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Abstract. We study gravitational wave emission and the structure and
formation of apparent horizons in orbiting black-hole binary systems in higher-
dimensional general relativity. For this purpose we present an apparent horizon
finder for use in higher dimensional numerical simulations and test the finder’s
accuracy and consistency in single and binary black-hole spacetimes. The black-
hole binaries we model in D = 6 dimensions complete up to about one orbit
before merging or scatter off each other without formation of a common horizon.
In agreement with the absence of stable circular geodesic orbits around higher-
dimensional black holes, we do not find binaries completing multiple orbits
without finetuning of the initial data. All binaries radiate about 0.13% to 0.2%
of the total mass-energy in gravitational waves, over an order of magnitude below
the radiated energy measured for four-dimensional binaries. The low radiative
efficiency is accompanied by relatively slow dynamics of the binaries as expected
from the more rapid falloff of the binding gravitational force in higher dimensions.
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1. Introduction

Einstein’s theory of general relativity (GR) in four spacetime dimensions is an
extraordinarily successful theory of gravity and has passed a wealth of tests from solar
system dynamics to the bending of light and the recent detection of gravitational
waves (GWs) by LIGO [1, 2, 3, 4, 5]. While all these tests naturally employ the
theory of general relativity in D = 4 spacetime dimensions, there is a priori nothing
special about the choice D = 4. Rather, D appears merely as a free parameter in the
theory [6] which furthermore preserves its fundamental mathematical properties – well
posedness, diffeomorphism invariance etc. – for any value of D. In recent decades,
higher-dimensional GR with D > 4 has indeed attracted a lot of attention in many
areas of physics research.

Much of the interest in theories with extra dimensions is motivated by the
quest for a unified theory encompassing all physical interactions and dates back to
the pioneering studies of Kaluza and Klein in the 1920s [7, 8]. Extra dimensions
naturally appear in String/M theory [9, 10] and to some extent in Loop Quantum
Gravity [11]. A particularly fruitful concept arising from these developments is
the holographic principle according to which the information of a D dimensional
gravitational system is encoded in its D− 1 dimensional boundary. In the form of the
Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [12] and similar
dualities, holography has inspired a great deal of numerical and analytic explorations
of higher dimensional spacetimes containing black holes (BHs) to gain insight into
phenomena such as confinement phase transitions in gauge theories, non-equilibrium
dynamics of quark-gluon plasma or superconductors; see e.g. [13, 14, 15]. Extra
dimensions also play a critical role in attempts to explain the hierarchy problem of
physics, i.e. the extraordinary weakness of gravity compared to the other fundamental
interactions of physics. In these scenarios, gravity is diluted at sub-millimetre scales
due to the presence of extra dimensions such that the fundamental Planck scale is
lowered from its effective four-dimensional value of about 1019 GeV to the order
of Tera electron volts (TeV) [16, 17, 18, 19, 20]. In these so-called TeV gravity
scenarios, gravity would become the dominant interaction at energies accessible in
particle collisions at the Large Hadron Collider (LHC) or the interaction of cosmic rays
with the Earth’s atmosphere. Despite constraints obtained at current LHC energies
[21, 22], this leaves open the possibility of BH production in controlled experiments
and, thus, a direct search for evidence of extra dimensions [23, 24, 25]. A quantitative
understanding of the dynamics of BH collisions in higherD, particularly the generation
of GWs and the formation of a common BH horizon, is essential in the interpretation
of experimental data [26] and forms one of the main motivations for our work. We
note in this context that constraints on extra dimensions have recently been inferred
by Pardo et al. [27] from the GW170817 [5] observations. These constraints, however,
do not hold for extra-dimensional theories with compact extra dimensions such as the
TeV gravity scenarios mentioned above but rather extend constraints already known
through solar system and laboratory experiments on macroscopic extra dimensions to
astronomical and cosmological scales; see Sec. 4 in [27] for details.

Higher dimensional GR has also motivated a large amount of mathematical
studies and revealed important insight into the theory. The space of solutions to
the Einstein equations is exceptionally rich in D > 4 compared to the standard four-
dimensional case, including topologically non-spherical BH solutions such as black
rings or black Saturns [28, 29], but also results in a wider class of instabilities
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(including generic violation of cosmic censorship) limiting the viability of these
solutions [30, 31, 32, 33, 34]. In a complementary approach, Emparan et al. have
used the dimensionality D as an expansion parameter focusing in particular on the
large-D limit in the resulting series expansion in 1/D [6, 35, 36, 37]. Aside from
probing gravity in generic dimensions, their approach also recovers rather accurately
the physics of GR in D = 4. Further details on all these developments in higher-
dimensional GR can be found in the review articles [38, 39, 40, 41, 26, 42].

A key goal for numerical relativity in any given setting, such as higher dimensions,
is to have a full set of diagnostic tools for that setting. One such tool, and a main focus
of this work, is the ability to find the horizon of a BH. Once we can find the horizon,
we can then find a measure of the BH’s spin and mass, independent of, for instance,
wave extraction calculations. The event horizon of a BH is a gauge independent
object, but one that requires knowledge of future null infinity to compute; see [43, 44].
From a practical point of view, this involves considerable challenges in numerical
time evolutions, and most applications instead resort to the computation of apparent
horizons (AH); we follow this approach here. The AH is a slicing dependent object,
that always lies on or within the event horizon of the BH, defined as the outermost
marginally trapped surface in the spacetime. Developing efficient, accurate horizon
finding has been an important area of research within numerical relativity, especially
in four spacetime dimensions, with key references including [45, 46, 47, 48, 49];
for a review see [50]. Here we follow the work of Alcubierre et al. [45], and
adapt the algorithm used for 4D horizon finding to higher dimensions. AH results
have been reported in some higher-dimensional numerical relativity computations
[31, 51, 33, 34, 34], but the only detailed description we are aware of is given in
the thesis [52] with a focus on topologically ringlike AHs. In this paper we therefore
describe in more detail the algorithm used to find AHs in our simulations of colliding
BH binaries in higher dimensional GR. We apply the AH finder to several types of
stationary BH data, and time evolutions of BH binaries and estimate the numerical
accuracy of the physical results extracted from the horizon. The construction of initial
data describing a BH binary with non-zero orbital angular momentum is a second main
goal of this paper and enables us to compute numerically the AH of a rotating BH
dynamically formed in higher dimensions in a binary coalescence. The only simulations
of higher-dimensional BH binary systems with angular momentum we are aware of
have been reported by Okawa et al [51]. They simulate grazing collisions of BHs in
D = 5 with initial data composed of two superposed boosted single-BH spacetimes
with no application of a constraint solving process. Their study identifies the formation
of super-Planckian curvature in a visible domain in scattering configurations and
determines the scattering threshold for collisions around ∼ 50 % of the speed of
light, but reports no results on GW emission. Here, we present a first exploration
of inspiraling BH binary configurations in D = 6 and contrast its phenomenology
and release of GW energy with that of four-dimensional inspirals as observationally
confirmed through GW150914 and other events detected by LIGO/Virgo.

This paper is organised as follows. In Sec. 2, we set the ground by introducing our
notation and, in particular, the index ranges required in the dimensional reduction
in D > 4 numerical relativity. Section 3 contains the theoretical framework of the
AH computations in D > 4, the particulars encountered in the dimensional reduction
and derives coordinate invariant expressions for extracting the mass and spin in the
limit of stationary BHs. In Sec. 4 we test the consistency and accuracy of the AH
finder by computing horizons of stationary single BH spacetimes. As a further test, we
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calculate the convergence properties of the horizon diagnostics in the merger of orbiting
binaries in Sec. 5. There, we also study the dynamics of binaries with different initial
values of the angular momentum, compute the GW energy emitted in the evolution
and determine the mass and spin of the merger remnant BHs. We conclude with a
summary of our findings and an outlook for future work in Sec. 6. Details of the
construction of Bowen-York type initial data for BH binaries with non-zero orbital
angular momentum are presented in Appendix A.

2. Notation

Let (M, gAB), A, B, . . . = 0, . . . , D − 1, be a D dimensional spacetime, with a
Lorentzian metric that solves the D-dimensional Einstein equations in vacuum, with
vanishing cosmological constant,

GAB = RAB −
1

2
RgAB = 0 . (1)

Here we use units where the gravitational constant and the speed of light G = c = 1.
Following the standard spacetime decomposition of Arnowitt, Deser and Misner
(ADM) [53], in the formulation of York [54], we can write the line element as

ds2 = gABdx
AdxB = (−α2 + βIβ

I)dt2 + 2βIdx
Idt+ γIJdx

IdxJ , (2)

where I, J, . . . = 1, . . . , D − 1 and α and βI denote the lapse function and shift
vector respectively, and γIJ is the induced spatial metric on hypersurfaces given by
t = const. For this choice of coordinates and variables, the Einstein equations (1) result
in one Hamiltonian and D−1 momentum constraints as well as D(D−1)/2 evolution
equations cast into first-order-in-time form by introducing the extrinsic curvature KIJ

through
∂tγIJ = βM∂MγIJ + γMJ∂Iβ

M + γIM∂Jβ
M − 2αKIJ . (3)

For a detailed review of this decomposition see [55, 26].
Fully simulatingD−dimensional spacetimes is a problem that scales exponentially

with the parameter D, so we employ a method of dimensional reduction in order to
alleviate this computational cost. By considering a restricted class of spacetimes
with SO(D − d) rotational symmetry we can use the modified cartoon method
[56, 57], to reduce our (D − 1)−dimensional spacelike hypersurface to an effective
d−dimensional computational domain assuming SO(D − d) isometry. In this case,
the extra dimensions and their impact on the dynamics is encoded in a few extra
variables representing tensor components in the off-domain directions. Specifically,
for the symmetries under consideration here, we can write the spatial components of
a rank-2 tensor TIJ as

TIJ =

(
Tij 0
0 Twwδab

)
, (4)

where i, j, . . . = 1, . . . , d, and a, b, . . . = d + 1, . . . , D − 1 and Tww denotes one
function whose values we only need to know on the d dimensional computational
domain. Tensor components with upstairs indices are decomposed in the same way
and one straightforwardly shows that Tww = γwwγwwTww, while the components of
vectors in the extra dimensions vanish due to the symmetry: V I = (V i, 0).

In the calculations and simulations presented in this paper we set d = 3, restricting
our attention to a class of spacetimes encompassing many of the physical phenomena
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we wish to apply our AH finder to, such as BH-BH inspirals, high energy BH collisions
and BHs spinning in a single plane. We implement the evolution equations in the
form given by Baumgarte, Shapiro, Shibata and Nakamura (BSSN) [58] [59], with the
particular implementation of the BSSN evolution equations in the modified cartoon
formalism used in our code given in [60]. Henceforth, we follow the notation in that
work which we summarise as follows.

• Upper case early Latin indices A, B, C, . . . range over the full spacetime from 0
to D − 1.

• Upper case middle Latin indices I, J, K, . . . denote all spatial indices, inside and
outside the effective three dimensional computational domain, running from 1 to
D − 1.

• Lower case middle Latin indices i, j, k, . . . denote indices in the spatial
computational domain and run from 1 to 3, i.e. xi = (x, y, z).

• Lower case early Latin indices a, b, c, . . . denote spatial indices outside the
computational domain, ranging from 4 to D − 1, i.e. xa = (w4, . . . , wD−1).

• Greek indices α, β, . . . denote all angular directions and range from 2 to D − 1.
• In our simulations we refer to two coordinate systems, a Cartesian system,
XA = (t, xi, xa), and a spherical system Y A = (t, r, φα).

• ∇A denotes the covariant derivative in the full D dimensional spacetime, whereas
DI denotes the covariant derivative on a spatial hypersurface and is calculated
from the spatial metric γIJ .

3. Horizon Finding algorithm

3.1. Horizon finding in higher dimensions

The apparent horizon of a BH is defined as the outermost marginally trapped surface
in the spacetime. Equivalently this is the surface on which the expansion of outgoing
normal null geodesics is equal to 0. In order to find the AH on a spacelike hypersurface
Σ we calculate the expansion Θ = ∇Ak

A of a congruence of null geodesics with tangent
vector kA moving in the outward normal direction to a surface S, with outward unit
normal vector sA. The calculation of the expansion of this congruence in higher
dimensions proceeds identically to the calculation in 4D, and we present it here for
completeness, following the derivation of Gundlach [46]. Consider a D-dimensional
spacetime (M, gAB), with covariant derivative ∇A. We foliate this spacetime with
D − 1 dimensional spacelike hypersurfaces Σt with timelike normal nA. The induced
metric on these hypersurfaces is given by

γAB = gAB + nAnB, (5)

with extrinsic curvature

KAB = −γC
A∇CnB = −DAnB, (6)

where DA is the covariant derivative associated to γAB. Now let S be a closed, D − 2
dimensional, spacelike hypersurface of Σt, with unit outward spacelike normal sA,
which is also normal to nA. γAB induces a metric qAB on S,

qAB = γAB − sAsB. (7)
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Now let us consider the future pointing, null geodesic congruence, whose projection
onto Σt is orthogonal to S and kA. kA satisfies the following equations:

kA∇Ak
B = 0 , kAkA = 0 , qABk

A|S = 0. (8)

In consequence of these conditions, we find that, up to a constant factor here set to 1
without loss of generality,

kA|S = sA + nA . (9)

Now we can express the expansion Θ in terms of (D − 1) + 1 quantities,
Θ = gAB∇AkB = (γAB − nAnB)∇AkB

= γAB∇A(sB + nB)− (kA − sA)(kB − sB)∇AkB

= γAB∇AsB + γAB∇AnB − sAsB∇AnB . (10)
In a coordinate basis adapted to the space-time split, we can write this equation in
terms of spatial components,

Θ = DIs
I + sIsJKIJ −K . (11)

The outermost surface upon which Θ = 0 everywhere will be our AH. It will prove
convenient to parametrize this surface with a function F (xI), such that our surface is
given by the solution to the equation F (xI) = 0 and we can write,

sI =
DIF

|DF |
, |DF | :=

√
DJF DJF , (12)

and Eq. (11) can be reframed as a partial differential equation to be solved for the
scalar F .

In order to evaluate Eq. (11) in the modified cartoon formalism, we must
distinguish between directions inside and those pointing off the 3D computational
domain. We can then use the rotational symmetry in the extra dimensions to
simplify tensors as described in Sec. 2, and furthermore rewrite derivatives in the
extra dimensions in terms of derivatives in our computational domain; the details for
this procedure are given in [60]. The only terms in Eq. (11) that will require such
treatment of extra dimensional components are DIs

I and the trace of the extrinsic
curvature. The latter is directly obtained as K = KI

I = Ki
i + (D− 4)γwwKww while

we write the former as

DIs
I = Dis

i +Das
a (13)

=
DiD

iF

|DF |
− (DiF )(DjF )DiD

jF

|DF |3
+ (D − 4)

∂zF

|DF |z
+
D − 4

2
γww∂kγww

∂kF

|DF |
.

In summary the equation we will use to solve for F is

0 = Θ =
DiD

iF

|DF |
− (DiF )(DjF )DiD

jF

|DF |3
+ (D − 4)

∂zF

|DF |z

+
1

2
(D − 4)γww∂kγww

∂kF

|DF |
+
Kij∂

iF∂jF

|DF |2
−K. (14)

At z = 0 the term ∂zF/z appears ill-defined. According to the regularisation
procedures laid out in Appendix B of [60], however, we can substitute in the limit
of small z

lim
z→0

∂zF

z
= lim
z→0

∂z∂
zF. (15)
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3.2. Minimisation Algorithm

In order to numerically solve Eq. (14), we have extended the minimisation algorithm
provided inside the Cactus Computational Toolkit [61, 62] and described in [45, 63]
to the case of D dimensions with SO(D − 3) isometry. The first step consists in
reparametrizing the function F , restricted to the 3D computational domain, as

F (r, φ2, φ3) = r − h(φ2, φ3). (16)

We can then expand h in terms of real spherical harmonics Ylm(φ2, φ3).

h(φ2, φ3) =
∑
l

∑
m

√
4πalmYlm(φ2, φ3). (17)

The iterative search for a solution starts with a spherical trial function for h, from
which we calculate F , and so Θ, by Eqs. (16), (14). Next, Θ is interpolated onto the
points at which r = h(φ2, φ3), and used to calculate the surface integral of Θ2 over
this 2D surface. Powell’s minimisation algorithm [64] then leads to the values alm for
which this integral is minimised. Once a function F giving a minimum for Θ2 is found,
we must determine whether this is a local or global minimum. Following [45], this is
achieved by recalculating the candidate function F with higher spatial resolution, and
more terms in the spherical harmonic expansion (17). If the value of the integral of
Θ2 continues to decrease to zero, rather than reaching some non-zero limiting value,
it is interpreted as a global minimum and the corresponding F defines the AH. The
horizon surface then allows us to calculate further diagnostic quantities as described
in the next section.

3.3. Black hole diagnostics

Once we have found the AH we wish to extract physical diagnostics of BHs from them.
When we consider stationary BHs, such as those produced by exact initial data (e.g.
Secs. 4.1 and 4.2), we know that the world tube of the AH coincides exactly with
the event horizon, see [65] for the proof in D = 4, and [66] for a discussion of the
generalisation of this, and related proofs, to higher dimensions. For BHs produced as
the result of mergers in our simulations (e.g. Sec. 5.1) we assume that the spacetime
will, after a long enough period of time, be perturbatively close to a stationary BH, and
that in this case the AH will closely approximate the spatial cross section of an event
horizon. We therefore base our calculation of BH mass and spin on the assumption
that the spacetime describes a stationary BH.

3.3.1. Non-spinning Black Holes For illustration, we first consider non-rotating BHs
in D spacetime dimensions. These are described by the Tangherlini metric [67] given
in Schwarzschild coordinates by

ds2 = −
(

1− µ

r̃D−3

)
dt2 +

(
1− µ

r̃D−3

)−1
dr̃ + r̃2dΩ2

D−2, (18)

where
µ =

16πM

(D − 2)ΩD−2
, (19)

is the mass parameter. dΩn is the line element on the unit n-sphere, parameterised
by n angular coordinates, (φ2, . . . φn+1), Ωn is the surface area of the unit n-sphere,
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and M is the ADM mass associated to the spacetime containing the BH with mass
parameter µ. By considering Eq. (18) we can see that the event horizon of the BH is
given by the surface r̃D−3S = µ. We find the area of this surface to be

Ahor =

∫
H

√
qdφ2 . . . dφD−1 = r̃D−2S ΩD−2, (20)

where q = det qIJ , andAhor is the area of the AH, as this is a stationary BH. Combining
this expression with Eq. (19), we find

M =
D − 2

16π
Ω

1/(D−2)
D−2 A

(D−3)/(D−2)
hor . (21)

3.3.2. Spinning black holes The Myers-Perry metric for a singly spinning BH (the
higher-dimensional analogue of the Kerr BH) is given by [68]

ds2 = − dt2 +
µ

rD−5Σ
(dt− a sin2 θ dφ̃)2 +

Σ

∆
dr2 + Σdθ2

+ (r2 + a2) sin2 θ dφ̃2 + r2 cos2 θ dΩ2
D−4 ,

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − µ

rD−5
, (22)

where µ is the mass parameter, and a is the spin parameter. Unlike in 4D, where the
Kerr BH is the unique uncharged rotating BH solution, in higher dimensions other
solutions with the same mass and spin, such as black rings [28], or black Saturns [29]
can exist. In the discussion of binary mergers below, we assume that the end product
is a Myers-Perry BH. As we shall see, this expectation is borne out by the results of
the AH finder. In our notation, the angular coordinates of Eq. (22) are φ2 = θ, φ3 = φ̃
and φ4, . . . φD−1 denote the angular coordinates on the (D − 4)-sphere in the metric.
The ranges of the angular coordinates are θ ∈ [0, π/2], φ̃, φD−1 ∈ [0, 2π] and all other
angles lie in the interval [0, π]. The location of the horizon is given by the largest root
of ∆ = 0

µ

rD−5+

= r2+ + a2 , (23)

and, following a brief calculation, the horizon area is, similarly to Eq. (20), given by

Ahor =

∫
H

√
q dθ dφ̃ dφ4 . . . dφD−1 = rD−4+ (r2+ + a2)ΩD−2 = r+µΩD−2 . (24)

To calculate the spin we will need the equatorial circumference

`e =

∫ 2π

0

√
gφ̃φ̃dφ̃ = 2π

r2+ + a2

r+
= 2π

µ

rD−4+

,

giving us

rD−3+ =
2π

ΩD−2

Ahor

`e
, µ =

Ahor

r+ΩD−2
, a =

√
µ

rD−5+

− r2+ . (25)

Note that Eq. (19) holds also for stationary, spinning BHs. Substituting µ in that
expression in terms of ΩD−2 and Ahor and finally setting `e = 2πrS , r+ = rS for the
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non-spinning limit, one indeed recovers Eq. (21). In order to obtain a dimensionless
quantity for the BH rotation, we follow Eqs. (21), (22) in [38] and define the spin
parameter

j = c
1/(D−3)
J

J

M1/(D−3)M
, cJ =

ΩD−3
2D+1

(D − 2)D−2

(D − 3)(D−3)/2
, J =

2

D − 2
Ma . (26)

For D = 5 this implies j = a/
√
µ and, hence, j = 1 for an extremal Myers-Perry BH. ‡

In D = 4 spacetime dimensions, however, Eq. (26) yields j = aπ/(2µ) = aπ/(4M) and
one might instead use the more standard j ≡ a/M . Since all BH spacetimes discussed
in this work have D ≥ 5 spacetime dimensions, we employ (26) throughout.

4. Computing horizons in single-black-hole spacetimes

The numerical simulations discussed in this and the following section have been
performed with the Lean code [69, 70] based on the Cactus computational toolkit
[61, 62] and using mesh refinement provided by Carpet [71, 72]. The Lean
code was originally developed for BH simulations in D = 4 dimensions, using the
moving puncture method [73, 74], and upgraded to general D spatial dimensions with
SO(D− 3) isometry in [75, 60, 76]. Here we use the modified cartoon implementation
originally presented in [56]; see also [57].

The first two tests of the AH finder involve analytic initial data for spacetimes
containing a single BH. We test a Schwarzschild-Tangherlini BH in 5 dimensions
with initial data constructed using isotropic coordinates, and a 5 dimensional singly
spinning Myers-Perry BH with initial data in Kerr-Schild coordinates. In the first
example we use the horizon mass as a diagnostic for the AH finder, and in the second
we use the horizon mass and spin to analyse the accuracy of our horizon finder.

4.1. Isotropic Schwarzschild-Tangherlini

In Schwarzschild coordinates the Schwarzschild-Tangherlini metric (18) is singular at
the event horizon. These coordinates are not suitable for a numerical computation of
the horizon and we consequently change to isotropic coordinates (see e.g. [77]),

r̃ = r
(

1 +
µ

4rD−3

)2/(D−3)
, (27)

which results in the line element

ds2 = −
(

4rD−3 − µ
4rD−3 + µ

)2

dt2 +
(

1 +
µ

4rD−3

)4/(D−3)(
dx2 + dy2 + dz2 +

∑
a

dw2
a

)
.

(28)
Here r2 =

∑
I
(xI)2 is the isotropic radius and there is now no coordinate singularity

at the horizon. We perform the ADM spacetime decomposition, picking the isotropic
time coordinate as the time coordinate of our foliation, from which we can read off
our initial data,

α =
4rD−3 − µ
4rD−3 + µ

, βI = 0 , (29)

γIJ = δIJ

(
1 +

µ

4rD−3

)4/(D−3)
, KIJ = 0. (30)

‡ For BHs in D ≥ 6 rotating in a single plane, there exists no upper limit for the spin magnitude
and therefore no extremal configuration one might naturally wish to identify with j = 1.
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h/rS 1/8 1/16 1/32
Mhor/MADM 1.001380 1.000237 1.000008

Q Q2 = 4.00 Q = 4.99

Table 1. Measured horizon mass of a Schwarzschild-Tangherlini BH at different
resolutions. The convergence factor Q is computed according to Eq. (31)
and shows good agreement with the value Q2 = 4 expected for second-order
convergence.

We use our horizon finder to calculate the BH mass for a single isotropic
Schwarzschild-Tangherlini BH for a grid configuration with 2 nested grids with
radii {(4, 2) × (), h}, using the notation of Sec. II F in [69], in units of the
Schwarzschild radius rS = µ1/(D−3). Such a small grid would be impractical for
time evolutions. Here, however, the grid merely serves as a discretized subset of
the hypersurface of constant time from which the horizon finder obtains through
second-order interpolation the spacetime metric and extrinsic curvature in its iterative
computation of the outermost trapped surface. The uncertainty in the calculation of
the AH is then dominated by the error incurred in the interpolation and the second-
order discretization employed inside the AH finder.

In order to quantify the accuracy of the AH finder, we vary the grid resolution
h on the inner refinement level and correspondingly increase the number of angular
points in the AH finder from 50 to 200. The results are listed in Table 1 and enable
us to compute the convergence factor Q given by

Q =
M1/8 −M1/16

M1/16 −M1/32
, (31)

whereMh is the value of the horizon mass calculated for a given resolution h. Inserting
the values of Table 1 gives us Q = 4.99, close to the value Q2 = 4 expected for the
second-order discretization in the AH finder.

4.2. 5D Myers-Perry in Kerr-Schild coordinates

As in the case of the Schwarzschild BH, the numerical calculation of the AH of a
spinning Myers-Perry BH requires coordinates that are not singular at the BH horizon.
One such set of coordinates are Kerr-Schild coordinates, in which the metric is written
in the form

ds2 = (ηAB +HlAlB)dxAdxB, (32)

for appropriate H, and null vector lA. Let us specifically consider a D = 5 singly
spinning Myers-Perry BH in Cartesian coordinates (t, x, y, z, w). The spin parameter
is a and the spin lies purely in the x−y plane. Following [68] we can write this metric
in Kerr-Schild form, with the functions in Eq. (32) given by

H =
µr2

ΠF
, Π = r2(r2 + a2) , F = 1− a2(x2 + y2)

(r2 + a2)2
, (33)

and
lA =

(
1,

rx+ ay

r2 + a2
,
ry − ax
r2 + a2

,
z

r
,
w

r

)
, (34)
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a/
√
µ 0.1 0.9

h/rS 1/16 1/32 1/64 1/32 1/48 1/64
Mhor/M 1.0005025 1.0001200 1.0000287 1.0012295 1.0003776 1.0000498
jhor 0.1007076 0.1001868 0.1000571 0.8979883 0.8991569 0.8995459
Q Q2 = 4 QM = 4.02 QJ = 4.19 Q2 = 2.86 QM = 2.60 QJ = 3.00

Table 2. Horizon mass Mhor and the extracted dimensionless spin parameter
jhor = ahor/

√
µ as obtained for a Myers-Perry BH in Kerr-Schild coordinates

(32) in D = 5 with a/
√
µ = 0.1 and 0.9. The bottom row lists the expected

convergence factorQ2 for second-order convergence and the measured convergence
factors Qf = (fh1

−fh2
)/(fh2

−fh3
) for mass (f =M) and spin (f = J). For the

large spin a/
√
µ = 0.9, we require higher grid resolution to find the AH; hence

the different range of resolutions used in the convergence analysis.

where r is given by the solution to the equation lAlA = 0, i.e. r4−r2(ρ2−a2)−a2(z2 +
w2) = 0, where ρ2 = x2 +y2 +z2 +w2. Using the same setup as for the Schwarzschild-
Tangherlini BH we foliate the spacetime with slices of constant Kerr-Schild time, t,
read off the induced metric from the line element, and calculate the initial extrinsic
curvature, which for brevity we do not reproduce here.

In Table 2 we present the calculated angular momentum and mass for the Myers-
Perry BH for different resolutions and spin values. The convergence factors listed in
the table are calculated in analogy to Eq. (31) above and yield good agreement with
second-order convergence, but note that we require overall higher grid resolution to
achieve comparable accuracy if the BHs are spinning.

The computation of an AH is a complex operation which raises the question
of computational efficiency. In our test simulations we find the AH calculation to
be slower by about an order of magnitude compared with Thornburg’s exceptionally
efficient AHFinderDirect [48, 49] in D = 4. In practice, however, we compute AHs
at regular intervals of the order of ∆t ∼ 0.1 rS corresponding to once every 64 or 128
time steps of the innermost refinement level and we find an increase by about 1 % in
physical evolution time relative to the case where we perform the otherwise identical
simulation with the AH finder switched off.

5. Black-hole binaries

We now consider the dynamic formation of a rotating BH through the coalescence of
a BH binary with non-vanishing initial orbital angular momentum or, equivalently,
with non-zero impact parameter b. This study serves two purposes: (i) to test the AH
finder in a dynamic scenario where a rotating BH forms and gradually settles down
into a stationary configuration; (ii) to perform a first exploration of the dynamics of
orbiting BH binary systems in higher dimensions.

Before we quantitatively analyse these configurations, however, we emphasise a
few important points about orbiting binaries in D > 4 dimensions. In general, we
expect this type of BH collisions to yield similar regimes of scattering and merging
configurations in D > 4 as known in D = 4 [78, 79]: below a scattering threshold,
b < bscat, the binary results in a merger while for b > bscat, the constituents will
scatter off to infinity. This behaviour has been observed for D = 5 grazing collisions
in Ref. [51]. Even without numerical simulations, however, we immediately notice
two major differences between inspirals or grazing collisions in D = 4 as compared
with their D > 4 counterparts. (i) Unlike in D = 4, there exist no stable circular
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orbits around a Myers-Perry BH in D > 4 [80], ruling out, for instance, stable
planetary orbits in a D > 4 solar system. Viable gravity theories based on higher-
dimensional GR therefore require some kind of screening mechanism limiting the
impact of extra dimensions to very large or small scales. (ii) The second difference is
of quantitative nature and concerns the relatively weaker gravitational binding force
in binary systems in D > 4. For any BH binary whose orbit begins close to an
unstable circular orbit, this implies correspondingly weaker centrifugal forces and,
thus, that the orbital velocity in the inspiral will be much slower than in D = 4.
This is, of course, a special manifestation of the well-known result that in the large
D limit, there is no gravitational force outside the horizon; cf. [6]. In practice,
both features manifest themselves in the dependence of the binary dynamics on the
initial momentum parameters: (i) we need relatively small initial momenta lest the
binary scatters rather than merges and (ii) without careful finetuning of the initial
momentum, we find it hard to obtain inspirals completing more than a small fraction
of an orbit prior to a rapid plunge phase.

We note that in [51], grazing BH collisions have been studied in 5D. In this work
it was noted that no “zoom-whirl” orbits were found in 5D. These orbits have been
identified in numerical studies in 4D, where inspiraling BHs whirl around each other
for a number of orbits before either merging or scattering to infinity [81, 82, 83, 79].
Though we cannot make a statement on the existence of such orbits generically in
higher dimensions without fully exploring the parameter space of initial momenta and
impact parameters, and in particular investigating high energy grazing collisions, we
note that the sharp transition between scattering orbits and mergers that only involve
a single orbit supports the hypothesis that such zoom-whirl orbits cannot be formed
in higher dimensions.

Bearing in mind these considerations, we numerically model orbiting binaries and
compute the AH of post-merger remnant BHs. We first need initial data describing a
realistic snapshot of a BH binary in orbit.

5.1. Numerically constructed Bowen-York like data for BH inspiral in D > 4

In constructing initial data for spacetimes containing multiple BHs with linear or
angular momentum, we follow the Bowen-York ansatz [84, 85] commonly employed in
D = 4. Assuming a conformally flat metric, the constraint equations are numerically
solved with a particular ansatz to give initial data that approximate boosted or
spinning BHs. Following Yoshino et al. [86] and Zilhão et al. [87] we implement
initial data for 2 Schwarzschild-Tangherlini BHs (non-spinning) each with linear
momentum. Specifically, we extend the formalism of [87] to arbitrary directions of the
initial linear momentum vector and, correspondingly, non-zero initial orbital angular
momentum. We thus construct inspiraling binaries (rather than head-on collisions),
whose coalescence we expect to result in a singly spinning, Myers-Perry BH.

This is achieved by assuming the spatial metric is conformally flat, and the
extrinsic curvature is tracefree,

γIJ = ψ4/(D−3)δIJ , (35)
KIJ = ψ−2ÂIJ , (36)

where ψ is a conformal factor, and ÂIJ is the conformally rescaled trace free part of
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x0/rS jgl h/rS Mhor/M jhor Erad/M tm/rS
A1 3.185 0.1646 1/64 0.9986 0.1597 1.969× 10−3 137
A2 3.185 0.1646 1/96 0.9984 0.1577 1.975× 10−3 136
A3 3.185 0.1646 1/128 0.9984 0.1573 1.975× 10−3 135
B1 6.186 0.1271 1/96 1.0014 0.1215 1.376× 10−3 836
B2 6.186 0.1362 1/64 0.9986 0.1373 1.471× 10−3 2158
B3 6.186 0.1362 1/96 0.9994 0.1356 1.549× 10−3 1738
B4 6.186 0.1362 1/128 0.9997 0.1352 1.558× 10−3 1612
B5 6.186 0.1408 1/96 – – 5.7× 10−5 –

Table 3. Summary of the BH binary configurations simulated in D = 6
dimensions. We characterise a simulation by the initial BH location ±x0, the
initial angular momentum parameter jgl and the resolution h on the innermost
refinement level. The diagnostic variables are the mass Mhor of the common
AH (if one forms), the dimensionless spin parameter jhor of the post-merger BH,
the energy Erad radiated in GWs and an estimate tm for the time to formation
of a common horizon obtained here as the retarded time corresponding to the
maximum in the energy flux dErad/dt. This estimate for tm agrees within a few
rS with the first time the AH finder reports a common AH.

the extrinsic curvature. We then make the ansatz

ÂIJ =
4π(D − 1)

(D − 2)ΩD−2

1

rD−2
(37)[

nIP J + nJP I − nMP
M γ̂IJ + (D − 3)nInJPMnM

]
,

where P I is the momentum vector of the BH and nI is the normal radial vector. Finally
we solve for ψ in the constraint equation by means of an elliptic PDE solver provided
by the Cactus thorn TwoPunctures [88]. For further details on this initial data
see Appendix A.

5.2. Apparent horizons of merged black-hole binary

Based on this initial data construction, we have evolved in D = 6 dimensions the
set of binary configurations summarised in Table 3. In order to obtain dimensionless
numbers, we have normalised the parameters and results for our binary configurations
as follows. Mass and energy are expressed in units of the ADM mass M . Through
Eq. (19) and the relation rS = µ1/(D−3), we obtain the Schwarzschild radius associated
with the value of the ADM mass and we express length and time in units of rS.
Likewise, we use the single BH relation (26) to associate a global, dimensionless angular
momentum parameter jgl to the spacetime’s total angular momentum J . Up to a
geometric factor of order unity, jgl measures the total angular momentum per ADM
mass raised to the power of (D − 2)/(D − 3). In summary, we have

rD−3S ≡ 16πM

(D − 2)ΩD−2
, jgl ≡ c1/(D−3)J

J

M (D−2)/(D−3) . (38)

We first consider the binaries labelled A1 to A3 in Table 3 where two non-spinning,
equal-mass BHs start at positions x0/rS = ±3.185 with opposite linear momentum in
the y direction corresponding to an angular momentum jgl = 0.1646. The grid setup
is {(160, 120, 72, 24, 12, 6)× (1.25, 0.625), hi} and the three simulations differ in the
grid resolution: h1 = rS/64, h2 = rS/96 and h3 = rS/128. The trajectory traced out
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Figure 1. Puncture trajectories of simulations A2, B1, B3 and B5 from Table
3. The crosses (circles) mark the initial BH positions of configurations A2
(B1, B3, B5).

by the binary configuration A2 is shown as the solid, black curve in Fig. 1. Following
the procedure described in [76], we have calculated the energy emitted in GWs in these
simulations and for the post-merger phase (starting at about t/rS = 150), we extract
the spin of the merger remnant as detailed in Sec. 3.3.2 above. The results obtained for
the different resolutions are shown in Fig. 2 together with an analysis of the respective
convergence properties. We find the radiated energy to converge at 4th order and the
spin between 3rd and 4th order which is in agreement with the 4th order discretization
used in the time evolution and indicates that the error budget here is dominated by
the uncertainty of the BH evolution rather than the AH finder itself. This is confirmed
by the relatively larger uncertainties of the mass and spin measurements as compared
with those obtained for the single BH cases in Tables 1 and 2. Comparison with
the corresponding Richardson extrapolated values gives us an uncertainty estimate of
1.8 % (0.5 %, 0.22 %) for the dimensionless spin at low (medium, high) resolution. We
likewise obtain a peak discretization error of 5 % (2 %) for the radiated energy Erad

computed for medium (high) resolution, but note that this error is largely due to the
small differences in the time to merger and the sudden jump of Erad around that time;
the uncertainty in the total radiated energy is smaller, 1 % or less for all resolutions
used here. A further source of uncertainty in the radiated energy is due to finite
extraction radii and determined here as about 2 % following Ref. [89]. Combining
these uncertainties, we obtain for configuration A3 Erad/MADM = 0.199 ± 0.005 %,
about twice as much as the head-on value Erad,ho/MADM = 0.0819 % [90, 76].

5.3. Orbiting BH binaries

The BH binary discussed in the previous subsection completed less than half an orbit
before coalescing into a single BH. This may in part be due to the relatively small initial
separation and we now consider binaries starting from larger initial distance given by
±x0/rS = 6.186. These models are labelled B1-B5 in Table 3, start with angular
momentum parameters jgl = 0.1271, 0.1362 and 0.1408, respectively, and have been
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Figure 2. Analysis of the energy radiated in GWs (top) and the merger remnant’s
dimensionless spin (bottom). For either quantity, we show results obtained for
the three grid resolutions in the lower panel and compare in the upper panel
the differences low-medium vs. medium-high resolution, rescaling the latter by a
factor Q4 = 5.94 or Q3 = 4.11 expected for 4th or 3rd order convergence.

evolved with a grid setup {(640, 320, 160, 120, 72, 24, 12) × (2.5, 1.25, 0.625), hi}.
The table lists the mass and spin parameters Mhor, jhor obtained from the common
AH formed in the coalescence as well as the radiated energy Erad. We also estimate the
time it takes the binaries to merge by locating the peak value of the radiated energy
flux dErad/dt in retarded time. We find these values to be in excellent agreement –
a few rS – with the times the AH finder first finds a common AH. For configuration
B5, we do not find a common horizon which is corroborated by the binary trajectories
shown in Fig. 1. Although we cannot strictly rule out that binary B5 might merge at
a much later time, the blue, short-dashed trajectories corresponding to jgl = 0.1408
indicate a scattering rather than a merging binary. In contrast, binary B1 shows a
behaviour similar to that of A2; the two BHs complete barely more than half an orbit
before merging into a single BH. Increasing the initial angular momentum to the value
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jgl = 0.1362 of case B3, leads to a longer inspiral phase (cf. tm in Table 3), but we
still find the binary to merge after only ∼ 1 orbit.

These findings are compatible with the unstable character of timelike circular
geodesics around BHs in higher dimensions. By finetuning the angular momentum
parameter, it may be possible to obtain binary systems orbiting multiple times before
merger, but small deviations from such a finetuned value appear to result either in
a rapid plunge (case B3) or a fly-by (case B5). We note in this context that the
time-to-merger tm depends rather sensitively on the numerical resolution employed
(cf. cases B2 and B4) while the numerical errors in the other diagnostic quantities
remain small. Close to the threshold that separates mergers from scattering binaries,
even small variations in the angular momentum (such as those arising from numerical
error) can lead to considerable differences in the trajectories. A more comprehensive
understanding of higher dimensional binaries around the threshold value of jgl clearly
requires a larger number of simulations and we propose that the numerical convergence
near the threshold then be tested as in Ref. [79] through sequences of binaries rather
than one individual configuration.

We finally note the drastically different character of the dynamics we observe
here in D = 6 dimensions as compared with four spacetime dimensions. In D = 4 BH
spacetimes have stable circular orbits and variations in the angular momentum lead
to a continuous transition from inspiraling to plunging binaries that complete many
orbits (depending on initial separation); see e.g. Ref. [70]. The attractive character of
quasi-circular orbits has long since been known in D = 4 general relativity as binaries
are more efficient in radiating angular momentum than energy [91]. The D = 6
binaries we have studied here, in contrast, appear to rapidly scatter off each other or
plunge towards merger instead of approaching a quasi-circular orbit.

As a further consequence of the stronger falloff of gravity in D > 4, we note the
substantially weaker amount of gravitational radiation emitted in the D = 6 binaries
studied here: our merging configurations radiate about 0.13 % to 0.2 % of the total
ADM mass, well below the ∼ 3 % found in short inspirals of non-spinning equal-mass
binaries in D = 4 [73]. Also, the energy is radiated entirely in the form of a brief
burst during merger with no significant analogue of the inspiral contribution clearly
perceptible in four-dimensional binaries; see e.g. Fig. 18 in Ref. [92]. The relatively
weaker gravitational attraction in D = 6 implies slow orbital motion and, hence,
inefficient generation of GWs except for the final plunge phase. This is confirmed by
the scattering configuration B5: without the plunge phase, the radiated energy drops
by more than an order of magnitude.

6. Conclusions

In this paper we have (i) developed and tested a module for numerically computing
apparent horizons for topologically spherical BHs in D > 4 dimensions with SO(D−3)
isometry, (ii) generalised the construction of higher-dimensional Bowen-York type
data given in [87] to orbiting BH binaries, and (iii) used these data and the horizon
diagnostics to explore the dynamics of inspiraling BH binaries in higher dimensional
general relativity. Our main findings are summarised as follows.

• The computation of AHs in D = 4 dimensions based on the techniques
of Alcubierre [45] generalise straightforwardly to higher-dimensional numerical
relativity employing the modified cartoon method (Secs. 3.1, 3.2).
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• Mass and spin can be computed directly from the AH’s surface area and equatorial
circumference (Sec. 3.3).

• For analytic single BH data, the AH finder obtains the correct values with an
accuracy of a few times 10−5 even for modest grid resolutions (Tables 1, 2). In
binary evolutions, the error budget is dominated by the discretization error of the
numerical simulation rather than the AH finder itself, leading to uncertainties of
a few percent in the cases studied here (Fig. 2, Table 3).

• The Bowen-York type initial data constructed for axisymmetric BH binaries in
D > 4 in Ref. [87] can be generalised straightforwardly to orbiting binaries
(Appendix A).

• In contrast to theD = 4 dimensional case, we find all BH binary systems modelled
here inD = 6 to either merge after completing about one orbit or less, or to scatter
off each other without forming a common horizon. Without further finetuning
of the initial parameters, we have not found binaries completing multiple orbits.
This observation indicates that the absence of stable circular orbits around higher-
dimensional BHs generalises to binaries with non-linear dynamics (Fig. 1).

• The orbiting binaries here simulated inD = 6 spacetime dimensions radiate about
0.13 % to 0.2 % of the ADM energy in GWs, about twice as much as in head-on
collisions but over an order of magnitude less than their D = 4 counterparts. The
energy is almost exclusively radiated in the brief plunge-merger phase with no
analogue to the inspiral contribution present in D = 4 (upper panel in Fig. 2,
Table 3).

Our numerical study provides a first exploration into the behaviour of orbiting BH
binaries in higher dimensions. Clearly, a much larger set of runs is required for a
comprehensive understanding, especially of the behaviour near the scattering threshold
and the dependency on the number of spacetime dimensions D. Nevertheless, our
results already demonstrate the qualitatively different nature of orbiting BH binaries
in higher dimensions. We opened this work with the observation that the number D
is merely a free parameter in the theory of general relativity. As far as the dynamics
of binary BH spacetimes are concerned, however, the case D = 4 appears to be as
special as the computation of geodesics around BHs suggests.

Aside from studying these dynamics in more detail through larger sets of
simulations, our work points to various other extensions. These include the modelling
of spinning binaries, BH collisions with relatively small impact parameter but much
larger initial boosts, the extraction of angular momentum radiated in GWs and a
multipolar analysis generalising the computation of Kodama-Ishibashi [93] modes from
the axisymmetric case of Ref. [94] to the case of orbiting binaries.
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Appendix A. Numerically Constructed Initial Data for Non Head-On
Collisions

In section 5.1 we have used initial data similar to the well known Bowen-York initial
data in 4D to initialise BHs with linear momentum both parallel to and transverse to
the direction towards the other BH. The form of this data for higher dimensions was
initially proposed in [86, 95], and was explicitly given for momentum only parallel
to the direction of the other BH, and implemented in the reduction by isometry
dimensional reduction scheme in [87]. Here we explicitly describe the implementation
of this data in the modified cartoon formalism, with arbitrary initial momentum in
the computational domain.

In order to construct initial data, we must solve the D constraint equations, one
Hamiltonian constraint, and D − 1 momentum constraints,

H = R+K2 −KIJKIJ = 0 , (A.1)
MI = DJ(KIJ − γIJK) = 0. (A.2)

We first decompose the metric in the manner of York and Lichnerowicz, [96, 97, 98, 99]:

γIJ = ψ
4

D−3 γ̂IJ , KIJ = ψ−2ÂIJ +
1

D − 1
γIJK , (A.3)

where ψ is a conformal factor, and K = γIJKIJ is the trace of the extrinsic curvature.
We assume that the metric is conformally flat, γ̂IJ = δIJ , and the maximal slicing
condition, that is, K = 0, which leads to a decoupling of the Hamiltonian and
momentum constraints,

∂IÂ
IJ = 0, (A.4)

4̂ψ +
D − 3

4(D − 2)
ψ(−3D−5)/(D−3)ÂIJÂIJ = 0 . (A.5)

Here 4̂ is the flat space Laplacian 4̂ ≡ γ̂IJ∂I∂J . Note that the indices on conformally
rescaled quantities, such as ÂIJ are raised with the conformal metric γ̂IJ . Following
Yoshino et al. [86], we take an ansatz for ÂIJ giving a single boosted BH,

ÂIJ =
4π(D − 1)

(D − 2)ΩD−2

1

rD−2
(A.6)[

nIP J + nJP I − nMP
M γ̂IJ + (D − 3)nInJPMnM

]
,

where P I corresponds to the ADM momentum of the BH and nI is the normal radial
vector in Cartesian coordinates given by

nI ≡ xI − xI
0

r
, r2 = δMNx

MxN , (A.7)
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and xI
0 denotes the position of the BH. This ansatz is chosen such that it solves

Eq. (A.4), and reproduces the ADM momentum of a boosted BH. We are then left
with the task of solving Eq. (A.5), an elliptic PDE for ψ. As in 4D for Bowen-York
data, we decompose ψ into a Brill-Lindquist component ψBL [100], which on its own
gives initial data for a static BH, giving the spacetime approximately the correct ADM
mass, and a correction u. For a single BH, this is given by

ψ = ψBL + u = 1 +
µ

4rD−3
+ u, (A.8)

where µ is the Schwarzschild-Tangherlini mass parameter, and r is the radial distance
from the BH. If we wish to solve for more than one BH, clearly Eq. (A.4) is linear in
ÂIJ , so we can superpose 2 sets of extrinsic curvature

ÂIJ

tot = ÂIJ

(1)(P
K

(1), n
L

(1)) + ÂIJ

(2)(P
K

(2), n
L

(2)), (A.9)

where PK

(i) and nL

(i) are the linear momentum, and radial vector respectively,
corresponding to the ith BH. We then let ψ take the same form as above, with the
Brill-Lindquist term modified to include a contribution from the second BH,

ψ = 1 +
µ(1)

4rD−3(1)

+
µ(2)

4rD−3(2)

+ u, (A.10)

where µ(i) and r(i) are respectively the mass parameter of, and radial distance from, the
ith BH. Now we must solve Eq. (A.5) for u, which we achieve using a spectral elliptic
PDE solver detailed in [88, 87], implemented in the Cactus thorn TwoPunctures.

The final step is to identify how ÂIJ simplifies within the symmetry restrictions
we place on our spacetime in implementing the modified cartoon formalism. Without
loss of generality let us consider the case of a single BH with initial momentum and
position

P I = (Px, Py, 0, 0, . . . , 0) , xI

0 = (x0, 0, 0, 0, . . . , 0) . (A.11)

Let us define for convenience

âIJ = nIP J + nJP I − nMP
M γ̂IJ + (D − 3)nInJPMnM , (A.12)

so that
ÂIJ =

4π(D − 1)

(D − 2)ΩD−2rD−2
âIJ . (A.13)

In the modified cartoon approach, we have w4 = . . . = wD−1 = 0, so that the radial
vector has non-vanishing components only in the x, y and z directions. Furthermore,
we use Cartesian coordinates, so that the expressions we insert into Eq. (A.12) are
given by Eq. (A.11) as well as

nI =

(
x− x0
r

,
y

r
,
z

r
, 0, . . . , 0

)
, (A.14)

γ̂IJ = δIJ . (A.15)

We can now calculate the individual terms in Eq. (A.12), firstly for terms inside



Orbiting BH binaries and apparent horizons in higher dimensions 20

the computational domain,

niP j =
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(A.16)

We thus obtain the components

â22 = Py
y

r3
((D − 2)y2 + z2 + (x− x0)2) + Px

x− x0
r3

((D − 4)y2 − z2 − (x− x0)2) ,

â23 = Py
z

r3
((D − 2)y2 + z2 + (x− x0)2) + (D − 3)Px

yz

r3
(x− x0) ,

â12 = Py
x− x0
r3

((D − 2)y2 + z2 + (x− x0)2) + Px
y

r3
(y2 + z2 + (D − 2)(x− x0)2) ,

â33 = (Py
y

r3
+ Px

x− x0
r3

)(−y2 + (D − 4)z2 − (x− x0)2) ,

â13 = (D − 3)Py
yz

r3
(x− x0) + Px

z

r3
(y2 + z2 + (D − 2)(x− x0)2) , (A.17)

â11 = Py
y

r3
(−y2 − z2 + (D − 4)(x− x0)2) + Px

x− x0
r3

(y2 + z2 + (D − 2)(x− x0)2) .

Finally we calculate the off-domain components,

âab =

(
−Px

x− x0
r
− Py

y

r

)
δab ⇒ âww = −Px

x− x0
r
− Py

y

r
, (A.18)

and we note that âIJ is tracefree as expected.
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