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Summary

� Insights into the evolution of plant cell walls have important implications for comprehend-

ing these diverse and abundant biological structures. In order to understand the evolving

structure–function relationships of the plant cell wall, it is imperative to trace the origin of its

different components.
� The present study is focused on plant 1,4-b-xylan, tracing its evolutionary origin by genome

and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of

plants and algae. It substantiates the findings by heterologous expression and biochemical

characterization of a charophyte alga xylan synthase.
� Of the 12 known gene classes involved in 1,4-b-xylan formation, XYS1/IRX10 in plants,

IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/

IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidum XYLAN SYNTHASE-

1 (KfXYS1), possesses 1,4-b-xylan synthase activity, and 1,4-b-xylan occurs in the

K. flaccidum cell wall.
� These data suggest that plant 1,4-b-xylan originated in charophytes and shed light on the

origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestri-

alization and emergence of polysaccharide-based plant cell walls.

Introduction

A large diversity of cell wall structural variations exist within the
plant kingdom (Domozych et al., 2007; Harholt et al., 2012).
One important avenue for understanding this diversity is by
studying wall evolution and the rise of new architectural solutions
and principles. Intriguingly, all plant cell walls are largely based
on the same limited number of polysaccharide classes. At the
same time, it is clear that some cell wall functions can be fulfilled
by different architectural solutions, for example involving differ-
ent groups of polysaccharides (Carpita & Gibeaut, 1993; Harholt
et al., 2012). This suggests that simple carbohydrate composition
gives a limited perspective of wall structure, whereas the combi-
natorial aspects of polymer–polymer interactions are the key

players that define architectural complexity. How and why these
different interactions evolved, including their specific relation-
ships to wall architecture and function, remain enigmatic. How-
ever, before we can answer these questions it is necessary to
establish the key routes of cell wall evolution by determining the
evolutionary origins of the different cell wall polysaccharide
classes to fill in current gaps in our knowledge.

A direct ancestor of land plants (embryophytes) has not been
identified, but the Zygnematophyceae (Fig. 1) have been pro-
posed as the closest extant relatives (Wickett et al., 2014). The
cell walls of charophytes (streptophyte green algae) vary between
taxonomic groups in a similar manner to the taxonomic group
variation of land plants (Fangel et al., 2012). Polysaccharide-
based cell walls typical of land plants can be detected in
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Klebsormidiophyceae (Fig. 1), marking the transition from a wall
centered on mineralized organic scales in the basal charophyte
Mesostigma viride to one based on polysaccharides (Becker et al.,
1991; Domozych et al., 1991; Sørensen et al., 2011). Cell wall
complexity is found to increase in the more recently diverged
classes, such as Coleochaetophyceae and Zygnematophyceae,
seemingly presenting an all-polysaccharide wall with the full
complement of wall glycopolymers typical of plants, that is, cellu-
lose, xylan, xyloglucan, mannan, mixed-linkage glucan, and
pectin. Hence, it has been proposed that what is often conceptu-
alized as a ‘plant cell wall’, based on material composition and
organization, emerged in a distant algal ancestor, most likely a
common ancestor of Klebsormidiophyceae and plants (Sørensen
et al., 2011; Mikkelsen et al., 2014).

Cellulose biosynthesis in plants is orthologous to that in
prokaryotic organisms, but the origin of the biosynthetic activi-
ties for the remaining cell wall polysaccharides in higher plants is
less clear. Xyloglucan and pectin putatively originated within
charophyte algae (streptophyte green algae), while xylan, man-
nan, and mixed-linkage glucan also exist in some noncharophyte
algae and bacteria (Painter, 1983; Fangel et al., 2012; Salme�an
et al., 2017). Hence, direct proof of functional orthology between
algal and plant cell wall biosynthetic activities has been missing.
This increases uncertainty as a result of the plausible convergent
evolution of the different polymers, exemplified by the multiple
occurrences of mixed-linkage glucans throughout the tree of life.
Identification of putative cell wall biosynthetic genes based on a
de novo transcriptome assembly in charophytes has previously
been published (Mikkelsen et al., 2014); however, this study uti-
lized a limited transcriptome collection of insufficient quality,
and carried out no biochemical confirmation of enzyme function,
resulting in ambiguous conclusions. The completion of the

Klebsormidium flaccidum genome sequence (Hori et al., 2014), in
combination with the 1000 Plants (1KP ) Initiative (Matasci
et al., 2014), now provides the opportunity to identify full-length
K. flaccidum gene sequences, resolve their phylogeny by compar-
ison with algae and plants across the kingdom, and characterize
the biochemical activities of gene products.

Xylan is an abundant and complex cell wall component in
plants, particularly in commelinid primary walls and in sec-
ondary cell walls of all angiosperms (Scheller & Ulvskov, 2010).
It consists of a polymeric backbone of 1,4-b-linked D-xylose (Xyl)
decorated mainly with acetyl groups, and is further substituted
by L-arabinofuranose (Araf ) in commelinids or methylated or
unmethylated D-glucuronic acid (GlcA) in noncommelinid
angiosperms (Scheller & Ulvskov, 2010; Smith et al., 2017;
Fig. 2). The elucidation of the fine structure of xylans found out-
side angiosperms is less complete and based only on a few species:
gymnosperms produce methyl-glucurono-arabinoxylan (Busse-
Wicher et al., 2016), lycophytes and pteridophytes contain both
methylated and unmethylated GlcA substitutions (Kulkarni
et al., 2012), and the bryophyte Physcomitrella patens only con-
tains unmethylated GlcA substituents (Kulkarni et al., 2012).

Proteins from eight protein families have been implicated in
xylan biosynthesis, and based on their functions, 12 protein
classes can be defined (Table 1; Fig. 2). For some of these classes,
biochemical function has been established in vitro using recombi-
nant proteins, including IRX10 and IRX10-L, which are 1,4-b-
xylan xylosyltransferases producing the 1,4-b-xylan backbone
polymer (Jensen et al., 2014; Urbanowicz et al., 2014). In the
case of IRX10-L, long 1,4-b-xylan oligomers were produced
in vitro and the protein was accordingly renamed XYLAN
SYNTHASE-1 (XYS1) (Urbanowicz et al., 2014). P. patens
encodes one IRX10/XYS1 ortholog, PpIRX10, which produces

Zygnematophyceae

Coleochaetophyceae
Charophyceae

Embryophyta

Klebsormidiophyceae
Chlorokybophyceae

Prasinophytes

Chlorophyta
Mesos�gmatophyceae

Land plants

Charophyte green algaeChlorophyte green algae

Fig. 1 Phylogenetic relationship within
Viridiplantae as suggested by Wickett et al.
(2014). This clade is defined by chloroplast
descendence, the name translating as ‘green
plants’. It designates green algae and land
plants. The algal species Klebsormidium
flaccidum is a member of
Klebsormidiophycea, located centrally in the
grade of charophyte algae, while
Zygnematophyceae is located as the most
recently evolved group in the charophyte
algae grade.
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1,4-b-xylan polymers that are of a similar size to those made by
XYS1 in vitro (Jensen et al., 2014). Other putative glycosyltrans-
ferases from families GT8, GT43, and GT47 also affect xylan
backbone formation when knocked out in Arabidopsis; however,
their specific functions have remained unclear. Enzyme activities
that contribute to 1,4-b-xylan backbone decorations include
acetyl-, methyl-, and glycosyltransferases, and genes encoding the
main enzyme activities have all been identified and characterized
in angiosperms (Table 1).

Of the different plant cell wall polysaccharides, three in
particular lend themselves to having their emergence in evolution
pinpointed, that is, 1,4-b-xylan, xyloglucan, and the pectic
polysaccharide homogalacturonan. We chose to focus on xylan
and its biosynthesis in K. flaccidum, as this polymer was the earli-
est to emerge of the three and involves a number of biosynthetic
activities that have been amenable to biochemical characteriza-
tion (Sørensen et al., 2011; Rennie et al., 2012; Urbanowicz
et al., 2012, 2014; Jensen et al., 2014). Our analysis points to the
evolutionary appearance of the various xylan synthesis-specific

genes identified to date, describing innovations of this complex
biocatalytic process as they occurred in two major phases over the
course of plant evolution. Further, we demonstrated xylan syn-
thase activity for one of the members of the earliest xylan synthe-
sis-specific gene homologs identified to date: a K. flaccidum
IRX10/XYS1 ortholog (Kf XYS1). Finally, we identified and
characterized the xylan in the cell walls of K. flaccidum, which is
probably the product of the Kf XYS1. The enzymatic activity of
Kf XYS1, combined with its evolutionary relatedness to modern
IRX10/XYS1 xylan synthases, highlights the functional orthology
between algal and plant cell wall biosynthesis.

Materials and Methods

Bioinformatics

The proteome files of the relevant divisions were obtained from
the 1000 Plants (1KP) Initiative (Matasci et al., 2014). Relevant
sequences for phylogenetic analysis from P. patens, Selaginella
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Fig. 2 Schematic illustration of xylan
structure with known biosynthetic activities
represented.

Table 1 Phylogenetic origin of glycosyltransferases and accessory activities involved or putatively involved in xylan synthesis in plants

Xylan protein
class

Protein
family Biochemical function Earliest ortholog Reference Fig.

PARVUS GT8 Unknown Chlorophyta1 Brown et al. (2007) S2
GXMT1/IRX15 DUF579 Glucuronoxylan

methyltransferase/unknown
Chlorophyta2 Jensen et al. (2011);

Urbanowicz et al. (2012)
S3

IRX10/XYS1 GT47 b-1,4-xylan synthase Klebsormidiophyceae Jensen et al. (2014);
Urbanowicz et al. (2014)

3

IRX7 GT47 Unknown Klebsormidiophyceae Brown et al. (2007) 3
IRX9 GT43 Unknown Klebsormidiophyceae Brown et al. (2007) S4
IRX14 GT43 Unknown Klebsormidiophyceae Brown et al. (2007) S4
IRX8 GT8 Unknown Klebsormidiophyceae Pe~na et al. (2007) S5
GUX1-5 GT8 Xylan glucuronsyltransferase Zygnematophyceae Rennie et al. (2012) S6
ESK1 DUF231 Acetylation Unresolved, possibly angiosperms Urbanowicz et al. (2014) S7
XAT GT61 Xylan arabinosyltransferases Unresolved, possibly eudicot/monocot3 Anders et al. (2012) S8
XAX1 GT61 Xylan xylosyltransferase Unresolved, possibly Commelinid monocots Chiniquy et al. (2012) S8
BAHD PF02458 Coumaric and ferulic acid

transferases
Unresolved, possibly Liliales (noncommelinid
monocot)

Bartley et al. (2013) S9

1Chlorophyta orthologs were identified, but no charophyte algae and the earliest occurrence in plants was in Bryophyta.
2Chlorophyta and charophyte algae orthologs were identified ancestral to the split between IRX15(L) and GMXT1/GMXT2 clades.
3XAT orthologs have not been identified in Magnoliids or basal angiosperms.
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moellendorffii, Arabidopsis and rice were obtained using Harholt
et al. (2012) as guide. A positive/negative list was made for identi-
fication of xylan-related biosynthetic enzymes and the closest
nonxylan related ortholog (Supporting Information Table S1).
Sequences from this list were used as a database for blasting pro-
teomes from the 1KP dataset as previously described (Mikkelsen
et al., 2014), substituting the CAZy database with our positive
list and eliminating false positives by substituting the Arabidopsis
GT-depleted database with our negative list. Phylogenetic analy-
sis was performed as previously described (Ulvskov et al., 2013).
Newick format tree files and sequences used in this manuscript
are available in Notes S1. Evaluation of evolutionarily conserved
protein motifs was performed using the SALAD website with
their interactive service (Mihara et al., 2010; http://salad.dna.aff
rc.go.jp/salad/en/).

Heterologous protein expression in Saccharomyces
cerevisiae: purification and activity assays

For heterologous protein expression in S. cerevisiae, YFP was
cloned into pESC-URA by moving it from pPICZ A-YFP
(Jensen et al., 2014) using EcoRI and NotI. KfXYS1 was obtained
by de novoDNA synthesis (IDT, Coralville, IA, USA) with codon
optimization for S. cerevisiae and cloned into the pESC-URA-
YFP using EcoRI and PflMI restriction sites, generating pESC-
URA-KfXYS1-YFP. The sequence GTAATGGGT was engi-
neered around the start codon for proper initiation of translation.

Saccharomyces cerevisiae YPH499 harboring pESC-URA-
KfXYS1-YFP was grown in SC synthetic minimal media (3.4 g
Yeast Nitrogen Base l�1 media; ThermoFisher, Waltham, MA,
USA), 2.8 g Yeast Synthetic Drop-out Media (ThermoFisher),
10 g aluminum sulfate, 0.2 g leucine, 0.2 g tryptophan, 0.1 g his-
tidine, and 0.2 g alanine plates with 2% glucose for 24 h at 30°C.
Next, scrapes of these plates were used to inoculate 250 ml of liq-
uid SC media with 2% glucose and incubated overnight in baffled
flasks at 30°C in an orbital shaker at 180 rpm. At an OD600 of c.
2, the cells were collected by centrifugation (20 min at 2451 g)
and resuspended in SC media with 2% galactose, and then incu-
bated at 18°C as before. Expression levels were monitored by flu-
orescent microscopy and cells were harvested by centrifugation
11 h after induction of recombinant protein expression. At the
time of harvest, OD600 was c. 2, corresponding to c. 0.75 g of
cells. Cell pellets were stored at �80°C. Protein purification and
assays involving the fluorescently labeled xylooligosaccharide
acceptor were performed as previously described (Jensen et al.,
2014) and were based on c. 0.75 g of cells per batch.

Heterologous protein expression and purification of
KfXYS1 in HEK293 cells

KfXYS1 was cloned in a manner similar to that described in
Urbanowicz et al. (2014). Briefly, to create Gateway entry clones,
the truncated coding region of KfXYS1 (amino acids 27–445)
was PCR-amplified (KfXYS1_27F, 50-AACTTGTACTTTC
AAGGCAGATCCTCTTTGTTCGT-30 and KfXYS1_445F,
50-ACAAGAAAGCTGGGTCCTAATTTTCATCATCACCAC

G-30) from pESC-URA-KfXYS1-YFP plasmid DNA. A second
set of universal primers (attB_Adapter-F, 50- GGGGACAAGTT
TGTACAAAAAAGCAGGCTCTGAAAACTTGTACTTTCA
AGGC-30 and attB_Adapter-R, 50-GGGGACCACTTTGTAC
AAGAAAGCTGGGTC-30) was used to complete the attB
recombination site and append a tobacco etch virus (TEV) pro-
tease cleavage site (Urbanowicz et al., 2014). The attB-PCR pro-
duct was cloned into the pDONR221 plasmid vector (Life
Technologies, Carlsbad, CA, USA) using Gateway BP Clonase
II Enzyme Mix (Life Technologies) to create an entry clone. To
generate an expression clone of KfXYS1 (pGEn2-EXP-
KfXYS1), the entry clone was recombined into a Gateway-
adapted version of the pGEn2 mammalian expression vector
(pGEn2-DEST) (Meng et al., 2013), using Gateway LR
Clonase II Enzyme Mix (Life Technologies). The resulting
expression construct (His-GFP-KfXYS1) encodes a fusion pro-
tein comprising an amino-terminal signal sequence, an 8xHis
tag, an AviTag recognition site, the ‘superfolder’ GFP (sfGFP)
coding region, the recognition sequence of TEV protease, and
residues 27–445 of Kf XYS1.

Recombinant expression and purification were performed
by transient transfection of suspension culture HEK293-F cells
with pGEn2-EXP-KfXYS1 and a HisTap HP 1ml column (GE
Healthcare, Little Chalfont, UK), as previously described (Meng
et al., 2013; Urbanowicz et al., 2014). Protein purity was assessed
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(Fig. S1). Purified His-GFP-KfXYS1 was concentrated to
0.45 mgml�1 using an Amicon Ultra Centrifugal Filter Device
(30000 MWCO; Merck Millipore; http://www.merckmillipore.c
om) and dialyzed (3500 MWCO) into HEPES sodium salt-HCl
(75mM, pH 6.8) or sodium phosphate buffer (75mM, pH 6.8)
and used directly for reactions, or stored at 4 or�80°C in aliquots.

MALDI-TOF-MS analysis of KfXYS1 reaction products

Enzyme reactions (20 ll) consisted of 3 mM UDP-xylose (UDP-
Xyl; Carbosource, Athens, GA, USA), 0.5 mM xylopentaose
(Megazyme, Bray, Ireland), labeled at the reducing terminus with
2-aminobenzamide as previously described (Ishii et al., 2002;
Urbanowicz et al., 2014), and 4.5 lg of purified His-GFP-
Kf XYS1 in HEPES sodium salt-HCl buffer (75 mM, pH 6.8).
Reactions were allowed to persist for 4 h before being prepared
for analysis by matrix-assisted laser desorption ionization-time of
flight mass spectrometry analysis on an LT Bruker LT Microflex
spectrometer (Bruker, Billerica, MA, USA) as described previ-
ously (Urbanowicz et al., 2014). Positive-ion spectra were
recorded with a minimum of 200 laser shots summed to generate
each spectrum.

Nuclear magnetic resonance (NMR) analysis of KfXYS1
reaction products

Products of a scaled-up reaction were structurally characterized
by NMR analysis. Reactions (300 ll) were carried out at 25°C in
sodium phosphate buffer (75 mM, pH 6.8), containing 5 mM
UDP-Xyl, 1.5 mM xylobiose (Sigma) and 10 lg of purified
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His-GFP-KfXYS1. After 16 h, the reaction mixture was
lyophilized, resuspended in 300 ll D2O (99.9%; Cambridge Iso-
tope Laboratories, http://www.isotope.com) and characterized
using a Varian 300MHz NMR spectrometer (Varian, Palo Alto,
CA, USA) at 25°C for initial characterization of the full reaction
mixture composition. For characterization of higher-order
polysaccharide products only, the reaction mixture was fraction-
ated on a Superdex 75 HR10/30 column and eluted with water
to separate oligosaccharides and other reaction components.
The fractions were lyophilized and resuspended in 200 ll D2O
(99.9%; Cambridge Isotope Laboratories, Tewksbury, MA,
USA). The 1D 1H NMR spectra were recorded at 25°C on a
Varian Inova NMR spectrometer operating at 600MHz and
equipped with a 5 mm cold probe (Agilent, Santa Clara, CA,
USA). Chemical shifts were measured relative to internal DMSO
(d1H 2.721) on both NMR instruments. Data were processed
using MestReNova (Mestrelab Research, Santiago Compostela,
Spain). Assignments for the UDP-Xyl, UDP, xylobiose, and
xylo-oligosaccharides synthesized were made based on previously
published results (Harper and Bar-Peled, 2002; Pe~na et al., 2007;
Wishart et al., 2009).

Monosaccharide composition analysis

Cell wall material was prepared by grinding aliquots of 50mg
K. flaccidum cells in a TissueLyser MM 200 (Qiagen, Hilden,
Germany) for 2 min at 30 s�1. Each sample was then extracted
using 1.5 ml 70% ethanol for 5 d at 55°C, followed by four cycles
of 1.5 ml 70% ethanol, one cycle of 1.5 ml acetone, and then air-
dried overnight. Monosaccharide composition was performed on
cell wall material as previously described (Øbro et al., 2004) using
a Dionex ICS 5000 +DC system (ThermoFisher) equipped with
a high-performance anion exchange chromatograph with pulsed
amperometric detection and a 4 lm SA-10 column (29 250mm
and guard column). Run conditions were 40°C column tempera-
ture, 0.3 ml min�1 eluent flow rate, 1 mM NaOH for 0–8min,
followed by 100 mM NaOH from 8 to 20min, and subsequently
10min equilibration at 1 mM NaOH.

Polysaccharide analysis using carbohydrate gel
electrophoresis

Polysaccharide analysis using carbohydrate gel electrophoresis
(PACE) was performed as previously described (Goubet et al.,
2002) using GH10 xylanase (Brown et al., 2007), GH11 xylanase
(Brown et al., 2011), GH115 a-glucuronosidase (Rogowski et al.,
2014), b-xylosidase (Uniprot: Q92458) and arabinofuranosidase
(NS39128). The last two enzymes were kindly provided by
Novozymes (Novozymes, Bagsværd, Denmark).

Comprehensive microarray polymer profiling

Samples of 10 mg K. flaccidum cell wall material were extracted
with 300 ll of 50 mM diaminocyclohexanetetraacetic acid
(CDTA; pH 7.5), and subsequently with 300 ll of 4 M NaOH
with 0.1% w/w NaBH4. Extracts were spotted, probed and

analyzed as previously described (Pedersen et al., 2012). Antibod-
ies BS-400-2 (Meikle et al., 1991; Biosupplies, Bundoora, Aus-
tralia), and LM10 (McCartney et al., 2005), LM11 (McCartney
et al., 2005), LM12 (Pedersen et al., 2012), LM23 (Pedersen et al.,
2012), LM27 (Cornuault et al., 2015) and LM28 (Cornuault
et al., 2015; PlantProbes, Leeds, UK) were used for the analysis.

Immunohistochemistry

Klebsormidium flaccidum cells were embedded in medium-grade
LR White (Polysciences, Hirschberg an der Bergstrasse, Ger-
many) as previously described (Bell et al., 2013) and sectioned on
a Reichert-Jung/LKB Supernova ultramicrotome (2 lm;
Reichert, Depew, NY, USA). Sections were treated with 5%
skimmed milk in 100 mM PBS solution for 30 min and labeled
using LM11 antibody (PlantProbes). A goat anti-rat antibody
conjugated to Alexa Fluor 555 was used to visualize the binding
of LM11. Calcofluor White was applied to stain cell wall b-
glucans. Images were recorded on a Leica CLSM SP5 microscope
(Leica, Heidelberg, Germany) using 405 nm excitation and 419–
534 nm emission (Calcofluor White), and 543 nm excitation and
582–700 nm emission (Alexa Fluor 555). Negative controls using
only the secondary antibody showed no nonspecific binding.

Results

Evolutionary appearance of genes involved in xylan
biosynthesis

Utilizing the phylogenetic span of the 1KP dataset (Matasci et al.,
2014) and genomic sequences from plants and K. flaccidum (Hori
et al., 2014), we obtained phylogenetic trees with ample evolu-
tionary width and resolution. These enabled us to study clade
structures of protein families implicated in xylan biosynthesis,
and to pinpoint the earliest orthologs for several of them
(Table 1; Figs 3, S2–S9). These analyses suggest that xylan evolu-
tion occurred in two major phases, one in algae and a second in
higher plants.

The early algal phase involves charophyte algae and the GT8,
GT43, GT47 and DUF579/GXMT protein families. These rep-
resent candidate genes implicated in 1,4-b-xylan backbone for-
mation, GlcA addition to the backbone, and subsequent GlcA
methylation (Fig. 2). The second phase most probably involves
flowering plants, specifically basal flowering plants and com-
melinid monocots, and the DUF231, GT61 and BAHD protein
families (Fig. 2). Genes from these families have been implicated
in xylan backbone acetylation, addition of arabinosyl and xylosyl
substituents to the xylan backbone, and coumaric and ferulic acid
transferase activity, respectively. Hence the second phase involves
further diversification of xylan structure and probably reflects
new functional role(s) of this glycopolymer in wall architecture.

The specific steps of the second phase of xylan evolution
appear complex and remained unresolved. The DUF231, GT61
and BAHD protein families are each highly diversified in higher
plants, and only a few members from each family have been
linked to xylan synthesis. While ancient members of the families
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exist, none are closely related to the modern xylan-specific mem-
bers. Interestingly, we observed a high degree of diversification in
basal flowering plants, and then later in commelinid monocots,
particularly for GT61 and BAHD. One hypothesis is that xylan-
specific activities developed from different but related catalytic
specificities. The time of diversification of these large protein
families could in this way indicate the emergence of new specifici-
ties towards polymers such as xylan.

A charophyte IRX10/XYS1 ortholog displays b-1,4-xylan
synthase activity in vitro

Pinpointing early orthologs by sequence analysis primarily
defines the oldest possible origin of the individual xylan-specific
activities. However, enzymatic activity of such orthologs is
required to unambiguously determine if the modern activities are
a result of catalytic conservation or if they evolved from a related
enzyme that does not act in the xylan synthesis pathway. IRX10/
XYS1 orthologs of the early algal phase are particularly interest-
ing. While other proteins involved in 1,4-b-xylan backbone for-
mation exist in plants, the IRX10/XYS1 orthologs are the only
group of proteins that have been enzymatically implicated in 1,4-
b-xylan backbone synthesis, and therefore play a central role
among the proteins attributed to this process in plants.

In K. flaccidum, four full-length sequences showed sequence
homology to IRX10/XYS1 and the closely related FRA8
(Table S2). Moreover, one of these proteins, designated
K. flaccidum XYLAN SYNTHASE-1 (Kf XYS1), showed a high
degree of sequence conservation to IRX10/XYS1. BLAST protein
alignment showed that Kf XYS1 and AtXYS1 share a 0.75 iden-
tity score (75% amino acid sequence identity across 376 continu-
ous residues of the 415 amino acid AtXYS1 sequence; Table S3).
This is a higher score than for the proven 1,4-b-xylan xylosyl-
transferase PoIRX10_4 from Plantago ovata, an herbaceous dicot
that is phylogenetically much closer to Arabidopsis than to charo-
phyte algae. In comparison, the K. flaccidum IRX8, IRX9 and
IRX14 orthologs were all below 0.50 in identity scores with their
respective Arabidopsis orthologs (Table S3), suggesting that these
have been less well preserved. Furthermore, protein motif hierar-
chical clustering showed that all protein motifs shared among the
four known 1,4-b-xylan xylosyltransferases (with the exception of
a protein motif that is unique to PoIRX10_4) are conserved in
Kf XYS1 (Fig. 4).

A high degree of conservation is supportive of xylan synthase
activity; however, to provide biochemical evidence we heterolo-
gously expressed Kf XYS1 and characterized its enzymatic activ-
ity. Initially, we expressed Kf XYS1 in S. cerevisiae with a
C-terminal YFP protein tag to facilitate affinity purification.
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Fig. 3 Phylogenetic tree of IRX10/XYS1 and
IRX7 orthologs from charophytes,
Physcomitrella patens, Selaginella
moellendorffii and Arabidopsis. The
Klebsormidium flaccidum xylan synthase is
designated as KfXYS1. No algal IRX10/XYS1
or IRX7 orthologs were identified outside
Klebsormidiophyceae (light blue) or
Zygnematophyceae (dark blue) as indicated
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Purified Kf XYS1-YFP was incubated in the presence of UDP-
Xyl and 1,4-b-xylotetraose fluorescently labeled with anthranilic
acid, and the reaction products were analyzed by normal-phase
high-performance liquid chromatography. Xylan xylosyltrans-
ferase activity was evident by the appearance of multiple new
peaks, relative to the control containing only 1,4-b-xylotetraose
(Fig. 5a). These data suggested that up to nine successive Xyl
transfer events occurred under these conditions. Activity levels
and peak retention times are comparable to reactions previously
reported for AtXYS1 and PpIRX10 (Jensen et al., 2014;
Urbanowicz et al., 2014). A partial digestion of the Kf XYS1-YFP
reaction products with a 1,4-b-xylan-specific xylanase further
supported the idea that the linkages catalyzed by Kf XYS1 are
indeed b-1,4-Xyl linkages (Fig. S10a). No activity was detected
when using UDP-glucose, UDP-arabinopyranose (UDP-Arap) or
UDP-arabinofuranose (UDP-Araf ) as donor substrates
(Fig. S10b).

Xylan polymers consisting solely of 1,3-b-Xyl linkages and
mixed-linkage (1,3)(1,4)-b-xylans occur in chlorophytes and red
algae (Painter, 1983). To further investigate the linkage composi-
tion of the Kf XYS1 reaction products by NMR spectroscopy, we
heterologously expressed the protein in HEK293 cells. A pre-
dicted transmembrane domain in the N-terminus of KfXYS1
was substituted with a His-GFP protein tag in the HEK293
heterologous expression system, and the recombinant Kf XYS1
protein was expressed and purified (His-GFP-Kf XYS1). Expres-
sion and secretion of the His-GFP-Kf XYS1 fusion protein in
transiently transfected HEK293F cells resulted in high amounts
of enzyme secretion (c. 100 mg l�1) as determined by measuring
the relative fluorescence (GFP fluorescence His-GFP-Kf XYS1, 1380)
of the recombinant protein secreted into the media (Meng et al.,
2013; Urbanowicz et al., 2017), facilitating the large-scale reac-
tions suitable for detailed product analyses. Expression in
HEK293F cells resulted in highly active enzyme preparations
capable of adding as many as 29 Xyl residues to a starting 2-

aminobenzamide-xylopentaose acceptor (Fig. 5b). 1D 1H NMR
characterization of reaction mixtures containing xylobiose, UDP-
Xyl and His-GFP-Kf XYS1 showed depletion of UDP-Xyl and
an increase in internal 1,4-b-Xyl linkages, relative to control reac-
tions containing only xylobiose and UDP-Xyl (Fig. S11). To
obtain a less complex spectrum derived from only the higher-
order polysaccharide products, the reaction mixture was sub-
jected to size exclusion chromatography to separate these from
other reaction constituents, including UDP and xylobiose. This
1D 1H NMR spectrum revealed prominent diagnostic signals of
internal 1,4-b-Xyl linkages (Urbanowicz et al., 2014) (Fig. 5c),
while 1,3-b-Xyl linkages, which would produce a clear signal at
4.68 ppm (Viana et al., 2011), were found to be absent.

These results show that Kf XYS1 expressed in two separate
heterologous expression systems using both N- and C-terminal
protein tagging, displays 1,4-b-xylan synthase activity exclusively,
consistent with a high level of protein homology to known plant
xylan synthases. Hence, the enzymatic activity of this group of
proteins has been conserved as far back as an extinct common
ancestor of K. flaccidum and land plants, living c. 700 million yr
ago (Douzery et al., 2004).

Klebsormidium flaccidum cell walls contain multiple species
of substituted xylan

Having determined that Kf XYS1 is a b-1,4-xylosyltransferase,
we analyzed K. flaccidum cell walls to determine whether they
contain 1,4-b-xylan. Monosaccharide compositional analysis of
K. flaccidum cell wall material showed that they contain
59 lg Xyl mg�1 cell wall material, making it one of the dominant
monosaccharide constituents (Fig. 6a). To specifically confirm
the presence of 1,4-b-xylan and to characterize its structure, we
extracted K. flaccidum cell wall material with strong base and sub-
jected these to 1,4-b-xylanase digestion. The resulting xylan
oligosaccharides were analyzed by gel electrophoresis (PACE).

KfIRX10/XYS1 *
PpIRX10 *
Bd2g59380
Sm442111
Bd5g08400
Bd3g44420
Bd2g59400
Bd2g59410
IRX10 *
IRX10L *
Kfl00254_0250
Kfl00144_0240

Kfl00113_0290
IRX7
PoIRX10_4 *

0

aa

100 200 300 400 500 600 700

Fig. 4 Protein motif analysis of the four IRX10/XYS1 and IRX7 orthologs from Klebsormidium flaccidum. Left part, hierarchical clustering of motif analysis.
Right part, graphical representation of identified motifs. Proteins are aligned based on motif 9 (purple). If this motif is not present, the protein is shaded and
based on the start codon. IRX10/XYS1 homologs from other plants include Brachypodium distachyon (pink), Arabidopsis (dark blue), Plantago ovata (light
blue), Selaginella moellendorffii (light green), and Physcomitrella patens (dark green). Asterisks (*) indicate the five proven xylan xylosyltransferases/
xylan synthase activities, including KfXYS1. Analysis and representation were generated using the SALAD database (Mihara et al., 2010; http://salad.d
na.affrc.go.jp/).
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Digestion with GH10 1,4-b-xylanase, which requires one unsub-
stituted Xyl residue for cleavage, resulted in a complex band pat-
tern, indicating the presence of 1,4-b-xylan with frequent
substitutions. Two bands comigrated with either Xyl or 1,4-b-
xylobiose (Fig. 6b, lane 3). Subsequent digestion with GH3 b-
xylosidase resulted in a depletion of the xylobiose band and an
increase in the Xyl band, confirming their individual identities
(Fig. 6b, lane 5). The oligosaccharide migrating near xylotriose

was insensitive to b-xylosidase, indicating that it is not xylotriose,
but probably a substituted oligosaccharide. The xylo-
oligosaccharides were insensitive to digestion with GH115 a-
glucuronosidase (Fig. 6b, lanes 6, 8 and 9). By contrast, digestion
with diagnostic xylan a-arabinofuranosidases (GH43 and GH62)
resulted in alterations in band patterning, indicating the presence
of a-Araf substituents (Fig. 6b, lane 7–9). The observation that
not all the bands were fully digested by these enzymes suggests
that there are other kinds of substitutions present in K. flaccidum
xylan and possibly linkages other than 1,4-b-Xyl in the backbone.
In conclusion, K. flaccidum cell wall material shows diagnostic
band patterns of 1,4-b-xylan with a-linked arabinosyl substitu-
tions and other additional unidentified modifications or linkages
in the backbone. Phylogenetic analysis of the known arabinosyl-
transferase from GT61 indicated that no orthologs are present in
K. flaccidum (Table 1). Therefore, this suggests that another class
of glycosyltransferases carries out this function in K. flaccidum,
representing a case of convergent evolution with regard to 1,4-b-
xylan a-arabinosyl decorations.

Sequential extraction of K. flaccidum cell wall material with
subsequent immobilization to nitrocellulose membranes and
probing with xylan-directed antibodies (comprehensive microar-
ray polymer profiling) resulted in substantial labeling by the 1,4-
b-xylan-specific antibody LM11 in both the CDTA and the
NaOH-soluble fractions (Fig. 6c). Additionally, by employing
antibodies directed at xylan with complex substitution patterns
(LM27, binding to xylan with complex substitution patterns such
as grass xylan, and LM28, binding to methylated and unmethy-
lated glucuronosyl substituted xylan) we were able to confirm the
complex substitution pattern suggested by the PACE analysis.
LM27 and LM28 epitopes were present in separate fractions,
suggesting that at least two structurally different pools of xylan
are present in K. flaccidum. Immunohistochemical localization
with a xylan-specific antibody (LM11) showed that xylan was
present in the K. flaccidum cell wall in a punctate but distinct pat-
tern on the luminal side of the cell, which may be interpreted to
be labeling of newly synthesized xylan immediately before inte-
gration into the wall matrix (Fig. 6d).

Discussion

The evolution of a polysaccharide-based cell wall was probably a
key event facilitating terrestrialization, making this a defining
moment in the evolution of life on land. A growing body of evi-
dence suggests that charophyte algae were the first to inhabit
land, and from these algae, land plants subsequently evolved c.
475 million yr ago (Harholt et al., 2016). In the present study,
we show enzymatic conservation between 1,4-b-xylan synthases
separated by c. 700 million yr of evolution. Interestingly, our
data-mining efforts did not identify any additional homologs
predating KfXYS1. Using specific antibodies and hydrolytic
enzymes, we also showed that K. flaccidum cell walls contain sub-
stituted 1,4-b-xylans. These xylans are probably the products of a
pathway involving Kf XYS1. Our study therefore suggests that
charophyte algae are the evolutionary origin of the 1,4-b-xylans
of modern-day plants.
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The xylan synthase activity of Kf XYS1 is pivotal evidence in
support of the hypothesis that the ‘plant cell wall’ emerged in
charophyte algae. For instance, the biochemical orthology
between Kf XYS1 and embryophyte IRX10/XYS1 makes it likely
that other seemingly functionally orthologous relationships in
xyloglucan and pectin biosynthesis between charophyte algae and
land plants are indeed genuine. With established functional
orthology between early diverging charophyte alga and land plant
cell wall biosynthetic processes, we can now establish with reason-
able certainty that the land plant cell wall originated in an early
ancestor in charophyte algae evolution.

Interestingly, IRX9 and IRX14, which are glycosyltransferase-
like proteins required for xylan synthesis in planta, also appear in
Klebsormidiophyceae (Figs 2, S4). These proteins do not seem to
have essential catalytic functions in higher plants, and most likely
have a role in anchoring IRX10 in the Golgi apparatus, as
observed in Arabidopsis (Ren et al., 2014) and asparagus (Zeng
et al., 2016). The function of IRX9 and IRX14 in Klebsormidio-
phyceae could be the same as in these higher plants, or they may
be unrelated and were recruited later in evolution to participate

in xylan synthesis. PARVUS and GXMT1 provide examples of
the latter scenario as they are both implicated in xylan biosynthe-
sis in Arabidopsis yet have orthologs in chlorophytes that do not
produce xylan.

Klebsormidium flaccidum xylan appears to be highly substi-
tuted, but no GT61 or GUX orthologs were identified in
K. flaccidum (Table 1; Fig. 2). This suggests that other classes of
glycosyltransferases are involved in decorating its xylan backbone.
This includes the apparent a-arabinosyl substituents, which have
been associated with GT61 enzymes in grasses (Anders et al.,
2012), suggesting a case of convergent evolution. Other examples
exist where backbone substitutions are apparently reinvented
readily, for example in xyloglucan side chain evolution (Tuomi-
vaara et al., 2015) and possibly in psyllium seed mucilaginous
layers that produce a highly arabinosyl- and xylosyl-substituted
heteroxylan and encode an unusually high number of GT61
orthologs (Jensen et al., 2013).

While no GUX orthologs were identified in the K. flaccidum
genome (consistent with its xylan being insensitive to a-
glucuronosidase and no observable GlcA in the sugar
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composition analysis), we identified an ortholog in Zygnemato-
phyceae, the most recent group of charophyte algae to have
evolved (Fig. 1). The GUX proteins form three phylogenetic sub-
groups, that is, charophytes, mosses and vascular plants (Fig. S6),
with glucuronoxylan isolated and characterized from the latter
two subgroups of plants (Kulkarni et al., 2012; Rennie &
Scheller, 2014; Busse-Wicher et al., 2016). This suggests that the
GUX proteins function as xylan glucuronosyltransferases in
mosses. The vascular plant GUX subgroup further shows division
between subgroups of Arabidopsis GUX2/4/5 and GUX1/3
orthologs. In Arabidopsis, even spacing of GlcA residues along
the xylan backbone in secondary cell walls is provided by GUX1
(Bromley et al., 2013) and in primary cell walls by GUX3 (Mor-
timer et al., 2015). The even GlcA spacing facilitates binding to
cellulose microfibrils through a twofold helical screw ribbon con-
formation of the glucuronoxylan, which probably exerts an influ-
ence on microfibril aggregation and organization (Simmons
et al., 2016). The phylogenetic analysis therefore suggests that
this prominent architectural principle arose in basal vascular
plants.

As we see the contours of a polysaccharide-based cell wall
evolve in charophytic algae, and its further evolution throughout
the plant kingdom, a number of questions become increasingly
pressing. Why were these polysaccharide classes (i.e. cellulose,
xylan, xyloglucan, mannan, and pectin) selected? Why are some
occasionally expendable in some cell walls and cell types, while
seemingly indispensable to the organism as a whole and main-
tained consistently in land plants throughout evolution? Why
have so few new polysaccharide classes, such as Rhamnogalactur-
onan II, emerged during the course of plant evolution? Why does
utilization of different polysaccharides change during evolution
and what differences in cell wall functionality, architectural prin-
ciples and solutions drive these evolutionary events? By having a
firmer understanding of the evolutionary span and context of the
plant cell wall, we are now poised to begin to answer these funda-
mental questions in plant biology.

In conclusion, using a multifaceted approach involving
genome and transcriptome mining and phylogenetic and bio-
chemical analysis, Kf XYS1 was identified and shown to possess
1,4-b-xylan synthase activity. Immunolabeling and biochemical
analysis of K. flaccidum cell walls identified a cell wall-localized,
highly substituted 1,4-b-xylan. These findings, along with an
evolutionary analysis of the occurrence of xylan pathway
enzymes, link plant xylan evolution to an ancestral charophytic
alga with a diverging point c. 700 million yr ago.
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