheaf

U �−→ Hi
(
T∧
Σ0

∣∣
U ,L

∧
ψ

)

and the right hand side is the sheaf associated to the pre-sheaf

U �−→
∏

χ∈X∗(S)(U )
Hi
|Σ0|0−Yψ (χ )

(|Σ0|0,LT (χ )(U )
)
.

Thus it suffices to establish isomorphisms

Hi
(
T∧
Σ0

∣∣
U ,L

∧
ψ

) ∼=
∏

χ∈X∗(S)(U )
Hi
|Σ0|0−Yψ (χ )

(|Σ0|0,LT (χ )(U )
)
,

compatibly with restriction, for U = SpecA, with A noetherian and SpecA connected.
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Write ∂Σ0 ,mTΣ̃0 for the closed subscheme of TΣ̃0 defined by Im
∂Σ0TΣ̃0

. It has the same
underlying topological space as ∂Σ0TΣ̃0 . We will first compute

Hi
(
∂Σ0 ,mTΣ̃0

∣∣
U ,Lψ

/
Im
∂Σ0TΣ̃0

Lψ

)
,

using the affine cover of ∂Σ0 ,mTΣ̃0 by the open sets Tσ for σ ∈ Σ0. This gives rise to a
Cech complex with terms

∏

(σ0 ,...,σi)∈Σ i+1
0

⊕
χ∈X∗(S)

χ∈XΣ0 ,ψ ,σ0∩···∩σi ,0
χ /∈XΣ0 ,ψ ,σ0∩···∩σi ,m

LT (χ )(U ).

As Σ0 is finite, we see that

Hi
(
∂Σ0 ,mTΣ̃0

∣∣
U ,Lψ

/
Im
∂Σ0TΣ̃0

Lψ

)
=
⊕

χ∈X∗(S)
Hi

Σ0 ,ψ ,m(χ )(U ).

Because A is noetherian, because ∂Σ0 ,mTΣ̃0 is proper over SpecA and because
Lψ/Im

∂Σ0TΣ̃0
Lψ is a coherent sheaf on ∂Σ0 ,mTΣ̃0 , we see that the cohomology group

Hi(∂Σ0 ,mTΣ̃0 |U ,Lψ/Im
∂Σ0TΣ̃0

Lψ ) is a finitely generated A-module, and hence, for fixed

m and i, we see that the groups Hi
Σ0 ,ψ ,m(χ )(U ) = (0) for all but finitely many χ . In

particular

Hi
(
∂Σ0 ,mTΣ̃0

∣∣
U ,Lψ

/
Im
∂Σ0TΣ̃0

Lψ

)
=
∏

χ∈X∗(S)
Hi

Σ0 ,ψ ,m(χ )(U ).

Moreover, combining this observation with the fact that {Hi
Σ0 ,ψ ,m(χ )(U )} satisfies the

Mittag-Leffler condition, we see that the system

{
Hi
(
∂Σ0 ,mTΣ̃0

∣∣
U ,Lψ

/
Im
∂Σ0TΣ̃0

Lψ

)}

satisfies the Mittag-Leffler condition. Hence from proposition 0.13.3.1 of [23] we see that

Hi(T∧
Σ0

∣∣
U ,L

∧
ψ ) ∼= lim←m Hi

(
∂Σ0 ,mTΣ̃0 |U ,Lψ

/
Im
∂Σ0TΣ̃0

Lψ

)

∼= ∏χ∈X∗(S) lim←m Hi
Σ0 ,ψ ,m(χ )(U ),

and the present lemma follows from Lemma 2.11. ��

Lemma 2.13 Let Y be a connected, separated scheme which is flat and locally of finite
type over an irreducible noetherian ring R0, S/Y be a split torus, let T/Y be an S-torsor,
let Σ∞ be a partial fan for S, let

Σ1 ⊂ Σ2 ⊂ · · ·

be a nested sequence of partial fans with Σ∞ = ⋃i Σi and let ψ be line bundle data for
Σ∞. For i = 1, 2, 3, . . . ,∞ let π∧

Σi
denote the map T∧

Σi
→ Y .
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Suppose that for i ∈ Z>0 the partial fan Σi is finite, non-empty and open. Suppose also
that for all i ∈ Z≥0 and all connected, noetherian, affine open sets U ⊂ Y , the inverse
system
{
Hi
|Σj |0−Yψ (χ )

(|Σj|0,OY (U )
)}

j

satisfies the Mittag-Leffler condition. Then

Riπ∧
Σ∞ ,∗L∧

ψ
∼=
∏

χ∈X∗(S)
lim←j

Hi
|Σj |0−Yψ (χ )

(|Σj|0,LT (χ )
)
.

Proof The left hand side is the sheaf associated to the pre-sheaf

U �−→ Hi
(
T∧
Σ∞
∣∣
U ,L

∧
ψ

)

and the right hand side is the sheaf associated to the pre-sheaf

U �−→
∏

χ∈X∗(S)
lim←j

Hi
|Σj |0−Yψ (χ )

(|Σj|0,OY (U )
)⊗ LT (χ )(U ).

Thus it suffices to establish isomorphisms

Hi
(
T∧
Σ∞
∣∣
U ,L

∧
ψ

) ∼=
∏

χ∈X∗(S)(Y )
lim←j

Hi
|Σj |0−Yψ (χ )

(|Σj|0,OY (U )
)⊗ LT (χ )(U ),

compatibly with restriction, for U = SpecA, with A noetherian and SpecA connected.
We can computeHi(T∧

Σ∞|U ,L∧
ψ ) as the cohomology of the Cech complex with ith term

∏

(σ0 ,...,σi)∈Σ i+1∞

L∧
ψ

((
T∧
Σ∞
)
(σ0∩···∩σi) |U

)
,

and we can computeHi(T∧
Σj
|U ,L∧

ψ ) as the cohomology of the Cech complex with ith term

∏

(σ0 ,...,σi)∈Σ i+1
j

L∧
ψ

((
T∧
Σj

)
(σ0∩···∩σi)

∣∣
U

)
.

Note that as soon as the faces of σ inΣj equals the faces of σ inΣ∞ then (T∧
Σ∞ )σ = (T∧

Σj
)σ .

Thus

lim←j

∏

(σ0 ,...,σi)∈Σ i+1
j

L∧
ψ

((
T∧
Σj

)
(σ0∩···∩σi)

∣∣
U

)
∼=
∏

(σ0 ,...,σi)∈Σ i+1∞

L∧
ψ

((
T∧
Σ∞
)
(σ0∩···∩σi)

∣∣
U

)
,

and
⎧⎪⎨
⎪⎩
∏

(σ0 ,...,σi)∈Σ i+1
j

L∧
ψ

((
T∧
Σj

)
(σ0∩···∩σi)(U )

)
⎫⎪⎬
⎪⎭

satisfies the Mittag-Leffler condition (with j varying but i fixed).
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From theorem 3.5.8 of [57] we see that there is a short exact sequence

(0) −→ lim←j
1Hi−1
(
T∧
Σj

∣∣∣
U
,L∧

ψ

)
−→ Hi

(
T∧
Σ∞

∣∣∣
U
,L∧

ψ

)
−→ lim←j Hi

(
T∧
Σj

∣∣∣
U
,L∧

ψ

)
−→ (0).

Applying Lemma 2.12 and the fact that lim← and lim←1 in the category of abelian groups
commute with arbitrary products, the present lemma follows. (It follows easily from defi-
nition 3.5.1 of [57] and the exactness of infinite products in the category of abelian groups
that lim← and lim←1 commute with arbitrary products in the category of abelian groups.)

��

Wenow turn to two specific line bundles:OT∧
Σ0

and, in the case thatΣ0 is smooth, I∧∂ ,Σ0
.

Lemma 2.14 Let Y be a connected, separated scheme which is flat and locally of finite
type over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y be an S-torsor,
let Σ0 be a partial fan for S, and let π∧

Σ0
denote the map T∧

Σ0
→ Y . Suppose that Σ0 is

non-empty, finite and open and that |Σ0|0 is convex.
(1) Then

Riπ∧
Σ0 ,∗OT∧

Σ0
=
{∏

χ∈|Σ0|∨ L(χ ) if i = 0
(0) otherwise.

(2) If in addition Σ0 is smooth then

Riπ∧
Σ0 ,∗I

∧
∂ ,Σ0 =
{∏

χ∈|Σ0|∨,0 L(χ ) if i = 0
(0) otherwise.

Proof The first part follows from Lemma 2.12 because Y0(χ )∩|Σ0|0 is empty if χ ∈ |Σ0|∨
and otherwise, being the intersection of two convex sets, it is convex.
For the second part we have that YψΣ̃0

(χ ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨,0. Thus
it suffices to show that each YψΣ̃0

(χ ) ∩ |Σ0|0 is empty or contractible.
To this end, consider the sets

Y ′(χ ) =
⋃

σ∈Σ0
χ≤0 on σ

σ

and

Y ′′(χ ) =
⋃

σ∈Σ0
χ �>0 on σ−{0}

σ .

If χ > 0 on σ − {0} then χ ≥ ψΣ̃0 on σ so that σ ∩ YψΣ̃0
(χ ) = ∅. Thus

Y ′′(χ ) ⊃ YψΣ̃0
(χ ) ∩ |Σ0|0 ⊃ Y ′(χ ) ∩ |Σ0|0

and

Y ′′(χ ) ⊃ {x ∈ |Σ0|0 : χ (x) ≤ 0
} ⊃ Y ′(χ ) ∩ |Σ0|0.
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We will describe a deformation retraction

H : Y ′′(χ )× [0, 1] −→ Y ′′(χ )

from Y ′′(χ ) to Y ′(χ ), which restricts to deformation retractions

(
YψΣ̃0

(χ ) ∩ |Σ0|0
)
× [0, 1] −→ YψΣ̃0

∩ |Σ0|0(χ )

from YψΣ̃0
(χ ) ∩ |Σ0|0 to Y ′(χ ) ∩ |Σ0|0, and

{
x ∈ |Σ0|0 : χ (x) ≤ 0} × [0, 1] −→ {x ∈ |Σ0|0 : χ (x) ≤ 0

}

from {x ∈ |Σ0|0 : χ (x) ≤ 0} to Y ′(χ ) ∩ |Σ0|0. (Recall that in particular H |Y ′(χ )×[0,1] is
just projection to the first factor.) As {x ∈ |Σ0|0 : χ (x) ≤ 0} is empty or convex, it would
follow that YψΣ̃0

(χ ) ∩ |Σ0|0 is empty or contractible and the second part of the corollary
would follow.
To define H it suffices to define, for each σ ∈ Σ̃0 with σ ⊂ Y ′′(χ ), a deformation

retraction

Hσ : σ × [0, 1] −→ σ

from σ to σ ∩ Y ′(χ ) with the following properties:

• If σ ′ ⊂ σ then Hσ |σ ′×[0,1] = Hσ ′ .
• Hσ |(σ∩Yψ

Σ̃0
(χ )∩|Σ0|0)×[0,1] is a deformation retraction from σ ∩ YψΣ̃0

(χ ) ∩ |Σ0|0 to σ ∩
Y ′(χ ) ∩ |Σ0|0.

• Hσ |(σ∩{x∈|Σ0|0:χ (x)≤0})×[0,1] is a deformation retraction from σ ∩ {x ∈ |Σ0|0 : χ (x) ≤ 0}
to σ ∩ Y ′(χ ) ∩ |Σ0|0.

To define Hσ , let v1, . . . , vr , w1, . . . , ws denote the shortest nonzero vectors in X∗(S) on
each of the one-dimensional faces of σ (so that r + s = dim σ ), with the notation chosen
such that χ (vi) ≤ 0 for all i and χ (wj) > 0 for all j. Note that 1 − χ (vi) > 0 for all i and
1− χ (wj) ≤ 0 for all j. We set

Hσ

⎛
⎝∑

i
aivi +
∑
j
biwj, t

⎞
⎠ =
∑
i
aivi + (1− t)

∑
j
biwj.

Because

σ ∩ YψΣ̃0
(χ ) ∩ |Σ0|0 =

{∑
i aivi +

∑
j bjwj : ai, bj ∈ R≥0 and

∑
i ai(1− χ (vi))+∑j bj(1− χ (wj)) > 0

}
∩ |Σ0|0

and

σ ∩ {x ∈ |Σ0|0 : χ (x) ≤ 0}
=
{∑

i aivi +
∑

j bjwj : ai, bj ∈ R≥0 and
∑

i aiχ (vi)+
∑

j bjχ (wj) ≤ 0
}
∩ |Σ0|0
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are convex sets, and because

σ ∩ Y ′(χ ) =
{∑

i
aivi : ai ∈ R≥0

}
,

it is easy to check that it has the desired properties and the proof of the lemma is complete.
��

Lemma 2.15 Let Y be a connected, separated schemewhich is flat and locally of finite type
over an irreducible noetherian ring R0, let α : S → S′ be an isogeny of split tori over Y , and
let Σ ′

0 (resp. Σ0) be a locally finite partial fan for S′ (resp. S). Suppose that Σ ′
0 is full. Also

suppose that Σ0 is a quasi-refinement of Σ ′
0, and let π∧ denote the map T∧

Σ0
→ (α∗T )∧

Σ ′
0
.

Then for i > 0 we have

Riπ∧∗ OT∧
Σ0

= (0),

while

O(α∗T )∧
Σ ′
0

∼−→
(
π∧∗ OT∧

Σ0

)ker α
.

If moreover Σ0 and Σ ′
0 are smooth then, for i > 0 we have

Riπ∧∗ I∧∂ ,Σ0 = (0).

while

I∧
∂ ,Σ ′

0

∼−→ (π∧∗ I∧∂ ,Σ0

)ker α .

Proof We may reduce to the case that Y = SpecA is affine. The map π∧ is proper and
hence

Riπ∧∗ OT∧
Σ0

and

Riπ∧∗ I∧∂ ,Σ0

and

coker
(
O(α∗T )∧

Σ ′
0
−→
(
π∧∗ OT∧

Σ0

)ker α)

and

coker
(
I∧
∂ ,Σ ′

0
−→ (π∧∗ I∧∂ ,Σ0

)ker α)

are coherent sheaves. Thus they have closed support. Their support is also S-invariant.
Thus it suffices to show that for eachmaximal element σ ′ ∈ Σ ′

0 the space ∂σ ′ (α∗T )Σ̃ ′
0
does

not lie in the support of these sheaves. Let Σ0(σ ′) denote the subset of elements σ ∈ Σ0
which lie in σ ′, but in no face of σ ′. Then Σ0(σ ′) is a partial fan and T∧

Σ0(σ ′) equals the
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formal completion of T∧
Σ0

along ∂σ ′TΣ̃ ′
0
. Thus the formal completion of the above four

sheaves along ∂σ ′TΣ̃ ′
0
equal the corresponding sheaf for the pair Σ0(σ ′) and {σ ′}, so that

we are reduced to the case that Σ ′
0 = {σ ′} is a singleton.

In the case that Σ ′
0 = {σ ′} then (α∗T )Σ ′

0
and Y have the same underlying topological

space. Let π∧
1 denote the map of ringed spaces T∧

Σ0
→ Y . Then it suffices to show that for

i > 0 we have

Riπ∧
1,∗OT∧

Σ0
= (0)

and

Riπ∧
1,∗I∧∂ ,Σ0 = (0);

and that we have

O(α∗T )∧
Σ ′
0

∼−→
(
π∧
1,∗OT∧

Σ0

)ker α

and

I∧
∂ ,Σ ′

0

∼−→ (π∧
1,∗I∧∂ ,Σ0

)ker α .

This follows from Lemma 2.14. (Note that

∏
χ∈|Σ0|∨∩X∗(S)

L(χ ) =
⊕

ξ∈(ker α)∨

∏

χ∈|Σ0|∨∩X∗(S)
χ |ker α=ξ

L(χ ),

where ker α acts on the ξ term via ξ ; and that

{
χ ∈ |Σ0|∨ ∩ X∗(S) : χ |ker α = 1

} = |Σ0|∨ ∩ X∗(S′) = |{σ ′}|∨ ∩ X∗(S′).

These assertions remain true with |Σ0|∨,0 replacing |Σ0|∨ and |{σ ′}|∨,0 replacing |{σ ′}|∨.)
��

Lemma 2.16 Let Y be a connected, separated schemewhich is flat and locally of finite type
over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y be an S-torsor, let
Σ0 be a partial fan for S, and let π∧

Σ0
denote the map of ringed spaces T∧

Σ0
→ Y . Suppose

that Σ0 is non-empty, full, locally finite and open, and that |Σ0|0 is convex.
(1) Then

Riπ∧
Σ0 ,∗OT∧

Σ0
=
{∏

χ∈|Σ0|∨ L(χ ) if i = 0
(0) otherwise.

(2) If in addition Σ0 is smooth then

Riπ∧
Σ0 ,∗I

∧
∂ ,Σ0 =
{∏

χ∈|Σ0|∨,0 L(χ ) if i = 0
(0) otherwise.
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Proof Let σ1, σ2, . . . be an enumeration of the 1 cones in Σ̃0. Let Δ(i) ⊂ |Σ | denote the
convex hull of σ1, . . . , σi. It is a rational polyhedral cone contained in |Σ0|, and there exists
i0 such that for i ≥ i0 the cone Δ(i) will have the same dimension as X∗(S)R. Let ∂Δ(i)

denote the union of the proper faces ofΔ(i); and letΔ(i),c denote the closure of |Σ0|−Δ(i)

in |Σ0|.
Define recursively fansΣ (i) and boundary dataΣ (i)

0 as follows.We setΣ (i0−1) = Σ̃0 and
Σ

(i0−1)
0 = Σ0. For i ≥ i0 set

Σ (i) =
{
σ ∩Δ(i), σ ∩ ∂Δ(i), σ ∩Δ(i),c : σ ∈ Σ (i−1)

}
.

Then Σ (i) refines Σ (i−1) and we choose Σ
(i)
0 to be the unique subset of Σ (i) such that

(Σ (i),Σ (i)
0 ) refines (Σ (i−1),Σ (i−1)

0 ). Then Σ̃
(i)
0 = Σ (i). We also check by induction on i that

• Σ (i) ∪Σ (i−1) − (Σ (i) ∩Σ (i−1)) is finite;
• and Σ

(i)
0 is locally finite.

(The point being that the local finiteness ofΣ (i−1)
0 implies that only finitelymany elements

of Σ (i−1)
0 , and hence of Σ (i−1), meet both Δ(i) − ∂Δ(i) and X∗(S)R −Δ(i).)

Now define Σ (∞) (resp. Σ (∞)
0 ) to be the set of cones that occur in Σ (i) (resp. Σ (i)

0 ) for
infinitely many i. Alternatively

Σ (∞) =
⋃
i
{σ ∈ Σ (i) : σ ⊂ Δ(i)}.

Also letΣ (∞),sm denote a smooth refinement ofΣ (∞) and letΣ (∞),sm
0 denote the elements

of σ ∈ Σ (∞),sm for which there exists τ ∈ Σ0 such that σ ⊂ τ and σ ∩τ 0 �= ∅. (See Lemma
2.4.) Then Σ (∞),sm is a fan, Σ (∞),sm

0 provides locally finite boundary data for Σ (∞),sm, we
have ˜Σ

(∞),sm
0 = Σ (∞),sm, and (Σ (∞),sm,Σ (∞),sm

0 ) refines (Σ̃0,Σ0). Moreover Σ
(∞),sm
0 is

open. We also define Σ
(∞),sm
i to be the set of σ ∈ Σ

(∞),sm
0 such that σ ⊂ Δ(i) but

σ �⊂ ∂Δ(i). Note that:

• Σ
(∞),sm
i is finite and open;

• Σ
(∞),sm
i ⊃ Σ

(∞),sm
i−1 ;

• |Σ (∞),sm
i |0 = Δ(i) − ∂Δ(i) is convex;

• and Σ
(∞),sm
0 =⋃i>0 Σ

(∞),sm
i .

(For the last of these properties use the fact that Σ (∞),sm
0 is open.)

By Lemma 2.15 it suffices to prove this lemma after replacing the pair Σ0 by Σ
(∞),sm
0 .

This lemma then follows from Lemmas 2.13 and 2.14. ��

2.5 The case of a disconnected base

Throughout this section we will continue to assume that Y is a separated scheme, flat and
locally of finite type over SpecR0. We prove nothing new in this section, we simply explain
how to re-express the last two sections in a way that makes sense over a disconnected
base, so that the results we have already established immediately extend.
Let S be a split torus over Y and let T/Y be an S-torsor. By a rational polyhedral cone

σ in X∗(S)R we shall mean a locally constant sheaf of subsets σ ⊂ X∗(S)R, such that
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• for each connected openU ⊂ Y the set σ (U ) ⊂ X∗(S)R(U ) is either empty or a rational
polyhedral cone,

• and the locus where σ �= ∅ is non-empty and connected. We call this locus the support
of σ .

We call σ ′ a face of σ if for each open connected U either σ (U ) = σ ′(U ) = ∅ or the cone
σ ′(U ) is a face of σ (U ). We call σ smooth if each σ (U ) is smooth. By a fanΣ in X∗(S)R we
mean a set of rational polyhedral cones in X∗(S)R, such that

• if σ ∈ Σ then so is any face σ ′ of σ ;
• if σ , σ ′ ∈ Σ then σ ∩ σ ′ is either empty or a face of σ and σ ′,
• any connected component of Y arises as the support of some element of Σ .

Thus to give a fan in X∗(S)R is the same as giving a fan in X∗(S)R(Z) for each connected
component Z of Y . If U is a non-empty connected open in Y then we set

Σ(U ) = {σ (U ) : σ ∈ Σ} − {∅}.

It is a fan for X∗(S)R(U ).
We call Σ smooth (resp. full, resp. finite) if each Σ(U ) is. We define a locally constant

sheaf |Σ | of subsets of X∗(S)R by setting

|Σ |(U ) =
⋃
σ∈Σ

σ (U )

(resp.

|Σ |∗(U ) =
⋃
σ∈Σ

(σ (U )− {0}))

forU any connected open subset of Y .We will call |Σ | (resp. |Σ |∗) convex if |Σ |(U ) (resp.
|Σ |∗(U )) is for each connected open U ⊂ Y . We also define locally constant sheaves of
subsets |Σ |∨ and |Σ |∨,0 of X∗(S)R by setting

|Σ |∨(U ) = {χ ∈ X∗(S)R(U ) : χ (|Σ |(U )) ⊂ R≥0
} =
⋂
σ∈Σ

σ (U )∨

and

|Σ |∨,0(U ) = {χ ∈ X∗(S)R(U ) : χ (|Σ |∗(U )) ⊂ R>0
} =
⋂
σ∈Σ

σ (U )∨,0.

We call Σ ′ a refinement of Σ if each Σ ′(U ) is a refinement of Σ(U ) for each open,
connectedU . Any fanΣ has a smooth refinementΣ ′ such that every smooth cone σ ∈ Σ

also lies in Σ ′.
To a fanΣ one can attach a scheme TΣ flat and separated over Y and locally (on TΣ ) of

finite type over Y , together with an action of S and an S-equivariant embeddingT ↪→ TΣ .
It has an open cover {Tσ }σ∈Σ , with each Tσ relatively affine over Y . Over a connected
open U ⊂ Y this restricts to the corresponding picture for Σ(U ). We write OTΣ for the
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structure sheaf ofTΣ . IfΣ is smooth thenTΣ/Y is smooth. IfΣ is finite and |Σ | = X∗(S)R,
then TΣ is proper over Y . If Σ ′ refines Σ then there is an S-equivariant proper map

TΣ ′ → TΣ

which restricts to the identity on T .
By boundary data we shall mean a proper subset Σ0 ⊂ Σ such that Σ −Σ0 is a fan. If

U ⊂ Y is a connected open we set

Σ0(U ) = {σ (U ) : σ ∈ Σ0} − {∅}.

If Σ0 is boundary data, then we can associate to it a closed subscheme ∂Σ0TΣ ⊂ TΣ ,
which over a connected open U ⊂ Y restricts to ∂Σ0(U )(T |U )Σ(U ) ⊂ (T |U )Σ(U ).
In the case that Σ0 is the set of elements of Σ of dimension bigger than 0 we shall

simply write ∂TΣ for ∂Σ0TΣ . Thus T = TΣ − ∂TΣ . We will write I∂TΣ for the ideal of
definition of ∂TΣ inOTΣ . We will also writeMΣ → OTΣ for the associated log structure
and Ω1

TΣ/SpecR0 (log∞) for the log differentials Ω1
TΣ/SpecR0 (logMΣ ).

If Σ is smooth then ∂TΣ is a simple normal crossings divisor on TΣ relative to Y .
If σ ∈ Σ has positive dimension and ifΣ0 denotes the set of elements ofΣ which have

σ for a face, thenwewill write ∂σTΣ for ∂Σ0TΣ . It is connected and flat over Y , and, locally
on Y , it has codimension in TΣ equal to the dimension of σ . If Σ is smooth then each
∂σTΣ is smooth over Y . The schemes ∂σ1TΣ , . . . , ∂σsTΣ intersect if and only if σ1, . . . , σs
are all contained in some σ ∈ Σ . In this case the intersection equals ∂σTΣ for the smallest
such σ . We set

∂iTΣ =
∐

dim σ=i
∂σTΣ .

If the connected components of Y are irreducible then each ∂σTΣ is irreducible. More-
over the irreducible components of ∂TΣ are the ∂σTΣ as σ runs over one-dimensional
elements ofΣ . IfΣ is smooth thenwe see thatS(∂TΣ ) is the delta set with cells in bijection
with the elements of Σ with dimension bigger than 0 and with the same ‘face relations’.
In particular it is in fact a simplicial complex and

|S(∂TΣ )| =
∐

Z∈π0(Y )
|Σ |∗(Z)/R×

>0.

Wewill callΣ0 open (resp. finite, resp. locally finite) ifΣ0(U ) is for each open connected
U ⊂ Y . If Σ0 is finite and open, then ∂Σ0TΣ is proper over Y .
By a partial fan in X∗(S) we mean a collection Σ0 of rational polyhedral cones in X∗(S)

such that

• Σ0 does not contain (0) ⊂ X∗(S)(U )R for any open connected U ;
• if σ1, σ2 ∈ Σ0 then σ1 ∩ σ2 is either empty or a face of σ1 and of σ2;
• if σ1, σ2 ∈ Σ0 and if σ ⊃ σ2 is a face of σ1, then σ ∈ Σ0.

In this case we will let Σ̃0 denote the set of faces of elements of Σ0 together with {0}
supported on any connected component of Y . It is a fan, andΣ0 is boundary data for Σ̃0.
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By boundary dataΣ1 forΣ0 we shall mean a subsetΣ1 ⊂ Σ0 such that if σ ∈ Σ0 contains
σ1 ∈ Σ1, then σ ∈ Σ1. In this caseΣ1 is again a partial fan and boundary data for Σ̃0. We
say that a partial fan Σ0 for X∗(S) refines a partial fan Σ ′

0 for X∗(S) if every element of Σ0
lies in an element of Σ ′

0 and if every element of Σ ′
0 is a finite union of elements of Σ0.

IfΣ0 is a partial fan we define locally constant sheaves of subsets |Σ0|, |Σ0|∗, |Σ0|∨ and
|Σ0|∨,0 of X∗(S)R or X∗(S)R to be |Σ̃0|, |Σ̃0|∗, |Σ̃0|∨ and |Σ̃0|∨,0, respectively. We also
define a sheaf of subsets |Σ0|0 by

|Σ0|0(U ) = |Σ̃0|(U ) −
⋃

σ∈Σ̃0(U )−Σ0(U )

σ

for any connected open setU ⊂ Y . We will call |Σ0| (resp. |Σ0|0) convex if |Σ0|(U ) (resp.
|Σ0|0(U )) is convex for all open connected subsets U ⊂ Y .
We will call Σ0 smooth (resp. full, resp. open, resp. finite, resp. locally finite) ifΣ0(U ) is

for eachU ⊂ Y open and connected.Wewill callΣ0 non-degenerate if for eachnon-empty
connected open subset U ⊂ Y the set Σ0(U ) is non-empty.
If Σ0 is a partial fan we will write

∂Σ0T

for ∂Σ0TΣ̃0 ;

T∧
Σ0

for the completion of TΣ̃0 along ∂Σ0TΣ̃0 ; and

M∧
Σ0 −→ OT∧

Σ0

for the log structure induced byMΣ̃0 . We make the following definitions.

• IT∧
Σ0

will denote the completion of I∂Σ0TΣ̃0
, the sheaf of ideals defining ∂Σ0TΣ̃0 . It is an

ideal of definition for T∧
Σ0

.
• I∧∂ ,Σ0

will denote the completion of I∂TΣ̃0
, the sheaf of ideals defining ∂Σ0TΣ̃0 . Thus

I∧∂ ,Σ0
⊂ IT∧

Σ0
.

• Ω1
T∧
Σ0

/Spf R0
(log∞) will denote Ω1

T∧
Σ0

/Spf R0
(logM∧

Σ ).

We will write
∏

χ∈|Σ0|∨
LT (χ )

(resp.
∏

χ∈|Σ0|∨,0
LT (χ ))

for the sheaf (of abelian groups) on Y such that for any connected open subsetU ⊂ Y we
have
⎛
⎝ ∏

χ∈|Σ0|∨
LT (χ )

⎞
⎠
∣∣∣∣∣∣
U

=
∏

χ∈|Σ0|∨(U )∩X∗(S)(U )
LT (χ )
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(resp.
⎛
⎝ ∏

χ∈|Σ0|∨,0
LT (χ )

⎞
⎠
∣∣∣∣∣∣
U

=
∏

χ∈|Σ0|∨,0(U )∩X∗(S)(U )

LT (χ )

⎞
⎠ .

Suppose that α : S → S′ is a surjective map of split tori over Y . Then X∗(α) : X∗(S′) ↪→
X∗(S) and X∗(α) : X∗(S)R →→ X∗(S′)R. We call fans Σ for X∗(S) and Σ ′ for X∗(S′)
compatible if for all σ ∈ Σ the image X∗(α)σ is contained in some element of Σ ′. In this
case the map α : T → α∗T extends to an S-equivariant map

α : TΣ −→ (α∗T )Σ ′ .

We will write

Ω1
TΣ/(α∗T )Σ ′ (log∞) = Ω1

TΣ/(α∗T )Σ ′ (logMΣ/MΣ ′ ).

The following lemma is an immediate consequence of Lemma 2.5.

Lemma 2.17 If α is surjective and #cokerX∗(α) is invertible on Y then α : (TΣ ,MΣ ) →
((α∗T )Σ ′ ,MΣ ′ ) is log smooth, and there is a natural isomorphism

(X∗(S)/X∗(α)X∗(S′))⊗Z OTΣ

∼−→ Ω1
TΣ/(α∗T )Σ ′ (log∞).

If α is an isogeny, if Σ and Σ ′ are compatible, and if every element of Σ ′ is a finite
union of elements of Σ , then we call Σ a quasi-refinement of Σ ′. In that case the map
α : TΣ → (α∗T )Σ ′ is proper.
Suppose that α : S →→ S′ is a surjective map of tori, and that Σ0 (resp. Σ ′

0) is a partial
fan for S (resp. S′). We call Σ0 and Σ ′

0 compatible if for every σ ∈ Σ0 the image X∗(α)σ
is contained in some element of Σ ′

0 but in no element of Σ̃ ′
0 −Σ ′

0. In this case there is a
natural morphism

α : (T∧
Σ0 ,M

∧
Σ0 ) −→

(
(α∗T )∧

Σ ′
0
,M∧

Σ ′
0

)
.

We will write

Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(log∞) = Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(
logM∧

Σ0

/
M∧

Σ ′
0

)
.

The following lemma follows immediately from Lemma 2.8.

Lemma 2.18 If α is surjective and #cokerX∗(α) is invertible on Y then there is a natural
isomorphism

(X∗(S)/X∗(α)X∗(S′))⊗Z OT∧
Σ0

∼−→ Ω1
T∧
Σ0

/(α∗T )∧
Σ ′
0

(log∞).

We will call Σ0 and Σ ′
0 strictly compatible if they are compatible and if an element of

Σ̃0 lies in Σ0 if and only if it maps to no element of Σ̃ ′
0 −Σ ′

0. We will say that

• Σ0 is open over Σ ′
0 if |Σ0|0(U ) is open in X∗(α)−1|Σ ′

0|0(U ) for all connected opens
U ⊂ Y ;
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• and thatΣ0 is finite overΣ ′
0 if only finitely many elements ofΣ0 map into any element

of Σ ′
0.

If α is an isogeny, ifΣ0 andΣ ′
0 are strictly compatible and if every element ofΣ ′

0 is a finite
union of elements ofΣ0, then we callΣ0 a quasi-refinement ofΣ ′

0. In this caseΣ0 is open
and finite over Σ ′

0. The next lemma follows immediately from Lemma 2.9.

Lemma 2.19 Suppose that Σ ′
0 and Σ0 are strictly compatible.

(1) T∧
Σ0

is the formal completion of TΣ̃0 along ∂Σ ′
0
(α∗T ), and T∧

Σ0
is locally (on the source)

topologically of finite type over (α∗T )∧
Σ ′

0
.

(2) If Σ0 is locally finite and if it is open and finite over Σ ′
0 then T∧

Σ0
is proper over

(α∗T )∧
Σ ′

0
.

Corollary 2.20 If α is an isogeny, if Σ0 is locally finite and if Σ0 is a quasi-refinement of
Σ ′

0 then T∧
Σ0

is proper over (α∗T )∧
Σ ′

0
.

If Σ0 and Σ ′
0 are compatible partial fans and if Σ ′

1 ⊂ Σ ′
0 is boundary data then Σ0(Σ ′

1)
will denote the set of elements σ ∈ Σ0 such that X∗(α)σ is contained in no element of
Σ ′

0 − Σ ′
1. It is boundary data for Σ0. Moreover the formal completion of T∧

Σ0
along the

reduced subscheme of (α∗T )∧
Σ ′

1
is canonically identified with T∧

Σ0(Σ ′
1)
. If Σ ′

1 = {σ ′} is a
singleton we will write Σ0(σ ′) for Σ0({σ ′}).
The next two lemmas follow immediately from Lemmas 2.15 and 2.16, respectively.

Lemma 2.21 Let Y be a separated scheme which is flat and locally of finite type over an
irreducible noetherian ring R0, let α : S → S′ be an isogeny of split tori over Y , and let Σ ′

0
(resp. Σ0) be a locally finite partial fan for S′ (resp. S). Suppose that Y is separated and
locally noetherian, that Σ ′

0 is full and that Σ0 is locally finite. Also suppose that Σ0 is a
quasi-refinement of Σ ′

0. Let π∧ denote the map T∧
σ0 → (α∗T )∧

σ ′
0
.

Then for i > 0 we have

Riπ∧∗ OT∧
Σ0

= (0),

while

O(α∗T )∧
Σ ′
0

∼−→
(
π∧∗ OT∧

Σ0

)ker α
.

If moreover Σ0 and Σ ′
0 are smooth then, for i > 0 we have

Riπ∧∗ I∧∂ ,Σ0 = (0).

while

I∧
∂ ,Σ ′

0

∼−→ (π∧∗ I∧∂ ,Σ0

)ker α .

Lemma 2.22 Let Y be a separated scheme which is flat and locally of finite type over an
irreducible noetherian ring R0, let S/Y be a split torus, let T/Y is an S-torsor, let Σ0 be a
partial fan for S, and let π∧

Σ0
denote the map T∧

Σ0
→ Y . Suppose that Y is separated and

locally noetherian, that Σ0 is non-degenerate, full, locally finite and open and that |Σ0|0
is convex.
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(1) Then

Riπ∧
Σ0 ,∗OT∧

Σ0
=
{∏

χ∈|Σ0|∨ L(χ ) if i = 0
(0) otherwise.

(2) If in addition Σ0 is smooth then

Riπ∧
Σ0 ,∗I

∧
∂ ,Σ0 =
{∏

χ∈|Σ0|∨,0 L(χ ) if i = 0
(0) otherwise.

3 Shimura varieties
In this section we will describe the Shimura varieties associated to Gn and the mixed
Shimura varieties associated to G(m)

n and G̃(m)
n . We assume that all schemes discussed in

this section are locally noetherian.

3.1 Some Shimura varieties

3.1.1 Moduli problems

By a Gn-abelian scheme over a scheme Y /Q we shall mean an abelian scheme A/Y of
relative dimension n[F : Q] together with an embedding

i : F ↪→ End(A/Y )Q

such that LieA is a locally free right OY ⊗Q F-module of rank n. By a morphism (resp.
quasi-isogeny) ofGn-abelian schemeswemean amorphism (resp. quasi-isogeny) of abelian
schemes which commutes with the F-action. If (A, i) is a Gn-abelian scheme then we give
A∨ the structure (A∨, i∨) of a Gn-abelian scheme by setting i∨(a) = i(ca)∨. By a quasi-
polarization of a Gn-abelian scheme (A, i)/Y we shall mean a quasi-isogeny λ : A → A∨ of
Gn-abelian schemes, some Q×-multiple of which is a polarization. (Note that according
to this convention, if λ is a polarization, then −λ is a quasi-polarization.) If Y = Spec k
with k a field, we will let 〈 , 〉λ denote theWeil pairing induced on the adelic Tatemodule
VA (see section 23 of [47]).

Lemma 3.1 If k is a field of characteristic 0 and if (A, i, λ)/k is a quasi-polarized Gn-
abelian scheme, then Vp(A× k) is a free Fp-module of rank 2n.

Proof We may suppose that k is a finitely generated field extension of Q, which we may
embed into C. Then
(
Vp(A× k)⊗Qp,ı C

) ∼= (LieAy ⊗k C)⊕ (LieAy ⊗k,c C),

so that Vp(A × k)⊗Qp,ı C is a free F ⊗Q C-module. As F ⊗Q C = Fp ⊗Qp,ı C we deduce
that Vp(A× k) is a free Fp-module, as desired. ��

By an ordinary Gn-abelian scheme over a Z(p)- scheme Y we shall mean an abelian
scheme A/Y of relative dimension n[F : Q], such that for each geometric point y of Y we
have #A[p](k(y)) ≥ pn[F :Q], together with an embedding

i : OF,(p) ↪→ End(A/Y )Z(p)
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such that LieA is a locally free right OY ⊗Z(p) OF,(p)-module of rank n. By a morphism of
ordinary Gn-abelian schemes we mean a morphism of abelian schemes which commutes
with the OF,(p)-action. If (A, i) is an ordinary Gn-abelian scheme then we give A∨ the
structure, (A∨, i∨), of a Gn-abelian scheme by setting i∨(a) = i(ca)∨. By a prime-to-p
quasi-polarization of an ordinary Gn-abelian scheme (A, i)/Y we shall mean a prime-to-p
quasi-isogeny λ : A → A∨ of ordinary Gn-abelian schemes, some Z×

(p)-multiple of which
is a prime-to-p polarization.
If U is an open compact subgroup of Gn(A∞) then by a U-level structure on a quasi-

polarizedGn-abelian scheme (A, i, λ) over a connected schemeY /SpecQwith a geometric
point y, we mean a π1(Y, y)-invariant U-orbit [η] of pairs (η0, η1) of A∞-linear isomor-
phisms

η0 : A∞
y

∼−→ A∞(1)y = VGm,y

and

η1 : Vn ⊗Q A∞ ∼−→ VAy

such that

η1(ax) = i(a)η1(x)

for all a ∈ F and x ∈ Vn ⊗Q A∞, and such that

〈
η1x, η1y

〉
λ
= η0〈x, y〉n

for all x, y ∈ Vn ⊗Q A∞. This definition is independent of the choice of geometric point y
of Y . By aU-level structure on a quasi-polarizedGn-abelian scheme (A, i, λ) over a general
(locally noetherian) scheme Y /SpecQ, we mean the collection of aU-level structure over
each connected component of Y . If [(η0, η1)] is a level structure we define ||η0|| ∈ Q×

>0 by

||η0||η0Ẑ = Ẑ(1).

Now suppose that Up is an open compact subgroup of Gn(A∞,p) and that N1 ≤ N2
are non-negative integers. By a Up(N1, N2)-level structure on an ordinary, prime-to-p
quasi-polarized, Gn-abelian scheme (A, i, λ) over a connected scheme Y /SpecZ(p) with a
geometric point y, we mean a π1(Y, y)-invariant Up-orbit [η] of four-tuples (ηp0 , η

p
1 , C, ηp)

consisting of

• an A∞,p-linear isomorphism η
p
0 : A

∞,p
y

∼−→ A∞,p(1)y = VpGm,y;
• an A

∞,p
F -linear isomorphism

η
p
1 : Vn ⊗Q A∞,p ∼−→ VpAy

such that

〈ηp1x, ηp1y〉λ = η0〈x, y〉n

for all x, y ∈ Vn ⊗Q A∞,p;
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• a locally free sub-OF,(p)-module scheme C ⊂ A[pN2 ], such that for every geometric
point ỹ of Y there is anOF,(p)-invariant sub-Barsotti–Tate group C̃̃y ⊂ Ãy[p∞] with the
following properties

• C̃y = C̃̃y[pN2 ],
• for allN the subgroup scheme C̃̃y[pN ] is isotropic inA[pN ]̃y for the λ-Weil pairing,
• Ãy[p∞]/C̃̃y is ind-etale,
• the Tate module T (Ãy[p∞]/C̃̃y) is free overOF,p of rank n;

• and an isomorphism

ηp : p−N1Λn
/(
p−N1Λn,(n) +Λn

) ∼−→ A[pN1 ]/(A[pN1 ] ∩ C)

such that

ηp(ax) = i(a)ηp(x)

for all a ∈ OF,(p) and x ∈ p−N1Λn/(p−N1Λn,(n) +Λn).

This definition is independent of the choice of the geometric point y ∈ Y . By aUp(N1, N2)-
level structureonanordinary, prime-to-pquasi-polarized,Gn-abelian scheme (A, i, λ) over
a general (locally noetherian) schemeY /SpecZ(p), wemean the collectionof aUp(N1, N2)-
level structure over each connected component of Y . If [(ηp0 , η

p
1 , C, ηp)] is a level structure

we define ||ηp0 || ∈ Z×
(p),>0 by

||ηp0 ||ηp0Ẑp = Ẑp(1).

By a quasi-isogeny (resp. prime-to-p quasi-isogeny) between quasi-polarized, Gn-
abelian schemes with U-level structures (resp. ordinary, prime-to-p quasi-polarized, Gn-
abelian schemes with Up(N1, N2)-level structures)

(β , δ) : (A, i, λ, [η]) −→ (A′, i′, λ′, [η′])

we mean a quasi-isogeny (resp. prime-to-p quasi-isogeny) of abelian schemes β ∈
Hom(A,A′)Q (resp. β ∈ Hom(A,A′)Z(p) ) and δ ∈ Q× (resp. δ ∈ Z×

(p)) such that

• β ◦ i(a) = i′(a) ◦ β for all a ∈ F (resp.OF,(p));
• δλ = β∨ ◦ λ′ ◦ β ;
• [(δη0, (Vβ) ◦ η1)] = [η′] (resp. [(δηp0 , (Vpβ) ◦ η

p
1 ,βC,β ◦ ηp)] = [η′]).

Lemma 3.2 Suppose that T is an OF,p-module, which is free over OF,p of rank 2n, with a
perfect alternating pairing

〈 , 〉 : T × T −→ Zp

such that

〈ax, y〉 = 〈x, cay〉
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for all x, y ∈ T and a ∈ OF,p. Also suppose that T̃ ⊂ T is a sub-OF,p-module which is
isotropic for 〈 , 〉 and such that T/T̃ is free of rank n overOF,p. Finally suppose that

ηp : p−N1Λn
/(

p−N1Λn,(n) +Λn
) ∼−→ p−N1T

/(
p−N1 T̃ + T

)

is anOF,p-module isomorphism.
Consider the set [η] of isomorphisms

η : Λn ⊗ Zp
∼−→ T

such that

• η(ax) = aη(x) for all a ∈ OF,(p);
• there exists δ ∈ Z×

p such that

〈ηx, ηy〉 = δ〈x, y〉n

for all x, y ∈ Λn ⊗ Zp;
• η((p−N2Λn,(n))⊗ Zp +Λn ⊗ Zp) = p−N2 T̃ + T;
• the map

p−N1Λn
/(

p−N1Λn,(n) +Λn
) ∼−→ p−N1T

/(
p−N1 T̃ + T

)

induced by η equals ηp.

Then [η] is non-empty and a single Up(N1, N2)-orbit.

Proof Let e1, . . . , en denote aOF,p-basis of T/T̃ . Note that 〈 , 〉 induces a perfect pairing
between T̃ andT/T̃ .We recursively lift the ei to elements ẽi ∈ T with ẽi orthogonal to the
OF,p span of the ẽj for j < i. Suppose that ẽ1, . . . , ẽi−1 have already been chosen. Choose
some lift e′i of ei. Then choose t ∈ T̃ such that

• 〈t, x〉 = 〈e′i, x〉 for all x ∈
⊕i−1

j=1 OF,p̃ej ,
• and 〈t,αe′i〉 = 〈e′i/2,αe′i〉 for all α ∈ Oc=−1

F,p .

(If p = 2 some explanation is required as to why we can do this. The map

OF,p −→ Zp
α �−→ 〈e′i,αe′i

〉

is of the form

α �−→ trF/Q(βα)

for some β ∈ (D−1
F,p)

c=−1. Because p = 2 is unramified in F/F+, we can write β = γ − cγ

for some γ ∈ D−1
F,p . Thus the second condition can be replaced by the condition

〈
t,αe′i
〉 = trF/Q(γα)

for all α ∈ Oc=−1
F,p . Now it is clear that the required element t exists.) Then take ẽi = e′i− t.

Then ẽi is orthogonal to
⊕i−1

j=1 OF,p̃ej . Moreover for α ∈ OF,p we have
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〈̃ei, α̃ei〉 =
〈
e′i,αe′i
〉− 〈t, (α − cα)e′i

〉
= 〈e′i,αe′i

〉− 〈e′i/2, (α − cα)e′i
〉

= (〈e′i,αe′i
〉+ 〈e′i, cαe′i

〉) /
2

= 0.

Thus we can write

T = T̃ ⊕ T̃ ′

with T̃ ′ an isotropicOF,p-subspace of T , which is free overOF,p of rank n. We see that

T̃ ′ ∼= HomZp (T̃ ,Zp).

The lemma now follows without difficulty. ��

Corollary 3.3 If Y is a Q-scheme with geometric point y, if (A, i, λ)/Y is an ordinary Gn-
abelian scheme and if [(ηp0 , η

p
1 , C, ηp)] is a Up(N1, N2)-level structure on (A, i, λ), then there

is a unique Up(N1, N2)-orbit of pairs of isomorphisms

η0,p : Zp,y
∼−→ Zp(1)y

and

η1,p : Λn ⊗ Zp
∼−→ TpAy

such that

• η1,p(ax) = aη1,p(x) for all a ∈ OF,(p),
• 〈η1,px, η1,py〉λ = η0,p〈x, y〉n for all x, y ∈ Λn ⊗ Zp,
• η1,pp−N2Λn,(n)/Λn,(n) = C,
• η1,p induces ηp.

Proof This follows on combining Lemmas 3.1 and 3.2. ��

Corollary 3.4 Suppose that Y is a scheme over SpecQ. There is a natural bijection
between prime-to-p quasi-isogeny classes of ordinary, prime-to-p quasi-polarized Gn-
abelian schemes with Up(N1, N2)-level structure and quasi-isogeny classes of quasi-
polarized Gn-abelian schemes with Up(N1, N2)-level structure.

Proof We may assume that Y is connected with geometric point y. We will show both
sets are in natural bijection with the set of prime-to-p quasi-isogeny classes of four-tuples
(A, i, λ, [η]), where (A, i) is a Gn-abelian scheme, λ is a prime-to-p quasi-polarization of
(A, i), and [η] is a π1(Y, y)-invariant Up(N1, N2)-orbit of pairs (η0, η1), where

• η0 : A∞,p × Zp
∼→ A∞,p(1)× Zp(1),

• and η1 : Λn ⊗ (A∞,p × Zp)
∼→ VpAy × TpAy satisfies

η0〈x, y〉n = 〈η1x, η1y〉λ.
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There is a natural map from this set to the set of quasi-isogeny classes of quasi-polarized
Gn-abelian schemes withUp(N1, N2)-level structure, which is easily checked to be a bijec-
tion. The bijection between this set and the set of prime-to-p quasi-isogeny classes of
ordinary, prime-to-p quasi-polarized Gn-abelian schemes with a Up(N1, N2)-level struc-
ture, follows by the usual arguments (see, for instance, section III.1 of [29]) fromCorollary
3.3. ��

3.1.2 Hecke actions

If (A, i, λ, [η])/Y is a quasi-polarized, Gn-abelian scheme with U-level structure and if
g ∈ Gn(A∞) with U ′ ⊃ g−1Ug , then we can define a quasi-polarized, Gn-abelian scheme
with U ′-level structure (A, i, λ, [η])g/Y by

(A, i, λ, [(η0, η1)])g = (A, i, λ, [(ν(g)η0, η1 ◦ g]).

This action takes one quasi-isogeny class to another.
If (A, i, λ, [η])/Y is an ordinary, prime-to-p quasi-polarized, Gn-abelian scheme with

Up(N1, N2)-level structure and if g ∈ Gn(A∞)ord,× with

(U ′)p(N ′
1, N

′
2) ⊃ g−1Up(N1, N2)g

(so that in particular Ni ≥ N ′
i for i = 1, 2), then we can define an ordinary, prime-to-p

quasi-polarized, Gn-abelian scheme with (U ′)p(N ′
1, N

′
2)-level structure (A, i, λ, [η])g/Y by

(
A, i, λ,
[(
η
p
0 , η

p
1 , C, ηp
)])

g =
(
A, i, λ,
[(

ν(gp)ηp0 , η
p
1 ◦ gp, C[pN

′
2 ], ηp ◦ gp

)])
.

Recall the definition of ςp towards the end of Sect. 1.2. If (U ′)p(N ′
1, N

′
2) ⊃

ς−1
p Up(N1, N2)ςp (so that in particularN1 ≥ N ′

1 andN2 > N ′
2), thenwe can define an ordi-

nary, prime-to-p quasi-polarized, Gn-abelian scheme with (U ′)p(N ′
1, N

′
2)-level structure

(A, i, λ, [η])ςp/Y by
(
A, i, λ,
[(
η
p
0 , η

p
1 , C, ηp
)])

ςp =
(
A/C[p], i, F (λ),

[(
pηp0 , F (η

p
1), C[p

1+N ′
2 ]
/
C[p], F (ηp)

)])
;

where

F (λ) : A/C[p] λ−→ A∨/λC[p] = A∨/C[p]⊥ ∼−→ (A/C[p])∨

with the last isomorphism being induced by the dual of the map A/C[p] → A induced
by multiplication by p on A; where F (ηp1) is the composition of ηp1 with the natural map
VpA ∼→ Vp(A/C[p]); and where F (ηp) is the composition of ηp with the natural identifi-
cation

A[pN
′
1 ]/(C ∩ A[pN

′
1 ]) = (A/C[p])[pN

′
1 ]/(C[p1+N ′

2 ]/C[p] ∩ (A/C[p])[pN
′
1 ]).

If Y is an Fp-scheme then ςp is the composite of pull-back by absolute Frobenius followed
by forgetting some of the structure.
Together these two definitions give an action of Gn(A∞)ord. This action takes one

prime-to-p quasi-isogeny class to another.
With these definitions the correspondence of Corollary 3.4 is Gn(A∞)ord-equivariant.
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3.1.3 Representability

If U is a neat open compact subgroup of Gn(A∞) then the functor that sends a (locally
noetherian) scheme S/Q to the set of quasi-isogeny classes of polarized Gn-abelian
schemes with U-level structures is represented by a quasi-projective scheme Xn,U which
is smooth of relative dimension n2[F+ : Q] over Q. Let
[(
Auniv , iuniv , λuniv , [ηuniv]

)] /
Xn,U

denote the universal equivalence class of polarized Gn-abelian schemes with U-level
structure. If U ′ ⊃ g−1Ug then there is a map g : Xn,U → Xn,U ′ arising from
(Auniv , iuniv , λuniv , [ηuniv])g/Xn,U and the universal property of Xn,U ′ . This makes {Xn,U }
an inverse system of schemes with right Gn(A∞)-action. The maps g are finite etale. If
U1 ⊂ U2 is a normal subgroup then Xn,U1/Xn,U2 is Galois with group U2/U1.
There are identifications of topological spaces:

Xn,U (C) ∼= Gn(Q)+
∖ (

Gn(A∞)/U × H+
n
) ∼= Gn(Q)

∖ (
Gn(A∞)/U × H±

n
)

compatible with the right action of Gn(A∞). (See sections 7 and 8 of [39]. Note that
ker1(Q, Gn) = (0), as is explained in section 7 of [39].) More precisely we associate to
(g, I) ∈ Gn(A∞)/U × H+

n the torus (Λn ⊗Z R)/Λn with complex structure coming from
I ; with polarization corresponding to the Riemann form given by 〈 , 〉; and with level
structure coming from

η1 : Λn ⊗ A∞ g−→ Λn ⊗ A∞ = V ((Λn ⊗Z R)/Λn)

and

η0 : A∞ ∼−→ A∞(1)
x �−→ −ν(g)xζ ,

where ζ = lim←N e2π i/N ∈ Ẑ(1). We deduce that

π0(Xn,U × SpecQ) ∼= Gn(Q)\Gn(A)
/(

UGn(R)+
)

∼= Gn(Q)
∖ (

Gn(A∞)
/
U × π0(Gn(R))

)
∼= Cn(Q)\Cn(A)

/
UCn(R)0.

If Up is neat then the functor that sends a scheme Y /Z(p) to the set of prime-to-p
quasi-isogeny classes of ordinary, prime-to-p quasi-polarized, Gn-abelian schemes with
Up(N1, N2)-level structure is represented by a scheme X ord

n,Up(N1 ,N2) quasi-projective over
Z(p). (See theorems 3.4.1.9 and 3.4.2.5 in [44]. Note that, by theorem 3.4.1.9 in [44], the
naive moduli problem there is already smooth, and hence the submoduli problem with
the right Lie algebra condition agrees with the normalization in theorem 3.4.2.5 in [44].)
Let
[(
Auniv , iuniv , λuniv , [ηuniv]

)]
/X ord

n,Up(N1 ,N2)

denote the universal equivalence class. If g ∈ Gn(A∞)ord and (Up)′(N ′
1, N

′
2) ⊃

g−1Up(N1, N2)g , then there is a quasi-finite map

g : X ord
n,Up(N1 ,N2) −→ X ord

(Up)′(N ′
1 ,N

′
2)
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arising from (Auniv , iuniv , λuniv , [ηuniv])g/X ord
n,Up(N1 ,N2) and the universal property of

X ord
n,(Up)′(N ′

1 ,N
′
2)
. If g ∈ Gn(A∞)ord,× then the map g is etale, and, if further N2 =

N ′
2, then it is finite etale. If Up(N1, N2) is a normal subgroup of (Up)′(N ′

1, N2) then
X ord
n,Up(N1 ,N2)/X

ord
n,(Up)′(N ′

1 ,N2)
is Galois with group (Up)′(N ′

1)/Up(N1). There areGn(A∞)ord-
equivariant identifications

X ord
n,Up(N1 ,N2) × SpecQ ∼= Xn,Up(N1 ,N2).

The scheme X ord
n,Up(N1 ,N2) is smooth over Z(p) of relative dimension n2[F+ : Q]. (By the

Serre–Tate theorem (see [36]) the formal completion of X ord
n,Up(N1 ,N2) at a point x in the

special fibre is isomorphic to

HomZp

(
S
(
TpAuniv

x
)
, Ĝm
)
.

This is formally smooth as long as S(TpAuniv
x ) ∼= S(On

F,p) is torsion free. This module is
torsion free because in the case p = 2 we are assuming that p = 2 is unramified in F/F+.)
Suppose that g ∈ Gn(A∞)ord and (Up)′(N ′

1, N
′
2) ⊃ g−1Up(N1, N2)g , then the quasi-finite

map

g : X ord
n,Up(N1 ,N2) −→ X ord

n,(Up)′(N ′
1 ,N

′
2)

is in fact flat, because it is a quasi-finite map between locally noetherian regular schemes
which are equidimensional of the same dimension. (See pages 507 and 508 of [37].)
On Fp-fibres the map

ςp : X ord
n,Up(N1 ,N2+1) × SpecFp −→ X ord

n,Up(N1 ,N2) × SpecFp

is the absolute Frobenius map composed with the forgetful map 1 : X ord
n,Up(N1 ,N2+1) →

X ord
n,Up(N1 ,N2) (for any N2 ≥ N1 ≥ 0). Thus if N2 > 0, then the quasi-finite, flat map

ςp : X ord
n,Up(N1 ,N2+1) −→ X ord

n,Up(N1 ,N2)

has all its fibres of degree pn2[F+:Q] and hence is finite flat of this degree. (A flat, quasi-finite
morphism f : X → Y between noetherian schemes with constant fibre degree is proper
and hence, by theorem 8.11.1 of [24], finite. We give the argument for properness. By
the valuative criterion we may reduce to the case Y = SpecB for a DVR B with fraction
field L. By theorem 8.12.6 of [24] X is a dense open subscheme of SpecA, for A a finite
B algebra. Let I denote the ideal of A consisting of all mB-torsion elements. If f ∈ A and
SpecAf ⊂ X , then by flatness the map A → Af factors through A/I . Thus X ⊂ SpecA/I
and in fact I = (0), so that A/B is finite flat. Because an open subscheme is determined
by its points, we conclude that we must have X = SpecA′ for some A ⊂ A′ ⊂ A⊗B L. By
the constancy of the fibre degree we conclude that A′ is finite over B.) We deduce that for
any g ∈ Gn(A∞)ord, if N ′

2 > 0 and pN2−N ′
2ν(gp) ∈ Z×

p , then the map

g : X ord
n,Up(N1 ,N2) −→ X ord

(Up)′(N ′
1 ,N

′
2)

is finite.
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Lemma 3.5 Write X ord,∧
n,Up(N1 ,N2) for the completion of X ord

Up(N1 ,N2) along its Fp-fibre. If N ′
2 >

N2 ≥ N1 then the map

1 : X ord,∧
n,Up(N1 ,N ′

2)
−→ X ord,∧

n,Up(N1 ,N2)

is an isomorphism.

Proof The map has an inverse which sends a tuple [(Auniv , iuniv , λuniv , [ηuniv])] over
X ord,∧
n,Up(N1 ,N2) to

[(
Auniv , iuniv , λuniv ,

[(
η
univ,p
0 , ηuniv,p1 ,Auniv

[
pN

′
2
]0

, ηunivp

)])]

over X ord,∧
n,Up(N1 ,N ′

2)
. ��

Thus we will denote X ord,∧
n,Up(N1 ,N2) simply

Xord
n,Up(N1).

Then {Xord
n,Up(N )} is a system of p-adic formal schemes with right Gn(A∞)ord-action. We

will write Xord
n,Up(N ) for the reduced subscheme of Xord

n,Up(N ).
Throughout the paper we will use usual Roman letters, such as X , for ‘Shimura-like’

varieties of finite type over Q, cursive letters, such as X , for models of them of finite type
over Z(p), over-lined usual Roman letters, such as X , for their Fp-fibre, and Gothic letters,
such as X, for their formal completion along this special fibre.

3.2 Some Kuga–Sato varieties

Recall that a semi-abelian scheme is a smooth separated commutative group scheme
such that each geometric fibre is the extension of an abelian scheme by a torus. To a
semi-abelian schemeG/Y one can associate an etale constructible sheaf of abelian groups
X∗(G), the ‘character group of the toric part of G’. See theorem I.2.10 of [17]. If X∗(G) is
locally constant then G is an extension

(0) −→ SG −→ G −→ AG −→ (0)

of a uniquely determined abelian scheme AG by a uniquely determined split torus SG
with character group X∗(G). By an isogeny (resp. prime-to-p isogeny) of semi-abelian
schemes we mean a morphism which is quasi-finite and surjective (resp. quasi-finite and
surjective and whose geometric fibres have orders relatively prime to p). If Y is locally
noetherian, then by a quasi-isogeny (resp. prime-to-p quasi-isogeny) α : G → G′ wemean
an element of Hom(G,G′)Q (resp. Hom(G,G′)Z(p) ) with an inverse in Hom(G′, G)Q (resp.
Hom(G′, G)Z(p) ).
Suppose that Y /SpecQ is a locally noetherian scheme. By a G(m)

n -semi-abelian scheme
G over Y we mean a triple (G, i, j) where

• G/Y is a semi-abelian scheme,
• i : F ↪→ End(G)Q,
• and j : Fm ∼→ X∗(G)Q is an F-linear isomorphism;
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• such that LieAG is a freeOY ⊗Q F module of rank n[F : Q].

Then AG is a Gn-abelian scheme. By a quasi-isogeny of G(m)
n -semi-abelian schemes we

mean a quasi-isogeny of semi-abelian schemes

β : G → G′

such that

i′(a) ◦ β = β ◦ i(a)

for all a ∈ F , and

j = X∗(β) ◦ j′.

Note that, if y is a geometric point of Y , then j induces a map

j∗ : VSG,y
∼−→ HomQ

(
Fm, VGm,y

)
.

By a quasi-polarization of (G, i, j) we mean a quasi-polarization of AG .
If Y is connected and y is a geometric point of Y and if U ⊂ G(m)

n (A∞) is a neat open
compact subgroup then by a U level structure on a quasi-polarized G(m)

n -semi-abelian
scheme (G, i, j, λ) we mean a π1(Y, y)-invariant U-orbit of pairs (η0, η1) where

η0 : A∞ ∼−→ VGm,y

is an A∞-linear map, and where

η1 : Λ(m)
n ⊗Z A∞ −→ VGy

is an A∞
F -linear map such that

η1|HomZ(Om
F ,A∞) = (j∗)−1 ◦Hom(1Fm , η0)

and

[(η0, η1 mod VSG,y)]

is a U-level structure on AG . This is canonically independent of y. We define a U level
structure on aG(m)

n -semi-abelian scheme over a general locally noetherian scheme Y to be
such a level structure over each connected component of Y . By a quasi-isogeny between
two quasi-polarized, G(m)

n -semi-abelian schemes with U-level structure

(β , δ) : (G, i, j, λ, [(η0, η1)]) −→ (G′, i′, j′, λ′, [(η′0, η′1)])

we mean a quasi-isogeny

β : (G, i, j) −→ (G′, i′, j′)
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and an element δ ∈ Q× such that

δλ = β∨ ◦ λ′ ◦ β

and

[(
η′0, η′1
)] = [(δη0, V (β) ◦ η1)].

If (G, i, j, λ, [(η0, η1)]) is a quasi-polarized,G(m)
n -semi-abelian scheme withU-level struc-

ture, if g ∈ G(m)
n (A∞) and if U ′ ⊃ g−1Ug then we define a quasi-polarized, G(m)

n -semi-
abelian scheme with U ′-level structure

(G, i, j, λ, [(η0, η1)])g = (G, i, j, λ, [(ν(g)η0, η1 ◦ g)]).

The quasi-isogeny class of (G, i, j, λ, [(η0, η1)])g only depends on the quasi-isogeny class of
(G, i, j, λ, [(η0, η1)]). If (G, i, j, λ, [(η0, η1)]) is a quasi-polarized, G(m)

n -semi-abelian scheme
with U-level structure, if γ ∈ GLm(F ) and U ′ ⊃ γU then we define a quasi-polarized,
G(m)
n -semi-abelian scheme with U ′-level structure

γ (G, i, j, λ, [(η0, η1)]) = (G, i, j ◦ γ−1, λ, [(η0, η1 ◦ γ−1)]).

The quasi-isogeny class of γ (G, i, j, λ, [(η0, η1)]) only depends on the quasi-isogeny class of
(G, i, j, λ, [(η0, η1)]). We have γ ◦ g = γ (g) ◦ γ . If (G, i, j, λ, [(η0, η1)]) is a quasi-polarized,
G(m)
n -semi-abelian scheme with U-level structure, ifm′ ≤ m and if U ′ ⊃ i∗m′ ,mU , then we

define a quasi-polarized, G(m′)
n -semi-abelian scheme with U ′-level structure

πm,m′ (G, i, j, λ, [(η0, η1)]) =
(
G/S, i, j ◦ im′ ,m, λ,

[(
η0, η′1
)])

,

where S ⊂ SG is the subtorus with

X∗(S) = X∗(SG)/
(
X∗(SG) ∩ j ◦ im′ ,mFm′)

and where

η′1 ◦ i∗m′ ,m = η1 mod VS.

The quasi-isogeny class of πm,m′ (G, i, j, λ, [(η0, η1)]) only depends on the quasi-isogeny
class of (G, i, j, λ, [(η0, η1)]). If γ ∈ Qm,m′ (F ) then πm,m′ ◦ γ = γ ◦ πm,m′ , where γ denotes
the image of γ in GLm′ (F ). If g ∈ G(m)

n (A∞) then πm,m′ ◦ g = i∗m′ ,m(g) ◦ πm,m′ .
IfU is a neat open compact subgroup ofG(m)

n (A∞) then the functorwhich sends a locally
noetherian scheme Y /Q to the set of quasi-isogeny classes of quasi-polarized G(m)

n -semi-
abelian schemes withU-level structure is represented by a quasi-projective scheme A(m)

n,U ,
which is smooth of dimension n(n+ 2m)[F+ : Q]. (See proposition 1.3.2.14 of [44].) We
remark that according to our notational conventions we have

A(0)
n,U = Xn,U .
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Let

[(
Guniv , iuniv , juniv , λuniv , [ηuniv]

)]
/A(m)

n,U

denote the universal quasi-isogeny class of quasi-polarized G(m)
n -semi-abelian schemes

with U-level structure. If g ∈ G(m)
n (A∞) and U1, U2 are neat open compact subgroups of

G(m)
n (A∞) with U2 ⊃ g−1U1g then there is a map

g : A(m)
n,U1

−→ A(m)
n,U2

arising from (Guniv , iuniv , juniv , λuniv , [ηuniv])g/A(m)
n,U1

and from the universal property of
A(m)
n,U2

. Similarly if γ ∈ GLm(F ) andU1, U2 are neat open compact subgroups ofG(m)
n (A∞)

with U2 ⊃ γU1 then there is a map

γ : A(m)
n,U1

−→ A(m)
n,U2

arising from γ (Guniv , iuniv , juniv , λuniv , [ηuniv])/A(m)
n,U1

and from the universal property of
A(m)
n,U2

. Moreover if m′ ≤ m, if U ⊂ G(m)
n (A∞) and if U ′ denotes the image of U in

G(m′)
n (A∞), then there is a smooth projective map

πA(m)
n /A(m′)

n
: A(m)

n,U −→ A(m′)
n,U ′

arising from πm,m′ (Guniv , iuniv , juniv , λuniv , [ηuniv])/A(m)
n,U and the universal property of

A(m′)
n,U ′ . (We will sometimes write πA(m)

n /Xn
for πA(m)

n /A(0)
n
.) We see that these actions have the

following properties.

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left action) and
γ ◦ g = γ (g) ◦ γ .

• If γ ∈ Qm,m′ (F ) then πA(m)
n /A(m′)

n
◦ γ = γ ◦ πA(m)

n /A(m′)
n

, where γ denotes the image of γ
in GLm′ (F ).

• πA(m)
n /A(m′)

n
◦ g = g ′ ◦ πA(m)

n /A(m′)
n

, where g ′ denotes the image of g in G(m′)
n (A∞).

Moreover we have the following properties.

• The maps g and γ are finite etale. The maps πm,m′ are smooth and projective.
• If U1 ⊂ U2 is an open normal subgroup of a neat open compact subgroup then

A(m)
n,U1

/A(m)
n,U2

is Galois with group U2/U1.
• If U = U ′ � M with U ′ ⊂ Gn(A∞) and M ⊂ Hom(m)

n (A∞) then A(m)
n,U/Xn,U ′ is an

abelian scheme of relative dimensionmn[F : Q].
• In general A(m)

n,U is a principal homogenous space for A(m)
n,U ′�(U∩Hom(m)

n (A∞))
over Xn,U ′ ,

where U ′ denotes the image of U in Gn(A∞).
• There are G(m)

n (A∞) and GLm(F ) equivariant homeomorphisms

A(m)
n,U (C) ∼= G(m)

n (Q)
∖
G(m)
n (A)
/ (

U ×U0
n,∞An(R)0

)
.

Moreover in the case U = U ′ � M, if Guniv/A(m)
n,U and Auniv/Xn,U ′ are chosen so that

π∗
A(m)
n /Xn

Auniv ∼= AGuniv , then there is a Q-linear map
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i(m)
Auniv : Fm −→ Hom/Xn,U ′

(
A(m)
n,U , (A

univ)∨
)

Q

with the following properties.

• If a ∈ F then

i(m)
Auniv (ax) = iuniv,∨(ca) ◦ i(m)

Auniv (x).

• If (β , δ) is a quasi-isogeny

(
Guniv , iuniv , juniv , λuniv , [ηuniv]

) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]
)
,

then

β∨ ◦ i(m)
(Auniv)′ (x) = i(m)

Auniv (x).

In particular i(m)
Auniv depends only on Auniv and not on Guniv.

• If g ∈ G(m)
n (A∞) and γ ∈ GLm(F ) then

i(m)
Auniv (x) ◦ g = i(m)

g∗Auniv (x)

and

i(m)
Auniv (x) ◦ γ = i(m)

γ ∗Auniv (γ−1x).

• If e1, . . . , em denotes the standard basis of Fm then

iAuniv =||ηuniv0 ||−1
(
(λuniv)−1 ◦ i(m)

Auniv (e1), . . . , (λuniv)−1 ◦ i(m)
Auniv (em)

)
: A(m)

n,U −→ (Auniv)m

is a quasi-isogeny. If (β , δ) is a quasi-isogeny

(Guniv , iuniv , juniv , λuniv , [ηuniv]) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]),

then

β⊕m ◦ iAuniv = i(Auniv)′ .

• The map

η
(m)
n,U : HomF (Fm, Vn)⊗Q A∞ ∼→ V (Auniv)m ∼→ VA(m)

n,U
f �→ (ηuniv1 (f (e1)), . . . , ηuniv1 (f (em)))

x �→ V (iAuniv )−1x

is an isomorphism, which does not depend on the choice of Guniv. It satisfies

η
(m)
n,UM = TA(m)

n,U .
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(See lemmas 1.3.2.7 and 1.3.2.50, propositions 1.3.2.14, 1.3.2.24 and 1.3.2.55, theorem
1.3.3.15, and remark 1.3.3.33 of [44]; and section 3.5 of [43].)
Note that

iAuniv ◦ g = ig∗Auniv

and

iAuniv ◦ γ = tγ−1 ◦ iγ ∗Auniv .

Define

i(m)
λ : Fm ⊗F,c Fm −→ Hom/Xn,U ′

(
A(m)
n,U , A

(m),∨
n,U

)
Q

by

i(m)
λ (x ⊗ y) = ||ηuniv0 ||−1i(m)

Auniv (x)∨ ◦ λuniv,−1 ◦ i(m)
Auniv (y).

This does not depend on the choice of Auniv. We have

i(m)
λ (x ⊗ y)∨ = i(m)

λ (y⊗ x).

Moreover
(
i−1
Auniv

)∨ ◦ i(m)
λ (x ⊗ y) ◦ i−1

Auniv = (λuniv)⊕m ◦ iuniv(c,txy).

If a ∈ (Fm ⊗F,c Fm)sw=1 has image in S(Fm) lying in S(Fm)>0 then
(
i−1
Auniv

)∨ ◦ i(m)
λ (a) ◦ i−1

Auniv = (λuniv)⊕m ◦ iuniv(a′)

for some matrix a′ ∈ Mm×m(F )t=c all whose eigenvalues are positive real numbers. (See
Sect. 1.1 for the definition of sw.) Thus i(m)

λ (a) is a quasi-polarization. (See the end of
section 21 of [47].)
Now suppose that Y /SpecZ(p) is a locally noetherian scheme. By an ordinary G(m)

n -emi-
abelian scheme G over Y we mean a triple (G, i, j) where

• G/Y is a semi-abelian scheme such that X∗(G) is locally constant over Y , and such that
#G[p](k(y)) ≥ p(n+m)[F :Q] for each geometric point y of Y ,

• i : OF,(p) ↪→ End(G)Z(p) such that LieAG is a free OY ⊗Z(p) OF,(p) module of rank
n[F : Q],

• and j : Om
F,(p)

∼→ X∗(G)Z(p) is aOF,(p)-linear isomorphism.

Then AG is an ordinary Gn-abelian scheme. By a prime-to-p quasi-isogeny of ordinary
G(m)
n -semi-abelian schemes wemean a prime-to-p quasi-isogeny of semi-abelian schemes

β : G → G′

such that

i′(a) ◦ β = β ◦ i(a)
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for all a ∈ OF,(p), and

j = X∗(β) ◦ j′.

Note that, if y is a geometric point of Y , then j induces a map

j∗ : VpSG,y
∼−→ HomZ(p)

(
Om

F,(p), V
pGm,y
)
.

By a prime-to-p quasi-polarization of (G, i, j) we shall mean a prime-to-p quasi-
polarization of AG .
If Y is connected and y is a geometric point of Y , if Up ⊂ G(m)

n (A∞,p) is a neat open
compact subgroup and ifN2 ≥ N1 ≥ 0 thenby aUp(N1, N2) level structureonaprime-to-p
quasi-polarized ordinaryG(m)

n -semi-abelian scheme (G, i, j, λ)wemean aπ1(Y, y)-invariant
Up-orbit [η] of five-tuples (ηp0 , η

p
1 , C, D, ηp) consisting of

• an A∞,p-linear isomorphism η
p
0 : A∞,p ∼−→ A∞,p(1)y = VpGm,y;

• an A
∞,p
F -linear isomorphism

η
p
1 : Λ(m)

n ⊗Z A∞,p ∼−→ VpGy

such that ηp1 |HomZ(Om
F ,A∞,p) = (j∗)−1 ◦Hom(1Om

F
, ηp0);

• a locally free sub-OF,(p)-module scheme C ⊂ G[pN2 ], such that for every geometric
point ỹ of Y there is an OF,(p)-invariant sub-Barsotti–Tate group C̃̃y ⊂ G̃y[p∞] with
the following properties

• C̃y = C̃̃y[pN2 ],
• C̃̃y ⊃ SG,̃y[p∞],
• for all N the subgroup scheme C̃̃y[pN ]/SG,̃y[pN ] is isotropic in AG[pN ]̃y for the

λ-Weil pairing,
• G̃y[p∞]/C̃̃y is ind-etale,
• the Tate module T (G̃y[p∞]/C̃̃y) is free overOF,p of rank n;

• a locally free sub-OF,(p)-module scheme D ⊂ C[pN1 ] such that

D ∼→ C[pN1 ]/SG[pN1 ];

• and an isomorphism

ηp : p−N1Λn
/(

p−N1Λn,(n) +Λn
) ∼−→ G[pN1 ]/C[pN1 ]

such that

ηp(ax) = i(a)ηp(x)

for all a ∈ OF,(p) and x ∈ p−N1Λn/(p−N1Λn,(n) +Λn);

such that
[(

η
p
0 , η

p
1 mod VpSG, C/SG[pN2 ], ηp

)]
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is a Up(N1, N2)-level structure for (AG, i, λ). This definition is independent of the choice
of geometric point y of Y . By a Up(N1, N2)-level structure on an ordinary, prime-to-p
quasi-polarized, G(m)

n -semi-abelian scheme (G, i, j, λ) over a general (locally noetherian)
scheme Y /SpecZ(p), we mean the collection of a Up(N1, N2)-level structure over each
connected component of Y .
By a prime-to-p quasi-isogeny between twoquasi-polarized, ordinaryG(m)

n -semi-abelian
schemes with Up(N1, N2)-level structure

(β , δ) : (G, i, j, λ, [(η0, η1)]) −→
(
G′, i′, j′, λ′,

[(
η′0, η′1
)])

we mean a prime-to-p quasi-isogeny

β : (G, i, j) −→ (G′, i′, j′)

and an element δ ∈ Z×
(p) such that

δλ = β∨ ◦ λ′ ◦ β

and
[((

η
p
0
)′ , (ηp1
)′ , C ′, D′, η′p

)]
= [(δηp0 , V p(β) ◦ η

p
1 ,βC,βD,β ◦ ηp

)]
.

If (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]) is a prime-to-p quasi-polarized, ordinary G(m)

n -semi-
abelian scheme with Up(N1, N2)-level structure, if g ∈ G(m)

n (A∞)ord,× and if

(Up)′
(
N ′
1, N

′
2
) ⊃ g−1Up(N1, N2)g

then we define a prime-to-p quasi-polarized, ordinary G(m)
n -semi-abelian scheme with

(Up)′(N ′
1, N

′
2)-level structure

(
G, i, j, λ,

[(
η
p
0 , η

p
1 , C, D, ηp

)])
g = (G, i, j, λ, [(ν(g)ηp0 , ηp1 ◦ gp, C, D, ηp ◦ gp

)])
.

The prime-to-p quasi-isogeny class of (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)])g only depends on the

prime-to-p quasi-isogeny class of (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]). Similarly, if

(
G, i, j, λ,

[(
η
p
0 , η

p
1 , C, D, ηp

)])

is a prime-to-p quasi-polarized, ordinaryG(m)
n -semi-abelian schemewithUp(N1, N2)-level

structure and if

(Up)′
(
N ′
1, N

′
2
) ⊃ ς−1

p Up(N1, N2)ςp,

then we define a prime-to-p quasi-polarized, ordinary G(m)
n -semi-abelian scheme with

(Up)′(N ′
1, N

′
2)-level structure

(
G, i, j, λ,

[(
η
p
0 , η

p
1 , C, D, ηp

)])
ςp

=
(
G/C[p], i, pj, F (λ),

[(
pηp0 , F
(
η
p
1
)
, C[p1+N ′

2 ]/C[p], (D′/C[p])[pN ′
1 ], F (ηp)

)])
;



Harris et al. Res Math Sci (2016) 3:37 Page 100 of 308

where

F (λ) : AG/C[p]
λ−→ A∨

G/λC[p] = A∨
G
/
C[p]⊥ ∼−→ (AG/C[p])∨

with the latter isomorphismbeing induced by the dual of themapAG/C[p] → AG induced
by multiplication by p on AG ; where F (η

p
1) is the composition of ηp1 with the natural map

VpG ∼→ Vp(G/C[p]); whereD′ denotes the pre-image ofD under the multiplication by p
map C → C ; and where F (ηp) is the composition of ηp with the natural identification

G[pN
′
1 ]/(C ∩ G[pN

′
1 ]) = (G/C[p])[pN

′
1 ]/(C[p1+N ′

2 ]/C[p] ∩ (G/C[p])[pN
′
1 ]).

Together these two definitions give an action of Gn(A∞)ord.
If (G, i, j, λ, [(ηp0 , η

p
1 , C, D, ηp)]) is a prime-to-p quasi-polarized, ordinary G(m)

n -semi-
abelian scheme with Up(N1, N2)-level structure, if γ ∈ GLm(OF,(p)) and if

(Up)′
(
N ′
1, N

′
2
) ⊃ γUp(N1, N2)

then we define a prime-to-p quasi-polarized, ordinary G(m)
n -semi-abelian scheme with

(Up)′(N ′
1, N

′
2)-level structure

γ
(
G, i, j, λ,

[(
η
p
0 , η

p
1 , C, D, ηp

)]) = (G, i, j ◦ γ−1, λ,
[(
η
p
0 , η

p
1 ◦ γ−1, C, D, ηp

)])
.

The prime-to-p quasi-isogeny class of γ (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]) only depends on

the quasi-isogeny class of (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]). We have γ ◦ g = γ (g) ◦ γ .

If (G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]) is a prime-to-p quasi-polarized, ordinary G(m)

n -semi-
abelian scheme with Up(N1, N2)-level structure, if m′ ≤ m and if (Up)′(N ′

1, N
′
2) ⊃

i∗m′ ,mU
p(N1, N2), then we define a quasi-polarized, ordinary G(m′)

n -semi-abelian scheme
with (Up)′(N ′

1, N
′
2)-level structure

πm,m′
(
G, i, j, λ,

[(
η
p
0 , η

p
1 , C, D, ηp

)]) = (G/S, i, j ◦ im′ ,m, λ,
[(
η
p
0 , (η

p
1)
′, C ′, D′, ηp

)])
,

where S ⊂ SG is the subtorus with

X∗(S) = X∗(SG)
/(

X∗(SG) ∩ j ◦ im′ ,mOm′
F,(p)

)

and where

(ηp1)
′ ◦ i∗m′ ,m = η

p
1 mod VpS

and C ′ (resp. D′) denotes the image of C (resp. D). The prime-to-p quasi-isogeny
class of πm,m′ (G, i, j, λ, [(ηp0 , η

p
1 , C, D, ηp)]) only depends on the quasi-isogeny class of

(G, i, j, λ, [(ηp0 , η
p
1 , C, D, ηp)]). If γ ∈ Qm,m′ (OF,(p)) then πm,m′ ◦ γ = γ ◦ πm,m′ , where γ

denotes the image of γ inGLm′ (OF,(p)). If g ∈ G(m)
n (A∞) then πm,m′ ◦ g = i∗m′ ,m(g) ◦πm,m′ .

For each m ≥ 0 there is a system of Z(p)-schemes {A(m),ord
n,Up(N1 ,N2)} as Up runs over neat

open compact subgroups of G(m)
n (A∞,p) and N1, N2 run over integers with N2 ≥ N1 ≥ 0,

together with the following extra structures:
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• If g ∈ G(m)
n (A∞)ord and Up

2 (N21, N22) ⊃ g−1Up
1 (N11, N12)g then there is a quasi-finite,

flat map

g : A(m),ord
n,Up

1 (N11 ,N12)
−→ A(m),ord

n,Up
2 (N21 ,N22)

.

• Ifm′ ≤ m and if (Up)′ denotes the image of Up in G(m′)
n (A∞,p), then there is a smooth

projective map with geometrically connected fibres

πA(m),ord
n /A(m′),ord

n
: A(m),ord

n,Up(N1 ,N2) −→ A(m′),ord
n,(Up)′(N1 ,N2).

• If γ ∈ GLm(OF,(p)) and Up
2 ⊃ γUp

1 then there is a finite etale map

γ : A(m),ord
n,Up

1 (N1 ,N2)
−→ A(m),ord

n,Up
2 (N1 ,N2)

.

Moreover there is a canonical prime-to-p quasi-isogeny class of ordinary G(m)
n -semi-

abelian schemes with Up(N1, N2) level structure

(
Guniv , iuniv , juniv , λuniv , [ηuniv]

) /
A(m),ord

n,Up(N1 ,N2)

These enjoy the following properties:

• A(0),ord
n,Up(N1 ,N2) = X ord

n,Up(N1 ,N2). (We will sometimes write πA(m),ord
n /X ord

n
instead of

πA(m),ord
n /A(0),ord

n
.) This identification is Gn(A∞)ord equivariant.

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left action) and
γ ◦ g = γ (g) ◦ γ .

• If γ ∈ Qm,m′ (OF,(p)) then πA(m),ord
n /A(m′),ord

n
◦ γ = γ ◦ πA(m),ord

n /A(m′),ord
n

, where γ denotes
the image of γ in GLm′ (OF,(p)).

• πA(m),ord
n /A(m′),ord

n
◦ g = g ′ ◦ πA(m),ord

n /A(m′),ord
n

, where g ′ denotes the image of g in

G(m′)
n (A∞)ord.

• If g ∈ G(m)
n (A∞)ord, then the induced map

g : A(m),ord
n,Up

1 (N11 ,N12)
−→ g∗A(m),ord

n,Up
2 (N21 ,N22)

over X ord
n,Up

1 (N11 ,N12)
is finite flat of degree pnm[F :Q]. If g ∈ G(m)

n (A∞)ord,×, then this map
is also etale.

• If Up
1 ⊂ Up

2 is an open normal subgroup of a neat open compact of G(m)
n (A∞,p)

and if N11 ≥ N21, then A(m),ord
n,Up

1 (N11 ,N2)
/A(m),ord

n,Up
2 (N21 ,N2)

is Galois with Galois group

Up
2 (N21)/U

p
1 (N11).

• On Fp-fibres the map

ςp : A(m),ord
n,Up(N1 ,N2+1) × SpecFp −→ A(m),ord

n,Up(N1 ,N2) × SpecFp

equals the composition of the absolute Frobenius map with the forgetful map (for any
N2 ≥ N1 ≥ 0).
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• If g ∈ G(m)
n (A∞)ord and Up

2 (N21, N22) ⊃ g−1Up
1 (N11, N12)g then the pull-back

g∗
(
Guniv
2 , iuniv2 , juniv2 , λuniv2 , [ηuniv2 ]

)

is prime-to-p quasi-isogenous to the tuple (Guniv
1 , iuniv1 , juniv1 , λuniv1 , [ηuniv1 ])g .

• If γ ∈ GLm(OF,(p)) and Up
2 (N21, N22) ⊃ γUp

1 (N11, N12) then the pull-back

γ ∗ (Guniv
2 , iuniv2 , juniv2 , λuniv2 ,

[
ηuniv2
])

is prime-to-p quasi-isogenous to the tuple γ (Guniv
1 , iuniv1 , juniv1 , λuniv1 , [ηuniv1 ]).

• If m′ ≤ m and if Up
2 (N21, N22) ⊃ i∗m′ ,mU

p
1 (N11, N12) then the pull-back

π∗
A(m)

n /A(m′)
n

(Guniv
2 , iuniv2 , juniv2 , λuniv2 , [ηuniv2 ]) is prime-to-p quasi-isogenous to the tuple

πm,m′ (Guniv
1 , iuniv1 , juniv1 , λuniv1 , [ηuniv1 ]).

• If Up = (Up)′ � Mp with (Up)′ ⊂ Gn(A∞,p) andMp ⊂ Hom(m)
n (A∞,p) then

A(m),ord
n,Up(N1 ,N2)

/
X ord
n,(Up)′(N1 ,N2)

is an abelian scheme of relative dimensionmn[F : Q].
• In general A(m),ord

n,Up(N1 ,N2) is a principal homogenous space for the abelian scheme
A(m),ord

n,((Up)′�Mp)(N1 ,N2) over X ord
n,(Up)′(N1 ,N2), where (Up)′ denotes the image of Up in

Gn(A∞,p) andMp = Up ∩Hom(m)
n (A∞,p).

• There are natural identifications

A(m),ord
n,Up(N1 ,N2) × SpecQ ∼= A(m)

n,Up(N1 ,N2).

These identifications are compatible with the identifications

X ord
n,(Up)′(N1 ,N2) × SpecQ ∼= Xn,(Up)′(N1 ,N2)

and the maps πA(m),ord
n /A(m′),ord

n
and πA(m)

n /A(m′)
n

. They are also equivariant for the actions

of the semi-group G(m)
n (A∞)ord and the group GLm(OF,(p)).

Moreover in the case Up = (Up)′ � Mp, if Guniv/A(m),ord
n,Up(N1 ,N2) and Auniv/X ord

n,Up(N1 ,N2) are
chosen so that π∗

A(m),ord
n /X ord

n
Auniv ∼= AGuniv , then there is a Z(p)-linear map

i(m)
Auniv : Om

F,(p) −→ Hom/X ord
n,(Up)′(N1 ,N2)

(
A(m),ord

n,Up(N1 ,N2), (A
univ/Cuniv[pN1 ])∨

)
Z(p)

with the following properties.

• If a ∈ OF,(p) then

i(m)
Auniv (ax) = iuniv,∨(ca) ◦ i(m)

Auniv (x).

• If (β , δ) is a prime-to-p quasi-isogeny

(
Guniv , iuniv , juniv , λuniv , [ηuniv]

) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]
)
,
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then

β∨ ◦ i(m)
(Auniv)′ (x) = i(m)

Auniv (x).

In particular i(m)
Auniv depends only onAuniv and not on Guniv.

• If g ∈ G(m)
n (A∞)ord and γ ∈ GLm(OF,(p)) then

i(m)
Auniv (x) ◦ g = i(m)

g∗Auniv (x)

and

i(m)
Auniv (x) ◦ γ = i(m)

γ ∗Auniv (γ−1x).

• If e1, . . . , em denotes the standard basis ofOm
F,(p) then

iAuniv =
∣∣∣
∣∣∣ηp,univ0

∣∣∣
∣∣∣
−1 ((

λ(N1)univ
)−1 ◦ i(m)

Auniv (e1), . . . ,
(
λ(N1)univ

)−1 ◦ i(m)
Auniv (em)

)

is a prime-to-p quasi-isogeny

A(m),ord
n,Up(N1 ,N2) −→ (Auniv/Cuniv[pN1 ])m.

Hereλ(N1)univ refers to theprime-to-pquasi-polarizationAuniv/C[pN1 ] → (Auniv/C[pN1 ])∨

for which the composite

Auniv −→ Auniv/C[pN1 ] λ(N1)univ−→ (Auniv/C[pN1 ])∨ −→ Auniv,∨

equals pN1λuniv.
We have

β⊕m ◦ iAuniv = i(Auniv)′ .

The composite map

η
(m)
n,Up(N1 ,N2) : HomOF (Om

F ,Λn)⊗Z A∞,p −→ Vp(Auniv)m
p−N1−→ Vp(Auniv/Cuniv[pN1 ])m

−→ VpA(m),ord
n,Up(N1 ,N2),

where the first maps sends

f �−→
(
η
p,univ
1 (f (e1)), . . . , η

p,univ
1 (f (em))

)

and the third map sends

x �−→ Vp(iAuniv )−1x,

is an isomorphism, which does not depend on the choice of Guniv. It satisfies

η
(m)
n,Up(N1 ,N2)M

p = TpA(m),ord
n,Up(N1 ,N2).
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(See lemmas 5.2.4.7 and7.1.2.1, propositions 5.2.4.13, 5.2.4.25 and7.1.2.5, remarks 7.1.2.38
and 7.1.4.27, and theorem 7.1.4.1 of [44].)
We deduce the following additional properties:

• If g ∈ G(m)
n (A∞)ord,× then themap g : A(m),ord

n,Up
1 (N11 ,N12)

→ A(m),ord
n,Up

2 (N21 ,N22)
is etale. If further

N12 = N22, then it is finite etale.
• If g ∈ G(m)

n (A∞)ord, if N22 > 0 and if pN12−N22ν(gp) ∈ Z×
p then

g : A(m),ord
n,Up

1 (N11 ,N12)
−→ A(m),ord

n,Up
2 (N21 ,N22)

is finite. If N2 > 0 then the finite flat map

ςp : A(m),ord
n,Up(N1 ,N2+1) −→ A(m),ord

n,Up(N1 ,N2)

has degree pn(n+2m)[F+:Q].
•

iAuniv ◦ g = ig∗Auniv

and

iAuniv ◦ γ = tγ−1 ◦ iγ ∗Auniv .

Also in this case define

i(m)
λ : Om

F,(p) ⊗OF,(p) ,c Om
F,(p) −→ Hom/X ord

n,(Up)′(N1 ,N2)

(
A(m),ord

n,Up(N1 ,N2), A
(m),ord,∨
n,Up(N1 ,N2)

)
Z(p)

by

i(m)
λ (x ⊗ y) =

∣∣∣
∣∣∣ηp,univ0

∣∣∣
∣∣∣
−1

i(m)
Auniv (x)∨ ◦ (λ(N1)univ

)−1 ◦ i(m)
Auniv (y).

This does not depend on the choice ofAuniv. We have

i(m)
λ (x ⊗ y)∨ = i(m)

λ (y⊗ x).

Moreover
(
i−1
Auniv

)∨ ◦ i(m)
λ (x ⊗ y) ◦ i−1

Auniv =
(
λ(N1)univ

)⊕m ◦ iuniv(c,txy).

If a ∈ (Om
F,(p) ⊗OF,(p) ,c Om

F,(p))
sw=1 has image in S(Om

F,(p)) lying in S(Om
F,(p))

>0 then

(
i−1
Auniv

)∨ ◦ i(m)
λ (a) ◦ i−1

Auniv =
(
λ(N1)univ

)⊕m ◦ iuniv(a′)

for some matrix a′ ∈ Mm×m(OF,(p))t=c all whose eigenvalues are positive real numbers.
Thus i(m)

λ (a) is a quasi-polarization. (See the end of section 21 of [47].)
The completion ofA(m),ord

Up(N1 ,N2) along itsFp-fibre does not depend onN2, sowewill denote
it

A
(m),ord
Up(N1).
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(See theorem 7.1.4.1 of [44].) Then {A(m),ord
Up(N ) } is a system of p-adic formal schemes with a

right G(m)
n (A∞)ord-action and a left GLm(OF,(p))-action. There is an equivariant map

{
A
(m),ord
n,Up(N )

}
−→
{
Xord
n,(U ′)p(N )

}
.

We will write A(m),ord
n,Up(N ) for the reduced subscheme of A(m),ord

n,Up(N ).

3.3 Somemixed Shimura varieties

If Ũ (resp. Ũp) is a neat open compact subgroup of G̃(m)
n (A∞) (resp. G̃(m)

n (A∞,p)) we will
denote by S(m)

n,Ũ (resp. S (m),ord
n,Ũp ) the split torus over SpecQ (resp. SpecZ(p)) with

X∗
(
S(m)
n,Ũ

)
= Z(N (m)

n )(Q) ∩ Ũ ⊂ Herm(m)(Q)

(resp.

X∗
(
S (m),ord
n,Ũp

)
= Z(N (m)

n )(Z(p)) ∩ Ũp ⊂ Herm(m)(Z(p))).

If g ∈ G̃(m)
n (A∞) (resp. G̃(m)

n (A∞)ord) and Ũ2 ⊃ g−1Ũ1g (resp. Ũp
2 ⊃ g−1Ũp

1 g) we get a
map

g : S(m)
n,Ũ1

−→ S(m)
n,Ũ2

(resp.

g : S (m),ord
n,Ũp

1
−→ S (m),ord

n,Ũp
2

)

corresponding to

||ν(g)|| : X∗
(
S(m)
n,Ũ1

)
−→ X∗

(
S(m)
n,Ũ2

)

(resp.

||ν(g)|| : X∗
(
S (m),ord
n,Ũp

1

)
−→ X∗

(
S (m),ord
n,Ũp

2

))
,

wherewe think of the domain and codomain both as subspaces ofHerm(m). If γ ∈ GLm(Q)
(resp. GLm(Z(p))) and Ũ2 ⊃ γ Ũ1 (resp. Ũ

p
2 ⊃ γ Ũp

1 ) we get a map

γ : S(m)
n,Ũ1

−→ S(m)
n,Ũ2

(resp.

γ : S (m),ord
n,Ũp

1
−→ S (m),ord

n,Ũp
2

)

corresponding to

γ : X∗
(
S(m)
n,Ũ1

)
−→ X∗

(
S(m)
n,Ũ2

)
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(resp.

γ : X∗
(
S (m),ord
n,Ũp

1

)
−→ X∗

(
S (m),ord
n,Ũp

2

))
,

where again we think of the domain and codomain both as subspaces of Herm(m). Ifm1 ≥
m2 and if Ũ2 (resp. Ũ

p
2 ) is the image of Ũ1 (resp. Ũ

p
1 ) in G̃(m2)

n (A∞) (resp. G̃(m2)
n (A∞,p)),

then our chosen map Herm(m1) → Herm(m2) induces a map

S(m1)
n,Ũ1

−→ S(m2)
n,Ũ2

(resp.

S (m1),ord
n,Ũp

1
−→ S (m2),ord

n,Ũp
2

)
.

As Ũ runs over neat open compact subgroups of G̃(m)
n (A∞), there is a system of S(m)

n,Ũ -
torsors

T (m)
n,Ũ = Spec

⊕

χ∈X∗(S(m)
n,Ũ )

L(m)
n,Ũ (χ )

over A(m)
n,Ũ together with the following extra structures:

• If g ∈ G̃(m)
n (A∞) and Ũ1, Ũ2 are neat open compact subgroups of G̃(m)

n (A∞) with
Ũ2 ⊃ g−1Ũ1g then there is a finite etale map

g : T (m)
n,Ũ1

−→ T (m)
n,Ũ2

compatible with the maps g : A(m)
n,Ũ1

−→ A(m)
n,Ũ2

and g : S(m)
n,Ũ1

−→ S(m)
n,Ũ2

.

• If γ ∈ GLm(F ) and Ũ1, Ũ2 are neat open compact subgroups of G̃(m)
n (A∞) with Ũ2 ⊃

γ Ũ1 then there is a finite etale map

γ : T (m)
n,Ũ1

−→ T (m)
n,Ũ2

,

compatible with the maps γ : A(m)
n,Ũ1

−→ A(m)
n,Ũ2

and γ : S(m)
n,Ũ1

−→ S(m)
n,Ũ2

.

• Ifm1 ≥ m2 and Ũ2 is the image of Ũ1 in G̃(m2)(A∞), then there is a map

T (m1)
n,Ũ1

−→ T (m2)
n,Ũ2

compatible with the maps S(m1)
n,Ũ1

−→ S(m2)
n,Ũ2

and A(m1)
n,Ũ1

−→ A(m2)
n,Ũ2

.

These enjoy the following properties:

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left action) and
γ ◦ g = γ (g) ◦ γ .

• If Ũ1 ⊂ Ũ2 is an open normal subgroup of a neat open compact subgroup of G̃(m)
n (A∞),

then T (m)
n,Ũ1

/T (m)
n,Ũ2

is Galois with group Ũ2/Ũ1.
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• The maps T (m1)
n,Ũ1

−→ T (m2)
n,Ũ2

are compatible with the actions of G̃(m1)
n (A∞) and

G̃(m2)
n (A∞) and the map G̃(m1)

n (A∞) → G̃(m2)
n (A∞), and also with the action of

Qm1 ,m2 (F ).
• Suppose that Ũ = U ′ � M with U ′ ⊂ Gn(A∞) andM ⊂ N (m)

n (A∞). Also suppose that

χ ∈ X∗(S(m)
n,Ũ ) ⊂ S(Fm)

is sufficiently divisible. Then we can find a ∈ Fm ⊗F,c Fm lifting χ such that

i(m)
λ (a) : A(m)

n,Ũ −→
(
A(m)
n,Ũ

)∨

is a homomorphism. For any such a

L(m)
n,Ũ (χ ) =

(
1, i(m)

λ (a)
)∗

PA(m)
n,Ũ

.

• If χ ∈ X∗(S(m)
n,Ũ ) ∩ S(Fm)>0 then L(m)

n,Ũ (χ ) is relatively ample for A(m)
n,Ũ/Xn,Ũ .

• There are G̃(m)
n (A∞) and GLm(F ) equivariant homeomorphisms

T (m)
n,Ũ (C) ∼= G̃(m)

n (Q)
∖
G̃(m)
n (A)Herm(m)(C)

/(
Ũ ×U0

n,∞An(R)0
)
.

(See lemmas 1.3.2.25 and 1.3.2.72, and propositions 1.3.2.31, 1.3.2.45 and 1.3.2.90 of [44];
section 3.6 of [43]; and the second paragraph of Sect. 3.2 above.)
Similarly as Ũp runs over neat open compact subgroups of G̃(m)

n (A∞,p) and N1, N2 run
over integers with N2 ≥ N1 ≥ 0, there is a system of S (m),ord

n,Ũp -torsors

T (m),ord
n,Ũp(N1 ,N2)

= Spec
⊕

χ∈X∗
(
S(m),ord
n,Ũp(N1 ,N2)

)
L(m),ord
n,Ũp(N1 ,N2)

(χ )

overA(m),ord
n,Ũp(N1 ,N2)

together with the following extra structures:

• If g ∈ G̃(m)
n (A∞)ord and Ũp

2 (N21, N22) ⊃ g−1Ũp
1 (N11, N12)g then there is a quasi-finite,

flat map

g : T (m),ord
n,Ũp

1 (N11 ,N12)
−→ T (m),ord

n,Ũp
2 (N21 ,N22)

compatible with the map g : A(m),ord
n,Ũp

1 (N11 ,N12)
−→ A(m),ord

n,Ũp
2 (N21 ,N22)

and the map g :

S (m),ord
n,Ũp

1
−→ S (m),ord

n,Ũp
2

.

• If γ ∈ GLm(OF,(p)) and Ũp
2 ⊃ γ Ũp

1 then there is a finite etale map

γ : T (m),ord
n,Ũp

1 (N1 ,N2)
−→ T (m),ord

n,Ũp
2 (N1 ,N2)

,

compatible with the maps

γ : A(m),ord
n,Ũp

1 (N1 ,N2)
−→ A(m)

n,Ũp
2 (N1 ,N2)

and

γ : S (m),ord
n,Ũp

1
−→ S (m),ord

n,Ũp
2

.
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• Ifm1 ≥ m2 and Ũp
2 is the image of Ũp

1 in G̃(m2)(A∞,p), then there is a map

T (m1),ord
n,Ũp

1 (N1 ,N2)
−→ T (m2),ord

n,Ũp
2 (N1 ,N2)

compatible with the map S (m1),ord
n,Ũp

1
−→ S (m2),ord

n,Ũp
2

and the map A(m1),ord
n,Ũp

1 (N1 ,N2)
−→

A(m2),ord
n,Ũp

2 (N1 ,N2)
.

These enjoy the following properties:

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left action) and
γ ◦ g = γ (g) ◦ γ .

• If g ∈ G̃(m)
n (A∞)ord,× then the map g : T (m),ord

n,Ũp
1 (N11 ,N12)

→ T (m),ord
n,Ũp

2 (N21 ,N22)
is etale. If further

N12 = N22, then it is finite etale.
• ThemapsT (m1),ord

n,Ũp
1 (N1 ,N2)

−→ T (m2),ord
n,Ũp

2 (N1 ,N2)
are compatiblewith the actions of G̃(m1)

n (A∞)ord

and G̃(m2)
n (A∞)ord and the map G̃(m1)

n (A∞) → G̃(m2)
n (A∞), and with the action of

Qm1 ,m2 (OF,(p)).
• If Ũp

1 ⊂ Ũp
2 is an open normal subgroup of a neat open compact of G̃(m)

n (A∞,p),
and if N11 ≥ N21 then T (m),ord

n,Ũp
1 (N11 ,N2)

/T (m),ord
n,Ũp

2 (N21 ,N2)
is Galois with Galois group

Ũp
2 (N21)/Ũ

p
1 (N11).

• If g ∈ G(m)
n (A∞)ord, if N22 > 0 and if pN12−N22ν(gp) ∈ Z×

p , then the map g :
T (m),ord
n,Ũp

1 (N11 ,N12)
→ T (m),ord

n,Ũp
2 (N21 ,N22)

is finite. If N2 > 0 then the finite flat map

ςp : T (m),ord
n,Ũp

1 (N1 ,N2+1) → T (m),ord
n,Ũp

2 (N1 ,N2)

has degree p(n+m)2[F+:Q].
• On the Fp-fibre

ςp : T (m),ord
n,Ũp(N1 ,N2+1) × SpecFp −→ T (m),ord

n,Ũp(N1 ,N2)
× SpecFp

equals the composition of the absolute Frobenius map with the forgetful map (for any
N2 ≥ N1 ≥ 0).

• Suppose that Ũp = (Up)′ � Mp with (Up)′ ⊂ Gn(A∞,p) and Mp ⊂ N (m)
n (A∞,p). Also

suppose that

χ ∈ X∗ (S (m),ord
n,Ũp

)
⊂ S(Om

F,(p))

is sufficiently divisible. Then we can find a ∈ Om
F,(p) ⊗OF,(p) Om

F,(p) lifting χ such that

i(m)
λ (a) : A(m),ord

n,Ũp(N1 ,N2)
−→
(
A(m),ord

n,Ũp(N1 ,N2)

)∨

is a homomorphism. For any such a

L(m),ord
n,Ũp(N1 ,N2)

(χ ) =
(
1, i(m)

λ (a)
)∗

PA(m),ord
n,Ũp(N1 ,N2)

.
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• If χ ∈ X∗(S (m)
n,Ũp ) ∩ S(Om

F,(p))
>0 then L(m),ord

n,Ũp(N1 ,N2)
(χ ) is relatively ample for

A(m),ord
n,Ũp(N1 ,N2)

/
X ord
n,Ũp(N1 ,N2)

.

• There are natural identifications

T (m),ord
n,Ũp(N1 ,N2)

× SpecQ ∼= T (m)
n,Ũp(N1 ,N2)

.

These identifications are compatible with the identifications

A(m),ord
n,Ũp(N1 ,N2)

× SpecQ ∼= A(m)
n,Ũp(N1 ,N2)

and the maps

T (m),ord
n,Ũp(N1 ,N2)

−→ A(m),ord
n,Ũp(N1 ,N2)

and

T (m)
n,Ũp(N1 ,N2)

−→ A(m)
n,Ũp(N1 ,N2)

.

The identifications are also equivariant for the actions of the semi-group G̃(m)
n (A∞)ord

and the group GLm(OF,(p)).

(See lemmas 5.2.4.26 and 7.1.2.22, propositions 5.2.4.30, 5.2.4.41 and 7.1.2.36, and remark
7.1.2.38 of [44].)

3.4 Vector bundles

3.4.1 Vector bundles on Shimura varieties in characteristic zero

Suppose thatU is a neat open compact subgroup ofGn(A∞). We will letΩn,U denote the
pull-back by the identity section of the sheaf of relative differentials Ω1

Auniv/Xn,U
. This is a

locally free sheaf of rankn[F : Q].Up tounique isomorphism its definitiondoesnotdepend
on the choice of Auniv. (Because, by the neatness of U , there is a unique quasi-isogeny
between any two universal four-tuples (Auniv , iuniv , λuniv , [ηuniv]).) The system of sheaves
{Ωn,U } has an action ofGn(A∞). There is a natural isomorphism betweenΩ1

Auniv/Xn,U
and

the pull-back of Ωn,U from Xn,U to Auniv. We will write

ωU = ωn,U = ∧n[F :Q]Ωn,U .

Similarly, if π : Auniv → Xn,U is the structural map, then the sheaf

Riπ∗Ω j
Auniv/Xn,U

∼= (∧jΩn,U )⊗ Riπ∗OAuniv

is locally free and canonically independent of the choice of Auniv. These sheaves again
have an action of Gn(A∞).
We will also write Ξn,U = OXn,U (||ν||) for the sheaf OXn,U but with the Gn(A∞)-action

multiplied by ||ν||.
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For anym ∈ Z such thatmλuniv is a true isogeny we get a class

[
(1, [m]λuniv)∗PAuniv

] ∈ H1
(
Auniv ,O×

Auniv

)

−→ H0
(
Xn,U , R1π∗O×

Auniv

)

d log−→ H0
(
Xn,U , R1π∗Ω1

Auniv/Xn,U

)
.

The class

[
(1, λuniv)∗PAuniv

] = [(1, [m]λuniv)∗PAuniv
]/

m ∈ H0
(
Xn,U , R1π∗Ω1

Auniv/Xn,U

)

is well defined independently ofm. We obtain an embedding

Ξn,U ↪→ R1π∗Ω1
Auniv/Xn,U

sending 1 to ||ηuniv||[(1, λuniv)∗PAuniv ]. (See Sect. 3.1 for the definition of ||ηuniv||.) These
maps are compatible with the isomorphisms

R1π∗Ω1
Auniv/Xn,U

∼−→ R1π∗Ω1
Auniv,′/Xn,U

induced by the unique quasi-isogeny between two universal four-tuples. They are also
Gn(A∞)-equivariant.
The composites of induced maps

Hom(Ωn,U ,Ξn,U ) ↪→ Hom
(
Ωn,U , R1π∗Ω1

Auniv/Xn,U

)
∼←− Hom

(
Ωn,U ,Ωn,U ⊗ R1π∗OAuniv

)
tr−→ R1π∗OAuniv

areGn(A∞)-equivariant isomorphisms, independent of the choice of Auniv. Moreover the
short exact sequence

(0) −→ Ω1
Xn,U ⊗OAuniv −→ Ω1

Auniv −→ Ωn,U ⊗OAuniv −→ (0)

gives rise to a map

Ωn,U −→ Ω1
Xn,U

⊗ R1π∗OAuniv
∼←− Ω1

Xn,U
⊗Hom(Ωn,U ,Ξn,U )

and hence to a map

Ω⊗2
n,U −→ Ω1

Xn,U ⊗Ξn,U .

These maps do not depend on the choice of Auniv and are Gn(A∞)-equivariant. They
further induce Gn(A∞)-equivariant isomorphisms

S(Ωn,U )
∼−→ Ω1

Xn,U ⊗Ξn,U ,

which again do not depend on the choice of Auniv. (See, for instance, propositions 2.1.7.3
and 2.3.5.2 of [41]. This is referred to as the ‘Kodaira–Spencer isomorphism’.)
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Let EU denote the principal Ln,(n)-bundle on Xn,U in the Zariski topology defined by
setting, forW ⊂ Xn,U a Zariski open, EU (W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξn,U |W ∼−→ OW

and

ξ1 : Ωn,U
∼−→ HomQ(Vn/Vn,(n),OW ).

We define the Ln,(n)-action on EU by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {EU } has an action of Gn(A∞).
Suppose that R0 is a Q-algebra and that ρ is a representation of Ln,(n) on a finite, locally

free R0-module Wρ . We define a locally free sheaf EU,ρ over Xn,U × SpecR0 by setting
EU,ρ(W ) to be the set of Ln,(n)(OW )-equivariant maps of Zariski sheaves of sets

EU |W → Wρ ⊗R0 OW .

Then {EU,ρ} is a system of locally free sheaves with Gn(A∞)-action over the system of
schemes {Xn,U × SpecR0}. If g ∈ Gn(A∞), then the natural map

g∗EU,ρ −→ EU ′ ,ρ

is an isomorphism.
In the case R0 = C, the holomorphic vector bundle on Xn,U (C) associated to EU,ρ is

EU,ρ = Gn(Q)
∖ (

Gn(A∞)
/
U × Eρ

)

over

Xn,U (C) = Gn(Q)
∖ (

Gn(A∞)
/
U × H±

n
)
.

(See Sect. 1.1 for the definition of the holomorphic vector bundle Eρ/H
±
n .)

Note that

EU,Std∨ ∼= Ωn,U

and

EU,ν−1 ∼= Ξn,U

and

EU,∧n[F :Q]Std∨ ∼= ωU

and

EU,KS ∼= Ω1
Xn,U .

(See Sect. 1.2 for the definition of the representation KS.)
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3.4.2 Vector bundles on Kuga–Sato varieties in characteristic zero

Suppose now that U is a neat open compact subgroup of G(m)
n (A∞) with image U ′ in

Gn(A∞). We will let Ω
(m)
n,U denote the pull-back by the identity section of the sheaf of

relative differentials Ω1
Guniv/A(m)

n,U
. This is a locally free sheaf of rank (n +m)[F : Q]. Up to

unique isomorphism its definition does not depend on the choice of Guniv. The system
of sheaves {Ω (m)

n,U } has actions of G(m)
n (A∞) and of GLm(F ). Moreover there is an exact

sequence

(0) −→ π∗
A(m)
n /Xn

Ωn,U ′ −→ Ω
(m)
n,U −→ Fm ⊗Q OA(m)

n,U
−→ (0)

which is equivariant for the actions of G(m)
n (A∞) and GLm(F ).

Let E (m)
U denote the principal R(m)

n,(n)-bundle on A(m)
n,U in the Zariski topology defined by

setting, forW ⊂ A(m)
n,U a Zariski open, E (m)

U (W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξn,U |W ∼−→ OW

and

ξ1 : Ω (m)
n,U

∼−→ HomQ

(
Vn/Vn,(n) ⊕HomQ(Fm,Q),OW

)

satisfies

ξ1 : Ωn,U
∼−→ HomQ

(
Vn/Vn,(n),OW

)

and induces the canonical isomorphism

Fm ⊗Q OW −→ HomQ

(
HomQ(Fm,Q),OW

)
.

We define the R(m)
n,(n)-action on E (m)

U by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {E (m)
U } has an action of G(m)

n (A∞) and of GLm(F ).
Suppose that R0 is a Q-algebra and that ρ is a representation of R(m)

n,(n) on a finite, locally
free R0-module Wρ . We define a locally free sheaf E (m)

U,ρ over A(m)
n,U × SpecR0 by setting

E (m)
U,ρ (W ) to be the set of R(m)

n,(n)(OW )-equivariant maps of Zariski sheaves of sets

E (m)
U
∣∣
W −→ Wρ ⊗R0 OW .

Then {E (m)
U,ρ } is a system of locally free sheaves with both G(m)

n (A∞)-action and GLm(F )-
action over the system of schemes {A(m)

n,U × SpecR0}. If g ∈ G(m)
n (A∞) and γ ∈ GLm(F ),

then the natural maps

g∗E (m)
U,ρ −→ E (m)

U ′ ,ρ

and

γ ∗E (m)
U,ρ −→ E (m)

U ′ ,ρ
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are isomorphisms. If ρ factors throughR(m)
n,(n) →→ Ln,(n) then E (m)

U,ρ is canonically isomorphic
to the pull-back of EU,ρ from Xn,U . In generalWρ has a filtration by R(m)

n,(n)-invariant direct
summands such that the action of R(m)

n,(n) on each graded piece factors through Ln,(n). (To
see this apply proposition 4.7.3 of exposé I of [53] to the action of Ln,(n),herm onWρ .) Thus
E (m)
U,ρ has a G(m)

n (A∞) and GLm(F ) invariant filtration by local direct summands such that
each graded piece is the pull-back of some EU,ρ′ from Xn,U .

3.4.3 Vector bundles on Shimura varieties inmixed characteristic

Similarly suppose that Up is a neat open compact subgroup of Gn(A∞,p), and that
N2 ≥ N1 ≥ 0 are integers. We will let Ωord

n,Up(N1 ,N2) denote the pull-back by the iden-
tity section ofΩ1

Auniv/X ord
n,Up(N1 ,N2)

. This is a locally free sheaf of rank n[F : Q]. Up to unique

isomorphism its definition does not depend on the choice ofAuniv. (Because, by the neat-
ness of Up, there is a unique prime-to-p quasi-isogeny between any two universal four-
tuples (Auniv , iuniv , λuniv , [ηuniv]).) The system of sheaves {Ωord

n,Up(N1 ,N2)} has an action of
Gn(A∞)ord. There is a natural isomorphism between Ω1

Auniv/X ord
n,Up(N1 ,N2)

and the pull-back

of Ωord
n,Up(N1 ,N2). We will write

ωUp(N1 ,N2) = ωn,Up(N1 ,N2) = ∧n[F :Q]Ωord
n,Up(N1 ,N2).

We will also write Ξn,Up(N1 ,N2) = OX ord
n,Up(N1 ,N2)

(||ν||) for the sheaf OX ord
n,Up(N1 ,N2)

but with

the Gn(A∞)ord-action multiplied by ||ν||.
For anym ∈ Z such that p � |m andmλuniv is a true isogeny we get a class

[
(1, [m]λuniv)∗PAuniv

] ∈ H1
(
Auniv ,O×

Auniv

)

−→ H0
(
X ord
n,Up(N1 ,N2), R

1π∗O×
Auniv

)

d log−→ H0
(
X ord
n,Up(N1 ,N2), R

1π∗Ω1
Auniv/X ord

n,Up(N1 ,N2)

)
.

The class
[
(1, λuniv)∗PAuniv

] = [(1, [m]λuniv)∗PAuniv
] /

m

∈ H0
(
X ord
n,Up(N1 ,N2), R

1π∗Ω1
Auniv/X ord

n,Up(N1 ,N2)

)

is well defined independently ofm. We obtain an embedding

Ξord
n,Up(N1 ,N2) ↪→ R1π∗Ω1

Auniv/X ord
n,Up(N1 ,N2)

sending 1 to ||ηuniv||[(1, λuniv)∗PAuniv ]. Thesemaps are compatible with the isomorphisms

R1π∗Ω1
Auniv/X ord

n,Up(N1 ,N2)

∼→ R1π∗Ω1
Auniv,′/X ord

n,Up(N1 ,N2)

induced by the unique prime-to-p quasi-isogeny between two universal four-tuples. They
are also Gn(A∞)ord-equivariant.
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The composites of induced maps

Hom
(
Ωord

n,Up(N1 ,N2),Ξ
ord
n,Up(N1 ,N2)

)

↪→ Hom
(
Ωord

n,Up(N1 ,N2), R
1π∗Ω1

Auniv/X ord
n,Up(N1 ,N2)

)

∼←− Hom
(
Ωord

n,Up(N1 ,N2),Ω
ord
n,Up(N1 ,N2) ⊗ R1π∗OAuniv

)

tr−→ R1π∗OAuniv

are Gn(A∞)ord-equivariant isomorphisms, independent of the choice ofAuniv. Moreover
the short exact sequence

(0) −→ Ω1
X ord
n,Up(N1 ,N2)

⊗OAuniv −→ Ω1
Auniv −→ Ωord

n,Up(N1 ,N2) ⊗OAuniv −→ (0)

gives rise to a map

Ωord
n,Up(N1 ,N2) −→ Ω1

X ord
n,Up(N1 ,N2)

⊗ R1π∗OAuniv

∼←− Ω1
X ord
n,Up(N1 ,N2)

⊗Hom
(
Ωord

n,Up(N1 ,N2),Ξ
ord
n,Up(N1 ,N2)

)

and hence to a map

(
Ωord

n,Up(N1 ,N2)

)⊗2 −→ Ω1
X ord
n,Up(N1 ,N2)

⊗Ξord
n,Up(N1 ,N2).

These maps do not depend on the choice of Auniv and are Gn(A∞)ord-equivariant. They
further induce Gn(A∞)ord isomorphisms

S
(
Ωord

n,Up(N1 ,N2)

) ∼−→ Ω1
X ord
n,Up(N1 ,N2)

⊗Ξord
n,Up(N1 ,N2),

which again do not depend on the choice of Auniv. (See, for instance, proposition 3.4.3.3
of [44].)
Let Eord

Up(N1 ,N2) denote the principal Ln,(n)-bundle on X ord
n,Up(N1 ,N2) in the Zariski topology

defined by setting, for W ⊂ X ord
n,Up(N1 ,N2) a Zariski open, Eord

Up(N1 ,N2)(W ) to be the set of
pairs (ξ0, ξ1), where

ξ0 : Ξord
n,Up(N1 ,N2)

∣∣
W

∼−→ OW

and

ξ1 : Ωord
n,Up(N1 ,N2)

∼−→ HomZ(Λn/Λn,(n),OW ).

We define the Ln,(n)-action on Eord
Up(N1 ,N2) by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {Eord
Up(N1 ,N2)} has an action of Gn(A∞)ord,×.

Suppose that R0 is a Z(p)-algebra and that ρ is a representation of the algebraic group
Ln,(n) on a finite, locally free R0-moduleWρ .We define a locally free sheaf Eord

Up(N1 ,N2),ρ over
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X ord
n,Up(N1 ,N2) × SpecR0 by setting Eord

Up(N1 ,N2),ρ(W ) to be the set of Ln,(n)(OW )-equivariant
maps of Zariski sheaves of sets

Eord
Up(N1 ,N2)|W → Wρ ⊗R0 OW .

Then {Eord
Up(N1 ,N2),ρ} is a system of locally free sheaves with Gn(A∞)ord,×-action over the

system of schemes {X ord
n,Up(N1 ,N2) × SpecR0}. The maps

g∗EUp(N1 ,N2),ρ −→ E(Up)′(N ′
1 ,N

′
2),ρ

are isomorphisms. The pull-back of Eord
Up(N1 ,N2),ρ to

X ord
n,Up(N1 ,N2) × SpecR0[1/p]

is canonically identified with the sheaf EUp(N1 ,N2),ρ⊗R0R0[1/p]. This identification is
Gn(A∞)ord,×-equivariant.
Note that

Eord
Up(N1 ,N2),Std∨

∼= Ωord
n,Up(N1 ,N2)

and

Eord
Up(N1 ,N2),ν−1

∼= Ξord
n,Up(N1 ,N2)

and

Eord
Up(N1 ,N2),∧n[F :Q]Std∨

∼= ωord
Up(N1 ,N2)

and

Eord
Up(N1 ,N2),KS

∼= Ω1
X ord
n,Up(N1 ,N2)

.

3.4.4 Vector bundles on Kuga–Sato varieties inmixed characteristic

Suppose now thatUp is a neat open compact subgroup ofG(m)
n (A∞,p) with image (Up)′ in

Gn(A∞,p).Wewill letΩ (m),ord
n,Up(N1 ,N2) denote the pull-back by the identity section of the sheaf

of relative differentialsΩ1
Guniv/A(m),ord

n,Up(N1 ,N2)
. This is a locally free sheaf of rank (n+m)[F : Q].

Up to unique isomorphism its definition does not depend on the choice of Guniv. The
system of sheaves {Ω (m),ord

n,Up(N1 ,N2)} has actions ofG
(m)
n (A∞)ord and ofGLm(OF,(p)). Moreover

there is an exact sequence

(0) → π∗
A(m),ord

n /X ord
n

Ωord
n,(Up)′(N1 ,N2) → Ω

(m)
n,Up(N1 ,N2) → Om

F,(p) ⊗Q OA(m)
n,Up(N1 ,N2)

→ (0)

which is equivariant for the actions of G(m)
n (A∞)ord and GLm(OF,(p)).

Let E (m),ord
Up(N1 ,N2) denote the principal R

(m)
n,(n)-bundle onA(m),ord

n,Up(N1 ,N2) in the Zariski topology
defined by setting, for W ⊂ A(m),ord

n,Up(N1 ,N2) a Zariski open, E (m),ord
Up(N1 ,N2)(W ) to be the set of

pairs (ξ0, ξ1), where

ξ0 : Ξord
n,Up(N1 ,N2)

∣∣
W

∼−→ OW
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and

ξ1 : Ω (m),ord
n,Up(N1 ,N2)

∼−→ Hom
(
Λn/Λn,(n) ⊕Hom

(
Om

F ,Z
)
,OW
)

satisfies

ξ1 : Ωord
n,Up(N1 ,N2)

∼−→ Hom(Λn/Λn,(n),OW )

and induces the canonical isomorphism

Om
F,(p) ⊗Z(p) OW −→ Hom

(
Hom
(
Om

F ,Z
)
,OW
)
.

We define the R(m)
n,(n)-action on E (m),ord

Up(N1 ,N2) by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {E (m),ord
Up(N1 ,N2)} has an action of G(m)

n (A∞)ord,× and of GLm(OF,(p)).
Suppose thatR0 is aZ(p)-algebra and that ρ is a representation ofR(m)

n,(n) on a finite, locally
free R0-moduleWρ . We define a locally free sheaf E (m),ord

Up(N1 ,N2),ρ overA(m),ord
n,Up(N1 ,N2)× SpecR0

by setting E (m)
U,ρ (W ) to be the set of R(m)

n,(n)(OW )-equivariant maps of Zariski sheaves of sets

E (m),ord
Up(N1 ,N2)

∣∣
W −→ Wρ ⊗R0 OW .

Then {E (m),ord
Up(N1 ,N2),ρ} is a system of locally free sheaves with G(m)

n (A∞)ord,×-action
and GLm(OF,(p))-action over the system of schemes {A(m),ord

n,Up(N1 ,N2) × SpecR0}. If g ∈
G(m)
n (A∞)ord,× and γ ∈ GLm(OF,(p)), then the natural maps

g∗E (m),ord
Up(N1 ,N2),ρ −→ E (m),ord

(Up)′(N ′
1 ,N

′
2),ρ

and

γ ∗E (m),ord
Up(N1 ,N2),ρ −→ E (m),ord

(Up)′(N ′
1 ,N

′
2),ρ

are isomorphisms. If ρ factors through R(m)
n,(n) →→ Ln,(n) then E (m),ord

Up(N1 ,N2),ρ is canonically
isomorphic to the pull-back of Eord

Up(N1 ,N2),ρ fromX ord
n,Up(N1 ,N2). In generalWρ has a filtration

byR(m)
n,(n)-invariant local direct summands such that the actionofR(m)

n,(n) on eachgradedpiece
factors through Ln,(n). (To see this apply proposition 4.7.3 of exposé I of [53] to the action
of Ln,(n),herm onWρ .) Thus E (m),ord

Up(N1 ,N2),ρ has aG
(m)
n (A∞) andGLm(OF,(p)) invariant filtration

by local direct summands such that each graded piece is the pull-back of some Eord
Up(N1 ,N2),ρ′

from X ord
n,Up(N1 ,N2).
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3.4.5 Higher direct images from Kuga–Sato varieties to Shimura varieties, characteristic zero

case

If m ≥ m′ and if U is a neat open compact subgroup of G(m)
n (A∞) with image U ′ in

G(m′)
n (A∞) then the sheaf

RjπA(m)
n /A(m′)

n ,∗Ω
i
A(m)
n,U /A(m′)

n,U ′

depends only on U ′ and not on U . We will denote it
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
.

If g ∈ G(m)
n (A∞) and g−1U1g ⊂ U2 then there is a natural isomorphism

g : (g ′)∗
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
2

∼−→
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
1

,

where g ′ (resp. U ′
1, resp. U

′
2) denotes the image of g (resp. U1, resp. U2) in G(m′)

n (A∞).
This isomorphism only depends on g ′,U ′

1 andU ′
2 and not on g ,U1 andU2. This gives the

system of sheaves {(Rjπ∗Ω i
A(m)
n /A(m′)

n
)U ′ } a left action of G(m′)

n (A∞). Also if γ ∈ Qm,m′ (F )

then γ : A(m)
n,U → A(m)

n,γU gives a natural isomorphism

γ :
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
∼−→
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
,

which depends only on U ′ and not on U . This gives the system of sheaves
{(

Rjπ∗Ω i
A(m)
n /A(m′)

n

)

U ′

}

a right action of Qm,m′ (F ). We have γ ◦ g = γ (g) ◦ γ .
If U ′

1 ⊃ U ′
2 and g ′ ∈ U ′

2 normalizes U ′
1 then on

(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
2

∼=
(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′
1

⊗O
A(m

′)
n,U ′

1

OA(m′)
n,U ′

2

the actions of g and 1 ⊗ g agree. Moreover if U is a neat open compact subgroup of
G(m)
n (A∞) with image U ′ in G(m′)

n (A∞) then the natural map

π∗
A(m)
n /A(m′)

n

(
π∗Ω1

A(m)
n /A(m′)

n

)

U ′
−→ Ω1

A(m)
n,U /A(m′)

n,U ′

is an isomorphism. These isomorphisms are equivariant for the actions of the groups
G(m)
n (A∞) and Qm,m′ (F ).
The natural maps

∧i
(
π∗Ω1

A(m)
n /A(m′)

n

)

U ′
⊗ ∧j
(
R1π∗OA(m)

n

)
U ′ −→

(
Rjπ∗Ω i

A(m)
n /A(m′)

n

)

U ′

are G(m′)
n (A∞) and Qm,m′ (F ) equivariant isomorphisms.



Harris et al. Res Math Sci (2016) 3:37 Page 118 of 308

Suppose that U is a neat open compact subgroup of G(m)
n (A∞) with image U ′ in

G(m′)
n (A∞) and U ′′ in Gn(A∞). If U is of the form U ′ � M, then the quasi-isogeny

iAuniv : A(m)
n,U → (Auniv)m−m′ over A(m′)

n,U ′ gives rise to an isomorphism

HomF
(
Fm−m′

,Ωn,U ′′
)
⊗OA(m)

n,U
∼= Ω1

A(m)
n,U /A(m′)

n,U ′

and a canonical embedding

Ξn,U ′′ ⊗OA(m′)
n,U ′

↪→ Ξ
⊕(m−m′)
n,U ′′ ⊗OA(m′)

n,U ′
↪→
(
R1π∗Ω1

A(m)/A(m′)
)
U ′ ,

where the first map denotes the diagonal embedding. These maps do not depend on
the choice of Auniv. They are G(m)

n (A∞)-equivariant. The first map is also Qm,m′ (F )-
equivariant, where an element γ ∈ Qm,m′ (F ) acts on the left hand sides by composition
with the inverse of the projection of γ to GLm−m′ (F ). This remains true if we do not
assume that U has the form U ′ � M.
This gives rise to canonical G(m′)

n (A∞)-equivariant isomorphisms

HomF
(
Fm−m′

,Ωn,U ′′
)
⊗OA(m′)

n,U ′
∼=
(
π∗Ω1

A(m)
n /A(m′)

n

)

U ′
.

Moreover the composite maps

Hom
((

π∗Ω1
A(m)
n /A(m′)

n

)

U ′
,Ξn,U ′′ ⊗OA(m′)

n,U ′

)

↪→ Hom
((

π∗Ω1
A(m)
n /A(m′)

n

)

U ′
,
(
R1π∗Ω1

A(m)
n /A(m′)

n

)

U ′

)

∼←− Hom
((

π∗Ω1
A(m)
n /A(m′)

n

)

U ′
,
(
π∗Ω1

A(m)
n /A(m′)

n

)

U ′
⊗
(
R1π∗OA(m)

n

)
U ′

)

tr−→
(
R1π∗OA(m)

n

)
U ′

are G(m′)
n (A∞)-equivariant isomorphisms.

3.4.6 Higher direct images from Kuga–Sato varieties to Shimura varieties, mixed

characteristic case

If m ≥ m′ and if Up is a neat open compact subgroup of G(m)
n (A∞,p) with image (Up)′ in

G(m′)
n (A∞,p), and if 0 ≤ N1 ≤ N2 are integers, then the sheaf

RjπA(m),ord
n /A(m′),ord

n ,∗Ω
i
A(m),ord

n,Up(N1 ,N2)
/A(m′),ord

n,(Up)′(N1 ,N2)

depends only on (Up)′ and not on Up. We will denote it
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)
.

If g ∈ G(m)
n (A∞)ord and g−1Up

1 (N11, N12)g ⊂ Up
2 (N21, N22), then there is a natural map

g : (g ′)∗
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up
2 )′(N21 ,N22)

→
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up
1 )′(N11 ,N12)

,
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where (Up
i )

′ denotes the image of Up
i in G(m′)

n (A∞,p) and g ′ denotes the image of g
in G(m′)

n (A∞)ord. If g ∈ G(m)
n (A∞)ord,× then it is an isomorphism. Moreover this map

only depends on g ′, (Up
1 )′(N11, N12) and (Up

2 )′(N21, N22) and not on g , Up
1 (N11, N12) and

Up
2 (N21, N22). This gives the system of sheaves

{(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)

}

a left action of G(m′)
n (A∞)ord.

If γ ∈ Qm,m′ (OF,(p)) then γ : A(m)
n,Up(N1 ,N2) → A(m)

n,γUp(N1 ,N2) gives a natural isomorphism

γ :
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)

∼−→
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)
,

which depends only on (Up)′(N1, N2) and not on Up(N1, N2). This gives the system of
sheaves
{(

Rjπ∗Ω i
A(m),ord

n /A(m′),ord
n

)

(Up)′(N1 ,N2)

}

a right action of Qm,m′ (OF,(p)). We have γ ◦ g = γ (g) ◦ γ .
If (Up

1 )′(N11, N12) ⊃ (Up
2 )′(N21, N22) and g ∈ (Up

1 )′(N11, N12) normalizes the subgroup
(Up

2 )′(N21, N22), then on

(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up
2 )′(N21 ,N22)

∼=
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up
1 )′(N11 ,N12)

⊗O
A(m′),ord

n,(Up
1 )
′(N11 ,N12)

OA(m′),ord
n,(Up

2 )
′(N21 ,N22)

the actions of g and 1 ⊗ g agree. Moreover if Up is a neat open compact subgroup of
G(m)
n (A∞,p) with image (Up)′ in G(m′)

n (A∞,p), and if 0 ≤ N1 ≤ N2, then the natural map

π∗
A(m),ord

n /A(m′),ord
n

(
π∗Ω1

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)
−→ Ω1

A(m),ord
n,Up(N1 ,N2)

/A(m′),ord
n,(Up)′(N1 ,N2)

is an isomorphism. These isomorphisms are G(m)
n (A∞)ord and Qm,m′ (OF,(p)) equivariant.

The natural maps

∧i
(
π∗Ω1

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)
⊗∧j
(
R1π∗OA(m),ord

n

)
(Up)′(N1 ,N2)

−→
(
Rjπ∗Ω i

A(m),ord
n /A(m′),ord

n

)

(Up)′(N1 ,N2)

are G(m′)
n (A∞)ord and Qm,m′ (OF,(p)) equivariant isomorphisms.

Under the identification

X ord
n,(Up)′(N1 ,N2) × SpecQ ∼= Xn,(Up)′(N1 ,N2)



Harris et al. Res Math Sci (2016) 3:37 Page 120 of 308

the sheaves Ωord
n,(Up)′(N1 ,N2) (resp. Ξ

ord
n,(Up)′(N1 ,N2)) are naturally identified with the sheaves

Ωn,(Up)′(N1 ,N2) (resp. Ξn,(Up)′(N1 ,N2)). Moreover, under the identification

A(m′),ord
n,Up(N1 ,N2) × SpecQ ∼= A(m′)

n,Up(N1 ,N2)

the sheaf (Rjπ∗Ω i
A(m),ord/A(m′),ord

n
)(Up)′(N1 ,N2) is naturally identified with the sheaf

(Rjπ∗Ω i
A(m)
n /A(m′)

n
)(Up)′(N1 ,N2). These identifications are equivariant for the actions of

Gn(A∞)ord and Qm,m′ (OF,(p)).

4 Generalized Shimura varieties
Wewill introduce certain disjoint unions ofmixed Shimura varieties, which are associated
to Ln,(i),lin and Ln,(i) and P+n,(i)/Z(Nn,(i)) and P+n,(i); to L(m)

n,(i),lin and L(m)
n,(i) and P(m),+

n,(i) /Z(N (m)
n,(i))

and P(m),+
n,(i) ; and to P̃(m),+

n,(i) . The differences with the last section are purely book keeping.
We then describe certain torus embeddings for these generalized Shimura varieties and
discuss their completion along the boundary. These completions will serve as formal local
models near the boundary of the toroidal compactifications of the Xn,U and the A(m)

n,Ũ to
be discussed in the next section.
We remind the reader of our convention that, if U is a subgroup of G and H is a quotient

of G, then we will sometimes use U to denote its image in H . We hope that this causes
no confusion as we will only do this when the context makes clear we are referring to a
subgroup of H .

4.1 Generalized Shimura varieties

If U is a neat open compact subgroup of L(m)
n,(i),lin(A

∞) we set

Y (m),+
n,(i),U =

∐

L(m)
n,(i),lin(A∞)/U

SpecQ.

In the case m = 0 we will write simply Y+
n,(i),U . Then {Y (m),+

n,(i),U } is a system of schemes
(locally of finite type over SpecQ) with right L(m)

n,(i),lin(A
∞)-action. Each Y (m),+

n,(i),U also has
a left action of L(m)

n,(i),lin(Q), and the inverse system has a right action of L(m)
n,(i),lin(A

∞). If
δ ∈ GLm(F ) we get a map

δ : Y (m)
n,(i),U −→ Y (m)

n,(i),δ(U )

which sends (SpecQ)hU → (SpecQ)δ(h)δ(U ) via the identity. This gives a left action of
GLm(F ) on the inverse system of the Y (m)

n,(i),U . If δ ∈ GLm(F ) and γ ∈ L(m)
n,(i),lin(Q) and

g ∈ L(m)
n,(i),lin(A

∞) then δ ◦ γ = δ(γ ) ◦ δ and δ ◦ g = δ(g) ◦ δ. If U ′ denotes the image of U
in Ln,(i),lin(A∞) then there is a natural map

Y (m),+
n,(i),U →→ Y+

n,(i),U ′ .

These maps are equivariant for

L(m)
n,(i),lin(Q)× L(m)

n,(i),lin(A
∞) −→ Ln,(i),lin(Q)× Ln,(i),lin(A∞).
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The naive quotient

L(m)
n,(i),lin(Q)

∖
Y (m),+
n,(i),U

makes sense. We will denote this space

Y (m),#
n,(i),U

and drop the (m) if m = 0. The inverse system of these spaces has a right action of
L(m)
n,(i),lin(A

∞), and a left action of GLm(F ). The induced map

Y (m),#
n,(i),U −→ Y #

n,(i),U

is an isomorphism, and GLm(F ) acts trivially on these spaces. (Use the fact that

(
U ∩
(
HomF (Fm, F i)⊗Q A∞))+HomF (Fm, F i) = HomF (Fm, F i)⊗Q A∞.

)

Similarly ifUp is a neat open compact subgroup of L(m)
n,(i),lin(A

∞,p) and ifN ∈ Z≥0 we set

Y (m),ord,+
n,(i),Up(N ) =

∐

L(m)
n,(i),lin(A∞)ord,×/Up(N )

SpecZ(p).

In the case m = 0 we drop it from the notation. Each Y (m),ord,+
n,(i),Up(N ) has a left action of

L(m)
n,(i),lin(Z(p)) and the inverse system of the Y (m),ord,+

n,(i),Up(N ) has a commuting right action
of L(m)

n,(i),lin(A
∞)ord. It also has a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and

γ ∈ L(m)
n,(i),lin(Z(p)) and g ∈ L(m)

n,(i),lin(A
∞)ord then δ ◦ γ = δ(γ ) ◦ δ and δ ◦ g = δ(g) ◦ δ.

There are equivariant maps

Y (m),ord,+
n,(i),Up(N ) −→ Yord,+

n,(i),Up(N ).

We set

Yord,#
n,(i),Up(N ) = Ln,(i),lin(Z(p))

∖
Yord,+
n,(i),Up(N ) = L(m)

n,(i),lin(Z(p))
∖
Y (m),ord,+
n,(i),Up(N ).

There are maps

Y (m),ord,+
n,(i),Up(N ) × SpecQ ↪→ Y (m),+

n,(i),Up(N )

which are equivariant for the actions of the groups L(m)
n,(i),lin(Z(p)) and L(m)

n,(i),lin(A
∞)ord and

GLm(OF,(p)). Moreover the maps Y (m),ord,+
n,(i),Up(N ) → Yord,+

n,(i),Up(N ) and Y (m),+
n,(i),Up(N ) → Y+

n,(i),Up(N )
are compatible. The induced maps

Y (m),ord,#
n,(i),Up(N ) × SpecQ

∼−→ Y (m),#
n,(i),Up(N )

are isomorphisms.
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Suppose now that U is a neat open compact subgroup of L(m)
n,(i)(A

∞). We set

X (m),+
n,(i),U =

(
Xn−i,U∩Gn−i(A∞) × Y (m),+

n,(i),U∩L(m)
n,(i),lin(A∞)

)/
U

In the case m = 0 we will write simply X+
n,(i),U . Then {X (m),+

n,(i),U } is a system of schemes
(locally of finite type over SpecQ) with right L(m)

n,(i)(A
∞)-action via finite etale maps. Each

X (m),+
n,(i),U has a left action of L(m)

n,(i),lin(Q), which commutes with the right L(m)
n,(i)(A

∞)-action.
The system also has a left action of GLm(F ). If δ ∈ GLm(F ) and γ ∈ L(m)

n,(i),lin(Q) and
g ∈ L(m)

n,(i)(A
∞) then δ ◦ γ = δ(γ ) ◦ δ and δ ◦ g = δ(g) ◦ δ. If U ′ is an open normal

subgroup of U then X (m),+
n,(i),U is identified with X (m),+

n,(i),U ′/U . Projection to the second factor
gives L(m)

n,(i),lin(Q)× L(m)
n,(i)(A

∞) and GLm(F ) equivariant maps

X (m),+
n,(i),U −→ Y (m),+

n,(i),U .

The fibre over g ∈ Ln,(i),lin(A∞) is simply Xn−i,U∩Gn−i(A∞). If U ′ denotes the image of U
in Ln,(i)(A∞) then there is a natural, L(m)

n,(i),lin(Q) × L(m)
n,(i)(A

∞)-equivariant, commutative
diagram

X (m),+
n,(i),U →→ X+

n,(i),U ′
↓ ↓

Y (m),+
n,(i),U →→ Y+

n,(i),U ′ .

We have

X (m),+
n,(i),U (C) = Ln,(i),herm(Q)

∖(
L(m)
n,(i)(A

∞)
/
U × H±

n−i

)

and

π0
(
X (m),+
n,(i),U × SpecQ

) ∼=
(
L(m)
n,(i),lin(A

∞)×
(
Cn−i(Q)

∖
Cn−i(A)

/
Cn−i(R)0

))/
U.

The naive quotient

X (m),#
n,(i),U = L(m)

n,(i),lin(Q)
∖

X (m),+
n,(i),U

makes sense and fibres over Y (m),#
n,(i),U , the fibre over g being Xn−i,U1 , where U1 denotes the

projection to Gn−i(A∞) of the subgroup U2 ⊂ U consisting of elements whose projec-
tion to L(m)

n,(i),lin(A
∞) lies in g−1L(m)

n,(i),lin(Q)g . We sometimes write X#

n,(i),U for X (0),#
n,(i),U . If U

′

denotes the projection of U to Ln,(i)(A∞), then the induced map

X (m),#
n,(i),U

∼−→ X#

n,(i),U ′

is an isomorphism. The action of L(m)
n,(i)(A

∞) is by finite etale maps and if U ′ is an open
normal subgroup of U then X (m),#

n,(i),U is identified with X (m),#
n,(i),U ′/U . We have

π0
(
X (m),#
n,(i),U × SpecQ

) ∼= (F× × Cn−i(Q)
) ∖ (

A×
F × Cn−i(A)

) /
U
(
F×∞ × Cn−i(R)0

)
.
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We define sheaves Ω+
n,(i),U and Ξ+

n,(i),U over X+
n,(i),U as the quotients of

Ωn−i,U∩Gn−i(A∞)/Xn−i,U∩Gn−i(A∞) × Y+
n,(i),U∩Ln,(i),lin(A∞)

and

Ξn−i,U∩Gn−i(A∞)/Xn−i,U∩Gn−i(A∞) × Y+
n,(i),U∩Ln,(i),lin(A∞)

by U . Then {Ω+
n,(i),U } and {Ξ+

n,(i),U } are systems of locally free sheaves on X+
n,(i),U with left

Ln,(i)(A∞)-action and commuting right Ln,(i),lin(Q)-action.
LetE+(i),U denote the principalRn,(n),(i)/N (Rn,(n),(i))-bundle onX+

n,(i),U in theZariski topol-
ogy defined by setting, for W ⊂ X+

n,(i),U a Zariski open, E+(i),U (W ) to be the set of triples
(ξ0, ξ11, ξ12), where

ξ0 : Ξ+
n,(i),U
∣∣
W

∼−→ OW

and

ξ11 : Ω+
n,(i),U

∼−→ HomQ(Vn−i/Vn−i,(n−i),OW )

and

ξ12 : Fi ⊗Q OW
∼−→ Hom

(
Vn/V⊥

n,(i),OW
)
.

We define the Rn,(n),(i)/N (Rn,(n),(i))-action on E+(i),U by

h(ξ0, ξ11, ξ12) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ11, (◦h−1) ◦ ξ12

)
.

The inverse system {E+(i),U } has an action of Ln,(i)(A∞) and of Ln,(i),lin(Q).
Suppose that R0 is a Q-algebra and that ρ is a representation of the algebraic

group Rn,(n),(i)/N (Rn,(n),(i)) on a finite, locally free R0-module Wρ . We define a locally
free sheaf E+(i),U,ρ over X+

n,(i),U × SpecR0 by setting E+(i),U,ρ(W ) to be the set of
(Rn,(n),(i)/N (Rn,(n),(i)))(OW )-equivariant maps of Zariski sheaves of sets

E+(i),U |W −→ Wρ ⊗R0 OW .

Then {E+(i),U,ρ} is a system of locally free sheaves with an Ln,(i)(A∞)-action and an
Ln,(i),lin(Q)-action over the system of schemes {X+

n,(i),U × SpecR0}. The restriction of
E+(i),U,ρ to Xn−i,hUh−1∩Gn−i(A∞) can be identified with EhUh−1∩Gn−i(A∞),ρ|Ln−i,(n−i)

. However
the description of the actions of Ln,(i)(A∞) and Ln,(i),lin(Q) involve ρ and not just ρ|Ln−i,(n−i) .
If g ∈ Ln,(i)(A∞) and γ ∈ Ln,(i),lin(Q), then the natural maps

g∗E+(i),U,ρ −→ E+(i),U ′ ,ρ

and

γ ∗E+(i),U,ρ −→ E+(i),U ′ ,ρ

are isomorphisms.
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We will also write

Ω
#

n,(i),U = Ln,(i),lin(Q)
∖

Ω+
n,(i),U

and

Ξ
#

n,(i),U = Ln,(i),lin(Q)
∖

Ξ+
n,(i),U ,

locally free sheaves onX#

n,(i),U . (If ρ is trivial on Ln,(i),lin then one can also form the quotient
of E+(i),U,ρ by Ln,(i),lin(Q), but in general this quotient does not make sense.)
If Up is a neat open compact subgroup of L(m)

n,(i)(A
∞,p) and N2 ≥ N1 ≥ 0 we set

X (m),ord,+
n,(i),Up(N1 ,N2) =

(
X ord
n−i,(Up∩Gn−i(A∞,p))(N1 ,N2) × Y (m),ord,+

n,(i),(Up∩L(m)
n,(i),lin(A∞,p))(N1)

)/
Up.

In the case m = 0 we drop it from the notation. Each X (m),ord,+
n,(i),Up(N1 ,N2) has a left action

of L(m)
n,(i),lin(Z(p)) and the inverse system has a commuting right action of L(m)

n,(i)(A
∞)ord.

There is also a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and γ ∈ L(m)
n,(i),lin(Z(p)) and

g ∈ L(m)
n,(i),lin(A

∞)ord then δ ◦ γ = δ(γ ) ◦ δ and δ ◦ g = δ(g) ◦ δ. If g ∈ L(m)
n,(i)(A

∞)ord and if

g : X (m),ord,+
n,(i),Up(N1 ,N2) −→ X (m),ord,+

n,(i),(Up)′(N ′
1 ,N

′
2)
,

then this map is quasi-finite and flat. If g ∈ L(m)
n,(i)(A

∞)ord,× then it is etale, and, if further
N2 = N ′

2, then it is finite etale. If N ′
2 > 0 and pN2−N ′

2ν(gp) ∈ Z×
p then the map is finite.

On Fp-fibres the map ςp is absolute Frobenius composed with the forgetful map. If (Up)′

is an open normal subgroup of Up and if N1 ≤ N ′
1 ≤ N2 then

X (m),ord,+
n,(i),(Up)′(N ′

1 ,N2)

/
Up(N1, N2)

∼−→ X (m),ord,+
n,(i),Up(N1 ,N2).

There are commutative diagrams

X (m),ord,+
n,(i),Up(N1 ,N2) →→ X ord,+

n,(i),Up(N1 ,N2)
↓ ↓

Y (m),ord,+
n,(i),Up(N1 ,N2) →→ Yord,+

n,(i),Up(N1 ,N2).

We set

X (m),ord,#
n,(i),Up(N1 ,N2) = L(m)

n,(i),lin(Z(p))\X (m),ord,+
n,(i),Up(N1 ,N2),

and writeX ord,#
n,(i),Up(N1 ,N2) forX

(0),ord,#
n,(i),Up(N1 ,N2). The system of these spaces has a right action of

L(m)
n,(i)(A

∞)ord and a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and g ∈ L(m)
n,(i),lin(A

∞)ord

then δ ◦ g = δ(g) ◦ δ. If g ∈ L(m)
n,(i)(A

∞)ord and if

g : X (m),ord,#
n,(i),Up(N1 ,N2) −→ X (m),ord,#

n,(i),(Up)′(N ′
1 ,N

′
2)
,

then this map is quasi-finite and flat. If g ∈ L(m)
n,(i)(A

∞)ord,× then it is etale, and, if further
N2 = N ′

2, then it is finite etale. If N ′
2 > 0 and pN2−N ′

2ν(gp) ∈ Z×
p then the map is finite.
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On Fp-fibres the map ςp is absolute Frobenius composed with the forgetful map. If (Up)′

is an open normal subgroup of Up and if N1 ≤ N ′
1 ≤ N2 then

X (m),ord,#
n,(i),(Up)′(N ′

1 ,N2)

/
Up(N1, N2)

∼−→ X (m),ord,#
n,(i),Up(N1 ,N2).

The natural maps

X (m),ord,#
n,(i),Up(N1 ,N2) −→ X ord,#

n,(i),Up(N1 ,N2)

are isomorphisms.
We define sheavesΩord,+

n,(i),Up(N1 ,N2) andΞ
ord,+
n,(i),Up(N1 ,N2) overX

ord,+
n,(i),Up(N1 ,N2) as the quotients

of

Ωord
n−i,(Up∩Gn−i(A∞,p))(N1 ,N2)

/
X ord
n−i,(Up∩Gn−i(A∞,p))(N1 ,N2) × Yord,+

n,(i),(Up∩Ln,(i),lin(A∞,p))(N1)

and

Ξord
n−i,(Up∩Gn−i(A∞,p))(N1 ,N2)

/
X ord
n−i,(Up∩Gn−i(A∞,p))(N1 ,N2) × Yord,+

n,(i),(Up∩Ln,(i),lin(A∞,p))(N1)

by Up. Then the systems of sheaves Ω
ord,+
n,(i),Up(N1 ,N2) and Ξ

ord,+
n,(i),Up(N1 ,N2) have commuting

actions of Ln,(i),lin(Z(p)) and Ln,(i)(A∞)ord.
Let Eord,+

(i),Up(N1 ,N2) denote the principal Rn,(n),(i)/N (Rn,(n),(i))-bundle for the Zariski topol-
ogy on X ord,+

n,(i),Up(N1 ,N2) defined by setting, for W ⊂ X ord,+
n,(i),Up(N1 ,N2) a Zariski open,

Eord,+
(i),Up(N1 ,N2)(W ) to be the set of triples (ξ0, ξ11, ξ12), where

ξ0 : Ξord,+
n,(i),Up(N1 ,N2)|W

∼−→ OW

and

ξ11 : Ωord,+
n,(i),Up(N1 ,N2)

∼−→ Hom(Λn−i/Λn−i,(n−i),OW )

and

ξ12 : Oi
F ⊗Z OW

∼−→ Hom
(
Λn/Λ

⊥
n,(i),OW

)
.

We define the Rn,(n),(i)/N (Rn,(n),(i))-action on Eord,+
(i),Up(N1 ,N2) by

h(ξ0, ξ11, ξ12) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ11, (◦h−1) ◦ ξ12

)
.

The inverse system {E+(i),Up(N1 ,N2)} has an action of Ln,(i)(A∞)ord,× and an action of
Ln,(i),lin(Z(p)).
Suppose that R0 is a Z(p)-algebra and that ρ is a representation of the algebraic group

Rn,(n),(i)/N (Rn,(n),(i)) on a finite, locally free R0-module Wρ . We define a locally free sheaf
Eord,+
(i),Up(N1 ,N2),ρ over X ord,+

n,(i),Up(N1 ,N2) × SpecR0 by setting Eord,+
(i),Up(N1 ,N2),ρ(W ) to be the set of

(Rn,(n),(i)/N (Rn,(n),(i)))(OW )-equivariant maps of Zariski sheaves of sets

Eord,+
(i),Up(N1 ,N2)

∣∣
W −→ Wρ ⊗R0 OW .
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Then {Eord,+
(i),Up(N1 ,N2),ρ} is a system of locally free sheaves with Ln,(i)(A∞)ord,×-action

and Ln,(i),lin(Z(p))-action over the system of schemes {X ord,+
n,(i),Up(N1 ,N2) × SpecR0}. The

restriction of Eord,+
(i),Up(N1 ,N2),ρ to X ord

n−i,(hUph−1∩Gn−i(A∞,p)(N1 ,N2))
can be identified with

Eord
(hUph−1∩Gn−i(A∞,p))(N1 ,N2),ρ|Ln−i,(n−i)

. However the description of the actions of the groups

Ln,(i)(A∞)ord,× and Ln,(i),lin(Z(p)) involves ρ and not just ρ|Ln−i,(n−i) . If g ∈ Ln,(i)(A∞)ord,×

and γ ∈ Ln,(i),lin(Z(p)), then the natural maps

g∗Eord,+
(i),Up(N1 ,N2),ρ −→ Eord,+

(i),(Up)′(N ′
1 ,N

′
2),ρ

and

γ ∗Eord,+
(i),Up(N1 ,N2),ρ −→ Eord,+

(i),(Up)′(N ′
1 ,N

′
2),ρ

are isomorphisms.
We will also write

Ω
ord,#
n,(i),Up(N1 ,N2) = Ln,(i),lin(Z(p))

∖
Ω

ord,+
n,(i),Up(N1 ,N2)

and

Ξ
ord,#
n,(i),Up(N1 ,N2) = Ln,(i),lin(Z(p))

∖
Ξ

ord,+
n,(i),Up(N1 ,N2),

locally free sheaves on X ord,#
n,(i),Up(N1 ,N2).

There are maps

X (m),ord,+
n,(i),Up(N1 ,N2) × SpecQ ↪→ X (m),+

n,(i),Up(N1 ,N2)

which are equivariant for the actions of the groups L(m)
n,(i)(A

∞)ord and L(m)
n,(i),lin(Z(p))

and GLm(OF,(p)). Under these maps the sheaves Ω
ord,+
n,(i),Up(N1 ,N2) (resp. Ξ

ord,+
n,(i),Up(N1 ,N2),

resp. Eord,+
(i),Up(N1 ,N2),ρ) correspond to Ω+

n,(i),Up(N1 ,N2) (resp. to Ξ+
n,(i),Up(N1 ,N2), resp. to

Eord,+
(i),Up(N1 ,N2),ρ⊗Q

). The induced maps

X (m),ord,#
n,(i),Up(N1 ,N2) × SpecQ −→ X (m),#

n,(i),Up(N1 ,N2)

are isomorphisms.

4.2 Generalized Kuga–Sato varieties

Now suppose that U is a neat open compact subgroup of
(
P(m),+
n,(i)

/
Z
(
N (m)
n,(i)

))
(A∞) =

(
P̃(m),+
n,(i)

/
Z
(
Ñ (m)
n,(i)

))
(A∞).

We set

A(m),+
n,(i),U =

∐

h∈L(m)
n,(i),lin(A∞)/U

A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
.

In the casem = 0 we will write simply A+
n,(i),U .
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If g ∈ (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞) and g−1Ug ⊂ U ′, then we define a finite etale map

g : A(m),+
n,(i),U −→ A(m),+

n,(i),U ′

to be the coproduct of the maps

g ′ : A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
−→ A(i+m)

n−i,h′U ′(h′)−1∩G(i+m)
n−i (A∞)

,

where h, h′ ∈ L(m)
n,(i),lin(A

∞) and g ′ ∈ G(i+m)
n−i (A∞) satisfy hg = g ′h′. This makes {A(m),+

n,(i),U }
a system of schemes (locally of finite type over SpecQ) with right action of the group
(P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞). If U ′ is an open normal subgroup of U then A(m),+
n,(i),U is identified

with A(m),+
n,(i),U ′/U .

If γ ∈ L(m)
n,(i),lin(Q), then we define

γ : A(m),+
n,(i),U −→ A(m),+

n,(i),U

to be the coproduct of the maps

γ : A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
−→ A(i+m)

n−i,(γh)U (γh)−1∩G(i+m)
n−i (A∞)

.

This gives a left action of L(m)
n,(i),lin(Q) on each A(m),+

n,(i),U , which commutes with the action of
(P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞).
If δ ∈ GLm(F ) define a map

δ : A(m),+
n,(i),U −→ A(m),+

n,(i),δ(U )

as the coproduct of the maps

δ : A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
−→ A(i+m)

n−i,δ(hUh−1)∩G(i+m)
n−i (A∞)

.

This gives a left GLm(F )-action on the system of the A(m),+
n,(i),U . If δ ∈ GLm(F ) and γ ∈

L(m)
n,(i),lin(Q) and g ∈ (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞) then δ ◦ γ = δ(γ ) ◦ δ and δ ◦ g = δ(g) ◦ δ.
There are natural maps

A(m),+
n,(i),U −→ X (m),+

n,(i),U ,

which are equivariant for the actionsof (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞) andL(m)

n,(i),lin(Q) andGLm(F ).
IfU ′ denotes the image ofU in (P+n,(i)/Z(Nn,(i)))(A∞) then there is a natural commutative

diagram:

A(m),+
n,(i),U →→ A+

n,(i),U ′
↓ ↓

X (m),+
n,(i),U →→ X+

n,(i),U ′
↓ ↓

Y (m),+
n,(i),U →→ Y+

n,(i),U ′ ,
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which is L(m)
n,(i),lin(Q) and (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞) equivariant.
We have

A(m),+
n,(i),U (C) =

(
P(m)
n,(i)/Z
(
N (m)
n,(i)

))
(Q)
∖(

P(m),+
n,(i) /Z

(
N (m)
n,(i)

))
(A)
/(

UU0
n−i,∞An−i(R)0

)
.

Note that it does not make sense to divide A(m),+
n,(i),U by L(m)

n,(i),lin(Q), so we don’t do so.
We define a semi-abelian scheme G̃univ/A+

n,(i),U by requiring that over the open and
closed subschemeA(i)

n−i,hUh−1∩G(i)
n−i(A∞)

it restricts toGuniv. It is unique up to unique quasi-

isogeny. We also define a sheaf Ω̃+
n,(i),U (resp. Ξ̃+

n,(i),U ) over A+
n,(i),U to be the unique

sheaf which, for each h, restricts to Ω
(i)
n−i,hUh−1∩G(i)

n−i(A∞)
(resp. Ξn−i,hUh−1∩G(i)

n−i(A∞)) on

A(i)
n−i,hUh−1∩G(i)

n−i(A∞)
. Thus Ω̃+

n,(i),U is the pull-back by the identity section of Ω1
G̃univ/A+

n,(i),U
.

Then {Ω̃+
n,(i),U } (resp. {Ξ̃+

n,(i),U }) is a system of locally free sheaves on A+
n,(i),U with a left

(P+n,(i)/Z(Nn,(i)))(A∞)-action anda commuting rightLn,(i),lin(Q)-action.There are equivari-
ant exact sequences

(0) −→ π∗Ω+
n,(i),U −→ Ω̃+

n,(i),U −→ Fi ⊗Q OA+
n,(i),U

−→ (0),

where π denotes the map A+
n,(i),U → X+

n,(i),U .
Let Ẽ+(i),U denote the principal Rn,(n),(i)-bundle on A+

n,(i),U in the Zariski topology defined
by setting, forW ⊂ A+

n,(i),U a Zariski open, Ẽ+(i),U (W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξ+
n,(i),U
∣∣
W

∼−→ OW

and

ξ1 : Ω̃+
n,(i),U

∼−→ HomQ

(
Vn−i/Vn−i,(n−i) ⊕HomQ(Fi,Q),OW

)

satisfies

ξ1 : Ω+
n,(i),U

∼−→ HomQ

(
Vn−i/Vn−i,(n−i),OW

)
.

We define the Rn,(n),(i)-action on E+(i),U by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {Ẽ+(i),U } has an action of P+n,(i)(A
∞) and of Ln,(i),lin(Q).

Suppose thatR0 is aQ-algebra and that ρ is a representation ofRn,(n),(i) on a finite, locally
free R0-moduleWρ . We define a locally free sheaf E+(i),U,ρ overA+

n,(i),U ×SpecR0 by setting
E+(i),U,ρ(W ) to be the set of Rn,(n),(i)(OW )-equivariant maps of Zariski sheaves of sets

Ẽ+(i),U |W −→ Wρ ⊗R0 OW .

Then {E+(i),U,ρ} is a system of locally free sheaves with both a P+n,(i)(A
∞)-action and an

Ln,(i),lin(Q)-action over the system of schemes {A+
n,(i),U × SpecR0}. The restriction of

E+(i),U,ρ to A(i)
n−i,hUh−1∩G(i)

n−i(A∞)
can be identified with E (i)

hUh−1∩G(i)
n−i(A∞),ρ|

R(i)n−i,(n−i)

. However
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the description of the actions of P+n,(i)(A
∞) and Ln,(i),lin(Q) involve ρ and not just ρ|R(i)n−i,(n−i)

.

If g ∈ P+n,(i)(A
∞) and γ ∈ Ln,(i),lin(Q), then the natural maps

g∗E+(i),U,ρ −→ E+(i),U ′ ,ρ

and

γ ∗E+(i),U,ρ −→ E+(i),U ′ ,ρ

are isomorphisms. If ρ factors through Rn,(n),(i)/N (Rn,(n),(i)) then E+(i),U,ρ is canonically
isomorphic to the pull-back of E+(i),U,ρ from X+

n,(i),U . In general Wρ has a filtration by
Rn,(n),(i)-invariant local direct summands such that the action of Rn,(n),(i) on each graded
piece factors through Rn,(n),(i)/N (Rn,(n),(i)). (To see this apply proposition 4.7.3 of exposé
I of [53] to the action of An,(i),lin on Wρ .) Thus E+(i),U,ρ has a P+n,(i)(A

∞) and Ln,(i),lin(Q)
invariant filtration by local direct summands such that each graded piece is the pull-back
of some E+(i),U,ρ′ from X+

n,(i),U .
Similarly if Up is a neat open compact subgroup of (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞,p) =
(̃P(m),+

n,(i) /Z(Ñ (m)
n,(i)))(A

∞,p) we set

A(m),ord,+
n,(i),Up(N1 ,N2) =

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up(N1)

A(i+m),ord
n−i,(hUph−1∩G(i+m)

n−i (A∞,p))(N1 ,N2)
.

In the case m = 0 we will write simply Aord,+
n,(i),Up(N1 ,N2). The inverse system of the

A(m),ord,+
n,(i),Up(N1 ,N2) has a right action of (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞)ord and a commuting left action
of L(m)

n,(i),lin(Z(p)). If g ∈ (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞)ord then the map

g : A(m),ord,+
n,(i),Up(N1 ,N2) −→ A(m),ord,+

n,(i),(Up)′(N ′
1 ,N

′
2)
,

is quasi-finite and flat. If g ∈ (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞)ord,× then it is etale, and, if further

N2 = N ′
2, then it is finite etale. IfN ′

2 > 0 and pN2−N ′
2ν(gp) ∈ Z×

p then the map is finite. On
Fp-fibres the map ςp is absolute Frobenius composed with the forgetful map. If (Up)′ is
an open normal subgroup of Up and if N1 ≤ N ′

1 ≤ N2 then A(m),ord,+
n,(i),(Up)′(N ′

1 ,N2)
/Up(N1, N2)

is identified with A(m),ord,+
n,(i),Up(N1 ,N2). Further there is a left action of GLm(OF,(p)) such that if

δ ∈ GLm(OF,(p)) and γ ∈ L(m)
n,(i),lin(Z(p)) and g ∈ (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞)ord, δ ◦ γ = δ(γ ) ◦ δ

and δ ◦ g = δ(g) ◦ δ. There are natural equivariant maps

A(m),ord,+
n,(i),Up(N1 ,N2) −→ X (m),ord,+

n,(i),Up(N1 ,N2).

If (Up)′ denotes the image ofUp in (P+n,(i)/Z(Nn,(i)))(A∞,p) then there is a natural equivari-
ant, commutative diagram:

A(m),ord,+
n,(i),Up(N1 ,N2) →→ Aord,+

n,(i),(Up)′(N1 ,N2)
↓ ↓

X (m),ord,+
n,(i),Up(N1 ,N2) →→ X ord,+

n,(i),(Up)′(N1 ,N2)
↓ ↓

Y (m),ord,+
n,(i),Up(N1 ,N2) →→ Yord,+

n,(i),(Up)′(N1 ,N2).
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There are equivariant embeddings

A(m),ord,+
n,(i),Up(N1 ,N2) × SpecQ ↪→ A(m),+

n,(i),Up(N1 ,N2).

We define a semi-abelian scheme G̃univ/Aord,+
n,(i),Up(N1 ,N2) overA

ord,+
n,(i),Up(N1 ,N2) by requiring

that overA(i),ord
n−i,(hUph−1∩G(i)

n−i(A∞,p))(N1,N2)
it restricts toGuniv. It is unique up to unique prime-

to-p quasi-isogeny.We define a locally free sheaf Ω̃ord,+
n,(i),Up(N1 ,N2) (resp. Ξ̃

ord,+
n,(i),Up(N1 ,N2)) over

the schemeAord,+
n,(i),Up(N1 ,N2) to be the sheaf which, for each h, restricts to the sheaf

Ω
(i),ord
n−i,(hUph−1∩G(i)

n−i(A∞,p))(N1,N2)

(resp. Ξ
(i),ord
n−i,(hUph−1∩G(i)

n−i(A∞,p))(N1,N2)
) on the subscheme A(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1 ,N2)

.

Then Ω̃
ord,+
n,(i),Up(N1 ,N2) is the pull-back by the identity section of Ω1

G̃univ/Aord,+
n,(i),Up(N1 ,N2)

. The

collection {Ω̃ord,+
n,(i),Up(N1 ,N2)} (resp. {Ξ̃ord,+

n,(i),Up(N1 ,N2)}) is a system of locally free sheaves
on Aord,+

n,(i),Up(N1 ,N2) with a left (P+n,(i)/Z(Nn,(i)))(A∞)ord-action and a commuting right
Ln,(i),lin(Z(p))-action. Also there are equivariant exact sequences

(0) −→ π∗Ωord,+
n,(i),Up(N1 ,N2) −→ Ω̃

ord,+
n,(i),Up(N1 ,N2) −→ Oi

F ⊗Z OAord,+
n,(i),Up(N1 ,N2)

−→ (0),

where π denotes the mapAord,+
n,(i),U → X ord,+

n,(i),U .
Let Ẽord,+

(i),Up(N1 ,N2) denote the principal Rn,(n),(i)-bundle on the scheme Aord,+
n,(i),Up(N1 ,N2)

in the Zariski topology defined by setting, for W ⊂ Aord,+
n,(i),Up(N1 ,N2) a Zariski open,

Ẽord,+
(i),Up(N1 ,N2)(W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξord,+
n,(i),Up(N1 ,N2)

∣∣
W

∼−→ OW

and

ξ1 : Ω̃ord,+
n,(i),Up(N1 ,N2)

∼−→ HomZ

(
Λn−i/Λn−i,(n−i) ⊕HomZ

(
Oi

F ,Z
)
,OW
)

satisfies

ξ1 : Ωord,+
n,(i),Up(N1 ,N2)

∼−→ HomZ

(
Λn−i/Λn−i,(n−i),OW

)
.

We define the Rn,(n),(i)-action on Ẽord,+
(i),Up(N1 ,N2) by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {Ẽord,+
(i),Up(N1 ,N2)} has an action both of the groups P+n,(i)(A

∞)ord,× and of
Ln,(i),lin(Z(p)).
Suppose thatR0 is aQ-algebra and that ρ is a representation ofRn,(n),(i) on a finite, locally

free R0-module Wρ . We define a locally free sheaf Eord,+
(i),Up(N1 ,N2),ρ over Aord,+

n,(i),Up(N1 ,N2) ×
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SpecR0 by setting Eord,+
(i),Up(N1 ,N2),ρ(W ) to be the set of Rn,(n),(i)(OW )-equivariant maps of

Zariski sheaves of sets

Ẽord,+
(i),Up(N1 ,N2)

∣∣
W −→ Wρ ⊗R0 OW .

Then {Eord,+
(i),Up(N1 ,N2),ρ} is a system of locally free sheaves with P+n,(i)(A

∞)ord,×-action and
Ln,(i),lin(Z(p))-action over the systemof schemes {Aord,+

n,(i),Up(N1 ,N2)×SpecR0}. The restriction
of Eord,+

(i),Up(N1 ,N2),ρ toA(i),ord
n−i,(hUph−1∩G(i)

n−i(A∞,p))(N1 ,N2)
can be identified with

E (i),ord
(hUph−1∩G(i)

n−i(A∞,p))(N1 ,N2),ρ|R(i)n−i,(n−i)

.

However the description of the actions of the groups P+n,(i)(A
∞)ord,× and Ln,(i),lin(Z(p))

involves ρ and not just ρ|R(i)n−i,(n−i)
. If g ∈ P+n,(i)(A

∞)ord,× and γ ∈ Ln,(i),lin(Z(p)), then the
natural maps

g∗Eord,+
(i),Up(N1 ,N2),ρ −→ Eord,+

(i),(Up)′(N ′
1 ,N

′
2),ρ

and

γ ∗Eord,+
(i),Up(N1 ,N2),ρ −→ Eord,+

(i),(Up)′(N ′
1 ,N

′
2),ρ

are isomorphisms. If ρ factors through Rn,(n),(i)/N (Rn,(n),(i)) then Eord,+
(i),Up(N1 ,N2),ρ is canoni-

cally isomorphic to the pull-back of Eord,+
(i),Up(N1 ,N2),ρ from X ord,+

n,(i),Up(N1 ,N2). In generalWρ has
a filtration by Rn,(n),(i)-invariant local direct summands such that the action of Rn,(n),(i) on
each graded piece factors throughRn,(n),(i)/N (Rn,(n),(i)). (To see this apply proposition 4.7.3
of exposé I of [53] to the action ofAn,(i),lin onWρ .) Thus Eord,+

(i),Up(N1 ,N2),ρ has a P
+
n,(i)(A

∞)ord,×

and Ln,(i),lin(Z(p)) invariant filtration by local direct summands such that each graded piece
is the pull-back of some Eord,+

(i),Up(N1 ,N2),ρ′ from X ord,+
n,(i),Up(N1 ,N2).

The next lemma follows from the discussion in Sect. 3.4.

Lemma 4.1 If U ′ is the image of U (resp. Up) and if π denotes the map A(m),+
n,(i),U → A+

n,(i),U ′
then there are Ln,(i),lin(Q)-equivariant, (P+n,(i)/Z(Nn,(i)))(A∞)-equivariant and GLm(F )-
equivariant isomorphisms

Rjπ∗Ωk
A(m),+
n,(i),U /A+

n,(i),U ′
∼=
(
∧k (Fm ⊗F Ω+

n,(i),U ′ )
)
⊗
(
∧j
(
Fm ⊗F Hom

(
Ω+

n,(i),U ′ ,Ξ+
n,(i),U ′
)))

.

4.3 Generalized mixed Shimura varieties

Next suppose Ũ is an open compact subgroup of P̃(m),+
n,(i) (A∞). We define a split torus

S̃(m),+
n,(i),Ũ/Y (m),+

n,(i),Ũ as

∐

h∈L(m)
n,(i),lin(A∞)/Ũ

S(m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
.
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Thus X∗ (̃S(m),+
n,(i),Ũ )Q is a constant sheaf:

X∗
(̃
S(m),+
n,(i),Ũ

)
Q

∼= Herm(m+i)
Q

∼= Z
(
N (m)
n,(i)

)
(Q).

If g̃ ∈ P̃(m),+
n,(i) (A∞) and g̃−1Ũ g̃ ⊂ Ũ ′, then we define

g̃ : S̃(m),+
n,(i),Ũ −→ S̃(m),+

n,(i),Ũ ′

to be the coproduct of the maps

g̃ ′ : S(m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
−→ S(m+i)

n−i,h′Ũ ′(h′)−1∩G̃(m+i)
n−i (A∞)

,

where h, h′ ∈ L(m)
n,(i),lin(A

∞) and g̃ ′ ∈ G̃(m+i)
n−i (A∞) satisfy h̃g = g̃ ′h′. This makes {̃S(m),+

n,(i),Ũ } a
system of relative tori with right P̃(m),+

n,(i) (A∞)-action. If γ ∈ L(m)
n,(i),lin(Q), then we define

γ : S̃(m),+
n,(i),Ũ −→ S̃(m),+

n,(i),Ũ

to be the coproduct of the maps

γ : S(m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
−→ S(m+i)

n−i,(γh)Ũ (γh)−1∩G̃(m+i)
n−i (A∞)

.

This gives a left action of L(m)
n,(i),lin(Q) on each S̃(m),+

n,(i),Ũ , which commutes with the action of

P̃(m),+
n,(i) (A∞).
Similarly suppose Ũp is an open compact subgroup of P̃(m),+

n,(i) (A∞,p) and that N is a
non-negative integer. We define a split torus S̃ (m),ord,+

n,(i),Ũp(N )/Y
(m),ord,+
n,(i),Ũp(N ) as

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Ũp(N )

S (m+i)
n−i,(hŨph−1∩G̃(m+i)

n−i (A∞,p))

for any N ′ ≥ N . Thus X∗ (̃S(m),ord,+
n,(i),Ũp(N ))Z(p) is a constant sheaf:

X∗
(
S̃ (m),ord,+
n,(i),Ũp(N )

)
Z(p)

∼= Herm(m+i)
Z(p)

∼= Z
(
N (m)
n,(i)

)
(Z(p)).

If g̃ ∈ P̃(m),+
n,(i) (A∞)ord and g̃−1Ũp(N )̃g ⊂ (Ũp)′(N ′), then we define

g̃ : S̃ (m),ord,+
n,(i),Ũp(N ) −→ S̃ (m),ord,+

n,(i),(Ũp)′(N ′)

to be the coproduct of the maps

g̃ ′ : S (m+i)
n−i,(hŨph−1∩G̃(m+i)

n−i (A∞,p))
−→ S (m+i)

n−i,(h′(Ũp)′(h′)−1∩G̃(m+i)
n−i (A∞,p))

,
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where h, h′ ∈ L(m)
n,(i),lin(A

∞)ord and g̃ ′ ∈ G̃(m+i)
n−i (A∞)ord satisfy h̃g = g̃ ′h′. This makes

{S̃ (m),+
n,(i),Ũp(N )} a system of relative tori with right P̃(m),+

n,(i) (A∞)ord-action. If γ is an element

of L(m)
n,(i),lin(Z(p)), then we define

γ : S̃ (m),+
n,(i),Ũp(N ) −→ S̃ (m),+

n,(i),Ũp(N )

to be the coproduct of the maps

γ : S (m+i)
n−i,(hŨph−1∩G̃(m+i)

n−i (A∞,p))
−→ S (m+i)

n−i,((γh)Ũp(γh)−1∩G̃(m+i)
n−i (A∞,p))

.

This gives a left action of L(m)
n,(i),lin(Z(p)) on each S̃ (m),+

n,(i),Ũp(N ), which commutes with the

action of P̃(m),+
n,(i) (A∞)ord.

The sheaves X∗ (̃S(m),+
n,(i),Ũ ) and X∗ (̃S(m),+

n,(i),Ũ ) have actions of L(m)
n,(i),lin(Q). The sheaves

X∗(S̃ (m),ord,+
n,(i),Ũp(N )) and X∗(S̃ (m),ord,+

n,(i),Ũp(N )) have actions of the group L
(m)
n,(i),lin(Z(p)). The systems of

sheaves {X∗ (̃S(m),+
n,(i),Ũ )} and {X∗ (̃S(m),+

n,(i),Ũ )} (resp. {X∗(S̃ (m),ord,+
n,(i),Ũp(N ))} and {X∗(S̃ (m),ord,+

n,(i),Ũp(N ))}) have
actions of P̃(m),+

n,(i) (A∞) (resp. P̃(m),+
n,(i) (A∞)ord).

The sheaf
(
X∗
(̃
S(m),+
n,(i),Ũ

)
∩HermFm

)
=

∐

h∈L(m)
n,(i),lin(A∞)/Ũ

(
X∗
(
S̃(m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)

)
∩HermFm

)

is a subsheaf of X∗ (̃S(m),+
n,(i),Ũ ). (Recall the embedding

Herm(m) ∼= ker
(
Z
(
Ñ (m)
n,(i)

)
→ Z
(
N (m)
n,(i)

))
⊂ Herm(i+m).

)

It is invariant by the actions of the groups L(m)
n,(i),lin(Q) and P̃(m),+

n,(i) (A∞). We define a split
torus

Ŝ(m),+
n,(i),Ũ/Y (m),+

n,(i),Ũ

by

X∗
(̂
S(m),+
n,(i),Ũ

)
= X∗
(̃
S(m),+
n,(i),Ũ

)
∩HermFm .

If U denote the image of Ũ in P(m),+
n,(i) (A∞), then we will write

S(m),+
n,(i),U = S̃(m),+

n,(i),Ũ

/
Ŝ(m),+
n,(i),Ũ .

It depends only onU and not on the choice of Ũ mapping ontoU . The sheaf X∗(S(m),+
n,(i),U )Q

is constant:

X∗
(
S(m),+
n,(i),U

)
Q

∼= Z
(
N (m)
n,(i)

)
(Q).

In the case m = 0 we will write simply S+n,(i),U . The tori S̃(m),+
n,(i),Ũ and S(m),+

n,(i),Ũ inherit a left

action of L(m)
n,(i),lin(Q) and a right action of P̃(m),+

n,(i) (A∞). In the case of S(m),+
n,(i),Ũ the latter factors
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through P(m),+
n,(i) (A∞). If Ũ is a neat open compact subgroup of P̃(m),+

n,(i) (A∞) with image U

in P(m),+
n,(i) (A∞) and image U ′ in P+n,(i)(A

∞), then there is a natural, L(m)
n,(i),lin(Q)-equivariant

and P̃(m),+
n,(i) (A∞)-equivariant, commutative diagram:

S̃(m),+
n,(i),Ũ →→ S(m),+

n,(i),U →→ S+n,(i),U ′

↓ ↓ ↓
Y (m),+
n,(i),Ũ = Y (m),+

n,(i),U →→ Y+
n,(i),U ′ .

Similarly the sheaf
(
X∗
(
S̃ (m),ord,+
n,(i),Ũp(N )

)
∩HermFm

)

=∐h∈L(m)
n,(i),lin(A∞)ord,×/Ũp(N )

(
X∗
(
S̃ (m+i),ord
n−i,(hŨph−1∩G̃(m+i)

n−i (A∞,p))

)
∩HermFm

)

is a subsheaf of X∗(S̃ (m),ord,+
n,(i),Ũp(N )). It is invariant by the actions of L(m)

n,(i),lin(Z(p)) and

P̃(m),+
n,(i) (A∞)ord. We define a split torus

Ŝ (m),ord,+
n,(i),Ũp(N )

/
Y (m),ord,+
n,(i),Ũp(N )

by

X∗
(
Ŝ (m),ord,+
n,(i),Ũp(N )

)
= X∗
(
S̃ (m),ord,+
n,(i),Ũp(N )

)
∩HermFm .

If Up denotes the image of Ũp in P(m)
n,(i)(A

∞,p), then we will write

S (m),ord,+
n,(i),Up(N ) = S̃ (m),ord,+

n,(i),Ũp(N )

/
Ŝ (m),ord,+
n,(i),Ũp(N ).

It depends only on Up and not the Ũp mapping to Up. The sheaf X∗(S (m),ord,+
n,(i),Up(N ))Z(p) is

constant:

X∗
(
S (m),ord,+
n,(i),Up(N )

)
Z(p)

∼= Z
(
N (m)
n,(i)

)
(Z(p)).

In the case m = 0 we will write simply S+
n,(i),Up(N ). The tori Ŝ (m),ord,+

n,(i),Ũp(N ) and S (m),ord,+
n,(i),Up(N )

inherit a left action of L(m)
n,(i),lin(Z(p)) and a right action of P̃(m),+

n,(i) (A∞)ord. In the case of
S (m),ord,+
n,(i),Up(N ) the latter factors throughP

(m),+
n,(i) (A∞)ord. If Ũp is a neat open compact subgroup

of P̃(m),+
n,(i) (A∞,p)with imageUp inP(m),+

n,(i) (A∞,p) and image (Up)′ inP+n,(i)(A
∞,p), then there is

anatural,L(m)
n,(i),lin(Z(p))-equivariant and P̃

(m),+
n,(i) (A∞)ord-equivariant, commutativediagram:

S̃ (m),ord,+
n,(i),Ũp(N ) →→ S (m),ord,+

n,(i),Up(N ) →→ Sord,+
n,(i),(Up)′(N )

↓ ↓ ↓
Y (m),ord,+
n,(i),Ũp(N ) = Y (m),ord,+

n,(i),Up(N ) →→ Yord,+
n,(i),(Up)′(N ).

There are natural equivariant embeddings

S̃ (m),ord,+
n,(i),Ũp(N ) × SpecQ ↪→ S̃(m),+

n,(i),Ũp(N )



Harris et al. Res Math Sci (2016) 3:37 Page 135 of 308

and

S (m),ord,+
n,(i),Up(N ) × SpecQ ↪→ S(m),+

n,(i),Up(N )

and

Ŝ (m),ord,+
n,(i),(Up)′(N ) × SpecQ ↪→ Ŝ(m),+

n,(i),(Up)′(N ).

We write X∗(S(m),+
n,(i),U )

�0
R (resp. X∗(S(m),+

n,(i),U )
>0
R , resp. X∗(S(m),+

n,(i),U )
≥0
R ) for the subsheaves

(of monoids) of X∗(S(m),+
n,(i),U )R corresponding to the subset C(m),�0(Vn,(i)) ⊂ Z(N (m)

n,(i))(R)
(resp. to the subset C(m),>0(Vn,(i)) ⊂ Z(N (m)

n,(i))(R), resp. to the subset C(m),≥0(Vn,(i)) ⊂
Z(N (m)

n,(i))(R)).
We will also write X∗(S(m),+

n,(i),U )
≥0
R (resp. X∗(S(m),+

n,(i),U )
>0
R , resp. X∗(S(m),+

n,(i),U )
≥0, resp.

X∗(S(m),+
n,(i),U )

>0) for the subsheaves (of monoids) of X∗(S(m),+
n,(i),U )R (resp. X∗(S(m),+

n,(i),U )R, resp.
X∗(S(m),+

n,(i),U ), resp. X
∗(S(m),+

n,(i),U )) consisting of sections that have non-negative (resp. strictly
positive, resp. non-negative, resp. strictly positive) pairing with each nonzero section of
X∗(S(m),+

n,(i),U )
≥0
R . All these sheaves have (compatible) actions of L(m)

n,(i),lin(Q). The system of
sheaves {X∗(S(m),+

n,(i),U )} has an action of P(m),+
n,(i) (A∞), and the same is true for all the other

systems of sheaves we are considering in this paragraph.
We may take the quotients of the sheaves X∗(S(m),+

n,(i),U ) (resp. X∗(S(m),+
n,(i),U )

>0, resp.
X∗(S(m),+

n,(i),U )
≥0) by L(m)

n,(i),lin(Q) to give sheaves of sets on Y (m),#
n,(i),U , which we will denote

X∗(S(m),+
n,(i),U )

# (resp. X∗(S(m),+
n,(i),U )

>0,#, resp. X∗(S(m),+
n,(i),U )

≥0,#). If y = hU lies in Y (m),+
n,(i),U above

y# ∈ Y (m),#
n,(i),U then the stalk of X∗(S(m),+

n,(i),U )
# at y# equals

{
γ ∈ L(m)

n,(i),lin(Q) : γ y = y
}∖

X∗
(
S(m+i)
n−i,hUh−1∩G̃(m+i)

n−i (A∞)

)
.

We will write X∗(S (m),ord,+
n,(i),Up(N ))

≥0
R (resp. X∗(S (m),ord,+

n,(i),Up(N ))
>0
R , resp. X∗(S (m),ord,+

n,(i),Up(N ))
≥0
R ) for the

subsheaves (of monoids) of X∗(S (m),ord,+
n,(i),Up(N ))R corresponding to

C(m),�0(Vn,(i)) ⊂ Z
(
N (m)
n,(i)

)
(R)

(resp.

C(m),>0(Vn,(i)) ⊂ Z
(
N (m)
n,(i)

)
(R),

resp.

C(m),≥0(Vn,(i)) ⊂ Z
(
N (m)
n,(i)

)
(R)
)
.

Again we will write X∗(S (m),ord,+
n,(i),Up(N ))

≥0
R (resp. X∗(S (m),ord,+

n,(i),Up(N ))
≥0) for the subsheaves (of

monoids) of X∗(S (m),ord,+
n,(i),Up(N ))R (resp. X∗(S (m),ord,+

n,(i),Up(N ))) consisting of sections that have non-
negativepairingwith each sectionofX∗(S (m),ord,+

n,(i),Up(N ))
≥0
R .Wewill alsowriteX∗(S (m),ord,+

n,(i),Up(N ))
>0
R

(resp. X∗(S (m),ord,+
n,(i),Up(N ))

>0) for the subsheaves (of monoids) of the sheaves X∗(S (m),ord,+
n,(i),Up(N ))R

(resp. X∗(S (m),ord,+
n,(i),Up(N ))) consisting of sections that have strictly positive pairing with each
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nonzero section of X∗(S (m),ord,+
n,(i),Up(N ))

≥0
R . All these sheaves have actions of L(m)

n,(i),lin(Z(p)). The

system of sheaves {X∗(S (m),ord,+
n,(i),Up(N ))} has an action of P(m),+

n,(i) (A∞)ord, and the same is true
for all the other systems of sheaves we are considering in this paragraph.
We may take the quotients of the sheaves X∗(S (m),ord,+

n,(i),Up(N )) and X∗(S (m),ord,+
n,(i),Up(N ))

>0 and
X∗(S (m),ord,+

n,(i),Up(N ))
≥0 by L(m)

n,(i),lin(Z(p)) to give sheaves of sets on Y (m),ord,#
n,(i),Up(N ), which we will

denote X∗(S (m),ord,+
n,(i),Up(N ))

# and X∗(S (m),ord,+
n,(i),Up(N ))

>0,# and X∗(S (m),ord,+
n,(i),Up(N ))

≥0,#.
Suppose again that Ũ is a neat open compact subgroup of P̃(m),+

n,(i) (A∞) and set

T̃ (m),+
n,(i),Ũ =

∐

h∈L(m)
n,(i),lin(A∞)/Ũ

T (m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
.

It is an S̃(m),+
n,(i),Ũ -torsor over A

(m),+
n,(i),Ũ . If U denotes the image of Ũ in P(m),+

n,(i) (A∞) then the

push-out of T̃ (m),+
n,(i),Ũ under S̃(m),+

n,(i),Ũ →→ S(m),+
n,(i),U is an S(m),+

n,(i),U -torsor over A
(m),+
n,(i),U = A(m),+

n,(i),Ũ ,

which only depends onU (and not Ũ ), andwhichwewill denoteT (m),+
n,(i),U . In the casem = 0

we will write simply T+
n,(i),U . Note that T̃ (m),+

n,(i),Ũ is an Ŝ(m),+
n,(i),Ũ -torsor over T

(m),+
n,(i),Ũ .

If g̃ ∈ P̃(m),+
n,(i) (A∞) and g̃−1Ũ g̃ ⊂ Ũ ′, then we define

g̃ : T̃ (m),+
n,(i),Ũ −→ T̃ (m),+

n,(i),Ũ ′

to be the coproduct of the maps

g̃ ′ : T̃ (m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
−→ T̃ (m+i)

n−i,h′Ũ ′(h′)−1∩G̃(m+i)
n−i (A∞)

,

where h, h′ ∈ L(m)
n,(i),lin(A

∞) and g̃ ′ ∈ G̃(m+i)
n−i (A∞) satisfy h̃g = g̃ ′h′. This makes {T̃ (m),+

n,(i),Ũ }
a system of {̃S(m),+

n,(i),Ũ }-torsors over {A
(m),+
n,(i),Ũ } with right P̃(m),+

n,(i) (A∞)-action. It also induces

an action of P(m),+
n,(i) (A∞) on {T (m),+

n,(i),U }, which makes {T (m),+
n,(i),U } a system of {S(m),+

n,(i),U }-torsors
over {A(m),+

n,(i),U } with right P(m),+
n,(i) (A∞)-action. If γ ∈ L(m)

n,(i),lin(Q), then we define

γ : T̃ (m),+
n,(i),Ũ −→ T̃ (m),+

n,(i),Ũ

to be the coproduct of the maps

γ : T (m+i)
n−i,hŨh−1∩G̃(m+i)

n−i (A∞)
−→ T (m+i)

n−i,(γh)Ũ (γh)−1∩G̃(m+i)
n−i (A∞)

.

This gives a left action of L(m)
n,(i),lin(Q) on each T̃ (m),+

n,(i),Ũ , which commutes with the action of

P̃(m),+
n,(i) (A∞). It induces a left action of L(m)

n,(i),lin(Q) on each T (m),+
n,(i),U , which commutes with

the action of P(m),+
n,(i) (A∞). Suppose that Ũ is a neat open compact subgroup of P̃(m),+

n,(i) (A∞)
with image U in P(m),+

n,(i) (A∞) and image U ′ in P+n,(i)(A
∞). Then there is a commutative

diagram
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T̃ (m),+
n,(i),Ũ →→ T (m),+

n,(i),U →→ T+
n,(i),U ′

↓ ↓ ↓
A(m),+
n,(i),U = A(m),+

n,(i),U →→ A+
n,(i),U ′

↓ ↓ ↓
X (m),+
n,(i),U = X (m),+

n,(i),U →→ X+
n,(i),U ′

↓ ↓ ↓
Y (m),+
n,(i),U = Y (m),+

n,(i),U →→ Y+
n,(i),U ′ .

This diagram is L(m)
n,(i),lin(Q)-equivariant and P̃(m),+

n,(i) (A∞)-equivariant. We have

T (m),+
n,(i),U (C) = P(m)

n,(i)(Q)
∖(

P(m),+
n,(i) (A)Z

(
N (m)
n,(i)

)
(C)
)/ (

UU0
n−i,∞An−i(R)0

)
.

Similarly if Ũp is a neat open compact subgroup of P̃(m),+
n,(i) (A∞,p) and 0 ≤ N1 ≤ N2 we

set

T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

=
∐

h∈L(m)
n,(i),lin(A∞)ord,×/Ũp(N1 ,N2)

T (m+i),ord
n−i,(hŨph−1∩G̃(m+i)

n−i (A∞,p))(N1,N2)
.

It is an S̃ (m),ord,+
n,(i),Ũp(N1)

-torsor over A(m),ord,+
n,(i),Ũp(N1 ,N2)

. If Up denotes the image of Ũp in

P(m),+
n,(i) (A∞,p) then the push-out of T̃ (m),ord,+

n,(i),Ũp(N1 ,N2)
under S̃ (m),ord,+

n,(i),Ũp(N1)
→→ S (m),ord,+

n,(i),Up(N1) is

an S (m),ord,+
n,(i),Up(N1)-torsor over A

(m),ord,+
n,(i),Up(N1 ,N2), which only depends on Up (and not Ũp) and

N1, N2, and which we will denote T (m),ord,+
n,(i),Up(N1 ,N2). In the case m = 0 we will write simply

T ord,+
n,(i),Up(N1 ,N2). Note that T̃ (m),ord,+

n,(i),Ũp(N1 ,N2)
is a Ŝ (m),ord,+

n,(i),Ũp(N1)
-torsor over T (m),ord,+

n,(i),Ũp(N1 ,N2)
.

As above the system {T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

}has a right actionof P̃(m),+
n,(i) (A∞)ord anda commuting

left action of L(m)
n,(i),lin(Z(p)). If g ∈ P̃(m),+

n,(i) (A∞)ord,× then the map g is finite etale. The map

ςp : T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

× SpecFp −→ T̃ (m),ord,+
n,(i),Ũp(N1 ,N2−1) × SpecFp

equals absolute Frobenius composed with the forgetful map. If N2 > 1 then the map

ςp : T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

−→ T̃ (m),ord,+
n,(i),Ũp(N1 ,N2−1)

is finite flat. Further there is a left action of GLm(OF,(p)) such that if δ ∈ GLm(OF,(p))
and γ ∈ L(m)

n,(i),lin(Z(p)) and g ∈ P̃(m),+
n,(i) (A∞)ord, then γ followed by δ equals δ followed by

δγ δ−1, and g followedby δ equals δ followedby δgδ−1. These actions are also all compatible
with the actions on {S̃ (m),ord,+

n,(i),Ũp(N1)
}. There are induced actions of the groups GLm(OF,(p))

and L(m)
n,(i),lin(Z(p)) and P(m),+

n,(i) (A∞)ord on {T (m),ord,+
n,(i),Up(N1 ,N2)}, which are compatible with the

actions on {S (m),ord,+
n,(i),Up(N1)}. There is an equivariant commutative diagram
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T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

→→ T (m),ord,+
n,(i),Ũp(N1 ,N2)

→→ T ord,+
n,(i),Ũp(N1 ,N2)

↓ ↓ ↓
A(m),ord,+

n,(i),Ũp(N1 ,N2)
= A(m),ord,+

n,(i),Ũp(N1 ,N2)
→→ Aord,+

n,(i),Ũp(N1 ,N2)
↓ ↓ ↓

X (m),ord,+
n,(i),Ũp(N1 ,N2)

= X (m),ord,+
n,(i),Ũp(N1 ,N2)

→→ X ord,+
n,(i),Ũp(N1 ,N2)

↓ ↓ ↓
Y (m),ord,+
n,(i),Ũp(N1)

= Y (m),ord,+
n,(i),Ũp(N1)

→→ Yord,+
n,(i),Ũp(N1)

.

There are natural equivariant embeddings

T̃ (m),ord,+
n,(i),Ũp(N1 ,N2)

× SpecQ ↪→ T̃ (m),+
n,(i),Ũp(N1 ,N2)

and

T (m),ord,+
n,(i),Up(N1 ,N2) × SpecQ ↪→ T (m),+

n,(i),Up(N1 ,N2).

If a is a section of X∗(S(m),+
n,(i),U ) overW ⊂ Y (m)

n,(i),U then we can associate to it a line bundle

L+
U (a)

over A(m),+
n,(i),U |W as in Sect. 2.1. There are natural isomorphisms

L+
U (a)⊗ L+

U (a
′) ∼= L+

U (a+ a′).

Suppose that R0 is a noetherian Q-algebra. Suppose also that U is a neat open compact
subgroup of P+n,(i)(A

∞). If a is a section in X∗(S+n,(i),U )
>0(W ) thenL+

U (a) is relatively ample
for A+

n,(i),U |W /X+
n,(i),U |W . If π+ denotes the map

A+
n,(i),U |W × SpecR0 −→ X+

n,(i),U
∣∣
W × SpecR0,

then we see that

Riπ+∗ L+
U (a) = (0)

for i > 0. (BecauseA+
n,(i),U |W /X+

n,(i),U |W is a torsor for an abelian scheme andL+
U (a) is rel-

atively ample for thismorphism.)Wewill denote by (πA+/X+ ,∗L)+U (a) the imageπ+∗ L+
U (a).

Suppose further thatF is a locally free sheaf on X+
n,(i),U × SpecR0 with Ln,(i),lin(Q)-action.

If a# is a section of X∗(S+n,(i),U )
>0,# we will define

(πA+/X# ,∗L⊗ F )+U (a
#)

as follows: Over a point y# of Y #

n,(i),U we take the sheaf

∏
y,a

(πA+/X+ ,∗L)+U (a)y ⊗ Fy

over X#

n,(i),U,y# × SpecR0, where y runs over points of Y+
n,(i),U above y# and a runs over

sections of X∗(S+n,(i),U )y above a
#. It is a sheaf with an action of Ln,(i),lin(Q).
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Lemma 4.2 Keep the notation and assumptions of the previous paragraph.

(1)

(
πA+/X# ,∗L⊗ F

)+
U (a#) ∼= IndLn,(i),lin(Q)

{1}
((

πA+/X# ,∗L⊗ F
)+
U (a#)Ln,(i),lin(Q)

)

as a sheaf on X#

n,(i),U × SpecR0 with Ln,(i),lin(Q)-action.
(2) If

π : A+
n,(i),U × SpecR0 −→ X#

n,(i),U × SpecR0

then

Riπ∗
∏

a∈X∗
(
S+n,(i),U
)>0
(
L+
U (a)⊗ F

)

∼=
{∏

a#∈X∗(S+n,(i),U )>0,#
(
πA+/X# ,∗L⊗ F

)+
U (a#) if i = 0

(0) otherwise.

Proof For the first part note that if y in Y+
n,(i),U and if a ∈ X∗(S+n,(i),U )

>0
y then the stabilizer

of a in {γ ∈ Ln,(i)(Q) : γ y = y} is finite, and that if U is neat then it is trivial. The second
part follows from the observations of the previous paragraph together with proposition
0.13.3.1 of [23]. ��

Similarly if a is a section of X∗(S (m),ord,+
n,(i),Up(N1)) overW ⊂ Y (m),ord,+

n,(i),Up(N1) then we can associate
to it a line bundle

L+
Up(N1 ,N2)(a)

overA(m),ord,+
n,(i),Up(N1 ,N2)|W . There are natural isomorphisms

L+
Up(N1 ,N2)(a)⊗ L+

Up(N1 ,N2)(a
′) ∼= L+

Up(N1 ,N2)(a+ a′).

Suppose that R0 is a noetherian Z(p)-algebra. Suppose that Up is a neat open compact
subgroup of P+n,(i)(A

∞,p) and that 0 ≤ N1 ≤ N2. If a is a section in X∗(S+
n,(i),Up(N1))

>0(W )
then L+

Up(N1 ,N2)(a) is relatively ample for Aord,+
n,(i),Up(N1 ,N2)|W over X ord,+

n,(i),Up(N1 ,N2)|W . If π+

denotes the map

Aord,+
n,(i),Up(N1 ,N2)|W × SpecR0 −→ X ord,+

n,(i),Up(N1 ,N2)|W × SpecR0

then we see that

Riπ+∗ L+
Up(N1 ,N2)(a) = (0)

for i > 0. (Again because Aord,+
n,(i),Up(N1 ,N2)|W /X ord,+

n,(i),Up(N1 ,N2)|W is a torsor for an abelian
scheme and L+

Up(N1 ,N2)(a) is relatively ample for this morphism.) We will denote by
(πAord,+/X ord,+ ,∗L)+Up(N1 ,N2)(a) the image π+∗ L+(a). Suppose further that F is a locally
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free sheaf on X ord,+
n,(i),Up(N1 ,N2) × SpecR0 with Ln,(i),lin(Z(p))-action. If a# is a section of

X∗(Sord,+
n,(i),Up(N1))

>0,# we define a sheaf

(
πAord,+/X ord,# ,∗L⊗ F

)+
Up(N1 ,N2)

(a#)

as follows: Over a point y# of Yord,#
n,(i),Up(N1 ,N2) we take the sheaf

∏
y,a

(
πAord,+/X ord,+ ,∗L

)+
Up(N1 ,N2)

(a)y ⊗ Fy

over X ord,#
n,(i),Up(N1 ,N2),y#

× SpecR0, where y runs over points of Yord,#
n,(i),Up(N1 ,N2) above y

# and a

runs over sections ofX∗(Sord,+
n,(i),Up(N1))y above a

#. It is a sheaf with an action of Ln,(i),lin(Z(p)).
As above we have the following lemma.

Lemma 4.3 Keep the notation and assumptions of the previous paragraph.

(1)

(
πAord,+/X ord,# ,∗L⊗ F

)+
Up(N1 ,N2)

(a#)

∼= IndLn,(i),lin(Z(p))
{1}

((
πAord,+/X ord,+ ,∗L⊗ F

)+
Up(N1 ,N2)

(a#)Ln,(i),lin(Z(p))
)

as a sheaf on X ord,#
n,(i),Up(N1 ,N2) × SpecR0 with Ln,(i),lin(Z(p))-action.

(2) If

π : Aord,+
n,(i),Up(N1 ,N2) × SpecR0 −→ X ord,#

n,(i),Up(N1 ,N2) × SpecR0

then

Riπ∗
∏

a∈X∗
(
Sord,+
n,(i),Up(N1)

)>0

(
L+
Up(N1 ,N2)(a)⊗ F

)

is isomorphic to

∏

a#∈X∗
(
Sord,+
n,(i),Up(N1)

)>0,#

(
πAord,+/X ord,# ,∗L⊗ F

)+
Up(N1 ,N2)

(a#)

if i = 0, and otherwise is (0).

4.4 Partial compactifications

We will now turn to the partial compactification of the generalized Shimura varieties,
T (m)
n,(i),U , we discussed in the last section. These will serve as models for the full compact-

ification of the A(m)
n,U , which near the boundary can be formally modelled on the partial

compactifications of the T (m)
n,(i),U .

Suppose that U (resp. Up) is a neat open compact subgroup of L(m)
n,(i),lin(A

∞) (resp.
L(m)
n,(i),lin(A

∞,p)) and thatN is a non-negative integer. By an admissible cone decomposition
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Σ0 forX∗(S(m),+
n,(i),U )

�0
R (resp.X∗(S (m),ord,+

n,(i),Up(N ))
�0
R ) we shall mean a partial fanΣ0 inX∗(S(m),+

n,(i),U )R

(resp. X∗(S (m),ord,+
n,(i),Up(N ))R) such that

• |Σ0| = X∗(S(m),+
n,(i),U )

�0
R (resp. X∗(S (m),ord,+

n,(i),Up(N ))
�0
R );

• |Σ0|0 = X∗(S(m),+
n,(i),U )

>0
R (resp. X∗(S (m),ord,+

n,(i),Up(N ))
>0
R );

• Σ0 is invariant under the left action of L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p)));
• L(m)

n,(i),lin(Q)\Σ0 (resp. L(m)
n,(i),lin(Z(p))\Σ0) is a finite set;

• if σ ∈ Σ0 and 1 �= γ ∈ L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))) then

σ ∩ γ σ /∈ Σ0.

(Many authors would not include the last condition in the definition of an ‘admissible
cone decomposition’.) In concrete terms Σ0 consists of a partial fan Σg,0 in Z(N (m)

n,(i))(R)
for each g ∈ L(m)

n,(i),lin(A
∞) (resp. L(m)

n,(i),lin(A
∞)ord,×), such that

• Σγ gu,0 = γΣg,0 for all γ ∈ L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))) and u ∈ U (resp. Up(N ));
• |Σg,0| = C(m),�0(Vn,(i)) and |Σg,0|0 = C(m),>0(Vn,(i)) for each g ;
• (L(m)

n,(i),lin(Q) ∩ gUg−1)\Σg,0 (resp. (L(m)
n,(i),lin(Z(p)) ∩ gUp(N )g−1)\Σg ) is finite for all g ;

• for each g and each σ ∈ Σg,0, if 1 �= γ ∈ (L(m)
n,(i),lin(Q) ∩ gUg−1) (resp. (L(m)

n,(i),lin(Z(p)) ∩
gUp(N )g−1)) then

σ ∩ γ σ /∈ Σg,0.

Note that an admissible conedecompositionΣ0 forX∗(S(m),+
n,(i),Up(N ))

�0
R induces (by restric-

tion) one,whichwewill denoteΣord
0 , forX∗(S (m),ord,+

n,(i),Up(N ))
�0
R . This sets up abijectionbetween

admissible cone decompositions for X∗(S(m),+
n,(i),Up(N ))

�0
R and for X∗(S (m),ord,+

n,(i),Up(N ))
�0
R .

Lemma 4.4 Suppose that U (resp. Up) is a neat open compact subgroup of the group
L(m)
n,(i),lin(A

∞) (resp. L(m)
n,(i),lin(A

∞)) and that N is a non-negative integer. Suppose also that
Σ0 is an admissible cone decomposition for X∗(S(m),+

n,(i),U )
�0
R (resp. for X∗(S (m),ord,+

n,(i),Up(N ))
�0
R ). Also

suppose that τ ⊂ |Σ0| is a rational polyhedral cone. Then the set
{
γ ∈ L(m)

n,(i),lin(Q) : γ τ ∩ τ ∩ |Σ0|0 �= ∅
}

(resp.
{
γ ∈ L(m)

n,(i),lin(Z(p)) : γ τ ∩ τ ∩ |Σ0|0 �= ∅
})

is finite.

Proof We treat the case of X∗(S(m),+
n,(i),U )

�0
R , the other being exactly similar. Suppose that τ

has support y = hU and set Γ = L(m)
n,(i),lin(Q) ∩ hUh−1 a discrete subgroup of L(m)

n,(i),lin(Q).
We certainly have
{
γ ∈ L(m)

n,(i),lin(Q) : γ τ ∩ τ ∩ |Σ0|0 �= ∅
}
= {γ ∈ Γ : γ τ ∩ τ ∩ |Σ0|0(y) �= ∅} .

That this set is finite follows from theorem II.4.6 and the remark (ii) at the end of section
II.4.1 of [3]. ��
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Corollary 4.5 If Σ0 is an admissible cone decomposition for X∗(S(m),+
n,(i),U )

�0
R or for

X∗(S (m),ord,+
n,(i),Up(N ))

�0
R , then Σ0 is locally finite.

Proof Let τ ⊂ |Σ0| be a rational polyhedral cone. Let σ1, . . . , σr be representatives for
L(m)
n,(i),lin(A

∞)\Σ0 (resp. L(m)
n,(i),lin(Z(p))\Σ0); and suppose they are chosen with the same

support as τ whenever possible. Let τ ′ be the rational polyhedral cone spanned by τ and
those σi with the same support as τ . If γ ∈ L(m)

n,(i),lin(A
∞) (resp. L(m)

n,(i),lin(Z(p))) and

γ σi ∩ τ ∩ |Σ0|0 �= ∅,

then

γ τ ′ ∩ τ ′ ∩ |Σ0|0 �= ∅

and so by the previous lemma γ lies in a finite set. The corollary follows. ��

If g ∈ P(m),+
n,(i) (A∞), if U ′ ⊃ g−1Ug are neat open compact subgroups of the group

P(m),+
n,(i) (A∞) and if Σ ′

0 is a U ′-admissible cone decomposition for X∗(S(m),+
n,(i),U ′ )�0R , then

Σ ′
0g−1 is aU-admissible conedecomposition forX∗(S(m),+

n,(i),U )
�0
R .Wewill call aU-admissible

cone decomposition Σ0 for X∗(S(m),+
n,(i),U )

�0
R compatible with Σ ′

0 with respect to g if Σ0

refines Σ ′
0g−1. Similarly if g ∈ P(m),+

n,(i) (A∞)ord, if (Up)′(N ′) ⊃ (g−1Upg)(N ) and if Σ ′
0 is a

(Up)′(N ′)-admissible cone decomposition forX∗(S (m),ord,+
n,(i),(Up)′(N ′))

�0
R , then (Σ ′g−1,Σ ′

0g−1) is
an admissible cone decomposition for X∗(S (m),ord,+

n,(i),Up(N ))
�0
R . We will call aUp(N )-admissible

cone decomposition Σ0 for X∗(S (m),ord,+
n,(i),Up(N ))

�0
R compatible with Σ ′

0 with respect to g if Σ0
refines Σ ′

0g−1.
If U ′ is a neat open compact subgroup of P+n,(i)(A

∞) which contains the image of U , we
will call an admissible cone decomposition Σ0 of X∗(S(m),+

n,(i),U )
�0
R and an admissible cone

decomposition Δ0 of X∗(S+n,(i),U ′ )�0R compatible if, under the natural map

X∗
(
S(m),+
n,(i),U

)�0
R

→→ X∗
(
S+n,(i),U ′
)�0

R
,

the image of each σ ∈ Σ0 is contained in some element of Δ0. Similarly if (Up)′ is a neat
open compact subgroup of P+n,(i)(A

∞,p) which contains the image of Up and if N ′ ≥ N ,
we will call an admissible cone decomposition Σ0 of X∗(S (m),ord,+

n,(i),Up(N ))
�0
R and an admissible

cone decomposition Δ0 of X∗(Sord,+
n,(i),(Up)′(N ′))

�0
R compatible if, under the natural map

X∗
(
S (m),ord,+
n,(i),Up(N )

)�0
R

→→ X∗
(
Sord,+
n,(i),(Up)′(N ′)

)�0
R

,

the image of each σ ∈ Σ0 is contained in some element of Δ0.
If Σ0 is a smooth admissible cone decomposition for X∗(S(m),+

n,(i),U )
�0
R (resp. for

X∗(S (m),ord,+
n,(i),Up(N1 ,N2)))

�0
R ), then the log smooth, log scheme

(
T (m),+
n,(i),U,Σ̃0

,MΣ̃0

)
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(resp. the log smooth, log scheme
(
T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

))

has a left action of L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))) extending that on T (m),+
n,(i),U (resp.

T (m),ord,+
n,(i),Up(N1 ,N2)). (Recall the definition of Σ̃0 from Sect. 2.5.) If g ∈ P(m),+

n,(i) (A∞) (resp.
g ∈ P(m),+

n,(i) (A∞)ord) and if Σ0 is compatible with Σ ′
0 with respect to g then the map

g : T (m),+
n,(i),U −→ T (m),+

n,(i),U ′

(resp.

g : T (m),ord,+
n,(i),Up(N1 ,N2) −→ T (m),ord,+

n,(i),(Up)′(N ′
1 ,N

′
2)

)

uniquely extends to an L(m)
n,(i),lin(Q)-equivariant (resp. L(m)

n,(i),lin(Z(p))-equivariant) log etale
map

g :
(
T (m),+
n,(i),U,Σ̃0

,MΣ̃0

)
−→
(
T (m),+
n,(i),U ′ ,Σ̃ ′

0
,MΣ̃ ′

0

)

(resp.

g :
(
T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

)
−→
(
T (m),ord,+
n,(i),(Up)′(N ′

1 ,N
′
2),Σ̃

′
0
,MΣ̃ ′

0

))
.

This makes {(T (m),+
n,(i),U,Σ̃0

,MΣ̃0 )} (resp. {(T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0 )}) a system of log schemes

with P(m),+
n,(i) (A∞)-action (resp. P(m),+

n,(i) (A∞)ord-action). There are equivariant embeddings

(
T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃ord

0
× SpecQ,MΣ̃ord

0

)
↪→
(
T (m),+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

)
.

We have
∣∣∣S
(
∂T (m),+

n,(i),U,Σ̃0

)∣∣∣−
∣∣∣S
(
∂T (m),+

n,(i),U,Σ̃0−Σ0

)∣∣∣
=
(
L(m)
n,(i),lin(A

∞)× (Cn−i(Q)\Cn−i(A)/Cn−i(R)0
))

/U ×
(
C
(m),>0
(i)

/
R×

>0

)
.

If U ′ (resp. (U ′)p) is a neat open compact subgroup of the group P+n,(i)(A
∞) (resp.

P+n,(i)(A
∞,p)) which contains the image of U (resp. Up), if Δ0 is a smooth admissible

cone decomposition of X∗(S+n,(i),U ′ )�0R (resp. X∗(Sord,+
n,(i),(U ′)p(N1))

�0
R ) and ifΣ0 is a compatible

smooth admissible cone decomposition of X∗(S(m),+
n,(i),U )

�0
R (resp. X∗(S (m),ord,+

n,(i),Up(N1))
�0
R ), then

the map

T (m),+
n,(i),U −→ T+

n,(i),U ′

(resp.

T (m),ord,+
n,(i),Up(N1 ,N2) −→ T ord,+

n,(i),(U ′)p(N1 ,N2)

)
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extends to an L(m)
n,(i),lin(Q)-equivariant (resp. L(m)

n,(i),lin(Z(p))-equivariant) log smooth map

(
T (m),+
n,(i),U,Σ̃0

,MΣ̃0

)
−→
(
T+
n,(i),U ′ ,Δ̃0

,MΔ̃0

)

(resp.
(
T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

)
−→
(
T ord,+
n,(i),(U ′)p(N1 ,N2),Δ̃0

,MΔ̃0

))
.

This gives rise to a P(m),+
n,(i) (A∞)-equivariant (resp. P(m),+

n,(i) (A∞)ord-equivariant) map of sys-
tems of log schemes
{(

T (m),+
n,(i),U,Σ̃0

,MΣ̃0

)}
−→
{(

T+
n,(i),U ′ ,Δ̃0

,MΔ̃0

)}

(resp.
{(

T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

)}
−→
{(

T ord,+
n,(i),(U ′)p(N ′

1 ,N
′
2),Δ̃0

,MΔ̃0

)})
.

These maps are compatible with the embeddings
(
T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

× SpecQ,MΣ̃0

)
↪→
(
T (m),+
n,(i),Up(N1 ,N2),Σ̃0

,MΣ̃0

)

and
(
T ord,+
n,(i),Up(N1 ,N2),Δ̃0

× SpecQ,MΔ̃0

)
↪→
(
T+
n,(i),Up(N1 ,N2),Δ̃0

,MΔ̃0

)
.

4.5 Completions

If Σ0 denotes a smooth admissible cone decomposition of X∗(S(m),+
n,(i),U )

�0
R (resp. of

X∗(S (m),ord,+
n,(i),Up(N1 ,N2)))

�0
R ), then the associated log formal scheme (T (m),+,∧

n,(i),U,Σ0
,M∧

Σ0
) (resp.

(T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)) inherits a left action of L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))). If g ∈
P(m),+
n,(i) (A∞) (resp. P(m),+

n,(i) (A∞)ord) and if Σ0 is compatible with Σ ′
0 with respect to g , then

there is an induced L(m)
n,(i),lin(Q)-equivariant (resp. L(m)

n,(i),lin(Z(p))-equivariant) map

g :
(
T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T (m),+,∧
n,(i),U ′ ,Σ ′

0
,M∧

Σ ′
0

)

(resp.

g :
(
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T (m),ord,+,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
,M∧

Σ ′
0

))
.

This makes {(T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}) a system of log formal

schemes with P(m),+
n,(i) (A∞)-action (resp. P(m),+

n,(i) (A∞)ord-action).
Similarly the schemes ∂Σ0T

(m),+
n,(i),U (resp. ∂Σ0T

(m),ord,+
n,(i),Up(N1 ,N2)) inherit a left action of the

group L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))). If g ∈ P(m),+
n,(i) (A∞) (resp. P(m),+

n,(i) (A∞)ord) and if Σ0

is compatible with Σ ′
0 with respect to g , then there is an induced L(m)

n,(i),lin(Q)-equivariant
(resp. L(m)

n,(i),lin(Z(p))-equivariant) map

g : ∂Σ0T
(m),+
n,(i),U −→ ∂Σ ′

0
T (m),+
n,(i),U ′
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(resp.

g : ∂Σ0T
(m),ord,+
n,(i),Up(N1 ,N2) −→ ∂Σ ′

0
T (m),ord,+
n,(i),(Up)′(N ′

1 ,N
′
2)

)
.

This makes {∂Σ0T
(m),+
n,(i),U } (resp. {∂Σ0T

(m),ord,+
n,(i),Up(N1 ,N2)}) a system of log formal schemes with

P(m),+
n,(i) (A∞)-action (resp. P(m),+

n,(i) (A∞)ord-action).
If U ′ (resp. (Up)′) is a neat open compact subgroup of the group P+n,(i)(A

∞) (resp.
P+n,(i)(A

∞,p)) which contains the image of U (resp. Up), if Δ0 is a smooth admissible
cone decomposition of X∗(S+n,(i),U ′ )�0R (resp. X∗(Sord,+

n,(i),(Up)′(N1))
�0
R ) and ifΣ0 is a compatible

smooth admissible cone decomposition of X∗(S(m),+
n,(i),U )

�0
R (resp. X∗(S (m),ord,+

n,(i),Up(N1))
�0
R ), then

there are induced maps
(
T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T+,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)

and

∂Σ0T
(m),+
n,(i),U −→ ∂Δ0T

+
n,(i),U ′

(resp.
(
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T ord,+,∧
n,(i),(Up)′(N1 ,N2),Δ0

,M∧
Δ0

)

and

∂Σ0T
(m),ord,+
n,(i),Up(N1 ,N2) −→ ∂Δ0T ord,+

n,(i),(Up)′(N1 ,N2)

)
,

which are L(m)
n,(i),lin(Q)-equivariant (resp. L(m)

n,(i),lin(Z(p))-equivariant). This gives rise to
P(m),+
n,(i) (A∞)-equivariant (resp. P(m),+

n,(i) (A∞)ord-equivariant) maps of systems of log formal
schemes
{(

T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)}
−→
{(

T+,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)}

and of systems of schemes
{
∂Σ0T

(m),+
n,(i),U

}
−→
{
∂Δ0T

+
n,(i),U ′
}

(resp.
{(

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}
−→
{(

T ord,+,∧
n,(i),(U ′)p(N ′

1 ,N
′
2),Δ0

,M∧
Δ0

)}

and
{
∂Σ0T

(m),ord,+
n,(i),Up(N1 ,N2)

}
−→
{
∂Δ0T ord,+

n,(i),(Up)′(N1 ,N2)

})
.

If σ ∈ Σ0 and if 1 �= γ ∈ L(m)
n,(i),lin(Q) (resp. L(m)

n,(i),lin(Z(p))) then σ ∩ γ σ /∈ Σ0. Thus

(
T (m),+,∧
n,(i),U,Σ0

)
σ
∩
(
T (m),+,∧
n,(i),U,Σ0

)
γ σ

= ∅
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and
(
∂Σ0T

(m),+
n,(i),U

)
σ
∩
(
∂Σ0T

(m),+
n,(i),U

)
γ σ

= ∅

(resp.
(
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

)
σ
∩
(
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

)
γ σ

= ∅

and

(
∂Σ0T

(m),ord,+
n,(i),Up(N1 ,N2)

)
σ
∩
(
∂Σ0T

(m),ord,+
n,(i),Up(N1 ,N2)

)
γ σ

= ∅
)
.

It follows we can form log formal schemes
(
T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)
= L(m)

n,(i),lin(Q)
∖(

T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)

(resp.
(
T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
= L(m)

n,(i),lin(Z(p))
∖ (

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

))

and
(
T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)
= HomF (Fm, F i)

∖(
T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)

(resp.
(
T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
= HomOF,(p)

(
Om

F,(p),Oi
F,(p)

)∖ (
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

))
.

We can also form schemes

∂Σ0T
(m),#
n,(i),U = L(m)

n,(i),lin(Q)
∖

∂Σ0T
(m),+
n,(i),U

(resp.

∂Σ0T
(m),ord,#
n,(i),Up(N1 ,N2) = L(m)

n,(i),lin(Z(p))
∖

∂Σ0T
(m),ord,+
n,(i),Up(N1 ,N2)

)
.

The quotient maps
(
T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)
→→
(
T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)
→→
(
T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)

and

∂Σ0T
(m),+
n,(i),U →→ ∂Σ0T

(m),#
n,(i),U

(resp.
(
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
→→
(
T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
→→
(
T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
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and

∂Σ0T
(m),ord,+
n,(i),Up(N1 ,N2) →→ ∂Σ0T

(m),ord,#
n,(i),Up(N1 ,N2)

)

are Zariski locally isomorphisms. The log formal scheme (T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

) (resp.
(T (m),ord,#+,∧

n,(i),Up(N1 ,N2),Σ0
,M∧

Σ0
)) inherits an action of Ln,(i),lin(Q) (resp. Ln,(i),lin(Z(p))).

If g ∈ P(m),+
n,(i) (A∞) (resp. P(m),+

n,(i) (A∞)ord) and ifΣ0 is compatible withΣ ′
0 with respect to

g then there are induced maps

g :
(
T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T (m),#,∧
n,(i),U ′ ,Σ ′

0
,M∧

Σ ′
0

)

(resp.

g :
(
T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T (m),ord,#,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
,M∧

Σ ′
0

))

and

g :
(
T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T (m),#+,∧
n,(i),U ′ ,Σ ′

0
,M∧

Σ ′
0

)

(resp.

g :
(
T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T (m),ord,#+,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
,M∧

Σ ′
0

))

and

g : ∂Σ0T
(m),#
n,(i),U −→ ∂Σ ′

0
T (m),#
n,(i),U ′

(resp.

g : ∂Σ0T
(m),ord,#
n,(i),Up(N1 ,N2) −→ ∂Σ ′

0
T (m),ord,#
n,(i),(Up)′(N ′

1 ,N
′
2)

)
.

This makes the collections {(T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}) and

{(T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}) systems of log formal schemes

with P(m),+
n,(i) (A∞)-action (resp. P(m),+

n,(i) (A∞)ord-action). It also makes the collections

{∂Σ0T
(m),#
n,(i),U } (resp. {∂Σ0T

(m),ord,#
n,(i),Up(N1 ,N2)}) systems of schemes with P(m),+

n,(i) (A∞)-action (resp.
P(m),+
n,(i) (A∞)ord-action).
If U ′ (resp. (Up)′) is a neat open compact subgroup of the group P+n,(i)(A

∞) (resp.
P+n,(i)(A

∞,p)) which contains the image of U (resp. Up), if Δ0 is a smooth admissible
cone decomposition of X∗(S+n,(i),U ′ )�0R (resp. X∗(Sord,+

n,(i),(Up)′(N1))
�0
R ) and ifΣ0 is a compatible

smooth admissible cone decomposition of X∗(S(m),+
n,(i),U )

�0
R (resp. X∗(S (m),ord,+

n,(i),Up(N1))
�0
R ), then

there are induced maps
(
T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T #,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)

(resp.
(
T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T ord,#,∧
n,(i),(Up)′(N1 ,N2),Δ0

,M∧
Δ0

))
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and
(
T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)
−→
(
T+,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)

(resp.
(
T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)
−→
(
T ord,+,∧
n,(i),(Up)′(N1 ,N2),Δ0

,M∧
Δ0

))

and

∂Σ0T
(m),#
n,(i),U −→ ∂Δ0T

#

n,(i),U ′

(resp.

∂Σ0T
(m),ord,#
n,(i),Up(N1 ,N2) −→ ∂Δ0T

ord,#
n,(i),(Up)′(N1 ,N2)

)
.

These give rise to P(m),+
n,(i) (A∞)-equivariant (resp. P(m),+

n,(i) (A∞)ord-equivariant) maps of sys-
tems of log formal schemes
{(

T (m),#,∧
n,(i),U,Σ0

,M∧
Σ0

)}
−→
{(

T #,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)}

(resp.
{(

T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}
−→
{(

T ord,#,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Δ0

,M∧
Δ0

)})

and
{(

T (m),#+,∧
n,(i),U,Σ0

,M∧
Σ0

)}
−→
{(

T+,∧
n,(i),U ′ ,Δ0

,M∧
Δ0

)}

(resp.
{(

T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

,M∧
Σ0

)}
−→
{(

T ord,+,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Δ0

,M∧
Δ0

)})
.

They also give rise to a P(m)
n,(i)(A

∞)-equivariant (resp. P(m)
n,(i)(A

∞)ord-equivariant) map of
systems of schemes
{
∂Σ0T

(m),#
n,(i),U

}
−→
{
∂Δ0T

#

n,(i),U ′
}

(resp.
{
∂Σ0T

(m),ord,#
n,(i),Up(N1 ,N2)

}
−→
{
∂Δ0T

ord,#
n,(i),(Up)′(N1 ,N2)

})
.

We will write

∂Σ0T
(m),ord,#
n,(i),Up(N ) = ∂Σ0T

(m),ord,#
n,(i),Up(N1 ,N2) × SpecFp.

It is independent of N2.
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We also get a commutative diagram

T (m),+,∧
n,(i),U,Σ0
↓

T (m),#+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′ ,Δ0

↓ ↓
T (m),#,∧
n,(i),U,Σ0

−→ T #,∧
n,(i),U ′ ,Δ0

↓ ↓
X (m),#
n,(i),U = X#

n,(i),U ′
↓ ↓

Y (m),#
n,(i),U = Y #

n,(i),U ′

(resp.

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ0

↓
T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ0

−→ T ord,+,∧
n,(i),(Up)′(N1 ,N2),Δ0

↓ ↓
T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

−→ T #,∧
n,(i),(Up)′(N1 ,N2),Δ0

↓ ↓
X (m),ord,#
n,(i),Up(N1 ,N2) = X ord,#

n,(i),(U ′)p(N1 ,N2)
↓ ↓

Y (m),ord,#
n,(i),Up(N1 ,N2) = Yord,#

n,(i),(U ′)p(N1 ,N2)

)
.

We will let I (m),#+,∧
∂ ,n,(i),U,Σ0

denote the formal completion of the ideal sheaf defining

∂T (m),+
n,(i),U,Σ̃0

⊂ T (m),+
n,(i),U,Σ̃0

.

Wewill let I (m),#+,∧
∂ ,n,(i),U,Σ0

denote its quotient byHomF (Fm, F i) and I (m),#,∧
∂ ,n,(i),U,Σ0

denote its quo-
tient by L(m)

n,(i),lin(Q). Similarly we will let I (m),ord,+,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

denote the formal completion
of the ideal sheaf defining

∂T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

⊂ T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃0

.

We will let I (m),ord,#+,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

denote its quotient by HomOF,(p) (Om
F,(p),Oi

F,(p)) and
I (m),ord,#,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

denote its quotient by L(m)
n,(i),lin(Z(p)).

There are P(m),+
n,(i) (A∞)ord and Ln,(i),lin(Z(p)) equivariant maps

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σord

0
× Spf Q ↪→ T (m),+,∧

n,(i),Up(N1 ,N2),Σ0
,

if Σord
0 and Σ0 correspond under the bijection of Sect. 4.4. These embeddings are com-

patible with the maps

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σord

0
−→ T ord,+,∧

n,(i),Up(N1 ,N2),Δord
0
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and

T (m),+,∧
n,(i),Up(N1 ,N2),Σ0

−→ T+,∧
n,(i),Up(N1 ,N2),Δ0

.

Moreover they are also compatible with the log structures and with the sheaves
I (m),ord,+,∧
∂ ,n,(i),Up(N1 ,N2),Σord

0
and I (m),+,∧

∂ ,n,(i),Up(N1 ,N2),Σ0
. They induce isomorphisms

T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σord

0
× Spf Q

∼−→ T (m),#,∧
n,(i),Up(N1 ,N2),Σ0

.

Lemma 4.6 Suppose that R0 is an irreducible noetherian Q-algebra (resp. Z(p)-algebra)
with the discrete topology. Suppose also that U ⊃ U ′ (resp. Up ⊃ (Up)′) are neat open com-
pact subgroups of P(m),+

n,(i) (A∞) (resp. P(m),+
n,(i) (A∞,p)), thatN ′

2 ≥ N ′
1 ≥ 0 andN2 ≥ N1 ≥ 0 are

integers with N ′
2 ≥ N2 and N ′

1 ≥ N1 and thatΣ0 andΣ ′
0 are compatible smooth admissi-

ble cone decompositions for X∗(S(m),+
n,(i),U )

�0
R and X∗(S(m),+

n,(i),U ′ )�0R (resp. for X∗(S (m),ord,+
n,(i),Up(N1 ,N2))

�0
R

and X∗(S (m),ord,+
n,(i),(Up)′(N ′

1 ,N
′
2)
)�0R ). Let π(U ′ ,Σ ′

0),(U,Σ0) (resp. π((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0)) denote

the map

1∗ : T (m),#,∧
n,(i),U ′ ,Σ ′

0
→ T (m),#,∧

n,(i),U,Σ0

(resp.

1∗ : T (m),ord,#,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
→ T (m),ord,#,∧

n,(i),Up(N1 ,N2),Σ0

)
.

(1) If i > 0 then

Riπ(U ′ ,Σ ′
0),(U,Σ0),∗

(
I (m),#,∧
∂ ,n,(i),U ′ ,Σ ′

0
⊗̂R0
)
= Riπ(U ′ ,Σ ′

0),(U,Σ0),∗OT (m),#,∧
n,(i),U ′ ,Σ ′

0
×Spf R0

= (0)

(resp.

Riπ((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0),∗

(
I (m),ord,#,∧
∂ ,n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
⊗̂R0
)
= (0)

and

Riπ((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0),∗OT (m),ord,#,∧

n,(i),(Up)′(N ′
1 ,N

′
2),Σ

′
0
×Spf R0

= (0)
)
.

(2) Suppose further that U ′ (resp. (Up)′) is a normal subgroup of U (resp. Up) and that
Σ ′

0 is U-invariant (resp. Up(N1, N2)-invariant). Then the natural maps

OT (m),#,∧
n,(i),U,Σ0

×Spf R0
−→
(
π(U ′ ,Σ ′

0),(U,Σ0),∗OT (m),#,∧
n,(i),U ′ ,Σ ′

0
×Spf R0

)U

(resp.

OT (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

×Spf R0

−→
(
π(((Up)′(N2 ,N2),Σ ′

0),(Up(N1 ,N2),Σ0),∗OT (m),ord,#,∧
n,(i),(Up)′(N2 ,N2),Σ ′

0
×Spf R0

)Up(N1 ,N2)
⎞
⎠



Harris et al. Res Math Sci (2016) 3:37 Page 151 of 308

and

I (m),#,∧
∂ ,n,(i),U,Σ0

⊗̂R0 −→
(
π(U ′ ,Σ ′

0),(U,Σ0),∗
(
I (m),#,∧
∂ ,n,(i),U ′ ,Σ ′

0
⊗̂R0
))U

(resp.

I (m),ord,#,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

⊗̂R0

−→
(
π((Up)′(N2 ,N2),Σ ′

0),(Up(N1 ,N2),Σ0),∗
(
I (m),ord,#,∧
∂ ,n,(i),(Up)′(N2 ,N2),Σ ′

0
⊗̂R0
))Up(N1 ,N2)

)

are isomorphisms.

The same statements are true with # replaced by + or by #+.

Proof It suffices to treat the case of +. We treat the case of T (m),+,∧
n,(i),U ′ ,Σ ′

0
× Spf R0, the case

of T (m),ord,+,∧
n,(i),(Up)′(N1 ,N2),Σ ′

0
× Spf R0 being exactly similar.

Let U ′′ denote the open compact subgroup of P(m),+
n,(i) (A∞) generated by U ′ and U ∩

Z(N (m)
n,(i))(A

∞). ThenΣ0 is aU ′′ admissible smooth cone decomposition of X∗(S(m),+
n,(i),U ′′ )�0R .

Moreover

T (m),+,∧
n,(i),U ′′ ,Σ̃0

× Spf R0 −→ T (m),+,∧
n,(i),U,Σ̃0

× Spf R0

is finite etale, and if U ′ is normal in U then it is Galois with group U/U ′′. Thus we
may replace U by U ′′ and reduce to the case that U and U ′ have the same projection to
(P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞). In this case the result follows from Lemma 2.15. ��

Define Ω̃
#

n,(i),U,Δ0
on T #,∧

n,(i),U,Δ0
as the quotient by Ln,(i),lin(Q) of the pull-back of Ω̃+

n,(i),U
from A+

n,(i),U to T+,∧
n,(i),U,Δ0

. Also define Ω̃
ord,#
n,(i),Up(N1 ,N2),Δ0

on T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

as the quo-
tient by Ln,(i),lin(Z(p)) of the pull-back of the sheaf Ω̃ord,+

n,(i),Up(N1 ,N2) from Aord,+
n,(i),Up(N1 ,N2) to

T ord,+,∧
n,(i),Up(N1 ,N2),Δ0

.
Suppose that R0 is a Q-algebra and that ρ is a representation of Rn,(n),(i) on a finite,

locally free R0-module Wρ . Then we define a locally free sheaf E#

(i),U,Δ0 ,ρ on T #,∧
n,(i),U,Δ0

as
the quotient by Ln,(i),lin(Q) of the pull-back of E+(i),U,ρ from A+

n,(i),U to T+,∧
n,(i),U,Δ0

. Then the
systemof sheaves {E#

(i),U,Δ0 ,ρ} over {T
#,∧
n,(i),U,Δ0

} has an action of P+n,(i)(A∞). If g ∈ P+n,(i)(A
∞),

then the natural map

g∗E#

(i),U,Δ0 ,ρ −→ E#

(i),U ′ ,Δ′
0 ,ρ

is an isomorphism. The sheaves E#

(i),U,Δ0 ,ρ have P+n,(i)(A
∞)-invariant filtrations by local

direct summands whose graded pieces pull-backed to T+,∧
n,(i),U,Δ0

are equivariantly isomor-
phic to the pull-backs of sheaves of the form E+(i),U,ρ′ on X+

n,(i),U .
Similarly in the case of mixed characteristic suppose that R0 is a Z(p)-algebra and that

ρ is a representation of Rn,(n),(i) on a finite, locally free R0-module Wρ . Then we define
a locally free sheaf Eord,#

(i),Up(N1 ,N2),Δ0 ,ρ on T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

as the quotient by Ln,(i),lin(Z(p))
of the pull-back of Eord,+

(i),Up(N1 ,N2),ρ from Aord,+
n,(i),Up(N1 ,N2) to T ord,+,∧

n,(i),Up(N1 ,N2),Δ0
. Then the col-

lection {Eord,#
(i),Up(N1 ,N2),Δ0 ,ρ} is a system of sheaves over {T ord,#,∧

n,(i),Up(N1 ,N2),Δ0
} with an action of

P+n,(i)(A
∞)ord,×. If g ∈ P+n,(i)(A

∞)ord,×, then the natural map
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g∗Eord,#
(i),Up(N1 ,N2),Δ0 ,ρ −→ Eord,#

(i),(Up)′(N1 ,N2),Δ′
0 ,ρ

is an isomorphism. The sheaves Eord,#
(i),Up(N1 ,N2),Δ0 ,ρ have P+n,(i)(A

∞)ord,×-invariant filtra-
tions by local direct summands whose graded pieces pull-backed to the formal scheme
T ord,+,∧
n,(i),Up(N1 ,N2),Δ0

are equivariantly isomorphic to the pull-backs of sheaves of the form
Eord,+
(i),Up(N1 ,N2),ρ′ on X ord,+

n,(i),Up(N1 ,N2).

Corollary 4.7 Suppose that R0 is an irreducible noetherianQ-algebra (resp.Z(p)-algebra)
with the discrete topology. Let ρ be a representation of Rn,(n),(i) on a finite, locally free
R0-module Wρ . Suppose also that U ⊃ U ′ (resp. Up ⊃ (Up)′) are neat open compact
subgroups of P(m),+

n,(i) (A∞) (resp. P(m),+
n,(i) (A∞,p)), that N ′

2 ≥ N ′
1 ≥ 0 and N2 ≥ N1 ≥ 0 are

integers withN ′
2 ≥ N2 andN ′

1 ≥ N1 and thatΣ0 andΣ ′
0 are compatible smooth admissible

cone decompositions for X∗(S(m),+
n,(i),U )

�0
R and X∗(S(m),+

n,(i),U ′ )�0R (resp. X∗(S (m),ord,+
n,(i),Up(N1 ,N2))

�0
R and

X∗(S (m),ord,+
n,(i),(Up)′(N ′

1 ,N
′
2)
)�0R ). Let π(U ′ ,Σ ′

0),(U,Σ0) (resp. π((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0)) denote the

map

1∗ : T (m),#,∧
n,(i),U ′ ,Σ ′

0
→ T (m),#,∧

n,(i),U,Σ0

(resp.

1∗ : T (m),ord,#,∧
n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
→ T (m),ord,#,∧

n,(i),Up(N1 ,N2),Σ0

)
.

(1) If i > 0 then

Riπ(U ′ ,Σ ′
0),(U,Σ0),∗

(
I (m),#,∧
∂ ,n,(i),U ′ ,Σ ′

0
⊗̂E#

(i),U ′ ,Σ ′
0 ,ρ

)
= Riπ(U ′ ,Σ ′

0),(U,Σ0),∗E
#

(i),U ′ ,Σ ′
0 ,ρ

= (0)

(resp.

Riπ((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0),∗

(
I (m),ord,#,∧
∂ ,n,(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0
⊗̂Eord,#

(i),(Up)′(N ′
1 ,N

′
2),Σ

′
0 ,ρ

)
= (0)

and

Riπ((Up)′(N ′
1 ,N

′
2),Σ

′
0),(Up(N1 ,N2),Σ0),∗E

ord,#
(i),(Up)′(N ′

1 ,N
′
2),Σ

′
0 ,ρ

= (0)
)
.

(2) Suppose further that U ′ (resp. (Up)′) is a normal subgroup of U (resp. Up) and that
Σ ′

0 is U-invariant (resp. Up(N1, N2)-invariant). Then the natural maps

E#

(i),U,Σ0 ,ρ −→
(
π(U ′ ,Σ ′

0),(U,Σ0),∗E
#

(i),U ′ ,Σ ′
0 ,ρ

)U

(resp.

Eord,#
(i),Up(N1 ,N2),Σ0 ,ρ

−→
(
π(((Up)′(N2 ,N2),Σ ′

0),(Up(N1 ,N2),Σ0),∗E
ord,#
(i),(Up)′(N2 ,N2),Σ ′

0 ,ρ

)Up(N1 ,N2)
)

and

I (m),#,∧
∂ ,n,(i),U,Σ0

⊗̂E#

(i),U,Σ0 ,ρ −→
(
π(U ′ ,Σ ′

0),(U,Σ0),∗(I
(m),#,∧
∂ ,n,(i),U ′ ,Σ ′

0
⊗̂E#

(i),U ′ ,Σ ′
0 ,ρ

)
)U
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(resp.

I (m),ord,#,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

⊗̂Eord,#
(i),Up(N1 ,N2),Σ0 ,ρ −→(

π((Up)′(N2 ,N2),Σ ′),(Up(N1 ,N2),Σ),∗
(
I (m),ord,#,∧
∂ ,n,(i),(Up)′(N2 ,N2),Σ ′

0
⊗̂Eord,#

(i),(Up)′(N2 ,N2),Σ ′
0 ,ρ

))Up(N1 ,N2)
)

are isomorphisms.

Lemma 4.8 Suppose that U is a neat open compact subgroup of P(m),+
n,(i) (A∞) and let U ′

denote the image of U in P+n,(i)(A
∞). Let Δ0 be a smooth admissible cone decomposition

for X∗(S+n,(i),U ′ ) and let Σ0 be a compatible smooth admissible cone decomposition for
X∗(S(m),+

n,(i),U ). Let π
+ = π+

(U,Σ0),(U ′ ,Δ0) denote the map

T (m),#+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′ ,Δ0

and let π# = π
#

(U,Σ0),(U ′ ,Δ0) denote the map

T (m),#,∧
n,(i),U,Σ0

−→ T #,∧
n,(i),U ′ ,Δ0

.

(1) The maps π+
(U,Σ0),(U ′ ,Δ0) and π

#

(U,Σ0),(U ′ ,Δ0) are proper.
(2) The natural maps

OT+,∧
n,(i),U ′ ,Δ0

−→ π+
(U,Σ0),(U ′ ,Δ0),∗OT (m),#+,∧

n,(i),U,Σ0

and

I+,∧
∂ ,n,(i),U ′ ,Δ0

−→ π+
(U,Σ0),(U ′ ,Δ0),∗I

(m),#+,∧
∂ ,n,(i),U,Σ0

and

OT #,∧
n,(i),U ′ ,Δ0

−→ π
#

(U,Σ0),(U ′ ,Δ0),∗OT (m),#,∧
n,(i),U,Σ0

and

I#,∧
∂ ,n,(i),U ′ ,Δ0

−→ π
#

(U,Σ0),(U ′ ,Δ0),∗I
(m),#,∧
∂ ,n,(i),U,Σ0

are isomorphisms.
(3) The natural maps

I+,∧
∂ ,n,(i),U ′ ,Δ0

⊗ Rjπ+
(U,Σ0),(U ′ ,Δ0),∗OT (m),#+,∧

n,(i),U,Σ0
−→ Rjπ+

(U,Σ0),(U ′ ,Δ0),∗I
(m),#+,∧
∂ ,n,(i),U,Σ0

and

I#,∧
∂ ,n,(i),U ′ ,Δ0

⊗ Rjπ#

(U,Σ0),(U ′ ,Δ0),∗OT (m),#,∧
n,(i),U,Σ0

−→ Rjπ#

(U,Σ0),(U ′ ,Δ0),∗I
(m),#,∧
∂ ,n,(i),U,Σ0

are isomorphisms.
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Proof It suffices to treat the + case.
The first part follows from Lemma 2.19. We deduce that all the sheaves mentioned in

the remaining parts are coherent.
Thus, by theorem 4.1.5 of [23] (‘the theorem on formal functions’), it suffices to prove

the remaining assertions after completing at a point of T+,∧
n,(i),U ′ ,Δ0

. The set points where
the assertions are true after completing at that point is open. (Again because the sheaves
involved are all coherent.) This open set is S+n,(i),U ′-invariant. (The sheaves in question do
not all have S+n,(i),U ′-actions. However locally on T+,∧

n,(i),U ′ ,Δ0
they do.) Thus it will do to

prove the lemma after completion at ∂σT+
n,(i),U ′ ,Δ̃0

, for σ ∈ Δ0 maximal. We will add a
subscript σ to denote completion along ∂σT+

n,(i),U ′ ,Δ̃0
.

We write π̃ for the map

T (m),+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′ ,Δ0

and factor π̃ = π2 ◦ π1, where

π1 : T (m),+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′ ,Δ0

×A+
n,(i),U ′ A

(m),+
n,(i),U

and

π2 : T+,∧
n,(i),U ′ ,Δ0

×A+
n,(i),U ′ A

(m),+
n,(i),U −→ T+,∧

n,(i),U ′ ,Δ0
.

Also write π3 for the other projection

π3 : T+,∧
n,(i),U ′ ,Δ0

×A+
n,(i),U ′ A

(m),+
n,(i),U −→ A(m),+

n,(i),U .

We will first show that

Rjπ1,σ ,∗OT (m),+,∧
n,(i),U,Σ0 ,σ

=
⎧⎨
⎩
(0) if j > 0
OT+,∧

n,(i),U ′ ,Δ0 ,σ
×A+n,(i),U ′A

(m),+
n,(i),U

if j = 0

and

Rjπ1,σ ,∗I (m),+,∧
∂ ,n,(i),U,Σ0 ,σ =

{
(0) if j > 0
π∗
2,σI

+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ if j = 0.

As T+,∧
n,(i),U ′ ,Δ0 ,σ ×A+

n,(i),U ′ A
(m),+
n,(i),U has the same underlying topological space as A(m),+

n,(i),U , i.e.
π3,σ is a homeomorphism on the underlying topological space, it suffices to show that

Rj(π3 ◦ π1)σ ,∗OT (m),+,∧
n,(i),U,Σ0 ,σ

=
⎧⎨
⎩
(0) if j > 0
π3,σ ,∗OT+,∧

n,(i),U ′ ,Δ0 ,σ
×A+n,(i),U ′A

(m),+
n,(i),U

if j = 0

and

Rjπ1,σ ,∗I (m),+,∧
∂ ,n,(i),U,Σ0 ,σ =

{
(0) if j > 0
π3,σ ,∗π∗

2,σI
+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ if j = 0.
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This would follow from Lemma 2.22 as long as we can show that, for all y ∈ Y (m),+
n,(i),U with

image y′ in Y+
n,(i),U ′ , we have |Σ0|∨(y) = |Δ0|∨(y′) and |Σ0|∨,0(y) = |Δ0|∨,0(y′). Concretely

these required equalities are
{
χ ∈ C(Vn,(i))∨ : χ ≥ 0 on C�0(Vn,(i))

}
∼−→
{
χ ∈ C(m)(Vn,(i))∨ : χ ≥ 0 on C(m),�0(Vn,(i))

}

and
{
χ ∈ C(Vn,(i))∨ : χ > 0 on C�0(Vn,(i))− {0}}

∼−→
{
χ ∈ C(m)(Vn,(i))∨ : χ > 0 on C(m),�0(Vn,(i))− {0}

}
.

If χ lies in one of the right hand sides then χ (z, f ) ≥ 0 for all z ∈ C>0(Vn,(i)) and all
f ∈ Hom(Fm, Vn,(i)) ⊗Q R. Taking the limit as z → 0 we see that χ ≥ 0 on the vector
space Hom(Fm, Vn,(i))⊗Q R and so χ = 0 on this space. Thus the right hand sides are the
set of χ ∈ C(Vn,(i))∨ such that χ ≥ 0 (resp. χ > 0) on the images of

C(m),�0(Vn,(i)) −→ C(Vn,(i))

(resp.

C(m),�0(Vn,(i))− {0} −→ C(Vn,(i))).

But these images are C�0(Vn,(i)) (resp. C�0(Vn,(i)) − {0}) and so the required equalities
hold.
We deduce that

Rjπ̃σ ,∗OT (m),+,∧
n,(i),U,Σ0 ,σ

=
(
∧jHomF

(
Ω+

n,(i),U ′ , Fm ⊗Q Ξ+
n,(i),U ′
))

⊗OX+n,(i),U ′
OT+,∧

n,(i),U ′ ,Δ0 ,σ

and

Rjπ̃σ ,∗I (m),+,∧
∂ ,n,(i),U,Σ0 ,σ =

(
∧jHomF

(
Ω+

n,(i),U ′ , Fm ⊗Q Ξ+
n,(i),U ′
))

⊗OX+n,(i),U ′
I+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ .

AsT (m),#+,∧
n,(i),U,Σ0 ,σ is thequotient ofT

(m),+,∧
n,(i),U,Σ0 ,σ byHomF (Fm, F i),weobtain spectral sequences

Hj1
(
HomF (Fm, F i),

(
∧j2HomF

(
Ω+

n,(i),U ′ , Fm ⊗Q Ξ+
n,(i),U ′
)))

⊗OX+n,(i),U ′
OT+,∧

n,(i),U ′ ,Δ0 ,σ

⇒ Rj1+j2π+∗ OT (m),#+,∧
n,(i),U,Σ0 ,σ

and

Hj1
(
HomF (Fm, F i),

(
∧j2HomF

(
Ω+

n,(i),U ′ , Fm ⊗Q Ξ+
n,(i),U ′
)))

⊗OX+n,(i),U ′
I+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ

⇒ Rj1+j2π+∗ I (m),#+,∧
∂ ,n,(i),U,Σ0 ,σ .

These can also be written

Hom
(
∧j1HomF (Fm, F i),∧j2HomF

(
Ω+

n,(i),U ′ , Fm ⊗Q Ξ+
n,(i),U ′
))
⊗OX+n,(i),U ′

OT+,∧
n,(i),U ′ ,Δ0 ,σ

⇒ Rj1+j2π+∗ OT (m),#+,∧
n,(i),U,Σ0 ,σ
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and

Hom
(
∧j1HomF (Fm, F i),∧j2HomF

(
Ω+

n,(i),U ′ ,Fm ⊗Q Ξ+
n,(i),U ′
))
⊗OX+n,(i),U ′

I+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ

⇒ Rj1+j2π+∗ I (m),#+,∧
∂ ,n,(i),U,Σ0 ,σ .

The lemma follows (as I+,∧
∂ ,n,(i),U ′ ,Δ0 ,σ is flat overOT+,∧

n,(i),U ′ ,Δ0 ,σ
). ��

The following lemma is equation (1.3.2.86) in lemma 1.3.2.79 of [44].

Lemma 4.9 Suppose that U is a neat open compact subgroup of P(m),+
n,(i) (A∞) and let U ′

denote the image of U in P+n,(i)(A
∞). Let Δ0 be a smooth admissible cone decomposition

for X∗(S+n,(i),U ′ ) and let Σ0 be a compatible smooth admissible cone decomposition for
X∗(S(m),+

n,(i),U ). There are canonical equivariant isomorphisms

HomF
(
Fm, Ω̃+

n,(i),U ′
)
⊗OA+n,(i),U ′

OT (m),+,∧
n,(i),U,Σ0

∼−→ Ω1
T (m),+,∧
n,(i),U,Σ0

/T+,∧
n,(i),U ′ ,Δ0

(log∞).

We deduce the following lemmas.

Lemma 4.10 Suppose that U is a neat open compact subgroup of P(m),+
n,(i) (A∞) and let U ′

denote the image of U in P+n,(i)(A
∞). Let Δ0 be a smooth admissible cone decomposition

for X∗(S+n,(i),U ′ ) and let Σ0 be a compatible smooth admissible cone decomposition for
X∗(S(m),+

n,(i),U ). Let π
+ = π+

(U,Σ0),(U ′ ,Δ0) denote the map

T (m),#+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′ ,Δ0

and let π# = π
#

(U,Σ0),(U ′ ,Δ0) denote the map

T (m),#,∧
n,(i),U,Σ0

−→ T #,∧
n,(i),U ′ ,Δ0

.

(1) π
#∗Ω1

T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞) ∼= HomF (Fm, Ω̃#

n,(i),U ′ ) is locally free of finite rank.

(2) The natural map

π
#,∗
(U,Σ0),(U ′ ,Δ0)π

#

(U,Σ0),(U ′ ,Δ0),∗Ω
1
T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)

−→ Ω1
T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)

is an isomorphism.
(3) The natural maps

(
Rj1π#∗OT (m),#,∧

n,(i),U,Σ0

)
⊗
(
∧j2π#∗Ω1

T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)
)

−→ Rj1π#∗Ω
j2
T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)
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and
(
Rj1π#∗OT (m),#,∧

n,(i),U,Σ0

)
⊗
(
∧j2π#∗Ω1

T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)
)
⊗ I#,∧

∂ ,n,(i),U ′ ,Δ0

−→ Rj1π#∗(Ω
j2
T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),U ′ ,Δ0

(log∞)⊗ I (m),#,∧
∂ ,n,(i),U,σ0 )

are isomorphisms.

Lemma 4.11 Suppose that U ⊃ U ′ are neat open compact subgroups of the group
P(m),+
n,(i) (A∞) and let V and V ′ denote the images of U and U ′ in P+n,(i)(A

∞). Let Δ0 (resp.
Δ′

0) be a smooth admissible cone decomposition for X∗(S+n,(i),V ) (resp. X∗(S+n,(i),V ′ )) and let
Σ0 (resp.Σ ′

0) be a compatible smooth admissible cone decomposition for X∗(S(m),+
n,(i),U ) (resp.

X∗(S(m),+
n,(i),U ′ )). Further suppose that Σ0 and Σ ′

0 are compatible and that Δ0 and Δ′
0 are

compatible.

(1) The natural map

π∗
(U ′ ,Σ ′

0),(U,Σ0)Ω
1
T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),V,Δ0

(log∞) −→ Ω1
T (m),#,∧
n,(i),U ′ ,Σ ′

0
/T #,∧

n,(i),V ′ ,Δ′0
(log∞)

is an isomorphism.
(2) The natural map

π∗
(V ′ ,Δ′

0),(V,Δ0)
π(U,Σ0),(V,Δ0),∗Ω1

T (m),#,∧
n,(i),U,Σ0

/T #,∧
n,(i),V,Δ0

(log∞)

−→ π(U ′ ,Σ ′
0),(V ′ ,Δ′

0),∗Ω
1
T (m),#,∧
n,(i),U ′ ,Σ ′

0
/T #,∧

n,(i),V ′ ,Δ′0
(log∞)

is an isomorphism.

Similarly we have the following lemma.

Lemma 4.12 Suppose that Up is a neat open compact subgroup of P(m),+
n,(i) (A∞,p) and let

(Up)′ denote the image of Up in P+n,(i)(A
∞,p). Suppose that N2 ≥ N1 ≥ 0 are integers.

Let Δ0 be a smooth admissible cone decomposition for X∗(Sord,+
n,(i),(Up)′(N1 ,N2)) and let Σ0

be a compatible smooth admissible cone decomposition for X∗(S (m),ord,+
n,(i),Up(N1 ,N2)). Let π

# =
π

#

(Up(N1 ,N2),Σ0),((Up)′(N1 ,N2),Δ0) denote the map

T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

−→ T ord,#,∧
n,(i),(Up)′(N1 ,N2),Δ0

.

(1) The map π
#

(Up(N1 ,N2),Σ0),((Up)′(N1 ,N2),Δ0) is proper.
(2) The natural maps

OT ord,#,∧
n,(i),(Up)′(N1 ,N2),Δ0

−→ π
#

(Up(N1 ,N2),Σ0),((Up)′(N1 ,N2),Δ0),∗OT (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

and

Iord,#,∧
∂ ,n,(i),(Up)′(N1 ,N2),Δ0

−→ π
#

(Up(N1 ,N2),Σ0),((Up)′(N1 ,N2),Δ0),∗I
(m),ord,#,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

are isomorphisms.
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(3) The natural map

Iord,#,∧
∂ ,n,(i),(Up)′(N1 ,N2),Δ0

⊗ Rjπ#∗OT (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ0

−→ Rjπ#∗I (m),ord,#,∧
∂ ,n,(i),Up(N1 ,N2),Σ0

is an isomorphism.

We finish this section with an important vanishing result.

Lemma 4.13 Suppose that R0 is an irreducible, noetherian Q-algebra (resp. Z(p)-algebra)
with the discrete topology. Suppose also that U (resp. Up) is a neat open compact subgroup
of P+n,(i)(A

∞) (resp. P+n,(i)(A
∞,p)), that N2 ≥ N1 ≥ 0 are integers and that Δ0 is a smooth

admissible cone decomposition for X∗(S+n,(i),U )
�0
R (resp. X∗(Sord,+

n,(i),U )
�0
R ). Let π denote the

map

π : T #,∧
n,(i),U,Δ0

−→ X#

n,(i),U

(resp.

π : T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

−→ X ord,#
n,(i),Up(N1 ,N2)

)
.

Further suppose that E is a coherent sheaf on the formal scheme T #,∧
n,(i),U,Δ0

×Spf R0 (resp.
T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

× Spf R0) with an exhaustive separated filtration, such that the pull-back
to T+,∧

n,(i),U,Δ0
× Spf R0 (resp. T ord,+,∧

n,(i),Up(N1 ,N2),Δ0
× Spf R0) of each

griE

is Ln,(i),lin(Q)-equivariantly (resp. Ln,(i),lin(Z(p))-equivariantly) isomorphic to the pull-

back to T+,∧
n,(i),U,Δ0

× Spf R0 (resp. T ord,+,∧
n,(i),Up(N1 ,N2),Δ0

× Spf R0) of a locally free sheaf Fi

with Ln,(i),lin(Q)-action (resp. Ln,(i),lin(Z(p))-action) over X+
n,(i),U × SpecR0 (resp. X ord,+

n,(i),U ×
SpecR0).
Then for i > 0

Riπ∗
(
E ⊗ I#,∧

∂ ,n,(i),U,Δ0

)
= (0)

(resp.

Riπ∗
(
E ⊗ Iord,#,∧

∂ ,n,(i),Up(N1 ,N2),Δ0

)
= (0)
)
.

Proof We will treat the case of T #,∧
n,(i),U,Δ0

× Spf R0, the other case being exactly similar.
We can immediately reduce to the case that the pull-back to T+,∧

n,(i),U,Δ0
× Spf R0 of E is

Ln,(i),lin(Q)-equivariantly isomorphic to the pull-back to T+,∧
n,(i),U,Δ0

Spf R0 of a locally free
sheaf F with Ln,(i),lin(Q)-action over X+

n,(i),U × SpecR0.
Let π+ denote the map

π+ : T+,∧
n,(i),U,Δ0

× Spf R0 −→ X#

n,(i),U × SpecR0

Also write π+ = π+
1 ◦ π+

2 , where

π+
1 : A+

n,(i),U × SpecR0 −→ X#

n,(i),U × SpecR0
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and

π+
2 : T+,∧

n,(i),U,Δ0
× SpecR0 −→ A+

n,(i),U × SpecR0.

By Lemma 2.22 we have that

Riπ+
2,∗(F ⊗ I∧∂ ,n,(i),U,Δ0

) =
{
F ⊗∏a∈X∗(S+n,(i),U )>0 L+

U (a) if i = 0

(0) otherwise.

Then by Lemma 4.2 (or in the case of T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

× Spf R0 Lemma 4.3) we deduce
that

Riπ+∗
(
F ⊗ I∧

∂ ,n,(i),U,Δ0

)

=
⎧⎨
⎩
IndLn,(i),lin(Q)

{1}
(∏

a#∈X∗(S+n,(i),U )>0,#
(
πA+/X# ,∗L⊗ F

)+
U (a#)Ln,(i),lin(Q)

)
if i = 0

(0) otherwise

Finally there is a spectral sequence

Hi
(
Ln,(i),lin(Q), Rjπ+∗

(
F ⊗ I∧∂ ,n,(i),U,Δ0

))
⇒ Ri+jπ∗

(
F ⊗ I∧∂ ,n,(i),U,Δ0

)
,

and so the present lemma follows on applying Shapiro’s lemma. ��

Corollary 4.14 Suppose that U (resp. Up) is a neat open compact subgroup of P+n,(i)(A
∞)

(resp. P+n,(i)(A
∞,p)), that N2 ≥ N1 ≥ 0 are integers, and that Δ0 is a smooth admissible

cone decomposition for X∗(S+n,(i),U )
�0
R (resp. X∗(Sord,+

n,(i),U )
�0
R ). Let π denote the map

π : T #,∧
n,(i),U,Δ0

−→ X#

n,(i),U

(resp.

π : T ord,#,∧
n,(i),Up(N1 ,N2),Δ0

−→ X ord,#
n,(i),Up(N1 ,N2)

)
.

Also suppose that R0 is an irreducible noetherian Q-algebra (resp. Z(p)-algebra) with the
discrete topology and that ρ is a representation of Rn,(n),(i) on a finite locally free R0-module.
Then for i > 0

Riπ∗
(
E#

n,(i),U,Δ0 ,ρ ⊗ I#,∧
∂ ,n,(i),U,Δ0

)
= (0)

(resp.

Riπ∗
(
Eord,#
n,(i),Up(N1 ,N2),Δ0 ,ρ ⊗ Iord,#,∧

∂ ,n,(i),Up(N1 ,N2),Δ0

)
= (0)
)
.
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5 Compactification of Shimura varieties
We now turn to the compactification of the Xn,U and the A(m)

n,U .

5.1 The minimal compactification

There is a canonically defined system of normal projective schemes with Gn(A∞)-action,
{Xmin

n,U /SpecQ} (forU ⊂ Gn(A∞) a neat open compact subgroup), together with compat-
ible, Gn(A∞)-equivariant, dense open embeddings

jmin
U : Xn,U ↪→ Xmin

n,U .

These schemes are referred to as theminimal (or sometimes ‘Baily–Borel’) compactifica-
tions. (The introduction to [49] asserts that the scheme Xmin

n,U is the minimal normal com-
pactification of Xn,U , although we won’t need this fact.) For g ∈ Gn(A∞) and g−1Ug ⊂ U ′

the maps

g : Xmin
n,U −→ Xmin

n,U ′

are finite.
Write

∂Xmin
n,U = Xmin

n,U − Xn,U .

There is a family of closed subschemes

∂0Xmin
n,U = Xmin

n,U ⊃ ∂1Xmin
n,U = ∂Xmin

n,U ⊃ ∂2Xmin
n,U ⊃ · · · ⊃ ∂nXmin

n,U ⊃ ∂n+1Xmin
n,U = ∅

such that each

∂0i X
min
n,U = ∂iXmin

n,U − ∂i+1Xmin
n,U

is smooth of dimension (n− i)2[F+ : Q]. The families {∂iXmin
n,U } and {∂0i Xmin

n,U } are families
of schemes with Gn(A∞)-action. Moreover we have a decomposition

∂0i X
min
n,U =

∐

h∈P+n,(i)(A∞)\Gn(A∞)/U

X#

n,(i),hUh−1∩P+n,(i)(A∞).

If g ∈ Gn(A∞) and if g−1Ug ⊂ U ′ then the map

g : ∂0i X
min
n,U −→ ∂0i X

min
n,U ′

is the coproduct of the maps

g ′ : X#

n,(i),hUh−1∩P+n,(i)(A∞) −→ X#

n,(i),h′U ′(h′)−1∩P+n,(i)(A∞)

where hg = g ′h′ with g ′ ∈ P+n,(i)(A
∞). We will write Xmin,∧

n,U,i for the completion of Xmin
n,U

along ∂0i X
min
n,U . (See theorem 1.3.1.5 and proposition 1.3.1.14 of [44].)

There is also a canonically defined system of normal quasi-projective schemes with
Gn(A∞)ord-action, {X ord,min

n,Up(N1 ,N2)/SpecZ(p)}, togetherwith compatible, dense open embed-
dings

jmin
Up(N1 ,N2) : X

ord
n,Up(N1 ,N2) ↪→ X ord,min

n,Up(N1 ,N2),
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which are Gn(A∞)ord-equivariant. Suppose that g ∈ Gn(A∞)ord and that

g−1Up(N1, N2)g ⊂ (Up)′
(
N ′
1, N

′
2
)
,

then

g : X ord,min
n,Up(N1 ,N2) −→ X ord,min

n,(Up)′(N ′
1 ,N

′
2)

is quasi-finite. If pN2−N ′
2ν(g) ∈ Z×

p and eitherN ′
2 = N2 orN ′

2 > 0, then it is also finite. On
Fp-fibres ςp acts as absolute Frobenius composed with the forgetful map. (See theorem
6.2.1.1, proposition 6.2.2.1 and corollary 6.2.2.9 of [44]. We remark that we are, perhaps
unfortunately, following a different convention from [44]. According to our convention

X ord,min
n,Up(N1 ,N2) × SpecQ ∼= Xmin

n,Up(N1 ,N2).

In contrast Lan [44]workswith an open subschemewhich only contains the ‘ordinary’ part
of the boundary. Our X ord,min

n,Up(N1 ,N2) is the union of this open subscheme with Xmin
n,Up(N1 ,N2).)

Write

∂X ord,min
n,Up(N1 ,N2) = X ord,min

n,Up(N1 ,N2) − X ord
n,Up(N1 ,N2).

There is a family of closed subschemes

∂0X ord,min
n,Up(N1 ,N2) = X ord,min

n,Up(N1 ,N2) ⊃ ∂1X ord,min
n,Up(N1 ,N2)

= ∂X ord,min
n,Up(N1 ,N2) ⊃ ∂2X ord,min

n,Up(N1 ,N2)

⊃ · · · ⊃ ∂nX ord,min
n,Up(N1 ,N2) ⊃ ∂n+1X ord,min

n,Up(N1 ,N2) = ∅
such that each

∂0i X
ord,min
n,Up(N1 ,N2) = ∂iX ord,min

n,Up(N1 ,N2) − ∂i+1X ord,min
n,Up(N1 ,N2)

is smooth over Z(p) of relative dimension (n− i)2[F+ : Q]. Then
{
∂iX ord,min

n,Up(N1 ,N2)

}

and
{
∂0i X

ord,min
n,Up(N1 ,N2)

}

are families of schemes with Gn(A∞)ord-action. We will write X ord,min,∧
n,Up(N1 ,N2),i for the com-

pletion of X ord,min
n,Up(N1 ,N2) along ∂0i X

ord,min
n,Up(N1 ,N2). We have a decomposition

∂0i X
ord,min
n,Up(N1 ,N2)=

∐
h∈P+n,(i)(A∞)ord,×\Gn(A∞)ord,×/Up(N1)X

ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2)

$∐h X
#

n,(i),hUp(N1 ,N2)h−1∩P+n,(i)(A∞),

where the second coproduct runs over

h∈
(
P+n,(i)(A

∞)
∖
Gn(A∞)

/
Up(N1, N2)

)
−
(
P+n,(i)(A

∞)ord,×
∖
Gn(A∞)ord,×

/
Up(N1)

)
.



Harris et al. Res Math Sci (2016) 3:37 Page 162 of 308

(Again see theorems 6.2.1.1 and proposition 6.2.2.1 of [44].)
[We explain why the map

P+n,(i)(A
∞)ord,×

∖
Gn(A∞)ord,×

/
Up(N1) −→ P+n,(i)(A

∞)
∖
Gn(A∞)

/
Up(N1, N2)

is injective. It suffices to check that
(
P+n,(i) ∩ P+n,(n)

)
(Zp)
∖
P+n,(n)(Zp)

/
Up(N1, N1)+n,(n)

↪→ P+n,(i)(Qp)
∖
Gn(Qp)

/
Up(N1, N2)n

= P+n,(i)(Zp)
∖
Gn(Zp)
/
Up(N1, N2)n,

or even that
(
P+n,(i) ∩ P+n,(n)

)
(Z/pN2Z)

∖
P+n,(n)(Z/pN2Z)

/
V

↪→ P+n,(i)(Z/pN2Z)
∖
Gn(Z/pN2Z)

/
V,

where

V = ker
(
P+n,(n)(Z/pN2Z) → Ln,(n),lin(Z/pN1Z)

)
.

This is clear.]
If g ∈ Gn(A∞)ord and if g−1Up(N1, N2)g ⊂ (Up)′(N ′

1, N
′
2) then the map

g : ∂0i X
ord,min
n,Up(N1 ,N2) −→ ∂0i X

ord,min
n,(Up)′(N ′

1 ,N
′
2)

is the coproduct of the maps

g ′ : X ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1,N2)

−→ X ord,#
n,(i),(h′(Up)′(h′)−1∩P+n,(i)(A∞,p))(N ′

1 ,N
′
2)

where hg = g ′h′ with g ′ ∈ P+n,(i)(A
∞)ord, and of the maps

g ′ : X#

n,(i),hUp(N1 ,N2)h−1∩P+n,(i)(A∞) −→ X#

n,(i),h′(Up)′(N ′
1 ,N

′
2)(h′)−1∩P+n,(i)(A∞)

where hg = g ′h′ with g ′ ∈ P+n,(i)(A
∞). (Again see theorems 6.2.1.1 and proposition 6.2.2.1

of [44].)
If N ′

2 ≥ N2 ≥ N1 then the natural map

X ord,min
n,Up(N1 ,N ′

2)
−→ X ord,min

n,Up(N1 ,N2)

is etale in a Zariski neighbourhood of the Fp-fibre, and the natural map

Xord,min
n,Up(N1 ,N ′

2)
−→ Xord,min

n,Up(N1 ,N2)

between formal completions along the Fp-fibres is an isomorphism. (See corollary 6.2.2.8
and example 3.4.4.5 of [44].) We will denote this p-adic formal scheme

Xord,min
n,Up(N1)
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and will denote its reduced subscheme

Xord,min
n,Up(N1).

We will also write

∂Xord,min
n,Up(N1) = Xord,min

n,Up(N1) − Xord
n,Up(N1).

The families {Xord,min
n,Up(N )} and {X

ord,min
n,Up(N )} and {∂Xord,min

n,Up(N )} haveGn(A∞)ord-actions. There is
a family of closed subschemes

∂0X
ord,min
n,Up(N ) = Xord,min

n,Up(N ) ⊃ ∂1X
ord,min
n,Up(N )

= ∂Xord,min
n,Up(N ) ⊃ ∂2X

ord,min
n,Up(N )

⊃ · · · ⊃ ∂nX
ord,min
n,Up(N ) ⊃ ∂n+1X

ord,min
n,Up(N ) = ∅

such that each

∂0i X
ord,min
n,Up(N ) = ∂iX

ord,min
n,Up(N ) − ∂i+1X

ord,min
n,Up(N )

is smooth of dimension (n− i)2[F+ : Q]. Then {∂iXmin
n,Up(N )} and {∂0i X

min
n,Up(N )} are families

of schemes with Gn(A∞)ord-action. Moreover we have a decomposition

∂0i X
ord,min
n,Up(N ) =

∐

h∈P+n,(i)(A∞)ord,×\Gn(A∞)ord,×/Up(N )

Xord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N ).

If g ∈ Gn(A∞)ord and if g−1Up(N )g ⊂ (Up)′(N ′) then the map

g : ∂0i X
ord,min
n,Up(N ) −→ ∂0i X

ord,min
n,(Up)′(N ′)

is the coproduct of the maps

g ′ : Xord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N ) −→ Xord,#

n,(i),(h′(Up)′(h′)−1∩P+n,(i)(A∞,p))(N ′)

where hg = g ′h′ with g ′ ∈ P+n,(i)(A
∞)ord. In particular ςp acts as absolute Frobenius.

The schemes X ord,min
n,Up(N1 ,N2) are not proper. There are proper integral models of the

schemes Xmin
n,U , but we have less control over them.

More specifically suppose thatU ⊂ Gn(A∞,p×Zp) is an open compact subgroup whose
projection to Gn(A∞,p) is neat. Then there is a normal, projective, flat Z(p)-scheme Xmin

n,U
with generic fibre Xmin

n,U . If g ∈ Gn(A∞,p × Zp) and if

g−1Ug ⊂ U ′

then there is a map

g : Xmin
n,U −→ Xmin

n,U ′

extending themap g : Xmin
n,U → Xmin

n,U ′ . This gives the system {Xmin
n,U } an action ofGn(A∞,p×

Zp). We set

Xmin
n,U = Xmin

n,U ×Z(p) Fp.
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OnXmin
n,U there is an ample line bundleωU , and the systemof line bundles {ωU }over {Xmin

n,U }
has an actionofGn(A∞,p×Zp). Thepull-back ofωU toXn,U isGn(A∞,p×Zp)-equivariantly
identified with ∧n[F :Q]Ωn,U . (See propositions 2.2.1.2 and 2.2.3.1 of [44]. The rough idea
is to take Xmin

n,U as the normalization of Xmin
n,U over the minimal compactification of some

Siegel moduli of genus n[F : Q] and a suitable neat level away from p, and take ωU to be
the pull-back of the corresponding Hodge invertible sheaf there. It is not easy to describe
such normalizations in as much detail as in [17,41], but we can still verify the assertions
in this paragraph using the corresponding assertions for the minimal compactifications
of Siegel moduli.)
Moreover there are canonical sections

HasseU ∈ H0
(
Xmin
U ,ω⊗(p−1)

U

)

such that

g∗HasseU ′ = HasseU

whenever g ∈ Gn(A∞,p × Zp) and U ′ ⊃ g−1Ug . We will write Xmin,n-ord
n,U for the zero

locus in Xmin
n,U of HasseU . (See corollaries 6.3.1.7 and 6.3.1.8 of [44]. The rough idea is to

take HasseU to be the pull-back of the corresponding section over the minimal compact-
ifications of some Siegel moduli.) Then Xmin

n,U − Xmin,n-ord
n,U is relatively affine over Xmin

n,U
associated to the sheaf of algebras
( ∞⊕

i=0
ω⊗(p−1)ai

)/(
HasseaU − 1

)

for any a ∈ Z>0. It is also affine over Fp associated to the algebra
( ∞⊕

i=0
H0(Xmin

n,U ,ω⊗(p−1)ai)
)/(

HasseaU − 1
)

for any a ∈ Z>0.
There are Gn(A∞)ord,×-equivariant open embeddings

X ord,min
n,Up(N1 ,N2) ↪→ Xmin

n,Up(N1 ,N2).

These induce maps

Xord,min
n,Up(N1 ,N2) ↪→ Xmin

n,Up(N1 ,N2) − Xmin,n-ord
n,Up(N1 ,N2)

on Fp-fibres which are open and closed embeddings. (See proposition 6.3.2.2 of [44].)
In the case N1 = N2 = 0 this map is in fact an isomorphism. (See lemmas 6.3.2.7
and 6.3.2.9 of [44].) We remark that for N2 > 0 this map is not an isomorphism: The
definition of Xord

n,Up(N1 ,N2) requires not only that the universal abelian scheme is ordinary,
the condition that defines Xn,Up(N1 ,N2)−Xmin,n-ord

n,Up(N1 ,N2), but also that the universal subgroup
Cuniv ⊂ Auniv[pN2 ] is connected above each geometric point.
Also the pull-back of ωUp(N1 ,N2) to X ord

n,Up(N1 ,N2) is Gn(A∞)ord,×-equivariantly identified
with the sheaf ∧n[F :Q]Ωord

n,Up(N1 ,N2). If g ∈ Gn(A∞)ord,× and

g−1(Up)′(N ′
1, N2)g ⊂ Up(N1, N2),
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then the commutative square

X ord,min
n,(Up)′(N ′

1 ,N2)
g−→ X ord,min

n,Up(N1 ,N2)

↓ ↓
Xmin
n,(Up)′(N ′

1 ,N2)
g−→ Xmin

n,Up(N1 ,N2)

is a pull-back square. (See theorem 6.2.1.1 and proposition 6.2.2.1 of [44].)
At the referee’s suggestionwe include a few remarks about the constructionofX ord,min

Up(N1 ,N2)
and Xmin

U in [44]. If p is unramified in F then one has good control of certain inte-
gral toroidal compactifications XUp(0,0),Δ and of the integral minimal compactification
Xmin
Up(0,0). Moreover over XUp(0,0),Δ there is a ‘universal’ semi-abelian scheme and ‘ordi-

narity’ and Up(N1, N2)-level structure can be defined for this semi-abelian scheme. For
U = UpUp with Up ⊂ Gn(Zp) one can then define Xmin

U as a normalization of Xmin
Up(0,0)

in Xmin
U . One can then define XU,Δ′ as a suitable normalized blow-up of Xmin

U . We don’t
have very much control of XU,Δ′ or Xmin

U . One can also define X ord
Up(N1 ,N2),Δ, and it solves

a relative moduli problem over X ord
Up(0,0),Δ ⊂ XUp(0,0),Δ. There are maps

X ord
Up(N1 ,N2),Δ −→ XUp(N1 ,N2),Δ −→ Xmin

Up(N1 ,N2).

The key point is to show that this map has open image, which we define to be X ord,min
Up(N1 ,N2)

and that X ord
Up(N1 ,N2),Δ is the pre-image of this open set in XUp(N1 ,N2),Δ.

In the case that p ramifies in F things are a bit harder, because we don’t even have a
good candidate for Xmin

Up(0,0). In this case one first constructs the corresponding spaces in
the Siegel case, which is analogous to the good case discussed in the previous paragraph.
One then has a proper map X ord

Up(N1 ,N2),Δ → Zord,min
Vp(N1 ,N2), where Z

ord,min
Vp(N1 ,N2) is the integral

minimal partial compactification of the ordinary locus of a Siegel variety. One applies
Stein factorization to this map and uses this to define X ord,min

Up(N1 ,N2):

X ord
Up(N1 ,N2),Δ −→ X ord,min

Up(N1 ,N2) −→ Zord,min
Vp(N1 ,N2).

Then X ord,min
Up(N1 ,N2) admits a quasi-finite map to Xmin

Up(N1 ,N2), which is shown to be an open
immersion using Zariski’s main theorem.

5.2 Cone decompositions

LetU ⊂ G(m)(A∞) be an open compact subgroup. By aU-admissible cone decomposition
Σ ofG(m)

n (A∞)×π0(Gn(R))×C(m) we shall mean a set of closed subsets σ ⊂ G(m)
n (A∞)×

π0(Gn(R))× C(m) such that

(1) each σ is contained in {(g, δ)} × C(m),�0(W ) for some isotropic subspace W ⊂ Vn
and some (g, δ) ∈ G(m)

n (A∞)× π0(Gn(R)) and is the set of R≥0-linear combinations
of a finite set of elements of HermV /W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)× C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ ;
(4) if σ , σ ′ ∈ Σ then either σ ∩ σ ′ = ∅ or σ ∩ σ ′ is a face of σ and σ ′;
(5) G(m)

n (A∞)× π0(Gn(R))× C(m) =⋃σ∈Σ σ ;
(6) Σ is invariant by the diagonal action of G(m)

n (Q) on G(m)
n (A∞)× π0(Gn(R))× C(m);
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(7) Σ is invariant by the right action ofU onG(m)
n (A∞)×π0(Gn(R))×C(m) (acting only

on the first factor);
(8) G(m)

n (Q)\Σ/U is a finite set;
(9) if σ ∈ Σ lies in G(m)

n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)) and if h ∈ P(m)
n,(i)(A), then

hσ ∈ Σ ;
(10) if σ ∈ Σ lies inG(m)

n (A∞)×π0(Gn(R))×C(m),�0(Vn,(i)), if γ ∈ G(m)
n (Q), if u ∈ U and

if h ∈ P(m)
n,(i)(A) satisfy

σ ∩ γ hσu ∩ (G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))) �= ∅

then γ ∈ P(m)
n,(i)(Q).

(Here we let G(m)
n (A) act on G(m)

n (A∞)× π0(Gn(R))× C(m) via multiplication on the first
two factors. The restriction of this action to G(m)

n (Q) does not coincide with the standard
action of G(m)

n (Q), which we are using.) Note that if U ′ ⊂ U and if Σ is a U-admissible
cone decomposition of G(m)

n (A∞) × π0(Gn(R)) × C(m) then Σ is also U ′-admissible. We
will call a set Σ of closed subsets of G(m)

n (A∞) × π0(Gn(R)) × C(m) an admissible cone
decompositionofG(m)

n (A∞)×π0(Gn(R))×C(m) if it isU-admissible for someopen compact
subgroup U .
We remark that different authors use the term ‘U-admissible cone decomposition’ in

somewhat different ways.
We call Σ ′ a refinement of Σ if every element of Σ is a union of elements of Σ ′. We

define a partial order on the set of pairs (U,Σ), whereU ⊂ G(m)
n (A∞) is an open compact

subgroup andΣ is aU-admissible cone decomposition ofG(m)
n (A∞)×π0(Gn(R))×C(m),

as follows: We set

(U ′,Σ ′) ≥ (U,Σ)

if and only ifU ′ ⊂ U andΣ ′ is a refinement ofΣ . If g ∈ G(m)
n (A∞) andΣ is aU-admissible

cone decomposition of G(m)
n (A∞)× π0(Gn(R))× C(m), then

Σg = {σ (g × 1) : σ ∈ Σ}

is a g−1Ug-admissible cone decomposition of G(m)
n (A∞)× π0(Gn(R))× C(m). The action

of G(m)
n (A∞) preserves ≥.

There is a natural projection

G(m)
n (A∞)× π0(Gn(R))× C(m) →→ Gn(A∞)× π0(Gn(R))× C.

We will call admissible cone decompositions Σ of G(m)
n (A∞) × π0(Gn(R)) × C(m) and Δ

of Gn(A∞) × π0(Gn(R)) × C compatible if the image of every σ ∈ Σ is contained in an
element of Δ. If in addition Σ is U-admissible, Δ is U ′-admissible and U ′ contains the
image of U in Gn(A∞) we will say that (U,Σ) and (U ′,Δ) are compatible and write

(U,Σ) ≥ (U ′,Δ′).

Now let Up ⊂ G(m)(A∞,p) be an open compact subgroup and let N ≥ 0 be an integer
and consider Up(N ) ⊂ G(m)

n (A∞)ord,×. By a Up(N )-admissible cone decomposition Σ of



Harris et al. Res Math Sci (2016) 3:37 Page 167 of 308

(G(m)
n (A∞)×π0(Gn(R))×C(m))ord we shall mean a set of closed subsets σ ⊂ (G(m)

n (A∞)×
π0(Gn(R))× C(m))ord such that

(1) each σ is contained in {(g, δ)} × C(m),�0(W ) for some isotropic subspace W ⊂ Vn
and some (g, δ) ∈ G(m)

n (A∞)× π0(Gn(R)) and is the set of R≥0-linear combinations
of a finite set of elements of HermV /W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)× C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ ;
(4) if σ , σ ′ ∈ Σ then either σ ∩ σ ′ = ∅ or σ ∩ σ ′ is a face of σ and σ ′;
(5) (G(m)

n (A∞)× π0(Gn(R))× C(m))ord =⋃σ∈Σ σ ;
(6) if σ ∈ Σ , if γ ∈ G(m)

n (Q) and if u ∈ Up(N,N ) are such that γ σu ⊂ (G(m)
n (A∞) ×

π0(Gn(R))× C(m))ord, then γ σu ∈ Σ ;
(7) there is a finite subset of Σ such that any element of Σ has the form γ σu with

γ ∈ G(m)
n (Q) and u ∈ Up(N,N ) and σ in the given finite subset;

(8) if σ ∈ Σ lies in G(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)) and meets G(m)

n (A∞) ×
π0(Gn(R))× C(m),>0(Vn,(i)), and if h ∈ P(m)

n,(i)(A
∞)ord,× × P(m)

n,(i)(R), then hσ ∈ Σ ;
(9) if σ ∈ Σ lies in G(m)

n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)), if γ ∈ G(m)
n (Q), if u ∈

Up(N,N ) and if h ∈ P(m)
n,(i)(A

∞)ord,× × P(m)
n,(i)(R) satisfy γ hσu ∈ Σ and

σ ∩ γ hσu ∩ (G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))) �= ∅

then γ ∈ P(m)
n,(i)(Q).

Note that if (Up)′(N ′) ⊂ Up(N ) and if Σ is a Up(N )-admissible cone decomposition of
(G(m)

n (A∞)×π0(Gn(R))×C(m))ord thenΣ is also (Up)′(N ′)-admissible.Wewill call a setΣ
of closed subsets of (G(m)

n (A∞)× π0(Gn(R))× C(m))ord an admissible cone decomposition
of (G(m)

n (A∞) × π0(Gn(R)) × C(m))ord if it is Up(N )-admissible for some open compact
subgroup Up and for some N .
If Σ is a Up(N1, N2)-admissible cone decomposition of G(m)

n (A∞) × π0(Gn(R)) × C(m)

then

Σord =
{
σ ∈ Σ : σ ⊂ (G(m)

n (A∞)× π0(Gn(R))× C(m))ord
}

is a Up(N1)-admissible cone decomposition for (G(m)
n (A∞)× π0(Gn(R))× C(m))ord.

We call Σ ′ a refinement of Σ if every element of Σ is a union of elements of Σ ′.
We define a partial order on the set of pairs (Up(N ),Σ), where Up ⊂ G(m)

n (A∞,p) is an
open compact subgroup, N ∈ Z≥0 and Σ is a Up(N )-admissible cone decomposition of
(G(m)

n (A∞)× π0(Gn(R))× C(m))ord, as follows: We set

((Up)′(N ′),Σ ′) ≥ (Up(N ),Σ)

if and only if (Up)′(N ′) ⊂ Up(N ) and Σ ′ is a refinement of Σ . If g ∈ G(m)
n (A∞)ord and Σ

is a Up(N )-admissible cone decomposition of (G(m)
n (A∞)× π0(Gn(R))× C(m))ord, then

Σg = {σ (g × 1) : σ ∈ Σ}

is a g−1Up(N )g-admissible cone decomposition of
(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord
.
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The action of G(m)
n (A∞)ord preserves ≥.

There is a natural projection

(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord →→ (Gn(A∞)× π0(Gn(R))× C
)ord .

Wewill call admissible cone decompositionsΣ of (G(m)
n (A∞)×π0(Gn(R))×C(m))ord and

Δ of (Gn(A∞) × π0(Gn(R)) × C)ord compatible if the image of every σ ∈ Σ is contained
in an element of Δ. If in addition Σ is Up(N )-admissible, Δ is (Up)′(N ′)-admissible and
(Up)′(N ′) contains the image of Up(N ) in Gn(A∞)ord we will say that (Up(N ),Σ) and
((Up)′(N ′),Δ) are compatible and write

(Up(N ),Σ) ≥ ((Up)′(N ′),Δ′).

If Σ is a U-admissible cone decomposition of G(m)
n (A∞) × π0(Gn(R)) × C(m) and if

h ∈ G(m)
n (A∞) then we define an admissible cone decomposition Σ(h)0 for

X∗
(
S(m),+
n,(i),hUh−1∩P(m),+

n,(i) (A∞)

)�0
R

as follows: The cones in Σ(h)0 over an element

y =
[
h′
((

hUh−1 ∩ P(m),+
n,(i) (A∞)

)/(
hUh−1 ∩ P(m)

n,(i)(A
∞)
))]

∈ Y (m),+
n,(i),hUh−1∩P(m),+

n,(i) (A∞)

are the cones

σ ⊂ C(m),�0(Vn,(i)) ∼= X∗
(
S(m),+
n,(i),hUh−1∩P(m),+

n,(i) (A∞)

)�0
R,y

which meet C(m),>0(Vn,(i)) and satisfy

{(h′h, 1)} × σ ∈ Σ .

This does not depend on the representative h′ we choose for y. It also only depends on

h ∈ P(m)
n,(i)(A

∞)
∖
G(m)
n (A∞)

/
U.

If h1 ∈ L(m)
n,(i),lin(A

∞) then under the natural isomorphism

h1 : Y (m),+
n,(i),hUh−1∩P(m),+

n,(i) (A∞)
∼−→ Y (m),+

n,(i),h1hU (h1h)−1∩P(m),+
n,(i) (A∞)

we see that Σ(h)0 and Σ(h1h)0 correspond.
Similarly if Σ is a Up(N )-admissible cone decomposition of

(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord

and if h ∈ G(m)
n (A∞)ord,× then we define an admissible cone decomposition Σ(h)0 for

X∗
(
S (m),ord,+
n,(i),hUp(N )h−1∩P(m),+

n,(i) (A∞)ord,×

)�0
R
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as follows: The cones in Σ(h)0 over an element y given as
[
h′
(
hUp(N )h−1 ∩ P(m),+

n,(i) (A∞)ord,×
)/(

hUp(N )h−1 ∩ P(m),+
n,(i) (A∞)ord,×

)]

∈ Y (m),ord,+
n,(i),hUp(N )h−1∩P(m),+

n,(i) (A∞)ord,×

are the cones

σ ⊂ C(m),�0(Vn,(i)) ∼= X∗
(
S (m),ord,+
n,(i),hUp(N )h−1∩P(m),+

n,(i) (A∞)ord,×

)�0
R,y

which meet C(m),>0(Vn,(i)) and satisfy

{(h′h, 1)} × σ ∈ Σ .

This does not depend on the representative h′ we choose for y. It also only depends on

h ∈ P(m)
n,(i)(A

∞)ord,×
∖
G(m)
n (A∞)ord,×

/
Up(N ).

If h1 ∈ L(m)
n,(i),lin(A

∞)ord,× then under the natural isomorphism

h1 : Y (m),ord,+
n,(i),hUp(N )h−1∩P(m),+

n,(i) (A∞)ord,×
∼−→ Y (m),ord,+

n,(i),h1hUp(N )(h1h)−1∩P(m),+
n,(i) (A∞)ord,×

we see that Σ(h)0 and Σ(h1h)0 correspond.
There are sets J (m),tor

n (resp. J (m),tor,ord
n ) of pairs (U,Σ) (resp. (Up(N ),Σ)) where U ⊂

G(m)
n (A∞) is a neat open compact subgroup (resp. Up ⊂ G(m)

n (A∞,p) is a neat open
compact subgroup andN ∈ Z≥0) andΣ is aU-admissible (resp.Up(N )-admissible) cone
decomposition ofG(m)

n (A∞)×π0(Gn(R))×C(m) (resp. (G(m)
n (A∞)×π0(Gn(R))×C(m))ord),

with a number of properties which will be listed in this section and the next section. (See
[44].)
Firstly we have the following properties:

(1) The setsJ (m),tor
n (resp.J (m),tor,ord

n ) are invariant under the action ofG(m)
n (A∞) (resp.

G(m)
n (A∞)ord,×).

(2) If U is any neat open compact subgroup of G(m)
n (A∞), then there is some Σ with

(U,Σ) ∈ J (m),tor
n .

(3) If Up is any neat open compact subgroup of G(m)
n (A∞,p) and if N ∈ Z≥0, then there

is some Σ with (Up(N ),Σ) ∈ J (m),tor,ord
n .

(4) If (U,Σ) ∈ J (m),tor
n and if U ′ ⊂ U then there exists (U ′,Σ ′) ∈ J (m),tor

n with
(U ′,Σ ′) ≥ (U,Σ).

(5) If (Up(N ),Σ ′) ∈ J (m),tor,ord
n , if N ′ ≥ N and if (Up)′(N ′) ⊂ Up(N ) then there exists

an element ((Up)′(N ′),Σ ′) ∈ J (m),tor,ord
n with ((Up)′(N ′),Σ ′) ≥ (Up(N ),Σ).

(6) If (U ′,Σ ′) ≥ (U,Σ) are elements ofJ (m),tor
n and ifmoreoverU ′ is a normal subgroup

ofU , then we may choose (U ′,Σ ′′) ∈ J (m),tor
n such thatΣ ′′ isU-invariant and such

that (U ′,Σ ′′) ≥ (U ′,Σ ′).
(7) If ((Up)′(N ′),Σ ′) ≥ (Up(N ),Σ) are elements of J (m),tor,ord

n with (Up)′ a normal
subgroup ofUp, then there is an element ((Up)′(N ′),Σ ′′) ∈ J (m),tor

n such thatΣ ′′ is
Up(N )-invariant and such that ((Up)′(N ′),Σ ′′) ≥ ((Up)′(N ′),Σ ′).
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(8) If (U,Σ) and (U,Σ ′) ∈ J (m),tor
n (resp. if (Up(N ),Σ) and (Up(N ),Σ ′) ∈ J (m),tor.ord

n )
then there exists (U,Σ ′′) ∈ J (m),tor

n (resp. there exists (Up(N ),Σ ′′) in J (m),tor,ord
n )

with (U,Σ ′′) ≥ (U,Σ) and (U,Σ ′′) ≥ (U,Σ ′) (resp. with (Up(N ),Σ ′′) ≥ (Up(N ),Σ)
and (Up(N ),Σ ′′) ≥ (Up(N ),Σ ′)).

(9) If (U ′,Δ) ∈ J tor
n (resp. ((Up)′(N ′),Δ) ∈ J tor,ord

n ) and if U is a neat open compact
subgroup of G(m)

n (A∞) mapping into U ′ (resp. Up is a neat open compact sub-
group of G(m)

n (A∞,p) mapping into (Up)′ and N ≥ N ′), then there exists (U,Σ) ∈
J (m),tor
n (resp. (Up(N ),Σ) ∈ J (m),tor,ord

n ) compatible with (U ′,Δ) (resp. ((Up)′(N ′),
Δ)).

(10) If (Up(N1, N2),Σ) ∈ J (m),tor
n then (Up(N1),Σord) ∈ J (m),tor,ord

n .
(11) If (Up(N ),Σ ′) ∈ J (m),tor,ord

n and if N ′ ≥ N , then there exists (Up(N,N ′),Σ) ∈
J (m),tor
n with Σord = Σ ′.

(12) If (Up(N1, N2),Σ) and (Up(N1, N2),Σ ′) ∈ J (m),tor
n with Σord = (Σ ′)ord, then there

is an element (Up(N1, N2),Σ ′′) ∈ J (m),tor
n with (Σ ′′)ord = Σord = (Σ ′)ord and with

(Up(N1, N2),Σ ′′) ≥ (Up(N1, N2),Σ) and with (Up(N1, N2),Σ ′′) ≥ (Up(N1, N2),
Σ ′).

(13) If (Up(N1, N2),Σ) and ((Up)′(N ′
1, N

′
2),Σ ′) ∈ J (m),tor

n with (Up)′(N ′
1, N

′
2) ⊂

Up(N1, N2) and with (Σ ′)ord refining Σord, then there also exists another pair
((Up)′(N ′

1, N
′
2),Σ ′′) ∈ J (m),tor

n with Σ ′′ refining both Σ and Σ ′ and with (Σ ′′)ord =
(Σ ′)ord.

(14) If (Up(N1, N2),Δ) ∈ J tor
n and ((Up)′(N ′

1, N
′
2),Σ ′) ∈ J (m),tor

n are such that
(Up)′(N ′

1, N
′
2) ⊂ Up(N1, N2) and (Σ ′)ord is compatible with Δord, then there exists

((Up)′(N ′
1, N

′
2),Σ ′′) ∈ J (m),tor

n withΣ ′′ refiningΣ ′ and compatible withΔ and with
(Σ ′′)ord = (Σ ′)ord.

(15) If (Up(N1, N2),Σ) ∈ J (m),tor
n and if N ′

2 ≥ N2 then there exists a new pair
(Up(N1, N ′

2),Σ ′) ∈ J (m),tor
n with (Σ ′)ord = Σord.

(See propositions 1.2.4.52 and 7.1.1.21 of [44].)
Secondly if (U,Σ) ∈ J (m),tor

n (resp. (Up(N ),Σ) ∈ J (m),tor,ord
n ) and if h ∈ G(m)

n (A∞)
(resp. h ∈ G(m)

n (A∞)ord,×) then Σ(h)0 is smooth.
Thirdly if (U,Σ) ∈ J (m),tor

n , then there is a simplicial complex S(U,Σ) whose simplices
are in bijection with the cones in

G(m)
n (Q)
∖
Σ
/
U

which have dimension bigger than 0, and have the same face relations. We will write
S(U,Σ)≤i for the subcomplex of S(U,Σ) consisting of simplices associated to the orbits
of cones (g, δ)× σ ∈ Σ with σ ⊂ C(m),�0(W ) for someW with dimF W ≤ i. We will also
set

|S(U,Σ)|=i = |S(U,Σ)≤i| − |S(U,Σ)≤i−1|,

an open subset of |S(U,Σ)≤i|. Then one sees that

|S(U,Σ)| ∼= G(m)
n (Q)
∖((

G(m)
n (A∞)/U

)
× π0(Gn(R))×

((
C(m) − C

(m)
=0

)/
R×

>0

))
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and

|S(U,Σ)|=i
∼= G(m)

n (Q)
∖((

G(m)
n (A∞)/U

)
× π0(Gn(R))×

((
C
(m)
=i

)/
R×

>0

))

∼=∐h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/(

hUh−1 ∩ P(m),+
n,(i) (A∞)

)

Ln,(i),herm(R)+
(
L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0.

(See Sect. 1.4.)
If (Up(N ),Σ) ∈ J (m),tor,ord

n then there is a simplicial complex S(Up(N ),Σ)ord whose
simplices are in bijection with equivalence classes of cones of dimension greater than 0
in Σ , where σ and σ ′ are considered equivalent if σ ′ = γ σu for some γ ∈ G(m)

n (Q) and
some u ∈ Up(N,N ). We will write S(Up(N ),Σ)ord≤i for the subcomplex of S(Up(N ),Σ)ord

consisting of simplices associated to the orbits of cones (g, δ)×σ ∈ Σ withσ ⊂ C(m),�0(W )
for someW with dimF W ≤ i. We will also set
∣∣∣S (Up(N ),Σ)ord

∣∣∣=i
=
∣∣∣S (Up(N ),Σ)ord≤i

∣∣∣−
∣∣∣S (Up(N ),Σ)ord≤i−1

∣∣∣ ,

an open subset of |S(Up,Σ)ord≤i |. Then we see that

|S(Up(N ),Σ)ord|
∼= G(m)

n (Q)
∖((

G(m)
n (A∞)/Up(N )

)
× π0(Gn(R))×

(
C(m) − C

(m)
=0

)/
R×

>0

))ord
,

where
((

G(m)
n (A∞)

/
Up(N )
)
× π0(Gn(R))×

(
C(m) − C

(m)
=0

)/
R×

>0

))ord

denotes the image of

(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord −
(
G(m)
n (A∞)× π0(Gn(R))× C

(m)
=0

)ord

in

G(m)
n (Q)
∖((

G(m)
n (A∞)/Up(N,N )

)
× π0(Gn(R))×

(
C(m) − C

(m)
=0

)/
R×

>0

))
.

Moreover

|S(Up(N ),Σ)ord|=i

∼= G(m)
n (Q)
∖((

G(m)
n (A∞)

/
Up(N,N )

)
× π0(Gn(R))×

((
C
(m)
=i

)/
R×

>0

))ord

∼=∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N ) L
(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)

/(
hUp(N )h−1 ∩ P(m),+

n,(i) (A∞)ord
)

L−n,(i),herm(Zp)Ln,(i),herm(R)+
(
L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0.

(Use the same argument as in the proof of Lemma 1.8.) In particular

|S(Up(N ),Σ)ord|=n ∼= T
(m),ord
Up(N ),=n.
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5.3 Toroidal compactifications

If (U,Σ) ∈ J (m),tor
n , then there is a smooth projective scheme A(m)

n,U,Σ and a divisor with
simple normal crossings

∂A(m)
n,U,Σ ⊂ A(m)

n,U,Σ ,

together with an isomorphism

j(m)
U,Σ : A(m)

n,U
∼−→ A(m)

n,U,Σ − ∂A(m)
n,U,Σ

and a projection

πA(m),tor/Xmin : A(m)
n,U,Σ −→ Xmin

n,U

such that

A(m)
n,U ↪→ A(m)

n,U,Σ
↓ ↓

Xn,U ↪→ Xmin
n,U

is a commutative pull-back square. (The set J (m),tor
n was chosen so that inter alia these

properties are true.) The divisor ∂A(m)
n,U,Σ induces a log structureMΣ on A(m)

n,U,Σ .
If (U,Σ) ∈ J (m),tor

n and (U ′,Δ) ∈ J tor
n with (U,Σ) ≥ (U ′,Δ) then there is a log smooth

map

πA(m),tor/X tor :
(
A(m)
n,U,Σ ,MΣ

)
−→ (Xn,U ′ ,Δ,MΔ)

over Xmin
n,U ′ extending the map

πA(m)/X : A(m)
n,U −→ Xn,U ′ .

If (U ′,Σ ′) and (U,Σ) ∈ J (m),tor
n ; if g ∈ G(m)

n (A∞); if U ′ ⊃ g−1Ug ; and if Σg is a
refinement of Σ ′ then the map g : A(m)

n,U → A(m)
n,U ′ extends to a log etale morphism

g :
(
A(m)
n,U,Σ ,MΣ

)
−→
(
A(m)
n,U ′ ,Σ ′ ,MΣ ′

)
.

The collection {A(m)
n,U,Σ }becomes a systemof schemeswith rightG(m)

n (A∞)-action, indexed
byJ (m),tor

n . The maps j(m)
U,Σ and πA(m),tor/Xmin and πA(m),tor/X tor are allG(m)

n (A∞)-equivariant.
If (U,Σ) ≥ (U ′,Σ ′) we will write π(U,Σ),(U ′ ,Σ ′) for the map 1 : A(m)

n,U,Σ → A(m)
n,U ′ ,Σ ′ . (See

theorem 1.3.3.15 of [44] for the assertions of the last three paragraphs.)
Any of the (canonically quasi-isogenous) universal abelian schemes Auniv/Xn,U extend

uniquely to semi-abelian schemes Auniv
Δ /Xn,U,Δ. The quasi-isogenies between the Auniv

extend uniquely to quasi-isogenies between the Auniv
Δ . If g ∈ Gn(A∞) and (U,Δ) ≥

(U ′,Δ′)g then g∗Auniv
Δ′ is one of the Auniv

Δ . (See remarks 1.1.2.1 and 1.3.1.4 of [44].)
We will write ∂iA(m)

n,U,Σ for the pre-image under πA(m),tor/Xmin |
∂A(m)

n,U,Σ
of ∂iXmin

U . We also
set

∂0i A
(m)
n,U,Σ = ∂iA(m)

n,U,Σ − ∂i+1A(m)
n,U,Σ .
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We will also write A(m),∧
n,U,Σ ,i for the formal completion of A(m)

n,U,Σ along ∂0i A
(m)
n,U,Σ andM∧

Σ ,i
for the log structure induced on A(m),∧

n,U,Σ ,i byMΣ . There are isomorphisms

(
A(m),∧
n,U,Σ ,i ,M

∧
Σ ,i

) ∼=
∐

h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U

(
T (m),#,∧
n,(i),hUh−1∩P(m),+

n,(i) (A∞),Σ(h)0
,M∧

Σ(h)0

)
.

Suppose that g−1Ug ⊂ U ′ and that Σg is a refinement of Σ ′. Suppose also that h, h′ ∈
G(m)
n (A∞) with

hg(h′)−1 ∈ P(m),+
n,(i) (A∞).

Then the diagram

T (m),#,∧
n,(i),hUh−1∩P(m),+

n,(i) (A∞),Σ(h)0

hg(h′)−1
−→ T (m),#,∧

n,(i),h′U ′(h′)−1∩P(m),+
n,(i) (A∞),Σ ′(h′)0

↓ ↓
A(m),∧
n,U,Σ ,i

g−→ A(m),∧
n,U ′ ,Σ ′ ,i

commutes, and is compatible with the log structures on each of these formal schemes.
(See theorem 1.3.3.15 of [44].)
If U ′ is a neat subgroup of Gn(A∞) containing the image of U ; if (U ′,Δ) ∈ J tor

n ; and if
Σ andΔ are compatible, then for all h ∈ P(m),+

n,(i) (A∞) with image h′ ∈ P+n,(i)(A
∞) the cone

decompositions Σ(h)0 and Δ(h′)0 are compatible and we have a diagram

T (m),#,∧
n,(i),hUh−1∩P(m),+

n,(i) (A∞),Σ(h)0
↪→ A(m),∧

n,U,Σ ,i

↓ ↓
T #,∧
n,(i),h′U (h′)−1∩P+n,(i)(A∞),Δ(h′)0

↪→ X∧
n,U ′ ,Δ,i

↓ ↓
X#

n,(i),h′U (h′)−1∩P+n,(i)(A∞) ↪→ Xmin,∧
n,U ′ ,i ,

which is commutative as a diagram of topological spaces (but not as a diagram of locally
ringed spaces). The top square is commutative as a diagram of formal schemes and is
compatible with the log structures. (Again see theorem 1.3.3.15 of [44].)
The pull-back ofAuniv

Δ fromX∧
n,U ′ ,Δ,i to T

+,∧
n,(i),h′U (h′)−1∩P+n,(i)(A∞),Δ(h′)0

is canonically quasi-

isogenous to the pull-back of G̃univ from A+,∧
n,(i),h′U (h′)−1∩P+n,(i)(A∞),Δ(h′)0

.

We will write
∣∣∣S
(
∂A(m)

n,U,Σ

)∣∣∣=i
=
∣∣∣S
(
∂A(m)

n,U,Σ − ∂i+1A(m)
n,U,Σ

)∣∣∣−
∣∣∣S
(
∂A(m)

n,U,Σ − ∂iA(m)
n,U,Σ

)∣∣∣ .

Then there are compatible identifications

S
(
∂A(m)

n,U,Σ

) ∼= S(U,Σ)

and

S
(
∂A(m)

n,U,Σ − ∂i+1A(m)
n,U,Σ

) ∼= S(U,Σ)≤i
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and
∣∣∣S
(
∂A(m)

n,U,Σ

)∣∣∣=i
∼= |S(U,Σ)|=i;

and the latter is compatible with the identifications

|S(∂A(m)
n,U,Σ )|=i

∼=∐h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U L(m)
n,(i),lin(Q)

∖(∣∣∣∣S
(
∂T (m),+

n,(i),hUh−1∩P(m),+
n,(i) (A∞),Σ̃(h)0

)∣∣∣∣
−
∣∣∣∣S
(
∂T (m),+

n,(i),hUh−1∩P(m),+
n,(i) (A∞),Σ̃(h)0−Σ(h)0

)∣∣∣∣
)

∼=∐h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U L(m)
n,(i)(Q)
∖
L(m)
n,(i)(A)
/(

hUh−1 ∩ P(m),+
n,(i) (A∞)

)

Ln,(i),herm(R)+
(
L(m)
n,(i),lin(R) ∩U0

n,∞
)
An,(i)(R)0

∼= |S(U,Σ)|=i.

(See theorem 1.3.3.15 of [44].) If [σ ] ∈ S(U,Σ) we will write

∂[σ ]A(m)
n,U,Σ

for the corresponding closed boundary stratum of A(m)
n,U,Σ .

Similarly if (Up(N1, N2),Σ) ∈ J (m),tor
n , then there is a smooth quasi-projective scheme

A(m),ord
n,Up(N1 ,N2),Σ and a divisor with simple normal crossings

∂A(m),ord
n,Up(N1 ,N2),Σ ⊂ A(m),ord

n,Up(N1 ,N2),Σ

together with an isomorphism

j(m),ord
Up(N1 ,N2),Σ : A(m),ord

n,Up(N1 ,N2)
∼−→ A(m),ord

n,Up(N1 ,N2),Σ − ∂A(m),ord
n,Up(N1 ,N2),Σ

and a projection

πA(m),ord,tor/X ord,min : A(m),ord
n,Up(N1 ,N2),Σ −→ X ord,min

n,(Up)′(N1 ,N2)

such that

A(m),ord
n,Up(N1 ,N2) ↪→ A(m),ord

n,Up(N1 ,N2),Σ
↓ ↓

X ord
n,(Up)′(N1 ,N2) ↪→ X ord,min

n,(Up)′(N1 ,N2)

is a commutative pull-back square. The divisor ∂A(m),ord
n,Up(N1 ,N2),Σ induces a log structure

MΣ onA(m),ord
n,Up(N1 ,N2),Σ .

If (Up(N1, N2),Σ) ∈ J (m),tor
n and ((Up)′(N1, N2),Δ) ∈ J tor

n satisfy

(Up(N1, N2),Σ) ≥ ((Up)′(N1, N2),Δ)

then there is a log smooth map

πA(m),ord,tor/X ord,tor :
(
A(m),ord

n,Up(N1 ,N2),Σ ,MΣ

)
−→
(
X ord
n,(Up)′(N1 ,N2),Δ,MΔ

)
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over X ord,min
n,(Up)′(N1 ,N2) extending the map

πA(m),ord/Xord : A(m),ord
n,Up(N1 ,N2) −→ X ord

n,(Up)′(N1 ,N2).

If ((Up)′(N1, N2),Σ ′) and (Up)′(N1, N2),Σ) ∈ J (m),tor
n ; if g ∈ G(m)

n (A∞)ord; if
(Up)′(N ′

1, N
′
2) ⊃ g−1Up(N1, N2)g ; and if Σg is a refinement of Σ ′ then the map

g : A(m),ord
n,Up(N1 ,N2) → A(m),ord

n,(Up)′(N1 ,N2) extends to a log etale morphism

g :
(
A(m),ord

n,Up(N1 ,N2),Σ ,MΣ

)
−→
(
A(m),ord

n,(Up)′(N1 ,N2),Σ ′ ,MΣ ′
)
.

Then {A(m),ord
n,Up(N1 ,N2),Σ } is a system of schemes with right G(m)

n (A∞)ord-action, indexed
by the subset of J (m),tor

n consisting of elements of the form (Up(N1, N2),Σ). The
maps j(m),ord

U,Σ and πA(m),ord,tor/X ord,min and πA(m),ord,tor/X ord,tor are G(m)
n (A∞)ord equivariant. If

(Up(N1, N2),Σ) ≥ ((Up)′(N ′
1, N

′
2),Σ ′), then we will denote the map 1 : A(m),ord

n,Up(N1 ,N2),Σ →
A(m),ord

n,(Up)′(N1 ,N2),Σ ′ by π(Up(N1 ,N2),Σ),((Up)′(N1 ,N2),Σ ′). (See theorem 7.1.4.1 of [44] for the asser-
tions of the last three paragraphs.)
Any of the (canonically prime-to-p quasi-isogenous) universal abelian schemes

Auniv/X ord
n,Up(N1 ,N2) extend uniquely to semi-abelian schemes Auniv

Δ /X ord
n,Up(N1 ,N2),Δ. The

prime-to-p quasi-isogenies between the Auniv extend uniquely to prime-to-p quasi-
isogenies between theAuniv

Δ . If g ∈ Gn(A∞)ord,× and

(Up(N1, N2),Δ) ≥ ((Up)′(N1, N2),Δ′) g

then g∗Auniv
Δ′ is one of theAuniv

Δ . (See remarks 3.4.2.8 and 5.2.1.5 of [44].)
We will write ∂iA(m),ord

n,Up(N1 ,N2),Σ for the pre-image of ∂iX ord,min
n,Up(N1 ,N2) under the map

πA(m),ord,tor/X ord,min |
∂A(m),ord

n,Up(N1 ,N2),Σ

and set

∂0i A
(m),ord
n,Up(N1 ,N2),Σ = ∂iA(m),ord

n,Up(N1 ,N2),Σ − ∂i+1A(m),ord
n,Up(N1 ,N2),Σ .

We will also write A(m),ord,∧
n,Up(N1 ,N2),Σ ,i for the formal completion of A(m),ord

n,Up(N1 ,N2),Σ along
∂0i A

(m),ord
n,Up(N1 ,N2),Σ , and M∧

Σ ,i for the log structure induced on A(m),ord,∧
n,Up(N1 ,N2),Σ ,i by MΣ .

There are isomorphisms

(A(m),ord,∧
n,Up(N1 ,N2),%,i ,M∧

%,i) ∼=
∐

h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)

(T (m),ord,#,∧
n,(i),(hUph−1∩P(m),+

n,(i) (A∞,p))(N1 ,N2),%ord(h)0
,M∧

%ord(h)0
)

$∐h∈(P(m),+
n,(i) (A∞)\G(m)

n (A∞)/Up(N1 ,N2))−(P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1))

(T (m),#,∧
n,(i),hUp(N1 ,N2)h−1∩P(m),+

n,(i) (A∞),%(h)0
,M∧

%(h)0 ).

Suppose that g ∈ G(m)
n (A∞)ord and g−1Up(N1, N2)g ⊂ (Up)′(N ′

1, N
′
2) and that Σg is a

refinement of Σ ′. Suppose also that h, h′ ∈ G(m)
n (A∞)ord,× with

hg(h′)−1 ∈ P(m),+
n,(i) (A∞)ord.
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Then the diagram

T (m),ord,#,∧
n,(i),V,Σ(h)ord

hg(h′)−1
−→ T (m),ord,#,∧

n,(i),V ′ ,Σ ′(h′)ord
↓ ↓

A(m),ord,∧
n,Up(N1 ,N2),Σ ,i

g−→ A(m),ord,∧
n,(Up)′(N ′

1 ,N
′
2),Σ ′ ,i

commutes, where

V =
(
hUph−1 ∩ P(m),+

n,(i) (A∞,p)
)
(N1, N2)

and

V ′ =
(
h′(Up)′(h′)−1 ∩ P(m),+

n,(i) (A∞,p)
) (

N ′
1, N

′
2
)
.

Moreover this is compatible with the log structures defined on each of the four formal
schemes. (See theorem 7.1.4.1 of [44].)
If [σ ] ∈ S(Up(N1, N2),Σ) we will write

∂[σ ]A(m),ord
n,Up(N1 ,N2),Σ

for the closure of ∂[σ ]A(m)
n,Up(N1 ,N2),Σ inA(m),ord

n,Up(N1 ,N2),Σ . The special fibre

(
∂[σ ]A(m),ord

n,Up(N1 ,N2),Σ

)
× SpecFp

is non-empty if and only if [σ ] ∈ S(Up(N1),Σord)ord. (We remind the reader that the first
superscript ord associates the ‘ordinary’ cone decomposition Σord to the cone decompo-
sition Σ , while the second superscript ord is the notation we are using for the simplicial
complex associated to an ‘ordinary’ cone decomposition.) We will write

(
A(m),ord

n,Up(N1 ,N2),Σ

)0 = A(m),ord
n,Up(N1 ,N2),Σ −

⋃

[σ ]∈S(Up(N1 ,N2),Σ)−S(Up(N1),Σord)ord
∂[σ ]A(m),ord

n,Up(N1 ,N2),Σ .

This only depends on Σord.
If (Up)′ is a neat subgroup of Gn(A∞,p) containing the image of Up; if the pair

((Up)′(N1, N2),Δ) ∈ J tor
n ; and ifΣ andΔ are compatible, then for all h ∈ P(m),+

n,(i) (A∞)ord,×

with image h′ ∈ P+n,(i)(A
∞)ord,× the cone decompositionsΣord(h)0 andΔord(h′)0 are com-

patible and we have a diagram

T (m),ord,#,∧
n,(i),
(
hUph−1∩P(m),+

n,(i) (A∞,p)
)
(N1 ,N2),Σord(h)0

↪→ A(m),ord,∧
n,Up(N1 ,N2),Σ ,i

↓ ↓
T ord,#,∧
n,(i),
(
h′(Up)′(h′)−1∩P+n,(i)(A∞,p)

)
(N1 ,N2),Δord(h′)0

↪→ X ord,∧
n,(Up)′(N1 ,N2),Δ,i

↓ ↓
X ord,#
n,(i),
(
h′(Up)′(h′)−1∩P+n,(i)(A∞,p)

)
(N1 ,N2)

↪→ X ord,min,∧
n,(Up)′(N1 ,N2),i ,
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which is commutative as a diagram of topological spaces (but not as a diagram of locally
ringed spaces). The top square is commutative as a diagram of formal schemes and is
compatible with the log structures. (See theorem 7.1.4.1 of [44].)
The pull-back ofAuniv

Δ to T ord,+,∧
n,(i),(h′(Up)′(h′)−1∩P+n,(i)(A∞,p))(N1,N2),Δord(h′)0

is canonically quasi-

isogenous to the pull-back of G̃univ from

Aord,+,∧
n,(i),(h′(Up)′(h′)−1∩P+n,(i)(A∞,p))(N1 ,N2),Δord(h′)0

.

All this is compatible with passage to the generic fibre and our previous discussion.
(Again see theorem 7.1.4.1 of [44].)
If N ′

2 ≥ N2 ≥ N1, ifΣ ′ is a refinement ofΣ and ifΣord = (Σ ′)ord then the natural map

A(m),ord
n,Up(N1 ,N ′

2),Σ ′ −→ A(m),ord
n,Up(N1 ,N2),Σ

is etale in a neighbourhood of the Fp-fibre ofA(m),ord
n,Up(N1 ,N ′

2),Σ ′ and induces an isomorphism
between the formal completions of these schemes along their Fp-fibres. (See theorem
7.1.4.1(4) of [44].) We will denote this p-adic formal scheme

A
(m),ord
n,Up(N1),Σord

and will denote its reduced subscheme

A(m),ord
n,Up(N1),Σord .

(In the casem = 0 we could also writeXord
n,Up(N1),Σord and xordn,Up(N1),Σord .) We will also write

∂A(m),ord
n,Up(N1),Σord = A(m),ord

n,Up(N1),Σord − A(m),ord
n,Up(N1).

The family {A(m),ord
n,Up(N ),Σord } (resp. {A(m),ord

n,Up(N ),Σord }, resp. {∂A(m),ord
n,Up(N ),Σord }) is a family of formal

schemes (resp. schemes, resp. schemes) indexed byJ (m),tor,ord
n withGn(A∞)ord action. Let

∂iA
(m),ord
n,Up(N ),Σord

denote the pre-image of ∂iX
ord,min
n,Up(N ) in ∂A(m),ord

n,Up(N ),Σord , and set

∂0i A
(m),ord
n,Up(N ),Σord = ∂iA

(m),ord
n,Up(N ),Σord − ∂i+1A

(m),ord
n,Up(N ),Σord .

The families {∂iA(m),ord
n,Up(N ),Σord } and {∂0i A

(m),ord
n,Up(N ),Σord } have actions ofGn(A∞)ord. Moreover

we have a decomposition

∂0i A
(m),ord
n,Up(N ),Σord

=∐h∈P+n,(i)(A∞)ord\Gn(A∞)ord/Up(N ) ∂Σord(h)0T
(m),ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N ).

If g ∈ G(m)
n (A∞)ord, if g−1Up(N )g ⊂ (Up)′(N ′) and if Σordg is a refinement of (Σ ′)ord,

then the map

g : ∂0i A
(m),ord
n,Up(N ),Σord −→ ∂0i A

(m),ord
n,(Up)′(N ′),(Σ ′)ord



Harris et al. Res Math Sci (2016) 3:37 Page 178 of 308

is the coproduct of the maps

g ′ : ∂Σord(h)0T
(m),ord,#
n,(i),
(
hUph−1∩P+n,(i)(A∞,p)

)
(N )

−→ ∂Σord(h)0T
(m),ord,#
n,(i),
(
h′(U ′)p(h′)−1∩P+n,(i)(A∞,p)

)
(N ′)

where hg = g ′h′ with g ′ ∈ P+n,(i)(A
∞)ord.

The map

ςp : A(m),ord
n,Up(N ),Σord −→ A

(m),ord
n,Up(N ),Σord

is finite flat of degree p(2m+n)n[F+:Q] and on Fp-fibres it is identified with absolute Frobe-
nius.
If N ′

2 ≥ N2 ≥ N1, if Σ ′ is a refinement of Σ and if σ ∈ Σord = (Σ ′)ord then the natural
map

∂[σ ]A(m),ord
n,Up(N1 ,N ′

2),Σ ′ −→ ∂[σ ]A(m),ord
n,Up(N1 ,N2),Σ

is etale in a neighbourhood of theFp-fibre of ∂[σ ]A(m),ord
n,Up(N1 ,N ′

2),Σ ′ and so induces an isomor-
phism of the formal completions of these schemes along their Fp-fibres. We will denote
this p-adic formal scheme

∂[σ ]A
(m),ord
n,Up(N1),Σord

and will denote its reduced subscheme

∂[σ ]A
(m),ord
n,Up(N1),Σord .

For s > 0 we will write

∂ (s)A(m),ord
n,Up(N1),Σord =

∐

[σ ]∈S(Up(N1),Σord)ord
dim σ=s

∂[σ ]A
(m),ord
n,Up(N1),Σord

and

∂ (s)A(m),ord
n,Up(N1),Σord =

∐

[σ ]∈S(Up(N1),Σord)ord
dim σ=s

∂[σ ]A
(m),ord
n,Up(N1),Σord .

The maps

ςp : ∂ (s)A(m),ord
n,Up(N1),Σord −→ ∂ (s)A(m),ord

n,Up(N1),Σord

are finite flat of degree p(2m+n)n[F+ :Q]−s.
Then ∂A(m),ord

n,Up(N1),Σord is stratified by the ∂[σ ]A
(m),ord
n,Up(N1),Σord with [σ ] running over

S(Up(N1),Σord)ord. If σ ∈ Σord but σ is not contained in

⋃
i<n

(
G(m)
n (A∞)× π0(G(m)

n (R))× C
(m)
=i

)ord
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then ∂[σ ]A
(m),ord
n,Up(N1),Σord is irreducible. (Because ∂[σ ]A

(m),ord
n,Up(N1),Σord is a toric variety over Fp.

It is presumably also true that ∂[σ ]A
(m),ord
n,Up(N1),Σord is irreducible for any σ , but to prove it

one would need an irreducibility statement about the special fibre of a Shimura variety.
In many cases such a theorem has been proved by Hida [33], but not in the full generality
in which we are working here.)
We will write
∣∣∣S
(
∂A(m),ord

n,Up(N ),Σord

)∣∣∣=i
=
∣∣∣S
(
∂A(m),ord

n,Up(N ),Σord − ∂i+1A
(m),ord
n,Up(N ),Σord

)∣∣∣−
∣∣∣S
(
∂A(m),ord

n,Up(N ),Σord − ∂iA
(m),ord
n,Up(N ),Σord

)∣∣∣

anopen subset of |S(∂A(m),ord
n,Up(N ),Σord−∂i+1A

(m),ord
n,Up(N ),Σord )|. Then there arenatural surjections

S
(
∂A(m),ord

n,Up(N ),Σord

)
→→ S(Up(N ),Σord)ord

which restrict to surjections

S
(
∂A(m),ord

n,Up(N ),Σord − ∂i+1A
(m),ord
n,Up(N ),Σord

)
→→ S
(
Up(N ),Σord

)ord
≤i .

This gives rise to surjections

∣∣∣S
(
∂A(m),ord

n,Up(N ),Σord

)∣∣∣=i
→→
∣∣∣∣S
(
Up(N ),Σord

)ord∣∣∣∣=i
.

In the case n = i this is actually a homeomorphism

∣∣∣S
(
∂A(m),ord

n,Up(N ),Σord

)∣∣∣=n
∼=
∣∣∣∣S
(
Up(N ),Σord

)ord∣∣∣∣=n
∼= T

(m),ord
Up(N ),=n.

This is compatible with the identifications

|S(∂ A(m),ord
n,Up(N ),%ord )|=n

∼= ∐h∈P(m),+
n,(n) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N ) L
(m)
n,(n),lin(Z(p))\(

|S(∂T (m),ord,+
n,(n),hUp(N )h−1∩P(m),+

n,(n) (A∞)ord , ˜%ord(h)0
)|−

|S(∂T (m),ord,+
n,(n),hUp(N )h−1∩P(m),+

n,(n) (A∞)ord , ˜%ord(h)0−%ord(h)0
)|
)

∼= ∐h∈P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N ) L
(m)
n,(n)(Q)\L(m)

n,(n)(A)/

(hUp(N )h−1 ∩ P(m),+
n,(n) (A∞))Ln,(n),herm(R)+(L(m)

n,(n),lin(R) ∩U0
n,∞)An,(n)(R)0

∼= |S(Up(N ),%ord)ord|=n.

5.4 Vector bundles

Wewill write I∂Xmin
n,U

(resp. I∂Xn,U,Δ , resp. I∂A(m)
U,Σ

) for the ideal sheaf inOXmin
n,U

(resp.OXn,U,Δ ,

resp.OA(m)
U,Σ

) defining the boundary ∂Xmin
n,U (resp. ∂Xn,U,Δ, resp. ∂A(m)

U,Σ ). More generally we
will writeI∂Xmin

n,U ×SpecR0 (resp.I∂Xn,U,Δ×SpecR0 , resp.I∂A(m)
U,Σ×SpecR0

) for the correspondingly

defined sheaves on Xmin
n,U × SpecR0 (resp. Xn,U,Δ × SpecR0, resp. A(m)

U,Σ × SpecR0).

Lemma 5.1 Suppose that R0 is an irreducible, noetherian Q-algebra.
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(1) If i > 0 then

Riπ(U,Σ),(U ′ ,Σ ′),∗OA(m)
n,U,Σ×SpecR0

= (0)

and

Riπ(U,Σ),(U ′ ,Σ ′),∗I∂A(m)
n,U,Σ×SpecR0

= (0).

(2) If (U,Σ) ≥ (U ′,Σ ′) and U is a normal subgroup of U ′, then the natural maps

OA(m)
U ′ ,Σ ′×SpecR0

−→
(
π(U,Σ),(U ′ ,Σ ′),∗OA(m)

U,Σ×SpecR0

)U ′

and

I
∂A(m)

U ′ ,Σ ′×SpecR0
−→
(
π(U,Σ),(U ′ ,Σ ′),∗I∂A(m)

U,Σ×SpecR0

)U ′

are isomorphisms.
(3) If U ′ is the image in Gn(A∞) of U ⊂ G(m)

n (A∞) and ifΣ andΔ are compatible, then

πA(m),tor/X tor ,∗OA(m)
n,U,Σ

= OXn,U ′ ,Δ .

Proof If Σ is U ′-invariant the first two parts follow from Lemma 4.6. In the general case
we choose (U,Σ ′′) ≥ (U,Σ) withΣ ′′ beingU ′-invariant, and apply the cases of the lemma
already proved to the pairs ((U,Σ ′′), (U ′,Σ ′)) and ((U,Σ ′′), (U,Σ)).
The third part follows from Lemma 4.8. ��

Similarly we will write I
∂X ord,min

n,Up(N1 ,N2)
(resp. I∂X ord

n,Up(N1 ,N2),Δ
, resp. I

∂A(m),ord
n,Up(N1 ,N2),Σ

) for the

ideal sheaf inOX ord,min
n,Up(N1 ,N2)

(resp.OX ord
n,Up(N1 ,N2),Δ

, resp.OA(m),ord
n,Up(N1 ,N2),Σ

) defining the boundary

∂X ord,min
n,Up(N1 ,N2) (resp. ∂X

ord
n,Up(N1 ,N2),Δ, resp. ∂A

(m),ord
n,Up(N1 ,N2),Σ ). More generally we will also

write I
∂X ord,min

n,Up(N1 ,N2)
×SpecR0

(resp. I∂X ord
n,Up(N1 ,N2),Δ

×SpecR0 , resp. I∂A(m),ord
n,Up(N1 ,N2),Σ

×SpecR0
) for the

sheaf defined in the corresponding manner on the scheme X ord,min
n,Up(N1 ,N2) × SpecR0 (resp.

X ord
n,Up(N1 ,N2),Δ × SpecR0, resp. A(m),ord

n,Up(N1 ,N2),Σ × SpecR0). The next lemma follows from
Lemmas 4.6 and 4.12.

Lemma 5.2 Suppose that R0 is an irreducible, noetherian Z(p)-algebra.

(1) If i > 0 then

Riπ(Up(N1 ,N2),Σ),((Up)′(N ′
1 ,N

′
2),Σ ′),∗OA(m),ord

n,Up(N1 ,N2),Σ
×SpecR0

= (0)

and

Riπ(Up(N1 ,N2),Σ),((Up)′(N ′
1 ,N

′
2),Σ ′),∗I∂A(m),ord

n,Up(N1 ,N2),Σ
×SpecR0

= (0).
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(2) If (Up(N1, , N2),Σ) ≥ ((Up)′(N ′
1, N2),Σ ′) and Up is a normal subgroup of (Up)′, then

the natural maps

OA(m),ord
n,(Up)′(N ′

1 ,N
′
2),Σ

′×SpecR0
→
(
π(Up(N1 ,N2),Σ),((Up)′(N ′

1 ,N
′
2),Σ ′),∗OA(m),ord

n,Up(N1 ,N2),Σ
×SpecR0

)(Up)′(N ′
1)

and

I
∂A(m),ord

n,(Up)′(N ′
1 ,N

′
2),Σ

′×SpecR0
→
(
π(Up(N1 ,N2),Σ),((Up)′(N ′

1 ,N
′
2),Σ ′),∗I∂A(m),ord

n,Up(N1 ,N2),Σ
×SpecR0

)(Up)′(N ′
1)

are isomorphisms.
(3) If (Up)′ is the image in Gn(A∞,p) of Up ⊂ G(m)

n (A∞,p) and ifΣ andΔ are compatible,
then

πA(m),ord,tor/Xord,tor ,∗OA(m),ord
n,Up(N1 ,N2),Σ

= OXn,(Up)′(N1 ,N2),Δ .

Thepull-back by the identity section ofΩ1
Auniv
Δ /Xn,U,Δ

(resp.Ω1
Auniv

Δ /X ord
n,Up(N1 ,N2),Δ

) is a locally

free sheaf, which is canonically independent of the choice of Auniv (resp. Auniv). We
will denote it Ωn,U,Δ (resp. Ωord

n,Up(N1 ,N2),Δ). If g ∈ Gn(A∞) (resp. g ∈ Gn(A∞)ord,×) and
(U,Δ)g ≥ (U ′,Δ′) (resp. (Up(N1, N2),Δ)g ≥ ((Up)′(N ′

1, N
′
2),Δ′)) then there is a natural

isomorphism

g∗Ωn,U ′,Δ′ −→ Ωn,U,Δ

(resp.

g∗Ωord
n,(Up)′(N1 ,N2),Δ′ −→ Ωord

n,Up(N1 ,N2),Δ

)
.

This gives the inverse system {Ωn,U,Δ} (resp. {Ωord
n,Up(N1 ,N2),Δ}) an action of Gn(A∞) (resp.

Gn(A∞)ord,×). There is also a natural map

ςp : ς∗pΩord
n,Up(N1 ,N2−1),Δ −→ Ωord

n,Up(N1 ,N2),Δ.

There is a canonical identification

Ωn,U,Δ|Xn,U
∼= Ωn,U

(resp.

Ωord
n,Up(N1 ,N2),Δ|X ord

n,Up(N1 ,N2)
∼= Ωord

n,Up(N1 ,N2)

)
.

We will write

ωU,Δ = ∧n[F :Q]Ωn,U,Δ

(resp.

ωord
Up(N1 ,N2),Δ = ∧n[F :Q]Ωord

n,Up(N1 ,N2),Δ

)
.
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The pull-back of Ωn,U,Δ to T #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0

is canonically and equivariantly

identifiedwith the sheaf Ω̃#

n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0
. Similarly the pull-back ofΩord

n,Up(N1 ,N2),Δ

to T ord,#,∧
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2),Δord(h)0

is canonically and equivariantly identified with the

sheaf Ω̃ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2),Δord(h)0

. (See lemmas 1.3.2.41 and 5.2.4.38 of [44].)

We will write

Ξn,U,Δ = OXn,U,Δ (||ν||)

(resp.

Ξord
n,Up(N1 ,N2),Δ = OX ord

n,Up(N1 ,N2),Δ
(||ν||))

for the structure sheaf of Xn,U,Δ (resp. X ord
n,Up(N1 ,N2),Δ) with the Gn(A∞) (resp. Gn(A∞)ord)

action twisted by ||ν||. If g ∈ Gn(A∞) (resp. g ∈ Gn(A∞)ord,×) then the maps

g∗Ξn,U,Δ −→ Ξn,U ′ ,Δ′

(resp.

g∗Ξord
n,Up(N1 ,N2),Δ −→ Ξord

n,(Up)′(N ′
1 ,N

′
2),Δ′
)

are isomorphisms.
The pull-back of Ξn,U,Δ to the formal scheme T #,∧

n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0
equals the

pull-back of the sheaf Ξ
#

n,(i),hUh−1∩P+n,(i)(A∞) from X#

n,(i),hUh−1∩P+n,(i)(A∞). Similarly the

pull-back of Ξord
n,Up(N1 ,N2),Δ to T ord,#,∧

n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1,N2),Δord(h)0
is naturally isomor-

phic to the pull-back of the sheaf Ξ
ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1,N2)

from the scheme

X ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2)

to T ord,#,∧
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1,N2),Δord(h)0

.

Let Ecan
U,Δ (resp. Eord,can

Up(N1 ,N2),Δ) denote the principal Ln,(n)-bundle on Xn,U,Δ (resp. on
X ord
n,Up(N1 ,N2),Δ) in the Zariski topology defined by setting, for W ⊂ Xn,U,Δ (resp.

X ord
n,Up(N1 ,N2),Δ) a Zariski open,E

can
U,Δ(W ) (resp.Eord,can

Up(N1 ,N2),Δ(W )) to be the set of pairs (ξ0, ξ1),
where

ξ0 : Ξn,U,Δ
∣∣
W

∼−→ OW

(resp.

ξ0 : Ξord
n,Up(N1 ,N2),Δ

∣∣
W

∼−→ OW
)

and

ξ1 : Ωn,U,Δ
∼−→ HomQ(Vn/Vn,(n),OW )

(resp.

ξ1 : Ωord
n,Up(N1 ,N2),Δ

∼−→ HomZ

(
Λn/Λn,(n),OW

))
.
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We define the Ln,(n)-action on Ecan
U,Δ (resp. Eord,can

Up(N1 ,N2),Δ) by

h(ξ0, ξ1) =
(
ν(h)−1ξ0, (◦h−1) ◦ ξ1

)
.

The inverse system {Ecan
U,Δ} (resp. {Eord,can

Up(N1 ,N2),Δ}) has an action of Gn(A∞) (resp.
Gn(A∞)ord,×).
Suppose that R0 is a Q-algebra (resp. Z(p)-algebra) and that ρ is a representation of

Ln,(n) on a finite, locally free R0-module Wρ . We define a locally free sheaf Ecan
U,Δ,ρ (resp.

Eord,can
Up(N1 ,N2),Δ,ρ) over Xn,U,Δ × SpecR0 (resp. X ord

n,Up(N1 ,N2),Δ × SpecR0) by setting Ecan
U,Δ,ρ(W )

(resp. Eord,can
Up(N1 ,N2),Δ,ρ(W )) to be the set of Ln,(n)(OW )-equivariant maps of Zariski sheaves

of sets

Ecan
U,Δ|W → Wρ ⊗R0 OW

(resp.

Eord,can
Up(N1 ,N2),Δ|W → Wρ ⊗R0 OW ).

Then {Ecan
U,Δ,ρ} (resp. {Eord,can

Up(N1 ,N2),Δ,ρ}) is a system of locally free sheaves with Gn(A∞)-
action (resp. Gn(A∞)ord,×-action) over the system of schemes {Xn,U,Δ × SpecR0} (resp.
{X ord

n,Up(N1 ,N2),Δ × SpecR0}).
Note that

Ecan
U,Δ,Std∨

∼= Ωn,U,Δ

and

Ecan
U,Δ,ν−1

∼= Ξn,U,Δ

and

Ecan
U,Δ,∧n[F :Q]Std∨

∼= ωU,Δ.

Similarly

Eord,can
Up(N1 ,N2),Δ,Std∨

∼= Ωord
n,Up(N1 ,N2),Δ

and

Eord,can
Up(N1 ,N2),Δ,ν−1

∼= Ξord
n,Up(N1 ,N2),Δ

and

Eord,can
Up(N1 ,N2),Δ,∧n[F :Q]Std∨

∼= ωUp(N1 ,N2),Δ.

Also note that the pull-back of Ecan
U,Δ,ρ (resp. Eord,can

Up(N1 ,N2),Δ,ρ) to Xn,U × SpecR0 (resp.
X ord
n,Up(N1 ,N2) × SpecR0) is canonically identified with EU,ρ (resp. Eord

Up(N1 ,N2),ρ). These iden-
tifications are Gn(A∞) (resp. Gn(A∞)ord,×) equivariant.
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Moreover note that the pull-back of Ecan
U,Δ,ρ toT

#,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0

is canonically and

equivariantly identified with the sheaf E#

n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0 ,ρ|Rn,(n),(i)
. Similarly the pull-

back of Eord,can
Up(N1 ,N2),Δ,ρ to T ord,#,∧

n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2),Δord(h)0
is canonically and equivari-

antly identified with

Eord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2),Δord(h)0 ,ρ|Rn,(n),(i)

.

Set

E sub
U,Δ,ρ = I∂Xn,U,ΔEU,Δ,ρ ∼= I∂Xn,U,Δ ⊗ EU,Δ,ρ

and

Eord,sub
Up(N1 ,N2),Δ,ρ = I∂X ord

n,Up(N1 ,N2),Δ
Eord
Up(N1 ,N2),Δ,ρ

∼= I∂X ord
n,Up(N1 ,N2),Δ

⊗ Eord
Up(N1 ,N2),Δ,ρ

Then {E sub
U,Δ,ρ} (resp. {Eord,sub

Up(N1 ,N2),Δ,ρ}) is also a system of locally free sheaves with Gn(A∞)-
action (resp. Gn(A∞)ord,×-action) over the systems of schemes {Xn,U,Δ × SpecR0} (resp.
{X ord

n,Up(N1 ,N2),Δ × SpecR0}).

Lemma 5.3 (1) If g ∈ Gn(A∞) (resp. Gn(A∞)ord,×) and g : Xn,U,Δ → Xn,U ′ ,Δ′ (resp.
g : X ord

n,Up(N1 ,N2),Δ → X ord
n,(Up)′(N ′

1 ,N
′
2),Δ′ ) then

g∗Ecan
U ′ ,Δ′ ,ρ

∼−→ Ecan
U,Δ,ρ

(resp.

g∗Eord,can
(Up)′(N ′

1 ,N
′
2),Δ′ ,ρ

∼−→ Eord,can
Up(N1 ,N2),Δ,ρ

)
.

(2) If i > 0 then

Riπ(U,Δ),(U ′ ,Δ′),∗Ecan
U,Δ,ρ = (0)

and

Riπ(U,Δ),(U ′ ,Δ′),∗E sub
U,Δ,ρ = (0).

Similarly, for i > 0 we have

Riπ(Up(N1 ,N2),Δ),((Up)′(N ′
1 ,N

′
2),Δ′),∗Eord,can

Up(N1 ,N2),Δ,ρ = (0)

and

Riπ(Up(N1 ,N2),Δ),((Up)′(N ′
1 ,N

′
2),Δ′),∗Eord,sub

Up(N1 ,N2),Δ,ρ = (0).
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(3)

(
lim

→(U,Δ)
π(U,Δ),(U ′ ,Δ′),∗Ecan

U,Δ,ρ

)U ′

= EU ′ ,Δ′ ,ρ

and

(
lim

→(U,Δ)
π(U,Δ),(U ′ ,Δ′),∗E sub

U,Δ,ρ

)U ′

= E sub
U ′ ,Δ′ ,ρ

and

Eord,can
(Up)′(N ′

1 ,N2),Δ′ ,ρ

=
(
lim→(Up(N1 ,N2),Δ) π(Up(N1 ,N2),Δ),((Up)′(N ′

1 ,N2),Δ′),∗Eord,can
Up(N1 ,N2),Δ,ρ

)(Up)′(N ′
1)

and

Eord,sub
(Up)′(N ′

1 ,N2),Δ′ ,ρ

=
(
lim→(Up(N1 ,N2),Δ) π(Up(N1 ,N2),Δ),((Up)′(N ′

1 ,N2),Δ′),∗Eord,sub
Up(N1 ,N2),Δ,ρ

)(Up)′(N ′
1) .

Proof The first part follows easily from the corresponding facts for Ωn,U,Δ and Ξn,U,Δ
(resp. Ωord

n,Up(N1 ,N2),Δ and Ξord
n,Up(N1 ,N2),Δ). The second and third parts follow from the first

part and parts 1 and 2 of Lemma 5.1 (resp. Lemma 5.2). ��

We next deduce our first main observation.

Theorem 5.4 If i > 0 and U is neat then RiπX tor/Xmin ,∗E sub
U,Δ,ρ = (0).

Similarly if i > 0 and Up is neat then RiπX ord,tor/X ord,min ,∗Eord,sub
Up(N1 ,N2),Δ,ρ = (0).

Proof The argument is the same in both cases, so we explain the argument only in the
first case. Write X∧

n,U,Δ,i,h (resp. Xmin,∧
n,U,i,h) for the open and closed subset of X∧

n,U,Δ,i (resp.
Xmin,∧
n,U,i ) corresponding to T #,∧

n,(i),hUh−1∩P+n,(i)(A∞),Δ(h) (resp. X
#

n,(i),hUh−1∩P+n,(i)(A∞)). (Recall that

X∧
n,U,Δ,i is the completion of a smooth toroidal compactification of the Shimura variety

Xn,U along the locally closed subspace of the boundary corresponding to the parabolic
subgroup P+n,(i) ⊂ Gn. The formal scheme Xmin,∧

n,U,i is the completion of the minimal (Baily–
Borel) compactification of the same Shimura variety along the locally closed subspace of
the boundary corresponding to the same parabolic. Each of these formal schemes is a
disjoint union of subformal schemes indexed by certain elements h ∈ Gn(A∞).)
We have maps of locally ringed spaces

T #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)

∼−→ X∧
n,U,Δ,i,h

↓ ↓
X#

n,(i),hUh−1∩P+n,(i)(A∞) ↪→ Xmin,∧
n,U,i,h.

(Recall thatT #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h) is a formal localmodel for the boundary of the toroidal

compactification. It is the quotient by a discrete group of the formal completion of a
toroidal embedding over a principal homogeneous space for an abelian scheme over a
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disjoint union of smaller Shimura varieties. The scheme X#

n,(i),hUh−1∩P+n,(i)(A∞) is a disjoint

union of smaller Shimura varieties, and also a locally closed subscheme of the boundary
of the minimal compactification of Xn,U .)
This diagram is commutative as a diagram of topological spaces (but not of locally

ringed spaces) and the lower horizontal map is an isomorphism on the underlying topo-
logical spaces. It suffices to show that the higher direct images from the topological space
T #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h) to the topological space X#

n,(i),hUh−1∩P+n,(i)(A∞) of the pull-back of

E sub
U,Δ,ρ vanishes. The theorem follows from Corollary 4.14. ��

We set

E sub
U,ρ = πX tor/Xmin ,∗E sub

U,Δ,ρ

(resp.

Eord,sub
Up(N1 ,N2),ρ = πX ord,tor/X ord,min ,∗Eord,sub

Up(N1 ,N2),Δ,ρ

)

a coherent sheaf on Xmin
n,U × SpecR0 (resp. X ord,min

n,Up(N1 ,N2) × SpecR0). (Note that we do not
expect these sheaves to be locally free in general.) These definitions are independent of
Δ. Note that

E sub
U,ρ ⊗ ω⊗N

U
∼= E sub

U,ρ⊗(∧n[F :Q]Std∨)⊗N

and

Eord,sub
Up(N1 ,N2),ρ ⊗ (ωUp(N1 ,N2))

⊗N ∼= Eord,sub
Up(N1 ,N2),ρ⊗(∧n[F :Q]Std∨)⊗N .

We will let Eord,can
Up(N ),Δord ,ρ (resp. Eord,sub

Up(N ),Δord ,ρ , resp. E
ord,sub
Up(N ),ρ) denote the pull-back of

Eord,can
Up(N,N ′),Δ,ρ (resp. Eord,sub

Up(N,N ′),Δ,ρ , resp. E
ord,sub
Up(N,N ′),ρ) to Xord

Up(N ),Δord (resp. Xord
Up(N ),Δord , resp.

Xord,min
Up(N ) ). It is independent of the choice of N

′ and Δ.
If ρ is a representation of Ln,(n) on a finite Q-vector space, we will set

Hi (Xmin
n , E sub

ρ

) = lim−→
U ′ H

i
(
Xmin
n,U ′ , E sub

U ′ ,ρ

)

= lim−→
U ′ ,Δ

Hi
(
Xn,U ′ ,Δ, E sub

U ′ ,Δ,ρ

)
.

It is an admissible Gn(A∞)-module with

Hi
(
Xmin
n , E sub

ρ

)U ′
= Hi
(
Xmin
n,U ′ , E sub

U ′ ,ρ

)
.

Similarly, if ρ is a representation of Ln,(n) on a finite free Z(p)-module, we will set

H0 (X ord,min
n , Eord,sub

ρ ⊗ Z
/
prZ
)

= lim −→
Up,N1 ,N2

H0
(
X ord,min
n,Up(N1 ,N2), E

ord,sub
Up(N1 ,N2),ρ ⊗ Z

/
prZ
)

= lim −→
Up,N1 ,N2 ,Δ

H0
(
X ord
n,Up(N1 ,N2),Δ, E

ord,sub
Up(N1 ,N2),Δ,ρ ⊗ Z

/
prZ
)
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and

H0 (Xord,min
n , Eord,sub

ρ

)

= lim −→
Up,N

H0
(
Xord,min
n,Up(N ), E

ord,sub
Up(N ),ρ

)

= lim −→
Up,N,Δ

H0
(
Xord
n,Up(N ),Δ, E

ord,sub
Up(N ),Δ,ρ

)

They are smooth Gn(A∞)ord,×-modules with

H0
(
X ord,min
n , Eord,sub

ρ ⊗ Z/prZ
)Up(N1) = H0

(
X ord,min
n,Up(N1 ,N2), E

ord,sub
Up(N1 ,N2),ρ ⊗ Z/prZ

)

and

H0
(
Xord,min
n , Eord,sub

ρ

)Up(N ) = H0
(
Xord,min
n,Up(N ), E

ord,sub
Up(N ),ρ

)
.

(Use Lemma 5.3.) Note that there is a Gn(A∞)ord,×-equivariant embedding

H0
(
Xord,min
n , Eord,sub

ρ

)
⊗Zp Z/prZ ↪→ H0

(
X ord,min
n , Eord,sub

ρ ⊗ Z/prZ
)
.

Finally set

H0
(
Xord,min, Eord,sub

ρ

)
Qp

= H0
(
Xord,min, Eord,sub

ρ

)
⊗Zp Qp,

a smooth representation of Gn(A∞)ord,×.
We record the following result from [44].

Lemma 5.5 If ρ is a representation of Ln,(n) on a finite locally free Z(p)-module then
there is a unique system {E sub

Up(N1 ,N2),ρ} of OXmin
n,Up(N1 ,N2)

-torsion free coherent sheaves with

Gn(A∞)ord,×-action over {Xmin
n,Up(N1 ,N2)} with the following properties.

(1) {E sub
Up(N1 ,N2),ρ} pulls back to {E sub

Up(N1 ,N2),ρ⊗Z(p)Q
} on {Xmin

n,Up(N1 ,N2)};
(2) {E sub

Up(N1 ,N2),ρ} pulls back to {E
ord,sub
Up(N1 ,N2),ρ} on {X

ord,min
n,Up(N1 ,N2)};

(3) if Up is a normal subgroup of (Up)′ and if g ∈ (Up)′(N ′
1, N2) then

g : g∗E sub
Up(N1 ,N2),ρ

∼→ E sub
Up(N1 ,N2),ρ ;

(4) if Up is a normal subgroup of (Up)′ then

E sub
(Up)′(N1 ,N2),ρ

∼→
(
πUp(N ′

1 ,N2),(Up)′(N1 ,N2),∗E
sub
Up(N ′

1 ,N2),ρ

)(Up)′(N1 ,N2)
;

(5) {E sub
Up(N1 ,N2),ρ⊗∧n[F :Q]Std∨} ∼= {ωUp(N1 ,N2) ⊗ E sub

Up(N1 ,N2),ρ}.

Proof For the definition of E sub
Up(N1 ,N2),ρ see definition 8.3.5.1 of [44]. For theOXmin

n,Up(N1 ,N2)
-

torsion freeness see corollary 8.3.5.8 of [44]. For the Gn(A∞)ord,×-action see corollary
8.3.6.5 of [44]. For part one of the lemma see lemma 8.3.5.2 of [44]. For the second part
see corollary 8.3.5.4 of [44]. The third part is clear. For the fourth part see proposition
8.3.6.9 of [44], and for the final part see lemma 8.3.5.10 of [44]. ��



Harris et al. Res Math Sci (2016) 3:37 Page 188 of 308

We will write Ω i
A(m)
n,U,Σ

(log∞) (resp. Ω i
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)) as shorthand for the

sheaf Ω i
A(m)
n,U,Σ/SpecQ

(logMΣ ) (resp. Ω i
A(m)
n,U,Σ/Xn,U ′ ,Δ

(logMΣ/MΔ)). Then the collection

{Ω1
A(m)
n,U,Σ

(log∞)} (resp. {Ω1
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)}) is a system of locally free sheaves (for the

Zariski topology) with G(m)
n (A∞)-action.

There are natural differentials

d : Ω i
A(m)
n,U,Σ

(log∞) −→ Ω i+1
A(m)
n,U,Σ

(log∞),

(resp.

d : Ω i
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞) −→ Ω i+1
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)
)

making Ω•
A(m)
n,U,Σ

(log∞) (resp. Ω•
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)) a complex. The tensor product

Ω•
A(m)
n,U,Σ

(log∞)⊗ I
∂A(m)

n,U,Σ
(resp. Ω•

A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)⊗ I
∂A(m)

n,U,Σ
) is a subcomplex.

Lemma 5.6 (1) If (U,Σ) ≥ (U ′,Δ) ≥ (U ′′,Δ′) then the natural morphism

Ω1
A(m)
n,U,Σ/Xn,U ′′ ,Δ′

(log∞) ∼→ Ω1
A(m)
n,U,Σ/Xn,U ′ ,Δ

(log∞)

is an isomorphism, so we will simply write Ω1
A(m)
n,U,Σ/X

(log∞) for this sheaf.

(2) If (U ′,Σ ′) ≥ (U,Σ) then

π∗
(U ′ ,Σ ′),(U,Σ)Ω

1
A(m)
n,U,Σ

(log∞) ∼→ Ω1
A(m)
n,U ′ ,Σ ′

(log∞)

and

π∗
(U ′ ,Σ ′),(U,Σ)Ω

1
A(m)
n,U,Σ/X

(log∞) ∼→ Ω1
A(m)
n,U ′ ,Σ ′/X

(log∞).

(3) If (U,Σ) ≥ (U ′,Δ) then there is an exact sequence

(0) → π∗
(U,Σ),(U ′ ,Δ)Ω

1
Xn,U ′ ,Δ (log∞) → Ω1

A(m)
n,U,Σ

(log∞) → Ω1
A(m)
n,U,Σ/X

(log∞) → (0).

(4) Suppose that (U1,Σ1) ≥ (U2,Σ2) ≥ (U ′,Δ) and that U ′ is the image of both U1 and
U2 in Gn(A∞). Then the natural maps

RiπA(m),tor/X tor ,∗Ω
j
A(m)
n,U2 ,Σ2

/X
(log∞) −→ RiπA(m),tor/X tor ,∗Ω

j
A(m)
n,U1 ,Σ1

/X
(log∞)

and

RiπA(m),tor/X tor ,∗
(
Ω

j
A(m)
n,U2 ,Σ2

/X
(log∞)⊗ I

∂A(m)
n,U2 ,Σ2

)

−→ RiπA(m),tor/X tor ,∗
(
Ω

j
A(m)
n,U1 ,Σ1

/X
(log∞)⊗ I

∂A(m)
n,U1 ,Σ1

)
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on Xn,U ′ ,Δ are isomorphisms. We will write simply

(
Riπ∗Ω j

A(m)/X (log∞)
)
(U ′ ,Δ)

and

(
Riπ∗
(
Ω

j
A(m)/X (log∞)⊗ I∂A(m)

))
(U ′ ,Δ)

for these sheaves.
(5) {(Riπ∗Ω j

A(m)/X (log∞))(U ′,Δ)} and {(Riπ∗(Ω j
A(m)/X (log∞)⊗I∂A(m) ))(U ′ ,Δ)} are systems

of coherent sheaves with G(m)
n (A∞)-action over {Xn,U ′ ,Δ}. Moreover the maps

g : g∗
(
Riπ∗Ω j

A(m)/X (log∞)
)
(U ′ ,Δ)

−→
(
Riπ∗Ω j

A(m)/X (log∞)
)
(U ′′ ,Δ′)

are isomorphisms.
(6) The G(m)

n (A∞)-actions on both the systems

{(
Riπ∗Ω j

A(m)/X (log∞)
)
(U ′ ,Δ)

}

and

{(
Riπ∗
(
Ω

j
A(m)/X (log∞)⊗ I∂A(m)

))
(U ′ ,Δ)

}

factor through Gn(A∞).
(7) The pull-back of (π∗Ω1

A(m)/X (log∞))(U,Δ) to T #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0

is isomorphic
to

π(U ′ ,Σ0),
(
hUh−1∩P+n,(i)(A∞),Δ(h)0

)
,∗Ω

1
T (m),#,∧
n,(i),U ′ ,Σ0

/T #,∧
n,(i),hUh−1∩P+n,(i)(A∞),Δ(h)0

(log∞)

for some U ′ and Σ0.

Proof This follows from the properties of log differentials for log smooth maps (see Sect.
2.2). For part 4 we also use Lemma 5.1. For part 6 we also use the discussion of Sect. 3.4
and a density argument. ��

The next lemma follows from Lemma 4.10.

Lemma 5.7 (1) The natural maps

(
π∗Ω1

A(m)/X (log∞)
)
(U ′ ,Δ)

⊗OXn,U ′ ,Δ OA(m)
n,U,Σ

−→ Ω1
A(m)
n,U,Σ/X

(log∞)

are G(m)
n (A∞)-equivariant isomorphisms.
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(2) The natural maps

(
∧j
(
π∗Ω1

A(m)/X (log∞)
)
(U ′ ,Δ)

)
⊗(Riπ∗OA(m) )(U ′ ,Δ) −→

(
Riπ∗Ω j

A(m)/X (log∞)
)
(U ′ ,Δ)

and
(
∧j
(
π∗Ω1

A(m)/X (log∞)
)
(U ′ ,Δ)

)
⊗ (Riπ∗OA(m)

)
(U ′ ,Δ) ⊗ I∂Xn,U ′ ,Δ

−→
(
Riπ∗
(
Ω

j
A(m)/X (log∞)⊗ I∂A(m)

))
(U ′ ,Δ)

are Gn(A∞)-equivariant isomorphisms.
(3) (π∗Ω1

A(m)/X (log∞))(U,Δ) is a flat coherent OXn,U,Δ-module, and hence locally free of
finite rank.

Next we record some results from [42,44].

Lemma 5.8 (1) There are natural Gn(A∞)-equivariant isomorphisms

HomF
(
Fm,Ωn,U ′ ,Δ

) ∼−→
(
π∗Ω1

A(m)
n /Xn

(log∞)
)

(U ′ ,Δ)
.

(2) The cup product maps

∧i (R1π∗OA(m)
)
(U ′ ,Δ) −→

(
Riπ∗OA(m)

)
(U ′ ,Δ)

are Gn(A∞)-equivariant isomorphisms.
(3) There is a unique embedding

Ξn,U ′ ,Δ ↪→
(
R1π∗Ω1

A(m)/X (log∞)
)
(U ′ ,Δ)

extending

Ξn,U ′ ↪→
(
R1π∗Ω1

A(m)/X

)
U ′ .

It is Gn(A∞)-equivariant.
(4) The composite maps

Hom
((

π∗Ω1
A(m)
n /Xn

(log∞)
)

(U ′ ,Δ)
,Ξn,U ′ ,Δ

)

−→ Hom
((

π∗Ω1
A(m)
n /Xn

(log∞)
)

(U ′ ,Δ)
,

(
π∗Ω1

A(m)
n /Xn

(log∞)
)

(U ′ ,Δ)
⊗ (R1π∗OA(m)

)
(U ′ ,Δ)

)

tr−→ (R1π∗OA(m) )(U ′ ,Δ)

are Gn(A∞)-equivariant isomorphisms.
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(5) The boundary maps

Ωn,U ′ ,Δ −→ R1πA(1)/X,∗
(
π∗
A(1)/XΩ

1
Xn,U ′ ,Δ (log∞)

)

∼= Ω1
Xn,U ′ ,Δ (log∞)⊗Hom

(
Ωn,U ′ ,Δ,Ξn,U ′ ,Δ

)

associated to the short exact sequence of part 3 of Lemma 5.6, give rise to isomorphisms

S(Ωn,U ′ ,Δ)
∼−→ Ω1

Xn,U ′ ,Δ (log∞)⊗Ξn,U ′ ,Δ.

(6) There are Gn(A∞,p × Zp)-equivariant identifications between the pull-back of ωU
from Xmin

n,U to Xn,U,Δ and ωU,Δ.

Proof For the first four parts see theorem 2.15 and proposition 6.9 of [42] and theorem
1.3.3.15 of [44]. For the fifth part see theorem 1.3.1.3(4) of [44]. For the sixth part see
propositions 2.2.1.2 and 2.2.3.1 of [44]. ��

Corollary 5.9 There are equivariant isomorphisms Ecan
U,Δ,KS

∼= Ω1
Xn,U,Δ

(log∞). (See Sect.
1.2 for the definition of the representation KS.)

Lemma 5.10 Suppose that U is a neat open compact subgroup of G(m)
n (A∞) with image

U ′ in Gn(A∞). The coherent sheaf Ωr
A(m)
n,U,Σ

(log∞) admits a decreasing filtration by local

direct summands FiljΩr
A(m)
n,U,Σ

(log∞) with

• Fil0Ωr
A(m)
n,U,Σ

(log∞) = Ωr
A(m)
n,U,Σ

(log∞),

• Filr+1Ωr
A(m)
n,U,Σ

(log∞) = (0),

• and grjΩr
A(m)
n,U,Σ

(log∞) ∼= (π∗
A(m),tor/X torΩ

j
Xn,U ′ ,Δ (log∞))⊗Ω

r−j
A(m)
n,U,Σ/X

(log∞).

This filtration is Gn(A∞)-equivariant.
Moreover there are representations ρi,j

m,r of Ln,(n) such that there are Gn(A∞)-equivariant
isomorphisms

RiπA(m),tor/Xmin ,∗grjΩr
A(m)
n,U,Σ

(log∞)⊗ I
∂A(m)

n,U,Σ
∼= E sub

U ′ ,ρi,j
m,r
.

Thus there is a spectral sequence with first page

Ei,j
1 = E sub

U ′ ,ρi,j
m,r

⇒ Ri+jπA(m),tor/Xmin ,∗
(
Ωr

A(m)
n,U,Σ

(log∞)⊗ I
∂A(m)

n,U,Σ

)
.

This spectral sequence is Gn(A∞)-equivariant.

Proof Using part 2 of Corollary 5.6 and parts 1 and 2 of Lemma 5.1, we may reduce to
the case that there is a cone decompositionΔ compatible withΣ . The first assertion now
follows from part 3 of Lemma 5.6.
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For the second assertion, note that by Lemma 5.7 we have that
(
∧jΩ1

Xn,U ′ ,Δ (log∞)
)
⊗
(
∧r−j
(
π∗Ω1

A(m)/X (log∞)
)
(U ′ ,Δ)

)

⊗
(
RiπA(m),tor/X tor ,∗OA(m)

)
(U ′ ,Δ)

⊗ I∂Xn,U ′ ,Δ
∼−→ RiπA(m),tor/X tor ,∗

(
π∗
A(m),tor/X torΩ

j
Xn,U ′ ,Δ (log∞)⊗Ω

r−j
A(m)
n,U,Σ/X

(log∞)

⊗I
∂A(m)

n,U,Σ

)
.

Combining this with parts 1, 2, 4 and 5 of Lemma 5.8 we find representations ρi,j
m,r such

that there are Gn(A∞)-equivariant isomorphisms

RiπA(m),tor/X tor ,∗grjΩr
A(m)
n,U,Σ

(log∞)⊗ I
∂A(m)

n,U,Σ
∼= E sub

U ′ ,Δ,ρi,j
m,r
.

The second assertion now follows from Theorem 5.4.
The third assertion follows from the first two. ��

5.5 Connection to the complex theory

Lemma 5.11 Suppose that

b = (b0, (bτ ,i)τ∈Hom(F,C)
) ∈ X∗(Tn/C)+(n)

satisfies

−2n ≥ bτ ,1 + bτc,1

for all τ ∈ Hom(F,C). Then H0(Xmin, E sub
ρ(n),b

) is a semi-simple Gn(A∞)-module. If π is an
irreducible subquotient of H0(Xmin, E sub

ρ(n),b
), then π is the finite part of a cohomological,

cuspidal automorphic representation of Gn(A).

Proof According to proposition 5.4.2 and lemma 5.2.3 of [28] and theorems 4.1.1, 5.1.1
and 5.2.12 of [43] we have an isomorphism

H0
(
Xmin
n , E sub

ρ(n),b

) ∼=
⊕
Π

Π∞ ⊗H0 (qn, U0
n,∞An(R)0,Π∞ ⊗ ρ(n),b

)

whereΠ runs over cuspidal automorphic representations of Gn(A) taken with their mul-
tiplicity in the space of cuspidal automorphic forms.
Thus π ∼= Π∞ for some cuspidal automorphic representation Π of Gn(A) with

H0 (qn, U0
n,∞An(R)0,Π∞ ⊗ ρ(n),b

) �= (0).

It follows from theorem 2.6 of [21] that theHarish-Chandra parameter of the infinitesimal
character of Π∞ equals

�n − 2�n,(n) − b.

As we have assumed that

b− 2
(
�n − �n,(n)

) ∈ X∗(Tn/C)+,
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we see thatΠ∞ has the same infinitesimal character as ρ∨b−2(�n−�n,(n))
. Moreover proposi-

tion 4.5 of [28] tells us that

HomU0
n,∞An(R)0

(
ρ∨(n),b,Π∞

)
�= (0).

We deduce that

HomU0
n,∞An(R)0

(
ρ(n),−2(�n−�n,(n)),Π∞ ⊗ ρb−2(�n−�n,(n))

)
�= (0).

However ρ(n),−2(�n−�n,(n)) is the representation of U0
n,∞An(R)0 on ∧[F+:Q]n2p+. Thus

HomU0
n,∞An(R)0

(
∧[F+:Q]n2p⊗R C,Π∞ ⊗ ρb−2(�n−�n,(n))

)
�= (0).

Proposition II.3.1 of [15] then tells us that

H [F+:Q]n2
(
(LieGn(R))⊗R C, U0

n,∞An(R)0,Π∞ ⊗ ρb−2(�n−�n,(n))
)
�= (0),

and the lemma follows. ��

Corollary 5.12 Suppose that

b = (b0, (bτ ,i)τ∈Hom(F,Qp)) ∈ X∗(Tn/Qp)+(n)

satisfies

−2n ≥ bτ ,1 + bτc,1

for all τ ∈ Hom(F,Qp). IfΠ is an irreducible subquotient of H0(Xmin
n , E sub

ρ(n),b
), then there is

a continuous representation

Rp(Π ) : GF −→ GL2n(Qp)

which is de Rham above p and has the following property: Suppose that v is a prime of F
above a rational prime q �= p such that

• either q splits in F0,
• or F and Π are unramified above q;

then

WD(Rp(Π )|GFv )
F-ss ∼= recFv

(
BC(Πq)v| det |(1−2n)/2

v

)
,

where q is the rational prime below v.

Proof By the lemma ıΠ is the finite part of a cohomological, square integrable, automor-
phic representation of Gn(A). The result now follows from Corollary 1.3. ��

6 The ordinary locus
We will now fairly systematically drop the subscript n, as it will be fixed throughout this
section.



Harris et al. Res Math Sci (2016) 3:37 Page 194 of 308

6.1 P-adic automorphic forms

Let U be a neat open compact subgroup of Gn(A∞,p × Zp). Zariski locally on Xmin
U we

may lift HasseU to a (non-canonical) section H̃asseU of ω⊗(p−1) over (an open subset of)
Xmin
U . Although H̃asseU is non-canonical,

H̃assep
M−1

U mod pM

is canonical, and so these glue to give a canonical element

HasseM,U ∈ H0
(
Xmin
U × SpecZ/pMZ,ω⊗(p−1)pM−1

U

)
.

Again if g ∈ Gn(A∞,p × Zp) and U ′ ⊃ g−1Ug then

gHasseM,U ′ = HasseM,U .

We will denote by ωUp(N ) the line bundle on Xord,min
Up(N ) induced by ωUp(N,N ′) on Xmin

Up(N,N ′),
and by HasseM,Up(N ) the restriction of HasseM,Up(N,N ′) to

H0
(
Xord,min
Up(N ) × SpecZ/pMZ, (ωord

Up(N ))
⊗(p−1)pM−1

)

This is independent of N ′.
If ρ is a representation of Ln,(n) on a finite free Zp-module then, for any integer i, there

is a natural map

H0
(
Xmin
Up(N1 ,N2), E

sub
ρ⊗(∧n[F :Q]Std∨)ipM−1(p−1)

) ∼= H0
(
Xmin
Up(N1 ,N2), E

sub
ρ ⊗ ω

⊗i(p−1)pM−1

U

)

−→ H0
(
X ord,min
Up(N1 ,N2), E

ord,sub
ρ ⊗ Z/pMZ

)
,

which sends f to
(
f |X ord,min

Up(N1 ,N2)

)/
HasseiM,Up(N1 ,N2).

These maps are Gn(A∞)ord,×-equivariant.

Lemma 6.1 For any r the induced map

⊕∞
j=r H0
(
Xmin
Up(N1 ,N2), E

sub
Up(N1 ,N2),ρ⊗(∧n[F :Q]Std∨)jpM−1(p−1)

)

−→ H0
(
X ord,min
Up(N1 ,N2), E

ord,sub
Up(N1 ,N2),ρ ⊗ Z/pMZ

)

is surjective.

Proof The proof here follows standard lines. As far as we know the argument originated
in [35]. For the properties of Xmin

U see Sect. 5.1.
To simplify the formulae in this proof, for the duration of the proof we will write U for

Up(N1, N2).
Multiplying by a power of HasseM,U we may replace ρ by

ρ ⊗
(
∧n[F :Q]Std∨

)tpM−1(p−1)
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and r by r− t for any t. Thus, using the ampleness of ωU overXmin
U , we may suppose that

Hi
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U

)
= (0)

for all i > 0 and j ≥ 0. We may also suppose that r ≤ 0. Then we may replace r by 0.
Because X ord,min

U × SpecZ/pMZ is a union of connected components of

Y = Xmin
U × SpecZ/pMZ − Xmin,n-ord

U

it suffices to replace X ord,min
U × SpecZ/pMZ by Y .

Now we need to show that

∞⊕
j=0

H0
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j(p−1)pM−1

U

)
→→ H0

(
Y , Eord,sub

U,ρ ⊗ Z/pMZ
)
,

under the assumption that

Hi
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U

)
= (0)

for all i > 0 and j ≥ 0.
The scheme Y is relatively affine over Xmin

U corresponding to the sheaf of algebras
⎛
⎝

∞⊕
j=0

ω
⊗jpM−1(p−1)
U

⎞
⎠
/

(HasseM,U − 1, pM).

Hence

H0
(
Y , E sub

U,ρ

) ∼= H0

⎛
⎝Xmin

U ,

⎛
⎝

∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U

⎞
⎠
/(

HasseM,U − 1, pM
)
⎞
⎠

and the map

∞⊕
j=0

H0
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j(p−1)pM−1

U

)
−→ H0

(
Y , Eord,sub

U,ρ ⊗ Z/pMZ
)

is induced by the map

∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗j(p−1)pM−1

U →→
⎛
⎝

∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U

⎞
⎠
/

(HasseM,U − 1, pM)

of sheaves over Xmin
U .

Because

Hi
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U

)
= (0)

for all i > 0 and j ≥ 0, we see that

H0
(
Xmin
U , E sub

Up,ρ ⊗ ω
⊗j
U

)
⊗ Z/pMZ

∼−→ H0
(
Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ⊗ Z/pMZ

)
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for all j ≥ 0, and

Hi(Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ⊗ Z/pMZ) = (0)

for all i > 0 and j ≥ 0. Thus it suffices to check that

H0
(
Xmin
U ,
⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

)/
(HasseM,U − 1)

↓
H0
(
Xmin
U ,
(⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

)/
(HasseM,U − 1)

)

is surjective. This follows using the long exact sequence in cohomology associated to the
short exact sequence

(0) −→⊕∞
j=0 E sub

U,ρ ⊗ ω
⊗pM−1(p−1)j
U ⊗ Z/pMZ

HasseM,U−1−→ ⊕∞
j=0 E sub

U,ρ ⊗ ω
⊗pM−1(p−1)j
U ⊗ Z/pMZ

−→
(⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

)
/(HasseM,U − 1) −→ (0)

and the vanishing

H1

⎛
⎝Xmin

U ,
∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

⎞
⎠ = (0).

��

Let S denote a finite set of rational primes containing p and all rational primes q which
are both non-split in F0 and ramified in F . Also choose a neat open compact subgroup

Up = Gn(ẐS)×Up
S ⊂ Gn(A∞,p).

Suppose that v is a place of F above a rational prime q /∈ S and let i ∈ Z. There is a
unique element t(i)v in the Bernstein centre of Gn(Qq) such that

• t
(i)
v acts as 0 on any irreducible smooth representation of Gn(Qq) over C which is not
a subquotient of an unramified principal series;

• on an unramified representation Πq of Gn(Qq) the eigenvalue of t(i)v on Πq equals
tr recFv (BC(Πq)v| det |(1−2n)/2

v )(Frobiv).

(See [4].) Multiplying t
(i)
v by the characteristic function of Gn(Zq) we obtain a unique

elementT (i)
v ∈ C[Gn(Zq)\Gn(Qq)/Gn(Zq)] such that ifΠq is an unramified representation

of Gn(Qq) and if T (i)
v has eigenvalue t(i)v (Πq) on Π

Gn(Zq)
q then

tr recFv
(
BC(Πq)v| det |(1−2n)/2

v

) (
Frobiv
)
= t(i)v (Πq).

(See [29].) If σ ∈ Aut(C) we see that σT (i)
v = T (i)

v . (Use the fact that

σ recFv
(
BC(Πq)v| det |(1−2n)/2

v

) ∼= recFv
(
BC(σΠq)v| det |(1−2n)/2

v

)
.
)
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Thus

T (i)
v ∈ Q[Gn(Zq)\Gn(Qq)/Gn(Zq)].

Choose d(i)v ∈ Q× such that

d(i)v T (i)
v ∈ Z[Gn(Zq)\Gn(Qq)/Gn(Zq)].

Suppose that q /∈ S is a rational prime. Let u1, . . . , ur denote the primes of F+ above Q

which split ui = wi cwi in F , and let v1, . . . , vs denote the primes of F+ above q which do
not split in F . Then under the identification

Gn(Qq) ∼=
r∏

i=1
GL2n(Fwi )×H

of Sect. 1.3, the Hecke operator T (1)
wi is identified with the double coset

Gn(Zq)aiGn(Zq),

where ai ∈ GLn(Fwi ) is the diagonal matrix diag(1, . . . , 1,�wi ), and we may take d(1)wi = 1.
We will call a topological Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)]-algebra T of Galois type if there

is a continuous pseudo-representation (see [55])

T : GS
F −→ T

such that

d(i)v T (Frobiv) = θ
(
d(i)v T (i)

v

)

for all v|q /∈ S and all i ∈ Z.
Let TS

Up(N1 ,N2),ρ denote the image of Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] in the endomorphism
algebra End(H0(Xmin

Up(N1 ,N2), E
sub
ρ )), which is also the image in the endomorphism algebra

End(H0(Xmin
Up(N1 ,N2), E

sub
ρ )).

Lemma 6.2 For t sufficiently large TS
Up(N1 ,N2),ρ⊗(∧n[F :Q]Std∨)⊗t is of Galois type.

Proof Write

ρt = ρ ⊗ (∧n[F :Q]Std∨)⊗t .

It suffices to show that there is a continuous pseudo-representation

T : GS
F −→ TS

Up(N1 ,N2),ρt ⊗ Qp

which is unramified outside S and satisfies

T (Frobiv) = T (i)
v
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for all v|q /∈ S and all i ∈ Z. (Because T will then automatically be valued in TS
Up(N1 ,N2),ρt ,

by the Cebotarev density theorem. Note that if v is a prime of F split over F+ and lying
above a rational prime q /∈ S, then

T (Frobv) = T (1)
v ∈ TS

Up(N1 ,N2),ρt .
)

Wemay then reduce to the case that ρ ⊗ Qp is irreducible. Let

(b0, (bτ ,i)) ∈ X∗(Tn/Qp)+(n)

denote the highest weight of ρ ⊗ Qp.
Suppose that t satisfies the inequality

−2n ≥ (bτ ,1 − t)+ (bτc,1 − t).

By Lemma 5.11,

TS
Up(N1 ,N2),ρt ⊗ Qp ∼=

⊕

ΠS

Qp

where the sum runs over irreducible admissible representations of Gn(AS,∞) for which
there exists an irreducible admissible representationΠS of

∏
v∈S Gn(Qv) such thatΠS⊗ΠS

occurs inH0(Xmin×SpecQp, E sub
ρt ) and (ΠS⊗ΠS)U

p(N1 ,N2) �= (0). Further, fromCorollary
5.12, we deduce that there is a continuous representation

r : GS
F −→ GL2n

(
TS
Up(N1 ,N2),ρt ⊗ Qp

)

such that if v|q /∈ S then r is unramified at v and

tr r
(
Frobiv
)
= T (i)

v

for all i ∈ Z. Taking T = tr r completes the proof of the lemma. ��

If

W ⊂ H0
(
Xord,min
Up(N ) , E

ord,sub
ρ

)

(resp.

W ⊂ H0
(
X ord,min
Up(N1 ,N2), E

ord,sub
ρ ⊗ Z/pMZ

))

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp
[
Gn(ẐS)
∖
Gn(AS)

/
Gn(ẐS)
]
,

then we will let T
ord,S
Up(N ),ρ(W ) (resp. T

ord,S
Up(N1 ,N2),ρ(W )) denote the image of the abstract

Hecke algebraZp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] in EndZp (W ). The next corollary follows from
Lemmas 6.1 and 6.2.
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Corollary 6.3 If

W ⊂ H0
(
X ord,min
Up(N1 ,N2), E

ord,sub
ρ ⊗ Z/pMZ

)

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp
[
Gn(ẐS)
∖
Gn(AS)

/
Gn(ẐS)
]
,

then T
ord,S
Up(N1 ,N2),ρ(W ) is of Galois type.

We deduce from this the next corollary.

Corollary 6.4 If

W ⊂ H0
(
Xord,min
Up(N ) , E

ord,sub
ρ

)

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp
[
Gn(ẐS)\Gn(AS)/Gn(ẐS)

]
,

then T
ord,S
Up(N ),ρ(W ) is of Galois type.

Finally we deduce the following proposition.

Proposition 6.5 Suppose that ρ is a representation of Ln,(n) over Z(p). Suppose also
that Π is an irreducible quotient of an admissible Gn(A∞)ord,×-submodule Π ′ of
H0(Xord,min, Eord,sub

ρ )Qp
. Then there is a continuous semi-simple representation

Rp(Π ) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q �= p (in the sense of
Sect. 1.3) and if v|q is a prime of F , then

WD
(
Rp(Π )|GFv

)F-ss ∼= recFv
(
BC(Πq)v| det |(1−2n)/2

v

)
.

Proof Let S denote the set of rational primes consisting of p and the primes where F or
Π ramifies. Also choose a neat open compact subgroup

Up = Gn(ẐS)×Up
S

and integer N such that

ΠUp(N ) �= (0).

As (Π ′)Up(N ) is a finite dimensional, and hence closed, subspace of the topological vector
space H0(Xord,min, Eord,sub

ρ )Qp
preserved by Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] and, as there is a

Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)]-equivariant map (Π ′)Up(N ) →→ ΠUp(N ), there is a continu-
ous homomorphism

θ : T
ord,S
Up(N ),ρ((Π

′)Up(N )) −→ Qp
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which for v|q /∈ S sends T (i)
v to its eigenvalue on ΠGn(Zq). Proposition 6.5 now follows

from the above corollary and the main theorem on pseudo-representations (see [55]). ��

We remark that we don’t know how to prove this proposition for a general irreducible
subquotient of H0(Xord,min, Eord,sub

ρ )Qp
(or indeed whether the corresponding statement

remains true).

6.2 Interlude concerning linear algebra

Suppose that K is an algebraic extension of Qp. For a ∈ Q, we say that a polynomial
P(X) ∈ K (X) has slopes ≤ a if P(X) �= 0 and every root of P(X) in K has p-adic valuation
≤ a. (We normalize the p-adic valuation so that p has valuation 1.) If V is a K -vector
space and T is an endomorphism of V , then we say that V admits slope decompositions
for T , if for each a ∈ Q there is a decomposition

V = V≤a ⊕ V>a

with the following properties:

• T preserves V≤a and V>a;
• V≤a is finite dimensional;
• if P(X) ∈ K [X] has slopes≤ a then the endomorphism P(T ) restricts to an automor-

phism of V>a;
• there is a nonzero polynomial P(X) ∈ K [X] with slopes ≤ a such that the endomor-

phism P(T ) restricts to 0 on V≤a.

In this case V≤a and V>a are unique, and we refer to them as the slope a decomposition of
V with respect to T .

Lemma 6.6 (1) If V is finite dimensional then it always admits slope decompositions.
(2) If K is a finite extension of Qp, if V is a K-Banach space and if T is a completely

continuous (see [50]) endomorphism of V then V admits slope decompositions for T .
(3) Suppose that L/K is an algebraic extension and that V is a K vector space which

admits slope decompositions with respect to an endomorphism T. Then V ⊗K L also
admits slope decompositions with respect to T .

(4) Suppose that V1 admits slope decompositions with respect to T1; that V2 admits a
slope decomposition with respect to T2; and that d : V1 → V2 is a linear map such
that

d ◦ T1 = T2 ◦ d.

Then for all a ∈ Q we have

dV1,≤a ⊂ V2,≤a

and

dV1,>a ⊂ V2,>a.
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Moreover ker d admits slope decompositions for T1, while Im d and coker d admit
slope decompositions for T2. More specifically

(ker d)≤a = (ker d) ∩ V1,≤a

and

(ker d)>a = (ker d) ∩ V1,>a

and

(Im d)≤a = V1,≤a/(ker d)≤a

and

(Im d)>a = V1,>a/(ker d)>a

and

(coker d)≤a = V2,≤a/(Im d)≤a

and

(coker d)>a = V2,>a/(Im d)>a.

(5) Suppose that

V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ V∞

are vector spaces with

V∞ =
∞⋃
i=1

Vi.

Suppose also that T is an endomorphism of V∞ such that for all i > 1

TVi ⊂ Vi−1.

If for each i the space Vi admits slope decompositions for i, then V∞ admits slope
decompositions for T .

(6) Suppose that

(0) −→ V1 −→ V −→ V2 −→ (0)

is an exact sequence of K-vector spaces and that T is an endomorphism of V that
preserves V1. If V1 and V2 both admit slope decompositions with respect to T , then so
does V . Moreover we have short exact sequences

(0) −→ V1,≤a −→ V≤a −→ V2,≤a −→ (0)

and

(0) −→ V1,>a −→ V>a −→ V2,>a −→ (0)
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Proof The first and third and fourth parts are straightforward. The second part follows
from [50].
For the fifth part one checks that Vi,≤a is independent of i. If we set

V∞,≤a = Vi,≤a

for any i, and

V∞,>a =
∞⋃
i=1

Vi,>a,

then these provide the slope a decomposition of V∞ with respect to T .
Finally we turn to the sixth part. Choose nonzero polynomials Pi(X) ∈ K [X] with

slopes ≤ a such that Pi(T )Vi,≤a = (0), for i = 1, 2. Set P(X) = P1(X)P2(X). Also set
V≤a = ker P(T ) and V>a = Im P(T ). We have complexes

(0) −→ V1,>a −→ V>a −→ V2,>a −→ (0)

and

(0) −→ V1,≤a −→ V≤a −→ V2,≤a −→ (0).

It suffices to show that these complexes are both short exact sequences. For then we
see that, if Q(X) ∈ K [X] has slopes ≤ a, then the restriction of Q(T ) to V>a is an
automorphism of V>a. Applying this to P(T ), we see that V≤a ∩ V>a = (0). Moreover
V≤a + V>a contains V1 and maps onto V2, so that V = V≤a + V>a.
To show the first complex is short exact we need only check that V1,>a = V>a ∩V1, i.e.

thatV1,≤a∩V>a = (0). So suppose that v ∈ V1,≤a∩V>a. Then v = P(T )v′ and P1(T )v = 0.
Thus P1(T )2P2(T )v′ = 0 so the image of v′ in V2 lies in V2,≤a and so P2(T )v′ ∈ V1, and in
fact P2(T )v′ ∈ V1,≤a. Finally we see that v = P1(T )P2(T )v′ = 0, as desired.
To show the second complex is short exact we have only to show that V≤a → V2,≤a is

surjective. So suppose that v ∈ V2,≤a and suppose that v ∈ V lifts v. Then P(T )v ∈ V1,>a.
Set

v′ = v −
(
P(T )|−1

V1,>a

)
P(T )v ∈ v + V1,>a

Then v′ maps to v ∈ V2, while

P(T )v′ = P(T )v − P(T )v = 0,

so that v′ ∈ V≤a. ��

We warn the reader that to the best of our knowledge it is not in general true that, if V
admits a slope decomposition for T and V1 ⊂ V is T -invariant, then either V1 or V /V1
admits slope decompositions for T .
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6.3 The ordinary locus of a toroidal compactification as a dagger space

6.3.1 Review of dagger spaces

We first review some general facts about dagger spaces. We refer to [27] for the basic
facts.
Suppose that K/Qp is a finite extension with ring of integers OK and residue field k .

Suppose also that Y/OK is quasi-projective. Let Y denote the generic fibre Y × SpecK ,
let Y denote the special fibre Y × Spec k , and let Y∧ denote the formal completion of Y
along Y . Let Y an (resp. Y †) denote the rigid analytic (resp. dagger) space associated to
Y . (For the latter see section 3.3 of [27].) Thus Y an and Y † share the same underlying
G-topological space, and in fact the completion (Y †)′ (see theorem 2.19 of [27]) of Y †

equals Y an. Let Y∧
η denote the rigid analytic space associated to Y∧, its ‘generic fibre’.

Then Y∧
η is identified with an admissible open subset ]Y [⊂ Y an. We will denote by Y†

the admissible open dagger subspace of Y † with the same underlying topological space as
]Y [.
To a coherent sheafF/Y one can associate a coherent sheaf F†/Y † and henceF†/Y†.

The functor F �→ F† from coherent sheaves on Y to coherent sheaves on Y† is exact.

Lemma 6.7 IfY andY ′ are two quasi-projectiveOK -schemes as described in the previous
paragraphand if f : Y → Y ′ is amorphism, then there is an inducedmap f † : Y† → (Y ′)†.
If further f : Y ∼→ Y ′ and f is etale in a neighbourhood of Y then f † is an isomorphism.

Proof The first part of the lemma is clear.
For the second part, letY ↪→ PM

OK
andY ′ ↪→ PM′

OK
be closed embeddings. LetP ′ denote

the closure ofY ′ in PM′
OK

. Also letP denote the closure ofY in PM
OK

×PM′
OK

. Then f extends
to amapP → P ′. The second part of the lemma follows from theorem 1.3.5 of [6] applied
to Y ⊂ P and Y ′ ⊂ P ′. ��
Wewill letHi

rig(Y ) denote the rigid cohomology of Y in the sense of Berthelot—see, for
instance, [46].

Lemma 6.8 (1) IfY/OK is a smooth and quasi-projective scheme, then there is a canon-
ical isomorphism

Hi
rig(Y ) ∼= Hi

(
Y†,Ω•

Y†
)
.

(2) If f : Y → Z is a morphism of smooth quasi-projective schemes over OK then the
following diagram is commutative:

Hi
rig(Z)

f ∗−→ Hi
rig(Y )

||% ||%
Hi
(
Z†,Ω•

Z†
) f ∗−→ Hi

(
Y†,Ω•

Y†
)
.

Proof For the first part apply theorem 5.1 of [27] to the closure of Y in some projective
space overOK . For the second part choose embeddings i : Y ↪→ PM

OK
and i′ : Z ↪→ PM′

OK
.

Let P ′ denote the closure of Z in PM′
OK

and P the closure of Y in PM
OK

× P ′, so that f
extends to a map P → P ′. The desired result again follows from theorem 5.1 of [27],
because the isomorphisms of theorem 5.1 of [27] are functorial under morphisms of the
setup in that theorem. ��
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[It is unclear to us whether this functoriality is supposed to be implied by the word
‘canonical’ in the statement of theorem5.1 of [27]. For safety’s sakewe sketch the argument
for this functoriality. More precisely if f : X1 → X2 is a morphism of proper admissible
formal Spf R-schemes which takes Y1 ⊂ X1,s to Y2 ⊂ X2,s, then we will show that the
isomorphisms of theorem5.1 of [27] are compatiblewith themaps in cohomology induced
by f . For part (a) we also suppose that we are given a map f ∗ : f ∗F2 → F1.
Using the notation of part (a) of theorem 5.1 of [27], it suffices to show that the diagram

Hq(X2,F2,X2 )
f ∗−→ Hq(X1,F1,X1 )

↓ ↓
Hq
(
]Y 2[X2 , j

†
2F ′

2

) f ∗−→ Hq
(
]Y 1[X2 , j

†
2F ′

2

)

commutes. (The functoriality of parts (b) and (c) follow easily from the functoriality of
part (a).) The vertical morphisms arise from maps L•k → K •

k of resolutions of the sheaves
Ri∗Fk,Xk and j†kF ′

k , respectively. To define these resolutions one needs to choose affine
covers {Yk,i} of Yk . We may suppose these are chosen so that f carries Y1,i to Y2,i for all i.
Then L•k and K •

k are the Cech complexes with

Lqk =
⊕
#J=q

iJ∗Fk,]Yk,J [Xk

and

Kq
k =
⊕
#J=q

j†k,JF
′
k .

The maps L•k → K •
k arise from maps

(iJ∗Fk,]Yk,J [Xk
)(U ) ∼= lim→V

F ′
k (V ) −→ lim

→V ′ F
′
k (V

′ ∩U ) = (j†k,JF
′
k )(U ).

Here V runs over strict neighbourhoods of U∩]Yk,J [Xk in ]Y k [Xk and V ′ runs over strict
neighbourhoods of ]Yk,J [Xk in ]Y k [Xk . The first isomorphism is justified in section 2.23 of
[27]. The second morphism arises because, for every V , we can find a V ′ so that

V ′ ∩U ⊂ V.

It suffices to show that if fU1 ⊂ U2, then the diagrams

(
iJ∗F2,]Y2,J [X2

)
(U )2

f ∗−→ (iJ∗F1,]Y1,J [X1
)(U1)

↓ ↓(
j†2,JF ′

2

)
(U2)

f ∗−→
(
j†1,JF ′

1

)
(U1)

are commutative. But this is now clear.]

Lemma 6.9 Suppose that f : X → Y is a proper morphism between Qp-schemes of finite
type and that F/X is a coherent sheaf. Denote by f † : X† → Y † the corresponding map
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of dagger spaces and by F† the coherent sheaf on X† corresponding to F/X. Suppose also
that V is an admissible open subset of Y † and that U is its pre-image in X†. Then

Ri(f †|U )∗(F†|U ) ∼= (Rif∗F )†|V ,

where (Rif∗F )† denotes the coherent sheaf on Y † corresponding to (Rif∗F )/Y .

Proof It suffices to check this in the case V = Y †. There is a chain of isomorphisms

[(
Rif∗F
)†]an →

(
Rif∗F
)an → Rif an∗ Fan →

(
Rif †∗ F†

)an
.

The first arrow is the transitivity of dagger and rigid analytification. The second arrow is
theorem 6.5 of [38]. The third arrow is theorem 3.5 of [27]. Since Y † is partially proper,
theorem2.26 of [27] implies that there is a unique isomorphism (Rif∗F )† ∼= Rif †∗ F† which
recovers the above map after passage to rigid spaces. ��

6.3.2 The ordinary locus as a dagger space

Now we return to our Shimura and Kuga–Sato varieties.
If Up is a neat open compact subgroup of G(m)

n (A∞,p), if N2 ≥ N1 ≥ 0 and if
(Up(N1, N2),Σ) ∈ J (m),tor, we will write

A(m),ord,†
Up(N1 ,N2),Σ

(resp.

∂A(m),ord,†
Up(N1 ,N2),Σ ,

resp.

∂[σ ]A(m),ord,†
Up(N1 ,N2),Σ

for [σ ] ∈ S(Up(N1, N2),Σ)) for the dagger space associated to A(m),ord
Up(N1 ,N2),Σ (resp.

∂A(m),ord
Up(N1 ,N2),Σ , resp. ∂[σ ]A(m),ord

Up(N1 ,N2),Σ ) as described in the paragraph before Lemma 6.7.
For s > 0 also write

∂ (s)A(m),ord,†
Up(N1 ,N2),Σ =

∐
[σ ]∈S(Up(N1 ,N2),Σ)

dim [σ ]=s−1

∂[σ ]A(m),ord,†
Up(N1 ,N2),Σ

and i(s) for the finite map

∂ (s)A(m),ord,†
Up(N1 ,N2),Σ −→ ∂A(m),ord,†

Up(N1 ,N2),Σ ↪→ A(m),ord,†
Up(N1 ,N2),Σ .

We set

∂ (0)A(m),ord,†
Up(N1 ,N2),Σ = A(m),ord,†

Up(N1 ,N2),Σ
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and

i(0) = 1
A(m),ord,†

Up(N1 ,N2),Σ
.

Then the various systems of dagger spaces {A(m),ord,†
Up(N1 ,N2),Σ } and {∂A(m),ord,†

Up(N1 ,N2),Σ } and

{∂ (s)A(m),ord,†
Up(N1 ,N2),Σ } have compatible actions of G(m)

n (A∞)ord.
If N ′

2 ≥ N2 and if Σ ′ is a refinement of Σ with Σord = (Σ ′)ord then the natural map

A(m),ord
Up(N1 ,N ′

2),Σ ′ −→ A(m),ord
Up(N1 ,N2),Σ

restricts to an isomorphism

A(m),ord
Up(N1 ,N ′

2),Σ ′
∼−→ A(m),ord

Up(N1 ,N2),Σ

and is etale in a neighbourhood of A(m),ord
Up(N1 ,N ′

2),Σ ′ . It follows from Lemma 6.7 that

A(m),ord,†
Up(N1 ,N ′

2),Σ ′ −→ A(m),ord,†
Up(N1 ,N2),Σ

is an isomorphism. We will denote this dagger space simply

A(m),ord,†
Up(N1),Σord .

Similarly ∂A(m),ord,†
Up(N1 ,N2),Σ and ∂[σ ]A(m),ord,†

Up(N1 ,N2),Σ and ∂ (s)A(m),ord,†
Up(N1 ,N2),Σ depend only on the

group Up(N1) and Σord and we will denote them ∂A(m),ord,†
Up(N1),Σord and ∂[σ ]A(m),ord,†

Up(N1),Σord and

∂ (s)A(m),ord,†
Up(N1),Σord , respectively. If [σ ] /∈ S(Up(N1),Σord)ord then

∂[σ ]A(m),ord,†
Up(N1),Σord = ∅.

Thus for s > 0

∂ (s)A(m),ord,†
Up(N ),Σord =

∐

[σ ]∈S(Up(N ),Σord)ord
dim [σ ]=s−1

∂[σ ]A(m),ord,†
Up(N ),Σord

The three projective systems of dagger spaces {A(m),ord,†
Up(N ),Σord } and {∂A(m),ord,†

Up(N ),Σord } and

{∂ (s)A(m),ord,†
Up(N ),Σord } have actions of G(m)

n (A∞)ord.

We will write Xord,†
(Up)′(N ),Δ for A(0),ord,†

(Up)′(N ),Δ. If (U
p)′ contains the projection of Up and if

Δord and Σord are compatible, then there are maps

A(m),ord,†
Up(N ),Σord −→ X ord,†

(Up)′(N ),Δord .

These maps are G(m)
n (A∞)ord-equivariant (as Up, (Up)′ and N vary).

We will write Ω
j

A(m),ord,†
Up(N ),Σ

(log∞) (resp. Ω j

A(m),ord,†
Up(N ),Σ

(log∞) ⊗ I
∂A(m),ord,†

Up(N ),Σ
) for the locally

free sheaf on A(m),ord,†
Up(N ),Σ induced by Ω

j
A(m),ord

Up(N,N ′),Σ ′
(log∞) (resp. Ω

j
A(m),ord

Up(N,N ′),Σ ′
(log∞) ⊗
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I
∂A(m),ord

Up(N,N ′),Σ ′
) for any N ′ ≥ N and Σ ′ ∈ J (m),tor

n with (Σ ′)ord = Σ . This is canoni-

cally independent of the choices ofN ′ andΣ ′. The systems of sheaves {Ω j

A(m),ord,†
Up(N ),Σ

(log∞)}

and {Ω j

A(m),ord,†
Up(N ),Σ

(log∞) ⊗ I
∂A(m),ord,†

Up(N ),Σ
} over {A(m),ord,†

Up(N ),Σ } have actions of G(m)
n (A∞)ord. For

g ∈ G(m)
n (A∞)ord the map

g : g∗Ω j

A(m),ord,†
(Up)′(N ′),Σ ′

(log∞) −→ Ω
j

A(m),ord,†
Up(N ),Σ

(log∞)

is an isomorphism.
We will also write Ω

j

∂ (s)A(m),ord,†
Up(N ),Σ

for the sheaf of j-forms on ∂ (s)A(m),ord,†
Up(N ),Σ . The system

{Ω j

∂ (s)A(m),ord,†
Up(N ),Σ

} over {∂ (s)A(m),ord,†
Up(N ),Σ } has an action of G(m)

n (A∞)ord.

Furthermore if ρ is a representation of Ln,(n) on a finite dimensional Qp-vector
space, there is a locally free sheaf Ecan,†

Up(N ),Δ,ρ (resp. E sub,†
Up(N ),Δ,ρ) on X ord,†

Up(N ),Δ induced by
Ecan
Up(N,N ′),Δ′ ,ρ (resp. E sub

Up(N,N ′),Δ′ ,ρ) for anyN
′ ≥ N andΔ′ ∈ J tor

n with (Δ′)ord = Δ. This is
canonically independent of the choices of N ′ andΔ′. The systems of sheaves {Ecan,†

Up(N ),Δ,ρ}
and {E sub,†

Up(N ),Δ,ρ} over {X ord,†
Up(N ),Δ} have actions of Gn(A∞)ord. There are equivariant iden-

tifications

E sub,†
Up(N ),Δ,ρ

∼= Ecan,†
Up(N ),Δ,ρ ⊗ I

∂X ord,†
Up(N ),Δ

,

where I
∂X ord,†

Up(N ),Δ
denotes the sheaf of ideals in O

X ord,†
Up(N ),Δ

defining ∂X ord,†
Up(N ),Δ. For g ∈

Gn(A∞)ord the map

g : g∗Ecan,†
(Up)′(N ′),Δ′ ,ρ −→ Ecan,†

Up(N ),Δ,ρ

is an isomorphism. (Because the same is true overXUp(N,N ′),Δ′ andhence overX†Up(N,N ′),Δ′ .)
We define Hi(A(m),ord,†,Ω j(log∞)⊗ I) to be

lim−→
Up,N,Σ

Hi
(
A(m),ord,†

Up(N ),Σ ,Ω j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)

and Hi(∂ (s)A(m),ord,†,Ω j) to be

lim−→
Up,N,Σ

Hi
(
∂ (s)A(m),ord,†

Up(N ),Σ ,Ω j

∂ (s)A(m),ord,†
Up(N ),Σ

)

and H0(X ord,†, E sub
ρ ) to be

lim−→
Up,N,Δ

H0
(
X ord,†
Up(N ),Δ, E

sub,†
Up(N ),Δ,ρ

)
.

They are all smooth Gn(A∞)ord-modules.
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Lemma 6.10 There are natural isomorphisms

Hi

(
A(m),ord,†

Up(N ),Σ ,Ω j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)

∼−→ Hi
(
A(m),ord,†,Ω j(log∞)⊗ I

)Up(N )

and

H0
(
X ord,†
Up(N ),Δ, E

sub,†
Up(N ),Δ,ρ

) ∼−→ H0
(
X ord,†, E sub

ρ

)Up(N )
.

Proof Use Lemmas 5.1, 5.6, 5.7, 5.3 and 6.9. ��

6.3.3 The Frobenius lift ςp and trF
The inverse of ς∗p gives maps

ςp,∗Ω j

A(m),ord,†
Up(N ),Σ

(log∞) ∼−→ Ω
j

A(m),ord,†
Up(N ),Σ

(log∞)⊗O
A(m),ord,†

Up(N ),Σ
,ς∗p O

A(m),ord,†
Up(N ),Σ

and

ςp,∗

(
Ω

j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)

∼−→ Ω
j

A(m),ord,†
Up(N ),Σ

(log∞)⊗O
A(m),ord,†

Up(N ),Σ
,ς∗p I

∂A(m),ord,†
Up(N ),Σ

.

The maps

• ςp : A(m),ord,†
Up(N ),Σord → A(m),ord,†

Up(N ),Σord ,

• and ςp : ∂ (s)A(m),ord,†
Up(N ),Σord → ∂ (s)A(m),ord,†

Up(N ),Σord

are finite, flat of degrees p(2m+n)n[F+ :Q] and p(2m+n)n[F+:Q]−s, respectively. (Use the finite
flatness of

ςp : A(m),ord
Up(N ),Σord → A

(m),ord
Up(N ),Σord

and

ςp : ∂ (s)A(m),ord
Up(N ),Σord → ∂ (s)A(m),ord

Up(N ),Σord

(see Sect. 5.3), together with theorems 1.7(1) and 1.12 of [27].)
As ςp : A(m),ord,†

Up(N ),Σord → A(m),ord,†
Up(N ),Σord is finite and flat we get a trace map

trςp : ςp,∗OA(m),ord,†
Up(N ),Σ

−→ O
A(m),ord,†

Up(N ),Σ
.

Because ∂A(m),ord,†
Up(N ),Σ has the same support as

A(m),ord,†
Up(N ),Σ ×

ςp,A(m),ord,†
Up(N ),Σ

∂A(m),ord,†
Up(N ),Σ ,
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this trace map restricts to a map

trςp : ςp,∗I
∂A(m),ord,†

Up(N ),Σ
−→ I

∂A(m),ord,†
Up(N ),Σ

.

(This is a consequence of the following fact: If R is a noetherian ring, if S is an R-algebra,
finite and free as an R-module, and if I and J are ideals of R and S, respectively, with
√
J = √

IS,

then the trace map trS/R maps J to I . To see this we may reduce to the case I = 0. In this
case every element of J is nilpotent and so has trace 0.)
Composing (ς∗p )−1 with trςp we get G

(m)
n (A∞)ord,×-equivariant maps

trF : ςp,∗Ω j

A(m),ord,†
Up(N ),Σ

(log∞) −→ Ω
j

A(m),ord,†
Up(N ),Σ

(log∞).

and

trF : ςp,∗

(
Ω

j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)
−→ Ω

j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ
.

We have

trF ◦ ς∗p = p(n+2m)n[F+:Q].

This induces endomorphisms

trF ∈ End
(
Hi
(
A(m),ord,†

Up(N ),Σ ,Ω j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

))

which commute with the action of Gn(A∞)ord,× and satisfy

trF ◦ ςp = p(n+2m)n[F+:Q].

We obtain an element

trF ∈ End
(
Hi
(
A(m),ord,†,Ω j(log∞)⊗ I

))

which commutes with the Gn(A∞)ord,×-action and satisfies

trF ◦ ςp = p(n+2m)n[F+:Q].

Similarly the inverse of ς∗p gives maps

ςp,∗Ecan,†
Up(N ),Δ,ρ

∼−→ Ecan,†
Up(N ),Δ,ρ ⊗O

Xord,†
Up(N ),Δ

,ς∗p O
X ord,†
Up(N ),Δ

and

ςp,∗E sub,†
Up(N ),Δ,ρ

∼−→ Ecan,†
Up(N ),Δ,ρ ⊗O

Xord,†
Up(N ),Δ

,ς∗p I
∂X ord,†

Up(N ),Δ
.
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Composing (ς∗p )−1 with trςp we get G
(m)
n (A∞)ord,×-equivariant maps

trF : ςp,∗Ecan,†
Up(N ),Δ,ρ −→ Ecan,†

Up(N ),Δ,ρ .

and

trF : ςp,∗E sub,†
Up(N ),Δ,ρ −→ E sub,†

Up(N ),Δ,ρ .

We have

trF ◦ ς∗p = pn
2[F+:Q].

This induces compatible endomorphisms

trF ∈ End
(
H0
(
X ord,†
Up(N ),Δ, E

can,†
Up(N ),Δ,ρ

))

and

trF ∈ End
(
H0
(
X ord,†
Up(N ),Δ, E

sub,†
Up(N ),Δ,ρ

))

which commute with the action of Gn(A∞)ord,× and satisfy

trF ◦ ςp = pn
2[F+:Q].

We obtain an element

trF ∈ End
(
H0
(
X ord,†, E sub

ρ

))

which commutes with the Gn(A∞)ord,×-action and satisfies

trF ◦ ςp = pn
2[F+:Q].

We remark that trF is closely related to the operator often denoted Up: probably they
differ simply by a scalar multiple.

6.4 The ordinary locus of the minimal compactification as a dagger space

6.4.1 The ordinary locus as a dagger space

Suppose that Up is a neat open compact subgroup of Gn(A∞,p) and that N2 ≥ N1 ≥ 0.
We will write

X ord,min,†
Up(N1 ,N2)

for the dagger space associated toX ord,min
Up(N1 ,N2) as described in the paragraph before Lemma

6.7. Then the system of dagger spaces {X ord,min,†
Up(N1 ,N2)} has an action of Gn(A∞)ord.

IfUp denotes the image inGn(A∞,p) of (Up)′ ⊂ G(m)
n (A∞,p) then there is a natural map

A(m),ord,†
Up(N1 ,N2),Σ −→ X ord,min,†

(Up)′(N1 ,N2).
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These maps are G(m)
n (A∞)ord-equivariant (as (Up)′, N1 and N2 vary).

Recall from Sect. 5.1 that, if N ′
2 ≥ N2, then the natural map

X ord,min
Up(N1 ,N ′

2)
−→ X ord,min

Up(N1 ,N2)

restricts to an isomorphism

Xord,min
Up(N1 ,N ′

2)
∼−→ Xord,min

Up(N1 ,N2)

and is etale in a neighbourhood of Xord,min
Up(N1 ,N ′

2)
. It follows from Lemma 6.7 that

X ord,min,†
Up(N1 ,N ′

2)
−→ X ord,min,†

Up(N1 ,N2)

is an isomorphism. We will denote this dagger space simply

X ord,min,†
Up(N1) .

The system of dagger spaces {X ord,min,†
Up(N ) } has an action of Gn(A∞)ord.

Let eUp(N1 ,N2) denote the idempotent in

( ∞⊕
i=0

H0
(
Xmin
Up(N1 ,N2),ω

⊗(p−1)i
))/(

HasseUp(N1 ,N2) − 1
)

which is 1 on Xord,min
Up(N1 ,N2) and 0 on

Xmin
Up(N1 ,N2) − Xmin,n-ord

Up(N1 ,N2) − Xmin,ord
Up(N1 ,N2).

(The existence of eUp(N1 ,N2) follows from the results recalled in Sect. 5.1.) Multiplying the
terms of eUp(N1 ,N2) by suitable powers of HasseUp(N1 ,N2), we may suppose that eUp(N1 ,N2)
lies in H0(Xmin

Up(N1 ,N2),ω
⊗(p−1)a) for any sufficiently large a, and that

eUp(N1 ,N2)/HasseUp(N1 ,N2) ∈ H0
(
Xmin
Up(N1 ,N2),ω

⊗(p−1)(a−1)
)
.

Then

Xord
Up(N1 ,N2) = Spec

( ∞⊕
i=0

H0
(
Xmin
Up(N1 ,N2),ω

⊗(p−1)ai
))/(

eUp(N1 ,N2) − 1
)
.

For a sufficiently large we have H1(Xmin
Up(N1 ,N2),ω

⊗(p−1)a) = (0). In that case we can lift
eUp(N1 ,N2) to a non-canonical element

eUp(N1 ,N2) ∈ H0
(
Xmin
Up(N1 ,N2),ω

⊗(p−1)a
)
.

Let Xmin
Up(N1 ,N2)[1/eUp(N1 ,N2)] denote the locus in Xmin

Up(N1 ,N2) where eUp(N1 ,N2) �= 0. As
ω⊗(p−1)a is ample, Xmin

Up(N1 ,N2)[1/eUp(N1 ,N2)] is affine and so has the form

SpecZ(p)[T1, . . . , Ts]/I
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for some s and I . It is normal and flat over Z(p).
For r ∈ pQ≥0 let || ||r denote the norm on Z(p)[T1, . . . , Ts] defined by

∥∥∥∥∥∥
∑
&i

a&iT
&i
∥∥∥∥∥∥
r

= sup
&i
|a&i|pr|

&i|,

where &i runs over Zs≥0 and |(i1, . . . , is)| = i1 + · · · + is. We will write Zp〈T1, . . . , Ts〉r for
the completion of Z(p)[T1, . . . , Ts] with respect to || ||r . Thus Zp〈T1, . . . , Ts〉1 is the p-
adic completion of Z(p)[T1, . . . , Ts] and also the p-adic completion of Zp〈T1, . . . , Ts〉r for
any r ≥ 1. Set Qp〈T1, . . . , Ts〉r = Zp〈T1, . . . , Ts〉r[1/p], the completion of Q[T1, . . . , Ts]
with respect to || ||r . In the case r = 1 we will drop it from the notation. We will write
Zp〈T1/r, . . . , Ts/r〉1 for the || ||r unit-ball inQp〈T1, . . . , Ts〉r , i.e. for the set of power series
∑
&i∈Zs≥0

a&i &T
&i

where a&i ∈ Qp, and |a&i|p ≤ r−|&i| for all &i, and |a&i|pr|&i| → 0 as |&i| → ∞. We will also write

Qp〈T1, . . . , Ts〉† =
⋃
r>1

Qp〈T1, . . . , Ts〉r .

Let 〈I〉r denote the ideal of Zp〈T1, . . . , Ts〉r generated by I and let 〈I〉′r denote the inter-
section of 〈I〉1 with Zp〈T1, . . . , Ts〉r . Then 〈I〉1 is the p-adic completion of I . Moreover

Zp〈T1, . . . , Ts〉1/〈I〉1

is normal and flat over Zp, and

Xord,min
Up(N1) = Spf Zp〈T1, . . . , Ts〉1/〈I〉1.

Note that

Z(p)[T1, . . . , Ts]/(I, p)
∼−→ Zp〈T1, . . . , Ts〉r/(〈I〉r , p)

for all r ≥ 1. Thus (〈I〉r , p) = (〈I〉′r , p).
We will also write 〈I〉r,Qp (resp. 〈I〉′r,Qp

) for the Qp span of 〈I〉r (resp. 〈I〉′r) in
Qp〈T1, . . . , Ts〉r . Then

SpQp〈T1, . . . , Ts〉1/〈I〉1,Qp ⊂ SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp ⊂ SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp

are all affinoid subdomains of Xmin,an
Up(N1 ,N2), the rigid analytic space associated to the scheme

Xmin
Up(N1 ,N2) × SpecQp. Thus they are normal. Also SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp

and

SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp − SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp

form an admissible open cover of SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp . (SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp
is the union of the connected components of SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp which contain
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a component of SpQp〈T1, . . . , Ts〉1/〈I〉1,Qp . See proposition 8 of section 9.1.4 of [8].)
Moreover SpQp〈T1, . . . , Ts〉1/〈I〉1,Qp is Zariski dense in SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp . Indeed

Xan
Up(N1 ,N2) ∩ SpQp〈T1, . . . , Ts〉1/〈I〉1

is Zariski dense in SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp , where Xan
Up(N1 ,N2), the rigid analytic space

associated to XUp(N1 ,N2) × SpecQp.
If 1 ≤ r′ < r then

SpQp〈T1, . . . , Ts〉r′/〈I〉′r′ ,Qp
⊂ SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp

and

SpQp〈T1, . . . , Ts〉r′/〈I〉r′ ,Qp ⊂ SpQp〈T1, . . . , Ts〉r/〈I〉r,Qp ,

and these are strict neighbourhoods. The natural maps

ir,r′ : Qp〈T1, . . . , Ts〉r/〈I〉r,Qp −→ Qp〈T1, . . . , Ts〉r′/〈I〉r′ ,Qp

and

i′r,r′ : Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp ↪→ Qp〈T1, . . . , Ts〉r′/〈I〉′r′ ,Qp

are completely continuous. The latter is an inclusion. Moreover

(i′r,1)−1Zp〈T1, . . . , Ts〉r/〈I〉1 = Zp〈T1, . . . , Ts〉r/〈I〉′r .

Also write 〈I〉† for the ideal of Qp〈T1, . . . , Ts〉† generated by I . Thus

〈I〉† =
⋃
r>1

〈I〉r,Qp =
⋃
r>1

〈I〉′r,Qp .

Moreover

Qp〈T1, . . . , Ts〉†/〈I〉† = lim→
r>1

Qp〈T1, . . . , Ts〉r/〈I〉r,Qp = lim→
r>1

Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp ,

and

X ord,min,†
Up(N1) = SpQp〈T1, . . . , Ts〉†/〈I〉†.

(See, for instance, proposition 3.3.7 of [46]. For themeaning of Sp in the context of dagger
algebras see section 2.11 of [27].) Thus we have the following lemma.

Lemma 6.11 X ord,min,†
Up(N ) is affinoid.
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Suppose that ρ0 is a representation of Ln,(n) on a finite free Zp-module and let ρ denote
ρ0 base changed to Qp. There are Gn(A∞)ord equivariant isomorphisms

H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

) ∼−→ H0
(
X ord,†
Up(N ),Δ, E

sub,†
Up(N ),Δ,ρ

)
.

There are also natural Gn(A∞)ord,×-equivariant embeddings

H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

)
↪→ H0
(
Xord,min
Up(N ) , E

ord,sub
Up(N ),ρ0

)
⊗Zp Qp.

We will set

H0
(
X ord,min,†, E sub

ρ

)
Qp

=
(

lim→Up,N
H0(X ord,min,†

Up(N ) , E sub,†
Up(N ),ρ)

)
⊗Qp Qp,

a smooth Gn(A∞)ord-module. From Lemma 6.10 and the first observation of the last
paragraph, we see that

H0
(
X ord,min,†, E sub

ρ

)Up(N )

Qp
= H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

)
Qp

.

There is a Gn(A∞)ord,×-equivariant embedding

H0
(
X ord,min,†, E sub

ρ

)
Qp

↪→ H0
(
Xord,min, Eord,sub

ρ0

)
Qp

.

The coherent sheaf E sub
Up(N1 ,N2),ρ gives rise to a coherent sheaf E sub,an

Up(N1 ,N2),ρ on the rigid
space Xmin,an

Up(N1 ,N2). The inverse system {E sub,an
Up(N1 ,N2),ρ} is a system of coherent sheaves with

Gn(A∞)ord-action on {Xmin,an
Up(N1 ,N2)}.

6.4.2 The Frobenius lift ςp and trF
We have a map

ς∗p : Zp〈T1, . . . , Ts〉1/〈I〉1 −→ Zp〈T1, . . . , Ts〉1/〈I〉1

such that

• ς∗p (Tj) ≡ (Tj)p mod p,
• and there exists an r1 ∈ pQ>0 such that for all j = 1, . . . , s the element ς∗p (Tj) is in the

image of Qp〈T1, . . . , Ts〉r1/〈I〉r1 .
Thus (ς∗p (Tj) − Tp

j )/p ∈ Zp〈T1, . . . , Ts〉r/〈I〉′r1 , and so is the image of some element
Gj( &T ) ∈ Zp〈T1, . . . , Ts〉r1 . We have

ς∗p (Tj) ≡ (Tj)p + pGj(T1, . . . , Ts) mod 〈I〉1.

This formula then defines a map ς∗p : Zp[T1, . . . , Ts] → Zp〈T1, . . . , Ts〉r1 such that

Zp[T1, . . . , Ts]
ς∗p−→ Zp〈T1, . . . , Ts〉r1

↓ ↓
Zp〈T1, . . . , Ts〉1/〈I〉1

ς∗p−→ Zp〈T1, . . . , Ts〉1/〈I〉1
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commutes. Write Gj( &T ) =∑&i gj,&i &T&i. Choose I0 ∈ Z>0 such that

p−1||Gj||r1 < (
√
r1)I0

for all j = 1, . . . , s and then choose r2 ∈ (1,√r1) ∩ pQ with

rI02 < p.

If r ∈ [1, r2] ∩ pQ we have

||ς∗p (Tj)− (Tj)p||r < 1.

(Because if |&i| ≥ I0 then ||pgj,&i &T&i||r ≤ (1/p)||Gj||r1 (r/r1)I0 < 1, while for |&i| ≤ I0 we have

||pgj,&i &T&i||r ≤ (1/p)rI0 < 1.) If r ∈ (1, r2] ∩ pQ and H ∈ Zp[T1, . . . , Ts] we deduce that

||ς∗pH −H ( &Tp)||r ≤ r−p||H ||rp .

(We only need check this on monomials. Hence we only need check that if it is true for
H1 and H2 then it is also true for H1H2. For this one uses the formula

ς∗p (H1H2)− (H1H2)( &Tp) =
(
ς∗pH1 −H1( &Tp)

) (
ς∗pH2 −H2( &Tp)

)

+
(
ς∗pH1 −H1( &Tp)

)
H2( &Tp)+

(
ς∗pH2 −H2( &Tp)

)
H1( &Tp).)

Hence, if r ∈ (1, r2] ∩ pQ and H ∈ Zp[T1, . . . , Ts] we deduce that

||ς∗pH ||r = ||H ||rp ,

and so ς∗p extends to an isometric homomorphism

ς∗p : Zp
〈
T1/rp, . . . , Ts/rp

〉
1 −→ Zp〈T1/r, . . . , Ts/r〉1.

Modulo p this map reduces to the Frobenius, which is finite and so

ς∗p : Zp
〈
T1/rp, . . . , Ts/rp

〉
1 −→ Zp〈T1/r, . . . , Ts/r〉1

is finite. (See section 6.3.2 of [8].) Thuswe get an isometric, finite homomorphismbetween
normal rings

ς∗p : Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp −→ Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp ,

such that the diagram

Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

ς∗p−→ Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp

↓ ↓
Qp〈T1, . . . , Ts〉†/〈I〉†

ς∗p−→ Qp〈T1, . . . , Ts〉†/〈I〉†
↓ ↓

Qp〈T1, . . . , Ts〉1/〈I〉1,Qp

ς∗p−→ Qp〈T1, . . . , Ts〉1/〈I〉1,Qp

commutes.
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The map

ςp : SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp −→ SpQp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

is compatible with the map

ςp : Xmin,an
Up(N1 ,N2) −→ Xmin,an

Up(N1 ,N2−1).

This latter map is finite, and away from the boundary is flat of degree pn2[F+:Q]. Thus the
pre-image of SpQp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

has the form SpB where B is a normal, finite
Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

algebra, and we have a factorization

ς∗p : Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp −→ B −→ Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp .

For m a maximal ideal of Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp
corresponding to a point of the inter-

section Xan
Up(N1 ,N2) ∩ SpQp〈T1, . . . , Ts〉1/〈I〉1 we see that

B/m = (Qp〈T1, . . . , Ts〉1/〈I〉1)/ς∗pm = (Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp )/ς
∗
pm.

Thus for a Zariski dense set of maximal ideals m ∈ SpQp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp
the map

B −→ Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp

becomes an isomorphism modulo m. Hence for any minimal prime ℘ of the ring
Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

we have

B℘/℘ = (Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp )℘/℘.

(Choose bases over A℘/℘. Then this map being an isomorphism is equivalent to some
matrix having full rank. For m in a dense Zariski open set these bases reduce to bases
modulom. So modulo a Zariski dense set ofm this matrix has full rank, so it has full rank.)
As B is normal and Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp

is finite over B, we see that

B = Qp〈T1, . . . , Ts〉r/〈I〉′r,Qp ,

i.e.

ς−1
p SpQp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp = SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp .

The sheaf E sub
Up(N1 ,N2),ρ induces a coherent sheaf E sub,†

Up(N1),ρ on X ord,min,†
Up(N1) , which does not

depend on N2. It equals the push-forward from any X ord,†
Up(N1),Δ of the sheaf E sub,†

Up(N1),ρ .
The inverse system {E sub,†

Up(N ),ρ} is a system of coherent sheaves with Gn(A∞)ord-action on
{X ord,min,†

Up(N1) }. The map

trF : ςp,∗E sub,†
Up(N ),Δ,ρ −→ E sub,†

Up(N ),Δ,ρ
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over X ord,†
Up(N1),Δ induces a map

trF : ςp,∗E sub,†
Up(N ),ρ −→ E sub,†

Up(N ),ρ

over X ord,min,†
Up(N1) . This map does not depend on the choice of Δ and is Gn(A∞)ord,×-

equivariant. It satisfies

trF ◦ ςp = pn
2[F+:Q].

It induces a map

trF ∈ End
(
H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

))

also satisfying

trF ◦ ςp = pn
2[F+:Q].

We again remark that trF is closely related to the operator often denotedUp—probably
they differ simply by a scalar multiple.
The isomorphisms

H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

) ∼−→ H0
(
X ord,†
Up(N ),Δ, E

sub,†
Up(N ),Δ,ρ

)

are trF -equivariant.Moreover the spaceH0(X ord,min,†, E sub
ρ )Qp

inherits an endomorphism

trF , which commutes with Gn(A∞)ord,× and satisfies trF ◦ ςp = pn2[F+:Q].
The sheaf E sub,an

Up(N1 ,N2),ρ restricted to the space SpQp〈T1, . . . , Ts〉r/〈I〉′r,Qp
corresponds to

a finitely generated module Er over the ring Qp〈T1, . . . , Ts〉r/〈I〉′p,Qp
, which is naturally a

Banach module. If r′ < r then

Er′ = Er ⊗Qp〈T1 ,...,Ts〉r/〈I〉′r,Qp ,i
′
r,r′

(
Qp〈T1, . . . , Ts〉r′/〈I〉′r′ ,Qp

)
.

Then the map Er → Er′ , which we will also denote i′r,r′ , is completely continuous. The
map trF extends to a continuous Qp〈T1, . . . , Ts〉rp/〈I〉′rp,Qp

linear map

tr : Er −→ Erp

for r ∈ [1, r2] ∩ pQ. We set

E† =
⋃
r>1

Er,

so that

E† = H0
(
X ord,min,†
Up(N1) , E sub,†

Up(N1),ρ

)
.

We have that trF |Er = tr . As tr is continuous and i′rp,r is completely continuous we see
that

trF : Er −→ Er
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and that this map is completely continuous. Thus each Er admits slope decompositions
for trF and hence by Lemma 6.6 so does E† and E† ⊗ Qp.
If a ∈ Q we thus have a well-defined, finite dimensional subspace

H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

)
Qp,≤a

⊂ H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

)
⊗Qp Qp.

(Defined with respect to trF .) We set

H0
(
X ord,min,†, E sub

ρ

)
Qp,≤a

= lim→Up,N
H0
(
X ord,min,†
Up(N ) , E sub,†

Up(N ),ρ

)
Qp,≤a

,

so that there are Gn(A∞)ord,×-equivariant embeddings

H0
(
X ord,min,†, E sub

ρ

)
Qp,≤a

⊂ H0
(
X ord,min,†, E sub

ρ

)
Qp

↪→ H0
(
Xord,min, Eord,sub

ρ0

)
Qp

.

We have proved the following lemma. (The referee suggests, in politer terms, that we
have made a mountain out of a mole hill in proving this lemma and Lemma 6.11. The
referee is probably correct. We are not very practiced at these sorts of arguments. Neither
lemma will come as any surprise to experts.)

Lemma 6.12 H0(X ord,min,†, E sub
ρ )Qp,≤a is an admissible Gn(A∞)ord,×-module.

Combining this with Corollary 6.5 we obtain the following result.

Corollary 6.13 Suppose that ρ is a representation of Ln,(n) over Q, that a ∈ Q and thatΠ
is an irreducible Gn(A∞)ord,×-subquotient of

H0
(
X ord,min,†, E sub

ρ

)
Qp,≤a

.

Then there is a continuous semi-simple representation

Rp(Π ) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q �= p (in the sense of
Sect. 1.3) and if v|q is a prime of F , then

WD
(
Rp(Π )|GFv

)F-ss ∼= recFv
(
BC(Πq)v| det |(1−2n)/2

v

)
.

We will next explain the consequences of these results for sheaves of differentials on
A(m),ord,†
Up(N1 ,N2),Σ . But we first need to record a piece of commutative algebra.

Lemma 6.14 Suppose that A → B → C are reduced noetherian rings, with B a finite flat
A module of rank rB and C a finite flat A-module of rank rC . Suppose also that the total
ring of fractions of C is finite flat over the total ring of fractions of B. Then rB|rC and

(rC/rB)trB/A = trC/A : B −→ A.

Proof It suffices to check this after passing to total rings of fractions (i.e. localizations at
the set of nonzero divisors). In this case B is free over A and C is free over B, so the lemma
is clear. ��
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Proposition 6.15 There are representations ρi,j
m,s of Ln,(n) over Q with the following prop-

erty. If (Up(N ),Σ) ∈ J (m),tor,ord
n and if (Up)′ denotes the image of Up in Gn(A∞,p), then

there is a spectral sequence with first page

Ei,j
1 = H0

(
X ord,min,†
(Up)′(N ) , E sub,†

(Up)′(N ),ρi,j
m,s

)

⇒ Hi+j

(
A(m),ord,†

Up(N ),Σ ,Ωs
A(m),ord,†

Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)
.

These spectral sequences are equivariant for the action of Gn(A∞)ord. The map trF on the
Hi+j(A(m),ord,†

Up(N ),Σ ,Ωs
A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ
) is compatible with the map pnm[F :Q]trF on

the H0(X ord,min,†
(Up)′(N ) , E sub,†

(Up)′(N ),ρi,j
m,s
).

Proof Let π denote the map A(m),ord,†
Up(N ),Σ → X ord,min,†

(Up)′(N ) . Lemmas 5.10 and 6.9 tell us that
there is a spectral sequence of coherent sheaves on X ord,min,†

Up(N ) with first page

Ei,j
1 = E sub,†

(Up)′(N ),ρi,j
m,s

⇒ Ri+jπ∗

(
Ωs

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)
.

The first assertion follows from Lemma 6.11 of this paper and from proposition 3.1 of [27]
(which tell us that

Hk
(
X ord,min,†, E sub,†

ρ
i,j
m,s

)
= (0)

for k > 0).
For the last assertion we may replace Σ by a refinement and so reduce to the case that

there is a Δ with ((Up)′,Δ) ∈ J tor,ord
n and ((Up)′(N ),Δ) ≤ (Up(N ),Σ). (Use Lemma

5.6.) To avoid confusion we will write ςp,A or ςp,X depending on whether ςp is acting on
A(m),ord,†

Up(N ),Σord or X ord,†
(Up)′(N ),Δord . We will also factorize ςp,A as

A(m),ord,†
Up(N ),Σord

Φ−→ ς∗p,XA(m),ord,†
Up(N ),Σord

Ψ−→ A(m),ord,†
Up(N ),Σord .

Write π ′ for the map

π ′ : A(m),ord,†
Up(N ),Σord → X ord,†

(Up)′(N ),Δord

and π ′′ for the map

π ′′ : ς∗p,XA(m),ord,†
Up(N ),Σord → X ord,†

(Up)′(N ),Δord .

The sheaf Ecan,†
ρ
i,j
m,s

on X ord,†
(Up)′(N ),Δord is Riπ ′∗Fj , where

Fj = Ω
j

X ord,†
(Up)′(N ),Δord

(log∞)⊗Ω
s−j

A(m),ord,†
Up(N ),Σord /X

ord,†
(Up)′(N ),Δord

(log∞).
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To prove the last sentence of the lemma it suffices to show that the diagrams

ςp,A,∗

(
Fj ⊗ (π ′)∗I

∂X ord,†
(Up)′(N ),Δord

)
←− Fj ⊗O

Xord,†
(Up)′(N ),Δord

,ς∗p,X I
∂X ord,†

(Up)′(N ),Δord

↓ ↓
ςp,A,∗

(
Fj ⊗ I

∂A(m),ord,†
Up(N ),Σord

)
←− Fj ⊗O

A(m),ord,†
Up(N ),Σord

,ς∗p,A I
∂A(m),ord,†

Up(N ),Σord

and

Fj ⊗O
Xord,†
(Up)′(N ),Δord

,ς∗p,X I
∂X ord,†

(Up)′(N ),Δord

1⊗pnm[F :Q]tr−→ Fj ⊗O
Xord,†
(Up)′(N ),Δord

I
∂X ord,†

(Up)′(N ),Δord

↓ ↓
Fj ⊗O

A(m),ord,†
Up(N ),Σord

,ς∗p,A I
∂A(m),ord,†

Up(N ),Σord

1⊗tr−→ Fj ⊗O
A(m),ord,†

Up(N ),Σord

I
∂A(m),ord,†

Up(N ),Σord

commute. In the first diagram the upper horizontal map is the composite

Fj ⊗O
Xord,†
(Up)′(N ),Δord

,ς∗p,X I
∂X ord,†

(Up)′(N ),Δord

= Ψ∗

(
(Ψ ∗Fj)⊗ (π ′′)∗I

∂X ord,†
(Up)′(N ),Δord

)

−→ Ψ∗Φ∗

(
(Φ∗Ψ ∗Fj)⊗

(
Φ∗(π ′′)∗I

∂X ord,†
(Up)′(N ),Δord

))

= ςp,A,∗

((
ς∗p,AFj
)
⊗ (π ′)∗I

∂X ord,†
(Up)′(N ),Δord

)

ς∗p,A−→ ςp,A,∗

(
Fj ⊗ (π ′)∗I

∂X ord,†
(Up)′(N ),Δord

)
,

and the lower horizontal map is

Fj ⊗O
A(m),ord,†

Up(N ),Σord
,ς∗p,A I

∂A(m),ord,†
Up(N ),Σord

∼= ςp,A,∗

((
ς∗p,AFj
)
⊗ I

∂A(m),ord,†
Up(N ),Σord

)

ς∗p,A−→ ςp,A,∗

(
Fj ⊗ I

∂A(m),ord,†
Up(N ),Σord

)
.

We see that the first square tautologically commutes. The second square commutes
because the two maps

pnm[F :Q]tr : Ψ∗O
ς∗p,XA(m),ord,†

Up(N ),Σord
−→ O

A(m),ord,†
Up(N ),Σord

and

Ψ∗O
ς∗p,XA(m),ord,†

Up(N ),Σord

Φ∗−→ ςp,A,∗OA(m),ord,†
Up(N ),Σord

tr−→ O
A(m),ord,†

Up(N ),Σord

are equal. This in turn follows from Lemma 6.14. ��
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Corollary 6.16 For all i and s the vector space Hi(A(m),ord,†
Up(N ),Σ ,Ωs

A(m),ord,†
Up(N ),Σ

(log∞) ⊗
I
∂A(m),ord,†

Up(N ),Σ
) admits slope decompositions for trF .

We write

Hi
(
A(m),ord,†,Ωs(log∞)⊗ I

∂A(m),ord,†
)
≤a

= lim→Up,N,Σ Hi

(
A(m),ord,†

Up(N ),Σ ,Ωs
A(m),ord,†

Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)

≤a
.

The next corollary now follows from the proposition and Lemma 6.6.

Corollary 6.17 For any a ∈ Q there is a Gn(A∞)ord,×-equivariant spectral sequence with
first page Ei,j

1 :

H0
(
X ord,min,†, Esub

ρ
i,j
m,s

)

≤a
⇒Hi+j

(
A(m),ord,†,Ωs

A(m),ord,† (log∞)⊗ I
∂A(m),ord,†

)
≤a+mn[F :Q]

.

Combining this with Corollary 6.13 we obtain the following corollary.

Corollary 6.18 Suppose that Π is an irreducible Gn(A∞)ord,×-subquotient of

Hi
(
A(m),ord,†,Ωs

A(m),ord,† (log∞)⊗ I
∂A(m),ord,†

)
≤a ⊗Qp Qp

for some a ∈ Q. Then there is a continuous semi-simple representation

Rp(Π ) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q �= p (in the sense of
Sect. 1.3) and if v|q is a prime of F , then

WD(Rp(Π )|GFv )
F-ss ∼= recFv

(
BC(Πq)v| det |(1−2n)/2

v

)
.

6.5 Rigid cohomology

Our main object of study will be the groups

Hi
c−∂

(
A(m),ord
Up(N ),Σ

)
= Hi
(
A(m),ord,†

Up(N ),Σ ,Ω•
A(m),ord,†

Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)
,

where (Up(N ),Σ) ∈ J (m),tor,ord
n . This can be thought of as a sort of rigid cohomology

of A(m),ord
Up(N ),Σ with compact supports towards the toroidal boundary, but not towards the

non-ordinary locus. It seems plausible to us that this can be intrinsically attached to the
pair A(m),ord

Up(N ) ⊃ ∂A(m),ord
Up(N ) . Hence our notation. However we will not prove this, so the

reader is cautioned that our notation is nothing more than a short-hand, and the group
Hi
c−∂ (A

(m),ord
Up(N ),Σ ) must be assumed to depend on the pair A(m),ord,†

Up(N ),Σ ⊃ ∂A(m),ord,†
Up(N ),Σ . We will

also set

Hi
c−∂

(
A(m),ord) = lim−→

Up,N,Σ
Hi
c−∂

(
A(m),ord
Up(N ),Σ

)
.
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It has a smooth action of Gn(A∞)ord. The maps

trF : ςp,∗Ω j

A(m),ord,†
Up(N ),Σ

(log∞) −→ Ω
j

A(m),ord,†
Up(N ),Σ

(log∞)

induce endomorphisms

trF ∈ End
(
Hi
c−∂

(
A(m),ord
Up(N ),Σ

))

which commute with the action of Gn(A∞)ord,× and satisfy

trF ◦ ςp = p(n+2m)n[F+:Q].

Lemma 6.19 There are natural isomorphisms

Hi
c−∂

(
A(m),ord
Up(N ),Σ

) ∼−→ Hi
c−∂

(
A(m),ord)Up(N )

.

Proof Use Lemmas 5.1, 5.6, 5.7 and 6.9. ��
We will compute the group Hi

c−∂ (A
(m),ord
Up(N ),Σ ) in two ways. The first way will be in terms

of p-adic cusp forms and will allow us to attach Galois representations to irreducible
Gn(A∞)ord,×-subquotients ofHi

c−∂ (A
(m),ord)⊗Qp Qp. The second way will be geometrical,

in terms of the stratification of the boundary. In this second approach the cohomology of
the locally symmetric spaces associated to L(m)

n,(n),lin will appear.
Here is our first calculation.

Lemma 6.20 The vector spaces Hi
c−∂ (A

(m),ord
Up(N ),Σ ) admit slope decompositions for trF . If

moreover we set

Hi
c−∂

(
A(m),ord)

≤a = lim−→
Up,N,Σ

Hi
c−∂

(
A(m),ord
Up(N ),Σ

)
≤a ,

then there is a Gn(A∞)ord,×-spectral sequence with first page

Ei,j
1 = Hi

(
A(m),ord,†,Ω j(log∞)⊗ I

∂A(m),ord,†
)
≤a ⇒ Hi+j

c−∂

(
A(m),ord)

≤a .

Proof This follows from Lemma 6.6, Corollary 6.16 and the spectral sequence

Ei,j
1 = Hi

(
A(m),ord,†

Up(N ),Σ ,Ω j

A(m),ord,†
Up(N ),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N ),Σ

)
⇒ Hi+j

c−∂

(
A(m),ord
Up(N ),Σ

)
.

��
And here is our second calculation.

Lemma 6.21 There are Gn(A∞)ord,×-equivariant spectral sequences with first page

Ei,j
1 = Hi

rig

(
∂ (j)A(m),ord

Up(N ),Σ

)
⇒ Hi+j

c−∂

(
A(m),ord
Up(N ),Σ

)
.

Moreover the action of Frobenius on the left hand side is compatible with the action of ςp
on the right hand side.
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Proof By Lemmas 2.3 and 6.9 the group Hi
c−∂ (A

(m),ord
Up(N ),Σ ) is isomorphic to the hypercoho-

mology of the double complex

Hi
(
A(m),ord,†

Up(N ),Σ , i(s)∗ Ωr
∂ (s)A(m),ord,†

Up(N ),Σ

)
,

and so there is a spectral sequence with first page

Ei,j
1 = Hi

(
∂ (j)A(m),ord,†

Up(N ),Σ ,Ω•
∂ (j)A(m),ord,†

Up(N ),Σ

)
⇒ Hi

c−∂

(
A(m),ord
Up(N ),Σ

)
.

However, by Lemma 6.8 and the quasi-projectivity of ∂ (j)A(m),ord
Up(N ),Σ , we see that there are

G(m)
n (A∞)ord-equivariant isomorphisms

Hi
(
∂ (j)A(m),ord,†

Up(N ),Σ ,Ω•
∂ (j)A(m),ord,†

Up(N ),Σ

)
∼= Hi

rig

(
∂ (j)A(m),ord

Up(N ),Σ

)
,

and that under this identification ςp corresponds to Frobenius (because ςp equals Frobe-
nius on the special fibre). ��

Corollary 6.22 Hi
c−∂ (A

(m),ord
Up(N ),Σ ) is finite dimensional. Moreover

Hi
c−∂

(
A(m),ord
Up(N ),Σ

)
= Hi

c−∂

(
A(m),ord
Up(N ),Σ

)
≤a ,

for some a, and so

Hi
c−∂

(
A(m),ord) =

⋃
a∈Q

Hi
c−∂

(
A(m),ord)

≤a .

Proof The first assertion follows from the lemma and theorem 3.1 of [7]. The second
assertion follows because trF ◦ ςp = pn(n+2m)[F+ :Q] and so by the first part trF must be an
automorphism of Hi

c−∂ (A
(m),ord
Up(N ),Σ ). ��

Combining this with Corollary 6.18 and Lemma 6.20 we obtain the following corollary.

Corollary 6.23 Suppose that Π is an irreducible Gn(A∞)ord,×-subquotient of

Hi
c−∂

(
A(m),ord)⊗Qp Qp.

Then there is a continuous semi-simple representation

Rp(Π ) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q �= p (in the sense of
Sect. 1.3) and if v|q is a prime of F . Then

WD(Rp(Π )|GFv )
F-ss ∼= recFv

(
BC(Πq)v| det |(1−2n)/2

v

)
.
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Corollary 6.24 The eigenvalues of ςp on Hi
c−∂ (A

(m),ord)Qp
are Weil pw-numbers for some

w ∈ Z≥0 (depending on the eigenvalue). We will write

W0Hi
c−∂

(
A(m),ord)

Qp

for the subspace of Hi
c−∂ (A

(m),ord)Qp
spanned by generalized eigenspaces of ςp with eigen-

value a p0-Weil number.
For i > 0 there is a Gn(A∞)ord-equivariant isomorphism

lim−→
Up,N,Σ

Hi
(∣∣∣S
(
∂A(m),ord

Up(N ),Σ

)∣∣∣ ,Qp

) ∼−→ W0Hi+1
c−∂

(
A(m),ord)

Qp
.

(For i = 0 there is still a surjection.)

Proof By theorem 2.2 of [19], the eigenvalues of the Frobenius endomorphism on
Hi
rig(∂ (j)A

(m),ord
Up(N ),Σ ) are all Weil pw-numbers for some w ∈ Z≥i (depending on the eigen-

value). The first part of the corollary follows.
It follows moreover thatW0Hi

c−∂ (A
(m),ord
Up(N ),Σ )Qp

is the cohomology of the complex

· · · −→ H0
rig

(
∂ (i)A(m),ord

Up(N ),Σ ,Qp

)
−→ H0

rig

(
∂ (i+1)A(m),ord

Up(N ),Σ ,Qp

)
−→ · · ·

However by proposition 8.2.15 of [46]

H0
rig

(
∂ (i)A(m),ord

Up(N ),Σ ,Qp

) ∼= Q
π0
(
∂ (i)A(m),ord

Up(N ),Σ×SpecFp
)

p ,

and so the cohomology of the above complex becomes

ker
(
H0
rig

(
A(m),ord
Up(N ),Σ ,Qp

)
−→ H0

(∣∣∣S
(
∂A(m),ord

Up(N ),Σ

)∣∣∣ ,Qp

))
in degree 0

H0
(∣∣∣S
(
∂A(m),ord

Up(N ),Σ

)∣∣∣ ,Qp

)
/ ImH0

rig

(
A(m),ord
Up(N ),Σ ,Qp

)
in degree 1

Hi−1
(∣∣∣S
(
∂A(m),ord

Up(N ),Σ

)∣∣∣ ,Qp

)
in degree i > 1.

The last part of the corollary follows. ��
The discussion at the end of Sect. 5.3 shows that there are Gn(A∞)ord-equivariant open
embeddings

T
(m),ord
Up(N ),=n ↪→

∣∣∣S
(
∂A(m),ord

Up(N ),Σ

)∣∣∣ .

Thus the following corollary follows by applying Lemma 1.7 and Corollary 1.6.

Corollary 6.25 For i > 0,

Hi
Int

(
T(m),ord=n ,Qp

) ∼= IndG
(m)
n (A∞,p)

P(m),+
n,(n) (A∞,p)

Hi
Int

(
T
(m)
(n) ,Qp

)Z×
p

is a Gn(A∞)ord subquotient of W0Hi+1
c−∂ (A

(m),ord
n )Qp

.

Combining this proposition with Corollary 6.23 (and using Lemma 1.1) we deduce the
following consequence.
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Corollary 6.26 Suppose that i > 0 and that π is an irreducible Ln,(n),lin(A∞)-subquotient
of Hi

Int(T
(m)
(n) ,Qp). Then there is a continuous semi-simple representation

Rp(π ) : GF −→ GL2n(Qp)

with the following property: Suppose that q �= p is a rational prime which either splits in
F0 or is unramified in F. Suppose further that π is unramified at all primes of F above q.
If v|q is a prime of F , then

Rp(π )|F-ssWFv
∼= recFv (πv| det |(1−n)/2

v )⊕ recFcv
(
πcv| det |(1−n)/2

cv

)∨,c
ε1−2n
p .

Combining this with Corollary 1.9 we obtain the following result.

Corollary 6.27 Suppose that n > 1, that ρ is an irreducible algebraic representation
of Ln,(n),lin on a finite dimensional C-vector space and that π is a cuspidal automorphic
representation of Ln,(n),lin(A) so that π∞ has the same infinitesimal character as ρ∨. Then,
for all sufficiently large integers N , there is a continuous, semi-simple representation

Rp,ı(π , N ) : GF −→ GL2n(Qp)

with the following property: Suppose that q �= p is a rational prime which either splits in
F0 or is unramified in F. Suppose further that π is unramified at all primes of F above q.
If v|q is a prime of F , then

Rp,ı(π , N )|F-ssWFv
= ı−1 recFv

(
πv| det |(1−n)/2

v

)
⊕
(
ı−1 recFcv

(
πcv| det |(1−n)/2

cv

))∨,c
ε1−2n−2N
p .

Proof Take

Rp,ı(π , N ) = Rp(ı−1(π∞|| det ||N ))⊗ ε−N
p .

��

7 Galois representations
In order to improve uponCorollary 6.27 it is necessary to apply some simple group theory.
To this end, let Γ be a topological group and let F be a dense set of elements of Γ . Let k
be an algebraically closed, topological field of characteristic 0 and let d ∈ Z>0.
Let

μ : Γ −→ k×

be a continuous homomorphism such that μ(f ) has infinite order for all f ∈ F. For f ∈ F

let E1
f and E2

f be two d-element multisets of elements of k×. Let M be an infinite subset
of Z. Form ∈ M let

ρm : Γ −→ GL2d(k)

be a continuous semi-simple representation such that for every f ∈ F themultiset of roots
of the characteristic polynomial of ρm(f ) equals

E1
f $ E2

f μ(f )
m.
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Suppose that M′ is a finite subset of M. Let GM′ denote the Zariski closure in Gm ×
GLM′

2d of the image of

μ⊕
⊕

m∈M′
ρm.

It is a, possibly disconnected, reductive group. There is a natural continuous homomor-
phism

ρM′ = μ×
∏

m∈M′
ρm : Γ −→ GM′ (k).

Note that ρM′ (F) is Zariski dense in GM′ . We will use μ for the character of GM′ which
is projection to Gm. Form ∈ M′ we will let

Rm : GM′ −→ GL2d

denote the projection to the factor indexed bym.

Lemma 7.1 For every g ∈ GM′ (k) there are two d-element multisets Σ1
g and Σ2

g of ele-
ments of k× such that for everym ∈ M′ themultiset of roots of the characteristic polynomial
of Rm(g) equals

Σ1
g $Σ2

g μ(g)m.

Proof It suffices to show that the subset of k× × GLM′
2d (k) consisting of elements

(t, (gm)m∈M′ ) such that there are d-element multisets Σ1 and Σ2 of elements of k× such
that for all m ∈ M′ the multiset of roots of the characteristic polynomial of gm equals
Σ1 $Σ2tm, is Zariski closed. Let Pol2d denote the space of monic polynomials of degree
2d. It even suffices to show that the subset X of k× × PolM

′
2d (k) consisting of elements

(t, (Pm)m∈M′ ) such that there are d-element multisets Σ1 and Σ2 of elements of k such
that for allm ∈ M′ the multiset of roots of Pm equals Σ1 $Σ2tm, is Zariski closed.
There is a natural finite map

π : Aff2d −→ Pol2d
(αi) �−→ ∏i(T − αi).

If

(σm) ∈ SM
′

2d ,

where S2d denotes the symmetric group on 2d letters, define V(σm) to be the set of

(t, (am,i)) ∈ Gm × (Aff2d)M
′

such that, for allm,m′ ∈ M′ we have

am,σmi = am′ ,σm′ i
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if i = 1, . . . , d and

am,σmi = am′ ,σm′ itm
′−m

if i = d + 1, . . . , 2d. Then V(σm) is closed in Gm × (Aff2d)M′ . Moreover

X =
⋃

(σm)∈SM′
2d

(1× πM′
)V(σm).

The lemma now follows from the finiteness of 1× πM′ . ��

Corollary 7.2 If ∅ �= M′ ⊂ M′′ are finite subsets ofM then GM′′
∼→ GM′ .

Proof Suppose that g is in the kernel of the natural map

GM′′ →→ GM′ .

Then for allm ∈ M′′ the only eigenvalue ofRm(g) is 1. Thus g must be unipotent.However
ker(GM′′ →→ GM′ ) is reductive and so must be trivial. ��

Thus we can write G for GM′ without danger of confusion.

Corollary 7.3 For every g ∈ G(k) there are twod-elementmultisetsΣ1
g andΣ2

g of elements
of k× such that for every m ∈ M the multiset of roots of the characteristic polynomial of
Rm(g) equals

Σ1
g $Σ2

g μ(g)m.

Moreover if μ(g) has infinite order then the multisets Σ1
g and Σ2

g are unique.

Proof Choose non-empty finite subsets

M′
1 ⊂ M′

2 ⊂ · · · ⊂ M

with

M =
∞⋃
i=1

M′
i.

For each i we can find two d-element multisets Σ1
g,i and Σ2

g,i of elements of k× such that
for everym ∈ M′

i the multiset of roots of the characteristic polynomial of Rm(g) equals

Σ1
g,i $Σ2

g,iμ(g)
m.

Let m1 ∈ M′
1 and let Σ denote the set of eigenvalues of Rm1 (g). Then, for every i,

the multiset Σ1
g,i consists of elements of Σ and the multiset Σ2

g,i consists of elements
of Σμ(g)−m1 . Thus there are only finitely many possibilities for the pair of multisets
(Σ1

g,i,Σ
2
g,i) as i varies. Hence some such pair (Σ1

g ,Σ2
g ) occurs infinitely often. This pair

satisfies the requirements of the corollary.
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For uniqueness suppose that Σ
1,′
g and Σ

2,′
g is another such pair of multisets. Choose

m ∈ M with μ(g)m �= α/β for any α,β ∈ Σ1
g $Σ2

g $Σ
1,′
g $Σ

2,′
g . Then the equality

Σ1
g $Σ2

g μ(g)m = Σ1,′
g $Σ2,′

g μ(g)m

implies that Σ1,′
g = Σ1

g and Σ
2,′
g = Σ2

g . ��

The connected component Z(G)0 of the centre of G is a torus.

Lemma 7.4 The character μ is non-trivial on Z(G)0.

Proof If μ were trivial on Z(G0)0 then it would be trivial on G0 (because G0/Z(G0)0 is
semi-simple), and so μ would have finite order, a contradiction. Thus μ|Z(G0)0 is non-
trivial.
The space

X∗(Z(G0)0)⊗Z Q

is a representation of the finite group G/G0 and we can decompose

X∗(Z(G0)0)⊗Z Q = (X∗(Z(G)0)⊗Z Q)⊕ Y

where Y is a Q[G/G0]-module with

YG/G0 = (0).

But

μ|Z(G0)0 ∈ X∗(Z(G0)0)G/G0 ⊂ X∗(Z(G)0)⊗Z Q

is non-trivial, and so μ|Z(G)0 is non-trivial. ��

Form ∈ M let Xm denote the 2d-element multiset of characters of Z(G)0 which occur
in Rm (taken with their multiplicity). If g ∈ G then we will writeY(g)m for the 2d-element
multiset of pairs (χ , a), where χ is a character of Z(G)0 and a is a root of the characteristic
polynomial of g acting on the χ eigenspace of Z(G)0 in Rm. (The pair (χ , a) occurs with
the same multiplicity as a has as a root of the characteristic polynomial of g acting on the
χ-eigenspace of Rm.)
IfY ⊂ Y(g)m and if ψ ∈ X∗(G) then we will set

Yψ = {(χψ , aψ(g)) : (χ , a) ∈ Y}.

We warn the reader that this depends on g and not just on the setY.

Lemma 7.5 Suppose that T/k is a torus and thatX is a finite set of non-trivial characters
of T . Let A be a finite subset of k×. Then we can find t ∈ T (k) such that χ (t) �= a for all
χ ∈ X and a ∈ A.
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Proof Let ( , ) denote the usual perfect pairing

X∗(T )× X∗(T ) −→ Z.

We can find ν ∈ X∗(T ) such that (χ , ν) �= 0 for all χ ∈ X. Thus we are reduced to the
case T = Gm, in which case we may take t to be any element of k× that does not lie in the
divisible hull of the subgroup H of k× generated by A. (For example, we can take t to be
a rational prime such that all elements of a finite set of generators of H ∩ Q× are units at
t.) ��

Corollary 7.6 Suppose that T/k is a torus and that X is a finite set of characters of T .
Then we can find t ∈ T (k) such that if χ �= χ ′ lie in X then

χ (t) �= χ ′(t).

Lemma 7.7 If m,m′, m′′ ∈ M, then we can decompose

Y(g)m = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′

into two d-element multisets, such that

Y(g)m′ = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′μm′−m

and

Y(g)m′′ = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′μm′′−m.

If μm−m′ �= χ/χ ′ for all χ ,χ ′ ∈ Xm then the equation

Y(g)m′ = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′μm′−m

uniquely determines this decomposition.

Proof Choose t ∈ Z(G)0(k) such that aχ (t) �= a′χ ′(t) for (χ , a) �= (χ ′, a′) with

(χ , a), (χ ′, a′) ∈ Y(g)m ∪Y(g)mμm′−m ∪Y(g)mμm′′−m ∪Y(g)m′ ∪Y(g)m′′ .

(Note that it suffices to choose t ∈ Z(G)0(k) such that for

(χ , a), (χ ′, a′) ∈ Y(g)m ∪Y(g)mμm′−m ∪Y(g)mμm′′−m ∪Y(g)m′ ∪Y(g)m′′ ,

with χ �= χ ′ we have (χ/χ ′)(t) �= a′/a.) We can decompose

Y(g)m = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′

into two d-element multisets, such that

{
aχ (t) : (χ , a) ∈ Y(g)1m,m′ ,m′′

} = Σ1
gt
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and

{
aχ (t) : (χ , a) ∈ Y(g)2m,m′ ,m′′μ−m} = Σ2

gt .

Then

{
aχ (t) : (χ , a) ∈ Y(g)m′

}

=
{
aχ (t) : (χ , a) ∈ Y(g)1m,m′ ,m′′

}
$
{
aχ (t) : (χ , a) ∈ Y(g)2m,m′ ,m′′μm′−m

}

and

{
aχ (t) : (χ , a) ∈ Y(g)m′′

}

=
{
aχ (t) : (χ , a) ∈ Y(g)1m,m′ ,m′′

}
$
{
aχ (t) : (χ , a) ∈ Y(g)2m,m′ ,m′′μm′′−m

}
.

It follows that

Y(g)m′ = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′μm′−m

and

Y(g)m′′ = Y(g)1m,m′ ,m′′ $Y(g)2m,m′ ,m′′μm′′−m.

If μm−m′ �= χ/χ ′ for all χ ,χ ′ ∈ Xm then

Y(g)1m,m′ ,m′′ = Y(g)m ∩Y(g)m′ ,

so the uniqueness assertion is clear. ��

Corollary 7.8 If m ∈ M, then we can uniquely decompose

Y(g)m = Y(g)1m $Y(g)2m

into two d-element multisets, such that for all m′ ∈ M we have

Y(g)m′ = Y(g)1m $Y(g)2mμm′−m.

Proof Choose m′ such that μm−m′ �= χ/χ ′ for all χ ,χ ′ ∈ Xm. Then we see that for all
m′′, m′′′ ∈ M we have

Y(g)1m,m′ ,m′′ = Y(g)1m,m′ ,m′′′

and

Y(g)2m,m′ ,m′′ = Y(g)2m,m′ ,m′′′ .

Then we can simply takeY(g)im = Y(g)im,m′ ,m′′ . ��
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Corollary 7.9 For all m,m′ ∈ M we have

Y(g)1m′ = Y(g)1m

and

Y(g)2m′ = Y(g)2mμm′−m.

Proof It is immediate from the previous corollary thatY(g)1m andY(g)2mμm′−m have the
properties that uniquely characterizeY(g)1m′ andY(g)2m′ . ��

Corollary 7.10 For all g ∈ G and m ∈ M and for i = 1, 2 we have

Y(1)im =
{
(χ , 1) : ∃a, (χ , a) ∈ Y(g)im

}
.

Proof It is again immediate that {(χ , 1) : ∃a, (χ , a) ∈ Y(g)1m} and {(χ , 1) : ∃a, (χ , a) ∈
Y(g)2m} have the properties that uniquely characterizeY(1)1m andY(1)2m. ��

We set

Xi
m =
{
χ : (χ , 1) ∈ Y(1)im

}
.

Note that

X1
m′ = X1

m

and that

X2
m′ = X2

mμm′−m.

Corollary 7.11 For all but finitely many m ∈ M the multisets X1
m and X2

m are disjoint.

Let M′ denote the set of m ∈ M such that X1
m and X2

m are disjoint. Then we see that
form ∈ M′ we have

Y(g)im = {(χ , a) ∈ Y(g)m : χ ∈ Xi
m}.

Moreover form ∈ M′ we may decompose

Rm = R1
m ⊕ R2

m

where Ri
m is the sum of the χ-eigenspaces of Z(G)0 for χ ∈ Xi

m. We see that the multiset
of roots of the characteristic polynomial of Ri

m(g) equals

{a : (χ , a) ∈ Y(g)im}.

Thus R1
m is independent of m ∈ M′, as is R2

mμ−m. Denote these representations of G by
r1 and r2, so that

Rm ∼= r1 ⊕ r2μm
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for all m ∈ M′. From Corollary 7.3 (applied to M′) we see that if g ∈ G and μ(g) has
infinite order then Σ i

g is the multiset of roots of the characteristic polynomial of ri(g).
Thus we have proved the following result.

Proposition 7.12 Keep the notation and assumptions of the first two paragraphs of this
section. Then there are continuous semi-simple representations

ρi : Γ −→ GLd(k)

for i = 1, 2 such that for all f ∈ F the multiset of roots of the characteristic polynomial of
ρi(f ) equals E i

f .

This proposition allows us to deduce our main theorem from Corollary 6.27.

Theorem 7.13 Suppose that π is a cuspidal automorphic representation of GLn(AF ) such
that π∞ has the same infinitesimal character as an algebraic representation of RSFQGLn.
Then there is a continuous semi-simple representation

rp,ı(π ) : GF −→ GLn(Qp)

with the following property: Suppose that q �= p is a rational prime which either splits in
F0 or is unramified in F. Suppose further that π is unramified at all primes of F above q.
If v|q is a prime of F , then

rp,ı(π )|F-ssWFv
= ı−1 recFv

(
πv| det |(1−n)/2

v

)
.

Proof We may suppose that n > 1, as in the case n = 1 the result is well known. Let S
denote the set of rational primes above which F or π ramifies together with p; and let
GF,S denote the Galois group over F of the maximal extension of F unramified outside
S. Apply Proposition 7.12 to Γ = GF,S , and k = Qp, and μ = ε−2

p , and M consisting
of all sufficiently large integers, and ρm = Rp,ı(π , m) (as in Theorem 6.27), and F the set
of Frobenius elements at primes not above S, and E1

Frobv equal to the multiset of roots of
the characteristic polynomial of ı−1 recFv (πv| det |(1−n)/2

v )(Frobv), and E2
Frobv equal to the

multiset of roots of the characteristic polynomial of ı−1 recFcv (πcv| det |(−1+3n)/2
cv )(Frob−1

cv ).
��

Corollary 7.14 Suppose that E is a totally real or CM field and that π is a cuspidal
automorphic representation such that π∞ has the same infinitesimal character as an
algebraic representation ofRSEQGLn. Then there is a continuous semi-simple representation

rp,ı(π ) : GE −→ GLn(Qp)

such that, if q �= p is a rational prime above which π is unramified and if v|q is a prime of
E, then rp,ı(π ) is unramified at v and

rp,ı(π )
∣∣F-ss
WEv

= ı−1 recEv
(
πv| det |(1−n)/2

v

)
.

Proof This can be deduced fromTheorem 7.13 by using lemma 1 of [54]. (This is the same
argument used in the proof of theorem VII.1.9 of [29].) ��



Harris et al. Res Math Sci (2016) 3:37 Page 233 of 308

Author details
1Institut de Mathématiques de Jussieu, Paris, France, 2School of Mathematics, University of Minnesota, Minneapolis, MN,
USA, 3School of Mathematics, IAS, Princeton, NJ, USA , 4Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, Cambridge, UK.

Acknowledgements
We are pleased to dedicate this paper to the memory of our friend Robert Coleman, who was both a personal and
professional inspiration. This paper owes a lot to his ideas. The origin of this paper was the conviction that one should be
able to relate all the cohomology of a Shimura variety to overconvergent p-adic automorphic forms. The source of this
conviction was [22].

We would all like to thank the Institute for Advanced Study for its support and hospitality. This project was begun, and
the key steps completed, while we were all attending the special IAS special year on ‘Galois representations and
automorphic forms’. M.H.’s research received funding from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement Number 290766 (AAMOT).
K.-W.L.’s research was partially supported by NSF Grants DMS-1069154, DMS-1258962 and DMS-1352216 and by an
Alfred P. Sloan Research Fellowship. R.T.’s research was partially supported by NSF Grants DMS-0600716,
DMS-1062759 and DMS-1252158 and by the IAS Oswald Veblen and Simonyi Funds. During some of the period when
this research was being written up J.T. served as a Clay Research Fellow.

We would like to thank the referee for their helpful comments. We would also like to thank Elly Gustafsson and
Anthony Pulido for help in compiling the index of notations.

Appendix A. Guide to notation
As the paper contains a lot of different notations, we will informally summarize some
of the principal notations in this section. We hope that this will help the reader. Formal
definitions will be given in the main body of the paper.

A.1 Shimura varieties

We fix a totally real field F+, an imaginary quadratic field F0 and let F denote their
composite. We also fix a prime p which splits in F0.
We will consider a quasi-split unitary similitude group Gn/Q defined with respect to

(the trace of) the skew-hermitian form on Vn = F2n

〈x, y〉n = trF/Q(txJncy)

where Jn is an anti-diagonal matrix with 1’s in the first n rows and −1’s in the last n
rows. The similitude factor ν : Gn → Gm. (See Sect. 1.1.) For U ⊂ Gn(A∞) a neat open
compact subgroup we have a corresponding Shimura variety Xn,U and over it a universal
abelian scheme Auniv, which is unique up to unique quasi-isogeny. The system {Xn,U } has
an action of Gn(A∞). (See Sect. 3.1.)
We will also consider the group

G(m)
n = Gn � RSFQHom

(
Gm

a ,G
2n
a
)
.

It has a (left) action of RSFQGLm. (See Sect. 1.1.) For U ⊂ G(m)
n (A∞) a neat open compact

subgroupwe have the corresponding Kuga–Sato varietyA(m)
n,U which is smooth and projec-

tive over Xn,U ′ , whereU ′ denotes the projection ofU . The system of schemes {A(m)
n,U } has a

right action ofG(m)
n (A∞) and a left action ofGLm(F ), which don’t commute. (See Sect. 3.2.)

We will also need to consider integral models of these varieties over Z(p), but only
for certain level structures at p. To define these level structures we give Gn the integral
structure coming from the (self-dual) lattice Λn = (D−1

F )n ⊕On
F ⊂ F2n. We give G(m)

n a
compatible integral structure so that

G(m)
n (Z) = Gn(Z) �

(
(D−1

F )n ⊕On
F

)m
.
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We will only consider integral models for Shimura varieties with level Up(N1, N2), where
N2 ≥ N1 ≥ 0 are integers and Up is a neat open compact subgroup of Gn(A∞,p) or
G(m)
n (A∞,p). Here Up(N1, N2) = Up × Up(N1, N2)n where Up(N1, N2)n ⊂ Gn(Zp) is the

subgroup of matrices of the form

(
μ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)
,

orUp(N1, N2) = Up ×Up(N1, N2)(m)
n whereUp(N1, N2)(m)

n ⊂ G(m)
n (Zp) is the subgroup of

matrices of the form(
μ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)(
∗

0 mod pN1

)
.

(See Sect. 1.1.)
We will consider a certain integral model X ord

n,Up(N1 ,N2) of Xn,Up(N1 ,N2). (See Sect. 3.1.)
Although its generic fibre is all of Xn,Up(N1 ,N2), its special fibre consists only of points
parameterizing ordinary abelian schemes with a level structure with respect to which
the distinguished subgroup scheme of order pN2[F :Q]n is connected. Thus, for example, if
N ′
2 > N2 thenX ord

n,Up(N1 ,N ′
2)
→ X ord

n,Up(N1 ,N2) is not finite, becausewe are only including some
of the possible Up(N1, N ′

2)-level structures extending a given Up(N1, N2)-level structure.
We denote the universal abelian scheme over X ord

n,Up(N1 ,N2) byA
univ. It is uniquely defined

up to prime-to-p quasi-isogeny. The action of the whole group Gn(A∞) on {Xn,U } does
not extend to an action on {X ord

n,Up(N1 ,N2)}. However the action of a sub-semigroup

Gn(A∞)ord = Gn(A∞,p)× ς
Z≥0
p P+n,(n)(Zp)

does extend. Here P+n,(n) denotes the subgroup of Gn consisting of elements of the form

(
∗ ∗

0n×n ∗

)

(over Q this defines a maximal parabolic subgroup) and ςp denotes the element

(
p−11n 0

0 1n

)
.

We write Gn(A∞)ord,× for the maximal subgroup of the semi-group Gn(A∞)ord. We will
also write

Up(N1) = Up(N1, N2) ∩ Gn(A∞)ord,×

which is independent of N2. (See Sect. 1.2.)
The formal completion of X ord

n,Up(N1 ,N2) along its Fp-fibre only depends on Up(N1) =
Up(N1, N2) ∩ Gn(A∞)ord,×, and so we will denote it Xord

n,Up(N1). We will also denote its

reduced subscheme Xord
n,Up(N1). The systems {Xord

n,Up(N1)} and {X
ord
n,Up(N1)} also have actions

of Gn(A∞)ord. (See Sect. 3.1.)
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We will also consider a certain integral model A(m),ord
n,Up(N1 ,N2) of A

(m)
n,Up(N1 ,N2). Note that

A(m),ord
n,Up(N1 ,N2) is smooth and projective over X ord

n,(Up)′(N1 ,N2), where (U
p)′ denotes the image

ofUp in Gn(A∞,p). The system of schemes {A(m),ord
n,Up(N1 ,N2)} has an action of the semi-group

G(m)
n (A∞)ord = G(m)

n (A∞,p)× ς
Z≥0
p P(m),+

n,(n) (Zp) ⊂ G(m)
n (A∞),

where P(m),+
n,(n) denotes the subgroup of G(m)

n consisting of elements of the form
(

∗ ∗
0n×n ∗

)(
∗
∗

)
.

We also write G(m)
n (A∞)ord,× for the maximal subgroup of the semi-group G(m)

n (A∞)ord

and

Up(N1) = Up(N1, N2) ∩ G(m)
n (A∞)ord,×.

It also has an action of GLm(OF,(p)). The formal completion of A(m)
n,Up(N1 ,N2) along its Fp-

fibre depends only onUp(N1), so wewill denote itA(m),ord
n,Up(N1).Wewill also denote its special

fibre A(m),ord
n,Up(N1). (See Sects. 1.2, 3.2.)

We will write Ln,(n) for the subgroup of P+n,(n) consisting of matrices of the form

(
∗ 0n×n

0n×n ∗

)
.

We let Std denote the representation of Ln,(n) over Z which sends the above matrix to the
lower left n× n-block in RSOF

Z GLn ⊂ GLn[F :Q]. In fact,

ν × Std : Ln,(n)
∼−→ Gm × RSOF

Z GLn.

We will let Tn denote the subgroup of Gn consisting of diagonal matrices and Bn the
subgroup of upper triangular matrices. The isomorphism ν × Std allows us to identify Tn
with Gm × RSOF

Z Gn
m and hence we get an isomorphism

X∗(Tn)
∼−→ Z ⊕

⊕

τ∈Hom(F,Q)

Zn.

We will denote a typical element of this group (b0, (bτ ,i)). The set X∗(Tn)+(n) ⊂ X∗(Tn) of
positive elements of X∗(Tn) with respect to the subgroup Bn ∩ Ln,(n) is characterized by

bτ ,1 ≥ bτ ,2 ≥ · · · ≥ bτ ,n

for all τ . The set X∗(Tn)+(n) ⊂ X∗(Tn) of positive elements with respect to Bn is further
characterized by

bτ ,1 + bτc,1 ≤ 0

for all τ . Over Q we can decompose

Std =
⊕

τ :F ↪→Q

Stdτ ,
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where Stdτ : Ln,(n) → GLn. There is a representation

KS : Ln,(n) −→ GL[F+:Q]n2

over Z, such that over Q

KS ∼= ν ⊗
⊕

τ∈Hom(F,Q)/{1,c}
Std∨τ ⊗ Std∨τc.

(See Sect. 1.2.)
If R0 is an irreducible noetherian Q-algebra and ρ is a representation of Ln,(n) on a

locally free R0-module then we may associate a locally free sheaf EU,ρ/Xn,U × SpecR0 (in
the Zariski topology). As examples we have the following.

• EU,Std∨ ∼= Ωn,U , the pull-back by the identity section of the sheaf of relative differen-
tials Ω1

Auniv/Xn,U
.

• EU,∧n[F :Q]Std∨ ∼= ∧n[F :Q]Ωn,U = ωU .
• EU,KS ∼= Ω1

Xn,U /Q
.

The system of sheaves {EU,ρ} has an action of Gn(A∞). (See Sect. 3.4.)
Similarly if R0 is an irreducible noetherian Z(p)-algebra and ρ is a representa-

tion of Ln,(n) on a locally free R0-module then we may associate a locally free sheaf
Eord
Up(N1 ,N2),ρ/X

ord
n,Up(N1 ,N2) × SpecR0 (in the Zariski topology). As examples we have the

following.

• Eord
Up(N1 ,N2),Std∨

∼= Ωord
n,Up(N1 ,N2), the pull-back by the identity section of the sheaf of

relative differentials Ω1
Auniv/X ord

n,Up(N1 ,N2)
.

• EUp(N1 ,N2),∧n[F :Q]Std∨ ∼= ∧n[F :Q]Ωord
n,Up(N1 ,N2) = ωord

Up(N1 ,N2).
• EUp(N1 ,N2),KS

∼= Ω1
X ord
n,Up(N1 ,N2)

/Z(p)
.

The system of sheaves {EUp(N1 ,N2),ρ} has an action of Gn(A∞)ord,×. (See Sect. 3.4.)
The scheme Xn,U has a canonical compactification Xmin

n,U called the minimal or Baily–
Borel compactification with boundary ∂Xmin

n,U . It is a normal projective scheme over Q.
The line bundleωU extends (uniquely, if n > 1 or F+ �= Q) to an ample line bundleωU on
Xmin
n,U . However we can not expect the vector bundles EU,ρ to all extend to vector bundles

on Xmin
n,U × SpecR0. All these systems of spaces and the line bundles ωU have compatible

actions of Gn(A∞). (See Sect. 5.1.) We can describe the scheme ∂Xmin
n,U more precisely,

but this will require considerably more notation, so we will come back to this in the next
section.
We can also define a normal quasi-projective schemeX ord,min

n,Up(N1 ,N2) overZ(p) with a closed
subscheme ∂X ord,min

n,Up(N1 ,N2) such that

X ord
n,Up(N1 ,N2) = X ord,min

n,Up(N1 ,N2) − ∂X ord,min
n,Up(N1 ,N2)

is a dense open subscheme. The scheme X ord,min
n,Up(N1 ,N2) is not proper—informally speaking

it is missing points in characteristic p. Its generic fibre is identified with Xmin
n,Up(N1 ,N2) and

there is a unique line bundleωord
Up(N1 ,N2) over it which restricts toωord

Up(N1 ,N2) onX
ord
n,Up(N1 ,N2)
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and to ωUp(N1 ,N2) on Xmin
n,Up(N1 ,N2). We will write Xord,min

n,Up(N1 ,N2) for the formal completion of

X ord,min
n,Up(N1 ,N2) along its Fp-fibre Xord,min

n,Up(N1 ,N2). Schemes ∂Xord,min
n,Up(N1 ,N2) are defined similarly.

All these systems of (formal) schemes have compatible actions ofGn(A∞)ord. The system
of line bundles {ωord

Up(N1 ,N2)} has an action of Gn(A∞)ord,×. (See Sect. 5.1.) Again we will
describe the schemes ∂X ord,min

n,Up(N1 ,N2) more precisely in the next section.
If U ⊂ Gn(A∞,p × Zp) then we can define a normal scheme Xmin

n,U which is projective
and flat over Z(p) with generic fibre Xmin

n,U , together with an extension of ωU to an ample
line bundle on Xmin

n,U , which we will also denote ωU . These systems of schemes and line
bundles have compatible actions of Gn(A∞,p × Zp). There are Gn(A∞)ord,×-equivariant
open embeddings X ord,min

n,Up(N1 ,N2) ↪→ Xmin
n,Up(N1 ,N2). We will write Xmin

n,U for the Fp-fibre of
Xmin
U,n . There is a canonical section

HasseU ∈ H0
(
Xmin
n,U ,ω⊗p−1

U

)
.

These sections are invariant under the action of Gn(A∞,p × Zp). We write Xmin,n-ord
n,U for

the vanishing locus of HasseU . Then Xord,min
n,Up(N1 ,N2) is an open and closed subscheme of

Xmin
n,Up(N1 ,N2) − Xmin,n-ord

n,Up(N1 ,N2). They are equal if N1 = N2 = 0. (See Sect. 5.1.)
To certain additional data Δ, with (U,Δ) in a certain partially ordered set J tor

n , which
we will describe more carefully in the next section, one can associate a smooth projective
scheme Xn,U,Δ/Q and a simple normal crossings divisor

∂Xn,U,Δ ⊂ Xn,U,Δ

such that

Xn,U = Xn,U,Δ − ∂Xn,U,Δ.

We write (Xn,U,Δ,MΔ) for the log scheme associated to (Xn,U,Δ, ∂Xn,U,Δ). There is a
natural map Xn,U,Δ → Xmin

n,U which is the identity of Xn,U and sends ∂Xn,U,Δ to ∂Xmin
n,U .

The universal abelian scheme Auniv/Xn,U extends uniquely to a semi-abelian scheme
Auniv/Xn,U,Δ. The system of schemes {Xn,U,Δ} has an action ofGn(A∞) via log etale maps.
Similarly to certain additional dataΣ , with (U,Σ) in a certain partially ordered setJ (m),tor

n ,
which we will describe more carefully in the next section, one can associate a smooth
projective scheme A(m)

n,U,Σ/Q and a simple normal crossings divisor ∂A(m)
n,U,Σ ⊂ A(m)

n,U,Σ
such that

A(m)
n,U = A(m)

n,U,Σ − ∂A(m)
n,U,Σ .

We write (A(m)
n,U,Σ ,MΣ ) for the log scheme associated to (A(m)

n,U,Σ , ∂A(m)
n,U,Σ ). If (U,Σ) and

(U ′,Δ) are compatible in a suitable sense, then there is a natural log smoothmapA(m)
n,U,Σ →

Xn,U ′ ,Δ. (See Sects. 5.2, 5.3.) More details on the structure of the boundary will be given
in the next section.
IfR0 is an irreducible noetherianQ-algebra and ρ is a representation of Ln,(n) on a locally

free R0-module then we may associate a locally free sheaf Ecan
U,Δ,ρ/Xn,U,Δ × SpecR0 (in the

Zariski topology) such that

Ecan
U,Δ,ρ |Xn,U×SpecR0 = EU,ρ .



Harris et al. Res Math Sci (2016) 3:37 Page 238 of 308

As examples we have the following.

• Ecan
U,Δ,Std∨

∼= Ωn,U,Δ, the pull-back by the identity section of the sheaf of relative
differentials Ω1

Auniv/Xn,U,Δ
.

• Ecan
U,Δ,∧n[F :Q]Std∨

∼= ∧n[F :Q]Ωn,U,Δ = ωU,Δ is naturally identified with the pull-back of
ωU from Xmin

n,U .
• Ecan

U,Δ,KS
∼= Ω1

Xn,U,Δ
(log∞), the sheaf of differentials with log poles along the boundary.

We will write

E sub
U,Δ,ρ = Ecan

U,Δ,ρ ⊗ I∂Xn,U,Δ ,

where I∂Xn,U,Δ denotes the ideal sheaf of the boundary. It is again a locally free sheaf. We
will also write E sub

U,ρ for the coherent sheaf on Xmin
n,U which is the push-forward of E sub

U,Δ,ρ
from Xn,U,Δ. (This is independent of the choice of Δ.) The systems of sheaves {Ecan

U,Δ,ρ},
{E sub

U,Δ,ρ}, and {E sub
U,ρ} have actions of Gn(A∞). (See Sect. 5.4.)

We will write Ω1
A(m)
U,Σ

(log∞) for the sheaf of differentials on A(m)
U,Σ with log poles along

∂A(m)
U,Σ , and Ω i

A(m)
U,Σ

(log∞) for its ith exterior power.

Similarly to certain additional data Δ, with (Up(N1, N2),Δ) ∈ J tor
n , one can associate a

smooth quasi-projective scheme X ord
n,Up(N1 ,N2),Δ/Q and a simple relative normal crossings

divisor

∂X ord
n,Up(N1 ,N2),Δ ⊂ X ord

n,Up(N1 ,N2),Δ

such that

X ord
n,Up(N1 ,N2) = X ord

n,Up(N1 ,N2),Δ − ∂X ord
n,Up(N1 ,N2),Δ.

The Q-fibre is identified with Xn,Up(N1 ,N2),Δ. We write (X ord
n,Up(N1 ,N2),Δ,MΔ) for the

log scheme associated to (X ord
n,Up(N1 ,N2),Δ, ∂X

ord
n,Up(N1 ,N2),Δ). There is a natural map

X ord
n,Up(N1 ,N2),Δ → X ord,min

n,Up(N1 ,N2) which equals the identity of X ord
n,Up(N1 ,N2) and sends

∂X ord
n,Up(N1 ,N2),Δ to ∂X ord,min

n,Up(N1 ,N2). The universal abelian schemeAuniv/X ord
n,Up(N1 ,N2) extends

uniquely to a semi-abelian scheme Auniv/X ord
n,Up(N1 ,N2),Δ. The system of schemes

{X ord
n,Up(N1 ,N2),Δ} has an action of Gn(A∞)ord. Also to certain additional data Σ , with

(Up(N1, N2),Σ) ∈ J (m),tor
n , one can associate a smooth quasi-projective scheme

A(m),ord
n,Up(N1 ,N2),Σ/Z(p) and a simple normal crossings divisor

∂A(m),ord
n,Up(N1 ,N2),Σ ⊂ A(m),ord

n,Up(N1 ,N2),Σ

such that

A(m),ord
n,Up(N1 ,N2) = A(m),ord

n,Up(N1 ,N2),Σ − ∂A(m),ord
n,Up(N1 ,N2),Σ .

The Q-fibre is identified with A(m)
n,Up(N1 ,N2),Σ . We write (A(m),ord

n,Up(N1 ,N2),Σ ,MΣ ) for the log
scheme associated to (A(m),ord

n,Up(N1 ,N2),Σ , ∂A(m),ord
n,Up(N1 ,N2),Σ ). If the pairs (Up(N1, N2),Σ) and

((Up)′(N ′
1, N

′
2),Δ) are compatible in a suitable sense, then there is a natural log smooth
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mapA(m),ord
n,Up(N1 ,N2),Σ → X ord

n,(Up)′(N ′
1 ,N

′
2),Δ

. (See Sects. 5.2, 5.3.) More details on the structure
of the boundary will be given in the next section.
Similarly if R0 is an irreducible noetherian Z(p)-algebra and ρ is a representa-

tion of Ln,(n) on a locally free R0-module then we may associate a locally free sheaf
Eord,can
Up(N1 ,N2),Δ,ρ/X ord

n,Up(N1 ,N2),Δ × SpecR0 (in the Zariski topology) such that

Eord,can
Up(N1 ,N2),Δ,ρ |X ord

n,Up(N1 ,N2)
×SpecR0 = Eord

Up(N1 ,N2),ρ

and the pull-back to the Q-fibre is identified with Ecan
Up(N1 ,N2),Δ,ρ . As examples we have the

following.

• Eord,can
Up(N1 ,N2),Δ,Std∨

∼= Ωord
n,Up(N1 ,N2),Δ, the pull-back by the identity section of the sheaf of

relative differentials Ω1
Auniv/X ord

n,Up(N1 ,N2),Δ
.

• Eord,can
Up(N1 ,N2),Δ,∧n[F :Q]Std∨

∼= ∧n[F :Q]Ωord
n,Up(N1 ,N2),Δ = ωord

Up(N1 ,N2),Δ is naturally identified
with the pull-back of ωord

Up(N1 ,N2) from X ord,min
n,Up(N1 ,N2).

• Eord,can
Up(N1 ,N2),Δ,KS

∼= Ω1
X ord
n,Up(N1 ,N2),Δ

(log∞), the sheaf of differentials with log poles along

the boundary.

We will write

Eord,sub
Up(N1 ,N2),Δ,ρ = Eord,can

Up(N1 ,N2),Δ,ρ ⊗ I∂X ord
n,Up(N1 ,N2),Δ

,

where I∂X ord
n,Up(N1 ,N2),Δ

denotes the ideal sheaf of the boundary. It is again a locally free sheaf.

We will also write Eord,sub
Up(N1 ,N2),ρ for the coherent sheaf on X ord,min

n,Up(N1 ,N2) which is the push-
forward of Eord,sub

Up(N1 ,N2),Δ,ρ from Xn,Up(N1 ,N2),Δ. (This is independent of the choice of Δ.)
The systems of sheaves {Eord,can

Up(N1 ,N2),Δ,ρ}, {Eord,sub
Up(N1 ,N2),Δ,ρ}, and {Eord,sub

Up(N1 ,N2),ρ} have actions of
Gn(A∞)ord,×. (See Sect. 5.4.)
The formal completion of X ord

n,Up(N1 ,N2),Δ along its special fibre depends only on Up(N1)
and Δord, a subset of the data contained in Δ, which we will describe in more detail in
the next section. Thus we will denote this completion Xord

n,Up(N1),Δord , and its reduced sub-

schemeXord
n,Up(N1),Δord . The latter contains a simple normal crossings divisor ∂Xord

n,Up(N1),Δord

such that Xord
n,Up(N1),Δord − ∂Xord

n,Up(N1),Δord = Xord
n,Up(N1). The systems of these (formal)

schemes have an action of Gn(A∞)ord. The map

ςp : Xord
n,Up(N1),Δord −→ Xord

n,Up(N1),Δord

is finite flat of degree pn2[F+:Q] and the induced map on reduced subschemes is absolute
Frobenius. Similarly the formal completion ofA(m),ord

n,Up(N1 ,N2),Σ along its special fibre depends
only on Up(N1) and Σord, a subset of the data contained in Δ, which we will describe in
more detail in the next section. Thus we will denote this completionA(m),ord

n,Up(N1),Σord , and its

reduced subscheme A(m),ord
n,Up(N1),Σord . The latter contains a simple normal crossings divisor

∂A(m),ord
n,Up(N1),Σord such thatA

(m),ord
n,Up(N1),Σord −∂A(m),ord

n,Up(N1),Σord = A(m),ord
n,Up(N1). The systems of these

(formal) schemes have an action of G(m)
n (A∞)ord. The map

ςp : A(m),ord
n,Up(N1),Σord −→ A

(m),ord
n,Up(N1),Σord
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is finite flat of degree p(n+2m)n[F+ :Q] and the induced map on reduced subschemes is
absolute Frobenius. (See Sect. 5.3.)
We will write Xmin,†

U ′ and X†U ′ ,Δ and A(m),†
U,Σ for the dagger spaces in the sense of [27]

associated to Xmin
n,U ′/Qp and Xn,U ′ ,Δ/Qp and A(m)

n,U,Σ/Qp. We will write X ord,min,†
(Up)′(N1) and

X ord,†
(Up)′(N1),Δord andA

(m),ord,†
Up(N1),Σord for the subdagger spaces of X

min,†
(Up)′(N1 ,N2) and X†(Up)′(N1 ,N2),Δ

andA(m),†
Up(N1 ,N2),Σ corresponding to the admissible opens in the corresponding rigid spaces

which are the generic fibres of Xord,min
n,(Up)′(N1) and Xord

n,(Up)′(N1),Δord and A
(m),ord
n,Up(N1),Σord , respec-

tively. These depend only on (Up)′(N1), Δord, Up(N1) and Σord. If Up maps to (Up)′

then the spaces X ord,†
(Up)′(N1),Δord and A(m),ord,†

Up(N1),Σord are the pre-images in X†(Up)′(N1 ,N2),Δ and

A(m),†
Up(N1 ,N2),Σ of

X ord,min,†
(Up)′(N1) ⊂ Xmin,†

(Up)′(N1 ,N2).

Similarly we define closed subdagger spaces ∂X ord,min,†
(Up)′(N1) and ∂X ord,†

(Up)′(N1),Δord and

∂A(m),ord,†
Up(N1),Σord . (See Sects. 6.3, 6.4.)

The systems of dagger spaces {X ord,min,†
Vp(N1) } and {X ord,†

Vp(N1),Δord } and {A(m),ord,†
Up(N1),Σord } have

actions of Gn(A∞)ord and Gn(A∞)ord and G(m)
n (A∞)ord, respectively, which respect the

boundaries. If g ∈ Gn(A∞)ord or Gn(A∞)ord or G(m)
n (A∞)ord, respectively, then X ord,min

Vp(N1)

and X ord,†
Vp(N1),Δord and A(m),ord,†

Up(N1),Σord are the pre-images of X ord,min
(Vp)′(N ′

1)
and X ord,†

(Vp)′(N ′
1),Δ′,ord and

A(m),ord,†
(Up)′(N ′

1),Σ ′,ord under

g : Xmin,†
Vp(N1 ,N2) −→ Xmin,†

(Vp)′(N ′
1 ,N2+valp(ν(g)))

and

g : X†Vp(N1 ,N2),Δ −→ X†(Vp)′(N ′
1 ,N2+valp(ν(g))),Δ′

and

g : A(m),†
Up(N1 ,N2),Σ −→ A(m),†

(Up)′(N ′
1 ,N2+valp(ν(g))),Σ ′ ,

provided that either valp(ν(g)) = 0 or N2 + valp(ν(g)) > 0. (See Sects. 6.3, 6.4.)
We will write Ecan,†

Up(N1),Δord ,ρ for the restriction to X ord,†
Up(N1),Δord of the locally free sheaf

on X†Up(N1 ,N2),Δ associated to Ecan
Up(N1 ,N2),Δ,ρ . It does not depend on N2 or Δ. We define

E sub,†
Up(N1),Δord ,ρ similarly. The systems of sheaves {Ecan,†

Up(N1),Δord ,ρ} and {E sub,†
Up(N1),Δord ,ρ} have

actions of Gn(A∞)ord. If g ∈ Gn(A∞)ord then the map

g : g∗Ecan,†
(Up)′(N ′

1),Δ′,ord ,ρ −→ Ecan,†
Up(N1),Δord ,ρ

is an isomorphism. We have maps, which we will denote trF :

ςp,∗Ecan,†
Up(N1),Δord ,ρ

(ς∗p )−1

−→ Ecan,†
Up(N1),Δord ,ρ⊗O

Xord,†
Up(N1),Δord

,ς∗pOX ord,†
Up(N1),Δord

1⊗trςp−→ Ecan,†
Up(N1),Δord ,ρ
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and

ςp,∗E sub,†
Up(N1),Δord ,ρ

(ς∗p )−1

−→ Ecan,†
Up(N1),Δord ,ρ⊗O

Xord,†
Up(N1),Δord

,ς∗p I∂X ord,†
Up(N1),Δord

1⊗trςp−→ E sub,†
Up(N1),Δord ,ρ ,

where I
∂X ord,†

Up(N1),Δord
⊂ O

X ord,†
Up(N1),Δord

denotes the ideal sheaf of the boundary. (See Sect.

6.3.)
We will also write E sub,†

Up(N1),ρ for the restriction to X ord,min,†
Up(N1) of the locally free sheaf on

Xmin,†
Up(N1 ,N2) associated to E sub

Up(N1 ,N2),ρ . It does not depend on N2. It can be identified with
the push-forward from X ord,†

Up(N1),Δord to X ord,min,†
Up(N1) of Ecan,†

Up(N1),Δord ,ρ . The system of sheaves

{E sub,†
Up(N1),ρ} has an action of Gn(A∞)ord. Moreover the map

trF : ςp,∗E sub,†
Up(N1),Δord ,ρ −→ E sub,†

Up(N1),Δord ,ρ

pushes forward to a map

trF : ςp,∗E sub,†
Up(N1),ρ −→ E sub,†

Up(N1),ρ

which does not depend on Δord. (See Sect. 6.4.)
We will denote byΩ i

A(m),ord,†
Up(N1),Σord

(log∞) the sheaf onA(m),ord,†
Up(N1),Σord associated to the sheaf

Ω i
A(m)
n,Up(N1 ,N2),Σ

(log∞). It is independent ofN2 andΣ . Also letI
∂A(m),ord,†

Up(N1),Σord
denote the ideal

sheaf inO
A(m),ord,†

Up(N1),Σord
defining ∂A(m),ord,†

Up(N1),Σord . The systemsof sheaves {Ω i
A(m),ord,†

Up(N1),Σord

(log∞)}

and {Ω i
A(m),ord,†

Up(N1),Σord

(log∞) ⊗ I
∂A(m),ord,†

Up(N1),Σord
} both have actions of G(m)

n (A∞)ord. If g ∈

G(m)
n (A∞)ord then the map

g : g∗Ω i
A(m),ord,†

(Up)′(N ′
1),Σ

′,ord
(log∞) −→ Ω i

A(m),ord,†
Up(N1),Σord

(log∞)

is an isomorphism. We have maps, which we will denote trF :

ςp,∗Ω i
A(m),ord,†

Up(N1),Σord

(log∞)

(ς∗p )−1

−→ Ω i
A(m),ord,†

Up(N1),Σord

(log∞)⊗O
A(m),ord,†

Up(N1),Σord
,ς∗p O

A(m),ord,†
Up(N1),Σord

1⊗trςp−→ Ω i
A(m),ord,†

Up(N1),Σord

(log∞)

and

ςp,∗

⎛
⎝Ω i

A(m),ord,†
Up(N1),Σord

(log∞)⊗ I
∂A(m),ord,†

Up(N1),Σord

⎞
⎠

(ς∗p )−1

−→ Ω i
A(m),ord,†

Up(N1),Σord

(log∞)⊗O
A(m),ord,†

Up(N1),Σord
,ς∗p I

∂A(m),ord,†
Up(N1),Σord

1⊗trςp−→ Ω i
A(m),ord,†

Up(N1),Σord

(log∞)⊗ I
∂A(m),ord,†

Up(N1),Σord
.

(See Sect. 6.3.)
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A.2 The boundary

Unfortunately to describe the boundaries of our various compactifications requires signif-
icantly more notation.We remind the reader of our convention that, ifU ⊂ G are groups
and G → H is a homomorphism, we will sometimes also use U to denote the image of U
in H , where from the context it is clear that we need a subgroup of H .
Wewill first consider theboundaryofXmin

n,U . For i = 0, . . . , n letP+n,(i) denote the subgroup
of Gn consisting of matrices of the form

⎛
⎜⎝

∗ ∗ ∗
02(n−i)×i ∗ ∗
0i×i 0i×2(n−i) ∗

⎞
⎟⎠

and let Ln,(i) denote the subgroup consisting of block diagonal matrices. Then Ln,(i) =
Ln,(i),lin × Ln,(i),herm, where Ln,(i),lin ∼= RSOF

Z GLi is the set of matrices of the form

⎛
⎜⎝
∗ 0 0
0 12(n−i) 0
0 0 h

⎞
⎟⎠

with h ∈ RSOF
Z GLi, and where Ln,(i)herm ∼= Gn−i is the set of matrices of the form

⎛
⎜⎝

ν(g)1i 0 0
0 g 0
0 0 1i

⎞
⎟⎠

with g ∈ Gn−i. (See Sect. 1.2.)
For U ⊂ Ln,(i)(A∞) a neat open compact subgroup we set

X+
n,(i),U =

∐
h∈Ln,(i),lin(A∞)/U

Xn−i,hUh−1∩Ln,(i),herm(A∞).

This is locally of finite type, but not of finite type over Q. We refer to it as a generalized
Shimura variety. It has a left action of Ln,(i),lin(Q) = GLi(F ) such that δ ∈ Ln,(i),lin(Q) acts
via the coproduct of the identity maps

Xn−i,hUh−1∩Ln,(i),herm(A∞) −→ Xn−i,δhUh−1δ−1∩Ln,(i),herm(A∞).

The inverse system {X+
n,(i),U } has a commuting right action of Ln,(i)(A∞) such that g =

(glin, gherm) ∈ Ln,(i)(A∞) acts via the coproduct of the maps

gherm : Xn−i,hUh−1∩Ln,(i),herm(A∞) −→ Xn−i,hglinVg−1
lin h−1∩Ln,(i),herm(A∞)

if V ⊃ g−1Ug . We further define

X#

n,(i),U = Ln,(i),lin(Q)
∖
X+
n,(i),U .

The inverse system {X#

n,(i),U } has a right action of Ln,(i)(A∞). (See Sect. 4.1.)
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With these definitions we can describe the boundary ofXmin
n,U . There is a family of closed

subschemes

Xmin
n,U = ∂0Xmin

n,U ⊃ ∂1Xmin
n,U = ∂Xmin

n,U ⊃ ∂2Xmin
n,U ⊃ · · · ⊃ ∂n+1Xmin

n,U = ∅

which are preserved by the action of Gn(A∞). We set

∂0i X
min
n,U = ∂iXmin

n,U − ∂i+1Xmin
n,U

which is smooth over Q of dimension (n − i)2[F+ : Q] and write Xmin,∧
n,U,i for the formal

completion of Xmin
n,U along ∂0i X

min
n,U . We can describe ∂0i X

min
n,U as

∐

h∈P+n,(i)(A∞)\Gn(A∞)/U

X#

n,(i),hUh−1∩P+n,(i)(A∞).

If g ∈ Gn(A∞) and if g−1Ug ⊂ V then the map

g : ∂0i X
min
n,U −→ ∂0i X

min
n,V

is the coproduct of the maps

g ′ : X#

n,(i),hUh−1∩P+n,(i)(A∞) −→ X#

n,(i),h′Vh′,−1∩P+n,(i)(A∞)

where hg = g ′h′ with g ′ ∈ Pn,(i)(A∞). (See Sect. 5.1.)
We write

Up(N1)n,(i),lin = ker(Ln,(i),lin(Zp) → Ln,(i),lin(Z/pN1Z)) ⊂ Ln,(i),lin(A∞)

and

Up(N1, N2)n,(i) = Up(N1)n,(i),lin ×Up(N1, N2)n−i ⊂ Ln,(i)(Qp),

and if Up is a neat open compact subgroup of Ln,(i),lin(A∞,p) or Ln,(i)(A∞,p) we will write

Up(N1) = Up ×Up(N1)n,(i),lin.

or

Up(N1, N2) = Up ×Up(N1, N2)n,(i).

Moreover we write

Ln,(i),lin(A∞)ord = Ln,(i),lin(A∞,p × Zp)

and

Ln,(i)(A∞)ord = Ln,(i),lin(A∞)ord × Gn−i(A∞)ord
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and

Ln,(i)(A∞)ord,× = Ln,(i),lin(A∞)ord × Gn−i(A∞)ord,×.

(See Sect. 1.2.)
We set

X ord,+
n,(i),Up(N1 ,N2) =

∐

h∈Ln,(i),lin(A∞)ord,×/Up(N1)

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1 ,N2).

It has a left action of Ln,(i),lin(Z(p)) = GLi(OF,(p)) such that δ ∈ Ln,(i),lin(Z(p)) acts via the
coproduct of the identity maps

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1 ,N2) −→ X ord

n−i,(δhUph−1δ−1∩Ln,(i),herm(A∞,p))(N1,N2).

The inverse system {X ord,+
n,(i),Up(N1 ,N2)} has a commuting right action of Ln,(i)(A∞)ord such

that g = (glin, gherm) ∈ Ln,(i)(A∞)ord acts via the coproduct of the maps

gherm : Xn−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1 ,N2) −→ X ord
n−i,(hglinVpg−1

lin h−1∩Ln,(i),herm(A∞,p))(N ′
1 ,N

′
2)

if Vp(N ′
1, N

′
2) ⊃ g−1Up(N1, N2)g . We further define

X ord,#
n,(i),Up(N1 ,N2) = Ln,(i),lin(Z(p))\X ord,+

n,(i),Up(N1 ,N2).

The inverse system {X ord,#
n,(i),Up(N1 ,N2)} has a right action of Ln,(i)(A∞)ord. (See Sect. 4.1.)

There is a family of closed subschemes

X ord,min
n,Up(N1 ,N2) = ∂0X ord,min

n,Up(N1 ,N2) ⊃ ∂1X ord,min
n,Up(N1 ,N2)

= ∂X ord,min
n,Up(N1 ,N2) ⊃ ∂2X ord,min

n,Up(N1 ,N2)

⊃ · · · ⊃ ∂n+1X ord,min
n,Up(N1 ,N2) = ∅

which are preserved by the action of Gn(A∞)ord. We set

∂0i X
ord,min
n,Up(N1 ,N2) = ∂iX ord,min

n,Up(N1 ,N2) − ∂i+1X ord,min
n,Up(N1 ,N2)

which is smooth over Z(p) of relative dimension (n− i)2[F+ : Q]. We can describe it as
∐

h∈P+n,(i)(A∞)ord,×\Gn(A∞)ord,×/Up(N1)X
ord,#
n,(i),(hUph−1∩P+n,(i)(A∞,p))(N1 ,N2)

$∐h X
#

n,(i),hUp(N1 ,N2)h−1∩P+n,(i)(A∞),

where the second coproduct runs over

h ∈
(
P+n,(i)(A

∞)
∖
Gn(A∞)

/
Up(N1, N2)− P+n,(i)(A

∞)ord,×
∖
Gn(A∞)ord,×

/
Up(N1)

)
.

The action of Gn(A∞)ord can be described as in the case of ∂0i X
min
n,U . (See Sect. 5.1.)

We will now turn to the boundary of Xn,U,Δ and A(m)
n,U,Σ . The former is the special case

of the latter in which m = 0, so we will discuss only the case of A(m)
n,U,Σ and allow the

reader to specialize to the case m = 0. We will first describe more precisely what is the
data encoded in Σ .
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If X is an F-vector space we let HermX denote the space of symmetric Q-bilinear forms

( , ) : X × X −→ Q

such that

(ax, y) = (x, cay)

for x, y ∈ X and a ∈ F . IfW ⊂ Vn is an isotropic F-subspace we set

C(m)(W ) = (HermVn/W⊥ ⊕HomF (Fm,W ))⊗Q R.

If Vn,(i) denotes the subspace of Vn with the last 2n− i entries zero then C(m)(Vn,(i)) can be
identified with Z(N (m)

n,(i))(R), where Z(N (m)
n,(i)) is the subgroup ofG(m)

n consisting of matrices
of the following shape:
⎛
⎜⎝
1i 0 ∗
0 12(n−i) 0
0 0 1i

⎞
⎟⎠

⎛
⎜⎝
∗
0
0

⎞
⎟⎠ .

IfW ′ ⊂ W then Vn/W⊥ →→ Vn/(W ′)⊥ and so

C(m)(W ′) ↪→ C(m)(W ).

If γ ∈ G(m)
n (Q) then there is a natural map

γ : C(m)(W ) ∼−→ C(m)(γW ).

We define C(m),>0(W ) (resp. C(m),≥0(W )) to be the set of pairs (( , ), f ) such that ( , ) is
positive definite (positive semi-definite) on (Vn/W⊥)⊗Q R, and set

C(m),�0(W ) =
⋃

W ′⊂W
C(m),>0(W ′) ⊂ C(m),≥0(W ).

Alternatively C(m),�0(W ) can be described as the set of (( , ), f ) ∈ C(m),≥0(W ) such that
the kernel (i.e. radical) of ( , ) is defined over Q. We then define a topological space C(m)

by

C(m) =
(⋃

W
C(m),�0(W )

)/
∼,

where∼ is the equivalence relation generated by the identification of C(m),�0(W ′) with its
image in C(m),�0(W ) wheneverW ′ ⊂ W . Thus as a set

C(m) =
∐
W

C(m),>0(W ).

The space C(m) has a continuous action of G(m)
n (Q) and of R×

>0, the latter acting by scalar
multiples on each C(m),�0(W ). The natural projections C(m),�0(W ) → C(0),�0(W ) give rise
to a projection C(m) → C = C(0). (See Sect. 1.4.)
By aU-admissible cone decompositionΣ ofG(m)

n (A∞)×π0(Gn(R))×C(m) we shall mean
a set of closed subsets σ ⊂ G(m)

n (A∞)× π0(Gn(R))× C(m) such that
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(1) each σ is contained in {(g, δ)} × C(m),�0(W ) for some isotropic subspaceW ⊂ Vn
and some (g, δ) ∈ G(m)

n (A∞)×π0(Gn(R)) and is the set ofR≥0-linear combinations
of a finite set of elements of HermV /W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)× C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ ;
(4) if σ , σ ′ ∈ Σ then either σ ∩ σ ′ = ∅ or σ ∩ σ ′ is a face of σ and σ ′;
(5) G(m)

n (A∞)× π0(Gn(R))× C(m) =⋃σ∈Σ σ ;
(6) Σ is invariant by the diagonal action ofG(m)

n (Q) onG(m)
n (A∞)×π0(Gn(R))×C(m);

(7) Σ is invariant by the right action of U on G(m)
n (A∞) × π0(Gn(R)) × C(m) (acting

only on the first factor);
(8) G(m)

n (Q)\Σ/U is a finite set;
(9) if σ ∈ Σ lies in G(m)

n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)) and if h ∈ P(m)
n,(i)(A), then

hσ ∈ Σ ;
(10) if σ ∈ Σ lies in G(m)

n (A∞)× π0(Gn(R))× C(m),�0(Vn,(i)), if γ ∈ G(m)
n (Q), if u ∈ U

and if h ∈ P(m)
n,(i)(A) satisfy

σ ∩ γ hσu ∩
(
G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))

)
�= ∅

then γ ∈ P(m)
n,(i)(Q).

(Here we let G(m)
n (A) act on G(m)

n (A∞)× π0(Gn(R))× C(m) via multiplication on the first
two factors. The restriction of this action to G(m)

n (Q) does not coincide with the standard
action ofG(m)

n (Q), whichwe are using.)We callΣ an admissible cone decomposition if it is
U-admissible for someU . The group G

(m)
n (A∞) acts on admissible cone decompositions.

We callΣ ′ a refinement ofΣ if every element ofΣ is a union of elements ofΣ ′. We write
(U ′,Σ ′) ≥ (U,Σ) if U ′ ⊂ U and Σ ′ is a refinement of Σ . We say that Σ is compatible
withΔ, an admissible cone decomposition of Gn(A∞)× π0(Gn(R))× C, if the projection
of each element of Σ is contained in an element of Δ. We write (U,Σ) ≥ (V,Δ) if U
maps to V andΣ is compatible withΔ. For eachm there is a cofinal collection J (m),tor

n of
pairs (U,Σ) of a neat open compact subgroup U ⊂ G(m)

n (A∞) and a U-admissible cone
decompositionΣ ofG(m)

n (A∞)× π0(Gn(R))×C(m) with various natural properties, some
of which are listed in Sect. 5.2. In particular it is preserved by the action ofG(m)

n (A∞). (See
Sect. 5.2.)
We define (G(m)

n (A∞) × π0(Gn(R)) × C(m))ord to be the subset of (g, δ, x) such that
for some W we have x ∈ C(m),�0(W ) and W ⊗ Qp = gp(Vn,(n) ⊗ Qp). It is invari-
ant under the left action of G(m)

n (Q), under the right action of G(m)
n (A∞)ord and under

the action of R×
>0. (See Sect. 1.4.) For Up(N ) ⊂ G(m)

n (A∞)ord,×, by a Up(N )-admissible
cone decomposition of (G(m)

n (A∞) × π0(Gn(R)) × C(m))ord we mean a collection Σ of
closed subsets σ ⊂ (G(m)

n (A∞) × π0(Gn(R)) × C(m))ord satisfying analogous properties
to those listed in the previous paragraph. Notions of ‘refinement’ and ‘compatibility’ are
defined just as in the previous paragraph. In the same manner we also define a partial
ordering on pairs (Up(N ),Σ). If Σ is a Up(N1, N2)-admissible cone decomposition of
G(m)
n (A∞)× π0(Gn(R))× C(m), then the collectionΣord of elements ofΣ which are con-

tained in (G(m)
n (A∞)× π0(Gn(R))× C(m))ord is a Up(N1)-admissible cone decomposition

of (G(m)
n (A∞) × π0(Gn(R)) × C(m))ord. For each m we define J (m),tor,ord

n to be the set of
(Up(N1),Σord), where (Up(N1, N2),Σ) ∈ J (m),tor

n for some N2 and Σ . It has various nat-
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ural properties listed in Sect. 5.2. In particular it is preserved by the action ofG(m)
n (A∞)ord.

(See Sect. 5.2.)
As was already mentioned, to each (U,Σ) ∈ J (m).tor

n we can associate a smooth projec-
tive varietyA(m)

n,U,Σ/Xmin
n,U togetherwith a simple normal crossings divisor ∂A(m)

n,U,Σ ⊂ A(m)
n,U,Σ

such that

A(m)
n,U,Σ − ∂A(m)

n,U,Σ = A(m)
n,U

and ∂A(m)
n,U,Σ is the reduced pre-image of ∂Xmin

n,U . We write ∂iA(m)
n,U,Σ for the reduced pre-

image of ∂iXmin
n,U ;

∂0i A
(m)
n,U,Σ = ∂iA(m)

n,U,Σ − ∂i+1A(m)
n,U,Σ .

The irreducible components of ∂A(m)
n,U,Σ are in bijection with the one-dimensional cones

in G(m)
n (Q)\Σ/U . A collection of such irreducible components have a non-empty inter-

section if and only if there is a cone σ ∈ Σ such that the given irreducible components
correspond to the one-dimensional faces of σ . In that case we write ∂[σ ]A(m)

n,U,Σ for this
intersection. We introduce the simplicial complex S(∂A(m)

n,U,Σ ) whose vertices are the
irreducible components of ∂A(m)

n,U,Σ and whose simplices correspond to collections of
such irreducible components with nonzero intersection. Then the topological realization
|S(∂A(m)

n,U,Σ )| of S(∂A(m)
n,U,Σ ) can be identified with

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
U × π0(Gn(R))× (C(m) − {0})

/
R×

>0

)
.

Moreover

∣∣∣S
(
∂A(m)

n,U,Σ

)∣∣∣−
∣∣∣S
(
∂A(m)

n,U,Σ − ∂nA(m)
n,U,Σ

)∣∣∣

is identified with

G(m)
n (Q)
∖(

G(m)
n (A∞)

/
U × π0(Gn(R))× C(m)=n

/
R×

>0

)
,

where

C(m)=n =
⋃

dimW=n
C(m),>0(W ) ⊂ C(m)

is a dense open subset. Moreover G(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R)) × C
(m)=n /R×>0) can

be identified with

∐
h∈P(m),+

n,(n) (A∞)\G(m)
n (A∞)/U L(m)

n,(n)(Q)
∖
L(m)
n,(n)(A)
/(

hUh−1 ∩ P(m),+
n,(n) (A∞)

)

Ln,(n),herm(R)+
(
L(m)
n,(n),lin(R) ∩U0

n,∞
)
An,(n)(R)0,

where U0
n,∞ is a certain maximal connected compact subgroup of Gn(R) defined in Sect.

1.1, and An,(n) denotes the maximal split torus in the centre of Ln,(n). (See Sect. 5.3.)
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Similarly to each (Up(N1, N2),Σ) ∈ J (m).tor
n we can associate a smooth quasi-projective

varietyA(m),ord
n,Up(N1 ,N2),Σ/X ord,min

n,Up(N1 ,N2) together with a simple normal crossings divisor

∂A(m),ord
n,Up(N1 ,N2),Σ ⊂ A(m),ord

n,Up(N1 ,N2),Σ

such that

A(m),ord
n,Up(N1 ,N2),Σ − ∂A(m),ord

n,Up(N1 ,N2),Σ = A(m),ord
n,Up(N1 ,N2)

and ∂A(m),ord
n,Up(N1 ,N2),Σ is the reduced pre-image of ∂X ord,min

n,Up(N1 ,N2). We will also write
∂iA(m),ord

n,Up(N1 ,N2),Σ for the reduced pre-image of ∂iX ord,min
n,Up(N1 ,N2) and set

∂0i A
(m),ord
n,Up(N1 ,N2),Σ = ∂iA(m),ord

n,Up(N1 ,N2),Σ − ∂i+1A(m),ord
n,Up(N1 ,N2),Σ .

The irreducible components of ∂A(m),ord
n,Up(N1 ,N2),Σ are in bijection with the one-dimensional

cones in G(m)
n (Q)\Σ/Up(N1, N2). A collection of such irreducible components have a

non-empty intersection if and only if there is a cone σ ∈ Σ such that the given irre-
ducible components correspond to the one-dimensional faces of σ . In that case we write
∂[σ ]A(m),ord

n,Up(N1 ,N2),Σ for this intersection. The Fp-fibre of ∂[σ ]A(m),ord
n,Up(N1 ,N2),Σ is non-empty if

and only if G(m)
n (Q)σU contains an element of Σord. (See Sect. 5.3.)

We let A(m),ord
n,Up(N1),Σord denote the Fp-fibre ofA(m),ord

n,Up(N1 ,N2),Σ . It is independent ofN2 ≥ N1

and Σ inducing Σord. Similarly we define ∂A(m),ord
n,Up(N1),Σord and ∂iA

(m),ord
n,Up(N1),Σord and, if σ ∈

Σord, also ∂[σ ]A
(m),ord
n,Up(N1),Σord . Ifσ meetsG(m)

n (A∞)×π0(Gn(R))×C
(m)=n then ∂[σ ]A

(m),ord
n,Up(N1),Σord

is irreducible. (It probably is in all cases, but we don’t know that.) We also define

∂ (s)A(m),ord
n,Up(N1),Σord =

∐
dim σ=s

∂[σ ]A
(m),ord
n,Up(N1),Σord ,

where the disjoint union is over s-dimensional cones σ ∈ Σord taken up to equiv-
alence, where two cones are considered equivalent if they have the same image in
G(m)
n (Q)\Σ/Up(N1, N2). We have an identification of the topological spaces associated

to the simplicial complex recording the intersections of the irreducible components of
the boundary:
∣∣∣S
(
∂A(m),ord

n,Up(N1),Σord

)∣∣∣−
∣∣∣S
(
∂A(m),ord

n,Up(N1),Σord − ∂nA
(m),ord
n,Up(N1),Σord

)∣∣∣

with

∐
h∈P(m),+

n,(n) (A∞,p×Zp)\G(m)
n (A∞)ord,×/Up(N ) L

(m)
n,(n)(Q)
∖
L(m)
n,(n)(A)
/

(
hUp(N1)h−1 ∩ P(m),+

n,(n) (A∞,p × Zp)
)
Ln,(n),herm(R)+

(
L(m)
n,(n),lin(R) ∩U0

n,∞
)
An,(n)(R)0.

(See Sect. 5.3.) We write

T
(m)
(n),V = L(m)

n,(n)(Q)
∖
L(m)
n,(n)(A)
/
VLn,(n),herm(R)+

(
L(m)
n,(n),lin(R) ∩U0

n,∞
)
An,(n)(R)0,
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an (S1)nm[F :Q]-bundle over a locally symmetric space associated to Ln,(n),lin. With this
notation
∣∣∣S
(
∂A(m),ord

n,Up(N1),Σord

)∣∣∣−
∣∣∣S
(
∂A(m),ord

n,Up(N1),Σord − ∂nA
(m),ord
n,Up(N1),Σord

)∣∣∣
∼=∐h∈P(m),+

n,(n) (A∞,p×Zp)\G(m)
n (A∞)ord,×/Up(N ) T

(m)
(n),
(
hUp(N1)h−1∩P(m),+

n,(n) (A∞,p×Zp)
).

(See Sect. 1.4.)
We also define A

(m),ord
n,Up(N1),Σord to be the formal completion of A(m),ord

n,Up(N1 ,N2),Σ along
its Fp-fibre. It is independent of N2 ≥ N1 and Σ inducing Σord. We similarly
define ∂A

(m),ord
n,Up(N1),Σord and ∂iA

(m),ord
n,Up(N1),Σord and ∂[σ ]A

(m),ord
n,Up(N1),Σord and ∂ (s)A(m),ord

n,Up(N1),Σord .

(See Sect. 5.3.) We will write ∂[σ ]A(m),ord,†
n,Up(N1),Σord and ∂ (s)A(m),ord,†

n,Up(N1),Σord for the tube over
the corresponding schemes in characteristic p inside the dagger spaces associated to
∂[σ ]A(m)

n,Up(N1 ,N2),Σ and ∂ (s)A(m)
n,Up(N1 ,N2),Σ . Again this is independent ofN2 andΣ . (See Sect.

6.3.)
We write A(m),∧

n,U,Σ ,i for the formal completion of A(m)
n,U,Σ along ∂0i A

(m)
n,U,Σ . There is an

explicit description of A(m),∧
n,U,Σ ,i, but it will require considerable extra notation, which we

now explain. (See Sect. 5.3.)
The group P(m),+

n,(i) is the subgroup of G(m)
n consisting of elements of the form

⎛
⎜⎝

∗ ∗ ∗
02(n−i)×i ∗ ∗
0i×i 0i×2(n−i) ∗

⎞
⎟⎠

⎛
⎜⎝
∗
∗
∗

⎞
⎟⎠ .

It is the semi-direct product of the subgroup N (m)
n,(i) consisting of elements of the form

⎛
⎜⎝
1i ∗ ∗
0 12(n−i) ∗
0 0 1i

⎞
⎟⎠

⎛
⎜⎝
∗
∗
0

⎞
⎟⎠

by L(m)
n,(i) = Ln,(i),herm×L(m)

n,(i),lin, where L
(m)
n,(i),lin is the subgroup consisting of elements of the

form
⎛
⎜⎝
∗ 0 0
0 12(n−i) 0
0 0 ∗

⎞
⎟⎠

⎛
⎜⎝
0
0
∗

⎞
⎟⎠ .

Thus

L(m)
n,(i),lin

∼= RSOF
Z

(
GLi � Hom(Gm

a ,Gi
a)
)
↪→ RSOF

Z GLi+m.

We also write P(m)
n,(i) for the subgroup of P(m),+

n,(i) consisting of matrices of the form

⎛
⎜⎝
1i ∗ ∗
0 ∗ ∗
0 0 1i

⎞
⎟⎠

⎛
⎜⎝
∗
∗
0

⎞
⎟⎠ .



Harris et al. Res Math Sci (2016) 3:37 Page 250 of 308

Then

P(m)
n,(i)/Z(N

(m)
n,(i)) ∼= G(i+m)

n−i

and

P(m),+
n,(i) = L(m)

n,(i),lin � P(m)
n,(i).

(See Sect. 1.2.)
For U ⊂ L(m)

n,(i)(A
∞) a neat open compact subgroup we set

X (m),+
n,(i),U =

∐

h∈L(m)
n,(i),lin(A∞)/U

Xn−i,hUh−1∩Ln,(i),herm(A∞).

It has a left action ofL(m)
n,(i),lin(Q) = GLi(F )�HomF (Fm, F i) and the inverse system {X (m),+

n,(i),U }
has a commuting right action of L(m)

n,(i)(A
∞). These actions are defined exactly similarly to

those on X+
n,(i),U . We have

X#

n,(i),U = L(m)
n,(i),lin(Q)

∖
X (m),+
n,(i),U .

(See Sect. 4.1.)
If U is a neat open compact subgroup of (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞) we set

A(m),+
n,(i),U =

∐

h∈L(m)
n,(i),lin(A∞)/U

A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
.

The scheme A(m),+
n,(i),U has a left action of L(m)

n,(i),lin(Q) such that δ ∈ L(m)
n,(i),lin(Q) acts via the

coproduct of the maps

δ : A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
−→ A(i+m)

n−i,δhUh−1δ−1∩G(i+m)
n−i (A∞)

= A(i+m)
n−i,δ(hUh−1∩G(i+m)

n−i (A∞))
.

The system of schemes {A(m),+
n,(i),U } has a commuting right action of the quotient group

(
P(m),+
n,(i)

/
Z
(
N (m)
n,(i)

))
(A∞)

such that if g ∈ (P(m),+
n,(i) /Z(N (m)

n,(i)))(A
∞) maps to glin ∈ L(m)

n,(i),lin(A
∞) then g acts by the

coproduct of the maps

hgg−1
lin h

−1 : A(i+m)
n−i,hUh−1∩G(i+m)

n−i (A∞)
−→ A(i+m)

n−i,hglinVg−1
lin h−1∩G(i+m)

n−i (A∞)
.

(See Sect. 4.2.)
If U is a neat open compact subgroup of P(m),+

n,(i) (A∞) we define S(m),+
n,(i),U to be the torus

over X (m),+
n,(i),U with cocharacter group constant over

Xn−i,hUh−1∩Ln,(i),herm(A∞) ⊂ X+
n,(i),U
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(where U denotes the image of U in L(m)
n,(i)(A

∞)) and identified with

hUh−1 ∩ Z(N (m)
n,(i))(Q),

In fact, we define

Y+
n,(i),U =

∐
h∈Ln,(i),lin(A∞)/U

SpecQ

so that S(m),+
n,(i),U is already definedoverY+

n,(i),U . The torus S
(m),+
n,(i),U has a left action ofL(m)

n,(i),lin(Q)
such that δ ∈ L(m)

n,(i),lin sends

S(m),+
n,(i),U

∣∣∣
Xn−i,hUh−1∩Ln,(i),herm(A∞)

−→ S(m),+
n,(i),U |Xn−i,δhUh−1δ−1∩Ln,(i),herm(A∞)

via the morphism induced by the map on cocharacter groups

hUh−1 ∩ Z
(
N (m)
n,(i)

)
(Q) −→ δhUh−1δ−1 ∩ Z

(
N (m)
n,(i)

)
(Q)

given by conjugation by δ. The system of tori {S(m),+
n,(i),U } also has a right action of P(m),+

n,(i) (A∞)
such that g ∈ P(m),+

n,(i) (A∞) mapping to glin ∈ L(m)
n,(i),lin(A

∞) sends

S(m),+
n,(i),U

∣∣∣
Xn−i,hUh−1∩Ln,(i),herm(A∞)

−→ S(m),+
n,(i),U |Xn−i,hglinVg

−1
lin h−1∩Ln,(i),herm(A∞)

via the morphism induced by the map on cocharacter groups

hUh−1 ∩ Z(N (m)
n,(i))(Q) −→ hglinVg−1

lin h
−1 ∩ Z(N (m)

n,(i))(Q)

by conjugation by hgling−1h−1. (See Sect. 4.3.)
If (U,Σ) ∈ J (m),tor

n then we define a partial fan (in the sense of Sect. 2.5) Σ(h)0 in
X∗(S(m),+

n,(i),hUh−1∩P(m),+
n,(i) (A∞)

) as follows. Over

Xn−i,h′
(
hUh−1∩P(m),+

n,(i) (A∞)
)
h′,−1∩Ln,(i),herm(A∞)

we take the cones

σ ⊂
(
h′
(
hUh−1 ∩ P(m),+

n,(i) (A∞)
)
h′,−1 ∩ Z

(
N (m)
n,(i)

)
(Q)
)
⊗Z R = C(m)(Vn,(i))

such that

{(h′h, 1)} × σ ∈ Σ

and σ ∩ C(m),>0(Vn,(i)) is non-empty. It is preserved by the action of L(m)
n,(i),lin(Q). (See

Sect. 5.2.) This, in the sense of Sect. 4.4, is an ‘admissible cone decomposition’ of
X∗(S(m),+

n,(i),hUh−1∩P(m),+
n,(i) (A∞)

)�0. We write Σ̃(h)0 for the fan consisting of all faces of elements

of Σ(h)0.
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If U is a neat open compact subgroup of P(m),+
n,(i) (A∞) we define an S(m),+

n,(i),U -torsor
T (m),+
n,(i),U/A(m),+

n,(i),U . It has an action of L(m)
n,(i),lin(Q). The system {T (m),+

n,(i),U } has a commuting
action of P(m),+

n,(i) (A∞). (See Sect. 4.3.) There is a torus embedding

T (m),+
n,(i),U ↪→ T (m),+

n,(i),U,Σ̃(h)0

over A(m),+
n,(i),U corresponding to Σ̃(h)0. We write

∂Σ(h)0T
(m),+
n,(i),U = ∂Σ(h)0T

(m),+
n,(i),U,Σ̃(h)0

for the closed subset of the boundary corresponding toΣ(h)0 ⊂ Σ̃(h)0, and let

T (m),+,∧
n,(i),U,Σ(h)0

denote the completion of T (m),+
n,(i),U,Σ̃(h)0

along ∂Σ(h)0T
(m),+
n,(i),U,Σ̃(h)0

. (See Sects. 2.3, 2.5.) The

L(m)
n,(i),lin(Q) action extends toT (m),+

n,(i),U,Σ̃(h)0
and ∂Σ(h)0T

(m),+
n,(i),U andT (m),+,∧

n,(i),U,Σ(h)0 . The quotients

∂Σ(h)0T
(m),#
n,(i),U = L(m)

n,(i)(Q)
∖

∂Σ(h)0T
(m),+
n,(i),U

and

T (m),#,∧
n,(i),U,Σ(h)0 = L(m)

n,(i)(Q)
∖
T (m),+,∧
n,(i),U,Σ(h)0

make sense. Sometimes it will be convenient to take the quotient in two stages. Thus we
set

∂Σ(h)0T
(m),#+
n,(i),U = HomF (Fm, F i)

∖
∂Σ(h)0T

(m),+
n,(i),U

and

T (m),#+,∧
n,(i),U,Σ(h)0 = HomF (Fm, F i)

∖
T (m),+,∧
n,(i),U,Σ(h)0 .

These still carry an action of Ln,(i)(Q). If (U,Σ) ≥ (V,Δ), then there is also a natural
Ln,(i)(Q)-equivariant map

T (m),#+,∧
n,(i),U,Σ(h)0 −→ T (m),+,∧

n,(i),V,Δ(h)0 .

The inverse systems {T (m),#,∧
n,(i),U,Σ(h)0} and {∂Σ(h)0T

(m),#
n,(i),U } as U and Σ vary has an action of

P(m),+
n,(i) (A∞). (See Sect. 4.5.)
Then we have an identification

A(m),∧
n,U,Σ ,i =

∐

h∈P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U

T (m),#,∧
n,(i),hUh−1∩P(m),+

n,(i) (A∞),Σ(h)0
,
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where the term indexed by h is exactly the open and closed subformal scheme whose
underlying topological space is the pre-image of X#

n,(i),hUh−1∩P(m),+
n,(i) (A∞)

⊂ ∂0i X
min
n,U . These

identifications are compatible with the action of G(m)
n (A∞) and the maps

A(m),∧
n,U,Σ ,i −→ A(0),∧

n,V,Δ,i = X∧
n,V,Δ,i −→ Xmin,∧

n,V,i .

(See Sect. 5.3.)
There is a similar description for the formal completion of A(m),ord

n,Up(N1 ,N2),Σ along
∂0i A

(m),ord
n,Up(N1 ,N2),Σ , which we will denoteA(m),ord,∧

n,Up(N1 ,N2),Σ ,i.
We let L(m)

n,(i),lin(A
∞)ord = L(m)

n,(i),lin(A
∞)ord,× denote L(m)

n,(i),lin(A
∞,p × Zp). We write

Up(N )(m)
n,(i),lin = ker(L(m)

n,(i),lin(Zp) → L(m)
n,(i),lin(Z/pNZ)).

If Up ⊂ L(m)
n,(i),lin(A

∞,p) we write Up(N ) = Up ×Up(N )(m)
n,(i),lin. We also define

Y (m),ord,+
n,(i),Up(N ) =

∐

L(m)
n,(i),lin(A∞)ord,×/Up(N )

SpecZ(p),

which has a left action of L(m)
n,(i),lin(Z(p)). The inverse system {Y (m),ord,+

n,(i),Up(N )} has a commuting
right action of L(m)

n,(i),lin(A
∞)ord. We set

Y (m),ord,#
n,(i),Up(N ) = L(m)

n,(i),lin(Z(p))\Y (m),ord,+
n,(i),Up(N ).

(See Sect. 4.1.)
We set

L(m)
n,(i)(A

∞)ord = Ln,(i),herm(A∞)ord × L(m)
n,(i),lin(A

∞)ord

and

L(m)
n,(i)(A

∞)ord,× = Ln,(i),herm(A∞)ord,× × L(m)
n,(i),lin(A

∞)ord,×.

We set

Up(N1, N2)(m)
n,(i) = Up(N1, N2)n−i ×Up(N1)(m)

n,(i),lin,

and, if Up ⊂ L(m)
n,(i)(A

∞,p), then we set Up(N1, N2) = Up ×Up(N1, N2)(m)
n,(i). We define

X (m),ord,+
n,(i),Up(N1 ,N2) =

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up(N1)

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1 ,N2),

which has a left action of L(m)
n,(i),lin(Z(p)). The inverse system {X (m),ord,+

n,(i),Up(N1 ,N2)} has a com-
muting right action of L(m)

n,(i)(A
∞)ord. We set

X (m),ord,#
n,(i),Up(N ) = L(m)

n,(i),lin(Z(p))\X (m),ord,+
n,(i),Up(N ).

(See Sect. 4.1.)
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Further we set P(m),+
n,(i) (A∞)ord to be

P(m),+
n,(i) (A∞,p)× L(m)

n,(i)(A
∞)ordN (m)

n,(i)(Zp)

and P(m),+
n,(i) (A∞)ord,× to be

P(m),+
n,(i) (A∞,p)× L(m)

n,(i)(A
∞)ord,×N (m)

n,(i)(Zp).

Moreover we defineUp(N1, N2)(m),+
n,(i) to be the subgroup of P(m),+

n,(i) (Zp) consisting of matri-
ces of the form
⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ≡ 0 mod pN2 ≡ 1n−i mod pN1 ≡ 0 mod pN1

0 0 0 ≡ 1i mod pN1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∗
∗

≡ 0 mod pN1

≡ 0 mod pN1

⎞
⎟⎟⎟⎟⎠
.

If Up ⊂ P(m),+
n,(i) (A∞,p) (resp. (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞,p)) we define Up(N1, N2) to be Up ×
Up(N1, N2)(m),+

n,(i) (resp.Up×Up(N1, N2)(m),+
n,(i) /(Z(N (m)

n,(i))(Zp))). IfUp is a neat open compact
subgroup of (P(m),+

n,(i) /Z(N (m)
n,(i)))(A

∞,p) we define

A(m),ord,+
n,(i),Up(N1 ,N2) =

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up(N1)

A(i+m),ord
n−i,(hUph−1∩G(i+m)

n−i (A∞,p))(N1 ,N2)
,

which has a left action of L(m)
n,(i),lin(Z(p)). The system of schemes {A(m),ord,+

n,(i),Up(N1 ,N2)} has a
commuting right action of P(m),+

n,(i) (A∞)ord/(Z(N (m)
n,(i))(A

∞,p × Zp)). (See Sect. 4.2.)
If Up is a neat open compact subgroup of P(m),+

n,(i) (A∞,p) we define S (m),ord,+
n,(i),Up(N ) to be

the torus over Y (m),ord,+
n,(i),Up(N ) with cocharacter group over the SpecZ(p) indexed by h ∈

L(m)
n,(i),lin(A

∞)ord,×/Up(N ) identified with

hUph−1 ∩ Z(N (m)
n,(i))(Z(p)).

The torus S (m),ord,+
n,(i),Up(N ) has a left action of L(m)

n,(i),lin(Z(p)). The system of tori {S (m),ord,+
n,(i),Up(N )} also

has a right action of P(m),+
n,(i) (A∞)ord. (See Sect. 4.3.)

If (Up(N ),Σ) ∈ J (m),tor,ord
n and h ∈ G(m)

n (A∞)ord,× then we define a partial fan Σ(h)0
in X∗(S (m),ord,+

n,(i),(hUph−1∩P(m),+
n,(i) (A∞,p))(N )

) as follows. Over the SpecZ(p) corresponding to h′ ∈
L(m)
n,(i),lin(A

∞)ord,×/Up(N ) we take the cones

σ ⊂
(
h′
(
hUph−1 ∩ P(m),+

n,(i) (A∞,p)
)
h′,−1 ∩ Z

(
N (m)
n,(i)

)
(Z(p))
)
⊗Z R = C(m)(Vn,(i))

such that

{(h′h, 1)} × σ ∈ Σ

and σ ∩ C(m),>0(Vn,(i)) is non-empty. It is preserved by the action of L(m)
n,(i),lin(Z(p)). (See

Sect. 5.2.) This, in the sense of Sect. 4.4, is an ‘admissible cone decomposition’ of
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X∗(S (m),+,ord
n,(i),(hUph−1∩P(m),+

n,(i) (A∞,p))(N )
)�0. We write Σ̃(h)0 for the fan consisting of all faces of

elements of Σ(h)0.
If Up is a neat open compact subgroup of P(m),+

n,(i) (A∞,p) we define an S (m),ord,+
n,(i),Up(N1)-torsor

T (m),ord,+
n,(i),Up(N1 ,N2)/A

(m),ord,+
n,(i),Up(N1 ,N2). It has an action of L(m)

n,(i),lin(Z(p)). The system {T (m),ord,+
n,(i),Up(N1 ,N2)}

has a commuting action of P(m),+
n,(i) (A∞)ord. (See Sect. 4.3.) There is a torus embedding

T (m),ord,+
n,(i),Up(N1 ,N2) ↪→ T (m),ord,+

n,(i),Up(N1 ,N2),Σ̃(h)0

overA(m),ord,+
n,(i),Up(N1 ,N2) corresponding to Σ̃(h)0. We write

∂Σ(h)0T
(m),ord,+
n,(i),Up(N1 ,N2) = ∂Σ(h)0T

(m),+
n,(i),Up(N1 ,N2),Σ̃(h)0

for the closed subset of the boundary corresponding toΣ(h)0 ⊂ Σ̃(h)0, and let

T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ(h)0

denote the completion of T (m),ord,+
n,(i),Up(N1 ,N2),Σ̃(h)0

along ∂Σ(h)0T
(m),ord,+
n,(i),Up(N1 ,N2),Σ̃(h)0

. (See Sects.

2.3, 2.5.) The L(m)
n,(i),lin(Z(p)) action extends to T (m),ord,+

n,(i),Up(N1 ,N2),Σ̃(h)0
and ∂Σ(h)0T

(m),+
n,(i),Up(N1 ,N2)

and T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ(h)0 . The quotients

∂Σ(h)0T
(m),ord,#
n,(i),Up(N1 ,N2) = L(m)

n,(i)(Z(p))
∖

∂Σ(h)0T
(m),ord,+
n,(i),Up(N1 ,N2)

and

T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ(h)0 = L(m)

n,(i)(Z(p))
∖
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ(h)0

make sense. Sometimes it will be convenient to take the quotient in two stages. Thus we
set

∂Σ(h)0T
(m),ord,#+
n,(i),Up(N1 ,N2) = HomOF

(
Om

F,(p),Oi
F,(p)

)∖
∂Σ(h)0T

(m),ord,+
n,(i),Up(N1 ,N2)

and

T (m),ord,#+,∧
n,(i),Up(N1 ,N2),Σ(h)0 = HomOF

(
Om

F,(p),Oi
F,(p)

)∖
T (m),ord,+,∧
n,(i),Up(N1 ,N2),Σ(h)0 .

These still carry an action of Ln,(i)(Z(p)). The inverse systems {T (m),ord,#,∧
n,(i),Up(N1 ,N2),Σ(h)0} and

{∂Σ(h)0T
(m),ord,#
n,(i),Up(N1 ,N2)} as Up(N1, N2) and Σ vary have actions of P(m),+

n,(i) (A∞)ord. (See Sect.
4.5.)
Then we have an identification

A(m),ord,∧
n,Up(N1 ,N2),Σ ,i
=∐h∈P(m),+

n,(i) (A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

T (m),ord,#,∧
n,(i),(hUph−1∩P(m),+

n,(i) (A∞,p))(N1,N2),Σord(h)0
$∐h∈(P(m),+

n,(i) (A∞)\G(m)
n (A∞)/Up(N1 ,N2))−(P(m),+

n,(i) (A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1))

T (m),#,∧
n,(i),hUp(N1 ,N2)h−1∩P(m),+

n,(i) (A∞),Σ(h)0
,
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where the term indexed by h is exactly the open and closed subformal scheme whose
underlying topological space is the pre-image of

X ord,#
n,(i),(hUph−1∩P(m),+

n,(i) (A∞,p))(N1 ,N2)

or

X#

n,(i),hUp(N1 ,N2)h−1∩P(m),+
n,(i) (A∞)

⊂ ∂0i X
ord,min
n,Up(N1 ,N2).

These identifications are compatible with the action of G(m)
n (A∞)ord and the maps

A(m),ord,∧
n,Up(N1 ,N2),Σ ,i −→ A(0),ord,∧

n,V p(N1 ,N2),Δ,i = X ord,∧
n,V p(N1 ,N2),Δ,i −→ X ord,min,∧

n,V p(N1 ,N2),i .

(See Sect. 5.3.)

Appendix B. Comparison with [44]
This appendix is meant to be a guide to the notation system in [44] (and in the earlier
works [41–43]). While we will not cover everything, we will highlight the key definitions
and results used in this paper so that, it is hoped, the reader can understand the references
more easily. We will adopt the notation and conventions introduced in [41, Notation and
Conventions], whichmight be quite different from the ones introduced in this paper. (We
will explain the differences when necessary.)

B.1 Shimura varieties as PEL moduli in characteristic zero

In [41,44] the symbolsZ(1) are used to denote ker(exp : C → C×). In those papers, unlike
this paper, Tate twists just mean tensor products with powers of Z(1) as aZ-module, with
no attached Galois actions at all. Let us fix the choice of a square-root

√−1 in C, which
defines an isomorphism 2π

√−1 : Z ∼→ Z(1) = ker(exp : C → C×).
Consider the integral PEL datum

(O, ', L, 〈 · , · 〉, h0) = (OF , c,Λn, 2π
√−1〈 , 〉n, h0)

in the sense of definition 1.1.1.1 of [44], where h0 is the R-algebra homomorphism

h0 : C → EndO⊗ZR(L⊗Z R)

z = z1 +
√−1z2 �→

(
z1 Idn −z2Ψn
z2Ψn z1 Idn

)

with Ψn being the n× n-matrix with 1’s on the anti-diagonal and 0’s elsewhere (see Sect.
1.1). Note that the technical condition 1.4.3.10 in [41] or condition 1.2.1.1 in [44] are
satisfied.
The group functor G of definition 1.1.1.3 of [44] is just our Gn, and ν has the same

meaning in this paper and in [44]. The reflex field F0 defined by (L ⊗Z R, 〈 · , · 〉, h0) (see
section 1.2.5 of [41]) is just Q, and S0 = Spec F0 = SpecQ.
For each open compact subgroupH of G(Ẑ), [44] defines a moduli problem
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MH

over S0 = SpecQ (parameterizing isomorphismclasses of abelian schemeswith additional
PEL structures) as in the beginning of section 1.1.2 of [44], which is representable by a
smooth quasi-projective scheme over SpecQ when H is neat. As explained in remark
1.1.2.1 in [44], the definition of MH only depends on the rational PEL datum (O ⊗Z

Q, ', L⊗Z Q, 〈 · , · 〉⊗Z Q, h0), and hence can be extended to the cases of all open compact
subgroups H of G(A∞), up to replacing L with any lattice in L ⊗Z Q stabilized by H
(and replacing 〈 · , · 〉with a suitable Q×

>0-multiple of the induced pairing). By proposition
1.4.3.4 in [41], this moduli problem is canonically isomorphic to the

Xn,U

in this paper when U = H is contained in G(Ẑ) (see Sect. 3.1.1). (The condition on
Lie algebras in this paper is equivalent to the determinantal condition in [39,41].) The
collection {MH}H indexed by neat open compact subgroupsH of G(A∞) can be G(A∞)-
equivariantly identified with {Xn,U }U (with U = H), because the (Hecke) actions of
G(A∞) on them are defined by twisting level structures on quasi-isogeny classes in the
same way (see remark 1.4.3.11 of [41]). (Later we will not repeat the explanation on such
canonical isomorphisms between moduli of isomorphism classes and of quasi-isogeny
classes. Also, we will tacitly assume that all Hecke actions to be introduced are compatible
with previously introduced ones under canonical morphisms.)

B.2 Filtrations

Consider any filtration V = {V−j}j on L⊗Z Q ∼= F2n such that

(0) = V−3 ⊂ V−2 ⊂ V−1 = V⊥−2 ⊂ V0 = L⊗Z Q,

which is symplectic in the sense of definition 1.2.6.8 in [41] (or definition 1.2.1.2(4) in
[44]). By lemma A.4.3 in [45], up to the action of G(Q), we may assume that there exists
an integer 0 ≤ i ≤ n such that

(0) = V−3 ⊂ V−2 = Vn,(i) ⊂ V−1 = V⊥
n,(i) ⊂ V0 = L⊗Z Q,

which we call the i-th standard symplectic filtration, and write V = V(i). The stabilizer of
V(i) is then the parabolic subgroup P+n,(i)(Q) of Gn(Q).
We will need to consider filtrations Z = {Z−j}j on L⊗Z Ẑ such that

(0) = Z−3 ⊂ Z−2 ⊂ Z−1 = Z⊥−2 ⊂ Z0 = L⊗Z Ẑ,

which is fully symplectic admissible as in definition 5.2.7.1 in [41] or definition 1.2.1.4 in
[44]. If 0 ≤ i ≤ n and g ∈ G(A∞), then we can define such a filtration Z(i,g) by

Z
(i,g)
−j =
(
g−1
(
V(i)−j ⊗Q A∞)) ∩ (L⊗Z Ẑ),

for each j. Since we are not in the so-called type D case, by the proof of proposition A.5.9
of [45], any fully symplectic admissible filtration arises as Z(i,g) for some i and some g .
In fact, using the Iwasawa decomposition, we may suppose that g ∈ G(Ẑ). For each j, let
GrZ−j := Z−j/Z−j−1 as usual. Then 〈 · , · 〉 canonically induces a perfect pairing

〈 · , · 〉−1 : GrZ−1×GrZ−1 → Ẑ(1).
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Let us temporarily fix such a Z = Z(i,g) with g ∈ G(Ẑ) and fix an open compact subgroup
H ⊂ G(Ẑ). In [44], the following groups are defined for Ẑ-algebras R along with open
compact subgroups (see definitions 1.2.1.9, 1.2.1.10, and 1.2.1.11 in [44]):

(1) PZ(R) := {g ∈ G(R) : g(Z) = Z} = g−1P+n,(i)(R)g . We setHPZ := H ∩ PZ(Ẑ).
(2) G′

l,Z(R) is set equal to the subgroupofGLO(GrZ−2⊗ẐR)×GLO(GrZ0 ⊗ẐR) consisting
of elements respecting the pairing GrZ−2×GrZ0 → Ẑ(1) induced by 〈 · , · 〉. This
group comes isomorphically from g−1Ln,(i),lin(R)g . There is a natural surjective
map (ν−1 GrZ−2,Gr

Z
0 ) : PZ(R) � G′

l,Z(R) corresponding to P+n,(i)(R) →→ Ln,(i),lin(R).
We denote the kernel by P′Z(R) = g−1Pn,(i)(R)g . We set HP′Z := H ∩ P′Z(Ẑ),
HG′

h,Z
:= HP′Z/HUZ , andHG′

l,Z
:= HPZ/HP′Z .

(3) Gh,Z(R) :=
{

(g, r) ∈ GLO⊗ZR(GrZ−1⊗ẐR)×Gm(R) :
〈gx, gy〉−1 = r〈x, y〉−1, ∀x, y ∈ GrZ−1⊗ẐR

}
, which comes isomor-

phically from g−1Ln,(i),herm(R)g . Then there is a natural surjective map GrZ−1 :
PZ(R) � Gh,Z(R) corresponding to P+n,(i)(R) →→ Ln,(i),herm(R). We denote the ker-
nel ZZ(R) = (g−1Ln,(i),lin(R)g) � (g−1Nn,(i)(R)g). We set HZZ := H ∩ ZZ(Ẑ) and
HGh,Z := HPZ/HZZ .

(4) UZ(R) is the subgroup of PZ(R) consisting of elements g such that GrZ(g) =
IdGrZ⊗

Ẑ
R. Thus UZ(R) = g−1Nn,(i)(R)g . We setHUZ := H ∩ UZ(Ẑ).

(5) U2,Z(R) is the subgroup of PZ(R) consisting of elements g which induce
IdZ−1⊗Ẑ

R and Id(Z0⊗Ẑ
R)/(Z−2⊗Ẑ

R) on Z−1 ⊗Ẑ R and (Z0 ⊗Ẑ R)/(Z−2 ⊗Ẑ R),
respectively. Thus we have U2,Z(R) = g−1Z(Nn,(i))(R)g ∼= Herm(i)(R) ↪→
HomO⊗ZR(GrZ0 ⊗ẐR,Gr

Z−2⊗ẐR). We setHU2,Z := H ∩ U2,Z(Ẑ).
(6) U1,Z(R) := UZ(R)/U2,Z(R) = (g−1Nn,(i)(R)g)/(g−1Z(Nn,(i))(R)g), which is isomor-

phic to Hom(i)
n−i(R). We setHU1,Z := HUZ/HU2,Z .

(7) Gl,Z(R) := ZZ(R)/UZ(R). This maps isomorphically to G′
l,Z(R), but [44] chooses

to distinguish it as a subgroup rather than a quotient of PZ(R)/UZ(R). We set
HGl,Z := HZZ/HUZ , which may differ fromHG′

l,Z
.

(8) G′
h,Z(R) := P′Z(R)/UZ(R). This maps isomorphically to Gh,Z(R), but [44] chooses

to distinguish it as a subgroup rather than a quotient of PZ(R)/UZ(R). We set
HG′

h,Z
:= HP′Z/HUZ , which may differ fromHGh,Z .

(9) G1,Z(R) := P′Z(R)/U2,Z(R). It is isomorphic toG(i)
n−i(R).We setHG′

1,Z
:= HP′Z/HU2,Z .

For each open compact subgroup H = U of G(Ẑ), as g varies in G(A∞), the H-orbits
Z
(i,g)
H of Z(i,g) are parameterized by the double coset space

PZ(i,1) (A
∞)
∖
G(A∞)
/
H = P+n,(i)(A

∞)
∖
Gn(A∞)

/
U.

(See, for example, Sect. 5.1.)

B.3 Cusp labels

Given any fully symplectic admissible filtration Z, we define a torus argument to be a
rigidification Φ = (X, Y,φ,ϕ−2,ϕ0) on the top and bottom graded pieces (see definition
5.4.1.3 in [41] or definition 1.2.1.5 in [44]):

(1) X and Y are locally free O-modules, and φ : Y → X is an isomorphism of O-
modules.
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(2) ϕ−2 : GrZ−2
∼→ HomZ(X, Ẑ(1)) and ϕ0 : GrZ0

∼→ Y ⊗Z Ẑ are isomorphisms of
O ⊗Z Ẑ-modules such that the pairing 〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ(1) induced by
〈 · , · 〉 is the pull-back of the pairing

〈 · , · 〉φ : HomẐ(X ⊗Z Ẑ, Ẑ(1))× (Y ⊗Z Ẑ) → Ẑ(1)

defined by 〈x, y〉φ = x(φ(y)).

(For a general integral PEL datum, the first condition should be weakened to φ being
injective with finite cokernel, but in our setting the second condition then forces it to
be an isomorphism.) We say that two torus arguments Φ = (X, Y,φ,ϕ−2,ϕ0) and Φ ′ =
(X ′, Y ′,φ′,ϕ′−2,ϕ

′
0) are equivalent if there exists a pair of isomorphisms (γX : X ′ ∼→ X, γY :

Y ∼→ Y ′) ofO-lattices matching all other data. For 0 ≤ i ≤ n we have a torus argument

Φ(i) :=
(
Oi

F ,Oi
F , Id, (2π

√−1)ΨiId∨, Id
)

for Z(i,1), where Ψi is (as before) the i × i-matrix with 1’s on the anti-diagonal and 0’s
elsewhere (see Sect. 1.1).
If Φ = (X, Y,φ,ϕ−2,ϕ0) is a torus argument for Z and g ∈ PZ(A∞), then we obtain a

torus argument Φ(g) = (X (g), Y (g),φ(g),ϕ(g)
−2,ϕ

(g)
0 ) for Z(g) induced by g : Grg−1Z → GrZ

(see section 1.2.3 of [44] for more details). We shall write Φ(i,g) = (Φ(i))(g).
Consider triples of the form (Z,Φ , δ), where Z is a filtration as in the previous section,

whereΦ is a torus argument as above, andwhere δ : GrZ = GrZ−2⊕GrZ−1⊕GrZ0
∼→ L⊗Z Ẑ

is anO⊗ZẐ-equivariant splitting. The groupG(Ẑ) acts naturally on such triples, andhence
we can consider theirH-orbits of the form (ZH,ΦH, δH), for each open compact subgroup
H of G(Ẑ). We consider two such orbits (ZH,ΦH, δH) and (Z′H,Φ ′

H, δ′H) equivalent if
ZH = Z′H and if there exist representatives Φ and Φ ′ of ΦH and Φ ′

H, respectively, which
are equivalent. (Note that no compatibility condition is imposed on δH and δ′H.) We call
the equivalence classes [(ZH,ΦH, δH)], or simply [(ΦH, δH)], the cusp labels forMH.
For each (Z,Φ , δ) as above, and any Z-algebra R, we define G′

l,Φ (R) = GLO⊗ZR(Y ⊗Z R),
which admits a canonical map to G′

l,Z(R ⊗Z Ẑ) induced by Φ . When R is a Ẑ-algebra, we
have G′

l,Φ (R) ∼= G′
l,Z(R). When R = Q, we have G′

l,Φ (Q) ↪→ G′
l,Z(A

∞), and we define

ΓΦH := HG′
l,Z
∩G′

l,Φ (Q),

a congruence subgroup of G′
l,Φ (Z) = G′

l,Z(Ẑ) ∩ G′
l,Φ (Q) depending only on ΦH (see

definition 1.2.2.3 of [44] for an equivalent definition).
The map that sends g ∈ G(A∞) to [(Z(i,g)H ,Φ(i,g)

H , δH)] (for any δ) sets up a bijection
between the double coset space

(
G′
l,Φ(i,1) (Q) � P′

Z(i,1)
(A∞)
)∖

G(A∞)
/
H,

and cusp labels [(ZH,ΦH, δH)] such that GrZ0 has rank i over O ⊗Z Ẑ. This identifies the
set of cusp labels of the form [(Z(i,g)

H ,ΦH, δH)] with

G′
l,Φ(i,1) (Q)

∖
G′
l,Z(i,1) (A

∞)
/
(gHg−1)G′

l,Z(i,1)
.
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This last double coset space is the index set of

Y #

n,(i),gUg−1∩P+n,(i)(A∞) =
∐

Ln,(i),lin(Q)\Ln,(i),lin(A∞)/(gUg−1∩P+n,(i)(A∞))

SpecQ

in this paper (see Sect. 4.1), with U = H.

B.4 Minimal compactifications in characteristic zero

For each neat open compact subgroupH = U , there is a normal projective scheme

Mmin
H = Xmin

n,U

containingMH = Xn,U as an open dense subscheme (see theorem 1.3.1.5 of [44]).
Theminimal compactificationMmin

H admits a stratification by locally closed subschemes

Mmin
H =

∐
[(ΦH ,δH)]

Z[(ΦH ,δH)] =
n∐

i=0

∐
g
Z[(Φ(i,g)

H ,δH)]

where [(ΦH, δH)] runs over cusp labels for MH and g runs over the double quotient
(G′

l,Φ(i,1) (Q)�P′
Z(i,1)

(A∞))\G(A∞)/H (see theorem1.3.1.5(4) of [44]). IfH = U this induces

∂0i X
min
n,U =
∐
g
Z[(Φ(i,g)

H ,δH)].

The decomposition

∂0i X
min
n,U =

∐

g∈P+n,(i)(A∞)\Gn(A∞)/U

X#

n,(i),gUg−1∩P+n,(i)(A∞)

(see Sect. 5.1) corresponds to

X#

n,(i),gUg−1∩P+n,(i)(A∞) =
∐

h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/(gUg−1∩P+n,(i)(A∞))

Z[(Φ(i,hg)
H ,δH)].

Each Z[(ΦH ,δH)] is the quotientM
ZH
H of

MΦH
H

∼= MHG′h,Z

by ΓΦH , which is isomorphic toMHGh,Z ,Φ
, whereHGh,Z ,Φ is the image ofHPZ ∩ (G′

l,Φ (Q)�
P′Z(A∞)) inGh,Z(A∞) (see lemmas1.3.2.1 and1.3.2.5 of [44]).HereMHG′h,Z

andMHGh,Z ,Φ
are

moduli problems analogously defined by some integral PEL datum (O, ', LZ, 〈 · , · 〉Z, hZ0 )
associated with a representative Z of ZH (see definition 1.2.1.15 and lemmas 1.3.2.1 and
1.3.2.5 of [44]). Ifwe letU ′

g (resp.U ′
g,lin) denote the imageof gUg−1∩P+n,(i)(A∞) inLn,(i)(A∞)

(resp. Ln,(i),lin(A∞)), then under the identifications

X#

n,(i),U ′
g
= Ln,(i),lin(Q)\X+

n,(i),U ′
g

= Ln,(i),lin(Q)
∖( ∐

h∈Ln,(i),lin(A∞)/(U ′
g∩Ln,(i),lin(A∞))

Xn,(i),U ′
g∩Gn−i(A∞)

)/
U ′
g

=
∐

h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/U ′
g,lin

((
Ln,(i),lin(Q) ∩ hU ′

g,linh
−1
)∖

Xn,(i),U ′
g∩Gn−i(A∞)

)
,

of Sect. 4.1,
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• the term Xn,(i),U ′
g∩Gn−i(A∞) indexed by h is identified withM

Φ
(i,hg)
H

H ;
• the group Ln,(i),lin(Q) ∩ hU ′

g,linh
−1 is identified with Γ

Φ
(i,hg)
H

;
• and the term

(
Ln,(i),lin(Q) ∩ hU ′

g,linh
−1
)∖

Xn,(i),U ′
g∩Gn−i(A∞)

is identified withM
Z
(i,hg)
H

H .

Similarly, under the identification

X+
n,(i),U ′

g
=

∐

h∈Ln,(i),lin(A∞)/U ′
g

Xn,(i),U ′
g∩Gn−i(A∞),

the term Xn,(i),U ′
g∩Gn−i(A∞) indexed by h is identified withM

Φ
(i,hg)
H

H . These identifications are
all Hecke equivariant.

B.5 Toroidal compactifications of Shimura varieties in characteristic zero

For each representative (ZH,ΦH, δH) of a cusp label [(ZH,ΦH, δH)] for MH, there is a
torsor

CΦH ,δH → MΦH
H

of an abelian scheme

Cgrp
ΦH ,δH → MΦH

H

(see lemma 1.3.2.7 and propositions 1.3.2.12 and 1.3.2.14 of [44]). The abelian scheme
Cgrp

ΦH ,δH over MΦH
H is Q×-isogenous (i.e. quasi-isogenous) to HomO(X, B) (where B is the

pull-back of the universal abelian scheme over MZH
H ). We obtain an isomorphic abelian

scheme torsor if we replace (ZH,ΦH, δH) with another representative (but its universal
property, which we have not described here, depends on this choice of representative).
If U ′

g again denotes gUg−1 ∩ P+n,(i)(A
∞), then the map

A+
n,(i),U ′

g
= ∐h∈Ln,(i),lin(A∞)/U ′

g
A(i)
n−i,hgUg−1h−1∩Pn,(i)(A∞)

↓ ↓
X+
n,(i),U ′

g
= ∐

h∈Ln,(i),lin(A∞)/U ′
g
Xn,(i),U ′

g∩Pn,(i)(A∞)

in this paper (see Sects. 4.1, 4.2) with U = H is identified with

∐
h∈Ln,(i),lin(A∞)/U ′

g
C

Φ
(i,hg)
H ,δH

↓
∐

h∈Ln,(i),lin(A∞)/U ′
g
M

Φ
(i,hg)
H

H .

These maps are PZ(i,g) (A∞)/U2,Z(i,g) (A∞)-equivariant. (See proposition 1.3.2.24 of [44].)
(Since our pairing 〈 · , · 〉 is perfect, the universal property ofCΦH,δH in proposition 1.3.2.14
of [44] can be simplified by suppressing the dual objects. This universal property then
agrees with that of A(i)

n−i,hgUg−1h−1∩Pn,(i)(A∞) in Sect. 3.2 of this paper.)
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For each representative (ZH,ΦH, δH) of a cusp label [(ZH,ΦH, δH)] for MH, there is a
torsor

ΞΦH ,δH → CΦH ,δH

under the pull-back of a split torus

EΦH

over SpecZ with character group

SΦH

(see lemma 1.3.2.25 and proposition 1.3.2.31 of [44]). We obtain an isomorphic torus
torsor if we replace (ZH,ΦH, δH) with another representative, but its universal property
depends on this choice of representative. For a fixed (Z,Φ , δ), the morphisms

ΞΦH ,δH → CΦH ,δH

are P′Z(A∞)-equivariant. (See proposition 1.3.2.45 of [44].)
When HU2,Z = G(Ẑ)U2,Z = U2,Z(Ẑ) and when ΦH is represented by some Φ =

(X, Y,φ,ϕ−2,ϕ0) (where φ : Y ↪→ X must be an isomorphism, as explained above), the
group SΦH is the group S(Y )TF in the notation of this paper (see Sect. 1.1). For more
general H, we set SΦ1 = S(Y )TF (see section 1.2.2 of [44]), and then SΦH is the unique
lattice in SΦ1 ⊗Z Q such that SΦH/SΦ1

∼= S∨Φ1
/S∨ΦH

∼= U2,Z(Ẑ)/HU2,Z (see proposition
1.3.2.31 of [44]), where the superscript ∨ denotes the dual of Z-modules. Then (SΦH )∨R
can be identified with the space of hermitian forms over Y ⊗Z R, and we definePΦH (resp.
P+ΦH ) to be the subset of (SΦH )∨R corresponding to positive semi-definite hermitian forms
with rational radicals (resp. positive definite hermitian forms).When ZH = Z

(i,g)
H for some

g ∈ G(A∞), we have Y ⊗Z Q ∼= Fi; and the sets SΦH ⊗Z Q and P+ΦH are the sets S(Fi) and
Herm>0

Fi , respectively, in this paper (see Sects. 1.1, 1.4).
The torus

S+n,(i),U ′
g
→ Y+

n,(i),U ′
g

in this paper (see Sect. 4.3) with U = H is identified with

∐

h∈Ln,(i),lin(A∞)/U ′
g

E
Φ

(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)/U ′
g

SpecQ.

Moreover, the sheaves X∗(S+n,(i),U ′
g
), X∗(S+n,(i),U ′

g
)�0R , and X∗(S+n,(i),U ′

g
)>0
R are identified with

∐

h∈Ln,(i),lin(A∞)/U ′
g

S
Φ

(i,hg)
H

,
∐

h∈Ln,(i),lin(A∞)/U ′
g

P
Φ

(i,hg)
H

, and
∐

h∈Ln,(i),lin(A∞)/U ′
g

P+
Φ

(i,hg)
H
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respectively. The S+n,(i),U ′
g
-torsor

T+
n,(i),U ′

g
= ∐h∈Ln,(i),lin(A∞)/U ′

g
T (i)
n−i,hgUg−1h−1∩Pn,(i)(A∞)

↓ ↓
A+
n,(i),U ′

g
= ∐h∈Ln,(i),lin(A∞)/U ′

g
A(i)
n−i,hgUg−1h−1∩Pn,(i)(A∞)

is identified with
∐

h∈Ln,(i),lin(A∞)/U ′
g
Ξ

Φ
(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)/U ′

g
C

Φ
(i,hg)
H ,δH

.

These maps are PZ(i,g) (A∞)-equivariant.
Consider any compatible collection

Σ = {ΣΦH}[(ΦH ,δH)]

of admissible projective smooth rational polyhedral cone decompositions for MH, where
eachΣΦH is aΓΦH-admissible projective smooth rational polyhedral cone decomposition
ofPΦH , as in definitions 1.2.2.13 and 1.2.2.14 of [44]. (Note that in [44] rational polyhedral
cones are open cones,whereas in this paper they are closed cones.) Each suchΣ considered
in [44] induces a pair

(U,Δ)

in J tor
n (with U = H) in Sect. 5.2 of this paper, because, in order to define (U,Δ)

as in Sect. 5.2, it suffices to define the admissible cone decomposition Δ(g)0 for
X∗(S+n,(i),gUg−1∩P+n,(i)(A∞))

�0
R , for each g ∈ G(A∞), which can be taken to be the pull-back of

the subcollection {ΣΦH}[(ΦH ,δH)] of Σ indexed by the cusp labels [(ΦH, δH)] with under-
lying ZH equal to Z

(i,g)
H . In fact, J tor

n is exactly the set of such induced pairs (as U = H
varies).
Each ΣΦH defines an affine toroidal embedding

ΞΦH ,δH ↪→ ΞΦH ,δH = ΞΦH ,δH ,ΣΦH =
⋃

σ∈ΣΦH

ΞΦH ,δH (σ ) =
∐

σ∈ΣΦH

ΞΦH ,δH ,σ

over CΦH ,δH . Rather confusinglyΞΦH ,δH (σ ) (in the notation of [44]) is what in this paper
we would have denoted ΞΦH ,δH ,σ ; and ΞΦH ,δH ,σ is what in this paper we would have
denoted ∂σΞΦH ,δH ,ΣΦH . The formal completion of ΞΦH ,δH ,ΣΦH along the union of the
σ -strata ΞΦH ,δH ,σ for all σ ∈ ΣΦH such that σ ∩ P+ΦH �= ∅ is denoted

XΦH ,δH = XΦH ,δH ,ΣΦH .

(See (1.3.2.34), (1.3.2.35), (1.3.2.36), and lemma 1.3.2.41 of [44].) The schemes

T+
n,(i),U ′

g ,Δ(g)0
→ A+

n,(i),U ′
g
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of this paper (see Sect. 4.4) are identified with
∐

h∈Ln,(i),lin(A∞)/U ′
g

Ξ
Φ

(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)/U ′
g

C
Φ

(i,hg)
H ,δH

.

Moreover, T+,∧
n,(i),U ′

g ,Δ(g)0
is identified with

∐

h∈Ln,(i),lin(A∞)/U ′
g

X
Φ

(i,hg)
H ,δH

and T #,∧
n,(i),U ′

g ,Δ(g)0
is identified with

∐

h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/U ′
g

(
X

Φ
(i,hg)
H ,δH

/
Γ
Φ

(i,hg)
H

)

=
∐

[(ΦH ,δH)]

(
XΦH ,δH

/
ΓΦH

)
,

where the second disjoint union runs over all cusp labels [(ΦH, δH)] with underlying ZH
equal to Z

(i,g)
H . (Again U = H.)

For each pair (H,Σ) as above, we have a smooth projective scheme

Mtor
H,Σ

containingMH as an open dense subscheme, called a toroidal compactification ofMH (see
theorems 1.3.1.3 and 1.3.1.10 of [44]). This is the

Xn,U,Δ

in this paper (see Sect. 5.3), with U = H and with (U,Δ) ∈ J tor
n induced by Σ as above.

This identification is compatiblewith the actions ofG(A∞) on the collections {Mtor
H,Σ }(H,Σ)

(see proposition 1.3.1.15 of [44]) and {Xn,U,Δ}(U,Δ).
The toroidal compactificationMtor

H,Σ admits a stratification by locally closed subschemes

Mtor
H,Σ =

∐
[(ΦH ,δH ,σ )]

Z[(ΦH ,δH ,σ )]

(see theorem 1.3.1.3(2) of [44]) indexed by equivalence classes [(ΦH, δH, σ )] as in defin-
ition 1.2.2.10 of [44]. Without repeating the definition in detail, let us just note that the
equivalence classes [(ΦH, δH, σ )] with the same underlying cusp label [(ΦH, δH)] can be
identifiedwith theΓΦH-orbits of the conesσ ∈ ΣΦH such thatσ∩P+ΦH �= ∅. Each stratum
Z[(ΦH ,δH ,σ )] is canonically isomorphic to ΞΦH ,δH ,σ , and the formal completion of Mtor

H,Σ
along the union of the strata Z[(ΦH ,δH ,σ )] labelled by equivalence classes [(ΦH, δH, σ )] with
the same underlying cusp label [(ΦH, δH)] is canonically isomorphic to XΦH ,δH/ΓΦH .
When U = H, and when (U,Δ) ∈ J tor

n is induced by Σ as above, the formal com-
pletion of Mtor

H,Σ along the union of all strata Z[(ΦH ,δH ,σ )] labelled by equivalence classes
[(ΦH, δH, σ )] with underlying ZH equal to Z

(i,g)
H for some g ∈ G(A∞) is

X∧
n,U,Δ,i

∼=
∐
g
T #,∧
n,(i),gUg−1∩P+n,(i)(A∞),Δ(g)0

=
∐
g

∐
h

(
X

Φ
(i,hg)
H ,δH

/
Γ
Φ

(i,hg)
H

)
,
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where the indices g and h run over P+n,(i)(A
∞)\Gn(A∞)/U and

Ln,(i),lin(Q)
∖
Ln,(i),lin(A∞)

/(
gUg−1 ∩ P+n,(i)(A

∞)
)
,

respectively, in this paper (see Sect. 5.3).
These identifications are all Hecke equivariant (see proposition 1.3.2.45 of [44]).

B.6 Kuga families in characteristic zero

Consider anyO-latticeQ. Define Ĝ to be the subgroup of automorphisms of L⊕Q which
preserve L, act trivially on the quotient (L ⊕ Q)/L and preserve, up to scalar multiples,
the pairing 〈 · , · 〉 on L. Restriction to L gives a surjective homomorphism Ĝ → G, and
we denote the kernel Û. This homomorphism is naturally split. (Compare with definition
1.2.4.3 of [44].) If Q = Om

F , then Ĝ = G(m)
n and Û = Hom(m)

n . If Ĥ is any open compact
subgroup of Ĝ(Ẑ), then ĤÛ denotes Ĥ ∩ Û(Ẑ), and ĤG denotes Ĥ/ĤÛ.
To each neat open compact subgroup Ĥ of Ĝ(Ẑ) with image H = ĤG in G(Ẑ), [44]

attached a generalized Kuga family N → MH. (See definition 1.3.3.4 of [44].) If Q = Om
F

andU = Ĥ, then it is the scheme denotedA(m)
n,U in this paper. The generalized Kuga family

attached to ĤG � ĤÛ is denoted Ngrp → MH, and is a Kuga family as in definition 1.3.3.3
of [44]. It is an abelian scheme Q×-isogenous to them-fold fibre product of the universal
abelian scheme overMH whenQ ∼= Om

F . The generalized Kuga familyN → MH is a torsor
for Ngrp → MH.
To study these schemes and their compactifications [44] realizes them, in a non-

canonical way, inside the boundary of a larger Shimura variety. Concretely, as in sec-
tion 1.2.4 of [44], to define such generalized Kuga families, we start with an O-lattice Q;
consider

Q−2 := HomO
(
Q,Diff−1

O/Z
(1)
))

and Q0 := Q

(where Diff−1
O/Z

denotes the inverse different), with the natural perfect pairing

〈 · , · 〉Q : Q−2 × Q0 → Z(1)

induced by the trace pairing; and set

L̃ := Q−2 ⊕ L⊕ Q0,

with the (self-dual) pairing

〈 · , · 〉̃ : L̃× L̃ → Z(1)

defined by

〈(x−2, x−1, x0), (y−2, y−1, y0)〉̃ = 〈x−2, y0〉Q + 〈x−1, y−2〉 − 〈y−2, x0〉Q

for x−2, y−2 ∈ Q−2, x−1, y−1 ∈ L, and x0, y0 ∈ Q0. We shall fix the choice of

Q = Om
F
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in what follows, since this is all we need in this paper. Then the above L̃ and 〈 · , · 〉̃ can
be identified with the Λm+n and 〈 , 〉m+n : Λm+n ×Λm+n → Z in this paper (see Sects.
1.1, B.1), up to reversing the ordering of the coordinates of Q−2 = (Diff−1

OF /Z
(1))m and

dividing by 2π
√−1. Then there is a natural choice of h̃0 : C → EndO⊗ZR (̃L ⊗Z R)

extending h0 : C → EndO⊗ZR(L⊗Z R) (see section 1.2.4 of [44]) which makes

(O, ', L̃, 〈 · , · 〉̃ , h̃0)

an integral PEL datum as in definition 1.1.1.1 of [44], which defines a group functor G̃ and
a PELmoduli problem M̃H̃ for each open compact subgroup H̃ of G̃(Ẑ) as in the case of G
andMH in Sect. B.1.We shall always denote the analogues of objects for (O, ', L̃, 〈 · , · 〉̃ , h̃0)
with a tilde ,̃ without explicitly introducing them.
By the definition of (̃L, 〈 · , · 〉̃ ), there is a fully symplectic admissible filtration Z̃ on L̃⊗Z Ẑ

induced by

0 ⊂ Q−2 ⊂ Q−2 ⊕ L ⊂ Q−2 ⊕ L⊕ Q0 = L̃.

Let X̃ := HomO(Q−2,Diff−1
O/Z

(1)) and Ỹ := Q0. The pairing 〈 · , · 〉Q : Q−2 × Q0 → Z(1)
induces a canonical isomorphism φ̃ : Ỹ ∼→ X̃ , and there are canonical isomorphisms
ϕ̃−2 : GrZ̃−2

∼→ HomẐ(X̃⊗Z Ẑ, Ẑ(1)) and ϕ̃0 : GrZ̃0
∼→ Ỹ ⊗Z Ẑ (ofO⊗Z Ẑ-modules). These

data define a torus argument

Φ̃ := (X̃ , Ỹ , φ̃, ϕ̃−2, ϕ̃0)

for Z̃ (see definition 5.4.1.3 in [41] or definition 1.2.1.5 in [44]). Let δ̃ be the obvious
splitting of Z̃ induced by the equality Q−2 ⊕ L⊕ Q0 = L̃.
Then we can define algebraic groups P̃Z̃, ŨZ̃, Ũ2,̃Z, Ũ1,̃Z, G̃l,̃Z, G̃′

l,̃Z, P̃
′̃
Z, G̃1,̃Z, G̃h,̃Z and

G̃′
h,̃Z. By definition, we have canonical isomorphisms

Gh,̃Z ∼= G′
h,̃Z

∼= G⊗Z Ẑ

and

Ĝ = G̃1,̃Z and Û = Ũ1,̃Z.

For each open compact subgroup H̃ of G̃(Ẑ), we define

(1) Ĥ := H̃Ĝ := H̃G̃1,̃Z
.

(2) ĤÛ := H̃Û := H̃Ũ1,̃Z
.

(3) ĤG := Ĥ/ĤÛ
∼= H̃G̃′

h,̃Z
.

(See definition 1.2.4.4 of [44].)
Given any neat open compact Ĥ ⊂ Ĝ(Ẑ), we can always find some neat H̃ ⊂ G̃(Ẑ) such

that Ĥ = H̃Ĝ as above and

H̃P̃Z̃/H̃ŨZ̃
∼= H̃G̃l,̃Z

× ĤG

(cf. condition 1.2.4.7 of [44]). In this case the abelian scheme torsor

C̃Φ̃H̃ ,Φ̃δ̃
→ M̃

Φ̃H̃
H̃

∼= M̃
Z̃H̃
H̃
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depends only on Ĥ (but not on the auxiliary choice of H̃) and equals the above generalized
Kuga family N → MH attached to Ĥ.
We can explicitly compare some of the above groups with the related groups defined in

our paper (see Sects. 1.1, 1.2), as follows:

(1) G̃′
h,̃Z(R) ∼= G̃h,̃Z(R) = G(R) = Gn(R).

(2) G̃l,̃Z(R) ∼= G̃′
l,̃Z(R) ∼= GLm(OF ⊗Z R).

(3) P̃Z̃(R) ∼= GLm(OF ⊗Z R) � G̃(m)
n (R) ∼= (GLm(OF ⊗Z R)× Gn(R)) � N (m)

n (R).
(4) ŨZ̃(R) = N (m)

n (R).
(5) Ũ2,̃Z(R) = Z(N (m)

n )(R) = Herm(m)(R).
(6) Û(R) = Ũ1,̃Z(R) = Hom(m)

n (R).
(7) P̃′̃Z(R) = G̃(m)

n (R) = Gn(R) � N (m)
n (R).

(8) Ĝ(R) = G̃1,̃Z(R) ∼= G(m)
n (R) = Gn(R) � Hom(m)

n (R).
(9) P̃Z̃(R)/ŨZ̃(R) ∼= GLm(OF ⊗Z R)× Gn(R).

B.7 Toroidal compactifications of Kuga families in characteristic zero

Let us fix the choice of some (̃Z, Φ̃ , δ̃) as above. Then there is a bijection between the fully
symplectic admissible filtrations Z̆ of L̃⊗Z Ẑ such that

0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃⊗Z Ẑ

and the fully symplectic admissible filtrations Z of L⊗Z Ẑ such that Z−2 = Z̆−2/Z̃−2. (The
notation ˘ will always mean some objects related to such a filtration Z̆.) When Z = Z(i,1),
we have Z̆ = Z̃(i+m,1).
For each Z̆ as above, and for each Ẑ-algebra R, we define the following quotients of

subgroups of Ĝ(R) (see definition 1.2.4.53 of [44]):

(1) P̂Z̆(R) := (̃PZ̆(R) ∩ P̃′̃Z(R))/Ũ2,̃Z(R), so that P̂
Z̃(i+m,1) (R) = P(m),+

n,(i) (R).
(2) P̂′̆

Z
(R) := P̃′̆

Z
(R)/Ũ2,̃Z(R), so that P̂′

Z̃(i+m,1) (R) = P(m)
n,(i)(R).

(3) ÛZ̆(R) := ŨZ̆(R)/Ũ2,̃Z(R), so that Û
Z̃(i+m,1) (R) = N (m)

n,(i)(R).
(4) Û2,Z̆(R) := Ũ2,Z̆(R)/Ũ2,̃Z(R), so that

Û2,̃Z(i+m,1) (R) = Z(N (m)
n,(i))(R) ∼= Herm(i+m)(R)/Herm(m)(R).

(5) Û1,Z̆(R) := ÛZ̆(R)/Û2,Z̆(R) ∼= Ũ1,Z̆(R), so that

Û1,̃Z(i+m,1) (R) = N (m)
n,(i)(R)
/
Z(N (m)

n,(i))(R) ∼= Hom(i+m)
n−i (R).

(6) Ĝh,Z̆(R) := G̃h,Z̆(R) and Ĝ′
h,Z̆(R) := G̃′

h,Z̆(R), so that Ĝh,Z̆(R) ∼= Ĝ′
h,Z̆(R) ∼= Gh,Z(R),

and Ĝh,̃Z(i+m,1) (R) = Ln,(i),herm(R).
(7) Ĝl,Z̆(R) := (Z̃Z̆(R) ∩ P̃′̃Z(R))/ŨZ̆(R) and Ĝ′

l,Z̆(R) := P̂Z̆(R)/̂P′̆Z(R), so that Ĝl,Z̆(R)
∼→

Ĝ′
l,Z̆(R) and Ĝ′

l,̃Z(i+m,1) (R) ∼= L(m)
n,(i),lin(R).

(8) Ĝ1,Z̆(R) := P̂′̆
Z
(R)/Û2,Z̆(R) ∼= G̃1,Z̆(R), so that Ĝ1,̃Z(i+m,1) (R) ∼= G(i+m)

n−i (R).

Hence it makes sense to define ĤP̂Z̆ := (H̃P̃Z̆ ∩ H̃P̃′̃
Z
)/H̃Ũ2,̃Z

, etc., when Ĥ = H̃Ĝ, so that
we have ĤP̂Z̆ → HPZ , etc.
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If g̃ ∈ P̃′̃Z(A
∞), then Z̃(i+m,̃g) depends only on the image ĝ of g̃ in Ĝ(Ẑ), so we will denote

it Z̆(i,̂g). This sets up a bijection between the Ĥ-orbits Z̃(i+m,̃g)
Ĥ = Z̆

(i,̂g)
Ĥ of Z̃(i+m,̃g) = Z̆(i,̂g)

and the double coset space

P̂
Z̆(i,1)

(A∞)
∖
Ĝ(A∞)
/
Ĥ,

which equals

P(m),+
n,(i) (A∞)

∖
G(m)
n (A∞)

/
U

in this paper (see, for example, Sect. 1.4), with U = Ĥ.
By taking graded pieces with respect to filtrations induced by 0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂

Z̃−1 ⊂ L̃⊗Z Ẑ, there is also a bijection between the torus arguments Φ̆ = (X̆ , Y̆ , φ̆, ϕ̆−2, ϕ̆0)
for Z̆ which induce Φ̃ and the torus arguments Φ = (X, Y,φ,ϕ−2,ϕ0) for the filtration Z

corresponding to Z̆. If we setH = ĤG, then this bijection is compatible with the formation
of the Ĥ-orbits of Φ̆ and the H-orbits of the corresponding Φ , which induces bijections
among the following three sets (see lemmas 1.2.4.15 and 1.2.4.16 of [44]):

(1) The cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] for M̃H̃ such that the stratum Z̃[(Φ̆H̃ ,δ̆H̃)] of M̃min
H̃ is

contained in the closure of Z̃[(Φ̃H̃ ,̃δH̃)].
(2) The Ĥ-orbits of equivalence classes of (Z̆, Φ̆ , δ̆), where Z̆ and Φ̆ are compatible

with Z̃ and Φ̃ in the sense that 0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃⊗Z Ẑ and that
Φ̆ induces Φ̃ as above, which we denote by [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] and call it a cusp label
(at level Ĥ) for (̃L, 〈 · , · 〉̃ , h̃0, Z̃) (see definition 1.2.4.17 of [44]).

(3) The cusp labels [(ZH,ΦH, δH)] forMH.

The stratum Z̃[(Φ̆H̃ ,δ̆H̃)]
∼= M̃

Z̃H̃
H̃ , the finite étale cover M̃Φ̃H̃

H̃ → M̃
Z̃H̃
H̃ , the abelian scheme

torsor C̃Φ̃H̃ ,̃δH̃
→ M̃

Φ̃H̃
H̃ and the abelian scheme C̃grp

Φ̃H̃ ,̃δH̃
→ M̃

Φ̃H̃
H̃ depend (up to canonical

isomorphism) only on the Ĥ-orbit of (Z̆, Φ̆ , δ̆) (see lemma 1.3.2.50 of [44]), and hence we
shall denote them by

M̂
Z̆Ĥ
Ĥ , M̂

Φ̆Ĥ
Ĥ → M̂

Z̆Ĥ
Ĥ , ĈΦ̆Ĥ ,δ̆Ĥ

→ M̂
Φ̆Ĥ
Ĥ , and Ĉgrp

Φ̆Ĥ ,δ̆Ĥ
→ M̂

Φ̆Ĥ
Ĥ ,

respectively. For a fixed (Z̆, Φ̆ , δ̆), the morphisms

ĈΦ̆Ĥ ,δ̆Ĥ
→ M̂

Φ̆Ĥ
Ĥ → M̂

Z̆Ĥ
Ĥ

are equivariant with

Ĝ1,Z̆(A∞) → Ĝ′
h,Z̆(A

∞) ∼= Ĝh,Z̆(A∞)

(see propositions 1.3.2.24 and 1.3.2.55 of [44]).
For each [(Z̆, Φ̆ , δ̆)] as above, and any Z-algebra R, we define Ĝ′

l,Φ̆ (R) to be the subgroup
of GLO⊗ZR(Y̆ ⊗Z R) of elements stabilizing the kernel of Y̆ � Ỹ and inducing IdỸ , which
admits a canonical map to Ĝ′

l,Z̆(R ⊗Z Ẑ) induced by Φ̆ . When R is a Ẑ-algebra, we have
Ĝ′
l,Φ̆ (R)

∼= Ĝ′
l,Z̆(R). When R = Q, we have Ĝ′

l,Φ̆ (Q) ↪→ Ĝ′
l,Z̆(A

∞), and we define

ΓΦ̆Ĥ
:= ĤĜ′

l,Z̆
∩ Ĝ′

l,Φ̆ (Q),
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a congruence subgroup of Ĝ′
l,Φ̆ (Z) = Ĝ′

l,Z̆(Ẑ) ∩ Ĝ′
l,Φ̆ (Q) depending only on Φ̆Ĥ (see

definition 1.2.4.21 of [44] for an equivalent definition).
If g̃ ∈ P̃′̃Z(A

∞), then the equivalence class of (̃Z(i+m,̃g), Φ̃(i+m,̃g), δ̆) depends only on the
image ĝ of g̃ in Ĝ(A∞). We will denote it (Z̆(i,̂g), Φ̆(i,̂g), δ̆). The map

ĝ �→
[(

Z̆
(i,̂g)
Ĥ , Φ̆(i,̂g)

Ĥ , δ̆Ĥ
)]

sets up a bijection between the double coset space

(
Ĝ′
l,Φ̆(i,1) (Q) � P̂′

Z̆(i,1)
(A∞)
)∖

Ĝ(A∞)/Ĥ.

and the set of cusp labels [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] such that Z̆Ĥ = Z̆
(i,̂g)
Ĥ for some ĝ ∈ Ĝ(A∞). The

forgetful map sending [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] to Z̆Ĥ can be identified with the canonical map

(
Ĝ′
l,Φ̆(i,1) (Q) � P̂′

Z̆(i,1)
(A∞)
)∖

Ĝ(A∞)/Ĥ → P̂
Z̆(i,1)

(A∞)\Ĝ(A∞)/Ĥ

whose fibre above the double coset of ĝ ∈ Ĝ(A∞) can be identified with

Ĝ′
l,Φ̆(i,1) (Q)

∖
Ĝ′
l,Z̆(i,1)

(A∞)
/
(̂gĤĝ−1)Ĝ′

l,Z̆(i,1)
.

This last double coset space is the index set of

Y (m),#
n,(i),gUg−1∩P(m),+

n,(i) (A∞)
=

∐

L(m)
n,(i),lin(Q)\L(m)

n,(i),lin(A∞)/(gUg−1∩P(m),+
n,(i) (A∞))

SpecQ

in this paper (see Sect. 4.1), with g = ĝ and U = Ĥ.
If U = Ĥ is any neat open compact subgroup of G(m)

n (A∞) = Ĝ(A∞), if g = ĝ ∈
G(m)
n (A∞) = Ĝ(A∞) and if U ′

g = gUg−1 ∩ P(m),+
n,(i) (A∞), then the maps

A(m),+
n,(i),U ′

g
= ∐h∈L(m)

n,(i),lin(A∞)/U ′
g
A(i+m)
n−i,hU ′

g h−1∩P(m)
n,(i)(A∞)

↓ ↓
X (m),+
n,(i),U ′

g
= ∐h∈L(m)

n,(i),lin(A∞)/U ′
g
Xn−i,hU ′

g h−1∩P(m)
n,(i)(A∞)

↓
X (m),#
n,(i),U ′

g

in this paper (see Sects. 4.1, 4.2) are identified with

∐
h∈L(m)

n,(i),lin(A∞)/U ′
g
Ĉ

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ

↓
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g
M̂

Φ̆
(i,hg)
Ĥ

Ĥ

↓
∐

h∈L(m)
n,(i),lin(Q)\L(m)

n,(i),lin(A∞)/U ′
g
M̂

Z̆
(i,hg)
Ĥ

Ĥ .



Harris et al. Res Math Sci (2016) 3:37 Page 270 of 308

For each representative (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of a cusp label [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] as above, there is a
torsor

Ξ̂Φ̆Ĥ ,δ̆Ĥ
→ ĈΦ̆Ĥ ,δ̆Ĥ

under the pull-back of a split torus

ÊΦ̆Ĥ

over SpecZ with character group

ŜΦ̆Ĥ
:= ker(SΦ̆H̃

→ SΦ̃H̃
)

(which only depends on ĤP̂Z̆ ; see definition 1.2.4.29 and proposition 1.3.2.56 of [44]). We
obtain an isomorphic torus torsor if we replace (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) with another representative,
but its universal property depends on this choice of representative.
For a fixed (Z̆, Φ̆ , δ̆), the collection {Ξ̂Φ̆Ĥ ,δ̆Ĥ

}ĤP̂′̆
Z

admits an action of P̂′̆
Z
(A∞) such that

the morphisms

Ξ̂Φ̆Ĥ ,δ̆Ĥ
→ ĈΦ̆Ĥ ,δ̆Ĥ

are equivariant with

P̂′̆Z(A
∞) → Ĝ1,Z̆(A∞)

(see proposition 1.3.2.67 of [44]).
When HÛ2,Z̆

= Ĝ(Ẑ)Û2,Z̆
= Û2,Z̆(Ẑ) and when Φ̆Ĥ is represented by some Φ̆ =

(X̆ , Y̆ , φ̆, ϕ̆−2, ϕ̆0) (where φ̆ : Y̆ ↪→ X̆ must be an isomorphism, as explained above),
which admits a surjection Y̆ � Ỹ with kernel Y anO-lattice, the group ŜΦ̆Ĥ

is the group
ker(S(Y̆ )TF → S(Ỹ )TF) in the notation of this paper (see Sect. 1.1). Formore general Ĥ, we
write ŜΦ̆1

= ker(S(Y̆ )TF → S(Ỹ )TF), and ŜΦ̆Ĥ
is the unique lattice in ŜΦ̆1

⊗Z Q such that
ŜΦ̆Ĥ

/̂SΦ̆1
∼= Ŝ∨̆

Φ1
/̂S∨̆

ΦĤ
∼= Û2,Z̆(Ẑ)/ĤÛ2,Z̆

(see proposition 1.3.2.56 of [44]). Then (̂SΦ̆Ĥ
)∨R is

a quotient of the space of hermitian forms over Y̆ ⊗Z R, which also admits a projection to
the space of hermitian forms over Y ⊗Z R. We define P̂Φ̆Ĥ

(resp. P̂+
Φ̆Ĥ

) to be the subset

of (̂SΦ̆Ĥ
)∨R consisting of images of positive semi-definite hermitian forms with rational

radicals (resp. positive definite hermitian forms) over Y̆ ⊗Z R (see (1.2.4.33) and (1.2.4.34)
of [44]), which can be identified with the subset consisting of pre-images of positive semi-
definite hermitian forms with rational radicals (resp. positive definite hermitian forms)
over Y ⊗Z R.
The torus

S(m),+
n,(i),U ′

g
→ Y (m),+

n,(i),U ′
g

in this paper (see Sect. 4.3) with U = H is identified with
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

Ê
Φ̆

(i,hg)
Ĥ

→
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

SpecQ.
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Moreover, the sheaves X∗(S(m),+
n,(i),U ′

g
), X∗(S(m),+

n,(i),U ′
g
)�0R , and X∗(S(m),+

n,(i),U ′
g
)>0
R are identified with

∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

Ŝ
Φ̆

(i,hg)
Ĥ

,
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

P̂
Φ̆

(i,hg)
Ĥ

,
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

P̂+
Φ̆

(i,hg)
Ĥ

respectively. The S(m),+
n,(i),U ′

g
-torsor

T (m),+
n,(i),U ′

g
= ∐h∈L(m)

n,(i),lin(A∞)/U ′
g
T (i+m)
n−i,hgUg−1h−1∩P(m)

n,(i)(A∞)

↓ ↓
A(m),+
n,(i),U ′

g
= ∐h∈L(m)

n,(i),lin(A∞)/U ′
g
A(i+m)
n−i,hgUg−1h−1∩P(m)

n,(i)(A∞)

is identified with
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g
Ξ̂

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ

↓∐
h∈L(m)

n,(i),lin(A∞)/U ′
g
Ĉ

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ

.

These maps are P̂
Z̆(i,g)

(A∞)-equivariant (see proposition 1.3.2.67 of [44]).
Consider any compatible collection

Σ̂ = {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ ,δ̆Ĥ)]

of admissible projective smooth rational polyhedral cone decompositions, where each
Σ̂Φ̆Ĥ

is a ΓΦ̆Ĥ
-admissible projective smooth rational polyhedral cone decomposition of

P̂Φ̆Ĥ
, as in lemma 1.2.4.42 of [44]. (We caution the reader that the definition there is

rather ad hoc.) The set of pairs κ = (Ĥ, Σ̂) with ĤG ⊂ H is denoted K++
Q,H; the subset

of K++
Q,H consisting of κ = (Ĥ, Σ̂) with ĤG = H is denoted K+

Q,H; and the subset of
K+
Q,H consisting of κ = (Ĥ, Σ̂) with ĤG = H and Ĥ = H � ĤÛ is denoted KQ,H

(see definitions 1.2.4.11 and 1.2.4.44 of [44]). For any given compatible collection Σ of
admissible projective smooth rational polyhedral cone decompositions for MH, and for
? = ∅, + or ++, the subset of K?

Q,H consisting of κ = (Ĥ, Σ̂) such that Σ̂ is compatible
with Σ in the sense that each ρ̂ ∈ Σ̂Φ̆Ĥ

is mapped into some σ ∈ ΣΦH (see condition
1.2.4.49 and definition 1.2.4.50 of [44]) is denoted K?

Q,H,Σ . This notion of compatibility
agrees with the one in this paper (see Sect. 5.2).
Each such κ = (Ĥ, Σ̂) in K++

Q,H induces a pair

(U,Σ)

in J (m),tor
n (with U = Ĥ) in Sect. 5.2 of this paper, because, in order to define

(U,Σ) as in Sect. 5.2, it suffices to define the admissible cone decomposition Σ(g)0 for
X∗(S(m),+

n,(i),gUg−1∩P(m),+
n,(i) (A∞)

)�0R , for each g ∈ G(m)
n (A∞), which can be taken to be the pull-back

of the subcollection {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ ,δ̆Ĥ)] of Σ̂ indexedby the cusp labels [(Φ̆Ĥ, δ̆Ĥ)]with under-

lying Z̆Ĥ equal to Z̆
(i,̂g)
Ĥ for some ĝ in Ĝ(A∞) corresponding to g ∈ G(m)

n (A∞) ∼= Ĝ(A∞).
In fact, J (m),tor

n is exactly the set of such induced pairs (as U = Ĥ varies). (It is hard to
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explicitly describe the set J (m),tor
n when m > 0, because they are induced by auxiliary

choices of compatible collections Σ̃ for M̃H̃. Nevertheless, this is unnecessary for our
purposes.)
Each Σ̂Φ̆Ĥ

defines an affine toroidal embedding

Ξ̂Φ̆Ĥ ,δ̆Ĥ
↪→ Ξ̂ Φ̆Ĥ ,δ̆Ĥ

= Ξ̂ Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ
=
⋃

ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ ,δ̆Ĥ
(̂ρ) =

∐

ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ ,δ̆Ĥ ,̂ρ

over ĈΦ̆Ĥ ,δ̆Ĥ
. The formal completion of Ξ̂ Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ

along the union of the ρ̂-strata

Ξ̂Φ̆Ĥ ,δ̆Ĥ ,̂ρ for all ρ̂ ∈ Σ̂Φ̆Ĥ
such that ρ̂ ∩ P̂+

Φ̆Ĥ
�= ∅ is denoted

X̂Φ̆Ĥ ,δ̆Ĥ
= X̂Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ

(see (1.3.2.62), (1.3.2.63), (1.3.2.64) and (1.3.2.66) of [44]). The schemes

T (m),+
n,(i),U ′

g ,Σ(g)0
→ A(m),+

n,(i),U ′
g

of this paper (see Sect. 4.4) are identified with

∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

Ξ̂
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

→
∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

Ĉ
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

.

Moreover, T (m),+,∧
n,(i),U ′

g ,Σ(g)0
is identified with

∐

h∈L(m)
n,(i),lin(A∞)/U ′

g

X̂
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

,

and T (m),#,∧
n,(i),U ′

g ,Σ(g)0
is identified with

∐

h∈L(m)
n,(i),lin(Q)\L(m)

n,(i),lin(A∞)/U ′
g

(
X̂

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ

/Γ
Φ̆

(i,hg)
Ĥ

)
=
∐

[(Φ̆Ĥ ,δ̆Ĥ)]

(
X̂Φ̆Ĥ ,δ̆Ĥ

/ΓΦ̆Ĥ

)
,

where the second disjoint union is over cusp labels with underlying Z̆Ĥ equal to Z̆
(i,̂g)
Ĥ for

a fixed ĝ in Ĝ(A∞) corresponding to g ∈ G(m)
n (A∞) ∼= Ĝ(A∞). (Again Ĥ = U .)

For each κ = (Ĥ, Σ̂) ∈ K++
Q,H, we have a smooth projective scheme

Ntor
κ

containing N (of Sect. B.6, which we will henceforth write as Nκ to emphasize the depen-
dence on Ĥ) as an open dense subscheme, called a toroidal compactification of Nκ (see
theorem 1.3.3.15 of [44]). When U = Ĥ, and when (U,Σ) ∈ J (m),tor

n is induced by
κ = (Ĥ, Σ̂) as above, the toroidal compactification

Nκ ↪→ Ntor
κ
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is the

A(m)
n,U ↪→ A(m)

n,U,Σ

in this paper (see Sect. 5.3). Such toroidal compactifications and the identifications
between them are compatible with the actions of Ĝ(A∞) = G(m)

n (A∞) (see theorem
1.3.3.15(4) of [44]).
The toroidal compactification Ntor

κ admits a stratification by locally closed subschemes

Ntor
κ =

∐

[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)]

Ẑ[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)]

(see theorem 1.3.3.15(1) of [44]) indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] as in lemma
1.2.4.42 of [44]. Without repeating the definition in detail, let us just note that the equiv-
alence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with the same underlying cusp label [(Φ̆Ĥ, δ̆Ĥ)] can be iden-
tified with the ΓΦ̆Ĥ

-orbits of the cones ρ̂ ∈ Σ̂Φ̆Ĥ
such that ρ̂ ∩ P̂+

Φ̆Ĥ
�= ∅. Each stratum

Ẑ[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] is canonically isomorphic to Ξ̂Φ̆Ĥ ,δ̆Ĥ ,̂ρ , and the formal completion of Ntor
κ

along the union of the strata Ẑ[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] labelled by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with
the same underlying cusp label [(Φ̆Ĥ, δ̆Ĥ)] is canonically isomorphic to X̂Φ̆Ĥ ,δ̆Ĥ

/ΓΦ̆Ĥ
(see

theorem 1.3.3.15(1) of [44]).
When U = Ĥ, and when (U,Σ) ∈ J (m),tor

n is induced by κ = (Ĥ, Σ̂) as above, the
formal completion of Ntor

κ along the union of all strata Ẑ[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] labelled by equivalence

classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with underlying Z̆Ĥ equal to Z̆
(i,̂g)
Ĥ for some ĝ ∈ Ĝ(A∞) is

A(m),∧
n,U,Σ ,i

∼=
∐
g
T (m),#,∧
n,(i),gUg−1∩P(m),+

n,(i) (A∞),Σ(g)0
=
∐
g

∐
h

(
X̂

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ

/Γ
Φ̆

(i,hg)
Ĥ

)
,

where the indices g and h run over P(m),+
n,(i) (A∞)\G(m)

n (A∞)/U and

L(m)
n,(i),lin(Q)\L(m)

n,(i),lin(A
∞)/(gUg−1 ∩ P(m),+

n,(i) (A∞)),

respectively, in this paper (see Sect. 5.3).
These identifications are all Hecke equivariant (see theorem 1.3.3.15(4) of [44]).
If κ ∈ K++

Q,H,Σ , then the canonical morphism

Nκ → MH

extends to a canonical log smooth morphism

Ntor
κ → Mtor

H,Σ

(see theorem 1.3.3.15(2) of [44]). When U = Ĥ and U ′ = H, and when (U,Σ) ∈ J (m),tor
n

and (U ′,Δ) ∈ J tor
n are induced by κ = (Ĥ, Σ̂) and (H,Σ), respectively, we have

(U,Σ) ≥ (U ′,Δ)
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(see Sect. 5.2 in this paper) and the above morphism is the log smooth morphism

A(m)
n,U,Σ → Xn,U ′ ,Δ

in this paper (see Sect. 5.3). These morphisms and identifications are equivariant with
Ĝ(A∞) → G(A∞) (see proposition 1.3.3.15(4) of [44]).

B.8 Automorphic bundles in characteristic zero

Since the maximal isotropic submodule V0 of L ⊗Z C on which h0(z) acts by 1 ⊗ z is
isomorphic to (F ⊗Q C)n as an F ⊗Q C-module, we can take F ′0 = F0 = Q and L0 = Fn

in the beginning of section 1.4.1 of [44], and define

M0(R) := GLO⊗ZR
(
L∨0 (1)⊗Q R

)×Gm(R)

for eachQ-algebra R. (See definition 6.2 of [42], definition 1.4.1.1 of [44].Wewill not need
the other groups G0(R) and P0(R) in this paper.) This can be canonically identified with
the group Ln,(n)(R) in this paper (see Sect. 1.2), by matching GLO⊗ZR(L∨0 (1) ⊗Q R) with
Ln,(n),lin(R), and by matching Gm(R) with Ln,(n),herm(R).
LetH be any neat open compact subgroup of G(Ẑ), so thatMH is defined over SpecQ as

in Sect. B.1. Then the tautological abelian scheme A overMH defines a locally free sheaf

Lie∨A/MH := e∗AΩ1
A/MH

(where eA denotes the identity section), which is the

Ωn,U

in this paper (see Sect. 3.4.1), withU = H.We can similarly defineLie∨A∨/MH . The action of
G(A∞) on {MH}H is defined by respecting their tautological abelian schemes up to canon-
ical Q×-isogenies, which induces actions of G(A∞) on {Lie∨A/MH}H and {Lie∨A∨/MH}H
covering the one on {MH}H, which are compatible with the isomorphisms

λ∗ : Lie∨A∨/MH (1) ∼→ Lie∨A/MH

induced by the tautological polarizations λ : A → A∨. Here the formal Tate twist is
induced by the one on de Rham homology, realized by tensor products with Z(1) over Z.
Therefore, the corresponding Hecke action must be twisted by the similitude character ν,
which corresponds to the tensor product with

Ξn,U = OXn,U (‖ν‖)

in this paper (see Sect. 3.4.1).
Let Σ be a compatible collection of admissible projective smooth rational polyhedral

cone decompositions for MH, so that Mtor
H,Σ is defined over SpecQ as in Sect. B.5. Then

the tautological semi-abelian scheme G overMtor
H,Σ defines a locally free sheaf

Lie∨G/Mtor
H,Σ

:= e∗GΩ1
G/Mtor

H,Σ
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(where eG denotes the identity section), which is the

Ωn,U,Δ

in this paper (see Sect. 5.4), with U = H, and with Δ induced by Σ as in Sect. B.5. We
can similarly define Lie∨G∨/Mtor

H,Σ
, where G∨ denotes the tautological ‘dual semi-abelian

scheme’ overMtor
H,Σ extending A∨. (Note that dual semi-abelian schemes only make sense

as such extensions.) The action of G(A∞) on {Mtor
H,Σ }(H,Σ) is defined by respecting their

tautological semi-abelian schemes up to canonical Q×-isogenies, which induces actions
of G(A∞) on {Lie∨G/Mtor

H,Σ
}(H,Σ) and {Lie∨G∨/Mtor

H,Σ
}(H,Σ) covering the one on {Mtor

H,Σ }(H,Σ),
which are compatible with the isomorphisms

λ∗ : Lie∨G∨/Mtor
H,Σ

(1) ∼→ Lie∨G/Mtor
H,Σ

induced by the tautological polarizations λ : G → G∨. Here the formal Tate twist requires
(as before) theHecke action to be twisted by the similitude character ν, which corresponds
to the tensor product with

Ξn,U,Σ = OXn,U,Σ (‖ν‖)

in this paper (see Sect. 5.4).
Then we have the principal M0-bundle

EM0 := IsomO⊗ZOMH

((
Lie∨A∨/MH (1),OMH (1)

)
,
(
L∨0 (1)⊗Q OMH ,OMH (1)

))
,

which is an M0-torsor over MH (see definition 1.4.1.5 and lemma 1.4.1.7 of [44]), which
canonically extends (as an M0-torsor) to a principal M0-bundle

Ecan
M0 := IsomO⊗ZOMtorH,Σ

((
Lie∨G∨/Mtor

H,Σ
(1),OMtor

H,Σ
(1)
)
,
(
L∨0 (1)⊗Q OMtor

H,Σ
,OMtor

H,Σ
(1)
))

overMtor
H,Σ (see (1.4.2.7) and lemma 1.4.2.8 of [44]). These are the

EU and Ecan
U,Δ

in this paper (see Sects. 3.4.1, 5.4), with U = H, and with Δ induced by Σ as in Sect. B.5.
For eachQ-algebra R, we denote by RepR(M0) the category of R-modules with algebraic

actions of M0 ⊗Q R (see definition 1.4.1.8 of [44]). Then we also define, for each W ∈
RepR(M0) that is locally free of finite rank as an R-module, the automorphic bundle

EM0 ,R(W ) := (EM0 ⊗Q R
)×(M0⊗QR) W

overMH ⊗Q R (see definition 1.4.1.9 of [44]), which extends to the canonical extension

Ecan
M0 ,R(W ) := (Ecan

M0 ⊗Q R
)×(M0⊗QR) W

and the subcanonical extension

E sub
M0 ,R(W ) := Ecan

M0 ,R(W )⊗OMtorH,Σ
ID∞,H,Σ
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overMtor
H ⊗Q R (see definition 1.4.2.9 of [44]), whereID∞,H,Σ is the OMtor

H,Σ
-ideal defining

the boundary divisor D∞,H,Σ := Mtor
H,Σ − MH (with its canonical reduced subscheme

structure). These are the vector bundles

EU,ρ , Ecan
U,Δ,ρ , and E sub

U,Δ,ρ

in this paper (see Sects. 3.4.1, 5.4), withU = H andWρ = W . The bundles EM0 ,R(W ) and
Ecan
M0 ,R(W ) admit compatible actions of G(A∞) (see proposition 1.4.3.1 of [44]), which are

compatible with the compatible actions of Gn(A∞) on EU,ρ and Ecan
U,Δ,ρ , covering the ones

on their respective base schemes.

B.9 Total objects in mixed characteristics

For each open compact subgroupH of G(Ẑ) whose imageHp under the canonical homo-
morphism G(Ẑ) → G(Ẑp) is neat, which implies, a fortiori, thatH is also neat, we have a
normal scheme

&MH

which is quasi-projective and flat over &S0 = SpecOF0 ,(p) = SpecZ(p) and satisfies &MH ⊗Z

Q ∼= MH (see proposition 2.2.1.1 in [44]). This is simply the normalization ofMH over the
auxiliary (Siegel) moduli MHaux over SpecOF0,aux ,(p) = SpecZ(p) defined by the auxiliary
integral PEL datum

(Oaux, 'aux, Laux, 〈 · , · 〉aux, h0,aux) = (Z, Id, L, 〈 · , · 〉, h0),

forgetting the actions of O = OF , for any neat open compact subgroup Haux of Gaux(Ẑ)
(defined by the above auxiliary integral PEL datum) containing the image ofH under the
canonical homomorphism G(Ẑ) → Gaux(Ẑ) (see lemma 2.1.1.18 of [44] for the existence
ofHaux).
Similarly, we have a normal scheme

&Mmin
H

which is projective and flat over SpecZ(p) and satisfies &Mmin
H ⊗Z Q ∼= Mmin

H , and con-
tains &MH as an open fibrewise dense subscheme (see propositions 2.2.1.2 and 2.2.1.7, and
corollary 2.2.1.15, in [44]). The scheme &Mmin

H is the

Xmin
n,U

in this paper with U = H, and the special fibre

&Mmin
H ⊗Z Fp

is the

Xmin
n,U ,

in this paper (see Sect. 5.1).
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The projective scheme &Mmin
H is equipped with an ample invertible sheaf

ω &Mmin
H

(see proposition 2.2.1.2 in [44]). (Since 〈 · , · 〉 is self-dual, we can take a1 = 1, a2 = 0,
a0 = 1 and a = 1 in lemmas 2.1.1.1 and 2.1.2.35 of [44].) This is the

ωU

in this paper (see Sect. 5.1). We have a section

HasseH ∈ H0
(
&Mmin ⊗Z Fp,ω

⊗(p−1)
&Mmin
H

⊗Z Fp

)

(see corollary 6.3.1.7 of [44]), which is the

HasseU ∈ H0
(
Xmin
n,U ,ω⊗(p−1)

U

)

in this paper (see Sect. 5.1), whose vanishing and non-vanishing loci are

( &Mmin
H ⊗Z Fp

)non-ord
and
( &Mmin

H ⊗Z Fp
)full-ord

(see definition 6.3.2.1 of [44]), which are the

Xmin,n-ord
n,U and Xmin

n,U − Xmin,n-ord
n,U ,

respectively, in this paper (see Sect. 5.1).
The collections { &MH}H, { &Mmin

H }H, {ω &Mmin
H
}H and {HasseH}H admit compatible actions

of G(A∞,p)×G(Zp) (see proposition 2.2.3.1 and corollary 6.3.1.8 of [44]).
While the reader might be interested in knowing more about &MH and &Mmin

H , we empha-
size that we need to know almost nothing about them in this paper. What we really need
to know in detail are their ordinary loci (or more precisely just their multiplicative-type
ordinary loci, rather than the whole ( &Mmin

H ⊗Z Fp)full-ord as above), which we will explain
below.

B.10 Ordinary loci of Shimura varieties

To define the ordinary loci &Mord
H in [44], which will be compared with the X ord

n,Up(N1 ,N2) for
suitable choices ofH andUp(N1, N2), we consider the maximal totally isotropic filtration

0 = D1 ⊂ D0 ⊂ D−1 = L⊗Z Zp

(see lemma 3.2.2.1 of [44]) given by

D0 = V(n) ∩ (L⊗Z Zp).

Since 〈 · , · 〉 is self-dual, the dual filtration D# in lemma 3.2.2.4 of [44] can be identified
with D, and the induced inclusions φ0

D : Gr0D ↪→ Gr0
D#

and φ−1
D : Gr−1

D ↪→ Gr−1
D#

(again,
see lemma 3.2.2.4 of [44]) are isomorphisms. Moreover, the group &SD in theorem 3.4.1.9
of [44] is torsion free because it can be identified with S(On

F,p) in this paper (see Sect. 1.1),
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and hence the invariant rD in definition 3.4.2.1 of [44] is just zero under the assumptions
of this paper.
Then we define the following groups, for each Zp-algebra R (see definition 3.2.2.7 of

[44]):

PordD (R) :=
{
(g, r) ∈ GLO⊗ZR(L⊗Z R)×Gm(R) :
(g, r) ∈ G(R), g(D⊗Zp R) = D⊗Zp R

}
= P+n,(n)(R),

Mord
D (R) :=

{
(g, r) ∈ GLO⊗ZR(GrD⊗ZpR)×Gm(R) :
〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ GrD⊗ZpR

}
= Ln,(n)(R),

Uord
D (R) := ker(GrD : PordD (R) → Mord

D (R)) = Nn,(n)(R),

and

Uord,−1
D (R) := ker(Gr−1

D : PordD (R) → GLO⊗ZR(Gr
−1
D ⊗ZpR)) = Pn,(n)(R).

Then G(A∞,p)× PordD (Zp) = Gn(A∞)ord,×, in the notation of this paper.
For all integers 0 ≤ r and 0 ≤ r1 ≤ r0, we set (see definition 3.2.2.8 of [44]):

(1) Up,0(pr) := (G(Zp) → G(Z/prZ))−1(PordD (Z/prZ)) = Up(0, r).
(2) Up,1(pr) := (G(Zp) → G(Z/prZ))−1(Uord,−1

D (Z/prZ)) = Up(r, r).
(3) Ubal

p,1 (pr) := (G(Zp) → G(Z/prZ))−1(Uord
D (Z/prZ)).

(4) Up,1,0(pr1 , pr0 ) := Up,1(pr1 ) ∩ Up,0(pr0 ) = Up(r1, r0).
(5) Uord(pr) := ker(Mord

D (Zp) → Mord
D (Z/prZ)) = Up(r)n,(n) × (1+ prZp)×.

An open compact subgroupHp of G(Qp) is said to be of standard form and of depth r in
the sense of definition 3.2.2.9 of [44] if

Ubal
p,1 (p

r) ⊂ Hp ⊂ Up,0(pr).

In this case we define Hord
p to be the unique open compact subgroup of Mord

D (Zp) such
thatHord

p /Uord(pr) ∼= Hp/Ubal
p,1 (pr) (see definition 3.3.3.4 of [44]).

The theory in [44] is developed for open compact subgroups H of G(Ẑ) of the form
H = HpHp, where Hp is a neat open compact subgroup of G(Ẑp), and where Hp is
an open compact subgroup of G(Zp) of standard form. In this paper, we will only need
H of the form Up(N1, N2), which satisfies the above requirement with Hp = Up and
Hp = Up,1,0(pN1 , pN2 ). In this case, since ν(Hp) = Z×

p and rD = 0, the invariant rH in
definition 3.4.2.1 of [44] is just zero. Then we have a smooth quasi-projective scheme

&Mord
H

over &S0 = SpecOF0 ,(p) = SpecZ(p), which satisfies &Mord
H ⊗Z Q ∼= MH and can be canoni-

cally embedded as an open subscheme of &MH (see theorem 3.4.2.5 and proposition 3.4.6.3
of [44]). Note that, in theorem 3.4.2.5 of [44], &Mord

H is defined as a normalization of the
base change from SpecZ(p) to Spec (OF0 ,(p)[ζprH ]) of a naive moduli

...
M

ord
H over SpecZ(p)

(see definition 3.4.1.1 and theorem 3.4.1.9 of [44]), but since F0 = Q, rD = 0, and rH = 0,
the base change has no effect, and the normalization merely singles out the correct com-
ponents satisfying the condition on Lie algebra. Hence, &Mord

H coincides with the moduli
problem

X ord
n,Up(N1 ,N2)
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in this paper (see Sect. 3.1.1), with Up(N1, N2) = H (that is, with Up = Hp, N1 = r1,
and N2 = r0). (See remark 3.4.2.8 of [44] for the comparison between the definition
using isomorphism classes of abelian schemes with additional structures in [44], and the
definition of X ord

n,Up(N1 ,N2) using prime-to-p quasi-isogeny classes in this paper, and for the
extension of the definition of &Mord

H to allow H = HpHp for all open compact subgroups
Hp of G(Ẑp). Again, since the pairing 〈 · , · 〉 is self-dual, the consideration of dual objects
in [44] can be suppressed, although they were clarifying when developing the general
theory.)
The formal completion of &Mord

H
∼= X ord

n,Up(N1 ,N2) (with Up(N1, N2) = H) along

&Mord
H ⊗Z Fp ∼= Xord

n,Up(N1)

is denoted

&Mord
H

∼= Xord
n,Up(N1)

(see definition 3.4.4.2 of [44]). Their independence of N2 = r0 is explained in corollary
3.4.4.4 of [44].
The collection { &Mord

H }H indexed by neat open compact subgroups H of G(A∞) of the
form considered above admits compatible actions (see proposition 3.4.4.1 of [44]) of
G(A∞,p) × PordD (Zp) and of the element of PordD (Qp) ⊂ G(Qp) corresponding to ςp ∈
Ln,(n),herm(Qp) in this paper (see Sect. 1.2) under the identification between G(Qp) and
Gn(Qp), which are compatible with the action ofGn(A∞)ord on {X ord

n,Up(N1 ,N2)}Up(N1 ,N2). (In
fact, proposition 3.4.4.1 of [44] gives the actions ofmanymore elements, but we omit them
because they are not needed in this paper.) While these actions are given by quasi-finite
morphisms which are often not finite, the induced morphisms on the p-adic completions
are always finite (see corollary 3.4.4.3 of [44]). The element of PordD (Qp) corresponding
to ςp is a typical example of an element of Up type in definition 3.3.6.1 of [44], which
induces the composite of absolute Frobenius and forgetful morphisms in characteristic p
(see corollary 3.4.4.6 of [44]).

B.11 Ordinary cusp labels

Let H be any open compact subgroup of G(Ẑ) as above. We say that a cusp label
(ZH,ΦH, δH) is ordinary (see definition 3.2.3.8 of [44]) if ZH contains an element Z that
is compatible with the filtration D in the sense that

0 ⊂ Z−2 ⊗Ẑ Zp ⊂ D ⊂ Z−1 ⊗Ẑ Zp ⊂ L⊗Z Zp

(see definition 3.2.3.1 of [44]). Then we have an induced filtration D−1 on GrZ−1⊗ẐZp
given by
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0 = D1−1 ⊂ D0−1 := D0/(Z−2 ⊗Ẑ Zp) ⊂ D−1
−1 = GrZ−1⊗ẐZp.

For any suchZ, and for eachZp-algebraR, wedefine the followingquotients of subgroups
of PZ(R) (see definition 3.2.3.9 of [44]):

(1) PordZ,D(R) := PZ(R) ∩ PordD (R).
(2) Pord,′Z,D (R) := P′Z(R) ∩ PordD (R).
(3) Pord1,Z,D(R) := Pord,′Z,D (R)/U2,Z(R).
(4) Pordh,Z,D(R) is the subgroup of elements of Gh,Z(R) preserving the filtration D−1

induced by D on GrZ−1⊗ẐZp.
(5) Pord,′h,Z,D(R) := Pord,′Z,D (R)/UZ(R)

∼→ Pordh,Z,D(R).

We have, for example,

PZ(i,1) (A
∞,p)× Pord

Z(i,1) ,D(Zp) = P+n,(i)(A
∞)ord,×

in the notation of this paper (see Sect. 1.2). (In this paper, all intersections with PordD (Zp) =
P+n,(n)(Zp) at the factors at p are denoted by the superscript ord,×.) By definition, as g
varies in G(A∞), the filtration Z(i,g) is compatible with D if and only if g ∈ G(A∞,p) ×
PZ(i,1) (Qp)PordD (Qp).
Now suppose H = HpHp, where Hp is an open compact subgroup of G(A∞,p) and

Hp = Up,1,0(pr1 , pr0 ) for some integers 0 ≤ r1 ≤ r0. The H-orbits Z
(i,g)
H of Z(i,g) that

contains a filtration compatible with D are parameterized by the image of G(A∞,p) ×
PZ(i,1) (Qp)PordD (Qp) in PZ(i,1) (A∞)\G(A∞)/H. As in Sect. 5.1, this image is in bijection with
the double coset space
(
PZ(i,1) (A

∞,p)× Pord
Z(i,1) ,D(Zp)

)∖(
G(A∞,p)× PordD (Zp)

)/(
Hp ×
(
Hp ∩ PordD (Zp)

))
,

which is the double coset space

P+n,(i)(A
∞)ord,×

∖
Gn(A∞)ord,×

/
Up(N1)

in this paper (see, e.g., Sect. 5.1), with Up(N1, N2) = H and with Up(N1) denoting the
intersection ofUp(N1, N2) withGn(A∞)ord,×. The ordinary cusp labels [(ZH,ΦH, δH)] for
MH with underlying ZH equal to Z(i,g)H for some g ∈ G(A∞,p)×PordD (Zp) are parameterized
by the double coset space
(
G′
l,Φ(i,1) (Z(p)) �

(
P′
Z(i,1)

(A∞,p)× Pord,′
Z(i,1) ,D(Zp)

))∖(
G(A∞)× PordD (Zp)

)
/(

Hp ×
(
Hp ∩ PordD (Zp)

) )
,

and the forgetful map sending [(ZH,ΦH, δH)] to ZH can be identified with the canonical
map from this double coset space to
(
PZ(i,1) (A

∞,p)× Pord
Z(i,1) ,D(Zp)

)∖(
G(A∞,p)× PordD (Zp)

)/(
Hp ×
(
Hp ∩ PordD (Zp)

))
,

whose fibre above the double coset of g ∈ G(A∞,p)× PordD (Zp) can be identified with

G′
l,Φ(i,1) (Z(p))

∖
G′
l,Z(i,1) (A

∞,p × Zp)
/
(gHg−1)G′

l,Z(i,1)
.
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This last double coset space is the index set of

Yord,#
n,(i),(gUpg−1∩P+n,(i)(A∞,p))(N1)

=
∐

Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/(gUpg−1∩P+n,(i)(A∞,p))(N1)

SpecZ(p)

in this paper (see Sect. 4.1), with Up(N1, N2) = H.

B.12 Partial minimal compactifications of ordinary PEL moduli

For eachH = HpHp, whereHp is a neat open compact subgroup of G(A∞,p), and where
Hp = Up,1,0(pr1 , pr0 ) for some integers 0 ≤ r1 ≤ r0, there is a normal scheme

&Mord,min
H

quasi-projective and flat over SpecZ(p), with geometrically normal fibres, which contains
&Mord
H as an open fibrewise dense subscheme and can be canonically embedded as an

open subscheme of &Mmin
H , called the partial minimal compactification of &Mord

H , whose
characteristic zero pull-back &Mord,min

H ⊗Z Q is an open subscheme of Mmin
H which can

be identified with the union of the strata Z[(ΦH ,δH)] indexed by ordinary cusp labels (see
theorem 6.2.1.1 and proposition 6.2.1.6 of [44]). The union

&Mord,min
H ∪Mmin

H

(by gluing along their common open subscheme described above) is the

Xmin
n,Up(N1 ,N2)

in this paper (see Sect. 5.1), with Up(N1, N2) = H. The collection { &Mord,min
H }H admits

compatible actions of G(A∞,p)× PordD (Zp) and of the element of PordD (Qp) corresponding
to ςp (see proposition 6.2.2.1 of [44]), which are compatible with the action ofGn(A∞)ord

on {Xmin
n,Up(N1 ,N2)}Up(N1 ,N2).

The partial minimal compactification &Mord,min
H admits a stratification by locally closed

subschemes

&Mord,min
H =

∐
[(ΦH ,δH)]

&Zord[(ΦH ,δH)] =
n∐

i=0

∐
g

&Zord
[(Φ(i,g)

H ,δH)]

where [(ΦH, δH)] runs over ordinary cusp labels forMH and g runs over
(
G′
l,Φ(i,1) (Z(p)) �

(
P′
Z(i,1)

(A∞,p)× Pord,′
Z(i,1) ,D(Zp)

))∖(
G(A∞)× PordD (Zp)

)
/(

Hp × (Hp ∩ PordD (Zp)
))

(see theorem 6.2.1.1(4) of [44]). IfH = Up(N1, N2), this matches

∐
g

&Zord
[(Φ(i,g)

H ,δH)]
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(where the indices g are as above) with the subscheme

∐

g∈P+n,(i)(A∞)ord,×\Gn(A∞)ord,×/Up(N1)

X ord,#
n,(i),(gUpg−1∩P+n,(i)(A∞,p))(N1 ,N2)

of ∂0i X
ord,min
n,Up(N1 ,N2) (see Sect. 5.1), where

X ord,#
n,(i),(gUpg−1∩P+n,(i)(A∞,p))(N1,N2)

=
∐

h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/(gUpg−1∩P+n,(i)(A∞,p))(N1)

&Zord
[(Φ(i,hg)

H ,δH)]
.

Each &Zord[(ΦH ,δH)] is the quotient &Mord,ZH
H of

&Mord,ΦH
H

∼= &Mord
HG′h,Z

by ΓΦH , which is isomorphic to &Mord
HGh,Z ,Φ

, where HGh,Z ,Φ is as in Sect. B.4 (see lemmas

5.2.4.1 and 5.2.4.5 of [44]). Here &Mord
HG′h,Z

and &Mord
HGh,Z ,Φ

are analogues of &Mord
H defined by an

integral PELdatum (O, ', LZ, 〈 · , · 〉Z, hZ0 ) definingMHG′h,Z
andMHGh,Z ,Φ

, which is associated
with a representative Z of ZH that is compatible with D, and by the filtration D−1 on
LZ ⊗Z Zp ∼= GrZ−1⊗ẐZp determined by D as above (see definition 1.2.1.15 and lemma
5.2.4.1 of [44]). If we let Up,′

g (resp. Up,′
g,lin) denote the image of gUpg−1 ∩ P+n,(i)(A

∞,p) in
Ln,(i)(A∞,p) (resp. Ln,(i),lin(A∞,p)), then under the identifications

X ord,#
n,(i),Up,′

g (N1 ,N2)
= Ln,(i),lin(Z(p))

∖
X ord,+
n,(i),Up,′

g (N1 ,N2)

= Ln,(i),lin(Z(p))∖( ∐

h∈Ln,(i),lin(A∞)ord,×/(Up,′
g ∩Ln,(i),lin(A∞,p))(N1)

X ord
n,(i),(Up,′

g ∩Gn−i(A∞,p))(N1 ,N2)

)/
Up,′
g

=
∐

h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/Up,′
g,lin(N1)((

Ln,(i),lin
(
Z(p)
) ∩ (hUp,′

g,linh
−1)(N1)

)∖
X ord
n,(i),(Up,′

g ∩Gn−i(A∞,p))(N1,N2)

)
,

of Sect. 4.1,

• the term X ord
n,(i),(Up,′

g ∩Gn−i(A∞,p))(N1,N2)
indexed by h is identified with &Mord,Φ(i,hg)

H
H ;

• the group Ln,(i),lin(Z(p)) ∩ (hUp,′
g,linh

−1)(N1) is identified with Γ
Φ

(i,hg)
H

;
• and the term

(
Ln,(i),lin(Z(p)) ∩

(
hUp,′

g,linh
−1
)
(N1)
)∖

X ord
n,(i),
(
Up,′
g ∩Gn−i(A∞,p)

)
(N1 ,N2)

is identified with &Mord,Z(i,hg)H
H .
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Similarly, under the identification

X ord,+
n,(i),Up,′

g (N1 ,N2)
=

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

X ord
n,(i),(Up,′

g ∩Gn−i(A∞,p))(N1,N2)
,

the termX ord
n,(i),(Up,′

g ∩Gn−i(A∞,p))(N1,N2)
indexed by h is identified with &Mord,Φ(i,hg)

H
H . These iden-

tifications are Hecke equivariant.
IfH = Up(N1, N2), then the formal completion of &Mord,min

H
∼= X ord,min

n,Up(N1 ,N2) along

&Mord,min
H ⊗Z Fp ∼= Xord,min

n,Up(N1)

is denoted

&Mord,min
H

∼= Xord,min
n,Up(N1)

(see definition 3.4.4.2 of [44]). Their independence of N2 = r0 is explained in corollary
6.2.2.8 and example 3.4.4.5 of [44]. For the Hecke actions on these formal schemes, see
corollaries 6.2.2.7, 6.2.2.8 and 6.2.2.9 of [44].

B.13 Partial toroidal compactifications of ordinary PEL moduli

For each representative (ZH,ΦH, δH) of an ordinary cusp label [(ZH,ΦH, δH)] for MH,
there is a torsor

&Cord
ΦH ,δH → &Mord,ΦH

H

of an abelian scheme

&Cord,grp
ΦH ,δH → &Mord,ΦH

H ;

this abelian scheme is Q×-isogenous to HomO(X, B), and in fact its Z×
(p)-isogeny class

(i.e. prime-to-p quasi-isogeny class) can be described explicitly (see lemma 5.2.4.7 and
propositions 5.2.4.11 and 5.2.4.13 of [44]).We obtain an isomorphic abelian scheme torsor
if we replace (ZH,ΦH, δH) with another representative, but its universal property depends
on this choice of representative.
If Up,′

g again denotes gUpg−1 ∩ P+n,(i)(A
∞,p) then the map

Aord,+
n,(i),Up,′

g (N1 ,N2)
= ∐h∈Ln,(i),lin(A∞)ord,×/Up,′

g (N1)A
(i),ord
n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1 ,N2)

↓ ↓
X ord,+
n,(i),Up,′

g (N1 ,N2)
= ∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)X

ord
n,(i),(Up,′

g ∩Pn,(i)(A∞,p))(N1 ,N2)

in this paper (see Sects. 4.1, 4.2) with Up(N1, N2) = H is identified with

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′

g (N1)
&Cord
Φ

(i,hg)
H ,δH

↓
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Mord,Φ(i,hg)
H

H .
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These maps are equivariant with compatible actions of PZ(i,g) (A∞,p) × Pord
Z(i,g) ,D(Zp) and of

the element of Pord
Z(i,g) ,D(Qp) corresponding to ςp. (See proposition 5.2.4.25 of [44].) (Since

our pairing 〈 · , · 〉 is perfect, the universal property of &Cord
ΦH ,δH in proposition 5.2.4.13 of

[44] can be simplified by suppressing the dual objects. This universal property then agrees
with that ofA(i),ord

n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2)
in Sect. 3.2 of this paper.)

For each representative (ZH,ΦH, δH) of an ordinary cusp label [(ZH,ΦH, δH)] for MH,
there is a torsor

&Ξord
ΦH ,δH → &Cord

ΦH ,δH

under the pull-back of the same split torus EΦH over SpecZ as before (see Sect. B.5; and
see lemma 5.2.4.26 and proposition 5.2.4.30 of [44]).We obtain an isomorphic torus torsor
if we replace (ZH,ΦH, δH) with another representative, but its universal property depends
on this choice of representative. For a fixed (Z,Φ , δ), the collection { &Ξord

ΦH ,δH}HP′Z
admits

compatible actions of P′Z(A∞,p)×Pord,′Z,D (Zp) and of the element of Pord,′Z,D (Qp) corresponding
to ςp such that the morphisms

&Ξord
ΦH ,δH → &Cord

ΦH ,δH

are equivariant with

P′Z(A∞,p)× Pord,′Z,D (Zp) → G1,Z(A∞,p)× P1,Z,D(Zp)

and with the compatible actions of the elements corresponding to ςp (see proposition
5.2.4.41 of [44]).
The torus

Sord,+
n,(i),Up,′

g (N1)
→ Yord,+

n,(i),Up,′
g (N1)

in this paper (see Sect. 4.3) with Up(N1, N2) = H is identified with

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Eord
Φ

(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

SpecZ(p).

Moreover, the sheaves X∗(Sord,+
n,(i),Up,′

g (N1)
), X∗(Sord,+

n,(i),Up,′
g (N1)

)�0R , and X∗(Sord,+
n,(i),Up,′

g
)>0
R are iden-

tified with

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

S
Φ

(i,hg)
H

,
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

P
Φ

(i,hg)
H

,

and

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

P+
Φ

(i,hg)
H

,
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respectively. The Sord,+
n,(i),Up,′

g (N1)
-torsor

T ord,+
n,(i),Up,′

g (N1 ,N2)
= ∐h∈Ln,(i),lin(A∞)ord,×/Up,′

g (N1) T
(i),ord
n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2)

↓ ↓
Aord,+

n,(i),Up,′
g (N1 ,N2)

= ∐h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)A

(i),ord
n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1 ,N2)

is identified with
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Ξord
Φ

(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)ord,×/Up,′

g (N1)
&Cord
Φ

(i,hg)
H ,δH

.

These maps are equivariant with the compatible actions of PZ(i,g) (A∞,p)× Pord,′
Z(i,g) ,D(Zp) and

of the elements corresponding to ςp. (See proposition 5.2.4.41 of [44].)
Consider any compatible collection

Σord = {ΣΦH}[(ΦH ,δH)]

of admissible projective smooth rational polyhedral cone decompositions for &Mord
H , where

eachΣΦH is aΓΦH-admissible projective smooth rational polyhedral cone decomposition
ofPΦH , and where the indices [(ΦH, δH)] are ordinary cusp labels forMH, as in definitions
5.1.3.1 and 5.1.3.3 of [44]. Any compatible collection Σ for MH induces a compatible
collection Σord for &Mord

H by restricting to the indices given by ordinary cusp labels, and
conversely any compatible collectionΣord for &Mord

H extends to a compatible collectionΣ

forMH (see proposition 5.1.3.4 of [44]). Each suchΣord considered in [44] induces a pair

(Up(N1),Δ)

in J tor,ord
n (with Up(N1, N2) = H) in Sect. 5.2 of this paper, because, in order to define

(Up(N1),Δ) as in Sect. 5.2, it suffices to define the admissible cone decomposition Δ(g)0
for X∗(Sord,+

n,(i),(gUpg−1∩P+n,(i)(A∞,p))(N1)
)�0R , for each g ∈ Gn(A∞)ord,× = G(A∞,p) × PordD (Zp),

which canbe taken to be the pull-back of the subcollection {ΣΦH}[(ΦH ,δH)] ofΣord indexed
by the cusp labels [(ΦH, δH)] with underlying ZH equal to Z

(i,g)
H . In fact, J tor,ord

n is exactly
the set of such induced pairs (as Up(N1, N2) = H varies).
Each ΣΦH defines an affine toroidal embedding

&Ξord
ΦH ,δH ↪→ &Ξord

ΦH ,δH = &Ξord
ΦH ,δH ,ΣΦH

=
⋃

σ∈ΣΦH

&Ξord
ΦH ,δH (σ ) =

∐
σ∈ΣΦH

&Ξord
ΦH ,δH ,σ

over &Cord
ΦH ,δH . Rather confusingly &Ξord

ΦH ,δH (σ ) (in the notation of [44]) is what in this paper
we would have denoted &Ξord

ΦH ,δH ,σ ; and &Ξord
ΦH ,δH ,σ is what in this paper we would have

denoted ∂σ &Ξord
ΦH ,δH ,ΣΦH

. The formal completion of &Ξord
ΦH ,δH ,ΣΦH

along the union of the
σ -strata &Ξord

ΦH ,δH ,σ for all σ ∈ ΣΦH such that σ ∩ P+ΦH �= ∅ is denoted

&Xord
ΦH ,δH = &Xord

ΦH ,δH ,ΣΦH
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(see (4.2.2.4), (5.2.4.32), (5.2.4.33), and lemma 5.2.4.38 of [44]).
For a fixed g ∈ G(A∞,p)× PordD (Zp), the schemes

T ord,+
n,(i),Up,′

g (N1 ,N2),Δ(g)0
→ Aord,+

n,(i),Up,′
g (N1 ,N2)

of this paper (see Sect. 4.4) are identified with

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Ξord
Φ

(i,hg)
H ,δH →

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Cord
Φ

(i,hg)
H ,δH

Moreover, T ord,+,∧
n,(i),Up,′

g (N1 ,N2),Δ(g)0
is identified with

∐

h∈Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

&Xord
Φ

(i,hg)
H ,δH

and T ord,#,∧
n,(i),Up,′

g (N1 ,N2),Δ(g)0
is identified with

∐

h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/Up,′
g (N1)

(
&Xord
Φ

(i,hg)
H ,δH

/
Γ
Φ

(i,hg)
H

)
=
∐

[(ΦH ,δH)]

( &Xord
ΦH ,δH

/
ΓΦH

)
,

where the second disjoint union runs over all ordinary cusp labels [(ΦH, δH)] with under-
lying ZH equal to Z

(i,g)
H . (Again U = H.)

For each Σord as above (and eachH as above; see the beginning of Sect. B.12), we have
a smooth quasi-projective scheme

&Mord,tor
H,Σord

over SpecZ(p), which contains &Mord
H as an open fibrewise dense subscheme, and is called a

partial toroidal compactification of &Mord
H . Its characteristic zero pull-back &Mord,tor

H,Σord ⊗Z Q

is an open subscheme of Mtor
H,Σ , for any Σ extending Σord, which can be identified with

the union of the strata Z[(ΦH ,δH ,σ )] indexed by equivalence classes whose underlying cusp
labels [(ΦH, δH)] are ordinary (see theorems 5.2.1.1 and 6.2.3.1 and remark 5.2.1.5 of [44]).
The union

&Mord,tor
H,Σord ∪Mtor

H,Σ

(by gluing along their common open subscheme described above) is the

X ord
n,Up(N1 ,N2),Δ

in this paper (seeSect. 5.3),withUp(N1, N2) = H andwith (Up(N1, N2),Δ) ∈ J tor
n induced

byΣ as in Sect. B.5. In this case, the (Up(N1),Δord) ∈ J tor,ord
n induced by (Up(N1, N2),Δ)

is induced by the Σord induced by Σ . The collection { &Mord,tor
H,Σord}(H,Σord) admits compat-

ible actions of G(A∞,p) × PordD (Zp) and of the element of PordD (Qp) corresponding to ςp
(see proposition 5.2.2.2 of [44]), which are compatible with the action of Gn(A∞)ord on
{Xn,Up(N1 ,N2),Δ}(Up(N1 ,N2),Δ).
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The partial toroidal compactification &Mord,tor
H,Σord admits a stratification by locally closed

subschemes

&Mord,tor
H,Σord =

∐
[(ΦH ,δH ,σ )]

&Zord[(ΦH ,δH ,σ )]

(see theorem 5.2.1.1(2) of [44]) indexed by equivalence classes [(ΦH, δH, σ )] as in defini-
tion 1.2.2.10 of [44] whose underlying cusp labels [(ΦH, δH)] are ordinary. Each stratum
&Zord[(ΦH ,δH ,σ )] is canonically isomorphic to &Ξord

ΦH ,δH ,σ , and the formal completion of &Mord,tor
H,Σord

along the union of the strata &Zord[(ΦH ,δH ,σ )] labelled by equivalence classes [(ΦH, δH, σ )]
with the same underlying ordinary cusp label [(ΦH, δH)] is canonically isomorphic to
&Xord
ΦH ,δH/ΓΦH (see lemma 5.2.4.38 of [44]).
When Up(N1, N2) = H, and when (Up(N1),Δord) ∈ J tor,ord

n is induced by Σord as
above, the formal completion of &Mord,tor

H,Σord along the union of all strata &Zord[(ΦH ,δH ,σ )] labelled

by equivalence classes [(ΦH, δH, σ )] with underlying ZH equal to Z
(i,g)
H for some g ∈

G(A∞,p)× PordD (Zp) is

∐

g∈P+n,(i)(A∞)ord,×\Gn(A∞)ord,×/Up(N1)

T ord,#,∧
n,(i),(gUpg−1∩P+n,(i)(A∞,p))(N1 ,N2),Δ(g)0

⊂ X ord,∧
n,Up(N1 ,N2),Δ,i

in this paper, whose union with X∧
n,Up(N1 ,N2),Δ,i is

X ord,∧
n,Up(N1 ,N2),Δ,i

(see Sect. 5.3). It can be identified with

∐
g

∐
h

(
&Xord
Φ

(i,hg)
H ,δH

/
Γ
Φ

(i,hg)
H

)
,

where g runs over P+n,(i)(A
∞)ord,×\Gn(A∞)ord,×/Up(N1) and h runs over

Ln,(i),lin(Z(p))
∖
Ln,(i),lin(A∞)ord,×

/(
gUpg−1 ∩ P+n,(i)(A

∞,p)
)
(N1).

These identifications are all Hecke equivariant (see proposition 5.2.4.41 of [44]).
The formal completion of &Mord,tor

H,Σord along

&Mord,tor
H,Σord ⊗Z Fp

is denoted

&Mord,tor
H,Σord

in [44] (see definition 3.4.4.2). When Up(N1, N2) = H, and when (Up(N1),Δ) ∈ J tor,ord
n

induced by Σord as above, these are denoted Xord
n,Up(N1),Δ and Xord

n,Up(N1),Δ, respectively, in
this paper (see Sect. 5.3). (Their independence of N2 = r0 is explained in corollary 5.2.2.4
of [44].) For the Hecke actions on these formal schemes, see corollaries 5.2.2.3, 5.2.2.4 and
5.2.2.5 of [44].
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B.14 Ordinary loci of Kuga families

Recall the choice of Q = Om
F in Sect. B.6, and the associated algebraic groups. For a

Zp-algebra R, we set

P̂ordD (R)

to be the pre-image of PordD (R) under the homomorphism Ĝ(R) � G(R). This is P(m),+
n,(n) (R)

in the notation of this paper. Thus,

Ĝ(A∞,p)× P̂ordD (Zp) = G(m)
n (A∞)ord,×.

For all integers 0 ≤ r and 0 ≤ r1 ≤ r0, we set:

(1) Ûp,0(pr) := (Ĝ(Zp) → Ĝ(Z/prZ))−1(̂PordD (Z/prZ)) = Up(0, r)(m)
n .

(2) Ûp,1(pr) := Up(r, r)(m)
n .

(3) Ûbal
p,1 (pr) := ker(ν : Ûp,1(pr) → (Z/prZ)×).

(4) Ûp,1,0(pr1 , pr0 ) := Ûp,1(pr1 ) ∩ Ûp,0(pr0 ) = Up(r1, r0)(m)
n .

(The first and third of these definitions are consistent with definition 7.1.1.2 of [44].) An
open compact subgroup Ĥp ⊂ Ĝ(Qp) is said to be of standard form and of depth r if

Ûbal
p,1 (p

r) ⊂ Ĥp ⊂ Ûp,0(pr)

(see definition 7.1.1.2 of [44]).
The theory in [44] is developed for open compact subgroups Ĥ of Ĝ(Ẑ) of the form

Ĥ = ĤpĤp, where Ĥp is a neat open compact subgroup of Ĝ(Ẑp), and where Ĥp is
an open compact subgroup of Ĝ(Zp) of standard form. In this paper, we will only need
Ĥ of the form Up(N1, N2), which satisfies the above requirement with Ĥp = Up and
Ĥp = Ûp,1,0(pN1 , pN2 ). Then rĤG = 0 and Ĥ satisfies conditions 7.1.1.4 and 7.1.1.5 of [44].
To each Ĥ as above with image H = ĤG in G(Ẑ), [44] attached a generalized ordinary
Kuga family

&Nord → &Mord
H

(see definition 7.1.3.2 of [44]). Its characteristic zero pull-back is a generalized Kuga family
N → MH as in Sect. B.6. SinceQ = Om

F , it is the scheme denotedA(m),ord
n,Up(N1 ,N2) in this paper.

The generalized ordinary Kuga family attached to ĤĜ � ĤÛ is denoted

&Nord,grp → &Mord
H

and is a Kuga family as in definition 7.1.3.1 of [44]. It is an abelian scheme and, since
Q = Om

F , it is Q×-isogenous to the m-fold fibre product of the universal abelian scheme
over &Mord

ĤG
. Its characteristic zero pull-back is a Kuga family Ngrp → MH as in Sect. B.6.

The generalized ordinary Kuga family &Nord → &Mord
H is a torsor for &Nord,grp → &Mord

H .
To study these schemes and their compactification [44] again realizes them in a non-

canonical way inside the boundary of a larger Shimura variety. We will continue to use
the notation of Sect. B.6. We consider the maximal totally isotropic filtration

0 = D̃1 ⊂ D̃0 = ((̃Z−2 ⊗Ẑ Zp)⊕ D
) ⊂ D̃−1 = L̃⊗Z Zp



Harris et al. Res Math Sci (2016) 3:37 Page 289 of 308

of L̃⊗Z Zp (see the beginning of section 7.1.1 of [44]). We have

D̃0 = Ṽ(m+n) ∩ (̃L⊗Z Zp).

We define (see definition 7.1.1.22 of [44]):

(1) P̃ordZ̃,̃D(R) := P̃Z̃(R) ∩ P̃ordD̃ (R).
(2) P̃ord,′Z̃,̃D (R) := P̃′̃Z(R) ∩ P̃ordD̃ (R) = P̃(m),+

n,(n) .

For any such Ĥ, we can always find some

H̃ = H̃p × Ũp,1,0(pN1 , pN2 ) ⊂ G̃(Ẑ)

with H̃p neat such that Ĥ = H̃Ĝ (see Sect. B.6) and

H̃P̃Z̃/H̃ŨZ̃
∼= H̃G̃l,̃Z

× ĤG.

(Then rH̃ = 0.) In this case, the abelian scheme torsor

&̃Cord
Φ̃H̃ ,Φ̃δ̃

→ &̃Mord,Φ̃H̃
H̃

∼= &̃Mord,̃ZH̃
H̃

depends only on Ĥ (but not on the auxiliary choice of H̃) and equals the above generalized
ordinary Kuga family &Nord → &Mord

H attached to Ĥ.

B.15 Partial toroidal compactifications of ordinary loci of Kuga families

Let us fix the choice of some (̃Z, Φ̃ , δ̃) as in Sect. B.6. Then the bijection described at the
start of Sect. B.7 restricts to a bijection between the following two sets:

(1) The fully symplectic admissible filtrations Z̆ of L̃⊗Z Ẑ compatible with D̃ such that
0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃⊗Z Ẑ.

(2) The fully symplectic admissible filtrations Z of L⊗Z Ẑ compatible with D such that
Z−2 = Z̆−2/̃Z−2.

(Recall that the notation ˘will always mean objects related to such a filtration Z̆.)
For each Z̆ as above, and for each Zp-algebra R, we define the following quotients of

subgroups of P̂Z̆(R) (see definition 7.1.1.27 of [44]):

(1) P̂ord
Z̆,D(R) := (̃Pord

Z̆,̃D(R) ∩ P̃′̃Z(R))/Ũ2,̃Z(R).
(2) P̂ord,′

Z̆,D (R) := P̃ord,′
Z̆,̃D (R)/Ũ2,̃Z(R).

(3) P̂ord1,Z̆,D(R) := P̂ord,′
Z̆,D (R)/Û2,Z̆(R).

(4) P̂ord,′h,Z̆,D(R) := P̂ord1,Z̆,D(R)/Û1,Z̆(R) ∼= P̂ordh,Z̆,D(R).
(5) P̂ordh,Z̆,D(R) denotes the subgroup of elements of Ĝh,Z̆(R) ∼= Gh,Z(R) which preserve

D̃−1 = D ⊂ GrZ̆−1⊗ẐZp ∼= GrZ−1⊗ẐZp. Thus P̂ord,′h,Z̆,D(R)
∼→ P̂ordh,Z̆,D(R).

When Z = Z(i,1), in which case Z̆ = Z̃(i+m,1) = Z̆(i,1), we have, for example,

P̂
Z̆(i,1)

(A∞,p)× P̂ord
Z̆(i,1) ,D

(Zp) = P(m),+
n,(i) (A∞)ord,×

in the notation of this paper (see Sect. 1.2).
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The filtration Z̆(i,̂g) is compatible with D̃ if and only if

ĝ ∈ Ĝ(A∞,p)× P̂ord
Z̆(i,1)

(Qp )̂PordD (Qp),

where P̂ordD (Qp) = P̃ord1,̃Z,̃D(Qp).
Now suppose Ĥ is an open compact subgroup Ĥ of Ĝ(Ẑ) of the form Ĥ = ĤpĤp, where

Ĥp is a neat open compact subgroup of Ĝ(Ẑp), and where Ĥp = Ûp,1,0(pr1 , pr0 ) for some
integers 0 ≤ r1 ≤ r0. The Ĥ-orbits Z̆(i,̂g)Ĥ containing a filtration compatible with D̃ are
parameterized by the image of Ĝ(A∞,p)× P̂ord

Z̆(i,1)
(Qp )̂PordD (Qp) in P̂ord

Z̆(i,1)
(A∞)\Ĝ(A∞)/Ĥ. As

in Sect. 5.1, this set is in bijection with the double coset space

(̂
P
Z̆(i,1)

(A∞,p)× P̂ord
Z̆(i,1) ,D

(Zp)
)∖(

Ĝ(A∞,p)× P̂ordD (Zp)
)/(

Ĥp × (Ĥp ∩ P̂ordD (Zp)
))
,

which is the double coset space

P(m),+
n,(i) (A∞)ord,×

∖
G(m)
n (A∞)ord,×

/
Up(N1)

in this paper (see, e.g., Sect. 1.4), with Up(N1, N2) = Ĥ. It maps isomorphically to

P+n,(i)(A
∞)ord,×

∖
Gn(A∞)ord,×

/
Up(N1).

The correspondence of cusp labels from Sect. B.7 sets up bijections between the following
sets (see lemmas 1.2.4.15 and 1.2.4.16, definitions 1.2.4.17 and 3.2.3.8, and lemma 7.1.1.8
of [44]):

(1) The ordinary cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] for M̃H̃ such that the stratum Z̃[(Φ̆H̃ ,δ̆H̃)]
of M̃min

H̃ is contained in the closure of Z̃[(Φ̃H̃ ,̃δH̃)].
(2) The Ĥ-orbits, [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)], of equivalence classes of (Z̆, Φ̆ , δ̆), where Z̆ and Φ̆

are compatible with Z̃ and Φ̃ , as described in Sect. B.7, and with D̃. We call such
an orbit an ordinary cusp label for (̃L, 〈 · , · 〉̃ , h̃0, Z̃, D̃).

(3) The ordinary cusp labels [(ZH,ΦH, δH)] forMH.

The stratum &̃Zord[(Φ̆H̃ ,δ̆H̃)]
∼= &̃Mord,̃ZH̃

H̃ , the finite étale cover &̃Mord,Φ̃H̃
H̃ → &̃Mord,̃ZH̃

H̃ , the abelian

scheme torsor &̃Cord
Φ̃H̃ ,̃δH̃ → &̃Mord,Φ̃H̃

H̃ , and the abelian scheme &̃Cord,grp
Φ̃H̃ ,̃δH̃ → &̃Mord,Φ̃H̃

H̃ depend
(up to canonical isomorphism) only on the Ĥ-orbit of (Z̆, Φ̆ , δ̆) (see lemma 7.1.2.1 of [44]),
and hence we shall denote them by

&̂Mord,Z̆Ĥ
Ĥ , &̂Mord,Φ̆Ĥ

Ĥ → &̂Mord,Z̆Ĥ
Ĥ , &̂Cord

Φ̆Ĥ ,δ̆Ĥ → &̂Mord,Φ̆Ĥ
Ĥ , and &̂Cord,grp

Φ̆Ĥ ,δ̆Ĥ → &̂Mord,Φ̆Ĥ
Ĥ ,

respectively. For a fixed (Z̆, Φ̆ , δ̆), the morphisms

&̂Cord
Φ̆Ĥ ,δ̆Ĥ → &̂Mord,Φ̆Ĥ

Ĥ → &̂Mord,Z̆Ĥ
Ĥ

are equivariant with

Ĝ1,Z̆(A∞,p)× P̂ord1,Z̆,D(Zp) → Ĝ′
h,Z̆(A

∞,p)× P̂ord,′h,Z̆,D(Zp) ∼= Ĝh,Z̆(A∞,p)× P̂ordh,Z̆,D(Zp)
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and with the compatible actions of the elements corresponding to ςp (see propositions
5.2.4.25 and 7.1.2.5 of [44]).
The cusp labels [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] such that Z̆Ĥ = Z̆

(i,̂g)
Ĥ for some ĝ ∈ Ĝ(A∞,p)× P̂ordD (Zp)

are parameterized by the double coset space
(
Ĝ′
l,Φ̆(i,1) (Z(p)) �

(̂
P′
Z̆(i,1)

(A∞,p)× P̂ord,′
Z̆(i,1) ,D

(Zp)
))∖ (

Ĝ(A∞,p)× P̂ordD (Zp)
)

/(
Ĥp × (Ĥp ∩ P̂ordD (Zp)

))
,

and the forgetful map sending [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] to Z̆Ĥ can be identified with the canonical
map from this double coset space to

(̂
P
Z̆(i,1)

(A∞,p)× P̂ord
Z̆(i,1) ,D

(Zp)
)∖(

Ĝ(A∞,p)× P̂ordD (Zp)
)/(

Ĥp ×
(
Ĥp ∩ P̂ordD (Zp)

))

whose fibre above the double coset of ĝ ∈ Ĝ(A∞,p)× P̂ordD (Zp) can be identified with

Ĝ′
l,Φ̆(i,1) (Z(p))

∖
Ĝ′
l,Z̆(i,1)

(A∞,p × Zp)
/
(̂gĤĝ−1)Ĝ′

l,Z̆(i,1)
.

(See Sect. B.7 for the definition of Ĝ′
l,Φ̆(i,1) .) This last double coset space is the index set of

Y (m),ord,#
n,(i),(gUpg−1∩P(m),+

n,(i) (A∞,p))(N1)

=
∐

L(m)
n,(i),lin(Z(p))\L(m)

n,(i),lin(A∞)ord,×/(gUpg−1∩P(m),+
n,(i) (A∞,p))(N1)

SpecZ(p)

in this paper (see Sect. 4.1), with g = ĝ and Up(N1, N2) = Ĥ.
IfUp(N1, N2) = Ĥ is a neat open compact subgroup ofG(m)

n (A∞) = Ĝ(A∞) as above, if
g = ĝ ∈ G(m)

n (A∞)ord,× = Ĝ(A∞,p)× P̂ordD (Zp) and if Up,′
g = gUpg−1 ∩ P(m),+

n,(i) (A∞), then
the maps

A(m),ord,+
n,(i),Up,′

g (N1 ,N2)
= ∐h∈L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

A(i+m),ord
n−i,(hUp,′

g h−1∩P(m)
n,(i)(A∞,p))(N1,N2)

↓ ↓
X (m),ord,+
n,(i),Up,′

g (N1 ,N2)
= ∐h∈L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

X ord
n−i,(hUp,′

g h−1∩P(m)
n,(i)(A∞,p))(N1 ,N2)

↓
X (m),ord,#
n,(i),Up,′

g (N1 ,N2)

in this paper (see Sects. 4.1, 4.2) are identified with

∐
h∈L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

&̂Cord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

↓
∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)
&̂Mord,Φ̆(i,hg)

Ĥ
Ĥ

↓
∐

h∈L(m)
n,(i),lin(Z(p))\L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

&̂Mord,Z̆(i,hg)Ĥ
Ĥ .
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For each representative (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of an ordinary cusp label [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] as above,
there is a torsor

&̂Ξord
Φ̆Ĥ ,δ̆Ĥ → &̂Cord

Φ̆Ĥ ,δ̆Ĥ

under the pull-back of the same split torus ÊΦ̆Ĥ
over SpecZ with character group ŜΦ̆Ĥ

as
before (see Sect. B.7; and see proposition 7.1.2.6 of [44]). We obtain an isomorphic torus
torsor if we replace (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) with another representative, but its universal property
depends on this choice of representative.
The torus

S (m),ord,+
n,(i),Up,′

g (N1)
→ Y (m),ord,+

n,(i),Up,′
g (N1)

in this paper (see Sect. 4.3) with Up(N1, N2) = H is identified with

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

Ê
Φ̆

(i,hg)
Ĥ

→
∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

SpecZ(p).

Moreover, the sheaves X∗(S (m),ord,+
n,(i),Up,′

g (N1)
), X∗(S (m),ord,+

n,(i),Up,′
g (N1)

)�0R , and X∗(S (m),ord,+
n,(i),Up,′

g (N1)
)>0
R are

identified with

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

Ŝ
Φ̆

(i,hg)
Ĥ

,
∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

P̂
Φ̆

(i,hg)
Ĥ

,

and

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

P̂+
Φ̆

(i,hg)
Ĥ

,

respectively. The S (m),ord,+
n,(i),Up,′

g (N1)
-torsor

T (m),ord,+
n,(i),Up,′

g (N1 ,N2)
= ∐h∈L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

T (i+m),ord
n−i,(hgUpg−1h−1∩P(m)

n,(i)(A∞,p))(N1,N2)

↓ ↓
A(m),ord,+

n,(i),Up,′
g (N1 ,N2)

= ∐h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)
A(i+m),ord

n−i,(hgUpg−1h−1∩P(m)
n,(i)(A∞,p))(N1 ,N2)

is identified with

∐
h∈L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

&̂Ξord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

↓
∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)
&̂Cord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ .

Thesemaps are equivariantwith P̂
Z̆(i,g)

(A∞,p)×P̂ord
Z̆(i,g) ,D

(Zp) andwith the compatible actions
of the elements corresponding to ςp (see proposition 1.3.2.67 of [44]).



Harris et al. Res Math Sci (2016) 3:37 Page 293 of 308

In lemma 7.1.1.9 of [44], we have introduced an ad hoc definition of a compatible
collection

Σ̂ord =
{
Σ̂Φ̆Ĥ

}
[(Φ̆Ĥ ,δ̆Ĥ)]

of admissible projective smooth rational polyhedral cone decompositions, where each
Σ̂Φ̆Ĥ

is a ΓΦ̆Ĥ
-admissible projective smooth rational polyhedral cone decomposition of

P̂Φ̆Ĥ
, and where the indices are ordinary cusp labels [(Φ̆Ĥ, δ̆Ĥ)]. In [44], we allow Ĥp to

be all subgroups of Ĝ(Zp) of standard form (which is more general than just of the form
Ûp,1,0(pr1 , pr0 ) for some integers 0 ≤ r1 ≤ r0), and the set of pairs κ = (Ĥ, Σ̂ord) with
ĤG ⊂ H is denoted Kord,++

Q,H ; the subset of Kord,++
Q,H consisting of κ = (Ĥ, Σ̂ord) with

ĤG = H is denoted Kord,+
Q,H ; and the subset of Kord,+

Q,H consisting of κ = (Ĥ, Σ̂ord) with
ĤG = H and Ĥ = H � ĤÛ is denoted Kord

Q,H (see definitions 7.1.1.7 and 7.1.1.11 of [44]).
For ? = ∅,+ or++, any pair κ = (Ĥ, Σ̂) in K?

Q,H introduced earlier in Sect. B.7 such that
Ĥ is of the form allowed here induces a pair (Ĥ, Σ̂ord) in Kord,?

Q,H , and conversely any pair
in Kord,?

Q,H extends to a pair in K?
Q,H (see proposition 7.1.1.21 of [44]). For any compatible

collectionΣord of admissible projective smooth rational polyhedral cone decompositions
for &Mord

H , and for ? = ∅, +, ++, the subset of Kord,?
Q,H consisting of κ = (Ĥ, Σ̂ord) such

that Σ̂ord is compatible with Σord in the sense that each ρ̂ ∈ Σ̂Φ̆Ĥ
is mapped into some

σ ∈ ΣΦH (see condition 7.1.1.17 and definition 7.1.1.19 of [44]) is denotedKord,?
Q,H,Σord . This

notion of compatibility agrees with the one in this paper (see Sect. 5.2).
Each such κ = (Ĥ, Σ̂ord) in Kord,++

Q,H induces a pair

(Up(N1),Σ)

in J (m),tor,ord
n (withUp(N1, N2) = Ĥ) in Sect. 5.2 of this paper, because, in order to define

(Up(N1),Σ) as in Sect. 5.2, it suffices to define the admissible cone decomposition Σ(g)0
forX∗(S (m),ord,+

n,(i),(gUpg−1∩P(m),+
n,(i) (A∞,p))(N1)

)�0R , for each g ∈ G(m)
n (A∞)ord,× = Ĝ(A∞,p)× P̂ordD (Zp),

which canbe taken to be the pull-back of the subcollection {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ ,δ̆Ĥ)] of Σ̂ord indexed

by the ordinary cusp labels [(Φ̆Ĥ, δ̆Ĥ)]with underlying Z̆Ĥ equal to Z̆(i,g)
Ĥ . In fact,J (m),tor,ord

n
is exactly the set of such induced pairs (asUp(N1, N2) = Ĥ varies). (As before, it is hard to
explicitly describe the set J (m),tor,ord

n when m > 0, because they are induced by auxiliary
choices of compatible collections Σ̃ord for &Mord

H̃ . Nevertheless, this is unnecessary for our
purpose.)
Each Σ̂Φ̆Ĥ

defines an affine toroidal embedding

&̂Ξord
Φ̆Ĥ ,δ̆Ĥ ↪→ &̂Ξ

ord

Φ̆Ĥ ,δ̆Ĥ = &̂Ξ
ord

Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ
=
⋃

ρ̂∈Σ̂Φ̆Ĥ

&̂Ξord
Φ̆Ĥ ,δ̆Ĥ (̂ρ) =

∐

ρ̂∈Σ̂Φ̆Ĥ

&̂Ξord
Φ̆Ĥ ,δ̆Ĥ ,̂ρ

over &̂Cord
Φ̆Ĥ ,δ̆Ĥ . The formal completion of &̂Ξ

ord

Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ
along the union of the ρ̂-strata

&̂Ξord
Φ̆Ĥ ,δ̆Ĥ ,̂ρ for all ρ̂ ∈ Σ̂Φ̆Ĥ

such that ρ̂ ∩ P̂+
Φ̆Ĥ

�= ∅ is denoted

&̂Xord
Φ̆Ĥ ,δ̆Ĥ = &̂Xord

Φ̆Ĥ ,δ̆Ĥ ,Σ̂Φ̆Ĥ
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(see (7.1.2.12), (7.1.2.13), (7.1.2.14) and (7.1.2.16) of [44]). The schemes

T (m),ord,+
n,(i),Up,′

g (N1 ,N2),Σ(g)0
→ A(m),ord,+

n,(i),Up,′
g (N1 ,N2)

of this paper (see Sect. 4.4) are identified with

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

&̂Ξ
ord

Φ̆
(i,hg)
Ĥ ,δ̆Ĥ →

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

&̂Cord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ .

Moreover, T (m),ord,+,∧
n,(i),Up,′

g (N1 ,N2),Σ(g)0
is identified with

∐

h∈L(m)
n,(i),lin(A∞)ord,×/Up,′

g (N1)

&̂Xord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

and T (m),ord,#,∧
n,(i),Up,′

g (N1),Σ(g)0
is identified with

∐

h∈L(m)
n,(i),lin(Z(p))\L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1)

(
&̂Xord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

/
Γ
Φ̆

(i,hg)
Ĥ

)
=
∐

[(Φ̆Ĥ ,δ̆Ĥ)]

(
&̂Xord
Φ̆Ĥ ,δ̆Ĥ

/
ΓΦ̆Ĥ

)
,

where the second disjoint union is over cusp labels with underlying Z̆Ĥ equal to Z̆
(i,̂g)
Ĥ

for a fixed ĝ in Ĝ(A∞,p) × P̂ordD (Zp) corresponding to g ∈ G(m)
n (A∞)ord,×. (Again Ĥ =

Up(N1, N2).)
For each κ = (Ĥ, Σ̂ord) ∈ Kord,++

Q,H , we have a smooth quasi-projective scheme

&Nord,tor
κ

containing &Nord (of Sect. B.14, which we will henceforth write as &Nord
κ to emphasize the

dependence on Ĥ) as an open fibrewise dense subscheme. The scheme &Nord,tor
κ is called

a partial toroidal compactification of &Nord
κ (see theorem 7.1.4.1 of [44]). Its characteristic

zero fibre &Nord,tor
κ ⊗Z Q is an open subscheme of &Ntor

κ ′ for any κ ′ = (Ĥ, Σ̂) ∈ K++
Q,H

extending κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H , which is identified with the union of the strata

Ẑ[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] whose underlying cusp labels
[(Φ̆Ĥ, δ̆Ĥ)] are ordinary (see theorem 7.1.4.1(6) of [44]).WhenUp(N1, N2) = Ĥ, andwhen
(Up(N1, N2),Σ) ∈ J (m),tor

n is induced by κ ′ = (Ĥ, Σ̂) as in Sect. B.7, the partial toroidal
compactification

&Nord
κ ↪→ &Nord,tor

κ ∪ Ntor
κ ′

(by gluing along their common open subscheme described above) is the

A(m),ord
n,Up(N1 ,N2) ↪→ A(m),ord

n,Up(N1 ,N2),Σ

in this paper (see Sect. 5.3). In this case, the (Up(N1),Σord) ∈ J (m),tor,ord
n induced by

(Up(N1, N2),Σ) is induced by the κ = (Ĥ, Σ̂ord) induced by κ ′ = (Ĥ, Σ̂). The partial
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toroidal compactifications &Nord
κ ↪→ &Nord,tor

κ ∪ Ntor
κ ′ are compatible with the actions of

Ĝ(A∞,p) × P̂ordD (Zp) and of the element of P̂ordD (Qp) corresponding to ςp (see theorem
7.1.4.1, (4) and (6), of [44]), and they are compatible with the actions of G(m)

n (A∞)ord on
the partial toroidal compactificationsA(m),ord

n,Up(N1 ,N2) ↪→ A(m),ord
n,Up(N1 ,N2),Σ .

The partial toroidal compactification &Nord,tor
κ admits a stratification by locally closed

subschemes

&Nord,tor
κ =

∐

[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)]

&̂Zord[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)]

(see theorem 7.1.4.1(1) of [44]) indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] as in lemma
1.2.4.42 of [44] whose underlying cusp labels [(Φ̆Ĥ, δ̆Ĥ)] are ordinary. Each stratum
&̂Zord[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] is canonically isomorphic to &̂Ξord

Φ̆Ĥ ,δ̆Ĥ ,̂ρ , and the formal completion of &Nord,tor
κ

along the union of the strata &̂Zord[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] labelled by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)]
with the same underlying ordinary cusp label [(Φ̆Ĥ, δ̆Ĥ)] is canonically isomorphic to
&̂Xord
Φ̆Ĥ ,δ̆Ĥ/ΓΦ̆Ĥ

(see theorem 7.1.4.1(1) of [44]).

When Up(N1, N2) = Ĥ, and when (Up(N1),Σ) ∈ J (m),tor,ord
n is induced by κ =

(Ĥ, Σ̂ord) as above, the formal completion of &Nord,tor
κ along the union of all strata

&̂Zord[(Φ̆Ĥ ,δ̆Ĥ ,̂ρ)] labelled by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with underlying Z̆Ĥ equal to

Z̆
(i,̂g)
Ĥ for some ĝ ∈ Ĝ(A∞,p)× P̂ordD (Zp) is

A(m),ord,∧
n,Up(N1 ,N2),Σ ,i

∼=
∐
g

T (m),ord,#,∧
n,(i),(gUpg−1∩P(m),+

n,(i) (A∞,p))(N1 ,N2),Σ(g)0
∼=
∐
g

∐
h

(
&̂Xord
Φ̆

(i,hg)
Ĥ ,δ̆Ĥ

/
Γ
Φ̆

(i,hg)
Ĥ

)
,

where the indices g and h run over P(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1, N2) and
L(m)
n,(i),lin(Z(p))\L(m)

n,(i),lin(A
∞)ord,×/Up,′

g (N1), respectively, in this paper (see Sect. 5.3).
If κ ∈ Kord,++

Q,H,Σord , then the canonical morphism

&Nord
κ → &Mord

H

extends to a canonical log smooth morphism

&Nord,tor
κ → &Mord,tor

H,Σord

(see theorem 7.1.4.1(2) of [44]). When Up(N1, N2) = Ĥ and (U ′)p(N ′
1, N

′
2) = H, and

when (Up(N1, N2),Σ) ∈ J (m),tor
n and ((U ′)p(N ′

1, N
′
2),Δ) ∈ J tor

n are induced by some
κ ′ = (Ĥ, Σ̂) and (H,Σ) extending κ = (Ĥ, Σ̂ord) and (H,Σord), respectively, we have

(Up(N1, N2),Σ) ≥ ((U ′)p(N ′
1, N

′
2),Δ
)

(see Sect. 5.2 in this paper) and the union of the above morphism with

Ntor
κ ′ → Mtor

H,Σ

(see Sect. B.7) is the log smooth morphism
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A(m),ord
n,Up(N1 ,N2),Σ → X ord

n,(U ′)p(N ′
1 ,N

′
2),Δ

in this paper (see Sect. 5.3).
These identifications are all Hecke equivariant (see theorem 7.1.4.1(4) of [44]).
The formal completion of &Nord,tor

κ along

&Nord,tor
κ ⊗Z Fp

is denoted

&Nord,tor
κ

in [44] (see definition 3.4.4.2). When Up(N1, N2) = Ĥ, and when (Up(N1),Σ) ∈
J (m),tor,ord
n is induced by κ = (Ĥ, Σ̂ord), these are the

A(m),ord
n,Up(N1),Σ

and

Aord
n,Up(N1),Σ ,

respectively, in this paper (see Sect. 5.3). (Their independence of N2 = r0 is explained in
theorem 7.1.4.1(4h) of [44].) For the Hecke actions on these formal schemes, see theorem
7.1.4.1, (4g)–(4j), of [44].

B.16 Automorphic bundles in mixed characteristics

We first recall how some of the notation of [44] specializes in our case. In the beginning
of section 8.1.1 of [44], we can take:

(1) R0 = Z(p) and R̃0 = Zp.
(2) Gr−1

D,0 = Gr−1
D# ,0 = On

F,(p) with its canonical O ⊗Z Z(p)-module structure, with φ−1
D,0 :

Gr−1
D,0

∼→ Gr−1
D# ,0 given by the identity morphism.

Then we have

Gr0D,0 := HomR0

(
Gr−1

D# ,0, R0
) ∼= (Diff−1

OF,(p)/Z(p)
)n,

and, for each Z(p)-algebra R,

Mord
D,0 (R) := GLO⊗ZR

(
Gr−1

D,0⊗Z(p)R
)
×Gm(R) ∼= GLO⊗ZR

(
Gr0D,0⊗Z(p)R

)
×Gm(R),

which is canonically isomorphic to the one in definition 8.1.1.1 of [44] because of the
simpler setting here. (We will not need the other groups Gord

D,0 (R) and PordD,0 (R) in this
paper.) This can be canonically identified with the group Ln,(n)(R) in this paper (see Sect.
1.2). If R is a Q-algebra, then Mord

D,0 (R) ∼= M0(R) (see Sect. B.8).



Harris et al. Res Math Sci (2016) 3:37 Page 297 of 308

Let H be any open compact subgroup of G(Ẑ) of the form H = HpHp, where Hp is a
neat open compact subgroup of G(Ẑp), and whereHp = Up,1,0(pr1 , pr0 ) for some integers
0 ≤ r1 ≤ r0, so that &Mord

H and &Mord,min
H are defined over SpecZ(p) as in Sects. B.10 and

B.12. Then the tautological abelian scheme A over &Mord
H defines a locally free sheaf

Lie∨A/ &Mord
H

:= e∗AΩ1
A/ &Mord

H

(where eA denotes the identity section), which is the

Ωord
n,Up(N1 ,N2)

in this paper (see Sect. 3.4.3), with Up(N1, N2) = H. We can similarly define Lie∨
A∨/ &Mord

H
.

The action of G(A∞,p) × PordD (Zp) (resp. of the element of PordD (Qp) corresponding to
ςp) on { &Mord

H }H is defined by respecting their tautological abelian schemes up to canon-
ical Z×

(p)-isogenies (resp. Q×-isogenies). Therefore, such an action induces actions on
{Lie∨

A/ &Mord
H
}H and {Lie∨A∨/MH}H covering the one on { &Mord

H }H, which are compatible with
the isomorphisms

λ∗ : Lie∨A∨/ &Mord
H
(1) ∼→ Lie∨A/ &Mord

H

induced by the tautological polarizations λ : A → A∨. Here the formal Tate twist requires
(as before) theHecke action to be twisted by the similitude character ν, which corresponds
to the tensor product with

Ξord
n,U = OX ord

n,U
(‖ν‖)

in this paper (see Sect. 3.4.3).
LetΣord be a compatible collection of admissible projective smooth rational polyhedral

cone decompositions for &Mord
H , so that &Mord,tor

H,Σord is defined over SpecZ(p) as in Sect. B.13.
Then the tautological semi-abelian scheme G over &Mord,tor

H,Σord defines a locally free sheaf

Lie∨
G/ &Mord,tor

H,Σord
:= e∗GΩ1

G/ &Mord,tor
H,Σord

(where eG denotes the identity section), which is

Ωord
n,U,Δ
∣∣ &Mord,tor

H,Σord

in this paper (see Sect. 5.4), with Up(N1, N2) = H, and with Δ induced by any
extension Σ of Σord as in Sect. B.13. We can similarly define Lie∨

G∨/ &Mord,tor
H,Σord

, where

G∨ denotes the tautological dual semi-abelian scheme over &Mord,tor
H,Σord extending A∨.

The action of G(A∞,p) × PordD (Zp) (resp. of the element of PordD (Qp) corresponding
to ςp) on { &Mord,tor

H,Σord}(H,Σord) is defined by respecting their tautological semi-abelian
schemes up to canonical Z×

(p)-isogenies (resp. Q×-isogenies). Therefore, such an action
induces actions on {Lie∨

G/ &Mord,tor
H,Σord

}(H,Σord) and {Lie∨G∨/ &Mord,tor
H,Σord

}(H,Σord) covering the one on

{ &Mord,tor
H,Σord}(H,Σord), which are compatible with the isomorphisms
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λ∗ : Lie∨
G∨/ &Mord,tor

H,Σord
(1) ∼→ Lie∨

G/ &Mord,tor
H,Σord

induced by the tautological polarizations λ : G → G∨. Here the formal Tate twist requires
(as before) theHecke action to be twisted by the similitude character ν, which corresponds
to the tensor product with

Ξord
n,U,Δ = OX ord

n,U,Δ
(‖ν‖)

in this paper (see Sect. 5.4).
Then we have the principal Mord

D,0 -bundle

&Eord
Mord

D,0
:= IsomO⊗ZO &MordH

((
Lie∨A∨/ &Mord

H
(1),O &Mord

H
(1)
)
,
(
Gr0D,0⊗Z(p)O &Mord

H
,O &Mord

H
(1)
))

,

which is anMord
D,0 -torsor over &Mord

H (see definition 8.1.2.4 and lemma 8.1.2.6 of [44]), which
canonically extends (as an Mord

D,0 -torsor) to a principal Mord
D,0 -bundle

&Eord,can
M0

:= IsomO⊗ZO &Mord,tor
H,Σord

((
Lie∨

G∨/ &Mord,tor
H,Σord

(1),O &Mord,tor
H,Σord

(1)
)
,

(
Gr0D,0⊗Z(p)O &Mord,tor

H,Σord
,O &Mord,tor

H,Σord
(1)
))

over &Mord,tor
H,Σord (see (8.1.3.11) and lemma 8.1.3.12 of [44]). These are the restrictions (to &Mord

H

and &Mord,tor
H,Σord , respectively) of the

Eord
Up(N1 ,N2) and Eord,can

Up(N1 ,N2),Δ

in this paper (see Sects. 3.4.3, 5.4), with Up(N1, N2) = H, and with Δ induced by some
extension Σ of Σord as in Sect. B.13.
For each Z(p)-algebra R, we denote by RepR(Mord

D,0 ) the category of R-modules with
algebraic actions of Mord

D,0 ⊗Z(p) R (see definition 8.1.2.7 of [44]). Then we also define, for
each W ∈ RepR(Mord

D,0 ) that is locally free of finite rank as an R-module, the automorphic
bundle

&Eord
Mord

D,0 ,R
(W ) :=

(
&Eord
Mord

D,0
⊗Z(p) R
)
×(Mord

D,0⊗Z(p)R) W

over &Mord
H ⊗Z(p) R (see definition 8.1.2.8 of [44]), which extends to the canonical extension

&Eord,can
Mord

D,0 ,R
(W ) :=

(
&Eord,can
Mord

D,0
⊗Z(p) R
)
×(Mord

D,0⊗Z(p)R) W

and the subcanonical extension

&Eord,sub
Mord

D,0 ,R
(W ) := &Eord,can

Mord
D,0 ,R

(W )⊗O &Mord,tor
H,Σord

I&Dord∞
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over &Mord,tor
H,Σord ⊗Z(p) R (see definition 8.1.3.13 of [44]), where I&Dord∞

is the O &Mord,tor
H,Σord

-ideal

defining the boundary divisor &Dord∞ := &Mord,tor
H,Σord − &Mord

H (with its canonical reduced sub-
scheme structure). These are restrictions of the vector bundles

Eord
Up(N1 ,N2),ρ , Eord,can

Up(N1 ,N2),Δ,ρ , and Eord,sub
Up(N1 ,N2),Δ,ρ

in this paper (see Sects. 3.4.3, 5.4), with Up(N1, N2) = H, and with Δ induced by some
extension Σ of Σord as in Sect. B.13. The bundles &Eord

Mord
D,0 ,R

(W ) and &Eord,can
Mord

D,0 ,R
(W ) admit

compatible actions of G(A∞,p) × PordD (Zp) (see proposition 8.1.4.1 of [44]), which are
compatible with the compatible actions ofGn(A∞)ord,× on Eord

Up(N1 ,N2),ρ and Eord,can
Up(N1 ,N2),Δ,ρ ,

covering the ones on their respective base schemes. The base extensions of these bundles
from Z(p) to Q are canonically isomorphic to restrictions of the corresponding bundles
introduced in Sect. B.8.
Beyond the ordinary loci, we still have the tautological abelian scheme &A and the prin-

cipal polarization &λ : &A ∼→ &A∨ over &MH (see proposition 2.2.1.1 of [44]). Hence, we can
still define the principal bundle

&EMord
D,0

:= IsomO⊗ZO &MH

((
Lie∨A∨/ &MH

(1),O &MH (1)
)
,
(
Gr0D,0⊗Z(p)O &MH ,O &MH (1)

))

(see (8.3.1.2) and lemma 8.3.1.4 of [44]), for any H, and accordingly the automorphic
bundle

&EMord
D,0 ,R

(W ) :=
( &EMord

D,0
⊗Z(p) R
)
×(Mord

D,0⊗Z(p)R) W

over &MH (see definition 8.3.2.1 of [44]), for any W ∈ RepR(Mord
D,0 ) that is locally free of

finite rank as an R-module.
For simplicity, assume that R is just Z(p). Then we can still define some canonical and

subcanonical extensions

&Ecan,min
Mord

D,0 ,R
(W ) and &E sub,min

Mord
D,0 ,R

(W )

over &Mmin
H , which are O &Mmin

H
-torsion free coherent sheaves extending &EMord

D,0 ,R
(W ), whose

pull-backs toMmin
H (resp. &Mord,min

H ) are canonically isomorphic to the push-forwards from
Mtor

H,Σ (resp. &Mord,tor
H,Σord ) (for any Σ inducing Σord) of the corresponding canonical and

subcanonical extensions for the automorphic bundle associated withW ⊗Z Q (resp.W ).
(See definition 8.3.5.1, lemma 8.3.5.2, corollary 8.3.5.4, lemma 8.3.5.7, and corollary 8.3.5.8
of [44].) The above &E sub,min

Mord
D,0 ,R

(W ) is the

E sub
Up(N1 ,N2),ρ

in lemma 5.5 of this paper, withUp(N1, N2) = H, with R = Z(p), and withWρ = W . Such
coherent sheaves admit compatible actions of G(A∞,p) × G(Zp) (see proposition 8.3.6.5
of [44]), and the identifications in this paragraph are all Hecke equivariant.
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Ŝ (m),ord,+
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