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In brief

Merkle and Ghosh et al. describe insights

from the whole-genome sequences of

commonly used human embryonic stem

cell (hESC) lines. Analyses of these

sequences show that while hESC

genomes have more large structural

variants than humans do from genetic

inheritance, hESCs do not have an

observable excess of finer-scale variants.

However, many hESC lines contain rare

loss-of-function variants and

combinations of common variants that

may profoundly shape their biological

phenotypes. Thus, genome sequencing

data can be valuable to groups selecting

cell lines for a given biological or clinical

application, and the sequences and

analysis reported here should facilitate

such choices.
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SUMMARY
Despite their widespread use in research, there has not yet been a systematic genomic analysis of human
embryonic stem cell (hESC) lines at a single-nucleotide resolution. We therefore performed whole-genome
sequencing (WGS) of 143 hESC lines and annotated their single-nucleotide and structural genetic variants.
We found that while a substantial fraction of hESC lines contained large deleterious structural variants,
finer-scale structural and single-nucleotide variants (SNVs) that are ascertainable only throughWGS analyses
were present in hESC genomes and human blood-derived genomes at similar frequencies. Moreover, WGS
allowed us to identify SNVs associated with cancer and other diseases that could alter cellular phenotypes
and compromise the safety of hESC-derived cellular products transplanted into humans. As a resource to
enable reproducible hESC research and safer translation, we provide a user-friendly WGS data portal and
a data-driven scheme for cell line maintenance and selection.
INTRODUCTION

Human pluripotent stem cells (hPSCs) can self-renew indefinitely

while retaining the ability to differentiate into many cell types.

These properties make hPSCs a powerful resource for studying

early human development, disease modeling, and drug discov-

ery and increasingly for developing candidate cell therapies

(Avior et al., 2016; Merkle and Eggan, 2013; Trounson and DeW-

itt, 2016) (https://clinicaltrials.gov). However, the utility of human

embryonic stem cells (hESCs) and human induced pluripotent

stem cells (hiPSCs) for these applications can be compromised

by mutations that affect their differentiation potential, cellular

phenotypes, or clinical safety. The nature of such mutations
472 Cell Stem Cell 29, 472–486, March 3, 2022 ª 2022 The Authors.
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has been studied using Giemsa-band karyotyping, fluorescent

in situ hybridization, comparative genome hybridization arrays,

and high-density single-nucleotide polymorphism (SNP) DNA

microarrays that have a spatial resolution of >100 kbp (Draper

et al., 2004; Laurent et al., 2011; Lefort et al., 2008; Maitra

et al., 2005; N€arv€a et al., 2010) These and subsequent studies

have revealed recurrent, culture-acquired structural genetic var-

iants, including a common duplication at Chr20q11.21 that has

been attributed to the gain of the anti-apoptotic gene BCL2L1

(Avery et al., 2013; Nguyen et al., 2014). However, the cause

and functional consequences of most mutations observed in

hPSCs remain poorly understood, and as much as 99% of the

genome of most hPSCs remains unexplored. Consequently,
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Study design and outputs

The genomic DNA of 143 human embryonic stem cell lines (hESCs) was

analyzed by high-density SNP microarray and at the single-nucleotide level by

WGS to call structural variants to a resolution of �1 kbp, rare sequence vari-

ants associated with disease, and common sequence variants to reveal cell

line ancestry, relatedness, and polygenic risk score (PRS). An integrated

analysis of these data, which are provided as a resource to the field via an

interactive data portal, yields insight into hESC biology and facilitates the

rational selection of cell lines based on their genetic architecture. See also

Table S1 and Figure S1.
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hPSC lines are often viewed as being interchangeable, and lines

for a given application are typically selected due to convenience

or historical precedence rather than their intrinsic genetic

suitability (Kobold et al., 2015).

Toaddress this issue,weperformedwhole-genomesequencing

(WGS, >253 coverage) and complementary high-density SNP

genotyping of 143 hESC lines. We report our findings here as a

resource. Though we confirmed that hESCs have an excess

burdenof large copynumber variations (CNVs),we found that their

overall burden of both single-nucleotide variants (SNVs) and small

(<1 Mbp) CNVs resembled that of human populations, confirming

hESCs as invaluable tools for studying human biology. Our ana-

lyses also bring to light recurrent acquired genetic variants that

point to selective pressures exerted during self-renewal. These

included a recurrent amplicon on Chr1q32.1, a copy-neutral loss

of heterozygosity (CN-LOH) event at Chr9q, and small deletions

encompassing the gene EP300, whose gene product stabilizes

p53. Additional studies of SNVs identified from WGS data

revealed deleterious variants in genes associated with cancer,

infertility, and a variety of autosomal dominant diseases that could

impact the phenotypic behavior of individual stem cell lines that

harbor them. In order to allow researchers to query our data,

wedeveloped a user-friendly online data portal to further the goals

of experimental reproducibility and the safety of future cell

therapies.

RESULTS

hESC line selection and WGS
To gain insight into stem cell biology and to generate a valuable

resource for the research and medical communities, we

sequenced the whole genomes of 143 hESC lines that had

been voluntarily deposited into the registry of hESCs maintained

by the US National Institutes of Health (NIH) (http://grants.nih.

gov/stem_cells/registry/current.htm) or that had been prepared

for therapeutic applications (Figure 1; Table S1A). Genomic

DNA from these cell lines was sequenced to a mean read depth

of 32.2 (standard deviation [SD] 6.4, range 23.3 for HUES68 to

60.9 for KCL038, Figure S1A), with an average of 97% of

the genome being sequenced at a minimum of 103 coverage

(Figure S1B, STAR Methods).

hESCs are predominantly European and often share
sibling relationships
Genetic background can be an important modifier of cellular

phenotypes (Rouhani et al., 2014; Sittig et al., 2016). We there-

fore first investigated the genetic ancestry of hESC lines by

drawing upon their ancestry-informative SNPs and comparing

them with the diverse human populations sequenced in the

1000 Genomes Project (1000 Genomes Project Consortium,

2012; Sudmant et al., 2015). In agreement with previous studies

(Mosher et al., 2010), principal component analysis (PCA)

revealed that 93% (133/143) of sequenced hESC lines clustered

together with samples of European ancestry (Figures 2A and 2B;

Tables S1B and S1C). This finding was also reflected in their

human leukocyte antigen (HLA) haplotypes (Nunes et al., 2014)

(Figure S1C; Table S2A), whichmay be useful for groups seeking

to match stem-cell-derived transplant and recipient HLA

haplotypes.
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Figure 2. Ancestry and relatedness

(A) Principal component analysis illustrates the

genetic ancestry of hESC lines (red) relative to in-

dividuals from diverse populations (three-letter co-

des) from the 1000 Genomes project. hESCs with

ad-mixed European or non-European ancestry are

indicated by arrows. PC, principal component.

(B) Magnification of the hESC cluster from (A)

showing hESC line clustering with different Euro-

pean ancestries.

(C) Sibship pedigree of hESC lines, where squares

denote male, circles denote female, and the dashed

line denotes a half-sibling relationship. See also

Table S2 and Figure S1.
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Since multiple hESC lines can be derived from a cohort of

embryos donated by a single couple undergoing assisted repro-

duction by in vitro fertilization (IVF) (Chen et al., 2009), we

wondered how many sequenced hESC lines might exhibit ge-

netic relatedness to one another. Upon analyzing shared SNP

alleles (see STAR Methods), we found that 47/143 (33%) hESC

lines shared a direct sibling relationship with another line we

had sequenced, including seven sibling trios, 12 sibling pairs,

and one half-sibling pair (Figures 2C and S1D; Tables

S1A–S1C). Many of these sibling relationships were either un-

known or unreported, and one sibling trio contained hESC

lines from distinct providers (Genea02, Genea48, and ESI017)

(Figure 2C). Upon contacting the providers, we learned that

these cell lines were derived using materials from the same IVF

clinic and that the sibling trio also included a fourth line

(ESI014) not available for distribution. Awareness of these famil-

ial relationships should help guide experimental design, which in

some contexts may aim to avoid shared genetic background,

and in other contexts might exploit these properties to test geno-

type-phenotype relationships.
474 Cell Stem Cell 29, 472–486, March 3, 2022
Common genetic variant
contribution to risk of disease
phenotypes
CommonSNPscan impact the suitability of

cell lines formodeling disease or transplan-

tation. For example, a genetic variant in

the gene ABO causes the O blood type

(Yamamoto et al., 1990), a variant in

CCR5 renders cells resistant to HIV infec-

tion (Dean et al., 1996; Samson et al.,

1996), and variants in the genes APOE

(Corder et al., 1993) and TREM2 (Guerreiro

et al., 2013; Jonsson et al., 2013) are

among the strongest known genetic con-

tributors to cardiovascular disease

(APOE) and Alzheimer’s disease (AD, both

APOE and TREM2). We therefore geno-

typed hESCs for these common variants

and identified 22 cell lines with a ‘‘universal

donor’’ O blood type, a cell line (Elf1) likely

resistant to HIV infection, and three cell

lines carrying theAPOE ‘‘e4/e4’’ risk haplo-

type for cardiovascular disease and AD

(Figures 3A–3C; Table S2B).
There is also accumulating evidence that the combined ac-

tions of thousands of commonSNPs can contribute substantially

to the risk of developing certain conditions, often conferring as

much risk as large-effect (Mendelian) variants (Khera et al.,

2018). The quantifiable contribution these SNPs confer can be

represented through a polygenic risk score (PRS). To determine

the currently calculable risk conferred by such variants to distinct

disease phenotypes in each cell line, we computed PRSs for 18

distinct traits using data from well-powered genome-wide asso-

ciation studies (GWASs) adjusted for ancestry and normalized

these scores to the distributions formed by larger numbers of

similarly sequenced human samples (Bulik-Sullivan et al.,

2015; Figures 3D and S2; Tables S2C and S2D). For each trait,

we found one or more ‘‘outlier’’ hESC lines with a PRS at least

two SDs from the mean. For example, WA21 has a high PRS

for body mass index (BMI), suggesting that it might be predis-

posed to display obesity-relevant phenotypes if differentiated

to relevant cell populations such as hypothalamic neurons (Mer-

kle et al., 2015; Wang et al., 2015). Overall, 112/143 (78%) cell

lines were outliers for at least one trait, and each cell line had a
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Figure 3. Disease risk from common genetic variants

(A–C) Genotyping results at SNPs indicative of (A) blood type

(rs8176719 in ABO), (B) resistance to HIV infection (rs333 at

CCR5), and (C) risk for Alzheimer’s disease (AD, rs429358 and

rs7412 in APOE in shades of orange, and rs75932628 in TREM2 in

shades of green). Ref, reference allele; alt, alternate (risk) allele.

(D) Distribution of polygenic risk scores (PRS) for control samples

and hESCs reveals ‘‘outlier’’ samples with an SD of two or more.

(E) Heatmap of PRS for each of the 18 analyzed traits for cell lines

with at least one ‘‘outlier’’ PRS.

(F) Combined PRS deviation from mean for each of the 18

analyzed traits. See also Table S2 and Figure S2.
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Figure 4. Structural variant calling from WGS data

(A) Comparison of structural variant calls in 22 lines shared between this study and a previous publication.

(B and C) Comparison of large (B) and small (C) structural variant calls made by microarray or WGS.

(legend continued on next page)
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unique PRS fingerprint (Figure 3E). To identify hESCs that might

make good ‘‘all-purpose control’’ cell lines, we ranked hESC

lines by their combined absolute PRS across the 18 traits

and identified cell lines with PRSs close to the population

mean (Figure 3F; Table S2E).

Calling structural genetic variation from WGS data
Having established the genetic background of hESCs using

common SNPs, we next analyzed their structural variants, which

can affect the expression of tens to thousands of genes and

significantly alter cellular phenotypes (Chiang et al., 2017). In

particular, aneuploidy and large CNVs often contribute to

disease (Henrichsen et al., 2009), and copy-neutral loss of

heterozygosity (CN-LOH) events are frequently associated

with cancer and can potently alter gene expression by affecting

imprinted genes and unmasking disease-associated recessive

mutations or risk alleles (Nicholls et al., 1989).

We reasoned that our WGS data with at least 253 mean

sequencing depth of coverage should provide both superior

spatial resolution and sensitivity for detecting small or mosaic

CNVs in hESCs, compared with data from SNPDNAmicroarrays

that sample only a small fraction of nucleotides. Indeed, we

found that normalized read depth of coverage (DOC) analysis

of WGS from 121 cell lines permitted the identification of dele-

tions as small as �1.1 kbp and duplications as small as �2.8

kbp (Figure S3A). To complement this analysis, we identified het-

erozygous SNPs across the genome from WGS data and

compared the sequencing depth of both alleles in all 143 hESC

lines to call CNVs and CN-LOH events using the B allele

frequency (BAF). We next split structural variants into ‘‘large’’

(>1 Mbp) and ‘‘small’’ (<1 Mbp) categories, revealing 66 distinct

fixed and mosaic large structural variants affecting nearly a third

of hESC lines (46/143, 32%; Figures S3B and S3C; Tables S3A

and S3B).

To test the accuracy and sensitivity of our approach, we

compared our WGS structural variant calls with a published

SNPmicroarray-based study (Canham et al., 2015) that included

22 of the cell lines we subsequently sequenced. We found that

WGS confirmed most of these variants, allowed CNV borders

to be more accurately mapped, and revealed previously unas-

certained structural variants (Figure 4A; Tables S3C and S3D).

To broaden this comparison, we analyzed identical genomic

DNA samples from 121 hESC lines by both DOC and BAF

analysis of WGS data and high-density SNP microarrays

(Infinium PsychArray, > 500,000 probes). Of the large variants

(>1 Mbp) observed by analyzing WGS data in these 121 lines,

41/58 (71%) were also called by PsychArray (Figure 4B; Table

S3B). Together, these results suggest that analysis of WGS

data has substantially improved the utility for calling large struc-
(D) Length distribution of small CNVs in hESCs and controls.

(E and F) At length scales of �1.1 kbp to 1 Mbp, the frequency of deletions (E) a

American (Afr. Amer.) and Latin American (Lat. Amer.) ancestries. Values on the

(G) Recurrent duplications of Chr20q11.21 encompassing the anti-apoptotic ge

(colored bars and lines) having distinct distal breakpoints.

(H) Alignment of sequencing reads flanking the distal Chr20q11.21 duplication b

(I–K) Circular ideograms of fixed (darker shades) and mosaic (lighter shades) dupl

and 500 similarly sequenced controls (gray). Genomic regions with at least four

duplicated region on Chr1q32.1 harbors candidate genes (red) among other cod
tural variants relative to microarrays and confirms and extends

previous reports (International Stem Cell Initiative et al., 2011;

Baker et al., 2016; Draper et al., 2004; Laurent et al., 2011; Lefort

et al., 2008; N€arv€a et al., 2010) that hESCs carry an excess

burden of large structural variants compared with somatic

human cells (Figure S3C; Tables S3A and S3B).

Frequency of small CNVs in hESCs
Since large structural variants were relatively common in hESCs,

we wondered whether the hESCs we sequenced might also

carry an excess burden of small CNVs, which have not yet

been comprehensively examined. To address this question, we

filtered out genomic regions containing CNVs >1 Mbp from

affected samples and studied the residual whole genomes of

121 hESCs alongside 234 comparably prepared control whole-

genome sequences from human blood samples (Pato et al.,

2013) for CNVs between 1.1 kbp and 1 Mbp. We did not classify

small CNVs as fixed or mosaic due to the difficulty of distinguish-

ing between integer and fractional changes in copy number

at these length scales. We observed 6,155 unique CNVs (Table

S3E), many of which were shared across cell lines, leading to

an average of 999 ± 66 small CNVs per hESC sample (Table

S3F). The number of small CNVs called from WGS data vastly

exceeded the number of CNVs that could be called from

PsychArray DNA microarray data from these same 121 hESC

lines (16/6155, 0.3%, Figure 4C). To validate CNV calls, we iden-

tified those that contained two or more PsychArray probes

(1024/6155, 17%) and compared probe intensities across all

samples using an intensity ranked sum (IRS) test previously

used to establish CNV false discovery rates (FDRs) (Handsaker

et al., 2015; Mills et al., 2011). We observed an overall FDR of

5.7% (Table S3G), indicating that the vast majority of tested

CNVs were independently validated.

Since hPSCs are highly proliferative and rates of DNA replica-

tion are uneven across the genome, WGS data can be used to

gain insight into the biology of human DNA replication timing

(Ding et al., 2021). If the small CNVs we identified corresponded

to replication forks, we would expect them to be found in regions

of high guanine-cytosine (GC) content—and to be found in

excess in hESCs relative to more slowly proliferating samples.

We therefore jointly called CNVs in hESC genomes and similarly

sequenced primary human blood samples and found that CNVs

called in both hESC and control samples had a similar CG con-

tent (Figure S3D), genomic distribution, and frequency at all

length scales tested (Figures 4D–4F). Next, we asked whether

any small CNVs might be culture acquired and restricted our

analysis to CNVs present just once in the combined dataset of

hESCs and somatic cell control samples. We found that both

hESC and control samples harbored an average of 21 ± 11 of
nd duplications (F) in hESCs resembles that seen in control cells from African

x axis of 1–3 and 3–5 refer to 1.117–2.75 kbp and 2.75–5 kbp, respectively.

ne BCL2L1 extend from the pericentromeric (gray) region, with each cell line

reakpoint reveals a shared (AATGG)n motif.

ications (I), deletions (J), and CN-LOH events (K) in 121 hESC lines (red shades)

recurrent events in hESCs are indicated by blue arrowheads. (L) A minimally

ing genes (light gray). See also Table S3 and Figures S3 and S4.
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such singleton CNVs (Figures S3E–S3G), suggesting that hESCs

and human populations have a comparable burden of these

structural variants.

Location and potential roles of structural variants
in hESCs
Some structural variants recur in hESCs, and to gain insight into

the underlying mechanisms we examined the well-studied

Chr20q11.21 region in which duplications extend from a centro-

meric region out to the long arm of Chr20 (International Stem Cell

Initiative et al., 2011).Weobservedduplications in 11/143 (8%)cell

lines (Figure4G), includingoneadditional likely instanceof isochro-

mosome 20 (Figure S4A). This duplication probably confers a se-

lective advantage since it contains the anti-apoptotic gene

BLC2L1 (Avery et al., 2013; Nguyen et al., 2014), although it re-

mains unclear as to why this duplication recurs more often than

other regions that harbor similar anti-apoptotic genes or proto-on-

cogenes. We mapped the Chr20q11.21 CNV breakpoints and

found that distal breakpoints were unique for each cell line and

that most of them shared a common centromere-like HSAT3

(GGAAT)n microsatellite repeat motif (Figure 4H). This motif is

commonlyseenonChr20q11 (Altemoseetal., 2014).Asdescribed

elsewhere (Halliwell et al., 2021), this result suggests that

Chr20q11.21 is prone to homology-based structural instability,

which might explain its frequent recurrence in hPSCs.

To better understand the potential functional consequences of

other large structural variants, we mapped them to the genome

(Figures 4I–4K). We found that 15/143 (10%) hESC cultures

contained aneuploid cells, all but one of which involved

chromosomal gain, andwere predicted to be present at a cellular

fraction of 4%–66% (Table S3B). We also observed eight large,

fixed duplications and 19 more that were mosaic or present in

a fraction of cells (see STAR Methods), as well as six large

fixed deletions and six large mosaic deletions (Table S3B). We

also found that 12/143 (8%) hESC lines carried CN-LOH events

in a subset of cells, of which five involved the entire q arm of

chromosome 9 (Figure 4K). Since we had previously observed

this structural variant arising de novo upon gene editing (Kiskinis

et al., 2014), it is likely to be recurrently culture acquired (Fig-

ure 6B). To map the genetic elements that might be responsible

for the recurrent duplication at Chr1q (Figures 4I and 4L), we

identified 11 hiPSC lines with duplications over this interval in

the HipSci resource (Kilpinen et al., 2017) (data accession:

EGAD00010001147), that when combined with our hESC lines

revealed a minimally duplicated sub-region spanning approxi-

mately chromosome 1 position 203,408,100 to 204,572,300

(hg19 assembly), corresponding to the cytogenetic location

Chr1q32.1 (Figure 4L). This region contains candidate genes

worthy of future investigation that may confer selective advan-

tage when duplicated, including the p53 regulator MDM4

(Francoz et al., 2006; Figure 6B; Table S3H).

We were surprised to observe two cell lines displaying pat-

terns of mosaic CNV calls consistent with ‘‘trisomy rescue’’ of

chromosomes 5 (Genea48) or 16 (HUES71) (Figure S4B). These

trisomies must have resulted from meiotic nondisjunction, since

they have three distinct haplotypes on segments of these

chromosomes, as opposed to two imbalanced haplotypes that

might arise from mitotic errors. These findings indicate that at

least some structural variants we observed were present in
478 Cell Stem Cell 29, 472–486, March 3, 2022
human embryos at the time of hESC derivation, which is consis-

tent with their relatively high prevalence in oocytes from older

mothers (Hassold et al., 1995). Trisomic cells may be ‘‘rescued’’

to a diploid state by losing one of the excess chromosomes to

either restore chromosomal balance or cause uniparental

disomy. Our findings suggest that meiotic trisomy rescue may

also occur in vitro, providing a unique opportunity to explore

the biology of a process that cannot be readily studied in primary

human tissue or hiPSCs.

Finally, we wondered whether small (<1 Mbp) CNVs might

wholly or partially affect genes of likely functional relevance for

hESC biology (Tables S3I and S3J). We did not see clear

evidence of recurrent small CNVs in hESCs (Figures S4C and

S4D) but found that one cell line (WIBR2) carried a small hetero-

zygous deletion encompassing TP53 and two unrelated cell lines

(CSES6 and CSES25), as well as distinct heterozygous deletions

encompassing EP300 that were not observed in human controls

(Table S3J). Similar heterozygous deletions at Chr17p13.1 that

include TP53 have been shown to confer growth advantage to

hPSCs (Amir et al., 2017). Moreover, the EP300 gene product

acetylates and stabilizes p53 (Gayther et al., 2000), suggesting

that its reduced dosage could contribute to reduced p53 activity.

Overall, our results suggest that certain small-culture-acquired

CNVs may functionally impact hPSC biology.

Frequency of SNVs in hESCs
To take advantage of the single-nucleotide resolution that WGS

enables, we tested formissense and loss-of-function (LoF) SNVs

that can profoundly alter cellular function by affecting both

coding regions and functionally important non-coding regions

of the genome. Although individual SNVs sufficient to cause

human disease are rare in a given individual, in aggregate they

affect over 300 million people worldwide (Nguengang Wakap

et al., 2020). We considered SNV calls from the autosomes

and X chromosomes that were supported by high confidence

and high quality (HC-HQ) sequence data using filters similar to

those used to analyze whole-genome sequences in the gnomAD

v2.1 database (Karczewski et al., 2020; Figure 5A). We observed

an average SNV burden per hESC line of 244 LoF variants and

11,483 missense variants, which was indistinguishable with

that described in gnomAD whole-genome sequences from

humans of diverse ancestries (Figure 5B).

Given that deleterious variants are rare in the general popula-

tion due to negative selective pressure, we restricted our anal-

ysis to variants present at an allele frequency (AF) of less than

0.001 (0.1%) among 60,706 exomes represented in the ExAC

database (Lek et al., 2016), which are non-overlappingwith these

gnomAD whole genomes. To conservatively enrich for likely

deleterious variants among these rare SNVs, we used the

bioinformatic prediction tools ‘‘combined annotation dependent

depletion’’ (CADD; Kircher et al., 2014) and ‘‘deleterious

annotation of genetic variants using neural networks’’ (DANN;

Quang et al., 2015) to identify the variants predicted to be among

the top 1%most deleterious in the human genome (CADD phred

>20 and DANN >0.99). When we compared the 9,982 SNVs

meeting these criteria in hESC lines with similarly filtered SNVs

from whole genomes from gnomAD, we again did not observe

an enriched burden of deleterious SNVs in hESCs (Figure 5C).

Together, these findings are consistent with the null hypothesis
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Figure 5. The overall SNV burden in hESCs resembles that of human populations

(A) Workflow for SNV identification and prioritization based on sequencing quality, bioinformatic prediction of deleteriousness, and ExAC allele frequency. HC/

HQ, high confidence/high quality.

(B) Per-sample burden of missense and LoF SNVs passing HC/HQ filters across different human ancestries and in the analyzed hESCs.

(C) Per-sample burden of rare and predicted deleterious missense and LoF SNVs.

AMR, Ad-mixed American ancestry; AFR, African ancestry; ASJ, Ashkenazi Jewish ancestry; EAS, East Asian ancestry; FIN, Finnish ancestry; NFE, non-Finnish

European ancestry; OTH, other ancestry; GLOBAL, all whole-genome samples in gnomAD; hESC, hESC samples in this study.
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that, under the conditions tested, hESCs do not accumulate an

excess burden of SNVs that is detectable above the sampling

noise of normal inter-individual genetic variation.

Cancer-associated SNVs and structural variants
Genetic variants associated with cancer are of particular interest

to the stem cell community since they might alter hESC genomic

stability and growth characteristics, disrupt hESC differentiation

and cellular phenotypes in differentiated cells, or increase the

risk of cancerous growths arising from hESC-derived cells after

transplant. We therefore asked whether any of the SNVs

observed in hESCs fell within genes having a documented

‘‘Tier 1’’ activity relevant to cancer as annotated in the Catalog

of Somatic Mutations in Cancer (COSMIC: https://cancer.

sanger.ac.uk/cosmic; Tate et al., 2019). We then asked which

of the 382 variants meeting these criteria had been observed

in human cancers in COSMIC at least twice (n = 51) and were

bioinformatically predicted to be cancer causing by functional

analysis through hidden Markov models (FATHMM: http://

fathmm.biocompute.org.uk/cancer.html; Shihab et al., 2013).

This analysis revealed 14 unique heterozygous missense

variants across 10 genes in 15 hESC lines (Table S4A; Figure 6B),

including three of five mutations in TP53 that we had previously

identified by exome sequencing (Merkle et al., 2017). Several of

the other variants suggested the recurrent involvement of the

p53 and DNA damage response pathways and are consistent

with our earlier discovery of heterozygous small deletions

affecting TP53 and EP300, though the functional role of these

variants in hPSCs survival or proliferation is unclear (Figure 6B).

Of the genes with COSMIC-associated variants, both TP53 and
EGFR were independently found to be recurrently mutated in

hESCs (Avior et al., 2021).

Fertility-associated variants
The majority of hESCs we studied here were derived from

donated embryos that were excess to the needs of couples

seeking assisted reproduction at in vitro fertilization (IVF) clinics.

We thus considered whether genetic variants affecting fertility

would be present among the sequenced hESC lines, since there

is considerable interest in differentiation of hPSCs into germ cells

for studies of human meiosis and gametogenesis (Sasaki et al.,

2015; Zhou et al., 2016). We examined the intersection between

a list of genes associated with infertility from the literature

(Mallepaly et al., 2017; O’Flynn O’Brien et al., 2010; Venkatesh

et al., 2014), and genes in which inactivating heterozygous

mutations are under strong negative selective pressure and are

therefore likely to cause dominant disease as identified using

the loss-of-function observed/expected upper bound fraction

(LOEUF) metric from studies of human genome variation

(Karczewski et al., 2020). We conservatively set LOEUF to 0.33

or less, revealing variants in 12 fertility-associated genes meeting

these criteria. To increase our confidence in the disease relevance

of these variants, we further restricted our analysis to genes

whose disruption is associated with autosomal dominantly in-

herited disease in themanually curated clinical genomic database

(CGD: https://research.nhgri.nih.gov/CGD/; Solomon et al., 2013)

and identified eight variants affecting six of the 12 previously iden-

tified genes (Figure 6C; Table S4B). These genes are associated

with infertility due to autosomal dominant hypogonadotropic

hypogonadism, premature ovarian failure, or fetal growth and
Cell Stem Cell 29, 472–486, March 3, 2022 479
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Figure 6. Genes and systems affected by

likely deleterious SNVs in hESCs

(A) Schematic of approach used to identify dis-

ease-associated genetic variants in hESCs, and

number of variants passing these filters.

(B) Analysis of cancer-associated variants sug-

gests broader involvement of the p53 pathway

(Kyoto Encyclopedia of Genes and Genomes,

KEGG, red shading).

(C) Numerous fertility-associated genes carried

deleterious mutations, suggesting potential cau-

ses of sub-fertility in some of the couples who

donated embryos for the hESC derivation.

(D) SNVs in genes associated with autosomal

dominant disease affect multiple body systems

in vivo and would likely affect cell types generated

from hPSCs. See also Table S4.
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survival, raising the intriguing possibility that these variants might

explain the cause of sub-fertility in couples who donated their em-

bryos to generate the hESC lines we analyzed.

Disease-associated SNVs
Finally, we screened for variants that might cause disease-rele-

vant phenotypes in vitro or compromise the safety of hESC-

based regenerative medicine. As above, we focused on genes

with LOEUF scores below 0.33 (n = 2000) and associated with

autosomal dominant human disease in CGD (n = 324). To restrict

ourselves to the variants in autosomal genes most likely to be

pathogenic, we considered those bioinformatically predicted to

be pathogenic by FATHMM-XF (score >0.75, n = 146) (Rogers

et al., 2018) and DANN (score >0.999, n = 36) and present at an

allele frequency of less than 13 10�5 in ExAC (n = 11). These var-

iants (Figure 6D; Table S4C) affected genes required for normal

development and might therefore interfere with the generation

of specific cell types. For example, one cell line (KCL019) carried

a variant in GATA2, a transcription factor important for immune

cell development and associated with immunodeficiency and

leukemia when disrupted (Collin et al., 2015). Each of the SNVs

described above were manually verified using existing whole

exome sequencing (WES) data (Table S4D), and users can

review aligned sequence reads for other variants of interest, as

described below.
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Culture-acquired genetic variants
Many large CNVs are selected for

during the culture of hPSCs (Draper

et al., 2004), and previous analysis

of whole-exome sequencing data re-

vealed SNVs with allele-specific bias in

sequencing depth that were likely to be

culture acquired (Merkle et al., 2017; Ta-

ble S4E). To extend these analyses, we

exploited the discovery of many genetic

variant classes called fromWGS analysis

to ask which of them might be culture

acquired in hESCs. We considered all

large CNVs, since they are rare in human

populations but restricted our analysis to

‘‘singleton’’ small CNVs and SNVs pre-
sent just once among genetically unrelated cell lines to enrich

for variants more likely to be culture acquired and then further

classified SNVs as potentially deleterious, potentially cancer

associated, or known cancer associated (Table S4F). We then

used linear regression to correlate the abundance of these

genetic variants with candidate variables and confirmed and

extended previous reports indicating that the number of large

CNVs per cell line is significantly (p = 0.03) correlated with the

passage number at the time of sequencing (Halliwell et al.,

2020; Figure S5; Tables S4F and S4G). However, the only

other significant associations we detected were with ancestry,

suggesting that in the present experimental design, any signal

from culture-acquired genetic variants is swamped by the

magnitude of inherited genetic variation present among

analyzed cell lines. Overall, these findings support our interpre-

tation that hESC genomes largely resemble those of human

populations and are therefore powerful tools for studying

human biology.

Tools for rational hESC line selection
The breadth of findings that can be garnered from WGS data

raised the question of how genomic information can best be

harnessed by stem cell biologists to rationally select an appro-

priate cell line for a particular application. Which variants are

likely benign, and which might limit the utility of a cell line in a
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given application? To help the community address these ques-

tions, we generated three complementary resources. First, we

summarize some of the most relevant results presented in this

study in the form of a convenient lookup table (Figure 7A)

and provide annotated tables of the variants we identified (Ta-

bles S1–S4). Second, the raw sequencing data are freely

available to interested groups via a controlled-access data-

base (DUOS: https://duos.broadinstitute.org/, dataset DUOS-

000121). Finally, we have created a user-friendly online data

portal (https://hscgp.broadinstitute.org/hscgp) (Figure 7B) that

enables users with more limited computational expertise to

readily search for sequence variants of interest among

sequenced hESC lines. For example, a search for TP53 reveals

all variants in the gene that were detected in the sequenced

cell lines, the names of those cell lines, as well as bioinformatic

predictions about the likely consequences of these variants.

Search results can be graphically visualized and exported for

further analysis in a variety of formats. Specific cell lines can

also be interrogated for the presence of variants of interest,

and raw sequencing alignments can be visualized via the inte-

grative genomics viewer IGV (Robinson et al., 2011).

DISCUSSION

Techniques commonly used to evaluate the genetic integrity of

hESCs, including high-density SNPmicroarrays and karyotyping

by G-banding, have limited spatial resolution and limited power

to detect mosaic events (Baker et al., 2016). Here, we show

that high-coverage (>253) WGS enables the robust identifica-

tion of potentially relevant structural and SNVs, including thou-

sands of small CNVs that are not detectable using traditional

methods and several of which are likely of functional relevance.

As the price of WGS is steadily dropping and provides consider-

ably more information on genetic variation than many other

methods, our experience suggests that WGS may gradually

become the tool of choice for the genetic analysis of both hESCs

and hiPSCs. In particular, WGS may prove valuable in the selec-

tion of hPSCs for use in disease modeling and gene editing ex-

periments, as well as in the interpretation of data arising from

these models and retrospective multimodal analysis, as many

of these cell lines included in this study have also been used to

generate complementary datasets such as RNA-seq and DNA

methylation.

The origin and impact of structural genetic variants
We found that almost a third of hESC lines in this study carried

large structural variants, of which approximately half were

mosaic (Figures 4J, 4K, and 7A; Table S3B). Mosaic variants

might arise in culture and confer selective advantage to affected

cells, leading to the expansion and eventual fixation of the

variant. Indeed, of the nine hESC lines carrying advantageous

duplications at Chr20q11.21, six were mosaic and three were
Figure 7. Genetically informed rational cell line selection

(A) Graphical summary of the number of large fixed and mosaic structural varian

fertility (magenta), or other diseases (green), ‘‘outlier’’ PRS, and summary data for

S3, and S4 for details about variants.

(B) Types of data availability for this resource.

(C) Suggested workflow for rational hPSC line selection based on genetic inform
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fixed (Figure 4B). Alternatively, mosaicism could arise from

negative selective pressures, since approximately half of all

preimplantation human embryos carry large structural genetic

variants (Fragouli et al., 2019), and we observed at least two

instances of apparent trisomy rescue (Figure S3H). Fixed

structural and sequence variants might have arisen in culture

and reached fixation or might be inherited, as seen in the sibling

cell lines KCL032 and KCL033 that carried identical large

duplications on Chr5 (Table S3B), or cell lines carrying SNVs

associated with disease or sub-fertility (Figure 6).

In addition to suggesting mechanisms explaining the frequent

recurrence of known duplications at Chr20q11.21 (Figure 4H)

and Chr1q32.1 (Figure 4L), we discovered a recurrent CN-LOH

event on Chr9q (Figure 4L) that would alter the expression levels

of imprinted or differentially methylated genes that regulate sur-

vival or proliferation. Indeed, Chr9q LOH is frequently observed

in certain types of cancer (Hirao et al., 2005; Yizhak et al.,

2019; Jakubek et al., 2020), and the gene BRINP1 (a.k.a.

DBCCR1 or DBC1) at Chr9q33.1 as well as the microRNA

miR-181a2/181b2 at Chr9q33.3 are frequently deleted or hyper-

methylated in cancer (Izumi et al., 2005; Mei et al., 2017). Future

transcriptional and epigenetic profiling studies of hPSCs may

reveal specific genetic variants associated with the recurrence

of this recurrent CN-LOH variant.

Suggestions for rational hPSC selection
The unique constellation of inherited and acquired genetic

variants present across the studied cell lines raises the question

of how knowledge of these variants can rationally inform which

lines should be selected. For the purpose of regenerative

medicine, where safety should be considered, polyploid cells

have been knowingly transplanted into humanswithout apparent

ill effect (Nelson et al., 2002), and while we feel that most groups

would agree that a cell line carrying a TP53mutation conferring a

lifetime cancer risk of nearly 100% should not be transplanted

into patients if a suitable alternative exists, other variants should

be considered on a case-by-case basis depending on research

needs. In contrast, for the purpose of basic research, the pres-

ence of potentially damaging variants associated with fertility

or other disease may be of interest to groups studying human

development and modeling the associated diseases. Further-

more, since many genes are expressed in a cell-type-dependent

manner, even genetic variants predicted to be highly deleterious

in one cell type may be unproblematic for applications that focus

on another cell type. We therefore suggest a scheme (Figure 7C)

that can be adapted to achieve the appropriate balance of risk

and benefit for a particular application. First, we reason that

most groups would prefer to work with cell lines having minimal

restrictions on the freedom to use or share the lines and their

derivatives, and whose genomic structure has been extensively

characterized. Second, we suggest avoiding lines with aneu-

ploidy or large structural variants, although it might be possible
ts (dark and light blue, respectively), SNVs likely associated with cancer (red),

each analyzed hESC line. *please see note about WIBR lines in Tables S1A, S2,

ation.

https://duos.broadinstitute.org/
https://hscgp.broadinstitute.org/hscgp
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to ‘‘rescue’’ lines with mosaic variants by sub-cloning or by

requesting an earlier passage line that may lack the variant.

Third, most groups would avoid cell lines carrying cancer- and

disease-associated variants, though we note that other groups

may choose to exploit these variants. Fourth, the PRS for a trait

of interest, ancestry, and relatedness of the cell line may reveal

cell lines are most likely to display desired traits.

Perspective
Together, our analysis demonstrates that the overall numbers of

small CNVs and SNVs identified in hESCs resemble those of

somatic cells from a similarly scaled population of donors,

demonstrating the relative stability of their genomes and vali-

dating hESCs as a powerful tool to study human development

and disease and as a useful source of clinically important cell

populations. Indeed, the vast majority of variants we observed

are of unknown significance, and even variants that have

been associated with disease rarely have strong evidence

demonstrating that they play a causal role. We anticipate that

the data provided here will become increasingly valuable as

our understanding of genotype-phenotype relationships steadily

improves. By providing a searchable online data portal enabling

individuals with any level of computational expertise tomake use

of the resource we report here, we hope that the reproducibility

of research findings from hPSC studies and their ultimate use in

clinical applications will be improved.

Limitations of the study
While we strove to identify the most relevant genetic variants

present in hESC lines, our analyses were not exhaustive. We

did not consider inversions, translocations, repetitive genomic

regions, mitochondrial DNA sequences, epigenetic differences,

or variants on the Y chromosome. While the WGS data used in

this study provides an unprecedented view of stem cell ge-

nomes, its short read length (150-base-paired-end reads),

coupled with the inherent variation in sequencing read depth

due to DNA replication, does have some limitations that might

be mitigated in part by future studies using long-read

sequencing technologies. For instance, our analysis was limited

to variants (50 bp or T1.1 kbp, and our analysis of structural

variant mosaicism was limited to variants T1 Mbp. Though the

tagmentation-based methods, we used in library preparation

did not appear to result in any sequence bias in CNV calls

made by DOC analysis (Figure S3D), we cannot formally exclude

this possibility. Similarly, it is possible that variable sequencing

depth due to replication timing and sequencing bias might result

in erroneous CNV calls. While IRS testing validated the vast ma-

jority of these small variants, error rates were highest among

duplications under 20 kbp. We encourage groups to indepen-

dently verify variants of potential biological significance, such

as deletions affecting haploinsufficient or cancer-associated

genes (Table S3J). All 33 SNVs highlighted in this text were

manually confirmed by reviewing WES data from these same

cell lines as well as IGV traces accessible via the data portal

(https://hscgp.broadinstitute.org/hscgp). However, the accu-

racy of HLA haplotype estimation is constrained by the limited

number of informative SNPs (De Bakker et al., 2006), and haplo-

types should be verified prior to use in any downstream applica-

tion. We sought to identify sequence variants likely to affect the
function of hPSCs or their derivatives using a combination of

gene-level and variant-level filters based on manually curated

databases and bioinformatic prediction algorithms and note

that databases are not comprehensive and prediction algorithms

are imperfect, making it difficult to predict which variants are suf-

ficient to cause disease. Conversely, our stringent bioinformatic

selection criteria likely exclude some functionally relevant

variants. For example, filtering on LOEUF excluded all variants

in TP53 and a D90A variant in SOD1 associated with incom-

pletely penetrant amyotrophic lateral sclerosis (Al-Chalabi

et al., 1998) that may be relevant to groups modeling neurode-

generative disease, and our sequencing quality filters removed

two of the five variants previously identified in TP53 since they

were present at low allelic fractions. We therefore encourage

groups to interrogate the full dataset for relevant variants in their

cell line(s) of interest, using the web resource provided or by re-

analyzing the raw data (DUOS: https://duos.broadinstitute.org/,

dataset DUOS-000121). We also anticipate that groups may

wish to utilize the datasets presented here in combination with

transcriptomic data to map expression quantitative trait loci

(eQTL) in hESCs or their differentiated progeny.
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Critical commercial assays

Nextera DNA Flex Library Prep Kit

(96 samples) for whole genome

sequence library preparation by

tagmentation

Illumina, Inc Cat# 20018705

Nextera DNA CD Indexes

(96 indexes, 96 samples)

Illumina, Inc Cat# 20018708

Deposited data

Whole genome sequencing data

of all cell lines included

in the study, except those

from UCLA which cannot be

shared due to legal restrictions

This paper https://duos.broadinstitute.org/,

dataset DUOS-000121

Experimental models: Cell lines

Details of human embryonic stem

cell lines from multiple

institutions used in this

study are provided in Table S1

This paper This paper

Software and algorithms

Picard Open-source, developed at the Broad

Institute of MIT and Harvard

https://broadinstitute.github.io/picard/

GATK McKenna et al. (2010) GATK nightly-2015-07-31-g3c929b0

PLINK 2.0 Chang et al. (2015) https://www.cog-genomics.org/plink2

GCTA Yang et al. (2011) https://yanglab.westlake.edu.cn/software/gcta

Genome STRiP version 2.0, r2.00.1587 Handsaker et al. (2015) http://www.broadinstitute.org/software/genomestrip/

Eagle v2.4.1 Loh et al. (2016) https://alkesgroup.broadinstitute.org/Eagle/

MoChA v2020-09-01 Open-source, developed at the

Broad Institute of MIT and Harvard

by Giulio Genovese under the

supervision of Steven McCarroll.

https://github.com/freeseek/mocha

https://github.com/freeseek/mocha

VEP version 85 McLaren et al. (2016) https://www.ensembl.org/info/docs/tools/

vep/index.html

Hail Open-source, developed at the

Broad Institute of MIT and

Harvard

https://hail.is

LOFTEE (plugin to VEP) Karczewski et al. (2020) https://github.com/konradjk/loftee

ClinVar Landrum et al. (2014) www.ncbi.nlm.nih.gov/clinvar/

CADD Kircher et al. (2014) https://cadd.gs.washington.edu/

DANN Quang et al. (2015) https://cbcl.ics.uci.edu/public_data/DANN/

COSMIC Tate et al. (2019) https://cancer.sanger.ac.uk/cosmic/

HSCGP data portal implementation

code

and documentation

This paper https://github.com/broadinstitute/hscgp

(https://doi.org/10.5281/zenodo.5794210)

FATHMM-XF Rogers et al. (2018) https://fathmm.biocompute.org.uk/

FATHMM cancer Shihab et al. (2013) https://fathmm.biocompute.org.uk/

OMIM database of genes and variants

associated with Mendelian disorders

Online Mendelian Inheritance

in Man, OMIM�. McKusick-

Nathans Institute of Genetic

Medicine, Johns Hopkins

University (Baltimore, MD), 2019

http://www.omim.org
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ClinGen curated database of

genes and variants

associated with human disease

Rehm et al. (2015) http://www.ncbi.nlm.nih.gov/projects/

dbvar/clingen/

Curated dosage-sensitive genes

from the American College of

Medical Genetics (ACMG)

Rehm et al. (2015) https://www.ncbi.nlm.nih.gov/projects/

dbvar/clingen/acmg.shtml

Genimprint database of imprinted genes http://www.geneimprint.com/s

TSgene database of tumor suppressor genes Zhao et al. (2016) https://bioinfo.uth.edu/TSGene/

KEGG p53 pathway Kanehisa and Goto (2000) https://www.genome.jp/dbget-bin/www_

bget?pathway+hsa04115

Clinical Genomic Database (CGD) Solomon et al. (2013) https://research.nhgri.nih.gov/CGD/

ExAC Lek et al. (2016) https://gnomad.broadinstitute.org/

gnomAD v2.1 Karczewski et al. (2020) https://gnomad.broadinstitute.org/

Other

Human stem cell genome project

(HSCGP) data portal developed

to allow users to browse whole genome

sequencing data from hESC lines included

in this study

This paper https://hscgp.broadinstitute.org/hscgp
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by lead contact, Florian T. Merkle (fm436@

medschl.cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Whole genome sequencing data (in CRAM format) from cell lines included in this study have been deposited at https://duos.

broadinstitute.org/, and are available as of the date of publication if access is granted. The accession number (dataset DUOS-

000121) is also listed in the key resources table. Access to this dataset is managed to ensure the preservation of donor anonymity,

and data from cell lines obtained from the University of California, Los Angeles cannot be shared by us due to legal restrictions. To

request access, follow the instructions of the DUOS website or in case of difficulties contact Anna Neumann (neumann@

broadinstitute.org). All original code is publicly available as of the date of publication (10.5281/zenodo.5794210, please see also

key resources table).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human embryonic stem cell lines included in this study were all derived under informed consent as confirmed by Harvard University

at the time of import, and either deposited on theNIH registry of embryonic stem cell lines or registeredwith theUKStemCell Steering

Committee. Details of cell lines in this study, including their Research Resource Identifiers (RRIDs), are listed in Table S1. We took

care to authenticate cell lines wherever data were available fromproviding institutions, and noticed that samplesMShef5 andMShef7

were swapped (this has been corrected in our files), and that the XX genotypes of WIBR1 andWIBR6 in this study did not match their

reported XY genotype. We were unable to ascertain the source of this discrepancy due to the lack of ground truth data and have

included a flag in TableS1 to caution users accordingly.

Cell lines that had not been prepared for potential clinical use were acquired and cultured as previously described (Merkle et al.,

2017). Briefly, all cultures were tested for the presence of mycoplasma and cultured in a humidified 37�C tissue culture incubator in

the presence of 5%CO2 and 20%O2. Cell lines were adapted to a common set of culture media by being thawed in the presence of

10 mM Rock inhibitor (Y-27632 DNSK International) into either a 1:1 mixture of DMEM-based medium supplemented with knockout

serum replacement (KSR), and mTeSR1 (Stemcell Technologies) on a substrate of Matrigel (Corning), or KOSR medium on a

irradiated mouse embryonic fibroblasts (MEFs). Cultures were fed daily in the absence of antibiotics or Rock inhibitor, and once

homogeneous cultures with pluripotent stem cell morphology and lacking spontaneous differentiation had been established, they

were maintained in KSR–mTeSR1, passaged with 0.5 mM EDTA in calcium- and magnesium-free PBS followed by gentle trituration
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in KSR–mTeSR1 medium containing 10 m M Y-27632 and re-plating onto Matrigel-coated plates. Cell lines were frozen down in

KSR–mTeSR1 medium containing a final concentration of 10% DMSO and 40% sterile heat-inactivated fetal bovine serum.

METHOD DETAILS

Whole genome sequencing and genotyping
Cell pellets of approximately 1-5 million cells were digested overnight at 50�C in 500 ml lysis buffer containing 100 mg/ml proteinase K

(Roche), 10mMTris pH 8.0, 200mMNaCl, 5%w/v SDS, 10mMEDTA, followed by Phenol:Chloroform precipitation, ethanol washes,

and resuspension in 10 mM Tris buffer (pH 8.0). Genomic DNA from hESCs was processed into ‘‘tagmented’’ Illumina Nextera Flex

libraries. Control whole genomes used to set the FDR for CNV calling were sequenced from libraries prepared by shearing 100 ng

input genomic DNA in 50 mL of solution. For adapter ligation, Illumina paired end adapters were replaced with palindromic forked

adapters with unique 8 base index sequences embedded within the adapter. Size selection was performed using Sage’s Pippin

Prep, with a target insert size of 370bp +/- 10%. Both hESC and control samples were sequenced at the Genomics Platform at

the Broad Institute of MIT and Harvard. All sample information tracking was performed by automated LIMS messaging. Libraries

were quantified using quantitative PCR (KAPA biosystems) with probes specific to the ends of the adapters. This assay was auto-

mated using Agilent’s Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 1 nM. Samples

were then combined with HiSeq X Cluster Amp Mix 1, 2, and 3 into single wells on a strip tube using the Hamilton Starlet Liquid

Handling system. Cluster amplification of the templates was performed according to the manufacturer’s protocol (Illumina) using

the Illumina cBot. Flowcells were sequenced on HiSeqX, then analyzed using RTA2. The target sequencing depth had a

median >25x coverage with paired-end 151 base reads. Sequence data were processed using the Picard pipeline to yield BAM files

aligned to the hg19 reference genome using best practices from GATK software (McKenna et al., 2010). Data from each cell line was

independently processed with the HaplotypeCaller walker and further aggregated with the CombineGVCFs and GenotypeGVCFs

walkers. Genotyped sites were filtered using the ApplyRecalibration walker.

Ancestry, relatedness, and HLA analysis
Genotypes from the cell lines at sites in common with sites genotyped in the 1000 Genomes Project Phase 1 (1000 Genomes Project

Consortium, 2012) and with a minor allele frequency (MA) of at least 1% were selected for relatedness and ancestry analysis. For

relatedness analysis, selected sites were pruned using PLINK 2.0 software (Chang et al., 2015, ‘‘–indep 50 5 2’’ command option)

and estimates for the amount of IBD1 and IBD2 regions were computed (‘‘–genome gz’’ command option). Sample pairs were

considered directly related (parent-child or full sibling) when estimates were between 35% and 70%. For the sibling pairs we iden-

tified, IBS0 values ranged from 0.0019 to 0.0061 and Kinship values ranged from 0.2058 to 0.2845 (Table S1B) with the exception of

the likely half-sibling lines UCLA8 and UCLA9 (Figure 2C).

For ancestry analysis, selected sites were extracted from the dataset, merged with 1000 Genomes Project genotypes, and pruned

using PLINK 2.0 software (‘‘–indep 50 5 2’’ command option). Principal component analysis was then performed for this combined

dataset by computing the pairwise relationship matrix across all subjects (using the plink command ‘‘–make-grm-bin’’), and

computing the principal components using GCTA software (Yang et al., 2011). Global ancestral components for European, African,

Native American, and Asian ancestry were estimated from the first three principal components using a linear model trained by as-

signing full European, African, and Asian ancestry to the appropriate 1000 Genomes population samples, and assigning estimated

ancestry proportions to Latino samples using available published estimates (1000 Genomes Project Consortium, 2012; Maples et al.,

2013). Human Leukocyte Antigen (HLA) genotypewas ascertained by genotyping hESCs for SNPs associatedwith HLA haplotypes in

the CEU ethnic group (De Bakker et al., 2006).

Polygenic risk score (PRS) computations
To compute PRSs, we used summary statistics from studies performed on individuals predominantly of European ancestry. For each

phenotypewith available summary statistics, we computed the score for all availablemarkers with association p-values in the original

study (Bulik-Sullivan et al., 2015) that were less than 0.5 (e.g. 1,218,732 for BMI). PRS’s were computed with established method-

ologies (Purcell et al., 2009) and PLINK 2.0 software (Chang et al., 2015) using genotypes from WGS data. To control for potential

methodological biases, we also calculated PRSs using high-coverage WGS data from unrelated human samples including 383

schizophrenia (SCZ) cases and 489 SCZ controls (Ripke et al., 2014) and adjusted raw PRSs by regressing the first 12 principal

component values to correct for slight biases introduced in the computation of the summary statistics. Principal components beyond

the first 12 did not show significant correlation with raw PRS. Raw PRS values were normalized such that the distribution of PRS

scores from SCZ control subjects had zero mean and unitary standard deviation (SD).

CNV calling from read depth variation
Copy number variants were ascertained and genotyped using Genome STRiP version 2.0 (r2.00.1587, http://www.broadinstitute.

org/software/genomestrip/), using the CNVDiscoveryPipeline with default settings (Handsaker et al., 2015). This software examines

average depth of coverage (DOC) genome-wide to identify chromosomes and genomic regions whose normalized DOC deviated

from the expected copy number of 2 for autosomes, and 2 or 1 for the X and Y chromosomes. After initial CNV calling, quality

was assessed using signal intensity data from Omni 2.5 Microarrays run on 500 individuals from a control cohort (Pato et al.,
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2013). Using the IRS method (Handsaker et al., 2015) we established separate length thresholds for deletions (length threshold =

1117) and duplications (length threshold = 2750) that achieved a false discovery rate under 3% for both categories of CNV in these

control data (Figure S3A). By comparing the number of CNVs called in the cell lines to CNVs called in the control cohort, stratified by

CNV type, length and ancestry, we reasoned that the false discovery rate in the cell lines should be comparable to the estimated

false discovery rate of 3% in the control cohort. To test this assumption, we sequenced 121 hESC lines using the InfiniumPsychArray

(> 500,000 probes), filtered out probes with high intrinsic variability in intensity, and asked which small CNV calls made by DOCwere

supported by probe intensity data from CNVs that contained >1 or >2 DNA microarray probes.

To increase CNV calling power and to enhance quality control, CNV analysis was performed on a combined cohort of 130

sequenced hESC lines and a control cohort consisting of 234 human samples from primary blood that had undergone WGS on

the same platform (Illumina HiSeqX) and to similar depth as the hESC lines. These control samples were selected from the larger

cohort of 500 samples based on their absence of a psychiatric diagnosis (i.e. controls) and their origin from blood as opposed to

lymphoblastoid cell lines to avoid any potential confounds from disease- or somatic mutation-associated CNVs (Pato et al.,

2013). We then separated CNVs into small (1117 bp - 1 Mbp) and large (> 1 Mbp) categories since large variants were uncommon

among similarly-sequenced human samples and therefore more likely to be culture-acquired and potentially deleterious, and manu-

ally confirmed all large CNV calls from hESCs and human control samples.

Identification of large structural variants
To detect large-scale copy number alterations (> 1 Mbp) by sequencing depth of coverage (DOC), we scanned the genome for

segments where one sample was enriched or depleted in depth of sequencing coverage compared to the other cell line samples.

We divided the genome into non-overlapping 100 kbp bins of uniquely-alignable sequence (based on 101bp k-mers) and computed

the normalized depth of coverage using Genome STRiP (Handsaker et al., 2015). For each contiguous range of bins, a Z-score was

computed for each sample over the genomic interval as:

ZðS; IÞ = absðcoverageðS; IÞ�medianðIÞ =MADðIÞÞ
where coverage(S,I) is the normalized depth of coverage for sample S over the interval, median(I) is the median coverage over all

samples and MAD is the median-absolute-deviation. We performed a heuristic search to identify candidate CNV intervals with a

Z-score > 3 that were local maxima for sample S. We required that candidate CNV intervals have sharp boundaries, such that the

depth of coverage for sample S in the next adjacent bin (on both ends of the interval) was more than halfway from the coverage

for S inside the interval to the median coverage of the adjacent bin outside the interval. The final set of large CNVs reported were

selected to span at least 10 bins (minimum length 1 Mbp) and have a Z-score > 5. The boundaries of each CNV were manually

reviewed and adjusted as needed near centromeres or telomeres or to merge adjacent calls. Contiguous but compound variants

were considered as one unique event.

To determine if CNVs detected in hESCs were present in all sequenced cells or in a subset of them, we calculated the likelihood

that the divergence from an integer copy number could have arisen by chance. We set the P value threshold for detecting mosaicism

at 1 x 10-3 since human blood samples had only 2/243 (< 1%) samples with smaller P values (Figure S3B), and otherwise classified

CNVs as fixed. CNV calls made from sequencing depth of coverage analysis were supported by allelic coverage at heterozygous

sites. This was measured at all heterozygous SNPs observed at least five times across the whole dataset and falling outside of

regions exhibiting excessive heterozygosity in the 1000 Genomes project dataset, as these regions might be more prone to mis-

mapping. Each remaining heterozygous allele was then phased using Eagle v2.4.1 +htslib-1.9 (Loh et al., 2016). Phased genotypes

and allelic coverages were then analyzed for allelic imbalances with MoChA version 2020-09-01. Highly confident calls (LOD>20) of

large structural variations (> 1 Mbp) were reported (Table S3). To distinguish acquired CN-LOH events from fixed runs of homozy-

gosity arising from inbreeding or complex chromosomal rearrangement, we considered only events that were mosaic and extended

to the telomere, consistent with CN-LOH formation in culture by a single mitotic crossover event.

Validation of large structural variants
All structural variant calls made by SNP DNA microarray in a published dataset (Canham et al., 2015) were compared to those

500 kbp or larger that were called in this study by DOC analysis. Calls made by SNP DNA microarray had been mapped to the

hg38 reference genome, so variant calls were converted to hg19 coordinates to enable comparison to WGS data. We considered

the 20 variants detected by Canham and colleagues regardless of their size, and found that 15 of them were confirmed by WGS

data. Manual inspection of the five calls made only by SNP DNA microarray showed that three of these calls were likely not true

CNVs, and two were likely explained by the divergent culture histories of cell lines that were sequenced at different passages.

Detection and interpretation of small CNVs
Regions containing large fixed or mosaic CNVs were excluded from small-scale CNV analysis in affected samples to reduce the

potential ‘‘fragmentation’’ of large CNVs into smaller calls. Singleton events were defined as being present only once in any of the

other hESC lines, human samples, or in previously described databases such as the 1000 Genomes Project (1000 Genomes Project

Consortium, 2012).

To ask whether hESCs might be enriched for specific smaller CNVs, we examined the genome-wide distribution of CNVs < 1 Mbp

in hESCs and removed all but one cell line from the sib-ships we identified to control for CNVs shared between first-degree relatives.
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We measured the frequency of each CNV found in the hESCs in two control cohorts: 212 human samples of European ancestry

(GPC1) and 250 human samples of Latino or African American ancestry (CPG2). We identified events that were present in at least

5 hESC lines but that were absent from the European control samples and found in less than 10% of the other control samples.

This analysis identified the known region onChr20q11.21 aswell as four other potentially differentiated CNVs.Manual review of these

four additional regions revealed that they are all in small regions of extreme GC-content with excessive sequencing coverage and not

likely to be real CNVs.

For each cell line, genes overlapping with 5997 CNVs were identified and annotated using the GeneOverlap module in Genome-

Strip 2.0 and GENCODE. The region of overlap (coding vs. exonic vs. intronic) and the type of CNV (deletion or duplication) were also

recorded. 2185 CNVs contained at least some part of an annotated gene (Table S3). Limiting CNV overlaps to coding regions and

UTRs reduced these numbers to 357 deleted (CN < 2) and 321 duplicated (CN > 2) genes, respectively.

Identification of SNVs in hESCs
To ensure reliable assignment of variant function and to confidently identify potentially high impact variants, genotypes were called

jointly in all hESC lines and genotype data were annotated using Variant Effect Predictor version 85 (VEP, McLaren et al., 2016) in Hail

(https://hail.is) with the Loss-of-function Transcript Effect Estimator plugin (LOFTEE, Karczewski et al., 2020). Candidate variants

called by VEP were advanced for further analysis and false positive calls were removed from the VEP variant call set by applying

similar filters used by gnomAD to identify ‘‘high confidence and high quality’’ (HC-HQ) variant calls (Karczewski et al., 2020).

Specifically, we split multiallelic sites and discarded all calls without a ‘‘PASS’’ filter tag as determined by the Variant Quality Score

Recalibration tool (GATK). We also excluded variant sites where not a single sample had high genotyping quality as defined by (Depth

of Coverage >= 10, Genotype Quality >= 20 and Minor allele fraction >= 0.2). Variants in low complexity regions and segmental

duplications were filtered out and only variants that met the gnomAD ‘‘PASS’’ filter criteria or were missing were retained. These

filtering steps resulted in a total of 15.5M high quality variants corresponding to approximately 70% of all variants in the data.

Since VEP annotates individual transcripts, only variants on canonical transcripts as defined by Gencode/Ensembl were included

in downstream analyses. Variants were binned into synonymous, missense and lofs using the following criteria:

LOFS: "frameshift_variant", "splice_acceptor_variant", "splice_donor_variant", "stop_gained"

Missense: "inframe_deletion", "inframe_insertion", "missense_variant", "start_lost", "stop_lost", "protein_altering_variant"

Synonymous: "synonymous_variant", "stop_retained_variant", "incomplete_terminal_codon_variant"

To exclude common variants and to limit our analyses to biologically variant categories, the remaining calls were restricted to

missense and LOF variants with an allele frequency less than 0.001 in ExAC that were bioinformatically predicted to be deleterious

by both CADD (CADD-phred >20) and DANN (>0.99). ClinVar (Landrum et al., 2014) and COSMIC codingmutations (Tate et al., 2019)

were used to further refine the call set to disease relevant variants. Variant interpretation and prioritization was performed using a

series of variant-level and gene level filters described below (‘SNV characterization and prioritization’).

Data portal architecture and implementation
The interactive data portal will run onmost operating systems, andwas implemented using software freely available at https://github.

com/broadinstitute/hscgp. We hope this platform will lay a foundation for interested users to readily produce similar portals to host

their own data. The portal is implemented using Ruby on Rails and usesmongodb for object storage. Docker images are provided for

the Ruby on Rails application and for the mongodb database and these can both be run on any machine or cluster that supports

running docker containers and networking between thems. We utilize the firecloud API to allow sensitive genomic data to be ac-

cessed securely from its storage location on a protected Google Cloud bucket. This architecture ensures that authenticated users

of the application can access loci of interest across genomes of different cell lines without exposing a complete BAM file or passing

unencrypted genomic data between machines.

SNV characterization and prioritization
We used a series of gene-level and variant-level filters to identify SNVs of particular interest to human disease, as described in the

main manuscript text. These filters are derived from publicly-available databases and bioinformatic prediction algorithms and rep-

resented in the columns of Table S4 and detailed below:

Variant details

gene, HUGO gene nomenclature committee (HGNC) official human gene symbol (https://www.genenames.org/);

transcript, Ensembl transcript identifier (https://www.ensembl.org/);

locus, genomic coordinates from hg19 reference, and base of the reference and alternate allele;

chr, human chromosome on which the variant is located;

pos, chromosomal position of the variant in hg19 coordinates;

ref, reference base at this chromosomal position;

alt, alternate base at this chromosomal position;

duplicated_locus, TRUE if the site is multiallelic and has been split.

rsid, reference SNP identifier from dbSNP (https://www.ncbi.nlm.nih.gov/snp/);

worst_csq, worst consequence predicted by VEP

consequence, consequence predicted by VEP
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hgvsp, Ensembl identifier of the affected protein and most likely amino acid change;

hgvsc, Ensembl identifier of the affected transcript and coding change;

homs, file name(s) of hESC line(s) in which the variant was identified in a homozygous state;

hom_count, number of homozygous variant among the 143 analyzed hESC lines;

hets, file name(s) of hESC line(s) in which the variant was identified in a heterozygous state;

het_count, number of heterozygous variant among the 143 analyzed hESC lines;

AC, total number of variant alleles genotyped among the 143 analyzed hESC lines;

AN, total number of alleles at that genomic location genotyped among the 143 analyzed hESC lines;

AF, ratio of variant to total alleles in hESCs;

Variant-level filters

gnomad_global_AC, number of times this variant was present in 15,708 whole genome sequences currently represented in the gno-

mAD database (Karczewski et al., 2020, https://gnomad.broadinstitute.org/);

gnomad_global_AF, ratio of variant to total alleles among the 15,708 whole genome sequences in gnomAD;

exome_global_AC, number of times this variant was present in the ExAC database in 60,706 exomes that are non-overlapping

with the whole genomes represented in gnomAD (Lek et al., 2016, https://gnomad.broadinstitute.org/)

exome_global_AF, ratio of variant to total alleles at this genomic location in ExAC;

cadd_raw, raw score from the Combined Annotation Dependent Depletion (CADD) predictor of variant deleteriousness (Kircher

et al., 2014, https://cadd.gs.washington.edu/);

cadd_phred, scaled phred-like CADD score where the bottom 90% of deleterious variants have a score of 0-10, the next 9% have

scores of 10-20, and so on;

dann, score of variant deleteriousness from the Deleterious Annotation of genetic variants using Neural Networks (DANN) with

scores ranging from 0 to 1 for neutral to most deleterious (Quang et al., 2015, https://cbcl.ics.uci.edu/public_data/DANN/);

fathmm_xf_cod_score, score of likely coding variant pathogenicity from the Functional Analysis Through Hidden Markov Models

(FATHMM-XF) predictor (Rogers et al., 2018, https://fathmm.biocompute.org.uk/);

fathmm_xf_nc_score, FATHMM prediction for non-coding (e.g. splice donor) variants;

fathmm_warn, variant annotation from FATHMM at default sensitivity and specificity thresholds (https://fathmm.biocompute.

org.uk/);

fathmm_cancer, FATHMM prediction of cancer-associated coding variants with annotations at default sensitivity and specificity

thresholds (Shihab et al., 2013, http://fathmm.biocompute.org.uk/cancer.html);

cosmic_id, Catalogue Of Somatic Mutations in Cancer (COSMIC) numerical internal database identifier (Tate et al., 2019, http://

cancer.sanger.ac.uk/);

cosmic_count, number of times the specific variant was reported in COSMIC, where multiple entries denote multiple splice

isoforms;

cosmic_cds, base changes for each of the major splice isoforms of the protein in COSMIC,

cosmic_aa, amino acid changes for each of the major splice isoforms of the protein in COSMIC,

Gene-level filters

clin_def, clinical syndrome(s) associated with defects in the affected gene as reported in the manually-curated ClinVar database

(Landrum et al., 2014, www.ncbi.nlm.nih.gov/clinvar/);

clin_sig, likely clinical significance of the variant based on manual curation of the strength of supporting data in the literature;

clin_vc, variant type;

clin_db, links to databases describing clinical syndrome(s) in greater detail;

MIM, identifier for the clinical syndrome(s) associated with defects the affected gene as reported in the manually-curated Online

Mendelian Inheritance in Man database (http://www.omim.org/downloads, 2019);

Genomic.Location, genomic location of the gene associated with the clinical syndrome(s) described in OMIM;

Haploinsufficiency.Description, annotation of the gene as dosage-sensitive in the manually-curated ClinGen database (Rehm

et al., 2015, http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/);

Loss.phenotype.OMIM.ID, OMIM entries for genes in which gene loss of function is associated with a clinical phenotype;

Dosage, annotation of haploinsufficiency among the 59 genes designated by the American College of Medical Genetics (ACMG)

manual (https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/acmg.shtml),

Fertility_Related, genes described in the literature to be related to fertility (Mallepaly et al., 2017; O’Flynn O’Brien et al., 2010;

Venkatesh et al., 2014);

Imprinted, inclusion of the gene in amanually-curated list of imprinted human genes (http://www.geneimprint.com/site/genes-by-

species);

X-linked dominant, OMIM disease genes that show X-linked dominant inheritance;

Tumor Suppressors, inclusion of the gene in a curated list of tumor suppressors (Zhao et al., 2016, https://bioinfo.uth.edu/

TSGene/);

COSMIC_tier, inclusion of the gene as a COSMIC Tier 1 gene that has an established association to cancer (Tate et al., 2019,

http://cancer.sanger.ac.uk/census/);
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P53_Pathway, inclusion of the gene in the KEGG p53 pathway (Kanehisa and Goto, 2000, https://www.genome.jp/dbget-bin/

www_bget?pathway+hsa04115);

Growth restricting, Top 50 growth restricting genes in hESCs identified by (Yilmaz et al., 2018);

CONDITION, clinical syndrome associated with the gene in the Clinical Genomic Database (CGD: Solomon et al., 2013, https://

research.nhgri.nih.gov/CGD/);

INHERITANCE, reported inheritance of the clinical syndrome associated with the gene in CGD;

COMMENTS, comments associated with the clinical syndrome associated with the gene in CGD;

INTERVENTION.RATIONALE, clinical intervention rationale for the clinical syndrome associated with the gene in CGD;

REFERENCES, references associated with the clinical syndrome associated with the gene in CGD;

Autosomal Dominant, OMIM disease genes that show dominant inheritance;

obs_mis, observed number of missense variants in this gene in gnomAD;

exp_mis, expected number of missense variants in this gene in gnomAD;

mis_z, ExAC score of gene constraint to missense variants where positive scores indicated increased constraint;

oe_mis_lower, 90% confidence interval for the lower bound of observed to expected missense variants in this gene in gnomAD;

oe_mis_upper, 90% confidence interval for the upper bound of observed to expected missense variants in this gene in gnomAD;

obs_lof, observed number of loss-of-function variants in a gene in gnomAD;

exp_lof, expected number of loss-of-function variants in a gene in gnomAD;

pLI, probability of loss intolerance from a LoF mutation from the ExAC database based on expected versus observed LoF

mutations;

oe_lof, mean fraction of observed to expected loss-of-function variants in a given gene;

oe_lof_lower, 90% confidence interval for the lower bound of observed to expected loss-of-function variants in this gene in

gnomAD;

oe_lof_upper, 90%confidence interval for the upper bound of observed to expected loss-of-function variants (LOEUF) in this gene

in gnomAD;

constraint_flag, Flags assigned to constrained genes as defined in gnomad v2.1 (see https://gnomad.broadinstitute.org/faq)

gene_type, Type of constrained gene as per gnomad v2.1 (see https://gnomad.broadinstitute.org/faq)

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis used is described in the main text or Methods Details above.
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