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Background Genome-wide association studies (GWAS) have identified pervasive sharing of
genetic architectures across multiple immune-mediated diseases (IMD). By learning the 
genetic basis of IMD risk from common diseases, this sharing can be exploited to enable 
analysis of less frequent IMDs where, due to limited sample size, traditional GWAS 
techniques are challenging.
Methods Exploiting ideas from Bayesian  genetic fine-mapping, we developed a disease-
focused shrinkage approach to allow us to distill genetic risk components from  GWAS 
summary statistics for a set of related diseases. We applied this technique to 13 larger 
GWAS studies of common IMD, deriving a reduced-dimension `basis’ that summarised the 
multidimensional components of genetic risk. We used independent datasets including the 
UK Biobank to assess the performance of the basis and characterise individual axes. Finally 
we projected summary GWAS data for smaller IMD studies, with less than 1000 cases, to 
assess whether the approach was able to provide additional insights into genetic 
architecture of less common IMD or IMD subtypes, where cohort collection is challenging.
Results We identified 13 IMD genetic risk components. The projection of independent UK 
Biobank data demonstrated the IMD-specificity and accuracy of the basis even for traits with 
very limited case-size (e.g. vitiligo, 150 cases). Projection of additional IMD-relevant studies 
allowed us to add biological interpretation to specific components, e.g. related to raised 
eosinophil counts in blood and serum concentration of the chemokine  CXCL10 (IP-10). On 
application to 22 rare IMD and IMD subtypes we were able to not only highlight subtype-
discriminating axes (e.g. for juvenile idiopathic arthritis) but also suggest eight novel genetic 
associations.
Conclusions Requiring only summary level data, our unsupervised approach allows the 
genetic architectures across any range of clinically-related traits to be characterised in fewer 
dimensions. This facilitates the analysis of studies with modest sample size by matching 
shared axes of both genetic and biological risk across a wider disease domain, and provides
an evidence-base for possible therapeutic repurposing opportunities. 
Word count = 324 (Max is 350).

Background

The collected summary data of genome-wide association studies (GWAS) represent, in a 

compressed form, assays of thousands of phenotypes across millions of common genetic 
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variants.  Analysed individually, GWAS have elucidated the polygenic component of 

common human diseases1 and comparative studies of summary GWAS results have 

highlighted a shared genetic aetiology across different diseases2. Evidence for such sharing 

can highlight opportunities for therapeutic repurposing 3. However, comprehensive overviews

of sharing between multiple diseases are made difficult by the dimension of these statistics 

(100,000s of SNPs), the complex patterns that exist, and the limitation that while all 

dimensions carry information about technical differences between studies (DNA storage, 

processing, and population sampling), only a minority carry information about disease risk. 

Therefore, integrative analyses have typically been approached from one of two angles: a 

variant-by-variant analysis across multiple diseases focusing on individual variants in turn4,5, 

or pairwise analysis of diseases across multiple variants at a regional or genome-wide 

level6,7. Both approaches have limitations. Different variants reflect different patterns of 

sharing across diseases, making generalisations about inter-disease relationships difficult, 

while disease-pairwise approaches make comparison of more than two diseases 

challenging. Thus, a need exists for a framework to study shared genetic architectures 

across multiple variants and between multiple diseases simultaneously.

The GWAS approach explicitly accounts for the number of tests (SNPs) by requiring 

successively larger samples (tens of thousands). Large samples present an insurmountable 

barrier for rare diseases, where efforts have instead focused on searching for rare variants 

of high penetrance through whole exome8 or whole genome9,10 sequencing. Despite this, 

moderate-sized GWAS-style studies of rare diseases have found both polygenic association 

with common variants10,11 and evidence for differential genetic associations between clinical 

subtypes of these rare diseases12. Thus, a need exists to democratise GWAS to less 

common diseases, which may be possible by considering them in the context of more 

common, clinically-related diseases. 
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We propose summarising the multifactorial genetic risks of related diseases in an informed 

dimension-reduction approach. Matrix decomposition, for example via principal component 

analysis (PCA), expresses a matrix as the product of two smaller matrices, and has been 

used extensively as a dimension reduction tool in genetics to summarise population 

structure and address its confounding effects in association studies13. It has also been used 

to explore structure in genetic association with multiple traits, either from different studies 

aggregating signals across nearby SNPs14, or using a linkage disequilibrium (LD) 

independent subset of SNPs from a single cohort15. In either case, the reduced dimensional 

space was used to explore the same datasets as used to define it, with two implications. 

First, GWAS summary statistics are a composite of biological signal, technical noise, and 

sampling variation. Decomposition aims to find axes that maximise variance explained in the

input datasets, and cannot distinguish between these three sources of variability. We 

therefore expect it to magnify technical and random differences as well as biological, a 

problem related to over-fitting in high-dimensional datasets. Second, in this reduced 

dimension space there is no treatment of uncertainty, so whilst we can measure the distance

between diseases, we are unable to formally assess whether that distance significantly 

differs from 0.

Here we propose augmenting PCA of GWAS summary statistics by a Bayesian shrinkage 

approach that mitigates overfitting. Our central aim is to define a reduced dimension space, 

with components that describe different patterns of genetic susceptibility corresponding to 

underlying biological risk factors. In a transfer learning paradigm, we can project 

independent datasets into this space, allowing us to study the distinct and shared genetic 

contributions to related diseases, and use standard statistical techniques to test for genetic 

association of rare diseases or genetic differences between disease subtypes. We use 
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immune-mediated diseases (IMD) as an example of a set of traits with established 

aetiological overlap2 to highlight the potential uses of this method.

Methods

Method for constructing a common genetic basis for related diseases

We aimed to decompose common components underlying susceptibility to a set of related 

diseases using PCA. There are three particular challenges with performing PCA on GWAS 

summary statistics. First, the SNP effect estimates (e.g. log odds ratios, denoted β̂) must be 

on the same scale; second, we must deal with variable correlation between input dimensions

(SNPs) due to LD; and third, while all SNPs are expected to show small deviations between 

studies due to random noise, different genotyping platforms and data processing decisions, 

only a minority of SNPs will be truly related to the diseases of interest.

The uncertainty attached to β̂ depends on both study sample size and SNP minor allele 

frequency (MAF). We adjusted for the variance in β̂  due to MAF, σ 2MAF
❑, as this varies 

between SNPs, but not variance due to sample size, as this would overly shrink smaller 

studies relative to larger. To ensure the disease-relevance of the basis, we wanted to 

preferentially use information from truly associated SNPs, while avoiding double counting 

evidence from SNPs in LD. We therefore dealt with the latter two challenges simultaneously,

using a Bayesian fine mapping technique which calculates the “posterior probability” that 

each SNP is causal for each trait, under the assumption that at most one causal variant 

exists in each recombination hotspot-defined block of SNPs16,17.  Note that the method also 

assumes the causal variant is in the dataset, an assumption likely to be violated without 

dense GWAS data. We thus use the method not to interpret the output as genuine 
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probabilities, but for its side effect of generating a shrinkage weight that naturally adjusts for 

LD. At each SNP, we computed a weighted average of the posterior probabilities across 

input studies to create an overall weight for that SNP, w . w will be close to zero when there 

is no association in a region, limiting the influence of technical noise between studies, and 

will otherwise act to weight associated SNPs according to the extent of LD in a region.  The 

final input for basis creation is a matrix of γ̂=w β̂ /σMAF.

A mathematically detailed summary is given in Additional File 1, and a summary of the 

method is shown in Fig. 1.

Construction of IMD basis

We identified 13 IMD GWAS studies with >6,000 samples of European ancestry for which 

full summary statistics were publicly available (Additional File 2: Table S1). Studies were 

chosen to balance the competing aims of maximising the number of studies, the number of 

SNPs common to all studies, and the number of samples in each study (to minimise noise in

β̂). We selected SNPs present in all 13 studies, with MAF>1% in the 1000 Genomes Phase 

3 EUR data.  We excluded all variants within the major histocompatibility complex (MHC, 

GRCh37 Chr6:20-40Mb) due to its long and complex LD structure, and because SNPs in the

MHC have a profound involvement in IMD susceptibility, and thus the potential to dominate 

the basis. We also excluded SNPs for which the unambiguous assignment of the effect allele

was impossible (e.g. palindromic SNPs). We harmonised all effect estimates to be with 

respect to the alternative allele relative to the reference allele as defined by the 1000 

Genomes reference genotype panel.  After filtering, harmonised effect estimates were 

available for 265,887 SNPs across all 13 selected `basis’ traits (Additional File 3: Fig. S1), 

and additional analyses of a subset of six datasets with dense genotyping showed that these

265,887 SNPs adequately tagged the information available in the full SNP data (Additional 
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File 1). In order to provide a baseline for subsequent analyses we created an additional 

synthetic control trait, for which effect sizes across all traits were set to zero. This can be 

thought of as the limit of a simulated null GWAS as the number of cases and controls tend to

infinity (Additional File 1). We used these to construct two matrices Mand M 'where 

elements reflect raw (β̂) and shrunk effect sizes (γ̂=w β̂ /σMAF respectively, such that rows 

and columns reflect traits (n=14) and SNPs (p=265,887). After mean centring columns we 

used the R command prcomp to carry out PCA of both Mand M ' to generate naive and 

“shrunk” IMD  bases. It is likely that the trailing components of any PCA represent noise, so 

to assess the maximal subset of informative components, we examined the mean squared 

reconstruction error and found that the fewest components needed to minimise this error 

was m=n-1=13  (Additional File 3: Fig. S2). We therefore discarded the final 14th 

component. As in conventional PCA, this basis consists of orthogonal principal components 

(PCs), constructed as linear functions of input β̂, which together provide a lower dimensional

representation of genetic associations with IMD. 

Driver SNPs

We noted that the majority of entries in the p x m  PCA rotation matrix, Q, were close to 0, 

and chose to hard threshold these to 0 for computational efficiency and to identify which 

driver SNPs were relevant to each component.  To do this, using Qk  to represent the kth 

column of Q, we define Qk ( )=Q𝛼 k x I (|Qk|> ) where I () is an indicator function and “x” 𝛼

represents element-wise multiplication.  We quantify the distance between projection with Qk

and Qk( ) by 𝛼

Dk ( ) = 1 - cor (M𝛼 C Qk, MC Qk( ))𝛼 . 
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where MC is the centered matrix of shrunk effect sizes M ', defined above. We chose the 

threshold for each component, 𝛼k, as the largest value  such that D𝛼 k ( ) < 0.001.  Finally, 𝛼

we defined the sparse basis rotation matrix as the matrix constructed from the column 

vectors Qk, k=1,...,m. This identified both driver SNPs which define the support for each 

component, and enabled computationally efficient examination of many traits in the reduced 

dimension space defined.

Projection of independent datasets

We constructed a compendium of publicly available GWAS summary statistics across a wide

range of traits including UK Biobank (UKBB) self-reported traits (http://www.nealelab.is/uk-

biobank, http://geneatlas.roslin.ed.ac.uk/ - Additional File 2: Tables S2-S3), IMD relevant 

GWAS studies (Additional File 2: Table S4), and GWAS of quantitative measures from blood

count data,18 immune cell counts,19 and cytokine levels20 (Additional File 2: Tables S5-S7). 

Disease GWAS data were obtained from the URL given or via request to study authors, with 

the exception of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), 

juvenile idiopathic arthritis (JIA) and psoriatic arthritis (PsA) which are described in Additional

File 4 and data given in Additional File 5, Table S9.

Prior to projection, effect alleles were aligned to the 1000 Genomes reference genotype 

panel.  For traits sensitive to missing data (studies of neuromyelitis optica, NMO,10 and 8 by 

Aterido21 see Additional File 1), we imputed missing variants using ssimp22 (v 0.5.6 ----ref 

1KG/EUR --impute.maf 0.01), otherwise we set effect estimates to zero.  Data were then 

shrunk as for the basis traits (multiplying by w /σMAF), and projected into basis space by 

multiplying by the sparse basis rotation matrix Q.  We report projected results as δ̂ , the 

difference between the projected  β̂ and a projected synthetic control with all entries 0, which
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allows us to make statistical inference about whether its estimand, δ , differs from control. We

calculated variance of δ̂  as described in Additional File 1.

GWAS test multiple null hypotheses of the form β=0 to identify disease-associated SNPs.  

This approach has been extended to test genetic correlation through cross trait polygenic 

score tests. A SNP set and weights are learnt to optimise genetic prediction of a trait of 

interest, and the weighted sums of β are constructed in a second dataset, and tested for 

association with a second trait of interest23. We consider each component in the basis to be 

a polygenic score for an uncharacterised factor contributing to one or more basis input traits.

We looked for an association of the projected traits to any component by testing the null 

hypothesis that the vector δ=0 across all 13 components using a chisquare test (Additional 

File 1: equation 2). This null hypothesis is related to the global GWAS null hypothesis of no 

association, but is restricted to the small number of components identified in the basis, which

are formed as a weighted linear function of a subset of variants. Failure to reject this null 

could reflect either a lack of power (as with all GWAS studies), or a lack of genetic 

association with the common components shared by the basis diseases. We called 

significant associations according to FDR < 0.01, calculated using the Benjamini-Hochberg 

approach, run independently within the broad categories: primary analysis (UKBB self 

reported disease and cancer, plus IMD-relevant GWAS); blood cell counts; cytokines; 

immune cell counts.  This was our primary measure of significance.  We took the same 

strategy to independently calculate FDR for each component individually for additional 

annotation, and traits were considered “component-significant” if they were significant 

(component FDR < 0.01) on that component and overall.

Classification of diseases according to autoantibody status was performed by a specialist 

clinician using available medical literature. This assignment was blinded to the PC1 results.
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Clustering

We used the hclust () function in R to cluster diseases in the basis using agglomerative 

hierarchical clustering according to Ward’s criterion (method=”Ward.D2”) on the Euclidean 

distance between projected locations of each disease in the basis.

Consistency 

We would like to interpret significant results as representing a composite of many small 

effects working in consistent directions. However, false positives could also occur if a single 

SNP with a large weight in the basis is in LD with a SNP with a large effect on the projected 

trait due to chance. To guard against this, we used weighted Spearman rank correlation 

which is robust to such outlier observations to test the "consistency" of each projection on a 

subset of driver SNPs in low LD (r2<0.01), with weights w /σMAF and significance determined 

by permuting the projected values. All projected values are given in Additional File 6: Table 

S10.

Candidate significant driver SNPs

For each of 10 diseases or subtypes with < 2000 cases and significant on at least one 

component (Myasthenia gravis, late onset; eosinophilic granulomatosis with polyangiitis 

[EGPA], myeloperoxidase positive [MPO+], ANCA-negative [ANCA-] and combined; JIA, 

extended oligoarticular [EO], persistent oligoarticular [PO], and polyarticular rheumatoid 

factor positive/negative [RF+ and RF-, respectively]), we selected all driver SNPs on any 

significant component, and calculated the FDR within this set of SNPs as a subset-selected 

FDR.24  We ordered SNPs by increasing values of ssFDR, and deleted any SNPs in the list 

that were in LD (r2>0.1) with a higher placed SNP, leaving a set of unlinked SNPs associated

with each trait shown in Table 1. These were annotated through literature searches.
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Results

A genetic basis for immune mediated diseases 

To illustrate the importance of our informed shrinkage procedure, we built four bases, with 

GWAS summary statistics for the 13 IMDs shrunk differently in each case. We assessed 

their relative performance by projection of matching self-reported diseases (SRD) from UK 

BioBank (UKBB)25 using summary statistics from a compendium provided by the Neale lab  

[http://www.nealelab.is/uk-biobank/], and used hierarchical clustering to examine whether 

expected patterns of similarities between diseases are captured in each reduced dimension 

space. The first was a naive approach without any shrinkage. Here, the UKBB SRD 

clustered with each other rather than their GWAS comparator, suggesting that the structure 

identified related to between study differences other than disease (Fig. 2). In contrast, in the 

basis created with continuous shrinkage, all selected UKBB SRD clearly clustered with their 

GWAS comparators (Fig. 2), suggesting that the structure captured is disease-relevant, such

that UKBB data from relatively infrequent diseases such as type 1 diabetes (T1D) (318 

cases) and vitiligo (105 cases) are projected onto the same vectors as their larger 

comparator GWAS.

To illustrate the importance of using continuous shrinkage, we compared it to hard-

thresholding, as used in the single-dataset decomposition approach, DeGAs,15 which 

replaced β̂ by Z scores, and set Z=0 when the associated p > 0.001. As Z scores are 

standardised β̂, this has the effect of shrinking β̂ towards 0 when uncertainty is high, such as

when allele or disease frequencies are low, which means information from more common 

diseases will dominate. We generated hard-thresholded, LD-thinned bases using either Z 

scores or β̂. For these, some of the structure identified was disease-related for the larger 

GWAS of more common traits (asthma, multiple sclerosis [MS], Crohn’s disease, ulcerative 
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colitis [UC]), but the smaller diseases were dominated by dataset-specific structure 

(Additional File 3: Fig. S3). 

We projected data from three classes of study onto the basis with shrinkage. First, we used 

all self-reported disease and cancer traits from UKBB to characterise the basis components, 

to examine specificity to IMD, and to assess power as a function of sample size: case 

numbers for UKBB self reported IMD range from 41,000 (asthma) to 105 (vitiligo).  Second, 

we used IMD GWAS with smaller sample sizes than used in basis construction, including 

diseases studied in multiple ancestral backgrounds to explore robustness to ancestry 

differences. Third, we used the basis to analyse studies of IMD that are too rare or clinically 

heterogeneous to build large GWAS cohorts. 

Genetic analysis of multiple IMD in reduced dimensions

Across all 312 projected UKBB traits (Additional File 2: Table S2), 27 had significantly non-

zero δ̂  (FDR < 1%). These were overwhelmingly immune-related traits (Fig. 3): no 

significance was observed for traits such as coronary artery disease, stroke, or obstructive 

sleep apnea, confirming the immune-mediated specificity of our basis.  Significant results 

were detected with as few as 105 cases for vitiligo, emphasising the potential of this 

approach to unlock the genetics of rare IMD GWAS.  

Of 28 traits from target (non-UKBB) IMD GWAS, including JIA, NMO, vasculitis and their 

clinical subtypes, 16 were significant (FDR < 1%, Additional File 2: Table S3, Additional File 

3: Fig. S4-S16). We found, reassuringly, that increasing evidence for non-zero  δ  on any 

component correlated with increasing consistency on that component (see Methods) 

amongst disease traits (Additional File 3:  Fig. S17), suggesting that significant results were 
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produced by an average effect over many driver SNPs rather than random overlap of a small

number of driver SNPs with trait-associated SNPs.

We clustered all 28 target traits and all 27 significant UKBB self reported traits to generate a 

visual overview of IMD and associated traits (Fig. 4).  Hierarchical clustering solutions are 

generally unstable, and dependent on the composition of the items to be clustered, as well 

as the method used for clustering26.  While clustering provides only a visual overview rather 

than a formal statistical analysis of trait similarity, it highlighted two small disease groups, 

inflammatory bowel disease (IBD) and EGPA, and two larger groups, one comprising 

autoimmune diseases and the other a heterogeneous cluster containing subgroups centred 

on MS, ankylosing spondylitis (AS), atopy, and traits with only weak or non-significant 

signals. Notably, three studies of AS all clustered together, despite only one having sufficient

sample size for significant results and the three studies representing different ancestries 

(UK-European, International and Turkish/Iranian). 

While our basis was created from predominantly European GWAS, there is an imperative to 

increase ancestry diversity in GWAS27. We undertook a search for available IMD GWAS 

data with coverage of non-European ancestry and identified 6 studies of asthma, RA, UC 

and CD in African and/or East Asian ancestry populations (Additional File 2: Table S8).  

Projecting these onto the basis, we find that all significant points have the same sign of delta

for any given ancestry and PC combination (Additional File 3: Fig. S18). Thus, results are 

consistent across GWAS studies of the same traits in populations with different ancestry 

backgrounds. A broader examination comparing projections of all ~452,000 UKBB subjects 

to the European subset of 360,000 subjects  found that  while the mixed ancestry GWAS 

tended to result in slightly attenuated estimates of δ̂ , the increased sample size also led to 

increased power compared to smaller European GWAS (Additional File 3: Fig. S19). 
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Most disease subtypes clustered together (Fig. 4).  For example, myasthenia gravis, a 

chronic, autoimmune, neuromuscular disease characterized by muscle weakness, has been 

shown to have a bimodal incidence pattern by age, and some genetic associations have 

been identified only for the late onset subtype28.  However, both subtypes fell in very similar 

locations across all components, and cluster together with several subtypes of JIA.

For two other diseases, however, subtypes clustered apart. NMO is a rare (prevalence 0.03–

0.4:10,000) disease affecting the optic nerve and spinal cord for which HLA association is 

established10 and which can be divided according to aquaporin 4 autoantibody seropositivity 

status (IgG+ or IgG-). The projections of seropositive and seronegative NMO showed non-

significant differences on several components, leading to differential clustering. While 

seropositive NMO clustered with the classical autoimmune diseases, most closely with SLE 

and Sjögren’s disease, IgG- NMO clustered away from the classic seropositive diseases, 

most closely with MS. This finding mirrors analysis which directly compared NMO subtypes 

to each of SLE and MS via polygenic scores10, and strengthens the findings by specifically 

suggesting SLE and MS as the nearest neighbours of IgG+ and IgG- NMO respectively, out 

of all IMDs considered for clustering.

JIA is a heterogeneous paediatric disease, with an overall childhood prevalence in Europe of

20/10,00029, and with seven recognised subtypes30. While studies have begun to identify 

distinct genetics of the systemic subtype31 and have shown subtype-specific differences in 

the MHC32, systematic comparison between subtypes has been underpowered.  Although, 

the systemic and enthesitis-related arthritis (ERA) subtypes did not significantly differ from 

controls (despite relatively moderate sample sizes of 219 and 267 cases respectively), they 
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clustered with MS and AS respectively, and away from the other JIA subtypes, which 

clustered with the other autoimmune diseases. 

Association of driver SNPs to rare IMD or subtypes

Given that most of the IMD and subtypes with small GWAS studies have few established 

genetic associations, we sought to exploit the component-level associations above to detect 

new disease associations. Our basis has only 13 dimensions. If genetic susceptibility to rare 

IMD and IMD subtypes overlaps that of common IMD, we can increase power by focusing on

these dimensions. Of 22 diseases or disease subtypes with < 1000 cases, 12 were 

significant (FDR<1%), even with as few as 132 cases (NMO IgGPos). 

Although not a specific goal, the basis generated is naturally sparse (Additional File 3: Fig. 

S20), enabling us to identify 107-373 “driver SNPs” that are required to capture genetic 

associations on any individual component.  We found a strong enrichment for small GWAS p

values at driver SNPs on trait-significant components (Additional File 3:  Fig. S21). Using a 

“subset-selected” FDR approach24, we analysed driver SNPs for 22 significant trait-

component pairs (12 unique traits), and identified 25 trait-SNP associations (subset-selected

FDR < 1%, Table 1) after pruning SNPs in LD.  Twelve of these were genome-wide 

significant (p < 5x10-8) either in this study (4 associations) or in other published data (8 

associations) and a further five were significant in other published analysis that levered 

external data. These included, for example, the non-synonymous PTPN22 SNP rs2476601 

which was associated with myasthenia gravis (overall and the late onset subset) by subset-

selected FDR < 0.01. This SNP was previously associated with myasthenia gravis in a 

different study33, and lack of clear replication in the data analysed here (P=6x10-5) was 

attributed to differences in population structure.  Eight associations (five variants) were not 

previously reported to our knowledge, including associations near IRF1/IL5 for myasthenia 

gravis, near TNFSF11 for RF- JIA and near CD2/CD28 for EGPA.
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Component interpretation

PC1, which explained the greatest variation in the training datasets, appears to represent an 

autoimmune / (auto)inflammatory axis34, also characterised by whether diseases are 

considered antibody ‘seropositive’ or ‘seronegative’ (Fig. 5). The exception is vitiligo, in 

which, despite strong evidence of T cell autoimmunity, autoantibodies are reported but are 

not consistent features of disease35. Weaker but significant association of psoriatic arthritis 

(PsA) among the other seropositive IMD is also consistent with a recent report of novel 

pathogenic antibodies in PsA36. On the inflammatory/seronegative side, we also saw weaker 

but still significant signals for atopy, basal cell carcinoma and malignant melanoma. Both 

malignant melanoma and non-melanoma skin cancer incidence is increased in IBD, but the 

relative role of treatment or IBD itself in driving this is hard to determine37,38. On the 

seropositive side, we saw significant results for pernicious anemia, a disease strongly 

associated with anti-gastric parietal cell and anti-Intrinsic Factor antibodies, as well as with 

autoimmune thyroiditis, T1D and vitiligo39.

To help characterise the biology captured by individual components we projected additional 

datasets: blood counts18, immune cell counts19, and serum cytokine concentrations20 

(Additional File 2: Tables S5, S6 and S7). Testing for consistency identified outliers in the 

blood count data, which had been generated from a much larger sample, and so we 

additionally filtered on consistency in that dataset. These data aided interpretation of two 

further components.

PC13 was striking for the general association of many diseases across all four main clusters 

in a concordant direction, and was the only component for which any projected trait was 

more extreme than any original basis trait (Fig. 6).  The most extreme was EGPA, both 

ANCA+ and ANCA- subtypes. EGPA is  a rare form of AAV (annual incidence 1-2 cases per 
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million) for which genetic differences relating to autoantibody status have been identified12. 

We found PC13 was strongly associated with higher eosinophil counts in a population 

cohort18 (FDR<10-200), suggesting that this component describes eosinophilic involvement in 

IMD. This is consistent with the extreme projection of EGPA which is classified as an 

eosinophilic form of AAV with both asthma and raised eosinophil count included in its 

diagnostic criteria. 

Eosinophils are pro-inflammatory leukocytes with an established role in atopic diseases such

as asthma40, inflammatory diseases such as IBD41, and autoimmune diseases such as RA42. 

Mendelian Randomization (MR) analysis of blood cell traits had previously further associated

eosinophils with celiac disease (CEL), asthma and T1D18. Our analysis thus supports earlier 

findings and extends the list of IMD with genetically supported involvement of eosinophils to 

include EGPA, JIA subtypes, AS, ATD, MS, hayfever and eczema, in agreement with other 

recent findings43. 

PC3 (Fig. 7) was the only component which showed a significant relationship with any serum

cytokine concentration. Higher concentrations of CXCL9 (MIG) and CXCL10 (IP-10), Th1 

chemoattractants and ligands to the regulator of leukocyte trafficking CXCR3, were both 

significant in the same direction as several autoimmune diseases, with strongest signals for 

myasthenia gravis, several JIA subtypes, as well as IBD, CEL, AS and sarcoidosis. IP-10 

and MIG are chemokines, secreted by epithelial and dendritic cells (amongst others), which 

act as chemoattractants for immune cells which express the receptor CXCR3, including Th1 

cells. Both MIG and IP-10 expression at the site of autoimmune target have been implicated 

in the development of autoimmunity44,45 and IP-10 has been observed to be upregulated in 

follicular cells of patients with myasthenia gravis46. Serum IP-10 has also been found to be 
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raised in patients with recent-onset T1D47,48 and Graves’ disease (hyperthyroidism)45, and to 

correlate with increased disease activity in SLE49 and AS50. 

Discussion 

Our motivation in this work was threefold. First, to overcome the problems of dimensionality 

and allow an overview of genetic association patterns from multiple related diseases without 

over-simplification. While previous efforts to relate different traits through GWAS statistics 

have focused on large studies and shown that they can distinguish broad classes of 

immune-mediated, cardiovascular and metabolic diseases,6,14 we have tackled the problem 

of finding structure within a single class of diseases. Unlike other applications of PCA to 

genetics, we split our datasets into “training” and “test” sets, enabling standard statistical 

hypothesis testing and providing robustness against overfitting. Importantly, our method 

allows synthesis of knowledge from different studies, allowing large numbers of cases from 

different diseases to contribute to the constructed dimensions.

Our second motivation was to generate new knowledge in rare IMDs. The number of 

polymorphic human genetic variants together with our understanding that genetic effects on 

human disease are generally modest has led to massive GWAS to overcome the penalty 

that must be applied for multiple testing.  This is simply not possible for rare diseases. One 

of the tools which has enhanced rare disease GWAS is the borrowing of information from 

larger GWAS of aetiologically related diseases12 and our basis serves a similar function 

here. By leveraging information about a SNP’s potential to be IMD-associated, we can both 

increase genetic discovery and place less common diseases in the context of their more 

prevalent counterparts. More generally, studies of SRD are being enabled on a massive 

scale by UKBB51 and 23andMe,52 although studies of such cohorts tend to focus on the more

18



common diseases such as type 2 diabetes (T2D) and coronary heart disease. Our results 

provide reassurance that SRD associations are consistent with those from targeted GWAS 

studies, and extend their utility to IMD and other diseases which are generally found at a 

lower frequency. 

Our final motivation was to extract different axes underlying IMD genetic risk. Work in 

metabolic53 and psychiatric54 diseases have attempted to learn composite factors underlying 

risk of these related diseases through deeper phenotyping of patients before testing these 

factors for genetic association. Alternatively, decomposition of estimated effects at 94 T2D 

risk variants, together with their effects on 46 metabolic traits was used to cluster variants 

into 5 groups, three focused on insulin resistance and two on beta cell function.55 Here, we 

hoped to learn the same sorts of factors by decomposing only summary GWAS data on 

clinical disease endpoints. Our continuous shrinkage weight learnt across all training 

datasets enables us to extract disease-relevant structure, with projected traits lying close to 

their training data counterparts, something achieved with disease-specific hard thresholded 

weights15 for only the largest datasets. 

There are limitations with the method. The assumption of a single causal variant per 

disease, and per LD-defined region, in generating SNP weights is obviously unrealistic. 

However, it is this simple assumption that allows us to process summary GWAS data from 

multiple studies without accurate LD-estimates from each study. The assumption, whilst 

simplistic, has nonetheless been used in both fine-mapping and colocalisation analyses, 

because in most cases it means only the strongest signal in each region is considered per 

disease56. More sophisticated fine mapping methods which can cope with multiple causal 

variants in LD will be required to adapt our method to the MHC which harbours many of the 

strongest IMD effects. A more impactful limitation is likely to be that signals in projected 
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datasets can only be discovered if they are also captured in the diseases used to build the 

basis.  Thus, the careful selection of plausibly relevant traits is important, and a negative 

result for a projected dataset only means no detected association with the identified 

components, and not an absence of genetic association. For example, the relative under-

representation of atopic diseases in our input datasets may underlie the relative lack of 

associations seen for allergy and eczema. The number of available input datasets also limits

the number of components that may be distinguished to the rank of the matrix of shrunk 

effect sizes, which cannot be greater than the number of datasets. For both these reasons, 

future work will seek to expand the number of datasets included to develop a more 

comprehensive IMD basis. 

We found components defined using the largest GWAS studies of IMD we could access 

showed different patterns of association with different disease subsets, emphasising the 

utility of a multi-dimensional view. The autoimmune / (auto-)inflammatory axis in IMD 

represented by PC1 is well documented, with the gradient along PC1 corresponding to a 

shift from auto-antibody seronegative to seropositive diseases. Significant IMD on the 

MIG/IP-10-associated PC3 included both ‘seropositive’ and ‘seronegative’ diseases, 

although not atopy, while all three groups were represented on the eosinophil-associated 

PC13. While these observations support a link between certain IMD and serum cytokine 

levels or blood cell counts, our results do not directly implicate these as causal. Both 

cytokines and blood count data were measured in unselected population cohorts which will 

include individuals with IMD, such that the association with IMD may be causal or 

consequential. For example, we can conclude only that PC3 represents an IMD-related 

process that contributes to serum cytokine levels. Nonetheless, clinical efficacy of MDX1100,

a monoclonal antibody to IP-10, has been demonstrated in RA57 and a dose-response 
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relationship observed in UC.58 Our results suggest IP-10 blockade might also be considered 

in patients with myasthenia gravis, JIA, AS, and sarcoidosis.

Conclusions

Our proposed approach may be considered a form of feature engineering. We represent 

genetic associations for aetiologically related traits using radically fewer features, with 

attached estimates of uncertainty. This enabled us to identify clusters of IMD and nominate 

involvement of IP-10 and eosinophil counts as involved in a wider range of IMD than 

previously suggested. Such observations provide a rationale for potential therapeutic 

repurposing opportunities. Beyond these uses, we expect that reduced dimensional 

representation of multiple genetic association data sets will offer a foundation for other novel 

cross-disease analyses within and beyond the immune-mediated focus here.
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Figure Legends

Fig. 1. Schematic of basis creation and projection. Basis creation: GWAS summary statistics

for related traits are combined to create a matrix, M (n x m), of harmonised effect sizes ( β̂) 

and a learned vector of shrinkage values for each SNP. After multiplying each row of M by 

the shrinkage vector, PCA is used to decompose M into component and loading matrices. 

Basis projection: For an independent set of studies, trait effects are harmonised with respect 

to the basis, shrinkage applied and the resultant vector is multiplied by the basis loading 

matrix to obtain component scores. These component scores can be used for testing 

hypotheses of the form that a weighted average of effect sizes in the test GWAS is non-zero,

because the weights (basis loading matrix) are learnt from an independent set of large 

GWAS.
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Fig. 2. Hierarchical clustering of basis diseases and their UKBB counterparts in basis space 

a unweighted basis constructed using β̂b basis constructed using continuous shrinkage 
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applied to β̂.  Heatmaps indicate projected δ̂  for each disease on each component PC1-

PC13, with grey indicating 0 (no difference from control), and darker shades of green or 

magenta showing departure from controls in one direction or the other. GWAS datasets: T1D

= type 1 diabetes, CEL= celiac disease, asthma, MS = multiple sclerosis, UC = ulcerative 

colitis, CD = Crohn’s disease, RA = rheumatoid arthritis, VIT = vitiligo, SLE = systemic lupus 

erythematosus, PSC = primary sclerosing cholangitis, PBC= primary biliary cholangitis, 

LADA= latent autoimmune diabetes in adults, IgA_NEPH= IgA nephropathy. UKBB_ prefixed

diseases correspond to self reported disease status in UK Biobank.

Fig. 3. Of 312 UKBB self-reported traits projected onto the basis, 27 were significant at FDR 

< 1%, and IMD were enriched amongst this set, with 63% of IMD showing significance 

compared to <3% of non-IMD traits. Each trait projected is shown according to FDR (-log10 

scale, axis  truncated at FDR=10-6 for display) and number of cases.  All IMD (yellow) and all

significant non-IMD traits (grey) are labelled.
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Fig. 4.  Hierarchical clustering of projected diseases significantly different from control (FDR 

< 1\%) or of small sample size. Coloured labels are used to distinguish UKBB (grey) and 

other GWAS (green) datasets. Heatmaps indicate delta values for each disease on each 

component PC1-PC13, with grey indicating 0 (no difference from control), and darker shades

of blue or magenta showing departure from controls in one direction or the other. An overlaid

* indicates delta was significantly non zero (FDR<0.01). Roman numerals indicate clusters 

described in the text. Abbreviations: ANCA- = anti-neutrophil cytoplasmic antibody negative, 

Ank. Spond = ankylosing spondylitis, EGPA = eosinophilic granulomatosis with polyangiitis, 

EO = extended oligo, ERA = juvenile enthesitis-related arthritis, IgGPos = IgG positive, JIA =

juvenile idiopathic arthritis, MPO+ = myeloperoxidase positive NMO = neuromyelitis optica, 
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PO = persistent oligo, PR3+ = proteinase 3 positive, PsA = psoriatic arthritis, RF +/- = 

polyarticular rheumatoid factor positive/negative, SLE = systemic lupus erythematosus, UC =

ulcerative colitis.
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Fig. 5. Forest plots showing projected values for diseases significant overall and on 

components 1. Grey squares dots indicate projected data and 95% confidence intervals. 

38

● birdshot chorioretinopathy
UKBB SLE

● NMO  IgGPos
● NMO  combined

UKBB vitiligo
UKBB diabetic eye disease
UKBB hyperthyroidism thyrotoxicosis
UKBB hypothyroidism myxoedema
UKBB pernicious anaemia

● PsA Spanish
● JIA PsA

UKBB rheumatoid arthritis
● PsA UK

UKBB type 1 diabetes
UKBB addisons disease

● JIA RF+
● Vasculitis MPO+
● Myasthenia gravis early onset
● Myasthenia gravis late onset
● Myasthenia gravis  combined
● JIA undiff 
● JIA EO
● JIA RF−
● JIA PO
● JIA  combined
● EGPA MPO+ 
● EGPA  combined
● EGPA ANCA− 

UKBB crohns disease
UKBB colitis not Crohns or UC
UKBB ulcerative colitis

● NMO  IgGNeg
UKBB multiple sclerosis

● JIA systemic
UKBB malabsorption coeliac disease

● Ank.Spond International
UKBB sarcoidosis
UKBB ankylosing spondylitis

● Ank.Spond Turkish/Iranian
● Vasculitis PR3+

UKBB nasal polyps
UKBB asthma
UKBB hayfever allergic rhinitis

● JIA ERA
● PsA N American

UKBB psoriasis
● methotrexate

UKBB high cholesterol
UKBB hypertension
UKBB diabetes
UKBB emphysema chronic bronchitis

● Uveitis
UKBB allergy hypersensitivity anaphylaxis
UKBB eczema dermatitis
UKBB basal cell carcinoma
UKBB malignant melanoma

*
*

*

*
*
*
*
*
*

*

*

*
*

*
*
*

*
*

P
C

13
*

*
*

*
*

*
*

*
*

*
*

*
*

*
P

C
12

*
*

*
*

P
C

11
*

*
P

C
10

*
*

*
P

C
9

*
*

*
*

P
C

8
*

*
*

*
P

C
7

*
*

*
*

*
*

*
P

C
6

*
*

*
*

*
*

*
P

C
5

*
*

P
C

4
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

P
C

3
*

*
*

*
P

C
2

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
P

C
1

I

II

III

IV



Red dots indicate the 13 IMD used for basis construction and for which no confidence 

interval is available. Points to the right of each line indicate disease classification according 

to whether  they have specific autoantibodies that are either directly implicated in disease 

pathogenesis ("pathogenic") or which are specific to the disease, but not involved in 

pathogenesis ("non-pathogenic"). Diseases that are not associated with specific 

autoantibodies were classified as "none". Abbreviations: ANCA- = anti-neutrophil 

cytoplasmic antibody negative, Ank. Spond = ankylosing spondylitis, EGPA = eosinophilic 

granulomatosis with polyangiitis, EO = extended oligo, ERA = juvenile enthesitis-related 

arthritis, IgGPos = IgG positive, JIA = juvenile idiopathic arthritis, LADA = latent autoimmune 

diabetes in adults, NMO = neuromyelitis optica, PO = persistent oligo, PsA = psoriatic 

arthritis, RF +/- = polyarticular rheumatoid factor positive/negative, SLE = systemic lupus 

erythematosus, UC = ulcerative colitis.
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Fig. 6.  Forest plot of significant traits on PC13 which also shows association with eosinophil 

counts in blood.  Abbreviations: ANCA- = anti-neutrophil cytoplasmic antibody negative, Ank.

Spond = ankylosing spondylitis, EGPA = eosinophilic granulomatosis with polyangiitis, JIA = 
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juvenile idiopathic arthritis, MPO+ = myeloperoxidase-positive, PO = persistent oligo, RF- = 

polyarticular rheumatoid factor negative.
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Fig. 7. Forest plot of significant traits on PC3 which also shows association with serum 

cytokine levels of IP-10 (CXCL10) and MIG (CXCL9). Abbreviations: EO = extended oligo, 

PO = persistent oligo,  RF +/- = polyarticular rheumatoid factor positive/negative, UC = 

ulcerative colitis.
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