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Abstract

Haematopoietic stem cells (HSCs) are an essential source and reservoir for normal haematopoiesis, and their

function is compromised in many blood disorders. HSC research has benefitted from the recent development

of single-cell molecular profiling technologies, where single-cell RNA-sequencing (scRNA-seq) in particular

has rapidly become an established method to profile HSCs and related haematopoietic populations. The

classical definition of HSCs relies on transplantation assays, which have been used to validate HSC function

for cell populations defined by flow cytometry. Flow cytometry information for single cells however is

not available for many new high-throughput scRNA-seq methods, thus highlighting an urgent need for

the establishment of alternative ways to pinpoint the likely HSCs within large scRNA-seq datasets. To

address this, we tested a range of machine learning approaches and developed a tool, hscScore, to score

single-cell transcriptomes from murine bone marrow based on their similarity to gene expression profiles of

validated HSCs. We evaluated hscScore across scRNA-seq data from different laboratories, which allowed

us to establish a robust method that functions across different technologies. To facilitate broad adoption

of hscScore by the wider haematopoiesis community, we have made the trained model and example code

freely available online. In summary, our method hscScore provides fast identification of mouse bone marrow

HSCs from scRNA-seq measurements and represents a broadly useful tool for analysis of single-cell gene

expression data.
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Introduction1

It has been over 60 years since experiments first proved the existence of bone marrow cells capable of2

producing the whole blood system. In the following decades, multipotent haematopoietic stem cells (HSCs)3

have been the subject of many studies aimed at revealing the mechanisms controlling their function [1].4

Strategies to isolate blood cells were developed following the invention of techniques to sort cells based5

on their expression of specific proteins. By isolating and transplanting different fractions of bone marrow,6

sorting strategies could be refined to enrich for populations passing the gold-standard stem cell assay of7

repopulation upon secondary transplantation into irradiated mice (for review, see [2]). Once HSCs could be8

isolated it became possible to measure molecular properties of these cells.9

However, it is well-known that many of the surface marker-defined haematopoietic stem and progenitor10

(HSPC) populations are very heterogeneous in terms of both function and their molecular profiles [3, 4, 5].11

The field of haematopoiesis has therefore been at the forefront of exploring single-cell technologies. In12

particular, many studies have used single-cell RNA-sequencing (scRNA-seq) to profile gene expression across13

haematopoietic populations [4, 6, 7, 8, 9, 10]. This has provided insights into processes such as differentiation,14

ageing and disease (for review, see [11]).15

Initial scRNA-seq studies were limited in throughput due to the cost and difficulty of profiling large numbers16

of cells. However, newer technologies such as droplet-based scRNA-seq methods [12, 13, 14] are enabling17

generation of increasingly large datasets, with multiple studies capturing tens of thousands of cells from the18

blood system [8, 15, 16, 17]. This has many exciting implications for haematopoiesis research, yet these19

technologies bring their own challenges. Our best strategies for identifying HSCs rely on measurements20

of cell surface marker proteins [18, 19]. However, many scRNA-seq datasets do not incorporate these21

measurements. Even in those studies using technologies such as index sorting [20, 21] or CITE-seq [22]22

to link protein and gene expression, the identification of HSCs is still dependent on the choice of markers23

measured in the experiment. Therefore, identifying potentially rare populations of HSCs in single-cell data24

remains a challenge.25

To address this, we decided to develop an approach that could be easily applied to scRNA-seq data with the26

aim of identifying transcriptional profiles belonging to HSCs. Using annotated data from a previous study of27

mouse HSPCs [18], we tested a range of machine learning methods to score single-cell transcriptomes based28

on their similarity to HSC gene expression, and identified a model performing well across data from a range29

of different laboratories and technologies. Along with this manuscript we provide freely available code and30

the trained model so that researchers can easily apply this tool to their own single-cell datasets.31
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Materials and methods32

scRNA-seq datasets33

Model training data. Models were trained on data from Wilson et al. [18]. In this study, 96 HSCs (Lin-
34

c-Kit+ Sca1+ CD34- Flt3- CD48- CD150+) from mouse bone marrow were profiled using the Smart-Seq235

protocol [23]. Cells were filtered to the same 92 cells that passed stringent quality control (QC) measures36

in the original publication. Wilson et al. used a classification approach to assign scores to each transcrip-37

tome representing its similarity to a population highly enriched for functional HSCs (Fig. S1A). Data were38

visualised using principal component analysis (PCA) coordinates from the original publication. Count data,39

HSC-scores, QC information and PCA coordinates can be downloaded from Zenodo (https://zenodo.org/,40

DOI: 10.5281/zenodo.3303783).41

Index-sorted HSPC data. Data profiling 1,654 HSPCs were published in Nestorowa et al. [7]. These data42

were generated with the same Smart-Seq2 protocol as the training data. After QC, 798 Lin- c-Kit+ Sca1-,43

701 Lin- c-Kit+ Sca1+ and 155 Lin- c-Kit+ Sca1+ CD34- Flk2- cells were retained, and the count data44

for these cells can be downloaded from Zenodo (DOI: 10.5281/zenodo.3303783). QC information can be45

obtained from the data website (http://blood.stemcells.cam.ac.uk/single_cell_atlas.html). Data46

were visualised using the diffusion map coordinates and cell type information downloaded from the same47

data website.48

Dormant and active HSC data. This dataset was described in Cabezas-Wallscheid et al. [24]. scRNA-seq49

data were generated using the Fluidigm C1 microfluidics device to profile HSCs (Lin- c-Kit+ Sca1+ CD150+50

CD48- CD34-) and the subset of these cells that were long-term label-retaining, described as dormant51

HSCs (dHSCs). Gene expression counts for these data were downloaded from ArrayExpress (E-MTAB-52

4547). For QC, cells with <50,000 mapped reads, <1,000 detected genes or >30% of reads mapping to53

External RNA Controls Consortium (ERCC) spike-ins were excluded, as in the original publication. For54

visualisation, expression data were filtered to the highly variable genes (HVGs) from the original publication55

(Supplementary Table 2 in [24]). Cells were normalised to have total counts equal to the median counts56

per cell and normalised counts were log(x+1) transformed with the scanpy.preprocessing.log1p function. A57

diffusion map was calculated on these log-transformed values using 30 neighbours and the ‘gauss’ method58

in the scanpy.tools.diffmap function.59

Smart-Seq2 data of multipotent stem and progenitors. Data profiling LT-HSCs (Lin- c-Kit+ Sca1+ CD150+60

CD48-), ST-HSCs (Lin- c-Kit+ Sca1+ CD150- CD48-) and MPPs (Lin- c-Kit+ Sca1+ CD150- CD48+)61

were described in Mann et al. [25]. Expression counts were downloaded from NCBI GEO (GSE100426).62
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This study profiled cells from young (8-12 weeks) and old (20-24 months) mice, and in stimulated (LPS63

treated) and unstimulated conditions. For testing the hscScore method only unstimulated cells were used.64

QC was performed by removing cells with fewer than 2,000 detected genes. For visualisation, HVGs were65

identified using the scanpy.preprocessing.filter genes dispersion function with default settings and data were66

normalised and log-transformed as above. PCA was calculated on the log-transformed counts.67

Droplet-based c-Kit+ cells. Transcriptomes for 22,993 Lin- c-Kit+ Sca1+ and 21,809 Lin- c-Kit+ transcrip-68

tomes were generated using the 10x genomics [12] droplet-based sequencing method and described in Dahlin69

et al. [15]. Data can be downloaded from https://gottgens-lab.stemcells.cam.ac.uk/adultHSPC10X/70

and NCBI GEO (GSE107727). Lin- c-Kit+ cells from W41/W41 mouse bone marrow were profiled similarly71

with data available from the same online resources. Data were visualised using the force-directed graph72

co-ordinates calculated for the original publication.73

Droplet-based multipotent progenitors. Rodriguez-Fraticelli et al. [26] describe the generation of inDrops [13]74

scRNA-seq data from mouse bone marrow for each of the LT-HSC (Lin- c-Kit+ Sca1+ Flt3- CD150+ CD48-),75

ST-HSC (Lin- c-Kit+ Sca1+ Flt3- CD150- CD48-), MPP2 (Lin- c-Kit+ Sca1+ Flt3- CD150+ CD48+), MPP376

(Lin- c-Kit+ Sca1+ Flt3- CD150- CD48+) and MPP4 (Lin- c-Kit+ Sca1+ Flt3+ CD48+) fractions. Processed77

count matrices were downloaded from NCBI GEO (GSE90742) and QC was performed by excluding any78

cells with fewer than 1,000 detected genes. For visualisation, PCA was calculated as above and then UMAP79

[27] coordinates calculated using the scanpy.tools.umap function with default parameters.80

Data pre-processing81

Before input into the model, count data were processed by gene filtering and normalisation. The gene filtering82

retained genes in one of three sets: 1) all protein-coding genes, 2) HVGs or 3) MolO and NoMO gene sets. For83

option 1, only non-mitochondrial genes annotated as ‘protein coding’ in the Ensembl version 81 annotation84

[28] were retained. For option 2, HVGs were calculated on normalised counts of all protein-coding genes (nor-85

malised using the scanpy.preprocessing.normalize total function with default parameters). These normalised86

counts were log(x+1)-transformed and HVGs identified with the scanpy.preprocessing.highly variable genes87

function with default parameters. Raw count data were filtered to this set of HVGs for input into the model.88

Option 3 retained the genes from Wilson et al. Supplementary Table 3 annotated as either MolO or NoMO89

genes [18]. These genes were those with significant correlation with the HSC-score assigned to each cell90

(adjusted P-value < 0.1, Benjamini-Hochberg correction for multiple testing).91

After feature selection, count data were normalised on the selected genes using one of two alternatives:92

1) rank normalisation or 2) total count normalisation. For rank normalisation, expression in each cell93

4

https://gottgens-lab.stemcells.cam.ac.uk/adultHSPC10X/


was replaced by a vector representing the expression values ranked within that cell. Genes with identi-94

cal counts were replaced with their average rank. For option 2, normalisation was performed with the95

scanpy.preprocessing.normalize total function to normalise each cell to have the same summed counts. This96

number of counts was set to be the median number of counts for the Wilson et al. data across the gene set97

of choice. Total count-normalised data were then log(x+1)-transformed.98

Model training99

To identify optimal parameters for each type of model, a search over parameters was performed using the100

sklearn.GridSearchCV function with 5-fold cross validation. Parameters explored for each model can be101

found in Supplementary Table S2. Before training, 25% of the data were held back as a test set and the re-102

maining 75% were scaled using the sklearn.StandardScaler function and then (optionally) PCA-transformed.103

The optimal parameters identified by the grid search are shown in Supplementary Table S3, along with the104

model R2 scores for each cross-validation fold, the mean and standard deviation of these scores, and the105

score of the trained model on the unseen test data. After the optimal parameters were obtained the models106

were retrained on the whole dataset using these parameters.107

Plotting108

Plotting was performed in python using either scanpy [29], seaborn or matplotlib functions.109

Clustering and cell cycle scoring110

Leiden clustering [30] was performed using the scanpy.tl.leiden function with resolution equal to either 1.0111

for lower resolution clustering or 1.5 for higher resolution clustering. Before clustering, data from Nestorowa112

et al. were normalised using the scanpy.preprocessing.normalize total function, log(x+1)-transformed and113

then HVGs identified with the scanpy.preprocessing.highly variable genes function. PCA was calculated on114

the HVG values and the top 8 principal components used for input to the clustering. Cell cycle scoring115

was performed by using the scanpy.tl.score genes cell cycle function with S phase and G2/M phase genes116

downloaded from Macosko et al. [14].117

Code availability118

Scripts for identifying model parameters and producing plots in this manuscript are hosted on GitHub119

(https://github.com/fionahamey/hscScore). The trained model can be downloaded from Zenodo (DOI:120

10.5281/zenodo.3332150). An example notebook of applying the model to new data is also hosted on121

GitHub.122
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Software versions123

Versions of all software used can be found in the supplementary text.124

Results125

Linked stem cell function and gene expression data can be used to train models to identify HSCs126

As our aim was to identify HSCs we first required data where it was already known which transcriptomes127

belonged to these cells. This annotation could be done using surface marker expression, but even the purest128

HSC strategies still only contain up to 70% functional stem cells [18]. Therefore, we chose a dataset of HSCs129

that were profiled as part of a study where these cells were annotated with an HSC-score based on their130

gene expression [18]. This score represented each cell’s transcriptional similarity to a highly homogeneous131

population of HSCs (Fig. 1A, S1A). In this previous work, cells profiled using scRNA-seq were index-sorted to132

measure 11 flow cytometry parameters. To establish a link between the HSC-score and the functional output133

of a stem cell, single-cell transplantation assays were performed where the same 11 flow cytometry parameters134

were recorded for each of the transplanted cells. Based on these shared parameters dimensionality reduction135

was used to show that the repopulating HSCs in the single-cell transplantation experiments possessed similar136

surface marker profiles to the high HSC-score cells. Therefore, this study established the correlation between137

having a high HSC-score and giving a positive read-out in a transplantation assay designed to test for stem138

cell function [18]. Here, our aim was to use these scored transcriptomes to train models to predict the HSC-139

score of cells from new datasets (Fig. 1B). To find the most suitable type of model for this prediction, we140

trained a number of different machine learning methods (linear regression, random forest regression, nearest141

neighbours regression, support vector regression and multi-layer perceptron (MLP) regression) and scored142

the performance of each method on a test subset of the data (Fig. S1B). Model parameters were fitted using143

a grid search approach with 5-fold cross validation and then models were tested on unseen test to assess144

their accuracy in predicting the HSC-score.145

Using a select subset of genes for training produces the most accurate models146

Before training any models it was first necessary to define a pipeline for processing any scRNA-seq dataset147

given as input to the model. In particular, it was important to choose analysis steps that would allow148

comparison of data across different experiments. Although scRNA-seq can measure thousands of genes per149

cell, the majority of genes detected across a dataset have very noisy expression. To avoid obscuring biological150

variation in the data, often only a set of so-called highly variable genes (HVGs) that exceed a certain level151

of variance are used for analysis [31]. To explore the effect of gene set choice we decided to test models on152
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functionally validated HSCs. (B) Outline of the training process for building the HSC prediction tool.
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Figure 2: Trained models can predict HSC-score on unseen test data. (A, B) R2 score of predicted compared to

actual HSC-score on test subset of data for models trained with best identified parameters. Shape indicates normalisation, and

colour the type of method. Results are shown for models trained on raw counts (A) or PCA-transformed counts (B).

three different gene sets: all protein-coding genes, HVGs, and the set of “MolO” and “NoMO” genes defined153

by Wilson et al. [18] (Table S1). Wilson et al. correlated the expression of all genes with the HSC-score154

within their scRNA-seq data, and denoted genes with significant positive correlation with the HSC-score as155

“MolO” genes and those with significant negative correlation as “NoMO” genes. Further details of these156

three different gene lists used for training can be found in the Materials and methods. As well as the choice157

of gene set, we also chose to test different data normalisation methods, similar to work aimed at predicting158

cell cycle state based on gene expression [32].159

There are many different normalisation approaches that have been applied to single-cell data, yet we needed160

one that would yield comparable results across multiple datasets. This requirement excluded many of the161
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more sophisticated methods that share information across a sample to perform normalisation [33, 34]. We162

tested both total count normalisation and a ranking normalisation method (see Materials and methods).163

Finally, we also tried training models on PCA-transformed data, reasoning that projecting new data into164

the PCA-space of the training data could help to relate datasets from different technologies. Inspection165

of models trained across these combinations of pre-processing variables showed that the best performing166

models were all trained using the MolO and NoMO genes (Fig. S2). In general, models trained on the PCA-167

transformed data performed better on unseen data (Fig. 2), although some models trained on untransformed168

counts were still amongst the highest scoring (Fig. 2, S2).169

HSCs are successfully identified in a broad dataset of blood stem and progenitors170

After assessing the performance of the models on test data held back from the original dataset, we next171

applied the highest scoring models to an alternative dataset containing over 1,600 HSPCs from mouse172

bone marrow using the same scRNA-seq protocol as the training data [7]. As this protocol was a plate-173

based method, cells were index sorted hence single-cell transcriptomes could be retrospectively assigned174

to one of 10 different phenotypic cell types (Fig. 3A). This dataset contained 38 cells from the highly175

specific ESLAM (Lin- c-Kit+ Sca1+ EPCR+ CD48- CD150+) HSC population [19] as well as more mature176

progenitor cells, allowing our models to be tested on a broader population than the training data. Diffusion177

map dimensionality reduction [35, 36] showed separation of HSCs from cells differentiating into erythroid,178

lymphoid and myeloid lineages. For the majority of high scoring models, high HSC-scores were localised to179

the top of the diffusion map in the region occupied by the ESLAM cells (Fig. 3B, S3A). HSC scores were180

significantly higher in the ESLAM population when compared to other phenotypic cell types for a number of181

the models (Fig. 3C, S3B, Wilcoxon rank-sum test, P-values in figure). Overall, the MLP model with total182

count normalisation and no PCA-transformation gave the best distribution of HSC-scores across the dataset,183

with high scoring cells largely restricted to the ESLAM population. The score across all other populations184

was low, meaning this model was specifically highlighting the stem cells. As this combination of parameters185

mostly clearly highlighted the ESLAM cells that are enriched for functional HSCs in dimensionality reduction186

and violin plots, we therefore chose to carry this model forward for testing across a wider range of experiments187

and denote this prediction pipeline as hscScore.188

One of the most widely-used steps in the analysis of single-cell data is the application of clustering algorithms.189

Comparison of hscScore with a graph-based clustering approach [30] showed that whilst clustering could190

identify a broad stem cell region, it nevertheless struggled to separate out the highest HSC-score cells even191

with increased clustering resolution (Fig. S4A,B). Clustering is also limited as it assigns cells into discrete192

groups, whereas haematopoietic differentiation may be better defined by a continuous representation [1].193

Next, as there is known to be a link between cell cycle activity and repopulation capability of HSCs, we194
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decided to compare scoring cells with hscScore to scoring cells by their expression of cell cycle genes [14]. In195

keeping with the reported quiescent nature of functional HSCs [37], we found a correlation between HSC-196

score and cell cycle score with the group of cells most transcriptionally similar to HSCs having very low197

expression of cell cycle genes (Fig. S4C). This inverse relation between the HSC-score and cell cycle activity198

again supports the ability of hscScore to identify the stem cell population.199

hscScore locates HSCs in single-cell datasets produced by different technologies200

To test the model performance on data generated from a different laboratory and using an alternative scRNA-201

seq technology we decided to investigate data from work by Cabezas-Wallscheid et al. [24]. In this study,202

the authors profiled dormant HSCs (dHSCs), a subset of HSCs that show long-term label retention in label-203

retaining assays. Previous work had shown that these dHSCs were enriched for repopulation potential, and204

therefore represent a subset of HSCs containing a higher proportion of functional stem cells. 146 dHSCs and205

170 HSCs were profiled using microfluidics scRNA-seq technology (Fig. 4Ai). Diffusion map dimensionality206

reduction shows a progression from dHSCs to other cells within the HSC gate, which in the original study are207

shown to represent more “active” HSCs primed for cell cycle entry. Applying hscScore to these data showed208

significantly higher (P=1.1 × 10−19, Wilcoxon rank-sum test) scores in the dHSCs compared to the overall209

HSC population (Fig. 4Aii, iii). We also tested our model on an additional dataset containing long-term210

HSC (LT-HSC), short-term HSC (ST-HSC) and multipotent progenitor (MPP) populations [25] (Fig. 4Bi).211

Again, highest scores were seen in the LT-HSC population, with lowest scores in the MPPs (Fig. 4Bii, iii,212

S4D).213

Next, we wanted to see if our method would also work for higher throughput single-cell gene expression214

methods such as droplet-based scRNA-seq. These approaches capture much higher numbers of cells but at215

least until now have had much lower sequencing depth. Additionally, many existing HSPC droplet-based216

scRNA-seq datasets do not have surface marker information for cells that would allow phenotypic populations217

to be identified. Application of hscScore to droplet-based data profiling Lin- c-Kit+ mouse bone marrow218

cells [15] identified highest scoring cells in a specific region of the diffusion map (Fig. 4Ci). Inspection of219

HSC marker genes Procr [38] and Hoxb5 [39] showed overlap between high HSC-score and expression of220

these genes (Fig. 4Cii, iii). To examine another lower sequencing depth method, we calculated HSC-scores221

for LT-HSC, ST-HSC and MPP cells profiled using alternative droplet-based method [26], and again the222

highest scores were found in the LT-HSCs (Fig. S5A).223

We also asked how our method compared to a näıve approach of simply averaging MolO gene expression224

across cells, as we had previously found this to be useful to highlight the HSC population [15]. Whilst we225

confirmed that this approach of averaging the expression of a specific gene set gave higher averages in the226

HSCs, these differences were not as clear as the hscScore model results. Instead, the average expression227
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Figure 3: Top-performing models can identify HSCs in alternative dataset profiling haematopoietic stem and

progenitor cells. (A) Schematic of experiment from Nestorowa et al. [7] showing the number of cells for each surface

marker-defined cell type in the scRNA-seq dataset. Diffusion map dimensionality reduction is coloured by surface marker cell

type. (B) Diffusion map coloured by the predicted HSC score from the top-performing models. Additional plots are shown in

Fig. S3. Highest scores are seen in the region corresponding to phenotypic stem cells. (C) Violin plots showing distribution

of scores across surface marker-defined phenotypes. P-values indicate significance of pairwise tests between scores of each

population in comparison to scores of ESLAM population, Wilcoxon rank-sum test. Additional plots are shown in Fig. S3.

ESLAM, EPCR+ subset of HSCs; LT-HSC, long-term HSC; ST-HSC, short-term HSC; MPP, multipotent progenitor; LMPP,

lymphoid-primed multipotent progenitor; CMP, common myeloid progenitor; GMP, granulocyte-macrophage progenitor; MEP,

megakaryocyte-erythroid progenitor; MLP, multi-layer perceptron; SVM, support vector machine.
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Figure 4: HSCs can be identified in datasets generated using different technologies. (A) Model performance on 316

HSCs from Cabezas-Wallscheid et al. [24]. Diffusion maps show data coloured by cell sorting gate (i) and by predicted hscScore

(ii). dHSC, dormant HSC. (iii) Violin plot shows HSC-score distribution over the dHSC and HSC gates. (B) Model applied

to 718 SMART-Seq2 scRNA-seq profiles of stem and progenitor cells from Mann et al. [25]. PCA plots show the cell type (i)

and predicted HSC-score (ii). (iii) The violin plot shows the score distribution across LT-HSC, ST-HSC and MPP cells. (C)

Application of top-performing model to droplet-based scRNA-seq data of 44,802 Lin- c-Kit+ bone marrow cells from Dahlin et

al. [15]. Data are visualised using a force-directed graph coloured by predicted HSC-score (i). Expression of HSC marker genes

Procr and Hoxb5 are shown in panels (ii) and (iii), respectively. (D) Force-directed graph of Lin- c-Kit+ bone marrow cells

from wild-type (i) and W41/W41 (ii) mouse bone marrow coloured by predicted HSC-score. (iii) Distribution of HSC-score

across the wild-type and W41/W41 datasets.
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showed more of a gradient across HSPC populations (Fig. S5B-F), making it more challenging to clearly228

distinguish the HSCs with this approach.229

hscScore distribution is in keeping with lower proportion of stem cells in bone marrow of Kit mutant230

mouse231

Finally, we applied our scoring method to previously published droplet-based scRNA-seq data from W41/W41
232

mouse bone marrow [15]. The W41/W41 mutation leads to reduced c-Kit signalling activity and these mice233

have a lower proportion of stem cells [40, 41]. We wanted to see if our approach could both detect stem cells234

in the mutant background and identify their shift in numbers. Dimensionality reduction on both wild-type235

and W41/W41 Lin- c-Kit+ cells showed very similar appearances and localisation of the cells with high236

HSC-scores, verifying that this tool can be applied to these data from perturbed haematopoiesis (Fig. 4Di,237

ii). The distribution of the HSC-score across the whole dataset showed the W41/W41 population had overall238

lower scores, in keeping with the reduction of HSCs within this mutant model (Fig. 4Diii). The wild-type239

Lin- c-Kit+ population is expected to contain around 1% HSCs so we calculated the 99th percentile of the240

wild-type Lin- c-Kit+ HSC-score. Only 0.56% of W41/W41 HSCs had a predicted score above this same241

threshold. This was in spite of the numerical range of scores being similar across these datasets (−7.8×10−3 –242

0.51 for W41/W41 and −8.3×10−3 – 0.53 for wild-type cells). Together this shows that the hscScore method243

gives results in keeping with the reduced frequency of stem cells in the W41/W41 mouse model.244

Discussion245

A rapidly growing number of studies use single-cell gene expression profiling to investigate the molecular246

state of blood stem and progenitor cells. One of the challenges when working with this type of data is247

to reliably identify the transcriptomes belonging to rare cell types. This is particularly relevant for those248

cell types conventionally defined by expression of specific cell surface marker proteins as many scRNA-seq249

datasets do not contain information about protein expression. In this work we trained and tested a range250

of predictive machine learning models to develop a tool to score single-cell gene expression profiles for their251

transcriptional similarity to a functionally pure population of HSCs.252

It is well-established that integrating or comparing scRNA-seq data from different sources can be difficult due253

to so-called batch-effects arising from factors such as different experimental techniques [42, 43]. We therefore254

tested our method across a number of datasets and identified a pipeline that performed well across scRNA-255

seq platforms with different sequencing depths. Optimal model performance was found when training on a256

small set of genes highly correlated with the HSC-score. We chose to include genes with both positive and257

negative associations to provide as much information as possible to distinguish between “good” and “bad”258

13



stem cells. The inclusion of these negatively correlated genes as well as the fact that the hscScore model can259

learn specific weights for each gene offers benefits over simply averaging the expression of a geneset. The260

flexibility in the MLP framework also allows varying weights across genes, meaning that there are different261

combinations of gene expression enabling a cell to get a high HSC-score.262

We made efforts to ensure that our approach can be easily applied by other researchers, providing both the263

trained model and example code online. We envisage the hscScore method to be an easy step in the analysis264

of murine bone marrow scRNA-seq samples, enabling fast and reliable identification of HSCs in a dataset.265

When the expected frequency of stem cells in a sample is known, it could be used to select a threshold for266

classifying cells based on their HSC-score, although this information will not be available for all datasets.267

In these cases, hscScore can still be used to reveal the most likely stem cells instead of being used for strict268

classification. Our hscScore approach also has the potential to be used as part of a pipeline for refining stem269

cell sorting strategies by identifying any genes that encode for surface marker proteins and have expression270

levels correlated with the HSC-score. With high quality cell state annotation this approach could be applied271

to other systems. In particular, this would be worth exploring in systems where there are linked functional272

data and expression data, for example through the expression of shared surface marker profiles. Of special273

interest to haematopoiesis it would be interesting to try and extend this approach to identifying human274

HSCs, as a number of markers differ between human and mouse HSCs.275

An exciting potential application of the hscScore method will be to compare data across different conditions,276

including genetic perturbations such as the W41/W41 mouse model explored here. A number of blood277

disorders affect stem cell behaviour, and in such situations surface marker expression is commonly disrupted,278

making it unreliable to identify HSCs using conventional strategies. In particular, there are several mouse279

models where an increase in the number of phenotypic HSCs but a decrease in the number of functional280

HSCs has been described. Where this decreased functionality is linked to transcriptional changes then a281

lower frequency of stem cells should be seen with hscScore. Being able to robustly identify HSCs within282

scRNA-seq data could therefore provide important new insights into disrupted haematopoiesis in these283

situations.284

In summary, the hscScore model provides a fast and simple approach for identification of HSCs within285

scRNA-seq datasets from mouse bone marrow. This should provide a broadly useful tool for analysis of286

single-cell gene expression data, which we hope will be adopted widely by the community.287
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[11] S. Watcham, I. Kucinski, B. Göttgens, New insights into hematopoietic differentiation landscapes from single-cell RNA324

sequencing, Blood 133 (13) (2019) 1415–1426. doi:10.1182/blood-2018-08-835355.325

[12] G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo, T. D. Wheeler, G. P.326

McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y. Nishimura,327

M. Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. Mc-328

Farland, K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen, B. J. Hindson, J. H.329

Bielas, A. K. Shalek, Q. F. Wills, D. A. Jaitin, A. A. Pollen, E. Z. Macosko, A. M. Klein, G. X. Zheng, V. M. Narasimhan,330

15

http://dx.doi.org/10.1038/nature25022
http://dx.doi.org/10.1002/cyto.a.22093
http://dx.doi.org/10.1038/s41590-017-0001-2
http://dx.doi.org/10.1016/J.CELL.2015.11.013
http://dx.doi.org/10.1016/j.cell.2015.11.059
http://dx.doi.org/10.1038/nature25741
http://dx.doi.org/10.1182/blood-2016-05-716480
http://dx.doi.org/10.1038/s41556-018-0121-4
http://dx.doi.org/10.1038/nature19348
http://dx.doi.org/10.1038/nature19348
http://dx.doi.org/10.1038/nature19348
http://dx.doi.org/10.1038/ncb3493
http://dx.doi.org/10.1182/blood-2018-08-835355


Y. Mostovoy, B. J. Hindson, P. Brennecke, G. Sherlock, L. J. P. van der Maaten, G. E. Hinton, F. Borrego, M. Masila-331

mani, A. I. Marusina, X. Tang, J. E. Coligan, P. G. Chu, D. A. Arber, A. Schiopu, O. S. Cotoi, M. A. Turman, T. Yabe,332

C. McSherry, F. H. Bach, J. P. Houchins, E. Lubberts, S. Ronchetti, Y. Y. Lin, A. M. Greer, A. N. Harman, A. P.333

Patel, I. Tirosh, M. C. Lee, K. T. Kim, J. W. Vardiman, J. F. Zhong, A. Dobin, M. Stephens, Q. Liu, N. Novershtern,334

M. Bonora, C. Schinke, Massively parallel digital transcriptional profiling of single cells, Nature Communications 8 (2017)335

14049. doi:10.1038/ncomms14049.336

[13] A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D. A. Weitz, M. W. Kirschner,337

Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells, Cell 161 (5) (2015) 1187–1201.338

doi:10.1016/J.CELL.2015.04.044.339

[14] E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. R. Bialas, N. Kamitaki, E. M.340

Martersteck, J. J. Trombetta, D. A. Weitz, J. R. Sanes, A. K. Shalek, A. Regev, S. A. McCarroll, Highly Parallel341

Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets, Cell 161 (5) (2015) 1202–1214. doi:342

10.1016/j.cell.2015.05.002.343

[15] J. S. Dahlin, F. K. Hamey, B. Pijuan-Sala, M. Shepherd, W. W. Y. Lau, S. Nestorowa, C. Weinreb, S. Wolock, R. Hannah,344
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