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Abstract
We study linear inverse problems under the premise that the forward opera-
tor is not at hand but given indirectly through some input-output training pairs.
We demonstrate that regularization by projection and variational regularization
can be formulated by using the training data only and without making use of the
forward operator. We study convergence and stability of the regularized solu-
tions in view of Seidman (1980 J. Optim. Theory Appl. 30 535), who showed
that regularization by projection is not convergent in general, by giving some
insight on the generality of Seidman’s nonconvergence example. Moreover, we
show, analytically and numerically, that regularization by projection is indeed
capable of learning linear operators, such as the Radon transform.

Keywords: data driven regularization, variational regularization, regularization
by projection, inverse problems, Gram–Schmidt orthogonalization
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1. Introduction

Linear inverse problems are concerned with the reconstruction of a quantity u ∈ U from indi-
rect measurements y ∈ Y which are related by the linear forward operator A : U → Y . A mod-
els the physics of data acquisition and may involve, for instance, integral transforms (such as
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the Radon transform, see for instance [2, 3]) and partial differential equations (see for instance
[4]).

Until recently the methods for solving inverse problems were model driven, meaning that the
physics and chemistry of the measurement acquisition process was represented mathematically
by the forward operator A (for some relevant applications see [2, 5, 6]). Nowadays, with the rise
of the area of big data, methods that combine forward modeling with data driven techniques are
being developed [7]. Some of these techniques build upon the similarity between deep neural
networks and classical approaches to inverse problems such as iterative regularization [8, 9]
and proximal methods [10]. Some are based on postprocessing of the reconstructions obtained
by a simple inversion technique such as filtered backprojection [11]. Others use data driven
regularizers in the context of variational regularization [12, 13] or use deep learning to learn a
component of the solution in the null space of the forward operator [14, 15].

On the other hand, methods that discard forward modeling, that means knowledge of the
operator A, have emerged. They are appealing because they do not require knowledge on the
physics and chemistry of the data acquisition process, bypass the costly forward model evalu-
ation and often yield results of superior visual quality. However, it has been demonstrated that
for ill-posed inverse problems naïve applications of such methods can be unstable with respect
to small perturbations in the measurement data [16, 17]. Moreover, there is currently no theory
for purely data driven regularization in inverse problems, i.e. a theory in the setting when the
forward operator is given only via training pairs

{ui, yi} such that Aui = yi. (1.1)

In this paper we make a first step of an analysis for purely data driven regularization. Our
goal is to develop and analyze stable algorithms for solving Au = y without making use of the
explicit knowledge of the forward operator A but having only

• approximate measurement yδ such that ‖y − yδ‖ � δ and
• training pairs (1.1).

In particular, we demonstrate that regularization by projection [1, 18] and variational regu-
larization [19] can be formulated in a data driven setting. We provide new analysis of regular-
ization by projection and derive sufficient conditions for convergence that shed some new light
on the classical nonconvergence example in [1]. Finally, in the numerical part of the paper we
demonstrate that the methods we propose yield similar results to classical methods and require
moderate amounts of training data. Note that we consider the idealized case when the training
pairs (1.1) are noise-free. We leave out for future research the natural extension to the case of
noisy training data.

There is a whole body of literature concerning regularization with various types of pro-
jections, typically onto subspaces spanned by some predefined bases such as polynomials or
wavelets; a complete list of references would be too long to be presented here. Our approach
differs from these works in the fact that our subspaces are defined by training data. This presents
challenges since there is typically no relation between these subspaces and the properties of
the forward operator (e.g., its eigenspaces) or the properties of the exact solution such as
smoothness. It is hard, therefore, to make claims about optimality of the methods.

A connection between regularization by projection and machine learning has been observed
by several authors, for instance, in the context of statistical learning [20, 21], where it was
demonstrated that subsampling plays the role of regularization by (random) projections. From
the statistical point of view, the idea to approximate an operator from input-output samples is
closely related to statistical numerical approximation (see, e.g., [22] for a recent review) and
in particular to optimal recovery [23].
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Structure of the paper. In section 2 we summarize our assumptions and describe our setting
and notation in more detail. Regularization by projection onto the space of input data is the
topic of section 3. We derive sufficient conditions on the input data and the outputs data, under
which projections result in a regularization. In section 4 we present another regularization
method based on projections onto the space of output data, the dual least squares method
[18], which is known to be convergent. We demonstrate, however, that it cannot be realized
using the training pairs (1.1) and requires a different type of training data. In section 5 we
study variational regularization and in section 6 we present numerical experiments with all
three methods. We show that regularization by projection is indeed capable of learning linear
operators, such as the Radon transform.
Main contributions. Our main goal in this article is to carry over some classical results in
regularization theory to the model-free setting, with an overarching theme of using projections
on subspaces defined by training data in the framework of regularization by projection. This
perspective requires new, data driven regularity conditions, for which we show a relation to
source conditions in special cases, whilst in general such relationship remains an open question.
A classical nonconvergence result of Seidman [1] demonstrates the sharpness of this regularity
condition.

We also demonstrate that the amount of training data (which is also related the complexity of
the learned model in regularization by projection) plays the role of a regularization parameter,
hence for noisy training data the size of the training set should be chosen in agreement with
the noise level. This is in accordance with the results in [24, theorem 4.2] on training neural
networks from noisy data, where the number of neurons in the network plays a role similar to
the number of training inputs in our setting.

2. Setting and main assumptions

We consider a linear inverse problem, consisting in solving

Au = y, (2.1)

with a linear bounded forward operator A : U → Y acting between separable Hilbert spaces U
and Y . Different to the standard setting of linear inverse problems (see for instance [25]) we
do not make use of the knowledge of the operator A but only assume knowledge of training
pairs (1.1). This is beneficial if the modeling of the forward operator is rather incomplete, very
uncertain, or the numerical evaluation is costly.

We assume that A is injective and its inverse A−1 is unbounded, hence the problem of solving
(2.1) is ill-posed. Instead of the exact measurement y we are given a noisy measurement yδ ,
satisfying

‖y − yδ‖ � δ. (2.2)

Throughout this paper, the solution of (2.1) with exact data y ∈ R(A) will be denoted by u†.
We refer to elements of U as inputs and to elements of Y as outputs. Accordingly, speaking

of the training pairs (1.1), we will refer to {ui}i=1,...,n as training inputs and to {yi}i=1,...,n as
training outputs.

We make the following assumptions on the training pairs throughout this paper.

Assumption 1 (Independence, uniform boundedness, sequentiality).
Linear independence: For every n ∈ N the inputs {ui}i=1,...,n are linearly independent.
Uniform boundedness: There exist constants cu, Cu > 0 such that cu � ‖ui‖ � Cu for all

i ∈ N. Hence with no loss of generality we will assume that ‖ui‖ = 1 for all i ∈ N.

3



Inverse Problems 36 (2020) 125009 A Aspri et al

Sequentiality: The families of training pairs are nested, i.e. for every n ∈ N{
ui, yi

}
i=1,...,n+1

= {ui, yi}i=1,...,n ∪
{

un+1, yn+1
}
. (2.3)

If the training inputs {ui}i=1,...,n are linearly dependent, we will need to discard part them.
Which ones to discard is an interesting question in itself, and a possible topic for future work.

Definition 1. We denote the spans of the inputs {ui}i=1,...,n and the outputs {yi}i=1,...,n by

Un := span{ui}i=1,...,n and Yn := span{yi}i=1,...,n. (2.4)

Orthogonal projection operators onto Un and Yn are denoted by PUn and PYn , respectively.

Remark 2. From the assumption 1 and the hypotheses made on A we deduce that:

(a) Since the forward operator A is injective, the outputs {yi}i=1,...,n are also linearly
independent.

(b) Since A is a bounded operator and the inputs {ui}i=1,...,n are uniformly bounded, the outputs
{yi}i=1,...,n are also uniformly bounded and ‖yi‖ � ‖A‖, for all i ∈ N.

From assumption 1 and (2.3), it follows that the subspaces Un, Yn are nested, that is

Un ⊂ Un+1, Yn ⊂ Yn+1, for all n.

We also need to make an assumption that the training data are sufficiently rich in the sense
that the collection of all inputs {ui}i=1,...,n is dense in U .

Assumption 2 (Density). We assume that the subspaces spanned by the inputs {ui}i=1,...,n

are dense in U , that is⋃
n∈N

Un = U .

As a consequence of the previous assumptions, we have

Proposition 3. By assumption 2 the subspaces spanned by the training outputs {yi}i=1,...,n

are dense in R(A), i.e.,⋃
n∈N

Yn = R(A).

We carry out our analysis in the setting when the training pairs {ui, yi}i=1,...,n ⊂ U × Y are
infinite-dimensional. The case when these pairs are discretized, i.e. {ui, yi}i=1,...,n ⊂ R

k × R
l

and k, l, n →∞ at certain rates is beyond the scope of this paper.

3. Regularization by projection

Let y ∈ R(A) be the exact, noise-free right-hand side in (2.1) and consider the following
projected problem

APUnu = y. (3.1)

Our goal in this section is to provide an explicit representation formula for the minimum norm
solution of (3.1) in terms of the training pairs (1.1). We first observe that the minimum norm
solution of (3.1) is given by

uU
n = (APUn)†y, (3.2)
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where (APUn)† denotes the Moore–Penrose inverse of APUn (see [26]). The superscript U in
uU

n reflects the fact that the projection in (3.1) takes place in U . The need for this notation will
become clear in section 4, where will use a projection of the original equation (2.1) in the
space Y .

3.1. A reconstruction formula

The following result shows that in the injective case, a simple formula for (APUn)† exists.

Theorem 4. Let PUn and PYn as in definition 1. Then the Moore–Penrose inverse of APUn is
given by

(APUn)† = A−1PYn .

Proof. First we observe that R(A−1PYn) = Un = N (APUn)⊥. To see this, note that for any
z ∈ Y we have

PYnz =
n∑

i=1

λn
i yi

(where the expansion coefficients, in general, change with n) and hence for u = A−1PYnz we
have by definition

u = A−1

(
n∑

i=1

λn
i yi

)
=

n∑
i=1

λn
i ui ∈ Un.

On the other hand, for any u ∈ Un we can also find a representation in the form u = A−1PYn y
for some y ∈ Y . Thus the first identity is shown. For the second identity, let v ∈ N (APUn).
Since A is injective, this is equivalent to v ∈ N (PUn) = U⊥

n and hence N (APUn) = U⊥
n . Since

Un is finite-dimensional and hence closed, this implies the second identity.
Using the obvious identities

PYnAPUn = APUn and PUnA−1PYn = A−1PYn ,

we directly verify the Moore–Penrose equations (see for instance [26]):

• APUnA−1PYnAPUn = APUnA−1APUn = APUn ;
• A−1PYn APUnA−1PYn = A−1PYnAA−1PYn = A−1PYn ;
• A−1PYn APUn = A−1APUn = PUn = I − PU⊥

n
= I − PN (APUn );

• APUnA−1PYn = AA−1PYn = PYn = PR(APUn ).

Since the Moore–Penrose equations uniquely characterize the Moore–Penrose inverse, the
assertion follows. �

Combination of (3.2) and theorem 4 shows that the Moore–Penrose inverse of (3.1) is given
by

uU
n = A−1PYny. (3.3)

Gram–Schmidt orthogonalization in Y . We start by applying the Gram–Schmidt process
to the outputs {yi}i=1,...,n to obtain an orthonormal basis of Yn (if the training data were not
linearly independent, this will be detected by the Gram–Schmidt algorithm and the redundant
data will be dismissed, effectively reducing the size of the training set n). We denote this basis
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by {yi}i=1,...,n. By solving Au = yi for i = 1, . . . , n, we obtain, in general, a non-orthogonal
basis {ui}i=1,...,n of Un. In a matrix form, we can write that

Yn = Y nRn and Un = UnR−1
n , (3.4)

where Yn, Y n and Un are composed of a finite number of infinite-dimensional functions
{yi}i=1,...,n, {yi}i=1,...,n and {ui}i=1,...,n, respectively,

Yn :=
(
y1, . . . , yn

)
, Y n =

(
y1, . . . , yn

)
, Un =

(
u1, . . . , un

)
(3.5)

and Rn is an upper triangular n × n transformation matrix

Rn :=

⎛
⎜⎜⎜⎝

(y1, y1) (y2, y1) . . . (yn, y1)
0 (y2, y2) . . . (yn, y2)

0 0
. . .

...
0 0 . . . (yn, yn)

⎞
⎟⎟⎟⎠ . (3.6)

Taking the noise-free right-hand side y ∈ R(A) in (2.1) and expanding PYny ∈ Yn in the
orthonormal basis {yi}i=1,...,n, we get

PYny =
n∑

i=1

(y, yi)yi,

hence using theorem 4 we can write (3.2) as follows

uU
n = A−1PYny =

n∑
i=1

(y, yi)ui, (3.7)

where {ui}i=1,...,n are the transformed inputs satisfying Aui = yi, i = 1, . . . , n.
The transformed inputs can be calculated as follows:

Remark 5. It can be easily verified that the transformed inputs {ui}i=1,...,n satisfy

un =
un −

∑n−1
i=1 (yn, yi)ui

‖yn − PYn−1yn‖ .

Hence,

‖un‖ =
‖un −

∑n−1
i=1 (yn, yi)ui‖

‖yn − PYn−1yn‖ � ‖un − PUn−1un‖
‖yn − PYn−1yn‖ . (3.8)

The next remark considers a very particular set of training pairs, namely the singular values
of a compact operator. With such peculiar training data regularization by projection becomes
a regularization method, as the following remark shows:

Remark 6. Let A be compact with singular value decomposition {σi, xi, zi}i∈N, and assume
that the training pairs are given by {(ui := xi, yi = σizi = Axi)}i=1,...,n (see for instance
[18]). Consequently, {yi}i=1,...,n = {zi}i∈N is an orthonormal system and accordingly we get

{ui}i=1,...,n =
{

xi

σi

}
. Then (3.7) becomes

uU
n =

n∑
i=1

1
σi

(y, zi)xi =

n∑
i=1

1
σi

(Au†, zi)xi =

n∑
i=1

(u†, xi)xi,

6
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i.e. uU
n is the projection of the exact solution u† onto the span of the first n singular vectors

{xi}i=1,...,n.
In fact this method is a regularization method (see [18]).

3.2. Behavior in the limit of infinite data n →∞

The nonconvergence example by Seidman [1] demonstrates that, in general, the minimum
norm solution uU

n of (3.1) does not converge to the exact solution u† as n →∞, i.e. A−1PYn is
not a regularization of A−1 (see (3.3)). ‘In general’ in the above sentence refers to particular
cases such as when the training pairs are not singular functions, in which case the method
becomes truncated SVD, which is indeed a regularization method as we have outlined in
remark 6.

Below we analyze the convergence of the Moore–Penrose inverse uU
n of (3.1) as represented

in (3.7) in a general setting, in particular, when the training pairs are not spectral pairs as
discussed in remark 6. Letting n →∞ and applying the Gram–Schmidt process to the sequence
{yi}i∈N, we obtain an orthonormal basis {yi}i∈N ofR(A) and a corresponding sequence {ui}i∈N
such that Aui = yi.

An essential algorithmic step for implementing (3.7) is the orthonormalization of the set
{yi}, which we perform with the Gram–Schmidt algorithm. Therefore we analyze first the
stability of this algorithm, which depends on the diagonal elements (yi, yi) of the matrices Rn,
i = 1, . . . , n. It is clear that

|(yi, yi)| = ‖yi − PYi−1yi‖ ∀ i ∈ N. (3.9)

If A is compact then the part of yn that lies outside the span of the previous points
{yi}i=1,...,n−1 will become arbitrary small as n →∞, which shows the instability of the
Gram–Schmidt algorithm:

Proposition 7. If A is compact then

lim inf
i→∞

‖yi − PYi−1 yi‖ = 0.

Proof. Since by assumption 1 all training images {ui}i∈N are uniformly bounded and A is
compact, the sequence {yi}i∈N has a convergent subsequence (that we do not relabel), which,
in particular, satisfies

‖yi − yi−1‖ → 0 as i →∞.

Then we obtain the following estimate

‖yi − PYi−1 yi‖ = min
y∈Yi−1

‖yi − y‖ � ‖yi − yi−1‖ → 0, (3.10)

which proves the assertion. �

If the inputs {ui}i=1,...,n are such that

‖un − PUn−1un‖ � C ∀ n ∈ N,

then clearly ‖ui‖ →∞ as n →∞ by proposition 7 and remark 5. Hence, the Gram–Schmidt
process becomes unstable as n →∞ and the transformed inputs {ui}i=1,...,n may become

7
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unbounded, as we see from (3.9) and (3.6). Since {ui}i=1,...,n are linearly independent, we can
expand the projection PUnu† of the exact solution of (2.1) in the basis of Un as follows

PUnu† =

n∑
i=1

αn
i ui, (3.11)

where the expansion coefficients might be varying with respect to n, i.e., αn
i �= αm

i for n �= m,
since {ui}i=1,...,n are not orthogonal.

The next result shows how far the coefficients of the expansion of the Moore–Penrose
approximation uU

n in (3.7), i.e., (y, yi), deviate from the coefficients αn
i in (3.11) of the

best-approximating solution PUnu† of u†.

Proposition 8. Let PUnu† be represented as in (3.11), then the following identity holds

n∑
i=1

((y, yi) − αn
i )2 = ‖y − APUnu†‖2 − ‖y − PYnAu†‖2.

Proof. Consider the residual

u† − PUnu† = u† −
n∑

i=1

αn
i ui.

Applying A to both sides and expanding y = Au† in the orthonormal basis {yi}i∈N, we get

A(u† − PUnu†) =
∞∑

i=1

(y, yi)yi −
n∑

i=1

αn
i yi

=

n∑
i=1

((y, yi) − αn
i )yi +

∞∑
i=n+1

(y, yi)yi

and hence

‖A(u† − PUnu†)‖2 =

n∑
i=1

((y, yi) − αn
i )2 + ‖y − PYny‖2.

Rearranging terms, we get the assertion. �
The first term on the right-hand side becomes 0 if APUn = PYnA, which is for instance the

case if the training pairs consist of the singular value decomposition (see remark 6). Therefore,
the better the subspaces Un and Yn agree with the spaces spanned by the spectral functions of
A, the smaller the discrepancy between (y, yi) and αn

i for i, n ∈ N will be.

3.3. Convergence analysis

In the following we analyze weak and strong convergence of the Moore–Penrose approxima-
tion uU

n of (3.1), also in the case of noisy data.

3.3.1. Weak convergence. The first result gives us weak convergence of uU
n for n →∞ in the

case of noise free data y (see (2.2)).

Theorem 9. Let y ∈ R(A) be the exact right-hand side in (2.1) and {ui, yi}i=1,...,n the
training pairs defined in (1.1). Let λn

i be the expansion coefficients of PYny ∈ Yn in the

8
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non-orthogonal basis of training outputs {yi}i=1,...,n

PYny =

n∑
i=1

λn
i yi.

Then uU
n as defined in (3.7) is bounded uniformly in n and converges weakly to u†

uU
n ⇀ u† as n →∞

if and only if there exists a constant Cλ < ∞ such that∥∥∥∥∥
n∑

i=1

λn
i ui

∥∥∥∥∥ � Cλ ∀ n ∈ N. (3.12)

Proof. We rewrite (3.7) as follows

uU
n = A−1PYny = A−1

n∑
i=1

λn
i yi =

n∑
i=1

λn
i ui,

hence uU
n is uniformly bounded if and only if (3.12) holds. By [18, theorem 3.20], uU

n ⇀ u† if
and only if it is uniformly bounded. �

Below we provide a priori conditions on the training data (1.1) and the exact solution u†

that ensure boundedness of (3.7). Moreover, we discuss them in the context of Seidman’s
nonconvergence example [1] for convergence of regularization by projection.

3.3.2. Gram–Schmidt orthogonalization in U . We will use Gram–Schmidt orthogonalization
again, this time on the inputs {ui}i=1,...,n. We denote the resulting orthonormal basis of Un by
{ui}i=1,...,n. Solving for {yi}i=1,...,n such that Aui = yi we obtain, in general, a non-orthogonal
basis {yi}i=1,...,n of Yn.

Letting n →∞ and applying the Gram–Schmidt process to the sequence {ui}i∈N we obtain
an orthonormal basis {ui}i∈N of U and a corresponding sequence {yi}i∈N such that Aui = yi.
Expanding the exact solution in the basis {ui}i∈N, we get

u† =

∞∑
i=1

(u†, ui)ui (3.13)

and hence for the exact data y = Au† we get

y =
∞∑

i=1

(u†, ui)yi. (3.14)

To check that the latter series is convergent, we note that the partial sums

n∑
i=1

(u†, ui)yi = A
n∑

i=1

(u†, ui)ui

are bounded since the operator A is bounded.
Let us recall that we consider two orthonormalization procedures in this paper, which can

be easily confused:

9
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(a) For {ui, yi}i=1,...,n from section 3.1 the outputs {yi}i=1,...,n are orthonormal and the inputs
{ui}i=1,...,n are chosen to match these outputs, while

(b) for {ui, yi}i=1,...,n the inputs {ui}i=1,...,n are orthonormal and the outputs {yi}i=1,...,n are
chosen to match these inputs.

Thus a bar at the bottom stands for orthonormalization in the range of A and the bar above
stands for an orthonormalization in the domain of A.

Below we will study the effect of some regularity assumptions of the solution u† on
convergence of uU

n for n →∞.

Assumption 3. Coefficients of the expansion (3.13) are in �1, i.e.

∞∑
i=1

|(u†, ui)| < ∞.

Assumption 3 is a data-driven regularity assumption on the exact solution u†. We show in
section 3.3.3 that in Seidman’s nonconvergence example assumption 3 is implied by a source
condition. The question whether there is more general relationship between assumption 3 and
source conditions remains open.

We emphasize that to prove even weak convergence of regularization by projection (3.7),
additional regularity conditions are unavoidable, since, as demonstrated by Seidman’s noncon-
vergence example, weak convergence fails in general.

Assumption 4. For every n ∈ N and any i � n + 1 consider the following expansion of
PYnyi ∈ Yn

PYnyi =

n∑
j=1

βi,n
j y j. (3.15)

We assume that for every n ∈ N

n∑
j=1

(βi,n
j )2 � C, for every i � n + 1, (3.16)

where C > 0 is a constant independent of i and n.

We extend the definition of βi,n
j for i � n.

Definition 10. For every i � n, yi ∈ Yn we define βi,n
j = δi j, where δi j is the Kronecker

symbol.

From this definition it follows that

n∑
j=1

(βi,n
j )2 = 1, for every i � n. (3.17)

Theorem 11. Let assumptions 3 and 4 be satisfied. Then uU
n as defined in (3.7) is uniformly

bounded with respect to n.

Proof. Applying PYn to (3.14), we get

PYny =

∞∑
i=1

(u†, ui)PYnyi

10
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and hence, by applying A−1 to both sides, we get that

uU
n = A−1PYny =

∞∑
i=1

(u†, ui)A−1PYnyi.

Using Hölder’s inequality, we estimate

‖uU
n ‖ �

∞∑
i=1

(
|(u†, ui)|

)
sup

i=1,...,∞
‖A−1PYnyi‖.

The sum
∑∞

i=1 |(u†, ui)| is bounded by assumption 3. We further observe that

A−1PYnyi = A−1
n∑

j=1

βi,n
j y j =

n∑
j=1

βi,n
j u j

and, since {ui}i=1,...,n are orthonormal, we get that

‖A−1PYnyi‖2 =
n∑

j=1

(βi,n
j )2,

which is bounded uniformly in n and i by assumption 4. Therefore, supi=1,...,∞‖A−1PYnyi‖ is
bounded uniformly in n and

‖uU
n ‖ � C < ∞ uniformly in n.

�

3.3.3. Seidman’s nonconvergence example. Next we discuss Seidman’s example from [1]
on nonconvergence of regularization by projection.

Example 12 (Seidman [1]). Let {ei}i∈N be any orthonormal basis in U and A : U → U be
defined as follows

A :
∞∑

i=1

ξiei →
∞∑

i=1

(aiξi + biξ1)ei

with

bi =

{
0, if i = 1,

i−1, if i � 2,
ai =

{
i−1, if i is odd,

i−
5
2 , if i is even.

(3.18)

This operator is injective and compact (for details see also [18]). In our notation, {ui}i∈N =
{ei}i∈N (since the inputs are already orthonormalized) and

yi = Aui =

⎧⎪⎪⎨
⎪⎪⎩

∞∑
j=1

j−1e j, i = 1,

aie
i, i � 2.

Or in other words our training pairs are (ei = ui, yi)i∈N.

11
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For every n � 1 and every fixed i � n + 1, we expand PYnyi ∈ Yn as follows

PYnyi =

n∑
k=1

γkyk = γ1

∞∑
j=1

j−1e j +

n∑
k=2

γkakek. (3.19)

For all k = 2, . . . , n and i � n + 1 we therefore have that

(PYnyi, ek) = (yi, PYnek) = (yi, ek) = ai(ei, ek) = 0,

hence, taking a scalar product with ek in (3.19), we conclude that γ1k−1 + γkak = 0 and

γk = −γ1
k−1

ak
. (3.20)

Now, to compute γ1, we note that it minimizes the following expression for i � n + 1

‖PYnyi − yi‖2 =

∥∥∥∥∥∥γ1

∞∑
j=1

j−1e j +
n∑

k=2

γkakek − aiei

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥γ1e1 +

n∑
k=2

(
γ1k−1 + γkak

)
ek + γ1

∞∑
j=n+1

j−1e j − aie
i

∥∥∥∥∥∥
2

=︸︷︷︸
(3.20)

∥∥∥∥∥∥∥∥γ1e1 + γ1

∞∑
j=n+1
j�=i

j−1e j +
(
γ1i−1 − ai

)
ei

∥∥∥∥∥∥∥∥
2

= γ2
1 + γ2

1

∞∑
j=n+1
j�=i

j−2 +
(
γ1i−1 − ai

)2

= γ2
1

⎛
⎝1 +

∞∑
j=n+1

j−2

⎞
⎠− 2γ1i−1ai + a2

i .

The minimizer of this quadratic expression with respect to γ1 is given by

γ1 =
i−1ai

1 +
∑∞

j=n+1 j−2
:=Cni−1ai, (3.21)

where 0 < 1
1+π2/6

� Cn := 1

1+
∑∞

j=n+1 j−2
� 1 is uniformly bounded from below and above with

respect to n.
Hence we get from (3.20) that

γk = −γ1
k−1

ak
= −Cni−1ai

k−1

ak
. (3.22)

Since 0 < ai � i−1 for all i ∈ N and k−1

ak
� k3/2 for all k ∈ N (see (3.18)), from (3.21) and

(3.22) we find

12
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|γ1| � Cni−2 � Cni−
1
2 ,

|γk| � Cni−2k
3
2 � Cni−

1
2 , for k = 2, . . . , n.

Therefore,

n∑
k=1

γ2
k � nC2

ni−1 � C2
n � 1 for all i � n + 1

and assumption 4 is satisfied.
The nonconvergence example in [1] is obtained with the following exact solution

u† =
∞∑

i=1

i−1ei.

Clearly, the expansion coefficients are in �2, hence u† is well defined. However, assumption 3
fails since

∞∑
i=1

i−1 = ∞.

Therefore, the key to the nonconvergence example is the slow decay of the expansion coef-
ficients in (3.13) and hence a violation of assumption 3. This assumption is indeed satisfied in
our numerical experiments with natural images (photographs of people) in section 6.

Numerically validating assumption 4 can be complicated due to numerical errors. Our
numerical experiments in section 6 do not give a definitive answer. However, as the above
example demonstrates, this assumption can be satisfied for data generated by a compact
operator.

Important for the analysis of regularization methods are source conditions see [25] and some
references such as [27–29], indeed the l1-condition from assumption 3 is related to the source
condition as the following remark shows.

Remark 13. In Seidman’s example, the l1-condition from assumption 3 follows from a
source condition

u† ∈ R(A∗). (3.23)

Indeed, suppose that u = A∗v for some v ∈ U . We get

∞∑
i=1

|(u, ei)| =
∞∑

i=1

|(A∗v, ei)| =
∞∑

i=1

|(v, Aei)| = |(v, Ae1)|+
∞∑

i=2

|(v, aiei)|

= |(v, y1)|+
∞∑

i=2

ai|(v, ei)| � ‖v‖‖y1‖+ ‖v‖

√√√√ ∞∑
i=2

a2
i .

Since ai � i−1 for all i ∈ N, we get that

∞∑
i=1

|(u, ei)| � ‖v‖‖y1‖+ ‖v‖

√√√√ ∞∑
i=2

i−2 < ∞.

13
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Therefore, for Seidman’s nonconvergence example u† violates this source condition, and in
particular this means that for obtaining a nonconvergent sequence of regularized solutions uU

n ,
roughness of the solution u† (meaning not satisfying a source condition) is required.

Concluding our discussion of Seidman’s nonconvergence example, we recall that the non-
convergence of the regularized solution uU

n would also not hold if we project onto eigenspaces
of the operator A (cf. remark 6). This is independent of a smoothness assumption on u†.

3.3.4. Strong convergence. Thanks to the assumptions on the operator A and training pairs,
expanding the exact data y ∈ R(A) of (2.1) in the basis of the orthonormalized training outputs
{yi}i=1,...,n and formally applying A−1, we obtain the following formal expansion

u† =

∞∑
i=1

(y, yi)ui, (3.24)

where {ui}i=1,...,n are the transformed inputs satisfying Aui = yi, i = 1, . . . , n (cf. section 3.1).
The residual u† − uU

n is given by

u† − uU
n =

∞∑
i=n+1

(y, yi)ui.

A sufficient condition for convergence of this residual is absolute convergence of the series
(3.24):

∞∑
i=1

|(y, yi)|‖ui‖ < ∞. (3.25)

By remark 5 we have a lower bound for ‖ui‖

‖ui‖ =
‖A−1(yi − PYi−1 yi)‖

‖yi − PYi−1 yi‖ � ‖ui − PUi−1ui‖
‖yi − PYi−1yi‖ , ∀ i � 2. (3.26)

Hence it is clear that for this series to converge, the coefficients (y, yi) would have to decay
fast. To understand how fast they need to decay, we need an upper bound on the norm of ui.
The following result shows that under assumption 4 the estimate (3.26) is actually sharp up to
a constant factor.

Proposition 14. Let assumption 4 be satisfied. Then the following estimate holds

‖ui‖ �
√

C + 1
‖ui − PUi−1 ui‖
‖yi − PYi−1 yi‖ , ∀ i � 2,

where C is the constant from assumption 4.

Proof. First we observe that for all i � 2 the following identity holds

yi − PYi−1 yi = (yi − PYi−1yi)‖ui − PUi−1 ui‖, (3.27)

where {ui, yi}i=1,...,n are the training pairs from (1.1) and {ui, yi}i=1,...,n are the transformed
training pairs such that {ui}i=1,...,n are orthonormal and {yi}i=1,...,n satisfy Aui = yi (cf.
section 3.3.2). Indeed, the Gram–Schmidt process yields that for all i � 2

ui =
ui − PUi−1ui

‖ui − PUi−1ui‖ and yi =
1

‖ui − PUi−1ui‖A(ui − PUi−1ui).

14
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Hence, we get

(yi − PYi−1 yi)‖ui − PUi−1ui‖ = A(ui − PUi−1ui) − PYi−1 A(ui − PUi−1ui)

= yi − PYi−1 yi − APUi−1ui + PYi−1 APUi−1ui

= yi − PYi−1 yi − APUi−1ui + APUi−1ui

= yi − PYi−1 yi,

where we used the obvious identity PYi−1 APUi−1 = APUi−1 . Now, using the expansion in
assumption 4 with n = i − 1, we get

PYi−1 yi =

i−1∑
j=1

βi,i−1
j y j,

and hence

A−1(yi − PYi−1 yi) = ui −
i−1∑
j=1

βi,i−1
j u j.

Since {ui}i=1,...,n are orthonormal, we get

‖A−1(yi − PYi−1yi)‖2 = 1 +

i−1∑
j=1

(βi,i−1
j )2 � C + 1,

where the upper bound follows from assumption 4. Using (3.27), we get

‖A−1(yi − PYi−1yi)‖ = ‖A−1(yi − PYi−1yi)‖‖ui − PUi−1ui‖

�
√

C + 1‖ui − PUi−1ui‖.

Finally, we obtain the desired estimate

‖ui‖ =
‖A−1(yi − PYi−1 yi)‖

‖yi − PYi−1 yi‖ �
√

C + 1
‖ui − PUi−1ui‖
‖yi − PYi−1 yi‖ .

�

Hence, the sufficient condition (3.25) together with (3.9) can be written as follows

∞∑
i=1

|(y, yi)| ‖ui − PUi−1ui‖
‖yi − PYi−1 yi‖ =

∞∑
i=1

|(y, yi)|
|(yi, yi)| |(u

i, ui)| < ∞, (3.28)

where {yi}i=1,...,n are the orthonormalized outputs (cf. section 3.1) and {ui}i=1,...,n are the
orthonormalized inputs (cf. section 3.3.2). Convergence of this series can be ensured either
by sufficiently fast decay of the coefficients (y, yi) of the expansion of the exact y ∈ R(A)
in the orthonormal basis {yi}i∈N or by sufficiently fast decay of the scalar products (ui, ui).
Note that in (ui, ui), the index i is present at both positions in the scalar product and (ui, ui)
are not expansion coefficients of any particular element of U in the basis {ui}i∈N. Rather,
|(ui, ui)| = ‖ui − PUi−1 ui‖ is the part of the training input ui that lies outside the span of the
previous training vectors {ui}i=1,...,n−1.

15
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For real data where the training inputs {ui}i=1,...,n and the exact solution u† are similar, it

is likely that |(y, yi)| and |(yi, yi)| will be of similar order, hence
|(y,yi)|
|(yi ,yi)| is unlikely to decay

fast. Decay of the scalar products (ui, ui), however, can be controlled by choosing sufficiently
similar training inputs {ui}i=1,...,n. Hence, we obtain the following sufficient condition.

Theorem 15. Let y ∈ R(A) be the exact right-hand side in (2.1). Suppose that

(a) the expansion coefficients (y, yi) of y ∈ R(A) in the orthonormal basis {yi}i∈N satisfy

sup
i=1,...,∞

|(y, yi)|
|(yi, yi)| � C < ∞, (3.29)

where C is a constant independent of n and {yi}i∈N are the orthonormalized outputs,
(b) the training inputs {ui}i∈N satisfy

∞∑
i=1

|(ui, ui)| < ∞, (3.30)

where {ui}i∈N are the orthonormalized inputs,
(c) Assumption 4 is satisfied.

Then the solution obtained with regularization by projection (3.7) converges strongly to the
exact solution of (2.1), i.e.

uU
n → u†.

Proof. Using Hölder’s inequity in (3.28), we get that

∞∑
i=1

|(y, yi)|
|(yi, yi)| |(u

i, ui)| �
(

sup
i=1,...,∞

|(y, yi)|
|(yi, yi)|

) ∞∑
i=1

|(ui, ui)| < ∞.

This implies (3.25), which is sufficient for strong convergence of the series (3.7). �

Remark 16. We notice the similarity between the condition (3.30) and assumption 3. Both
require �1 convergence of certain series; assumption 3 requires it for (u†, ui), where u† is the
exact solution of (2.1), whilst (3.30) requires �1 convergence of (ui, ui). If the exact solution u†

and the training inputs {ui}i∈N are similar, both conditions are likely to be satisfied or violated
simultaneously. Both conditions are satisfied in our numerical experiments with natural images
(photographs) in section 6. Condition (3.30) seems also to be satisfied in these experiments.

3.4. Noisy data

Even if conditions of theorem 15 are satisfied and we have convergence for clean data y ∈
R(A), for noisy data yδ /∈ R(A) convergence may fail. Noise in the data yδ is understood as a
deterministic perturbation Δ /∈ R(A) such that ‖Δ‖ � δ and yδ = y +Δ. Define

uU
n,δ :=A−1PYnyδ. (3.31)

Since PYnyδ ∈ R(A) for all n, this is well defined. Now we get that

u† − uU
n,δ = A−1y − A−1PYn(y +Δ) = A−1(I − PYn)Au† − A−1PYnΔ
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and therefore

‖u† − uU
n,δ‖ � ‖A−1(I − PYn)Au†‖+ ‖A−1PYnΔ‖. (3.32)

We observe the typical semi-convergence behavior. While the first term converges to zero as
n →∞ under assumptions of theorem 11, the second term clearly explodes. The amount of
training pairs n therefore plays the role of a regularization parameter that balances the influence
of the two error terms in (3.32).

Theorem 17. Let n = n(δ) be such that n(δ) →∞ as δ → 0 and

δ
√

n sup
i=1,...,n

1
|(yi, yi)| → 0 as δ → 0.

Then (3.31) together with the function n(δ) (which we refer to as an a priori parameter choice
rule [18]) defines a convergent regularization, i.e.

uU
n(δ),δ → u† as δ → 0.

Proof. All we need to do is estimate the growth of ‖A−1PYn‖ as n →∞. For an arbitrary
z ∈ Y with ‖z‖ � 1 we expand PYnz ∈ Yn in the orthonormal basis {yi}i=1,...,n of Yn (see
section 3.1) and get

‖A−1PYnz‖ =

∥∥∥∥∥A−1
n∑

i=1

(z, yi)yi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(z, yi)ui

∥∥∥∥∥
�

√√√√ n∑
i=1

(z, yi)2

√√√√ n∑
i=1

‖ui‖2 � ‖Un‖2,

where Un is composed of the functions {ui}i=1,...,n as defined in (3.5). Using (3.4), we further
estimate

‖Un‖2 = ‖UnR−1
n ‖2 � ‖Un‖2‖R−1

n ‖2,

where Un is composed of the functions {ui}i=1,...,n as defined in (3.5) and Rn is the upper
triangular n × n transformation matrix defined in (3.6). Now, since Rn is upper triangular, its
eigenvalues are given by its diagonal entries and ‖R−1

n ‖2 is the inverse of the smallest one, i.e.

‖R−1
n ‖2 = sup

i=1,...,n

1
|(yi, yi)| .

We further note that

‖Un‖2 =

√√√√ n∑
i=1

‖ui‖2 =
√

n

by assumption 1 and finally we obtain

‖A−1PYnz‖ �
√

n sup
i=1,...,n

1
|(yi, yi)| .

The rest follows from (3.32). �
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4. Dual least squares

Although projecting the equation (2.1) in U as in (3.1) does not yield a convergent solution in
general, it is known that projecting (2.1) in Y yields convergent solutions. This method is also
referred to as dual least squares [18].

The dual least squares method consists of finding the minimum norm solution (i.e. least
squares solution with minimal norm) of the following problem

PYnAu = PYny, (4.1)

where PYn is the orthogonal projector onto the span of the outputs {yi}i=1,...,n and y ∈ R(A)
is the exact right-hand side in (2.1). We denote the minimum norm solution of (4.1) by uY

n ,
where the superscript Y emphasizes the fact that the projection in (4.1) takes place in Y (cf.
section 3).

The following result shows that uY
n converges strongly to the exact solution u† as n →∞.

Theorem 18 ([18, theorem 3.24]). Let y ∈ R(A) be the exact data in (2.1). Then the
minimum norm solution of (4.1) is given by

uY
n = PA∗Yn u†, (4.2)

where PA∗Yn is the orthogonal projector onto A∗Yn. Consequently,

uY
n → u† as n →∞.

Hence, taking projections in Y as in (4.1) seems a good alternative to projecting in the input
space U as in (3.1). However, we will demonstrate that one cannot solve (4.1) using training
pairs (1.1). Instead, one requires training data for the adjoint A∗ of the form

{vi, yi}i=1,...,n such that vi = A∗yi. (4.3)

It is not clear whether this kind of training data can be obtained in practice, hence the relevance
of the dual least squares method in the data driven setting is not clear.

A reconstruction formula. The following result gives a simple characterization of the
Moore–Penrose inverse of PYn A, similarly to theorem 4, and highlights a connection between
minimum norm solutions of projected problems (3.1) and (4.1).

Theorem 19. Let A have a dense range, PYn as in definition 1 and PA∗Yn as defined above.
Then the Moore–Penrose inverse of PYnA is given by

(PYnA)† = PA∗Yn A−1.

Hence, the minimum norm solution uY
n of (4.1) is given by

uY
n = PA∗Yn A−1PYny = PA∗Yn uU

n , (4.4)

where uU
n is the minimum norm solution of (3.1) as defined in (3.7).

Proof. First we observe that

(PYnA)† = ((A∗PYn )∗)† = ((A∗PYn)†)∗.

Since R(A) is dense in Y , the adjoint A∗ is injective, hence we can proceed similarly to
theorem 4 and obtain

(A∗PYn)† = (A∗)†PA∗Yn = (A†)∗PA∗Yn = (A−1)∗PA∗Yn ,
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since A is injective. Taking the adjoint, we get that

(PYnA)† = ((A−1)∗PA∗Yn )∗ = PA∗Yn A−1.

The formula (4.4) follows from this expression. �

Remark 20. Comparing (4.2) and (4.4), we notice that

PA∗YnuU
n = PA∗Ynu†,

i.e. uU
n and u† differ only on the orthogonal complement of A∗Yn.

Since the subspace A∗Yn is given by

A∗Yn = span{A∗yi}i=1,...,n,

to compute the projection PA∗Yn one needs to know what A∗yi are. Hence, training pairs of the
form (4.3) are required, i.e. one needs training data for the adjoint A∗.

Using the orthonormal basis {yi}i=1,...,n of Yn, we can write the projected equation (4.1) as
follows

n∑
i=1

(Au, yi)yi =
n∑

i=1

(y, yi)yi

and hence

(y, yi) = (Au, yi) = (u, A∗yi) = (u, v i), i = 1, . . . , n,

with v i :=A∗yi, i = 1, . . . , n. Hence, uY
n solves the following problem

min
u∈U

‖u‖2 s.t. (u, v i) = (y, yi), for i = 1, . . . , n, (4.5)

which does not require evaluating A and can be solved using only the training pairs for the
adjoint A∗ (4.3).

Noisy data. To complete the presentation of the dual least squares method, we consider
reconstructions from noisy data yδ /∈ R(A) such that ‖y − yδ‖ � δ. In this case the size of
the training set n also plays the role of the regularization parameter, as the following result
demonstrates.

Theorem 21 ([18, theorem 3.26]). Let y ∈ R(A) and yδ ∈ Y s.t. ‖y − yδ‖ � δ. Let μn be
the smallest singular value of PYnA. If n = n(δ) is chosen such that n(δ) →∞ and δ

μn(δ)
→ 0

as n →∞ then

uY
n,δ := (Qn(δ)A)†Qn(δ)y

δ → u† as δ → 0. (4.6)

Non-zero singular values of PYnA coincide with those of (PYnA)∗ = A∗PYn and can be
computed using the Gram matrix

(A∗yi, A∗y j)i, j=1,...,n = (v i, v j)i, j=1,...,n,

which is available from (4.3), and a parameter choice rule similar to that in theorem 17 can be
obtained.
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5. Variational regularization

In this section we turn back to the projected problem (3.1) using projections in U . If assump-
tions of theorem 9 (or theorem 11) are not satisfied and the minimum norm solution of (3.1)
may become unbounded as n →∞, explicit regularization can be used to ensure boundedness
and convergence. A straightforward way to approximate a minimum norm solution of (3.1) is
Tikhonov regularization

min
u∈U

1
2
‖APUnu − y‖2 + α‖u‖2, (5.1)

where y ∈ R(A) is the exact right-hand side in (2.1), PUn is the projector onto the span of
the inputs {ui}i=1,...,n and α ∈ R+ is a regularization parameter. Clearly, by setting α = 0 we
obtain a least-squares solution of (3.1).

More generally, the term ‖u‖2 in (5.1) can be replaced with an arbitrary regularizer
J : U → R ∪ {+∞} to obtain the following variational regularization problem

min
u∈U

1
2
‖APUnu − y‖2 + αJ (u). (5.2)

Finally replacing the exact data y with a noisy measurement yδ such that ‖y − yδ‖ � δ, we
obtain

min
u∈U

1
2
‖APUnu − yδ‖2 + αJ (u). (5.3)

The restricted operator APUn in (5.3) can be computed without numerical access to A.
Indeed, for any u ∈ U , we have

PUnu =
n∑

i=1

(u, ui)ui and APUnu =
n∑

i=1

(u, ui)yi,

where {ui}i=1,...,n are the orthonormalized inputs and {yi}i=1,...,n the accordingly transformed
outputs, cf. section 3.3.2. Therefore, solving (5.3) does not require direct evaluation of A and
can be done just using the training pairs (1.1). Once the Gram–Schmidt process is complete,
evaluating the operator APUn becomes very fast; the main computational burden lies on the
orthogonalization process, which, however, is done ‘offline’, i.e. before running any optimiza-
tion algorithms on (5.3), and only once. Therefore, Gram–Schmidt orthogonalization can be
regarded as ‘training’. We note also that adding more training pairs to (1.1) does not require
retraining, i.e. running the Gram–Schmidt process on the whole training set. Only the new
portion of training data needs to be made orthogonal to the old data.

Clearly, the operator APUn approximates A pointwise as n →∞; if A is compact then we
also get approximation in the operator norm [30]. Hence, (5.3) can be regarded as an inverse
problem with an inexact forward operator and known results on inverse problems with operator
errors can be used (e.g. [31, 32]).

5.1. Convergence analysis

The goal of this section is to show existence of minimizers in (5.3) and obtain convergence
rates under an appropriate parameter choice rule α = α(n, δ). There are no new results here as
standard results are applicable, the main point being that by formulating (5.3) we are able to
transfer these standard, model-based results into the purely data driven, model-free setting.
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We emphasize that the size of the training set in this setting n controls the approximation
quality of the forward operator and affects the choice of the regularization parameter α along
with the noise level δ. We formulate the parameter choice rules in terms of the residual ‖(I −
PUn)u†‖ of the expansion of the exact solution in the basis {ui}i∈N. A more common way of
deriving parameter choice rules (e.g., [31, 32]) is in terms of the approximation error in the
operator norm hn such that ‖A − APUn‖ � hn, however, this is a global estimate that depends
on how well the subspaces Un agree with the operator A (the ideal choice would be, obviously,
the eigenspaces of A corresponding to the n largest eigenvalues). The residual ‖(I − PUn)u†‖
is a local quantity that shows how well the subspaces Un approximate the particular solution
u† that we are looking for. Hence, even if the global approximation error ‖A − APUn‖ is large,
convergence can still be fast if the training data (1.1) are chosen well for a particular solution
u†. In some sense, the choice of the training inputs {ui}i=1,...,n in (1.1) is a way of using a priori
information about the solution u† to solve the inverse problem (2.1).

Below we summarize the main assumptions and recall the required existence and conver-
gence results.

Assumption 5. The regularization functional J : U → R+ ∪ {+∞} is proper, convex and
lower-semicontinuous.

Assumption 6. For every M,α > 0 and every n ∈ N, the sets {u ∈ U : ‖APUnu − yδ‖2 +
αJ(u) � M} are weakly sequentially compact.

Remark 22. If J is the total variation (TV), assumptions 5 and 6 are satisfied if APUn :
L2 → L2 does not annihilate constant functions, see [33].

We are now ready to state a-priori bounds for minimizers of (5.3).

Theorem 23. Suppose that assumptions 5 and 6 are satisfied and the regularization
parameter α = α(δ, n) is chosen such that

α→ 0 and
(δ + ‖(I − PUn)u†‖)2

α
→ 0 as δ → 0 and n →∞,

where u† is the exact solution of (2.1). Then (5.3) admits a minimizer and for every minimizer
un,δ
J there exists a constant C > 0 independent of n and δ such that

J (un,δ
J ) � C and ‖un,δ

J ‖ � C.

Proof. The proof is similar to [31, 32]. However, note that in [31, 32], the regularization
solution of the functional u ∈ U → ‖Au − yδ‖2 + αJ(u) is approximated by the minimizer
of the same functional over Un, while we solve the minimization on the infinite dimensional
space. �

In modern variational regularization, (generalized) Bregman distances are typically used to
study convergence of approximate solutions [34]. We briefly recall the definition.

Definition 24. For a proper convex functionalJ the generalized Bregman distance between
u, v ∈ U corresponding to the subgradient p ∈ ∂J (v) is defined as follows

Dp
J (u, v) := J(u) − J(v) − (p, u − v).

Here ∂J (v) denotes the subdifferential of J at v ∈ U .
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To obtain convergence rates, an additional assumption on the regularity of the exact solution,
called the source condition, needs to be made [18]. Several variants of the source condition exist
(e.g., [18, 19, 34]); we use the following one [35].

Assumption 7 (Source condition). There exists an element q ∈ Y such that

A∗q ∈ ∂J (u†).

Theorem 25. Suppose that assumptions 5, 6 and 7 are satisfied. Then the following estimate
for the Bregman distance between un,δ

J and u† corresponding to the subgradient A∗q from
assumption 7 holds

DA∗q
J (un,δ

J , u†) � 1
2α

(
δ + ‖A‖‖(I − PUn)u†‖

)2
+

α

2
‖q‖2

+ (δ‖q‖+ C‖(I − PUn)A∗q‖)

for some constant C > 0.
If the regularization parameter α = α(δ, n) is chosen as in theorem 23 then

DA∗q
J (un,δ

J , u†) → 0 as δ → 0 and n →∞.

For the particular choice

α ∼ (δ + max{‖(I − PUn)u†‖, ‖(I − PUn)A∗q‖}) (5.4)

we obtain the following estimate

DA∗q
J (un,δ

J , u†) ∼ α.

Proof. The proof is similar to [31, 32], with the same caveat as in theorem 23. �

The fact that the speed of convergencedepends on how well the subspacesUn spanned by the
training inputs {ui}i=1,...,n approximate the solution u† is not surprising. However, from theorem
25 we conclude that it is equally important for the convergence rate that the subgradient A∗q
from the source condition is well approximated by the subspaces Un.

Remark 26. The results of this section are applicable in a more general setting than the pre-
vious parts of the paper. In particular, the forward operator A does not have to be injective. In
this case, with some minor (and standard) modifications of the assumptions, we would get con-
vergence of minimizers of (5.3) to a solution of (2.1) with the minimal value of the regularizer
J (a J -minimizing solution).

6. Numerical experiments

In this section we present some numerical experiments with the data driven regularization by
projection method based on formula (3.7), the dual least squares method (4.4) and data driven
variational regularization (5.3). We explain the data preparation and describe the used data sets
first—in particular, how we derive the training pairs for the Radon operator.
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Figure 1. Samples from the ‘Faces’ dataset.

6.1. Setting

6.1.1. Dataset. We use images from ‘The 10k US Adult Faces Database’ [36] (to which we
refer as ‘Faces’ ). This is a dataset of 10 168 natural face photographs of 256 pixels height and
variable width (typically between 150 and 220 pixels). To see what happens as the size of the
training set n gets close to the number of pixels in the image (the discrete analogue of n →∞),
we resize all images to 100 × 100 pixels to match the size of our data base (10k images). The
effective dimension of the discretized space U , i.e. the number linearly independent images
among the 10 000, is smaller than the total dimension, since the images have been cropped with
an oval around the face. About 700 pixels have the value of exactly 1 (white) in all images, and
further 1500 have values between 0.9 and 1 in all images. This makes the number of ‘degrees
of freedom’ effectively around 7800. Sample images from the database are shown in figure 1.

As our training inputs {ui}i=1,...,n in (1.1) we choose n randomly selected photographs, with
different n � 10 000. As the ground truth u† in (2.1) we also take photographs from the ‘Faces’
dataset (which are not contained in the training set {ui}i=1,...,n).

Applying Gram–Schmidt orthogonalization to {ui}i=1,...,n (cf. section 3.3.2), we obtain an
orthonormal system {ui}i=1,...,n. (We use the modified Gram-Schmidt algorithm [37].) Using
this system, we can check assumption 3 from section 3.3.1 numerically by plotting the partial
sums

n∑
i=1

|(u†, ui)|

for different n. The result is shown in figure 2. The series seem to be bounded uniformly and
hence the figure does not contradict assumption 3. We stress that assumption 3 is an assumption
on the dataset and does not depend on the forward operator; it only measures how well a single
element of the dataset (the exact solution u†) can be approximated with other elements of the
dataset (the training inputs {ui}i=1,...,n).

6.1.2. Gram–Schmidt orthogonalization vs Householder reflections. It is well know that (even
the modified) Gram–Schmidt algorithm is numerically unstable if the number of vectors is
large and Householder reflections [37] provide a stable alternative. However, the decisive
advantage of Gram–Schmidt is that it allows adding new training points without the need to
re-orthogonalize the whole dataset, which is clearly advantageous in practice, since orthog-
onalization is the most time consuming part of the pipeline. A practical recommendation
would be to use Householder reflections to orthogonalize the ‘initial’ dataset (say, the train-
ing pairs that are available as one starts using the method) and then use Gram–Schmidt to
add new training points. Perhaps one could also use Householder reflections once in a while
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Figure 2. Partial sums
∑n

i=1 |(u†, ui)| in assumption 3 for images u† shown in figure 1
and n = 1, . . . , 9000. The figure does not contradict assumption 3.

to re-orthogonalize the training set if the number of ‘new’ training points added after the last
application of Householder reflections is sufficiently large.

However, we would like to emphasize that when regularization by projection is used with
a noisy measurement yδ in (2.1) (which is always the case in practice), the amount of training
pairs should not be too large anyway as this would compromise stability (cf. theorems 17 and
21 as well as [24, theorem 4.2]). This is not the case, however, for variational regularization,
where the noise is counteracted by increasing the regularization parameter α.

6.1.3. Forward operator. We consider our images to be elements of L2(Ω), where Ω ⊂ R
2 is

the (bounded) image domain. As the forward operator, we take the Radon transform with a
parallel beam geometry R : L2(Ω) → L2(R× [0, π]). We use Matlab’s implementation of the
Radon transform radon with 70 projections uniformly distributed on the interval [0,π). The
size of the Radon data produced by radon is 145 × 70 ∼ 10k pixels. Applying the Radon
transform to the training inputs {ui}i=1,...,n, we obtain the outputs (sinograms) {yi}i=1,...,n and
hence get the pairs (1.1). Sample training pairs are shown in figure 3 (left and central columns).

Assumption 4 depends both on the training inputs {ui}i=1,...,n and the forward operator A.
Transforming the training outputs {yi}i=1,...,n to match the orthonormalized inputs {ui}i=1,...,n,
we obtain the transformed sinograms {yi}i=1,...,n. Recall that assumption 4 was a condition on
the expansion coefficients of PYnyi for i � n + 1 in the non-orthogonal basis {yi}i=1,...,n. To
speed up computations, we check this condition on downsampled images of size 32 × 32. The
result is shown in figure 4(a). The sums are not bounded, hence assumption 4 does not seem
to be satisfied.

However, there is a significant numerical error accumulating in the Gram–Schmidt process
as n increases and this error will have an effect on the computed expansion coefficients βi,n

j .
To find these coefficients, we need to solve a linear system whose matrix Yn := (y1, . . . , yn)
is formed of the non-orthogonal vectors {yi}i=1,...,n. This matrix will become ill-conditioned
for large n, since the vectors {yi}i=1,...,n will become close to being linearly dependent (cf.

24



Inverse Problems 36 (2020) 125009 A Aspri et al

Figure 3. Samples ui from the ‘Faces’ dataset (left column), their Radon transforms
yi: = Aui (central column) and their adjoint transforms vi: = A∗yi = A∗Aui (right col-
umn).

Figure 4. (a) The supremum over the squared two-norms of the expansion coefficients
of yi, i � n + 1, in the basis {yi}i=1,...,n for n = 1, . . . , 700 (computed on downsampled
images of size 32 × 32). Since the basis is non-orthogonal, the expansion coefficients
change with n. However, we note that the growth can be a numerical artifact: to com-
pute the coefficients βi,n

j , we need to invert an ill-conditioned matrix whose condition
number as a function of n is shown in figure 4. (b) To compute the coefficients βi,n

j from
assumption 4, we need to invert the matrix Yn := (y1, . . . , yn) composed of the trans-
formed outputs {yi}i=1,...,n, cf. section 3.3.2. This matrix becomes ill-conditioned for
large n, which may result in inaccuracies in the computation of the coefficients βi,n

j .
We emphasize, however, that inverting this matrix is only needed to numerically check
assumption 4; the actual reconstruction algorithm (3.7) does not need it.

proposition 7, where this is proven for {yi}i∈N; the proof for {yi}i∈N is the same). The condition
number of this matrix as a function of n is shown in figure 4(b) it starts exploding at n ∼ 500.
Therefore, in our opinion, the question whether assumption 4 can be satisfied for real data
remains open.
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Figure 5. Partial sums in assumption (b) of theorem 15. The figure does not contradict
assumption (b) of theorem 15. The behavior is similar to that in figure 2, but the scale is
different (∼ 14 000 here vs ∼ 600 in figure 2).

We shall see in section 6.2, however, that the reconstructions (3.7) obtained from clean data
y ∈ R(A) remain bounded as n increases (until numerical artifacts kick in).

Assumptions (a) and (b) of theorem 15 are satisfied. Since the training inputs {ui}i=1,...,n

and the exact solution u† are similar, we expect that
|(y,yi)|
|(yi ,yi)| ∼ 1, which is in fact what we

observe numerically (we omit the plot). Hence, assumption (a) is satisfied. Assumption (b) is
also satisfied as shown in figure 5.

6.1.4. Absence of inverse crime. The term ‘inverse crime’ was introduced in [38] to describe
the situation when the same model is used to generate synthetic data and subsequently
to solve an inverse problem involving this data. This procedure may artificially decrease
the error introduced by a reconstruction algorithm and therefore should be avoided. In our
experiments, we use the same model (Matlab’s implementation of the Radon transform)
to generate both the training data {yi}i=1,...,n and the data y that we invert. However, we
do not use the same model to solve the inverse problem: we only use the training pairs
{ui, yi}i=1,...,n and the approximation of the forward operator or its inverse that we learn
from these pairs. Hence, no inverse crime is committed here. Moreover, it is only natu-
ral to assume that in real applications the measurement y and the training data {yi}i=1,...,n

will be generated under very similar conditions, perhaps even by the same measurement
device.

6.2. Regularization by projection

We start by analyzing reconstructions from clean data y from (2.2). Figure 8a shows the norm
of uU

n defined in (3.7) as a function of n (blue solid line). After some oscillations at small n,
the norm remains stable until n ∼ 7000 and then it explodes. This may be due to the failure
of assumption 4 and the instability of regularization by projection, however, this may be also
caused by the numerical instability of Gram–Schmidt orthogonalization, or by both. We will
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Figure 6. Reconstructions using regularization by projection (3.7) from clean data
y ∈ R(A). Images develop oscillations as the size of the training set n increases, but
generally the reconstructions remain stable for a large range of n, until n ∼ 7500 when
they explode.

Figure 7. Reconstructions using regularization by projection (3.31) from noisy data yδ

(1% noise). Reconstructions become unstable for relatively small n. The reconstruction
for n = 7000 is completely unstable and not shown here.

discuss this in more detail in section 6.3. In any case, boundedness is satisfied for a wide range
of n. Reconstructions for different values of n are shown in figure 6. As the size of the training
set n increases, the reconstructions start developing oscillations, but generally remain stable
for a wide range of n.

Adding noise to the data y changes the situation. Reconstructions from noisy data yδ (cf.
(3.31)) with 1% Gaussian noise are shown in figure 7. Reconstructions become unstable much
earlier, reflecting the ill-posedness of the problem. Already for n = 5000 the reconstruction
is highly oscillatory. Figure 8(a) (red dashed line) shows that the norm of the reconstruction
uU

n,δ (3.31) grows with n (except for very small n where it oscillates) and around n = 5000 it
explodes.

Figure 8(b) shows the relative reconstruction error as a function of the size of the training set
n, averaged over a validation set of about 100 images. The reconstruction error from clean data
(δ = 0) first decreases monotonically as expected, but has an anomaly around n = 5000. This
may again be due to numerical artifacts of the Gram–Schmidt algorithm. For all other noise
levels δ = 10−4; 10−3; 10−2; 10−1 we observe the semiconvergence behavior, i.e. the recon-
struction error first decreases with n until a certain optimal value and then explodes. This
behavior is expected from section 3.4.

These experiments demonstrate that for ill-posed problems increasing the size of the training
set can have an adverse effect on the reconstructions.
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Figure 8. (a) Regularization by projection: the norm of reconstructions from clean data
y ∈ R(A) and from noisy data yδ , denoted by uUn (3.7) and uUn,δ (3.31), respectively, as
a function of n. After some oscillations for small n, the norm of uUn (clean data) stays
almost constant until n ∼ 7500. The blow-up observed later is caused by the common
white oval in all training images. The number of white pixels (with value 1) in the oval is
ca. 700, and ca. 1500 more have values between 0.9 and 1, which means that the number
of linearly independent pixels in the training images is around 7800. (b) Relative error
of regularization by projection as a function of the size of the training set n for different
noise levels δ. The error has been averaged over a validation set of about 100 images.
All curves demonstrate semi-convergence behavior; the larger the noise, the smaller the
optimal n and the larger the error. (c) Dual least squares: the norm of reconstructions
from clean data y ∈ R(A) and from noisy data yδ , denoted by uYn (4.4) and uYn,δ (4.6),
respectively, as a function of n. The norm of uYn (clean data) grows monotonically in the
beginning and then stays almost constant. At n ∼ 7500 it explodes, which is caused by
the common white oval in all training images. The number of white pixels (with value
1) in the oval is ca. 700, and ca. 1500 more have values between 0.9 and 1, which means
that the number of linearly independent pixels in the training images is around 7800.
(d) Relative error of dual least squares as a function of the size of the training set n for
different noise levels δ. The error has been averaged over a validation set of about 100
images. All curves except for δ = 0 demonstrate semi-convergence behavior; the larger
the noise, the smaller the optimal n and the larger the error. Reconstruction error from
clean data (δ = 0) decreases monotonically for all n.
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Figure 9. Reconstructions using dual least squares (4.4) from clean data y ∈ R(A).
Reconstructions remain stable and converge to the ground truth as n →∞.

Figure 10. Reconstructions using dual least squares (4.6) from noisy data yδ (1% noise).
We observe a typical semi-convergence behavior: after improving initially, the recon-
structions become unstable as n →∞ and eventually blow up around n = 6000. The
reconstruction for n = 7000 is completely unstable and not shown here.

6.3. Dual least squares

The dual least squares approach requires a different type of training data—training data for the
adjoint operator (4.3). It is not clear how this type of training data can be obtained in practice
and hence the relevance of the dual least squares for learning is not obvious, but we still perform
experiments with this approach for the sake of completeness. To generate {vi}i=1,...,n such that
vi = A∗yi for {yi}i=1,...,n as defined in (1.1), we apply the adjoint of the Radon transform to
{yi}i=1,...,n. Sample training triplets (ui, yi, vi) are shown in figure 3.

We start with reconstructions from clean data y ∈ R(A). The norm of the reconstruction
(4.4) as a function of the size of training set n is shown in figure 8(c) (solid blue line). After
a small initial period of monotonic growth, the norm stays constant until n ∼ 7500 when
it explodes. This is the same value as for the solution of regularization by projection uU

n in
figure 8(a).

To understand why this happens let us recall that we compute uY
n by projecting the solution

of regularization by projection uU
n onto some subspace (cf. (4.4)). Since the dual least squares

solution uY
n must be stable as n →∞ (theorem 18), the instability must come from an error

in computing uU
n (cf. (3.7)), which is likely to be caused by the numerical instability of the

Gram–Schmidt algorithm. This is also an indication that the instability of the solution of reg-
ularization by projection uU

n that we see in figure 8(a) is likely to be due to numerical effects
rather than the instability of regularization by projection.

Reconstructions from clean data y ∈ R(A) obtained using the dual least squares method
(4.4) are shown in figure 9. They remain stable as n grows (until numerical instability of the
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Gram–Schmidt algorithm kicks in at n ∼ 7500) and converge to the ground truth. They do not
develop oscillations that we have seen in figure 6 for regularization by projection.

For noisy data yδ (figure 10) we observe the expected semi-convergence behavior: after
improving initially, the reconstructions diverge as n increases and blow up somewhere between
n = 5000 and n = 6000. Although both regularization by projection and dual least squares
diverge eventually for noisy data yδ , the dual least squares method remains stable for a larger
n, cf. figures 8(a) vs 8(c) and figures 7 vs 10.

Figure 8(d) shows the relative reconstruction error as a function of the size of the training
set n, averaged over a validation set of about 100 images. As expected, the reconstruction error
from clean data (δ = 0) decreases monotonically for all n, while the reconstruction error from
noisy data with δ = 10−4; 10−3; 10−2; 10−1 demonstrates the semi-convergence behavior. The
reconstruction error first decreases with n until a certain optimal value and then explodes.

6.4. Variational regularization

In this section we assess the performance of projected variational regularization (5.3). We only
show reconstructions from noisy data yδ.

For convenience, we repeat the statement of projected variational regularization (5.3)

min
u∈U

1
2
‖APUnu − yδ‖2 + αJ (u). (6.1)

Our goal is to compare reconstructions for different sizes of the training set n with a model-
based reconstruction that has access to the forward operator A (the Radon transform)

min
u∈U

1
2
‖Au − yδ‖2 + αJ (u). (6.2)

As in the previous sections, U = L2(Ω), where Ω ⊂ R
2 is the image domain. As a prototyp-

ical example of a regularization functionalJ we take TV [39], which we define as a functional
on L2(Ω) extending it with the value +∞ on L2(Ω)\BV(Ω). This is well defined, since Ω ⊂ R

2

and hence BV(Ω) ⊂ L2(Ω). This is a common setting in imaging [40].
TV is a proper, convex and lower semicontinuous functional on L2(Ω) [41], hence

assumption 5 is satisfied. Zeros of the TV functional consist of constant functions. Note that the
Radon transform does not annihilate the constant functions, hence assumption 6 is also satis-
fied if PUn does not annihilate constant functions. For this, it is clearly sufficient that PU1𝟙 �= 0,
i.e. (u1, 𝟙) �= 0 (in other words, u1 does not have zero mean). This is clearly satisfied for the
photographs in the ‘Faces’ dataset. Therefore theorems 23 and 25 hold.

To see how well the learned operator APUn approximates the Radon transform A when
evaluated at the ground truth image u† (the same as in figures 9 and 10), we show the sinograms
APUnu† (learned) and Au† (exact) in figure 11. Already for a moderate size of the training set
n = 1000, the approximation is very good. The relative approximation error as a function of n
is shown in figure 12 and seems to decrease exponentially with n.

To solve (6.1) and (6.2), we use the CVX package [42, 43]. To generate the differential
operator needed to evaluate TV, we use the DIFFOP package [44].

Reconstructions from noisy data yδ with 1% noise obtained using data driven variational
regularization (6.1) are shown in figures 13(a)–(c) and the solution obtained with the standard
model-based approach (6.2) is shown in figure 11. Already for a moderate size of the train-
ing set (n = 1000, which is 10% of the total number of pixels in each image), we obtain a
reasonable reconstruction and as n increases, the reconstructions become closer and closer to

30



Inverse Problems 36 (2020) 125009 A Aspri et al

Figure 11. Left: The sinogram of the image in figure 3(d). Right: Learned approximation
for n = 1000 training pairs. Already for a moderate amount of training pairs, the learned
operator is able to approximate the Radon transform very well (on an input that is similar
to the training inputs).

Figure 12. Reconstruction error of the learned Radon transform as a function of the size
of training set n (on a log scale). The error seems to decrease exponentially with n.

the ‘ideal’ one obtained using explicit knowledge of the forward model (figure 13(d)). The
regularization parameter α was the same in all these experiments.

Data driven reconstructions in figures 13(a)–(c) exhibit the same qualitative behavior as the
model-based reconstruction in figure 13(d), e.g., we see characteristic for TV staircasing that
becomes less apparent as n increases.

Relative reconstruction errors for the image shown in figure 13 are given in table 1. For
computational reasons, we do not perform experiments on the whole validation set of ca. 100
images. Although this is not an entirely fair comparison, the reconstruction errors in table 1 are
smaller than those in figures 8(b) (regularization by projection) and 8(d) (dual least squares).
In the latter two methods the optimal error for δ = 0.01 is around 7% (at approximately
n = 2000), whereas for variational regularization it is smaller even for the same n and keeps
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Figure 13. Reconstructions using variational regularization from noisy data yδ (1%
noise): (a)–(c) data driven reconstructions (cf. (6.1)) for different sizes of the training
set n and (d) a model based reconstruction that has access to the forward operator (cf.
(6.2)). Even for a modest size of the training set n = 1000 (10% of the number of pix-
els in the image) the reconstruction is very reasonable; as n increases, the data driven
reconstruction becomes almost indistinguishable from the model-based one.

Table 1. Relative reconstruction error of data driven variational regularization for dif-
ferent sizes of the training set n vs model based reconstruction. Numbers based on the
image shown in figure 13. As n increases, the reconstruction quality approaches that
of a model based method. Already for a modest size of the training set n = 3000 the
reconstruction quality is comparable with the optimal one.

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 Model

Rel. error 0.078 0.053 0.043 0.037 0.034 0.033 0.031 0.031 0.030 0.030

decreasing with growing n. The difference in the visual quality of the reconstructions is even
more apparent, cf. figures 7, 10 and 13.

Comparing reconstructions from noisy data yδ obtained with data driven variational regular-
ization (figures 13(a)–(c)) with those obtained with regularization by projection (figure 7) and
dual least squares (figure 10), we observe that variational regularization produces much better
reconstructions. The typical relative error is also smaller, cf. table 1 and figure 8. The price to
pay for is that variational regularization (6.1) requires solving a (potentially computationally
costly) optimization problem, even if evaluating the projected forward operator APUn becomes
cheap once the Gram–Schmidt orthogonalization is complete, whilst regularization by projec-
tion (3.7) and dual least squares (4.4) only require taking a matrix-vector product (also once
the Gram–Schmidt algorithm is complete).

6.5. Practical recommendations

Depending on the situation, different methods discussed in this paper will become preferable.
If the amount of noise in the measurement yδ in (2.1) is small then regularization by projec-
tion (section 3) is a good option since, once trained, it is very efficient computationally. Care
should be taken, however, in checking the validity of our assumption, since this method is
non-convergent in general.

The dual least squares method (section 4) is better since it does not require additional
assumptions (except for an appropriate choice of the size of the training set, cf. theorem 21),
however, collecting training data for the adjoint operator experimentally is not an obvious task.
However, if the goal is to replace a computationally expensive model, then such training data
can be collected, and this is the preferred option compared to regularization by projection.
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Finally, if the amount of noise in the measurement yδ is large, parameter choice rules in
theorems 17 and 21 will require that the size of the training set is too small and, although
stability will hold, the approximation quality will likely be not satisfactory. Variational reg-
ularization is in this case the method of choice, however, it has two drawbacks. Firstly, it is
more expensive computationally since it requires solving an optimization problem, although
even here projections might provide a speed-up compared to using an analytic model if this
model is computationally expensive. Secondly, a large amount of noise will require a larger
regularization parameter, which will make the effects of the regularizer mode apparent (such
as staircasing with Total Variation).

7. Conclusions

We have seen that some results of model-based regularization theory can be extended to the
purely data driven setting when the forward operator is given only through input-output train-
ing pairs. It has also been demonstrated that restrictions of the forward operator and (in the
injective case) its inverse to the spans of the training data can be computed without numerical
access to the forward operator. This was used to formulate data driven analogues of regular-
ization by projection and variational regularization and carry over some classical results such
as convergence rates of variational regularization. We have also seen that the role of the size of
the training set is twofold: in variational regularization, it controls the approximation quality
of the forward operator and hence having more training data is always better, while in regular-
ization by projection, the size of the training set is a regularization parameter and hence using
more training pairs than is allowed by the noise in the measurement will compromise stability.
This is due to the ill-posed nature of the inverse problem and different from overfitting, where
poor performance is typically a consequence of the training set being too small. The numerical
studies should not be considered final. In particular the restrictiveness of assumption 4 in real
world applications needs further studies.
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