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Abstract 

TIlls dissertation examines the collapse of masonry structures in response to large 

suppOli displacements and horizontal ground accelerations. There are two main 

classes of masonry structure: arches that thrust, and supporting elements, such as 

walls and buttresses, which resist the thrust. This dissertation analyses the safety of 

arches and buttresses and identifies the resulting collapse mechanisms due to support 

displacements or horizontal accelerations. In patiicular, this resesarch investigates the 

stability of a masonry arch supported on buttresses and the conditions necessary for 

collapse to occur. Engineers are frequently asked to determine the safety of masonry 

structures that have been severely distOlied over the years, often due to subsidence or 

other long-term movements in the foundations, and this disseliation provides guidance 

in the assessment of such structures. 

The resistance of masonry buttresses to high-level horizontal loads is examined. In 

the case of failure due to overturning, a fracture will develop in the masonry, 

significantly reducing the resistance of the buttress. The capacity is further reduced by 

outward leaning of the buttresses, a common source of distress for masonry structures 

due to movements in the supporting foundations. Based on these considerations, new 

measures of safety are proposed for buttresses under horizontal loading. 

Outward leaning of the buttresses increases the span of the arch or vault. 

Spreading supports will cause large deformations in the arch, which increase the 

horizontal thrust of the arch and may lead to collapse. In addition, lateral ground 

accelerations can cause the collapse of arches. The influence of seismic action can be 

approximated to first order by equivalent static analysis to determine the initial 

collapse mechanism. These problems are analysed for circular masonry arches, and 

the collapse conditions are identified for various geometries. 

The findings are combined to investigate the stability of the masonry arch 

supported on buttresses. The safety of the system is examined by studying the 

influence of imposed displacements. As the buttresses lean, the thrust of the vault 

increases and the resistance of the buttress decreases. The collapse mechanisms are 

identified for both the static case of leaning buttresses and the dynamic case of 

horizontal acceleration. This analysis illustrates that the arch will collapse and the 

buttresses will remain standing in most cases. 

Based on these considerations, new methods are proposed for assessing the safety 

of masonry structures and determining the influence of future movements on the 

stability of existing masonry structures. 
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NOTATION 

Notation 

The following is a list of abbreviations used in this dissertation: 

b = width of buttress at base 

d = rise of arch from intrados hinge to apex (crown) hinge at extrados 

e = vertical height of buttress fracture from the overturning hinge 

Is = assumed static coefficient of friction for stone on stone (~O. 7) 

g = acceleration of gravity (9.81 mls2
) 

h = height of applied force from base of buttress 

hb = total height of a rectangular buttress 

H = horizontal force applied to a buttress due to the thrust of an arch 

Ha = applied horizontal force 

Hcr = horizontal force to initiate the fracture in a buttress 

Hlllax = the maximum thrust provided by an arch 

Hili in = the minimum thrust provided by an arch 

Hredllc/ion= the reduction in thrust capacity of a buttress due to leaning 

Hs = horizontal force to overturn a solid (unfractured) buttress 

HII = horizontal force causing failure of the buttress 

Hifi = horizontal force causing failure of a buttress leaning by an angle rjJ 

Hsifi = horizontal force to overturn a solid buttress leaning by an angle rjJ 

Hificr = horizontal force to initiate the fracture in a leaning buttress 

1 = location of instantaneous centre for the central portion of an arch 
mechanism 

la = horizontal centroid of half of arch measured from intrados hinge 

L = span of arch 
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NOTATION 

Mi = weight of individual arch segments between hinges in an assumed 
mechanism 

Ms= stabilising moment due to the weight of the buttress and the veliical 
force about the point of possible overturning 

Msrjl = stabilising moment due to the weight of the buttress and the veliical 
force about the point of possible oveliurning for a leaning buttress 

t = radial thickness of a circular arch 

R = radius of a circular arch measured to the centre-line of the arch 

SF/ood = load factor of safety 

SFpressllrepoill1 = pressure point factor of safety 

SFRonkine= Rankine's measure of buttress safety based on eccentricity of thrust 
at base 

v = vertical force applied to a buttress (due to weight of half of the arch) 

W = weight of the buttress above the section being considered 

Wb = total weight of the buttress 

Wc = weight of ineffective, fractured region of a buttress 

Wo = weight of the unfractured, upper pOliion of the buttress 

x, y = system of Cmiesian space coordinates 

Xb = horizontal centroid of solid buttress measured from point of 
overturning 

Yb = vertical centroid of a solid buttress measured from the base 

y = vertical centroid of solid buttress measured from base including all 
vertical load, such as the weight of the vault, V 

a = half angle of embrace of a circular arch 

all/OX = maximum possible half angle of embrace for a given thickness ratio 
before a circular arch will collapse at the minimum thickness limit 

/3 = angle of intrados hinges in a circular masonry arch measured from 
the apex 

/30 = initial intrados hinge location for a slight spreading of the supports 



NOTATION 

Mi = weight of individual arch segments between hinges in an assumed 
mechanism 

Ms = stabilising moment due to the weight of the buttress and the vertical 
force about the point of possible overturning 

Msr/l = stabilising moment due to the weight of the buttress and the vertical 
force about the point of possible overturning for a leaning buttress 

t = radial thickness of a circular arch 

R = radius ofa circular arch measured to the centre-line of the arch 

SF/oad = load factor of safety 

SFpressllrepoil1f = pressure point factor of safety 

SFRankil1e= Rankine's measure of buttress safety based on eccentricity of thrust 
at base 

v = veliical force applied to a buttress (due to weight of half of the arch) 

W = weight of the buttress above the section being considered 

Wb = total weight of the buttress 

Wc = weight of ineffective, fractured region of a buttress 

Wo = weight of the unfractured, upper portion of the buttress 

x, y = system of Cartesian space coordinates 

Xb = horizontal centroid of solid buttress measured from point of 
oveliurning 

Yb = vertical centroid of a solid buttress measured from the base 

y = vertical centroid of solid buttress measured from base including all 
vertical load, such as the weight of the vault, V 

a = half angle of embrace of a circular arch 

all/OX = maximum possible half angle of embrace for a given thickness ratio 
before a circular arch will collapse at the minimum thickness limit 

fJ = angle of intrados hinges in a circular masonry arch measured from 
the apex 

Po = initial intrados hinge location for a slight spreading of the supports 

V111 



NOTATION 

/3" = intrados hinge location at collapse due to spreading of the supports 

rjJ = angle oflean of buttress (in radians typically) 

rjJlIIGX = maximum angle of lean of fractured buttress before overturning (at 
H=O) 

r = depth-density of buttress (typically in units of kN/m2) 

r = angle of applied acceleration measured from the vertical 

17 = pressure point co-ordinate at horizontal section through the buttress 

170 = initial pressure point co-ordinate due only to vertical forces (H=O) 

17e/' = pressure point co-ordinate to initiate a fracture in the buttress 

17r/J = pressure point co-ordinate for a buttress leaning by an rjJ 

A = constant horizontal acceleration factor (multiplied by gravity) 

Alliin = minimum constant horizontal acceleration to form a collapse 
mechanism in a masonry structure 

= coefficient of height at which the force is applied to a rectangular 
buttress 

() = angle of inclination of the fracture measured from horizontal 

c; = fracture height divided by height of applied horizontal force for a 
rectangular buttress 

I.f/ = ratio of vertical load to the buttress weight for a rectangular buttress 
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C HAPTER I INTRODUCTION 

Chapter 1 Introduction 

1.1 Introduction 

The safe design of structures is based on a reliable understanding of their collapse state. 

Modern engineered structures depend on their ductility to warn of impending collapse 

and to absorb energy in the event of overloading. Having confidence in the failure 

modes for reinforced concrete and steel structures allows engineers to design and assess 

the safety of these structures. 

Engineers do not have the same confidence in assessing the safety of unreinforced 

masonry structures. Unlike ductile materials, such as steel or reinforced concrete, 

masonry does not have the capacity to absorb energy through yielding. The modes of 

collapse for masonry structures are not well understood, particularly under the influence 

of seismic loading. Furthermore, engineers have not investigated collapse modes 

induced by large support displacements that may occur progressively over time, which 

are a significant concern for historic buildings. This thesis investigates the influence of 

support displacements and horizontal accelerations on the safety of vaulted masonry 

buildings. 

Existing masonry structures present a serious problem for the structural engineer, who 

often has no experience with unreinforced masonry structures. For masonry buildings, 

the applied loads such as wind or snow loading are often small in relation to the weight 

of the structure, and the deformations due to these applied loads are very small. But in a 

masonry vault supported on buttresses, the actual dist0l1ion of the structure with respect 

to its as-built shape, can be very large, often exceeding 300 mm in the case of large 

churches or cathedrals. These distortions tend to increase throughout the life of the 

structure, usually on account of foundation movements. The collapse condition of such 

structures may depend on the size of these slowly-increasing displacements, and not on 

the magnitude of the applied loads. Finally, the safety of traditional masonry structures 

depends on their stability, rather than on the strength of the material (Heyman 1995). 

For all of these reasons, structural engineers often have difficulty assessing the safety of 

historic masonry buildings. 

. .... ,' 
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C HAPTER I INTRODUCTION 

This dissertation proposes new methods for the analysis of masonry structures based on 

the introduction of displacements and the application of horizontal accelerations. 

Displacements and accelerations will de-stabilise the system and lead to an unsafe 

condition in which the structure will collapse. For the approach outlined in this 

dissertation, the analyst must apply equilibrium, kinematics, and simplifying 

assumptions about the masonry material. 

1.2 Statement of Problem 

The collapse of a masonry structure may be caused by one of three general actions: 

1) applied loading (as in the overloading of a masonry bridge); 

2) applied displacements (as in the differential settlement of foundations); or 

3) applied ground accelerations (as in the case of a strong eatthquake). 

Engineers have already explored the first action in some detail, particularly for masonry 

bridges. Overloading is generally not a problem for masonry buildings such as vaulted 

cathedrals. The second action is a very real problem, particularly due to the long-term 

movements of the deformable foundations of a masonry building. Likewise, ground 

accelerations as a result of seismic activity are also a significant threat to masonry 

structures. This disseliation focusses on the second and third actions, and seeks to 

determine the influence of applied displacements and applied accelerations on the 

stability of masonry structures. 

Traditional masonry structures consist of arches that thrust, and buttresses which resist 

the thrust. The thrust of the vault will deform the structure, and may cause large 

displacements in the buttresses, often due to creep in the non-rigid foundations. An 

example of the deformed state of such a structure is illustrated in Figure 1.1. Most 

commonly, the buttresses will lean outwards, causing: 

1) an increase in the span of the vault; 

2) a sagging deformation in the arch (or vault) to accommodate the span 

increase, involving a decrease in the rise of the arch; and 

3) an increase in the arch thrust. 

As a result of this change in geometry, the thrust of the arch can increase substantially. 

The increased thrust can cause further leaning of the buttress, and this geometrical 

change can eventually lead to collapse. This is a typical pathology in existing masonry 

3 



CHAPTER I INTRODUCTION 

arches and vaults supported on leaning buttresses (Huelta and L6pez 1997; Medero et 

al. 1998; Boothby 2001). Furthermore, the leaning buttresses produce 'eccentric loads on 

the foundations, which will lead to increased deformations over time. 
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Figure 1.1 Severe deformations in a barrel vault, Guimarei, Spain (Huerta and L6pez 1997). The upper 
diagram shows the church as built, with buttresses of uniform thickness. The lower diagram shows the 
current conformation, in which the outer stepped buttresses were added later in an attempt to reinforce the 
severely deformed church. 

This disseltation proposes methods for the collapse analysis of a masomy arch 

supported on buttresses. This structural form is one of the oldest methods of 

construction, and it is a common structural system in historic buildings throughout 
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CHAPTER I INTRODUCTION 

Europe and much of the world. Yet, engmeers have not previously examined the 

changes in geometry that can lead to the collapse of buttressed arch structures. This 

disseliation is a first attempt to do so. 

1.3 Collapse of Masonry Structures 

The collapse of masonry structures is a question of stability, not strength. A simple 

voussoir arch such as a masonry bridge will fail due to the formation of a mechanism of 

collapse, and not due to the failure of the material. Thus, masonry structures derive their 

safety from the geometry of the structure, and not from the strength of the material. 

Danyzy's experiments in France in 1732 illustrated examples of possible collapse 

mechanisms (Figure 1.2), which form due to hinging between the blocks (Heyman 

1995). 
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Figure 1.2 Collapse mechanisms in masonry arches from experiments by 
Danyzy in 1732 (Heyman 1995). 
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The engineer must assess the capacity of a masonry structure for increased 

displacements, in addition to increased loads. For masonry bridges, and for particular 

masonry buildings, large applied loads may cause collapse. But for masonry buildings 

in general, and masonry vaults in particular, engineers must also determine the applied 

displacements which would cause collapse. However, researchers have neither 

investigated the de-stabilising effects of progressive geometry changes nor developed 

measures of structural safety based on the effects of increased support displacements. 

Heyman discusses the tendency of masonry buildings to drift over time, and summarises 

the problem with the statement: " ... the overall dimensions of a masonry structure can 

only grow, never decrease" (Heyman 1995). For the current analysis, it is sufficient to 

state that the displacements are imposed on the structure by a hostile environment. This 

disse11ation is not primarily concerned with the source of these displacements -- usually 

creep in the foundations -- rather it seeks to find the magnitude of displacements to 

cause collapse. Although the applied load does not change, imposed displacements can 

lead to the collapse of masonry structures. The engineer must understand the prior 

movements in a masonry structure and investigate the implications of increased 

displacements. 

1.4 Motivations for Research 

This research was motivated by three primary factors: 

1) The growing significance of historic masonry structures, whose economic 

and cultural imp0l1ance is vital throughout Europe. In 1997, the partial 

collapse of the masonry vault in the Basilica of St. Francis in Assisi, Italy 

caused the loss of human life, irreplaceable artwork, and tourist revenue 

(Croci 1998). 

2) To date, researchers have not developed satisfactory methods to determine 

the collapse state and to assess the safety of masonry buildings. In particular, 

researchers have not explored the load-capacity of masonry buttresses, and 

the general conditions which will cause masonry vaulted structures to 

collapse. 

3) Researchers have not sufficiently examined the effect of geometry changes 

or imposed accelerations on masonry structures. Research efforts have 

emphasised the load capacity of masonry structures, rather than their 

capacity to sustain imposed displacements or for ground accelerations. 
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In attempting to address these problems, the current study aims to develop new methods 

for assessing the structural safety of masonry arches supported on buttresses. 

1.5 Summary 

This dissertation investigates the collapse of masonry arches supported on buttresses. 

The analysis begins with Heyman's general principles of limit analysis, and extends the 

approach to consider the collapse conditions for masonry buttresses and the influence of 

progressive displacements as well as horizontal acceleration for masonry arches. This 

dissertation aims at determining the magnitude of displacements necessary for the 

collapse of buttresses, arches, and buttressed arches. In addition, a method for assessing 

the seismic resistance of masonry structures is proposed, based on the minimum value 

of horizontal acceleration to form a collapse mechanism. 

Chapter 2 reviews the relevant literature and discusses the current state of the structural 

analysis of masonry structures. Previous work on the resistance of buttresses and the 

collapse of buttressed arches is reviewed and assessed. 

Chapter 3 determ~nes the resistance of an isolated masonry buttress to lateral loads, and 

investigates the factors influencing the load capacity of a buttress. The failure of a 

buttress under lateral loads is characterised by a fracture, which separates the buttress 

and reduces the resistance of the buttress. A method is proposed for predicting this 

surface of fracture and computing the resistance of buttresses to lateral loads. 

Chapter 4 examines the influence of leaning on the lateral force which the buttress can 

provide. The vertical buttress provides the maximum resistance, and as the buttress 

rotates away from the applied load, the capacity of the buttress decreases. In addition, 

this chapter proposes new measures of safety for masonry buttresses under lateral loads, 

taking into account the influence of leaning. 

Chapter 5 analyses the collapse conditions for an isolated circular masonry arch on 

spreading supports. This is equivalent to the case of a masonry arch supported on 

progressively leaning buttresses, in which the lean of the buttress causes the span of the 

arch to increase. For this problem, the lean of the buttress is assumed as given, and is 
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slowly increased until the arch collapses. The aim IS to determine the mcrease m 

horizontal thrust as the arch is deformed until collapse. 

Chapter 6 determines the minimum constant lateral acceleration to cause collapse of the 

circular masonry arch under its own weight. This is equivalent to an idealised seismic 

loading, and can be used to estimate the magnitude of peak ground acceleration 

necessary to form a collapse mechanism. 

Chapter 7 investigates the collapse state for a masonry arch suppOlied on buttresses. 

This chapter combines the results of Chapters 3, 4, 5, and 6 to investigate the stability of 

a circular arch supported on masonry buttresses. The influence of buttress leaning is 

determined, and the collapse state for various configurations is illustrated. The same 

structural configurations are analysed for constant lateral acceleration and the collapse 

state is identified. The aim is to determine the general patterns of behaviour and the 

likely failure modes for buttressed arches. 

Chapter 8 proposes measures for the structural safety of buttressed arches. Based on the 

findings of the earlier chapters, new methods are proposed for assessing the safety of 

existing buttressed arches. To illustrate the methods, a simple case study is introduced 

and discussed. 

Chapter 9 provides general conclusions and outlines future work in this field. 
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Chapter 2 Literature Revie\v 

2.1 Theory of Masonry Structures 

There are two dominant theories for the structural analysis of masomy: elastic 

analysis and limit analysis. Both theories require the analyst to make assumptions 

about the material propel1ies and supp011 conditions. However, classic elastic analysis 

requires numerous assumptions, many of which are not justifiable for masomy 

structures. Limit analysis of masomy structures requires only three simplifying 

assumptions, which reflect the true nature of umeinforced masomy, and can be easily 

verified if necessary (Hey man 1966, 1995, 1998). 

2.1.1 Limit Analysis of Masomy Structures 

The three well-known assumptions required to apply limit analysis to masomy are: 

1) masomy is rigid; 

2) masomy has no tensile strength; and 

3) sliding failure does not occur. 

The first assumption is reasonable because the stresses in traditional masomy 

structures are exceedingly low; typically at least an order of magnitude below the 

failure stress of the material. Furthermore, the strains are exceedingly small and the 

material deformation is an order of magnitude or more below the deformations 

imposed by the environment. The second assumption is slightly conservative, but is 

accurate. Stone is very weak in tension, and mortar joints do not provide significant 

tensile resistance between stones. The final assumption is generally true, since the 

very high friction between stones is sufficient to prevent sliding in most cases. 

Naturally, there are some exceptions to these assumptions, and the analyst must check 

their validity in each particular case (Heyman 1995). These three assumptions lead to 

simple computations which provide accurate predictions of the actual behaviour of 

masomy structures. 

The simplest problem in masomy structure is the arch. The thrust of the arch may lead 

to small changes in the support conditions and a small increase in the length of the 

span. The arch must adapt to this small increase in span by forming hinges, or cracks, 
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between the individual VOUSSOlrs (as in Figure 2.1). This is the stable state of a 

masonry arch, and cracking is the natural way that masonry adjusts to small and 

inevitable changes in the boundary conditions. Figure 2.1 illustrates a voussoir arch, 

which has responded to a small increase in the span length by forming three hinges. 

The voussoirs are considered to be rigid, and the structure is safe as long as a "line of 

thrust" can be found within the masonry. The line of thrust represents the line of 

forces within the arch due to the applied loads, which will be discussed in detail in 

Chapter 5. In Figure 2.1 the line of thrust is illustrated as a dashed line, where the 

applied load is simply the self-weight of the arch. 

H H 

v v 

Figure 2.1 Stable state ofa cracked voussoir arch (after Heyman 1995). 

The three-hinged arch is statically determinate, and the thrust of the arch can be 

determined uniquely for the given geometry from statical equilibrium. There is no 

question of being able to compute the exact stresses in the masonry. Importantly, limit 

analysis procedures begin with the deformed shape of the structure, i.e. the current 

configuration of the structure, and seek to demonstrate its safety. 

2.1.2 Elastic analysis of masonry structures 

Since Navier (1826) introduced the idea of elastic analysis to determine the stress 

state in statically indeterminate structures, engineers have applied elastic analysis to 

the design and assessment of structures. Elastic analysis assumes that the material is a 

continuum, which behaves as a linear-elastic solid. The method is inappropriate for 

assessing masonry structures for the following reasons: 

10 



CHAPTER 2 LITERATURE REVIEW 

1) The deformations in masonry structures are not due to elastic deformations 

of the masonry material, and cannot be predicted satisfactorily by an 

elastic analysis. 

2) The exact stress state is unknowable in a masonry structure, due to the 

unlmown loading history, boundary conditions, and material properties. 

3) The material is heterogeneous, and is separated by joints and fractures 

throughout, making it unreasonable to model as an elastic continuum. 

For example, the hinged masonry arch in Figure 2.1 cannot be explained by use of 

linear elastic analysis, though it is among the simplest and most common problems in 

masonry structure. In 1927, a Harvard professor of engineering argued against the use 

of elastic analysis for masonry, writing "to apply the elastic theory even to the 

reinforced concrete arch is illusory, and a vain seeking after exactness where 

exactness is impossible" (Swain 1927, p. 423). 

Swain's comments foreshadow the theorems of limit analysis, which were developed 

and refined in the 20th century (Heyman 1998). This thesis will follow in the tradition 

of limit analysis by using equilibrium, combined with kinematic analysis of 

mechanisms, to examine the safety of masonry structures. The problem is to define 

the stability conditions for rigid-block structures using conventional structural 

mechanics. 

2.2 Methods of Analysis 

To investigate the de-stabilising influence of displacements on masonry structures, 

limit analysis provides a theoretical basis (Hey man 1966, 1995). For a given 

configuration, the stability of a masonry structure can be demonstrated by drawing a 

thrust line that lies wholly within the masonry. Moseley (1843) and Milankovitch 

(1907) defined the principles of the thrust line in rigorous detail. The thrust line is 

constructed by considering slices of the masonry whose weight acts on the thrust line, 

similar to weights on a hanging chain, as in the case of a funicular polygon. (See 

Heyman 1995 for a full discussion of the hanging chain and its relevance to the arch.) 

Thrust lines can be drawn by use of graphic statics, as well as by the deployment of 

basic computer programs. A thrust line represents one possible line of forces in the 

structure, and the shape of the line is dependent on the theoretical slices considered 
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(Milankovitch 1907). The slices considered should reflect the construction of the 

masonry. In masonry arches it is logical to slice the arch radially, dividing the arch 

into voussoirs in the same way that many arches are constructed. For masonry 

buttresses it is logical to slice the buttress horizontally, dividing the buttress in 

elevation since buttresses are typically built in horizontal courses of masonry. Most 

impOliantly, a thrust line must be demonstrated to lie within the masonry, and the 

analyst must apply the loads that can influence the thrust line. 

Many researchers are now applying advanced finite-element formulations, such as the 

distinct element method or the discrete element method, to model the discontinuous 

nature of masonry structures (Mamaghani et al. 1999). One well-known example is 

UDEC, a commercially available program used widely in geotechnical engineering 

for analysing discontinuous rock masses (UDEC 2000). Such finite-element 

formulations can be used to model individual blocks, assumed to be elastic or rigid, 

which are connected by "contact elements". These programs are capable of computing 

large displacements in discontinuous media, and can model the complete detachment 

of discrete bodies. The method can be used to predict collapse mechanisms; but the 

results are extremely sensitive to assumptions about the material propeliies of the 

"contact elements", which are essentially unknowable for a real structure. This 

disseliation proposes an alternative analysis method, which is based on traditional 

mechanics of rigid bodies and uses much simpler assumptions about the material 

properties. 

In the field of mechanics, it is straightforward to analyse the structure by using rigid­

block analysis based on equilibrium and compatibility for a known mechanism. Work 

calculations can be canied out to verify the stability of the structure and determine the 

critical collapse mechanism. The analyst must investigate alternative kinematically 

admissible mechanisms of collapse, and determine which of them is the governing 

collapse mechanism. For the relatively simple structures in this dissertation, 

MATLAB programs have been written to analyse rigid-block structures. Copies of the 

programs are included in Appendix A. 
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2.3 The Masonry Buttress 1 

The design of masonry buttresses was a pnmary concern for medieval and 

Renaissance builders. Before the advent of theoretical structural mechanics, builders 

could safely design vaults and arches in a wide variety of forms, provided the 

buttresses could support the thrust of the arch. Buttress design was a more difficult 

problem, and insufficient buttressing could lead to catastrophic collapse of the 

structure. Huerta (1990, 1999), Sanabria (1982), Heyman (1982, 1995), and others 

have discussed the great importance of the proper design of buttressing. A significant 

propOliion of the medieval design rules for masonry structures were concerned with 

the sizing of the buttresses. 

Despite the historical impOliance of buttress design, researchers have not focussed 

sufficient attention on the capacity of masonry buttresses to resist horizontal loads. 

The buttress problem is one of simple statics: the overturning moment produced by 

the thrust of the vault about a point of rotation must be equilibrated by the stabilising 

moment of the effective mass of the buttress. Engineers often assume that buttresses 

are monolithic, with the entire mass of the buttress resisting the lateral forces. This 

was the usual assumption from the earliest scientific design of buttresses (La Hire 

1712; Belidor 1729), and the assumption continues to be applied today (Boothby 

1994; Gilbert and Melbourne 1994). However, a masonry buttress is actually a series 

of individual stones placed roughly in horizontal courses. The material can only 

transmit compressive forces, and tensile forces will separate the stones. At the limit of 

overturning, a region of the buttress will fracture and become ineffective, thereby 

reducing the capacity of the buttress. 

For collapse due to oveliurning, a masonry buttress will not act as a monolithic mass, 

and the analyst must consider the formation of a fracture at the collapse state. Several 

researchers considered this possibility in the 19th century: Monasterio (ca. 1800), 

Gauthey (1809), Audoy (1820), and Dupuit (1870), each of whom identified the 

problem but did not resolve it. Navier (1826) concluded that the critical fracture was a 

straight line inclined at 45°, though he did not justify the use of a straight fracture. 

1 The historical review of the analysis of masonry buttresses and buttressed arches is presented here 
with kind permission of Professor Santiago Huerta. Professor Huerta has researched this topic for many 
years and he generously shared his knowledge and the primary documents discussed here. 
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Experiments by Seguin (1826) and Vicat (1832) showed that a surface of fracture 

forms when a masomy buttress overturns due to steadily increasing lateral loads. The 

result of Vie at's experiments on masomy bridge towers is presented in Figure 2.2, and 

the resulting fracture in the buttress significantly reduces its effective mass. Vicat's 

experiment investigated the use of masomy piers as the towers and the anchorage 

blocks, simultaneously, for suspension bridges. The resulting load due to the cable is 

equivalent to an inclined load applied at the top of the masomy pier, which is similar 

to the thrust from an arch. 

Buttress 
fracture at 
failure 

11 
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Cable 
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zone failure 

Figure 2.2 Experiment on masonry pier for a suspension bridge showing fracture at collapse (Vicat 
1832). The cable "pulls" the buttress over in the same way that a horizontal thrust from an arch or vault 
would "push" against the buttress. 

Dupuit (1870) defines the problem clearly: see Figure 2.3. The overturning force for a 

solid buttress can be determined from equilibrium (as a single block pivoting about 

one corner) . This force is assumed to cause a fracture (line CS in the diagram on the 

left) in the masomy when the thrust line exits the middle third of the rectangular 

cross-section. A new thrust is calculated to equilibrate the fractured buttress, and this 

lower value of thrust results in a new fracture (line FE in the diagram on the right). By 

iterating until the thrust is in equilibrium with the overturning force and the fracture 
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condition (with the internal thrust line acting at the middle third in the fractured 

region) it is possible to compute the oveliurning force. Dupuit does not solve the 

problem, i.e. does not determine the line of the fracture, and a solution has apparently 

not been published in the intervening 130 years. 
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Figure 2.3 Overturning force for a masonry buttress, showing possibility for fracture (Dupuit 1870). 

To determine the fractured state of a masomy structure, other authors have applied 

Dupuit's elastic assumption of a linear stress distribution in compression. Heyman 

(1992) examined leaning towers of masomy and defined a fracture surface, which 

reduced the effective material in the tower: see Figure 2.4. Based on the middle-third 

concept, Heyman demonstrated that the fracture in a leaning wall or tower could be 

defined by an exponential function. However, Heyman did not investigate the 

influence of lateral loads. This approach can be extended to postulate the collapse 

load for a masomy buttress under horizontal loading. 

Surprisingly, it appears that no researchers in the 20th century have explored the 

implications of this fracture on the strength of a buttress. This will be developed in 

Chapters 3 and 4 by extending Heyman's approach to the analysis of leaning towers. 
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(Reproduced by permiss ion of J. Hcyman.) 

Figure 2.4 Leaning masonry wall with progressive cracking until collapse (Heyman 1992). 

2.4 The Masonry Arch 

2.4.1 Masomy arch bridges 

Engineering researchers have studied masomy arches in great detail in recent years, in 

an effort to assess and repair existing motorway bridges (Harvey 1988; Melbourne 

1995; Hughes and Blac1der 1997; Ng et al. 1999). The analysis of masomy bridges is 

a special problem: historic masomy structures are now required to carry much heavier 

loads than the original builders envisioned, and engineers must determine the safe 

load capacity of the bridges. This is a highly specialised area of research, which 

presents a series of specific problems and will not be directly addressed here. 

However, some of the findings of this dissertation, particularly on the safety of 

buttresses, are relevant to the collapse state of masomy arch bridges. 

2.4.2 The masomy arch on spreading supports 

Researchers have hitherto devoted little attention to the study of masomy arches 

supported on tall buttresses, which is a common structural system in churches and 

other historic buildings. For such structures, the self-weight of the structure is 

typically much greater than any live loading on top of the arches. It is unlikely that a 

very large concentrated load will be applied to the top of a masomy arch in a historic 

building. As opposed to veliical loading, imposed displacements due to progressive 

geometry changes in the buttresses are the greatest threat to the stability of arches in 

buildings. Despite this, few researchers have investigated the influence of 

displacements on the stability of masomy arches. Almost all recent studies on the 
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safety of arches have been concerned with the stability under applied point loads. (See 

for example Heyman 1969, 1980; Harvey 1988; Boothby et al. 1992;' and Lucchesi et 

al. 1997 for the conventional analysis of masomy arches subjected to vertical loads. ) 

In the past, numerous studies have been made of the possible mechanisms resulting 

from imposed displacements. In 1732, Danyzy carried out a series of experiments on 

arches and investigated the influence of displacements on stability (Heyman 1998). In 

1808, Schulz published various mechanisms of collapse for an arch supported on 

buttresses (Kurrer 1997). Viollet-Ie-Duc investigated the collapse state of the grossly 

deformed vault in the church at V ezelay, France, but he did not consider the general 

problem of arches on spreading supports: see Figure 2.5. 
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Figure 2.5. Deformed arch in the church at Vezelay, France due to spreading 
supports (VioIlet-le-Duc 1854). (See also Figure 2.10 later in this chapter.) 

More recently, Smars (2000) has studied the stability of arches and vaults, considering 

the influence of displacements. Smars identified the domain of statically admissible 

movements for a chosen mechanism in a semi-circular voussoir arch. However, he did 

not investigate the possibility that the hinges might move as the arch supports spread 

apart. Chapter 5 demonstrates that various collapse mechanisms are possible for the 

arch on spreading abutments, and that the analyst must consider the possibility of the 

hinges moving location. 

Although these isolated studies have considered the influence of movements, none of 

the authors has investigated the implications of movements on the horizontal thrust of 
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the arch. For masonry arches, a small increase in the span leads to a deformed 

geometry, which increases the minimum horizontal thrust. For a ' given arch, the 

maximum displacement before collapse must be determined, as well as the 

corresponding horizontal thrust for a given increase in span length. This approach 

does not exist in the published literature and will be developed in Chapter 5. 

2.4.3 Acceleration loading 

In addition to the collapse of an arch due to static loads or displacements, numerous 

researchers have explored the resistance of an arch to lateral accelerations, such as 

those due to an earthquake. Oppenheim (1992) explored this topic in detail, by 

treating a four-bar chain model of an arch as a dynamical system. Assuming that the 

hinges would only occur in particular locations, he derived an equation of motion for 

an arch of a given thickness and angle of embrace. This approach provides 

information about the onset of mechanism-motion, and the behaviour of the different 

portions of the arch as the mechanism rotates from the initial configuration until the 

collapse state. It can also be used to analyse an arch under non-uniform acceleration 

loading, including earthquake loading with random values of ground acceleration and 

frequency. Most valuably, Oppenheim explored the potential energy of the system and 

demonstrated that formation of the initial mechanism is not sufficient to cause 

collapse. The mechanism will recover before collapse, until the point when the 

maximum potential energy is reached. This is a promising method of analysis for 

masonry structures in earthquake loading, and will be discussed in Chapter 8. 

However, Oppenheim's approach is tedious because the equation of motion must be 

derived anew each time a different structure is considered. Although valuable, the 

applicability is not as general as a kinematic approach using least-work calculations. 

Several researchers have thus used a mechanism-type analysis with calculations of 

least work to determine the hinge locations and the corresponding values of constant 

lateral acceleration to form the mechanism. Most notably, Clemente (1998a, 1998b) 

pursued this approach. Clemente explored the influence of geometry on the arch 

behaviour under lateral loading, and investigated the location of hinges for various 

arch configurations. However, Clemente did not consider the possibility for a 

mechanism involving tlu'ee hinges within the span and one hinge at the support. In 

his approach, Clemente assumed that one hinge will always form at each support with 
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only two hinges in the span (Clemente 1998b). The literature does not currently 

contain a clear overview of the threshold accelerations and the governing mechanisms 

for a variety of circular masonry arches. The problem will be explored in Chapter 6, 

by considering the resistance of an arch to static tilting, which is equivalent to 

applying a uniform horizontal acceleration in addition to the acceleration due to 

gravity. 

2.4.4 The masonry vault 

The masonry vault is a three-dimensional surface, which may sometimes be 

considered as a series of masonry arches in combination. Indeed, existing vaults often 

contain a number of cracks, which effectively divide the vault into a series of arches 

(Heyman 1983). The thrust of the vault will contribute to movements of the supports, 

and cracks will form in the vault to accommodate this movement. Numerous writers 

have demonstrated the safety of cracked masonry vaults and domes through an 

equilibrium approach based on the safe theorem of plasticity. If one state of 

equilibrium can be demonstrated (i.e. a thrust surface due to the applied loads can be 

found within the masonry) then the vault will stand under the applied loads. A typical 

approach is to divide the vault or dome into a series of slices and demonstrate the 

safety of each slice. This method can be traced to one of the earliest applications of 

structural analysis, carried out by Poleni in 1748 for the dome of St. Peter's in Rome 

(Heyman 1988). 

Hue11a (2001) provides an overview of the equilibrium approach to the structural 

analysis of masonry vaults. The method was first applied rigorously by Heyman 

(1966, 1967) using classical "membrane" theory. More recently, O'Dwyer (1999) and 

Smars (2000) have developed computer algorithms to search for equilibrium solutions 

in masonry vaulting. O'Dwyer's method is particularly useful for defining a "thrust 

surface" -- a three-dimensional version of the thrust line -- which must lie within the 

surface of the masonry vault. These methods are the correct approach to 

demonstrating a possible equilibrium solution for a masonry vault, and can be used to 

predict accurately the thrust of the vault. For a real structure, the engineer can 

interpret the cracking patterns and slice the vault accordingly for a more accurate 

prediction of the vault thrust. 
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In addition, a small number of researchers have canied out collapse analyses of 

masonry vaulting. Using upper-bound approaches and assuming a symmetrical 

collapse mechanism, Oppenheim et al. (1989) have successfully applied limit analysis 

to masonry domes. Lucchesi et al. (1999) presented no-tension elastic constitutive 

equations for masonry and developed closed-form solutions for the collapse analysis 

of a cylindrical masonry vault; but their approach is heavily mathematical for even the 

simplest geometrical cases, and is hardly practical for the assessment of real 

structures. Heyman (1993) investigated the overloads that may occur on a masonry 

vault, including the loads due to a collapsing timber roof, as well as water filling the 

"pockets" on top of the vault. Such overloads are unlikely, but the analysis of the 

strength of a vault can be carried out (conservatively) using conventional limit 

analysis procedures and considering the vault as a series of individual arches. 

However, this reduces the masonry vault to the conventional problem of a masonry 

arch bridge and seeks to determine what load can be catTied on top of the vault. As 

with masonry arches, imposed displacements represent an additional threat to 

masonry vaulting, which engineers have not investigated sufficiently. 

This disseliation investigates the circular masonry arch of constant thickness, and the 

results of this study can be applied directly to circular barrel vaults. The methods 

presented here for two-dimensional arches can also be extended in principle to 

consider domes, crossing vaults, and other three-dimensional vault configurations. 

This disseliation defines the broad patterns of structural behaviour, which should set 

the stage for fuliher investigations of more complicated problems, and can be 

extended to arches or vaults of varying shape and thickness. 

2.5 Arches on Buttresses 

The goal of the current study is to assess the stability of a masonry arch supported on 

two buttresses. In the 19th century, several writers considered the collapse state of 

such a system and investigated the possibility that a fracture would occur in the 

supporting buttresses. These authors assumed that the arch functions as a three-pinned 

arch, and would collapse due to the overturning of the masonry buttresses, in a 

symmetrical five-hinge mechanism involving a hinge at the base of each buttress. 

Monasterio (ca. 1800) applied this method to the analysis of a shallow arch supported 

on low abutments. In Figure 2.6 the intrados hinge in the arch is clearly seen, as well 
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as the fracture reducing the effective mass of the buttress. There is a hinge at the 

extrados at the crown (point B), a hinge at the intrados (point M) and an additional 

hinge at the outside of the abutment (point F), so the arch-buttress combination forms 

a symmetrical five-hinge collapse mechanism. Notably, Monasterio considered the 

influence of a fracture in the supporting abutment. 
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Figure 2.6 Collapse state ofa buttressed arch bridge (Monasterio ca. 1800). The line AB is a line of 
mirror symmetry, so that the assumed collapse mechanism is a five-hinge mechanism. 

In France, Gauthey (1809) and Persy (1834) considered the fracture of a buttress 

supporting a vault. Both assumed a straight-line fracture at an inclination of 45°, 

based on assumptions about the material. Persy's drawing is reproduced in Figure 2.7: 

line AS represents the postulated line of fracture at the collapse state. 
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Figure 2.7 Persy's line of fracture AS at the collapse state of a buttressed arch (1834). 
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In the 19th century, several leading engineers considered the failure of the buttress to 

be a crucial concern, particularly in the design of bridges. Gauthey made the first 

published mention of the problem in relation to bridge collapse: "La chute d'un pont 

ne porrait guere arriver sans qu'il ne se fit quelques disjonctions dans ses culees," 

[liThe collapse of a bridge could hardly occur without some disjunction of the 

abutments. '1 (Gauthey 1809). In Germany, Walther (1855) investigated the possibility 

of a fracture in the abutments leading to a mechanism of collapse, without referencing 

earlier work. Figure 2.8 illustrates Walther's assumed fracture location along line KP 

at the failure state. Walther considered only the influence of the material above the 

fracture line KP in the abutment, and declared the material below the line as 

ineffective. (This is similar to Monasterio's earlier work illustrated in Figure 2.6.) 

Haupt (1853) cites Gauthey and computes the strength of a buttressed arch under a 

point load, considering the combined failure of the buttress and arch together. 

Fig. 12. Fig. 13. 
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Figure 2.8 Collapse state of a buttressed arch bridge (Walther 1855). Only the 
buttress material above line KP is considered to be effective. 

Early engineers recognised the importance of the buttress failure, which could lead to 

the collapse of an arch. However, engineers abandoned the rigorous study of masonry 

structures for nearly one hundred years, and as a result, did not investigate the 

collapse of buttressed arches during the 20th century. In recent years, the assessment 

of existing structures has led to a revived interest in the stability of buttressed arches. 

Huelia and Lopez (1997) investigated the collapse condition of a barrel vault with 

leaning buttresses in a Spanish church (Fig. 1.1). The authors demonstrated a 50% 

increase in the horizontal thrust of the vault over its initial value due to large 

deformations in the structure. At the height of the vault support, the span had 
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increased by 370 mm (nearly 7% of the span), altering the geometry of the original 

structure significantly, and reducing the safety of the structure. The authors explored 

the effect of increased displacements, and analysed the safety of the structure against 

further movements. Their study applied the type of analysis explored in this 

dissertation and is a fruitful area for future work on the stability of buttressed arches. 

Baggio and Trovalusci (1995) as well as Mamaghani et al. (1999) have used the 

discrete element method to analyse a masonry vault supported on rectangular masonry 

buttresses: see Figure 2.9. In both cases, they were able to predict the collapse 

mechanism, with three hinges in the vault, and an additional hinge at the base of the 

buttress, corresponding to a fractured region in the buttress. Though the method 

successfully identified the collapse mechanism, the use of such finite element 

programs is highly sensitive to the assumptions about the material properties, 

particularly the stiffness of the contact elements. Furthermore, the authors were 

concerned primarily with the values of vertical load that would cause collapse, and 

did not investigate the de-stabilising influence of any displacements occurring by 

progressive movements in the foundations. In each case, the authors increased the 

self-weight of the vault progressively until collapse, and did not investigate the 

displacements or accelerations to cause collapse. The methods presented in this 

dissertation are concerned with solving the problem illustrated in Figure 2.9 by using 

general limit analysis methods for masonry, and assuming that support displacements 

and horizontal acceleration are more likely to cause collapse than vertical live loading 

on top of the vault. 

Ca) After Mamaghani et al. (1999) 
(Reproduced by permission of I. Mamaghani.) 

Cb) After Baggio and Trovalusci (1995) 
(Reproduced by permission ofP. Trovalusci.) 

Figure 2.9. Buttressed arch analyses using discrete element methods 
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Medero et al. (1998) used finite-element methods to study the nave 'of the church in 

Vezelay, which Viollet-Ie-Duc had studied extensively. By allowing for the masomy 

to separate in the absence of compressive forces, the authors predicted a likely 

collapse mechanism and the mode of deformation in the arch. In addition, they were 

able to model the hinges in the vault as well as some cracking in the buttress. The 

analysis indicated that a fracture may form in each buttress as the structure nears the 

collapse state. The study used sophisticated gap elements to model the response of the 

mOliar in the joints, but it has a number of shortcomings. In particular, the authors 

analysed the undeformed shape of the vaults, in an effOli to explain the deformations, 

and did not analyse the deformed structure as it exists today. Conventional finite­

element formulations have difficulty with the large-displacement behaviour and 

geometrical non-linearities of this type of problem. Fmihermore, the results are 

extremely sensitive to the assumptions about the material properties and boundary 

conditions. Finally, the authors did not explore the implications of imposed 

displacements for the stability of the structure, though they conclude that the stability 

is "very sensitive to abutment movement" (Medero et al. 1998). 

Viollet-Ie-Duc (1854) had studied the same church in the 19th century and wrote about 

the large deformations of the vault: see Figures 2.5 and 2.10. In this structure the 

vaults of the lateral naves help to support the main buttress, but the gross deformation 

in the central nave and the leaning of the buttresses is apparent. Medero et al. (1998) 

sought to explain the deformations with complex material models using finite-element 

analysis. In contrast, this dissertation assumes that the material does not deform and 

that the structure deforms according to rigid-body mechanics by formation of hinges 

between rigid elements and by support movements. The goal is to find the maximum 

load or displacements that would cause collapse. 
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____ ~:!....- ___ ____ 1:Hf~L--_ 

Figure 2.10 Deformed state of the Church at Vezelay, France (Viollet-le-Duc 1854). On the left as 
originally designed, and on the right as distorted . 

Even with the simplified material assumptions of limit analysis, the structural 

behaviour of buttressed arches is complex. Increased deformations can lead to greatly 

increased internal forces. A first-order structural analysis, based on theories of small 
---

deformations, will not reveal the sensitivity to additional movements that determine 

the safety of the structure. Of the literature on buttressed arches, only Huelia and 

Lopez (1997) have considered the implications of additional movements for the 

stability of the structure. This is straightforward to consider because the system is 

statically determinate. The arch or vault has three hinges, and the thrust in the actual 

vault can be determined uniquely. The resistance of the abutments to this thrust can be 

estimated, and a clear understanding of the structural safety emerges. Finally, it is 

possible to impose increased displacements by artificially leaning the buttresses 

fUliher, and to investigate the conditions that will lead to collapse of the structure. 

Boothby (2001) has reviewed and assessed .recent developments in the analysis of 

masomy arches and vaults, and has recognised the threat to stability posed by large 

displacements. Boothby concludes with the following paragraph: 
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Although rigid-plastic analysis does not admit movements of the springings of a roof 

vault at the top of the piers, this phenomenon is observable in nearly every medieval 

buildingat the top of the nave piers, due to either inadequate buttressing, or simply to 

the long-term loads imposed on the pier tops. This effect is a cause 0/ great concern 

in the preservation o/roo/vaults. [italics added] (Boothby 2001, p. 255.) 

The movements described by Boothby result from a wide range of causes, including 

foundation subsidence, construction defects, vibrations, etc., and they will continue to 

increase over the life of the structure. While Boothby seeks an explanation for the 

displacements, it is generally more useful to accept that movements will occur and 

that engineers should investigate the safe limits of these movements. As the preceding 

review of the literature reveals, earlier researchers have not pursued this approach, 

and it will be developed in this dissertation. To do so, the following chapters apply 

rigid-plastic analysis, assuming that the material does not deform. To investigate the 

safe limits of the displacements, the rigid structure is displaced and the new 

equilibrium conditions are . examined. Imposing atiificial suppOli displacements 

provides insight into the stability of masonry arches supported on buttresses. 

2.6 Measures of Safety 

Engineers must develop measures of safety for existing masonry structures. Rankine 

(1858) proposed a load factor of safety for the stability of buttresses based on the 

resisting moment divided by the moment required for overturning. This is a rational 

approach, though Rankine's method is somewhat unsafe because it considers the 

buttress to act as a monolith, rather than being susceptible to fracture. Heyman (1969) 

introduced a geometrical factor of safety for masonry arches, in addition to the more 

conventional load factor of safety. Finally, Smars (2000) proposed a kinematic factor 

of safety based on the allowable suppOli movements for a masonry arch: see Figure 

2.11. The kinematic safety is determined statiing from the stable state of the structure, 

and imposing displacements until collapse occurs. This dissertation extends Smar's 

method to consider the influence of displacements on the thrust capacity of buttresses 

and the stability of buttressed arches. 
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(e) ( f) 

(Reproduced by permiss ion orp. Smars) 

Figure 2.11 "Kinematic" safety factor for an arch on spreading SUppOltS (Smars 2000). The image on 
the left illustrates the minimum and maximum states of horizontal thrust for the arch as originally 
constructed. The image on the right is the arch at a possible collapse state due to spreading SUppOltS. 

The geometric factor, load factor, and kinematic factor are the three primary measures 

of safety for masonry structures, and they can all be determined by the use of limit 

analysis. Additional measures of safety for masonry buildings are required, and 

guidelines have not been published for the safety assessment of arches suppOlied on 

buttresses. In particular, engineers must have a procedure to follow in assessing the 

safety of buttressed arches, and this thesis proposes such a procedure. 

Finally, there are no accepted methods for assessing the safety of buttressed arches 

under ea11hquake loading. Numerous researchers have studied the dynamic response 

of individual block structures and this remains an active area of research (Housner 

1963; Augusti a!,ld Sinopoli 1992; Lipscombe and Pellegrino 1993; Maluis and 

Roussos 2000). However, researchers in engineering mechanics have not sufficiently 

addressed the key problem for engineers in the assessment of historic masonry 

buildings: the dynamic response of buttressed arches to horizontal ground 

accelerations. This disse11ation provides a basic introduction to the problem and 

defines a procedure for assessing the ground acceleration capacity of masonry arches 

suppOlied on buttresses. 

2.7 Summary 

This chapter has reviewed the relevant literature and illustrated the sh0l1comings of 

the published record on the problem of buttressed arches. In summary: 

1) Limit analysis can be used to investigate the stability conditions for 
masonry structures, whether in their original conformation or their current 
deformed state. 
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2) Elastic analysis requires many assumptions and places emphasis on the 
strength and stiffness of the material rather than the stability of the 
structure. 

3) Historically, engineers were concerned with the capacity of buttresses to 
resist horizontal loads and the appearance of a fracture at the collapse state. 
This subject has not been investigated in the published record for over a 

century. 

4) The consequences of gross deformations in arches and vaults are an 
impOliant problem in the safety of masonry structures; yet few researchers 
have investigated the influence of suppOli displacements on the stability of 
arches and buttressed arches. 

5) In the 19th century, numerous engineers examined the collapse state of 
arches supported on buttresses. Today's engineers are being asked to assess 
the safety of such structures, though there are currently no accepted 
guidelines for doing so. 
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Chapter 3 Collapse of Masonry Buttresses! 

3.1 Introduction 

The safety of masonry vaulted structures depends on the ability of buttresses to support 

the tlu'ust of vaults and arches. Despite the importance of the buttress stability, 

researchers have not studied sufficiently the capacity of masonry buttresses for 

horizontal tlu·ust. This chapter investigates the collapse of a masonry buttress under 

lateral loads and the associated fracture in the buttress. Following Heyman's approach 

for leaning walls and towers (Heyman 1992), this chapter proposes a method to 

determine the shape of the fracture and the corresponding value of horizontal tlu"ust 

required to overturn a masonry buttress. 
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Figure 3.1 Buttress collapse by ovelturning due to a horizontal force: (a) Solid buttress; (b) Internal 
forces in solid buttress at ovelturning from an analysis of horizontal slices of the buttress; (c) Fractured 
buttress fails at lower thrust, HII • 

Figure 3.1 illustrates the problem. A buttress must resist a horizontal tlu'ust, H, which 

applies an ovelturning moment. This is countered by a stabilising moment due to the 

weight of the buttress, Wb, and the weight of the vault, V. At the collapse state, a 

fracture will occur, and the stabilising moment will be reduced by the moment due to 

the weight of the ineffective region (below the fracture) of the buttress, Wc (see Figure 

3.1c). The internal line of forces, often known as a line oftlu'ust, is here called a locus of 

1 This chapter is the result of research carried out in open collaboration with Professors S. Huerta and 1.1. 
Hernando at the Universidad Politecnica de Madrid in the spring of 200 l. 
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pressure points, for reasons that will be made clear in Chapter 5. This is the locus of 

internal reaction points found by making a horizontal cut in the buttress and determining 

the location of the vertical force reaction necessary to maintain equilibrium at that level. 

The fracture surface at the collapse state can be estimated by defining a fracture 

condition in relation to the eccentricity of the locus of pressure points from the centroid 

of the cross-section. 

In a rectangular section, the internal line of forces, called the locus of pressure points, 

must act at the one-third point in the fractured region of the buttress. This produces a 

line of zero axial stress where the material is assumed to separate and a fracture forms . 

The fracture surface is illustrated by the dotted line in Figure 3.l(b), defined by the 

condition mp = 3mn, derived from the assumption that the compressive stress 

distribution is linear in the fractured region. The weight of the vault, V, acts to stabilise 

the buttress, though the horizontal thrust, H, acts to de-stabilise the buttress. 

Importantly, the horizontal thrust of the arch, H, varies with geometry changes and this 

chapter will focus on the influence of the horizontal thrust on the stability of a buttress. 

3.2 Mechanism of Collapse 

To demonstrate the safety of a masomy structure, the resulting internal compression 

forces, or locus of pressure points, must be contained everywhere within the masomy 

(Moseley 1843; Heyman 1995). When the internal forces deviate sufficiently from the 

centroid of the cross-section, tensile stresses may cause a crack to form on the opposite 

side. When the thrust reaches the edge of the masomy, a "hinge" will develop, and the 

entire section will be cracked. Cracking is not dangerous in itself, and it is the way in 

which masomy structures adapt to small changes of the boundary conditions. As 

illustrated in Chapter 2, a masomy arch will adapt to a small movement of the 

abutments by forming three hinges. Increasing the spread of the abutments will form a 

kinematically-admissible mechanism, which will lead to the collapse state. A three­

hinged arch is statically determinate, and requires a fOUlih hinge to form in order to 

provide a collapse mechanism. On the other hand, a buttress is statically determinate to 

begin with and needs only one hinge to collapse. The process of collapse analysis is the 

same for buttresses as for arches: a collapse mechanism is assumed (in this case the 

location of the single hinge); the equilibrium equations are written; and the collapse 
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load is calculated for the given mechanism. The actual collapse load will be the lowest 

load at which a mechanism forms, with a corresponding line of internal' forces contained 

entirely within the masonry. 

The application of limit analysis methods presupposes that the individual masonry 

blocks must have sufficient size. Thus, it is not possible to build a tall, load-bearing wall 

from very small blocks, the size of sand particles. Actual masonry buttresses typically 

have 10 or 20 blocks across the width of the buttress, as opposed to 100 or 1000. As the 

block size becomes smaller, it is more likely that the blocks will separate if they are not 

held in direct compression. This is precisely the case with masonry buttresses. As a 

consequence of the unilateral character of the material -- it is able to withstand 

compression but not tension -- some fracture of the buttress can be expected at collapse, 

similar to leaning towers or walls of masonry (Heyman 1992). At the limit of 

overturning, part of the buttress will remain attached to the base and a stress-free 

surface of fracture will form. 

For masonry arches each individual voussoir is considered to be solid, and this practical 

assumption leads to a rational and safe analysis. The same assumption can be 

extrapolated to buttresses, and a horizontal slice can be considered as a "voussoir." This 

is a logical assumption for buttresses, which are typically built with horizontal courses 

of masonry. However, for buttresses it is unsafe to consider each slice as if it were a 

solid. If the tlu'ust is eccentric, the material which is not in direct compression will be 

ineffective and will separate from the effective region of the buttress. This is analogous 

to the case of multi-ring brick arches. If a hinge forms on the extrados of the arch, 

individual bricks in the intrados will no longer be held in place by direct compression, 

and these bricks may fall from the arch. Similarly, regions of the buttress not in direct 

compression will be ineffective, and as the buttress fails due to overturning, these 

regions will fall from the solid buttress. 

3.3 Proof of Straight Fracture 

To determine the shape of the fracture at overturning, it is necessary to assume a 

compressive stress distribution in the unfractured region of the masonry. It is reasonable 

to assume a linear stress distribution in axial compression, with a fracture occurring at 

the location of zero stress, according to simple elastic theory. This leads to the middle-
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third rule: for a rectangular cross-section, tension will occur when the normal force falls 

outside of the middle-third of the cross-section. 

Numerous authors have made the assumption of a linear stress distribution in 

compression in order to solve a specific problem in masonry structures (Dupuit 1870; 

Castigliano 1879; Heyman 1992; La Mendola et al. 1993). This assumption provides a 

basis for solving the problem of buttress overturning. Though elastic theory is generally 

unhelpful for the analysis of masonry structures globally, it can be applied in isolation 

to very simple problems in order to gain insight into the possible stress distribution in a 

particular element. It is not possible to know the exact stress distribution in a masomy 

structure, and thus any calculation of the internal stresses can only be an approximation. 

However, assuming a linear stress distribution in compression can be used to gain 

insight into the problem. Figure 3.2 illustrates the assumption of the compressive stress 

distribution and the resulting location of zero stress where the material is ineffective. 

p 
--~ 

Interface between 
Linear compressive 
stress distribution 

I neffective area Ineffective area 

\ Op";" b<l"", 
stones 

P 
14---

Locus of pressure 
points (line of 
internal forces) 

Figure 3.2. Assumption of linear compressive stress distribution under axial loading in the fractured 
region of a masonry buttress. In this example, two stones are held together by the axial compressive 
forces, P, lying outside the middle-third of the rectangular cross-section. The internal stress distribution is 
linear in compression, so that the internal line of forces acts at the one-third point of the triangular stress 
distribution. Material not in direct compression is assumed to be ineffective, and an opening is assumed 
to form between the stones. 

The kern points of a section define the points at which an axial force produces zero 

stress at each of the extreme fibres. For a rectangular section, the kern points occur at 

the one-third points of the section, and therefore an axial force applied anywhere within 

the middle-third will produce a state of compressive stress over the entire section. 
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Because masonry is assumed to have no capacity for tension, the material is assumed to 

separate when it is no longer in direct compression, as in Figure 3.2 above. 

The assumption of a linear stress distribution leads to an unexpected and elegant result 

for the buttress problem. In a buttress of constant width and depth, the critical line of 

fracture at overturning turns out to be straight, rather than curved as in Figure 3.1 ( c). (In 

three dimensions, the surface of fracture is planar.) Thus, at the failure state, the lower 

portion of the buttress is a triangular wedge supporting a solid, uncracked, upper portion 

of the buttress, with force resultants acting at the one-third point of the lower portion. 

To determine the shape of the curve of fracture, the equilibrium of a horizontal slice in 

the lower cracked portion is examined as a free body. A thin horizontal slice of masonry 

is analysed as illustrated in Figure 3.3, assuming that the resultant vertical force acts at 

one-third of the width. The slice has a thickness of dy, and is subjected to a constant 

horizontal force, H, and a varying vertical force from above, W. Since the problem is 

regarded as two-dimensional, it is convenient to define a weight of material per unit 

area of the elevation, r, which accounts for the depth (through-thickness) of the buttress 

and the density ofthe material. As usual, it is assumed that sliding will not occur. 

(b) 

Figure 3.3. (a) Equilibrium in the lower fractured region of the buttress; (b) Equilibrium of a horizontal slice. 
The horizontal force, H, is applied from the right, and overturning is assumed to occur about the lower left 
corner. The origin 0 of a caltesian (x. y) co-ordinate system is shown in (a), where the fracture begins. 
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Enforcing moment equilibrium for the horizontal slice of width x about point P: 

Wx xdW _ Wx d(Wx) lJd -+----+ - +lllY 
323 3 

which becomes, on re-arrangement 

xdW = xdW + Wdx +Hdy. 
2 3 3 

Simplifying and solving for W gives 

W = !.. (dW ) _ 3H( dY ) . 
2 dx dx 

But for a thin slice of thickness dy: 

dW = yxdy. 

-, 

Combining [3.3] and [3.4] gives 

Differentiating [3.5] with respect to x, and combining with [3.4] gives 

To satisfy [3.6] for general values of x, 
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It follows that (dy/dx) is constant and hence the curve of the fracture must be a straight 

line. Equation [3.6] is also satisfied by the condition 

H=rx 
6 

2 

[3.8] 

which corresponds to the horizontal force required to equilibrate the weight of a 

triangular wedge. Therefore, in the special case of no applied force from above, where 

Wo=O, the fracture is also linear. 

This general finding reveals that a masomy buttress at the limit of oveliurning will form 

a planar fracture at the base. In a real buttress, the fracture line will not be perfectly 

straight, and will be influenced by the composition of the masomy and the interlocking 

of the individual stones. This section has illustrated that the fracture is straight, but the 

exact location of the fracture must also be determined in order to calculate the capacity 

of the buttress. The location of the fracture can be determined from the equilibrium 

equations for the masomy buttress. 

3.4 Equations of Equilibrium 

Based on the assumption of a straight line of fracture at the collapse state, equilibrium 

equations for the collapse of masomy buttresses can be written for the vertical buttress 

of Figure 3.4. An increase in the veliical applied force, V, will act to stabilise a buttress, 

while increasing the horizontal thrust, H, will lead to the failure of a buttress. In the 

case of buttresses supporting masomy vaults, the stabilising veliical load, V, is unlikely 

to change significantly because it is derived from the weight of the masomy in the vault. 

The horizontal thrust required for equilibrium of the arch, H, is obviously dependent on 

the geometry of the structural system, and it can change dramatically due to the leaning 

of buttresses or other imposed displacements, such as foundation settlements or 

earthquake loading. Therefore, the horizontal thrust, H, is generally the most critical 

loading for the stability of buttresses. 
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To calculate the resistance of the buttress to overturning, two equations are required to 

determine the critical fracture height, e, and the corresponding failure load, H. One 

equation results from the moment equilibrium of the entire solid about the lower left­

hand corner, less the fractured region (shown in Figure 3.4b). A second equation may be 

derived from the equilibrium condition for the lower triangle (shown in Figure 3.4c) 

together with the assumed stress distribution in the fractured region of the buttress. 

From these two equations, the critical fracture height, e, and oveliurning load, H, can be 

determined uniquely. 
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Figure 3.4 (a) Buttress geometry; (b) Equilibrium of fractured buttress; (c) Equilibrium of fractured wedge. 

Assuming that the buttress is fractured, the overturning load, H, must be in equilibrium 

with the weight of the intact part of the buttress. For present purposes, it is convenient to 
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use an x,y co-ordinate system with the origin, 0, at the pivot point of the buttress. The 

stabilising moment about 0 for the buttress is 

M.\ = W"x" + Vb 

where Xb is the x-coordinate of the centroid of the buttress (Figure 3Aa). 

Moment equilibrium about the origin (Figure 3Ab) gives: 

where the weight of the ineffective detached region of the buttress is 

W = ber 
c 2 

Combining and solving for the overturning force gives 

(
M . - b

2

er ] 
.\ 3 

H= . 
h 

[3.9] 

[3.10] 

[3.11 ] 

[3.12] 

This is the general linear equation for the force that will oveliurn a buttress of the form 

illustrated in Figure 3A(b) with a given fracture to height e. To determine the collapse 

load unambiguously, the critical fracture height, e, is derived by examining the internal 

equilibrium of the buttress in the lower, intact region. 

At the limit of oveliurning, the internal forces in the buttress are umque, and the 

triangular fractured region of the buttress must satisfy force equilibrium as shown in 

Figure 3 A( c), in order to satisfy the "fracture" assumption of a simple triangular 

compressive stress distribution. The triangular wedge is loaded by the force resultants 

from the upper region of the buttress, applied at one-third of the width of the buttress, in 

order to initiate the propagation of the fracture at a height of e. The weight of the 
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fractured wedge, Wc, also acts at the one-third point. This results in a simple expression, 

which relates the force reactions at the base of the buttress to the geometry of the 

fractured portion of the buttress 

(W" -Wc + V{%)-He = o. [3 .13 ] 

Substituting for Wc from [3.11] and solving for H gives 

H = b(~) + V) _ b2
y . 

3e 6 
[3.14] 

Equation [3.14] gives a second formula for the oveliurning force, H, as a function of the 

fracture height, e. 

The condition for the rotational equilibrium of the buttress [3.12] and the equilibrium 

conditions to produce the fracture in the lower region of the buttress [3.14], provide two 

independent equations to determine both the critical height of fracture, e, and the value 

of the overturning force, H. A specific example of a rectangular buttress will be 

analysed for oveliurning later in this chapter. The above equations constitute a general 

approach for solving the collapse state of a buttress by examining the unique value of 

internal forces at the limit of overturning. The equations above can of course be adapted 

to account for buttresses with varying profiles and more complex lateral loading, such 

as horizontal overturning forces at two different heights (for example, as a result of two 

flying buttresses in the case of Gothic buttresses). 

This approach is valid for buttresses in which: 

1) the lower, fractured region of the buttress is rectangular in elevation, with 

constant depth-density; 

2) there are no external loads applied to the lower, fractured region of the 

buttress; and (as usual), 

3) Sliding does not occur. 
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3.5 Limits on Sliding 

Although oveliurning failure without sliding will govern the stability for most masonry 

buttresses, failure by sliding of masonry blocks may occur in certain circumstances. The 

sliding is assumed to occur on a horizontal plane between level courses of masonry. 

Sliding will be most critical at the level of the applied horizontal force, where the 

vertical force acting over the horizontal plane must develop sufficient friction to 

overcome the possibility of sliding. 

To avoid sliding at the level of the applied force 

[3.15] 

where W here is the weight of the buttress above the level being considered, V is the 

veliical component of the applied force, and Is is the assumed static coefficient of 

friction. Typical values off,. are 0.5-0.7, for stone on stone (Rankine 1858). Sliding is 

thus most likely to occur for a horizontal force applied near the top of the buttress, 

where the weight of the buttress above is minimal. The use of pinnacles on some Gothic 

buttresses can play an important role to prevent sliding in this instance (Heyman 1968, 

1995). Though it is ,unlikely to occur in practice, a horizontal applied load near the base 

of a buttress can also lead to sliding failure rather than oveliurning failure. 

3.6 Rectangular Buttresses 

The methods described above were developed in relation to the stepped buttress shown 

in Figure 3.4 and can readily be applied to the simplest case of rectangular buttresses. 

There, the total weight of the buttress is 

W" = bh"r [3.16] 

where hb is the total height of the rectangular buttress and r is the depth-density. The 

horizontal co-ordinate of the centroid is 
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[3.17] 

Thus equation [3.12] governing the rotational equilibrium ofthe buttress, becomes 

H = (*)( h,,~y + V _ b;Y). [3.18] 

Equation [3.14] becomes 

H=b(h"bY+V _bY). 
3e 6 

[3 .19] 

It is convenient now to define three dimensionless geometric factors for rectangular 

buttresses: 

~=~ 
h 

relating the fracture height to the height of the applied force; 

h 
11=-

h" 

[3.20] 

[3.21 ] 

relating the height of the applied force to the total height of the buttress; and 

V 
'1/=-

W" 
[3.22] 

relating the vertical load, V, to the weight of the buttress, Wb. 

Substituting these factors, equation [3.18] becomes 

[3.23] 
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and equation [3.19] becomes 

[3.24] 

From these two equations, the critical values of H and ~ can be determined. Combining 

[3.23] and [3.24] to eliminate H gives the following quadratic equation for ~ 

[3.2S] 

Solving [3.2S] for ~ gives the location of fracture height leading to failure in a 

rectangular buttress. (The correct root must be between 0 and 1.) This value can then be 

substituted into [3.23] or [3 .24] to find the critical failure load for overturning, HII , 

corresponding to ~. The critical value of ~ is independent of the scale of the buttress. 

Remarkably, the fracture location does not depend on the width, b, of the buttress and 

depends only on the height of the applied force (the factor fl) and the relative value of 

the vertical load (the factor '1/). The reason for this is that all weights scale as b and all 

lever arms (i.e. x-coordinates of centres of gravity) also scale as b. So equation [3.2S] 

defining the value of e is independent of b. Equation [3.2S] can be solved for varying 

values of fl and 'l/to find the corresponding fracture heights. The results are presented in 

Figure 3.S, and it is clear that the fracture height depends mostly on the relative value of 

the vertical force, '1/, and is relatively insensitive to the relative height of the applied 

force, fl. In fact, for the case of the veliical force equal to one half the weight of the 

buttress, ('1/ =O.S) the fracture height will occur at ~ =O.S for any value of fl (though 

sliding limits will exist depending on the geometry of the problem). This result may be 

obtained by direct manipulation of equation [3.2S]. For typical values of applied veliical 

load ('1/ =0 to O.S), the fracture height will vary between ~ =0.7 to O.S. In other words, 

the height of the fracture, e, will typically be SO% to 70% of the height, h, of the applied 

horizontal force. An increase in the applied vertical load (the factor '1/), will decrease the 

height of the fracture by changing the internal stress conditions in the buttress. 
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Figure 3.5. Variation in fracture height, ~, as determined from Equation [3 .25] for rectangular buttresses. 

The methods presented above can be used to determine the reduction in oveliurning 

force due to the fracture, and the results are summarised in Figure 3.6. The critical 

failure load can be determined graphically from Figure 3.6, based on the height of the 

applied force, Jl, and the relative value of the veliical load, lfI. The value Hs is the 

overturning force for a solid, unbreakable buttress, and the veliical axis of the graph 

provides the maximum horizontal load, HII , as a fraction of Hs. For rectangular 

buttresses, the oveliurning force of the solid buttress is 

[

1 ] 
- +lfI 

H,=b
2
y 7 . [3.26] 

The graph also illustrates the limits on sliding, which depend on the proportions of the 

buttress, given by the ratio ht/b . For a static coefficient of friction of 0.7, the sliding 

limits are solved for various buttress proportions. The buttress may fail by sliding rather 

than overturning when the tlu'ust is applied near the base of the buttress (small Jl), or 

near the top of the buttress (as Jl approaches 1). 
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Figure 3.6. Collapse loads for rectangular buttresses under horizontal load. 

To illustrate the use of Figure 3.6, a rectangular buttress with a height hb of 12 m and a 

base width b of 3 m is considered. A horizontal force is applied at a height h of 8 m, so 

that j1. =0.67. The depth of the buttress (perpendicular to the elevation shown in Figure 

3.4) is uniform and equal to 1.5 m, and with a material density of 2000 kg/m3, the 

depth-density, y, becomes 3000 kg/m2
, or 29.4 kN/m2

. The buttress supports a vertical 

load, V, of 100 kN, and the factor ljFO. 09. (The vertical load V is 9% of the buttress 

weight, Wb=1060 kN.) From [3.26] the maximum horizontal force, Hs, for the solid 

buttress is 234 kN. From Figure 3.6, the ratio of H,/Hs is found by interpolation to be 

approximately 0.76 for this buttress (marked by the point x on the graph). Therefore, the 

maximum horizontal force, HII , is 0.76Hs, or approximately 178 kN. The same result is 

found computationally by solving equation [3 .25]. The critical fracture occurs at 

q=0.65, corresponding to a height of e=5.2 m for this example. Solving [3 .23] or [3.24] 

(instead of using Figure 3.6) gives an overturning force of HII=178 kN, which agrees 

with the estimate made using Figure 3.6. From [3.15], the critical sliding load is 317 kN 
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for a coefficient of friction of 0.7, verifying that failure will occur by overturning rather 

than sliding. 

For this example, the fracture at the point of overturning has reduced the overturning 

force by approximately 25%. This reduction that can be read directly from Figure 3.6, 

where the vertical axis, H,IHs, provides the reduction in overturning force due to the 

fracture and the ineffective buttress material at overturning. As the applied vertical force 

increases (i.e. the factor If! increases), the height of the fracture decreases, and the 

buttress resistance approaches the full resistance of the solid buttress, where H,IHs=1.0. 

The horizontal load capacity of typical buttresses is 20%-30% less than the capacity of a 

monolithic buttress, justifying the current study and demonstrating the importance of the 

fracture at the collapse state. 

3.7 Non-Rectangular Buttresses 

The methods presented in this chapter can be applied to other buttress forms. In such 

cases, the equations for external and internal equilibrium must be derived uniquely for 

each buttress, and solved by following the concepts of internal equilibrium and external 

ove11urning, as pr~sented previously. In general, there are three additional buttress 

forms that must be accounted for: 

1) the sloping, or leaning buttress; 

2) the stepped, or Gothic buttress; and 

3) the buttress, with a T-shaped cross-section, i.e. with adjoining cross walls. 

The leaning buttress is discussed in detail in the next chapter, and the other two cases 

will be presented briefly here. 

3.7.1 Gothic (stepped) buttresses 

For rectangular buttresses, ove11urning occurs about the base of the buttress, and it is 

straightforward to determine the mechanism of collapse as described above. For stepped 

buttresses, typical of much Gothic architecture, the buttress must be examined at 

different levels to determine the critical location about which ove11urning may occur. In 

this case, numerous patterns of fracture can occur due to the changes in profiles. Figure 

3.7(a) illustrates the simplest case, assuming that the fracture extends throughout the 

lowest region of the buttress. For some stepped buttresses, this simple assumption may 
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be unsafe and the critical fracture may occur elsewhere in the buttress. Figure 3.7(b) 

shows a case where the fracture occurs at the top of the first "step" in the buttress. 

In a real buttress, various fracture patterns are possible and the critical fracture will 

depend on the construction and location of joints in the masomy. For Gothic buttresses 

it is advisable to make simplifying assumptions about the fracture shape and choose the 

most conservative location. Assuming a linear stress distribution will give a unique 

answer for the collapse state, but the engineer must use judgement to determine which 

fracture location is most critical. 

Point of 
ovelturning 

~ 

v 

(a) 

v 

Point of 

(b) 

Figure 3.7. Possible fracture patterns in various Gothic buttresses at the point of overturning due to an 
applied horizontal thrust, H. The shaded areas represent the effective mass of each buttress that 
contributes to the stabilising moment to resist the applied horizontal load. 

3.7.2 The T-Shaped Buttress 

This chapter has considered only isolated buttresses of uniform thickness, but real 

buttresses are frequently attached to masomywalls so that the effective buttress section 

is T-shaped. In this case, the engineer must consider the contribution of the cross wall in 

calculating the resistance of a buttress. The problem is significantly more complex than 

the rectangular buttress, but can be simplified by assuming that the fracture lines are 
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straight: see Figure 3.8(b). The critical fracture height and ove11urning force can be 

solved with a rapidly-converging iterative calculation, which will not be presented here. 
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Figure 3.8((1) Assumed stress distribution in a fractured rectangular buttress at collapse. 
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Figure 3.8(b) Assumed stress distribution in a fractured T-shaped buttress at collapse. 
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Depending on the form of the wall and the interlocking of the masomy, the cross-wall 

could be an effective part of the buttress, as in Figure 3 .9( d), or the wall could be 

completely ineffective in contributing to the resistance of the buttress, as in Figure 

3.9(a). The fracture patterns in Figures 3.9(c) and 3.9(d) are derived from the 

assumption of a linear compressive stress distribution in a T-section, as illustrated in 

Figure 3.8 on the previous page. The fracture forms initially in the wall when the 

pressure point reaches the kern point of the T -section. Once the fracture surface leaves 

the wall, the buttress section is rectangular and the pressure point acts at the one-third 

point of the effective section. 

(a) 

Hb 
(b) 

0 (a) (b) 
Effective 
region of 
buttress 

He 
(c) 

He Hd 

(c) (d) 

Plan view Elevation views 

Figure 3.9. Possible contributions of cross-walls to buttress, ranging from none (a) to greatest (d). 

3.8 Experimental Results 

To verify the collapse mechanisms proposed in this chapter, a series of experiments 

have been carried out on small-scale buttresses made of plywood blocks approximately 

27 mm thick. A layer of sand was glued to each block to increase the coefficient of 
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static friction between blocks to a level typical of stone on stone, and thus to prevent 

sliding. The buttresses were loaded laterally to collapse by slowly increasing the applied 

horizontal load. A rectangular buttress and aT-shaped buttress were tested, each with a 

height of 72.8 cm and a width of 18.2 cm. Each buttress was tested alone as in Figure 

3.1 O( a), and tested again with an imposed load of 500g (11 %-14% of buttress weight) 

on top of the buttress to model the stabilising contribution of the weight of the arch as in 

Figure 3.1 O(b). In each case, failure occurred by oveliurning, with a fracture in the 

lower region of the buttress. Further details on the experiments are presented in 

Appendix B, including the predictions of the collapse mechanisms for each experiment. 

Figures 3.10 and 3.11 present each buttress after collapse has occUlTed by oveliurning. 

(a) v=o ('FO) (b) V=500g ('F0.14) 

Figure 3.10. Test on rectangular buttress with htlb=4 and p=0 .5 with a solid line for the fracture 
predicted by the method of section 3.6. The horizontal load is applied from the left by the white 
string, and the buttress is shown in the post-collapse configuration after it has reached its 
maximum capacity. 
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Ca) V=O Cb) V=500g (1\ % of buttress weight) 

Figure 3.11 Test on T-shaped buttress with htlb=4 and IFO.5 with a solid line for the predicted fracture. 
The horizontal load is applied from the left by the white string, and the buttress is shown in the post­
collapse configuration after it has reached its maximum capacity. 

Test Number B27.S.0 B27.S.S00 T27.S.0 T27.S.S00 
Vertical load, V v=o V=500g v=o V=500g 
Theoretical H=667g H=955g H=1023g H=1279g 
prediction of (~0.72) (~=O . 62) 
thrust, HII 
Experimental H=710g H=920g H=980g H=1230g 
Result, Hlesl 
Tiu'ust to 878g 1128g 1360g 1596g 
overturn solid 
buttress, Hs 
H,lHfesf 0.94 1.04 1.04 1.04 
Table 3.1 Expenmental results versus calculated results for model buttresses. 
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For the rectangular buttress and the T-shaped buttress, the experiments verified the 

predicted location of fracture based on a linear distribution of stress in ·compression. In 

each case, the predicted value of collapse load was within approximately 6% of the 

actual collapse load: see Table 3.1. In real buttresses, as in the experiments, the joint 

patterns in the masomy determine the location of the fracture. These simple experiments 

have verified the existence of the fracture and illustrated that the straight fracture line 

resulting from a linear stress distribution provides a reasonable approximation of the 

collapse load of actual masomy buttresses under horizontal load. 

As postulated in the theory presented in this chapter, the experiments demonstrated that 

blocks not held in direct compression will simply drop from the effective mass of the 

buttress. The failure is not characterised by sliding or by failure of the individual blocks, 

but rather by opening of the joints between masomy blocks. The buttress remains 

essentially vertical as the applied load is increased, and at the point of maximum 

horizontal load, the buttress separates into two sections: the effective mass of the 

buttress, and the ineffective wedge of material that does not contribute to the stability of 

the buttress. Failure occurs by overturning as illustrated in Figures 3.10 and 3.11. 

Dozens of additional experiments on model buttresses of varying sizes gave similar 

results, though only four such experiments have been presented here. The experiments 

provide support for the theory developed in this chapter, though futiher experiments are 

necessary to verify the limits to the theory presented here. 

3.9 Summary 

The methods presented in this chapter provide a straightforward approach to predicting 

the collapse load for horizontal buttresses under lateral load. This chapter has presented 

several key ideas: 

1.) The horizontal thrust of an arch or vault acts to de-stabilise a masomy buttress, 
while the veliical forces act to stabilise the buttress. Methods to assess buttress 
capacity against overturning forces should focus on the value of the horizontal 

thrust. 
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2.) The overturning collapse of a masomy buttress involves the formation of a 
surface of fracture, which reduces the collapse load by reducing the stabilising 

moment of the buttress. Horizontal thrusts calculated on the basis of an assumed 

monolithic buttress are unsafe. 

3.) The surface of fraCture can be calculated by assuming a linear distribution of 
compressive stress and by supposing that a crack forms when the resultant 

internal force exits the kern of the section (middle-third for rectangular cross­

sections). The problem is statically determinate and involves the solution of two 

equations with two unknowns, representing the thrust and fracture height. 

4.) Based on these assumptions, the fracture surface at collapse is planar for 
rectangular buttresses. This result can be observed in actual buttresses at 

collapse due to overturning. 

5.) In real buttresses the fracture depends on the composition of the masomy, and 
the planes of failure are likely to make a zig-zag line along the existing joint 

surfaces. The method of straight-line fracture presented in this paper gives an 

approximate solution to the problem. Complex buttress forms require additional 

simplifying assumptions or more complex analysis. 

6.) Adjacent veliical walls may contribute greatly to the buttress stability and 

should be considered in the case of buttresses combined with cross walls . The 

engineer must judge the contribution of the cross walls based on the interlocking 

of masomy blocks in each particular case. 
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Chapter 4 Leaning Buttresses 

4.1 Introduction 

Outward leaning is the greatest threat to the stability of a buttress. Most masomy 

buttresses exist in a state of leaning, which increases throughout the life of the 

structure. In general, the lean of a buttress may be due to any or all of the following: 

• Deformation and subsidence in the foundations during construction; 
• Construction defects or small movements between stones; 
• Elastic deformation of the masomy and mOliar (usually very small); 
• Additional subsidence due to changes in the soil conditions (caused by 

consolidation of the soil, enhanced by changes in the water table, adjacent 
excavations, long term creep of the foundations, etc.); 

• Ratcheting movements of the stones due to vibrations of the structure (from 
eatihquakes, bell-ringing, wind loading, etc.); 

• Seasonal effects of temperature and moisture over long periods of time; etc. 

As the buttress leans, the eccentric loading on the foundations can cause additional 

leaning, which will continue to increase during the life of the structure. The present 

work is not primarily concerned with the source of the displacements; rather it seeks 

to find the magnitude of displacements that would cause collapse. The lean of the 

buttress causes an increase in the span of the vault or arch, which will increase the 

till'ust of the arch. In some cases, the increased thrust of the arch may exceed the 

decreased horizontal till'ust capacity of the leaning buttress. 

A leaning buttress overturns at a lower load than the same buttress in a veliical 

position, due to the horizontal shift of the centroid of the buttress. Even small amounts 

of leaning will significantly alter the equilibrium conditions. For buttressed vaults, a 

small amount of leaning in the buttress, such as 10 from vertical, will alter the line of 

till'ust and increase the applied thrust of the vault (Huelia and L6pez 1997). The 

previous chapter examined the collapse state of the buttress and the occurrence of a 

straight fracture at collapse. This chapter exte'nds these findings to consider a leaning 

buttress. This chapter determines the influence of leaning on the fracture location and 

the value of till'ust at collapse. Finally, methods for assessing the safety of existing, 

leaning buttresses are presented. 
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4.2 Shape of Fracture for Leaning Buttresses 

For leaning masonry walls or towers loaded only by their own weight, Heyman 

(1992) demonstrated that the fracture would take on a slight curvature at the point of 

oveliurning, as illustrated in Figure 2.4 in the literature review. A buttress leaning 

outwards (i.e. away from the applied load) may develop a fracture that curves slightly 

below the straight-line fracture. Thus it is safe to approximate the fracture as a safe 

line for a buttress leaning away from the applied load, since any effective material 

neglected by the straight-line assumption will contribute to the stability of the 

buttress. A buttress sloping inwards (i.e. towards the applied load) may develop a 

fracture that curves above the straight line. Thus, it may be slightly unsafe in this case 

to assume that the fracture acts as a straight line, but for practical purposes it is a 

reasonable assumption. Remarkably, experiments by Vicat on masonry towers in 

1832 demonstrated a sloping buttress that developed a straight-line fracture at the 

collapse state: see Figure 4.1. This result illustrates that the assumption of a straight­

line fracture is appropriate for sloping or leaning buttresses. 

Applied 
loading 
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Figure 4.1 Experiments on masonry towers for suspension bridges (Vicat 1832). As in Figure 2.2, 
the tower served as the anchorage for the cable, which extended around the top of the tower. The 
applied load is equivalent to an inclined load at the top of the tower, similar to the thrust of a vault, 
where the load of the cable applies both a veltical and horizontal load to the top of the tower. 
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4.3 Leaning Rectangular Buttresses 

Typical buttresses lean less than 2°, and the tower of Pisa leans by approximately 5°. 

The critical question for leaning buttresses is to determine if the location of the line of 

fracture will shift substantially as a result of small angles of leaning. The collapse 

analysis for rectangular buttresses presented in Section 3.6 can be modified for a 

buttress with a small angle of inclination, rp, measured from the vertical. All other 

variables and dimensions are as outlined in the previous chapter and as shown in 

Figure 4.2. The rotation is assumed to occur about the outer corner at the base of the 

buttress, point 0, and the usual small angle approximations are applied. 
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Figure 4.2 (a) Leaning rectangular buttress assuming that the rigid support has rotated; 
(b) Equilibrium of effective buttress; (c) Equilibrium offractured wedge as a free body. 
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As a result of leaning by a small angle, ~, the stabilising moment of the unfractured 

buttress about the origin becomes 

. (b -h,,~) ( ) 
M'if! = W" 2 + V b - h~ [4.1] 

where the usual small-angle assumptions are made, and the angle of lean, ~, is given 

in radians. The height of the horizontal thrust is assumed to remain constant as the 

buttress leans. The buttress is assumed to begin in a vertical position, and then rotate 

about the outer edge of the buttress on a rigid foundation, as in Figure 4.2(a). 

As in the prevIOUS chapter, two equations can be derived from the equilibrium 

conditions: the overturning condition for Figure 4.2(b), and the fracture condition for 

Figure 4.2( c). The overturning condition is governed by 

which can be compared to equation [3.18] for the vertical buttress. Equation [4.2] is 

the same as [3.18], but with a new term containing ~, so that [4.2] reduces to [3.18] 

when </FO. 

Equilibrium of the leaning fractured wedge shown in Figure 4.2( c) gives 

[4.3] 

which becomes 

[4.4] 

Again, equations [4.3] and [4.4] reduce to [3.14] and [3.19] for the vertical 

rectangular buttress (i.e. when </FO). 

By introducing the dimensionless factors for rectangular buttresses given in [3.20]­

[3.22], equation [4.2] becomes 
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[4.5] 

which likewise reduces to [3.23] for rp=O. Similarly [4.4] becomes 

[4.6] 

which likewise reduces to [3.24] for rp =0. 

As before, these two equations for HI/! provide a means of determining both HI/! and the 

critical fracture height, ~. Combining [4.5] and [4.6] to eliminate HI/! gives the 

following quadratic equation for the fracture height: 

This is a modifi~ation of [3 .25], with new terms containing rp in two of the 

coefficients. Solving [4.7] for ~ gives the location of fracture height leading to failure 

in a rectangular buttress leaning by a small angle, rp. As before, the correct root must 

be between 0 and 1. This value can then be substituted into [4.5] or [4.6] to find the 

critical overturning load, HI/!. The purpose of this analysis is to determine the influence 

of the buttress lean, rp, on the critical fracture height ~. 

Equation [4.7] has been solved for typical buttresses by varying the values of 1', '1/, 

ht/b, and rp to determine the sensitivity of the solution to each variable. The buttress 

proportion, ht/b, is considered for values of 4 and 6. The height of the applied load,!" 

is considered for values of 0.5 and 0.7. Finally, the veliicalload factor, '1/, varies from 

0.1 to 1, i.e. where the applied vertical force V is 10% to 100% of the buttress weight. 

The buttress lean, rp, is considered between 0° and 5°. The results for equation [4.7] 

are presented in Figures 4.3 and 4.4 for the varying values. 
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For all cases, the critical fracture height, ~, is remarkably constant and is insensitive to 

the angle of lean. The value of the thrust height, j1, has very little effect on the fracture 

height just as in Figure 3.5, though the vertical load factor, If, can lead to minor 

increases in the fracture height for small values of veliicalload. 
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Figure 4.4 Variation in fracture height for a leaning rectangular buttress (ht/b=6). 
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For most buttresses, the current lean will be less than 2°, and for these values it is 

reasonable to assume that the critical fracture height, ~, remains constant as the 

buttress leans. Thus, in order to assess the collapse load for a leaning buttress, the 

critical fracture height can be determined for the vertical buttress, and can then be 

assumed to remain constant as the buttress leans outward. 

4.4 Thrust Capacity of Leaning Buttresses 

The reduction in thrust capacity for a leaning rectangular buttress is given by equation 

[4.5] or [4.6]. From both equations it is apparent that the reduction is linear with rp for 

small values of rp. The equation for overturning can be expressed as: 

H -H -H ,p - 11 I'ctiuclioll [4.8] 

where HI/ is the overturning load given by [3.23] for the unique value of ~from [3.25]. 

From [4.5] the reduction due to leaning is then 

[4.9] 

The ~2 term gives a very small contribution to the reduction, because it represents the 

change in the restoring moment of the "lost" wedge, which is small because its 

centroid is close to the origin. Therefore we shall neglect this term. This is a safe 

assumption, since including this term would reduce the capacity further. Hence the 

reduction can be approximated as 

[4.1 0] 

This reduction is directly propOliional to the angle of lean, rp, which must be provided 

in radians due to the small angle assumptions made, as stated earlier. The buttress can 

resist a maximum lean, rpIllQX, before collapse, at which point the buttress cannot resist 

any thrust and H,p=O. This point is given by 
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[4.11 ] 

Equations [4.8] to [4.11] are summarised in Figure 4.5 for a hypothetical rectangular 

buttress. 

from Eqn. [3.23] 

o~ ________________________________ ~~ ______ ~. 
o 

rPmax 

Angle of lean, rjJ (radians) 

Figure 4.5 Thrust capacity for a leaning rectangular buttress. 

Following the approach presented in this section, the same relation between the angle 

of lean and the capacity of the buttress can be derived for more complex buttress 

shapes, such as Gothic buttresses as in Figure 3.7. Regardless of the shape of the 

buttress, there is a reduction in the resistance of a buttress to horizontal thrust that is 

propOliional to rp. The capacity of the buttress comes only from the stabilising 

moment due to its effective mass, and the stabilising moment is reduced linearly with 

rp for small angles of lean. 

The preceding analysis has determined the fracture for failure of the vertical buttress, 

and assumed that the fracture location is not altered as the buttress leans. The 

maximum angle of lean, rpmQx, represents the threshold at which the fractured buttress 

will oveliurn for zero horizontal load. This value will vary for the same buttress 
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depending on the value of the stabilising vertical load, V, and the centroid of the 

effective buttress, which depends on the height of the fracture. The maximum angle of 

lean will not occur in practice; it is merely useful for defining the slope of the 

reduction in the resistance of the buttress as a result of leaning, thereby indicating the 

sensitivity of H to the changes in cp. This will be illustrated with reference to an 

example later in this chapter. 

4.5 Safety of Buttresses 

Engineers must evaluate the safety of existing arches supported on buttresses of a 

known inclination. The structure will be standing, but due to the geometry changes the 

thrust of the arch is larger than its original, design value, while the capacity of the 

buttress for resisting thrust is less than it was originally. A structural engineer who has 

been asked to assess the safety of the structure will need to have some criterion of 

safety by which to judge the structure. This section introduces several possible ways 

of defining, or thinking about; the suitable factors of safety. Obviously, the methods 

must consider the dimensions of the buttress, the magnitude of the applied loads, and 

the influence of the buttress inclination on the safety of the buttress. Several general 

methods will be ~ presented for vertical, upright buttresses, and then extended to 

consider the influence of leaning. 

Two leading engineers of the 19th century proposed a geometrical coefficient of safety 

based on the location of the reaction at the base of the buttress in relation to the 

centroid of the buttress (Moseley 1843; Rankine 1858). More recently, Huerta and 

L6pez (1997) proposed a geometrical safety factor obtained by relating the force 

reaction in the buttress to the distance from the edge of the buttress. This is analogous 

to the geometrical factor of safety proposed by Heyman (1982) for masomy arches. 

While this is a straightforward and revealing method of measuring safety, it does not 

directly consider the safety against the applied horizontal force. Because the vertical 

load, V, is a constant stabilising force, and the horizontal thrust, H, is a variable de­

stabilising force, it is more logical to focus on the horizontal load to determine the 

safety of an existing buttress. To achieve this, two measures of buttress safety are here 

proposed: 
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1) Pressure point factor; and 

2) Load factor for collapse. 

To determine the pressure point factor for a buttress, the reaction point at the base of 

the buttress must be examined. This reaction point is measured from the outer edge of 

the buttress, about which oveliurning may occur, using co-ordinate 77 as defined in 

Figure 4.6. 

1< 
b 

>1 

y 
x 

0 
Ha Locus of 

pressure 

V+Wb V+Wb 
points for 
Ha=O 

-I 
l70b 

>1 
>1 l7b 

Figure 4.6. Reaction point, l7b, at the base of the buttress for an applied horizontal 
thrust, Ha. The thrust is applied from the right, and the vertical load, V, is applied at the 
right-hand edge. If no horizontal thrust is applied (Ha =0), the reaction point occurs at 
the resultant of the vertical loads, l7ob. The origin is defined as the point 0 about which 
ovelturning may occur. 

For a vertical buttress with no horizontal load applied, the weight of the buttress and 

the veliical force act at an initial reaction point of 

[4.12] 

As the applied horizontal load, Ha, is increased from zero, the reaction point occurs at 
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[4.13] 

where Xb is the horizontal location of the centroid of the buttress measured from the 

outer edge. As long as the buttress remains solid, the relationship between the reaction 

point at the base of the buttress varies linearly with respect to the applied horizontal 

load, Ha. The general form of equation [4.13] is plotted in Figure 4.7, for the 

rectangular buttress example presented in the previous chapter. If the buttress did not 

fracture, the maximum applied horizontal force would increase to the value of Hs, the 

overturning force for the solid buttress, which would occur when the reaction point 

arrives at the edge of the buttress ('1(0). 

Reduction in buttress capacity due to fracture 

Equation [4.13] 

7J =0 
( collapse) 'l7er '170 

Pressure point at base of buttress, '17 

Figure 4.7. Movement of pressure point at base of buttress as horizontal thrust is increased (see Fig. 4.6.) 

As the applied horizontal load is increased, the reaction point, 17, moves toward the 

outer edge of the buttress. When 17 falls outside the kern point, 17er, (i.e. 17 becomes 

less than 1/3 for a rectangular cross-section), some stones will become ineffective, 

and the resulting fracture will reduce the stabilising moment of the buttress. This 

occurs when the applied load exceeds Her, which corresponds to · the first cracking at 

the base of the buttress. The value of Hcr can be calculated by considering the 
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horizontal force required to produce the reaction point at the kern point of the section. 

For a rectangular cross-section, the kern point occurs at b13, and the horizontal force 

to initiate cracking is 

[4.14] 

Equation [4.14] is valid for any form of buttress with a rectangular base. The weight, 

Wb , acting at a centroid, Xb, is measured from the point about which overturning is 

considered, as in Figure 3.4(a). When the applied force exceeds Hm the stabilising 

moment is reduced due to the loss of masonry outside of the compression zone as 

described in Chapter 3. Thus the linear equation [4.13] no longer relates the applied 

horizontal load and the reaction point at the base of the buttress. The required 

horizontal force decreases until the failure load, which can be found from the methods 

described in the previous chapter. The shape of this nonlinear curve will vary 

depending on the buttress fonn, and the exact shape of the curve is not of great 

importance. The most impOliant consideration is the value of applied load to initiate 

cracking, Her, as well as the ultimate load for collapse, Hl/' Between these two values 

it is safe to assume a straight line for simplicity, as drawn in Figure 4.7. The analyst 

needs only to compute the thrust for initial cracking, Her, and the thrust at collapse, 

Hl/' The reaction point at the base can then be approximated for any value of 

horizontal thrust. 

To define the safety under a given applied load, Ha, the resulting value of 7] is 

compared to the initial value 7]0' i.e. the value of 7] before any horizontal load is 

applied to the buttress. This provides a "pressure point" factor of safety, which is 

SF 7]" 
pn.!ssurcpoint ==--

7]" - 7] 
[4.15] 

Thus, if the reaction point has reached the edge of the buttress, 7] =0, the factor of 

safety will have reduced to 1.0 (i.e. no safety) and the buttress will be on the verge of 
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collapse. For small values of horizontal force, the reaction point occurs close to the 

vertical resultant, 1]0' and the safety against overturning becomes high. 

In a safe working state, the pressure point coordinate, 17, will be greater than the 

pressure point coordinate at which cracking begins, 1]er. In conventional terms, the 

thrust line will fall within the middle-third of a rectangular section. Once the fracture 

develops, the capacity of the buttress decreases, and the eccentric load on the 

foundations will cause the buttress to lean additionally. To ensure a safe design, the 

force resultant at the base of the buttress should lie within the middle-third for a 

rectangular section. More generally, the force resultant should lie between the kern 

points, so that the entire section acts in direct compression. 

This can be illustrated with reference to the example of the 12 m high rectangular 

buttress discussed in Chapter 3, which supports a vertical load of 100 kN. The buttress 

is 3 m wide at the base, 1.5 m in thiclmess, and weighs 1060 kN. If no leaning is 

present, then 1]0=0.54 from [4.12] for this example. The buttress begins to fracture 

when the reaction point, 1], falls below the kern point, 1]er =0.33. This occurs at a 

horizontal thrust of Her =91 kN, as found from [4.14]. 

If the buttress supports a horizontal thrust of 80 kN, then 7]=0.36 for the rectangular 

buttress from [4.13], and the buttress will remain uncracked according to the analysis 

presented here. From equation [4.15], the factor of safety is therefore 2.9 for the thrust 

of80 kN. 

An additional measure of safety is the conventional load factor 

S'17 HII 
r/oa"=­

Ha 
[4.16] 

computed by dividing the horizontal load capacity of the buttress, HII, by the applied 

thrust, Ha. For the current example, the buttress will fail due to an applied thrust of 

approximately HII =178 kN (determined in section 3.6), and therefore has a factor of 

safety against failure of 2.2 for the applied thrust of 80 kN. In the rare event of sliding 
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failure, the analyst can apply the load factor against the critical horizontal load for 

sliding failure as defined in Section 3.5, rather than overturning failure'. 

This section has considered only the case of vertical buttresses, and the proposed 

measures of safety can now be modified to account for the influence of leaning. 

4.6 Safety of Leaning Buttresses 

For a vertical buttress, the stabilising moment is given by [3 .9], but a leaning buttress 

will be less stable, depending on the height of the stabilising veliical forces. The 

vertical forces act at a resultant height of 

_ W"y" +Vh 
Y= 

W,,+v 
[4.17] 

where Yb is the veliical centroid of the solid buttress, and h is the height of the applied 

vertical load, V, as in Figure 4.2. 

The effect of a small angle of lean, ~, is to reduce the stabilising moment due to the 

reduction in the moment arm about the pivot 0 by the distance of ~ y . In addition to 

the usual small angle assumptions, this also assumes that the height of the horizontal 

thrust remains constant. The adjusted stabilising moment is therefore 

M ,\,p = M s -@(W" + V) [ 4.18] 

where the stabilising moment for the vertical buttress Ms is found from [3.9] . This is a 

general version of [4.1] for a buttress of any form, with known weight and location of 

centroid. Equation [4.18] can be adapted accordingly by reducing the stabilising 

moment, Ms, and the critical value of horizontal load can be computed as before. 

To confirm the safety of an existing buttress, and to investigate the influence of 

additional leaning, the location of the reaction point at the base of the buttress, 7], can 
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be considered as in the previous section. As a buttress leans by an angle rp (in radians), 

the reaction point coordinate becomes 

[4.19] 

where y is computed from [4.17]. 

The general form of equation [4.19] is plotted in Figure 4.8, both for a veliical 

buttress, and also for the same buttress leaning by an angle rp. The effect of leaning is 

to shift the entire curve to the left as a result of the horizontal movement of the 

buttress centroid. It is clear that the leaning buttress will develop a fracture at a lower 

value of Her, and will fail at a lower value of horizontal thrust. The new values of HII 

and Her as a result of the lean, are Hrp and Hrper, respectively. The kern point of the 

section does not change, and therefore the reaction point for the onset of cracking, '7er, 

is reached for a lower value of horizontal thrust, Hrficr. 

Hs Curves shift to left with increased leaning 

~ 
Hs~ 

...r 
'" = HII J. 

..= .... - H~ (0::1 .... = 0 
N 
'i: 
0 Her ..= 

"0 Buttress leaning by angle 
.2:l 
Q.. Ht/Jcr rP, from Equation [4.19] 
Q., 

< 
Vertical buttress, 
from Equation [4.13] 

1] =0 1]cr 
( collapse) 

Pressure point at base of buttress, 1] 

Figure 4.8. Influence of leaning on buttress reaction and capacity. The pressure point at the base of the 
buttress moves toward the edge as the horizontal load is increased. The presence of buttress leaning 
shifts the entire curve to the left. 
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FUliher insight can be gained by considering the angle of lean at which cracking will 

begin for the given applied load. This is computed from 

[4.20] 

Again the previous example of the rectangular buttress can be used to illustrate the 

influence of buttress leaning. For this example, the vertical centroid of the buttress 

acts at a height of Yb =6.0 m, and considering the applied vetiicalload of 100 kN at a 

height of h =8 m, the resultant vetiical centroid is y =6.17 m from [4.17]. For a 

horizontal load of 80 kN, the pressure point coordinate 7J =0.36 and the rectangular 

buttress will begin cracking when the buttress leans by 0.015 radians (=0.8°) 

according to [4.20]. 

If the buttress exists in a state of leaning with FO.017 radians (=1°), then the thrust 

capacity of the buttress will be i'educed by approximately 16 kN from [4.10]. This is a 

reduction in strength of nearly 10% from the thrust capacity of the vertical buttress of 

178 kN. The new pressure point, 7JfjI, will be 0.32 from [4.19] and the buttress will be 

slightly cracked under the horizontal thrust of 80 kN. In general, wider buttresses 

(with lower ratios of htlb) will be less sensitive to the effects of leaning. 

The same load factor of safety from [4.16] can be used, but the value of HII must be 

the reduced capacity of the buttress as a result of the lean. The capacity of the leaning 

buttress, HfjI, is found from [4.8]-[4.10] as described previously. For the buttress 

leaning by 1 0, the capacity of the buttress is reduced to approximately 160 kN, from 

its original value of 178 kN. For an applied horizontal thrust of 80 kN, the load factor 

of safety is reduced to 2.0, as opposed to 2.2 for the vetiical buttress. 

4.7 Comparison of Safety Factors 

Moseley (1843) and Rankine (1858) were the first to propose measures of safety 

based on limiting the position of the thrust resultant in relation to the edge of the 

buttress. Rankine defined the position of the thrust measured from the centre of the 
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section, which he called the stability of position. He proposed that this distance should 

be limited to b/6 in the case of buttresses (i.e. with the thrust just passing through the 

outside of the middle third). Interestingly, Rankine allowed values as high as 3bl8 (i.e. 

only bl8 from the edge of the cross-section) for retaining walls and other structures 

that did not support the thrust of arches. Rankine's method can be used to compute a 

geometrical safety factor, which can be compared to the two safety measures 

proposed in the previous section. To find this "Rankine" factor of safety, the width of 

the section, b, is divided by twice the deviation of the thrust from the centre of the 

section. Thus, a buttress on the verge of cracking would have a "stability of position" 

of 1/6, and a "Rankine" safety factor of 3. In relation to the pressure point, 17, at the 

base of the buttress, the Rankine safety factor is expressed as: 

1 
SF/I(llIkillC = 1 - 217 

for buttresses of rectangular cross-section. 

[4.21 ] 

This measure of safety provides significantly different results depending on the 

buttress being considered, and it can be compared to the two other methods proposed 

in this chapter. Generally, the load factor for collapse is the most conservative, and the 

two geometrical measures from [4.15] and [4.21] provide higher numerical measures 

of safety. This can be illustrated by the example of the rectangular buttress discussed 

earlier. 

All three measures provide a very high safety for low values of horizontal thrust, but 

as the thrust increases, the load factor provides the lowest numerical measure of 

safety. For the rectangular buttress example discussed earlier under an applied thrust 

of 80 kN, the load factor from [4.16] is 2.2, while the pressure point factor based on 

[4.15] is 2.9, and Rankine's proposed measure gives a safety factor of 3.6. The results 

are plotted in Figure 4.9 for horizontal thrust values ranging from zero up to the 

collapse state (when the safety factor against collapse is 1.0). 
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5.0 ,-______ ~---~--~,_----------------------~--------

4.0 +-_________ \ ___ ~--~------------------------------

Rankine factor 
(3.6 for Ha=80kN) 

3.0 +-______________ ,. ____ ~~~~--------------------------

Load factor 

Pressure point factor 
(2.9 for Ha=80kN) 

(2.2 for Ha=80kN) ---.,.. 
2.0 +-____________________ ~,-----~-~--------------------

1.0 +-____________ ~------~--~------------,_--~=_~~~ 

o 50 H.=80 100 150 

Horizontal thrust, H" (kN) 

Figure 4.9. Safety factors for the rectangular buttress example from Chapter 3. 
(hh=12 m, b=3 m, h=8 m, ,=29.4 kn/m2, V=100 kN, Hcr=91 kN, HII=1 78 kN) 

200 

As the buttress leans, each curve will shift to the left, reducing the safety factor. For 

the same buttress leaning by 1°, the load factor for collapse is reduced to 2.0, and the 

pressure point factor is reduced to 2.4, while the geometrical safety factor from 

Rankine is reduced to 2.8. The results of these comparisons are summarised in Table 

4.1 below. 

Load Factor Pressure Point Rankine 

(Eqn. [4.19]) (Eqn. [4.151) (Eqn. [4.211) 

Vertical buttress (rjFOO) 

(HII=80 /eN, V=JOO /eN) 2.2 2.9 3.6 

Leaning buttress (rjFJO) 

(HII=80 /eN, V=JOO /eN) 2.0 2.5 2.8 

Vertical buttress (rjFOO) 

(H,,=80 /eN, V=200 /eN) 2.8 3.4 5.6 

Lean ing buttress (rjF J 0) 

(HII=80 /eN, V=200 /eN) 2.5 2.8 4.0 

Table 4.1. ComparISon of safety measures for the rectangular buttress example 
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The measures of safety have been computed for the same buttress with twice the value 

of vertical load, V, and are presented in Table 4.1. The addition of vertical load greatly 

increases the geometrical factor of safety, since it considers the pressure point in 

relation to the centroid of the section, regardless of the value of veliicalload. The two 

measures of safety proposed in this chapter are a more consistent measure of the 

safety of the buttress, because they consider only the de-stabilising effects of the 

horizontal load. 

This chapter has proposed three different measures of the safety of a buttress. All 

three give a numerical value of 1.0 when the buttress is on the point of collapse, but in 

general, they give different results leading up to the collapse state. There is no single 

recommended measure of safety, though the load factor and the pressure point factor 

appear to be more useful than Rankine's proposal. The use of a load factor is a simple 

and familiar concept, and it gives the lowest numerical values of the three measures of 

safety. Though this is the easiest measure to apply, the load factor is not advisable as 

the only measure of safety for buttresses. For this reason, curves such as Figure 4.7 

and 4.8 should be constructed in order to assess the safety of an existing buttress. 

These curves, combined with the pressure point factor of safety given by equation 

[4.15], provide a greater understanding of the capacity of a buttress for increased 
" 

horizontal loading. Of course, all of the measures should be determined for the current 

angle of inclination of the buttress. 

The measures of safety presented in this chapter have concentrated on the influence of 

the applied horizontal load, though some authors have applied a "load factor" to the 

applied force, thus increasing the stabilising veliical load as well (see for example 

Aragon 1909). This may be an unsafe approach, since only the horizontal component 

of force is de-stabilising and applying a load factor to the veliical component of force 

(typically the dead load of the structure) will not increase the safety of the structure. 

Thus, effOlis to define the safety of buttresses should focus on the implications of 

increased horizontal thrust and increased leaning, both of which are detrimental to the 

stability of the buttress. 
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4.8 Summary 

This chapter has investigated the change in equilibrium conditions in a buttre,ss as a 

result of leaning. Fmihermore, this chapter has presented two straightforward methods 

to define the safety of the buttress. The first is based on the location of the reaction 

point under increasing horizontal tlu·ust, and the second is a conventional load factor 

of safety. 

The following conclusions can be drawn: 

1) At the collapse state, the height at which the diagonal fracture line 
intersects the inner edge of the buttress does not move significantly due to 
leaning of the buttress. The resistance of the buttress to horizontal loads 
and the height of the critical fracture can be determined for the veliical 
buttress, and the height of the fracture can be assumed to remain constant 
as the buttress leans. 

2) The resistance of the buttress decreases due to the horizontal shift of the 
vertical centroid of the buttress as the buttress leans. For small angles of 
lean, rp, the capacity of the buttress will decrease linearly with rp as the 
buttress leans away from the applied tIn·ust. 

3) It is useful to define the location of the pressure point at the critical section 
of the buttress (usually at the base, but possibly in a higher region for a 
stepped buttress). The sensitivity of the buttress to increased loading can 
be examined by investigating the movement of the internal pressure point 
as the horizontal tIn·ust increases. 

4) The internal pressure point will also shift linearly with rp as a result of 
small angles of lean, and can be used to investigate the sensitivity of the 
buttress to increased leaning. 

5) The conventional load factor for collapse (i.e. H,/Ha) will provide the 
lowest measure of safety and is a simple and convenient way to define the 
safety of buttresses. 

6) By taking into account the stabilising effect of any vertical load applied at 
the ilmer edge of the buttress, the pressure point factor gives a more 
accurate measure of safety than a conventional geometrical safety factor as 
suggested originally by Rankine's "stability of position." 
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Chapter 5 The Masonry Arch on Spreading Supports 

5.1 Introduction 

As the buttresses lean . outwards, the arch will deform relative to its original 

conformation. Thus, a buttress suppOliing an arch at a height of 10 m will cause a 

span increase of 0.34 m (0.17 m on each side) for a lean of only 1°. As discussed in 

the literature review, this is a common problem for masomy vaults supported on 

buttresses; but hithelio engineers have not studied the influence of increased buttress 

leaning on the equilibrium of the arch. In particular, researchers have not determined 

the increase in the thrust of the arch as a result of suppOli movements. 

This chapter investigates the influence of the spreading of suppOlis on masomy 

arches. The arch is considered to be a circular segment of uniform thickness suppOlied 

on rigid abutments, which translate horizontally and so de-stabilise the arch (Figure 

5.1). This is equivalent to an arch supported on leaning buttresses, in which the span 

of the arch increases. Computations are presented to determine the minimum possible 

thickness for circular arches, and to investigate the change in internal forces as a result 

of spreading supports. In most masomy buildings, arches and vaults are constructed 

with fill on top, which provides an alternative force path for the thrust of the arch. 

Therefore, this chapter assumes the arch springing to be just above the fill. 

Buttress 

t\ Extrados 

Intrados 

Span,L 

Individual 
voussoir 

Figure 5.1 Definition of geometry for a voussoir masonry arch. 
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5.2 Least-Thiclmess Analysis 

Investigations into the stability of arches on spreading supports have revealed a 

historical error in the analysis of circular arches. For the circular arch of absolute 

minimum thickness, the required span increase to cause collapse is zero, since the arch 

is exactly on the point of collapse without any movements of the supports. Solving 

this problem has revealed that previous investigations into the minimum required 

thickness of circular arches have been incorrect. This section will explain this 

historical error, before returning to the central focus of this dissertation: the de­

stabilising effect of displacements on masonry structures. The findings from the 

minimum-thickness analysis are relevant to the problem of the arch on spreading 

SUppOltS, and it is worthwhile to discuss the least-thickness problem in some detail. 

The minimum required thickness for circular arches under their own weight is a 

classical problem in masonry structures, in which a symmetrical five-hinge 

mechanism limits the thickness of the arch: see Figure 5.2. In 1729, Couplet gave a 

solution based on incorrect hinge locations, in which he assumed the intrados hinges 

to occur at 45° (Heyman 1972). Couplet and other researchers estimated the minimum 

thickness necessary by seeking the internal line of thrust due to the self-weight of the 

arch. By assuming that the thrust line at the hinge locations must be tangential to the 

intrados of the arch, Heyman determined that the minimum thickness ratio is: 

~ == 2 (fJ - sin fJ)(1- cos 13) 
R fJ(1 + cos fJ) 

[5.1 ] 

where the variables t, R, and 13 are defined in Figure 5.2 below (Heyman 1969). A plot 

can be made of fiR as a function of fJ, and from it the unique value of fJ for any given 

fiR may be read. Then a second equation must be solved in order to determine the 

limiting value of a for the given thickness. Heyman (1969) presents a plot of fiR as a 

function of a. 

An alternative approach to this problem is to use a "work-balance" equation. For 

given values of fiR and a, a symmetrical five-hinge mechanism can be postulated, 

with the intrados hinges located at ±fJ from the apex, where fJ is arbitrary. When an 
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infinitesimal motion of this mechanism takes place, the total work done by gravity 

will be zero if the correct value of fi R has been chosen. If this is not the case, the 

calculation can be repeated with different values of fiR and f3 until the zero-work, i.e. 

static equilibrium condition, has been found. Then the entire calculation can be 

repeated until the minimum value of fiR has been found. Values of fiR as a function of 

a determined by Heyman do not agree exactly with the results of the "work-balance" 

method outlined above. This presents a paradox, even though the discrepancies are 

too small to worry a structural engineer (i.e. only 1.4% error for a=900). 

B 

" " " " " 

Locus of 
pressure 
points 

" " " 
" 

" " " 

Figure 5.2 Circular arch at minimum thickness ratio, (tIR)mill' This is a symmetrical five-hinge mechanism, 
though in practice, slight asymmetries will exist and four hinges are sufficient for collapse. The four-hinge 
collapse mechanism must have hinge rotations of alternating sign in order to be kinematically admissible. 

It turns out, perhaps surprisingly, that the assumption of a thrust line that is tangent at 

the intrados hinge is not precisely correct. To explain why this is the case, Figure 5.3 

presents the static equilibrium of a very thin voussoir, defined by two radial cuts, near 

the location of the intrados hinge at point A in the arch of Figure 5.2. The weight of 

the slice is dV. If dV =0, the thrust line would pass through the two lower corners of 

the thin voussoir; i.e. it would be tangential at the intrados. But it is not possible for 

the resultant force (thrust line) to be tangential at the intrados when the force dV is 

non-zero. This discrepancy occurs as a result of the centre of mass of each voussoir 

being located away from the computed tlU'ust line. 
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Thin slice of voussoir with 
mass dV acting at centroid 

H 

~ 

dV 

Pressure points near hinge A 
at the intrados 

Figure 5.3 Static equilibrium of a thin voussoir near the intrados hinge location. 

Moseley (1843) described the difference between the line of thrust and the line of 

action of the forces, which must pass through the centre of mass of each voussoir. A 

line of thrust would be precisely correct only if the load were applied exactly on the 

line; i.e., if it were a chain loaded with hanging weights. This discrepancy is avoided 

if one thinks of the thrust line as a locus of pressure points, where each pressure point 

is the location of the resultant force on a radial "cut" needed to keep a segment of the 

structure in equilibrium. In the case of masonry arches, a thin voussoir (shown in 

Figure 5.3) is held in equilibrium by the resulting thrusts on either side of the slice, 

which act on the pressure points of the voussoir. An arch in a state of minimum thrust 

has tlu·ee hinges, and is therefore statically determinate. It is possible to construct a 

unique locus of pressure points for the arch, shown as the dashed line in Figure 5.2; 

and this locus is indeed tangential to the intrados at angle ±fJ. The locus of pressure 

points here is equivalent to Moseley's (1843) line of resistance as well as the 

druckkurve defined rigorously by Milankovitch (1907). 

By ignoring the path of internal forces in the arch, and applying work calculations as 

described above to determine the stability of the arch, the critical thickness ratio is 

found to be 0.1075 for an arch subtending 180°. The intrados hinges occur at f3 

=54.5°, rather than at 58.9° as predicted by Heyman's equation [5.1]. This result 

agrees exactly with the calculation of the locus of pressure points at the state of 

minimum thickness described in the previous paragraph and determined statically by 

Milankovitch (1907). This represents a slight increase in the required thickness over 
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the value of 0.1060 determined by Heyman (1969). The historical solutions to this 

problem are presented in Table 5.1 below. The solutions by Couplet and Heyman 

predicted smaller thickness ratios than are possible, and were therefore unsafe 

calculations. Only Petit (1835) computed a slightly larger thickness than necessary, 

based on his very close approximation of the minimum thickness, although he does 

not provide the location of the intrados hinges for his calculation. 

Minimum fiR /3, degrees % fiR difference 

Current study (2002) 0.1075 54.5 -
Heyman (1969) 0.1060 58.9 -1.4% 

Milankovitch (1907) 0.1075 54.5 -
Petit (1835) 0.1 078 N/A +0.3% 

Couplet (1729) 0.1010 45.0 -6.0% 
. . .. 

Table 5.1. HIstoncal solutIons for m InIITIUm thIckness of a semIcIrcular arch (a=90D
) . 

Figures 5.4 and 5.5 plot the minimum required thickness for arches of various angles 

of embrace. Heyman's approximate solution differs only slightly, and would fit within 

the thickness of the line for the exact solution plotted in Figure 5.4. By plotting on 

logarithmic scales, Figure 5.5 shows that the approximation 

( 
t ) ::::: a,~, ax 
R min 48 

[5 .2] 

is an excellent approximation up to a =60 0 (1.05 radians). 
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/ 
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Figure 5.4. Minimum thickness of circular arches for varying angles of embrace. 
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0.10 ,------- -----------. ...,.-------------, 

Approximate 

solution: a
4
/48 ---.../ 

Exact solution 

0.01 

0.1 1 10 
Half angle of embrace, a (radians) 

Figure 5.5. Minimum thickness of circular arches on log-log scale comparing the exact solution with 
an approximate solution based on a power-series expansion. 

This approximation is the first term of a power series expansion of Heyman's equation 

for minimum thickness and it is a reasonable estimate of the minimum thickness for a 

circular arch. Importantly, this is a "safe" approximation of the minimum thickness 

required for a circular arch, because it estimates slightly larger thickness ratios than 

are necessary to stand. 

Circular arches of very small thickness can stand with a total angle of embrace less 

than 60 degrees. Much greater thickness is required for larger angles of embrace, and 

the effect of a on the required thiclmess increases steeply. For practical purposes, 

most arches subtend a total angle larger than 80 degrees (a=400), so the values 

presented in Table 5.2 are most relevant to building construction. 

Half embrace, a 40° 50° 60° 70° 80° 90° 

Minimum fiR 0.0047 0.0113 0.0228 0.0413 0.0687 0.1075 

Intrados hinge, f3 27.4° 33.6° 39.5° 45.0° 49.9° 54.5° 
. . 

Table 5.2. MlI1U11um thickness ratIOs and hll1ge locatIOns for varYll1g angles of embrace . 

This analysis has determined the minimum thickness to stand, which will serve as a 

limit on the thickness ratios for further discussion of circular arches. 
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5.3 Thrust of Arches 

The thrust of arches is another classical problem in masonry structures. A perfectly 

constructed arch supported on rigid supports can resist a range of thrust values 

between the maximum thrust and minimum thrust (Swain 1927, Heyman 1966, 1995). 

However, most arches exist in a deformed state due to movements of the supports. 

The arch thrust causes the abutments to spread apart, increasing the span of the arch. 

As soon as the abutments spread apart, the arch exists in a state of minimum thrust. 

The smallest outward movement of the abutments will cause the arch to form three 

hinges (A, B, and C in Figure 5.6), and the abutment thrust can then be determined 

uniquely from the geometry and the location of the hinges. In this case there are 

intrados hinges at A and C, and an extrados hinge at B. There are no extrados hinges 

at the abutments, as tlR is larger than the minimum required for the given value of a, 

and thus the arch can safely stand. (For small angles of embrace, the intrados hinges 

will form at the abutments.) If the span continues to increase, the arch will deform 

according to rigid-body kinematics. The crown of the arch (point B) will descend and 

the thrust will increase due to the change in geometry. Importantly, as the abutment 

spreads, the vertical force reaction at the support will remain constant, and the 

horizontal thrust will increase. 

H(x) 

Locus of 
pressure 
points 

----..u 

v 
1< 

B 

H(x) 

Spal1, L 

Figure 5.6 Circular arch segment with spreading abutments at state of minimum thrust 
(corresponding to small, positive values of x). 

At the state of minimum thrust, the extrados hinge B occurs at the crown. (It is 

assumed that the hinge will form exactly at the apex of the arch, though in practice a 

keystone often presents this from happening and the extrados hinge occurs very near 
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the crown on either side.) Two intrados hinges occur at an angle fJo measured from the 

vertical on each side of the crown. As the supports move together or apart, the arch 

will deform as a mechanism and the value of the horizontal thrust will change 

substantially. The change in horizontal thrust due to horizontal support movement is 

plotted qualitatively in Figure 5.7. 

.... 
'" = loo 
.c .... 
-; .... = 
~ H 'i: mill 

= 
-XII 0 

Support displacement, X 

Statically indeterminate 
arch on rigid supports. A 
range of thrusts is possible 
from H,,,,,, to Hmi" without 
forming hinges in the arch . 

Figure 5.7. Change in horizontal thrust of a voussoir arch with support movement. 
Hinge locations are indicated in the inset sketches for displacement in each direction. 

A perfectly-fitted voussoir arch on rigid supports is statically indeterminate and a 

range of horizontal thrust values is possible between the minimum and maximum 

thrust (Heyman 1967, 1996). If the supports move closer together, the arch will 

immediately move to the state of maximum thrust, H max, and will form hinges to 

accommodate the movement. But if the supports move apmi, the arch will 

immediately move to the state of minimum thrust, Hmin, and will form three hinges to 

accommodate the movement. As the supports continue to move, the arch will continue 

to deform as a mechanism and the thrust will change as the geometry of the arch 

changes. Moving the supports apart causes the crown of the arch to descend and 

increases the thrust of the arch. Moving the supports together causes the crown of the 

arch to rise and decreases the thrust of the arch: see Figure 5.7. When the arch 

supports have spread apmi by a distance xo ' the minimum thrust of the arch will 

become 1!.,.", which is greater than the absolute minimum thrust, ~Ilin. Likewise, if the 

arch supports have moved together by a distance Xo the maximum thrust of the arch 

will become H-x", which is less than the absolute maximum tlu'ust, Hmax. In each case, 
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it is possible to compute the value of horizontal thrust uniquely if the hinge locations 

in the arch are lmown. This chapter is concerned only with positive values of x, 

corresponding to the problem of spreading suppOlis, and seeks to determine the exact 

hinge locations and the value of thrust as the arch supports spread apati. 

The value of the mInImUm thrust can be found by exammmg the equilibrium 

conditions for the central region of the arch as shown in Figure 5.8. 

/" 

d 

Hllli" ---i1J'f 

v 

Figure 5.B. Equilibrium of central region of a masonry arch, acting under its own weight, at 
the state of minimum thrust, Hlllill> due to a very small outward movement of the supports. The 
arch is symmetrical, so this analysis can be applied to section BC or section AB of the arch. 

Taking moments about point C of Figure 5.8, it is straightforward to write an equation 

for the horizontal thrust as a function of the intrados hinge location p. For an arch of 

any shape the minimum thrust linin is 

[5.3] 

where the weight of the half arch V, the rise d and the horizontal centroid la are all a 

function of the initial hinge location Po and the shape of the arch (i.e. the thic1mess 

ratio fiR for circular arches). To determine the minimum thrust, the correct hinge 

location, Po, is the hinge location with the maximum value of thrust from the central 

region ABC. Coulomb was the first to note that the minimum thrust occurs for the 

hinge location, Po, which maximises the equation for minimum thrust (Heyman 1972). 

For example, the horizontal thrust from the central arch region ABC is plotted in 
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Figure 5.9 for the semi-circular arch of minimum thickness, fiR =0.1075 and the 

critical hinge location /Jo occurs at 54.5° (as in Table 5.2). 
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Horizontal thrust, HlHmin 

Figure 5.9. Horizontal thrust from the central region (ASC) of a semi-circular arch 
with tlR =0.1075 as a function of the location of the intrados hinge p. Not all hinge 
locations are statically admissible, but the maximum value will correspond to the 
correct hinge location for the state of minimum thrust. This curve corresponds to the 
thrust from equation [5.3] for a circular arch, and is normalised by the correct value of 
minimum thrust, Hllli". 

This provides a simple means of determining the hinge location for an arch on 

spreading supports and the value of the corresponding minimum thrust. The analyst 

must consider each possible intrados hinge location, and the hinges will form in the 

location that maximises the thrust of the arch. 

For a circular arch segment, each thickness ratio fiR has a corresponding initial value 

of /Jo , as plotted in Figure 5.1 O. This is due to the relationship between the circular 

shape of the arch and the approximately parabolic shape of the locus of pressure 

points. For arches subtending an angle 2a less than 2/Jo, the hinge /Jo will form at the 

support, at an angle a from the crown of the arch. Figure 5.10 is demonstrated with 

reference to the minimum thickness ratio, fIR=O.l 075, for a semi-circular arch. If the 

arch subtends a larger than 54.5°, the intrados hinge will form at /Jo =54.5° when the 

supports move apart. If a is less than 54.5° for an arch of fiR =0.1 075, the intrados 

hinges will form at the supports. 
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Figure 5.10. Intrados hinge location corresponding to minimum thrust for circular arches. 

0.24 

As illustrated in the previous section, an arch of thickness ratio fiR =0.1075 will be on 

the point of collapse for a total angle of embrace of 180° (a =90°). An arch of the 

same thickness ratio would safely stand for an angle subtending 120° (a =60°), and 

the value of the minimum thrust would be identical. The intrados hinge occurs at fJo 

=54.5° in both cases, since a is greater than Po. But if the arch of fiR =0.1075 

subtended a total angle of 100° (a =50°), the intrados hinges would form at the 

suppOlis, and the minimum thrust would be slightly lower. 

5.4 Failure Mechanism for Spreading Supports 

An arch on spreading supports will fail in one of two ways: a symmetrical five-hinge 

mechanism similar to the arch of minimum thickness as in Figure 5.2; or a three-hinge 

mechanism by snap-through if the thickness is sufficiently large. It is necessary to 

determine the exact mode of failure and the maximum value of span increase in order 

to determine the thrust from the arch as the suppOlis move apart. Researchers have not 

previously addressed this problem, though it is of primary impOliance for assessing 

the safety of masonry arches and vaults. 
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For most arches, failure will be governed by the five-hinge collapse mechanism, in 

which the central portion of the arch is a three-hinged arch, which deforms to 

accommodate the span increase. The problem is greatly complicated by one simple 

fact: as the span increases, the intrados hinge location fJo may change position and 

move toward the crown of the arch. Most significantly, a given span increase can be 

accommodated by several possible hinge locations. Smars illustrated that various 

kinematic mechanisms occupy the same statically admissible domain for a voussoir 

arch, though he did not discuss the implications of this fact in the context of spreading 

abutments (Smars, 2000). In other words, various equilibrium states are possible and 

the arch can adopt a different deformed shape for each. This remarkable fact raises 

several issues: 

1) A deformed arch can move safely between various equilibrium states due to 

imposed movements, such as emihquake vibrations. 

2) The thrust in the arch is determined by the hinge locations and the 

corresponding dip of the arch at the crown due to the increased span. 

3) In the case of spreading abutments, it is not possible to calculate the exact 

collapse condition without starting from a known equilibrium state. 

The critical question is to determine the intrados hinge location at failure, which can 

be used to calculate the increase in span and the change in geometry that will cause 

collapse. Without knowing the exact hinge location at failure, there are multiple 

equilibrium configurations with different hinge locations and different span increases, 

which satisfy the collapse condition. Collapse will occur by a five-hinge mechanism 

when the thrust from the central region of the arch ABC exceeds the stability limit for 

the supporting region CD (shown in Figure 5.6). Each possible hinge configuration 

has a differing value of dip at the crown of the arch and a different span increase at 

failure. This depmis from the usual assumptions of small displacements for limit 

analysis, since the geometry of the structure changes significantly. To solve the 

problem of spreading abutments, it is necessary to begin from a known equilibrium 

configuration, and follow the equilibrium state of the structure as it deforms until 

collapse. The MA TLAB program ArchSpread, included in Appendix B, carries out 

such a calculation in the following steps: 
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User inputs thickness ratio, angle of embrace, 
and voussoir size to define a circular arch; .. 

The minimum thrust Hlllill and initial hinge locations fJ" 
are determined for a very small increase in span length; 

• From the initial hinge locations at a state of minimum thrust, the 
exact locus of pressure points is calculated within the arch; 

+ 
The span is increased by a very small increment, and .... 
the arch deforms according to rigid-body kinematics; 

..... 

• .. For the new geometry, the new thrust is calculated 
and a new locus of pressure points is computed; 

+ 
Does the thrust exceed the stability limit of the supporting region of the arch? 
(i.e. does the locus of pressure points reach the extrados at the supports?) 

+ + 
If yes, collapse condition If no, continue 
by five-hinge mechanism; calculation; 

• Check: Is the locus of pressure points contained within the arch, or does it 
become tangential to the intrados nearer to the crown? (i.e. does fJ move?) 

• • If tangential at the intrados, move intrados If contained within 
hinge to new location nearer to the crown; the arch; 

Give output at collapse: 

• Initial intrados hinge location, fJ" 
• Intrados hinge location at collapse, fJ" .. • % span increase, ( /L) x 100 

~ 

• % thrust increase, (Hllla/HlllilJxIOO 

• Dip at crown (as a multiple of the arch thickness, t) 

• Plot locus of pressure points and deformed shape of arch. 

Figure 5.11 Algorithm to determine the collapse state of an arch on spreading supports. 

The three-hinge "snap-through" failure will occur only for arches of very large 

thickness ratios and small angles of embrace. For this to occur, the locus of pressure 

points must be a horizontal line tangential to the arch intrados at the abutment. Snap­

through by a three-hinge mechanism will occur for arches subtending a half angle of 

embrace: 
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[5.5] 

This limit is outside the geometrical range for circular arches and the present 

discussion, though the snap-through mechanism may be critical for some flat arches. 

The governmg failure mechanisms for circular arches on spreading supports are 

presented in Figure 5.12, as determined from the program ArchSpread. The lowest 

part of the curve is the region of least thickness, where the minimum thrust is equal to 

the maximum thrust. As the thickness increases, the maximum thrust at collapse 

increases. The ArchSpread program was used to determine the thickness ratios for the 

collapse state at which the maximum thrust from the arch, Hmax, is 1.5, 2.0, and 5.0 

times greater than the initial minimum thrust, Hmim defined in Figure 5.8. 
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Figure 5.12. Collapse mechanisms and associated horizontal thrust for circular arches on spreading 
SUppOltS. The maximum horizontal thrust from the arch at collapse is defined as Hma.n a mUltiple of Hmi" . 

This analysis illustrates that in the case of spreading abutments, most arches will fail 

due to a five-hinge mechanism. As the thickness increases, the failure mechanism 

approaches a snap-through failure and the thrust increases significantly prior to 
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[5.5] 

This limit is outside the geometrical range for circular arches and the present 

discussion, though the snap-tlu'ough mechanism may be critical for some flat arches. 

The govermng failure mechanisms for circular arches on spreading SUppOltS are 

presented in Figure 5.12, as determined from the program ArchSpread. The lowest 

part of the curve is the region of least thickness, where the minimum thrust is equal to 

the maximum thrust. As the thickness increases, the maximum thrust at collapse 

increases. The ArchSpread program was used to determine the thickness ratios for the 

collapse state at which the maximum thrust from the arch, H,na.>:> is 1.5, 2.0, and 5.0 

times greater than the initial minimum thrust, H,nin, defined in Figure 5.8. 
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Figure 5.12. Collapse mechanisms and associated horizontal thrust for circular arches on spreading 
supports. The maximum horizontal thrust from the arch at collapse is defined as HII/a." a multiple of Hlllill . 

This analysis illustrates that in the case of spreading abutments, most arches will fail 

due to a five-hinge mechanism. As the thickness increases, the failure mechanism 

approaches a snap-through failure and the thrust increases significantly prior to 
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collapse. This is of great impOliance in assessing the safety of arches supported on 

buttresses, where the thrust of the arch may exceed the capacity of the buttress (to be 

shown in Chapter 7). This is paliicularly true in the case of leaning buttresses, which 

cause the span of the arch to increase and can lead to the collapse of a buttressed arch. 

5.5 Spread Limits at Collapse 

Circular arches subtending angles of 80° to 180° (a=40° to 90°) have been analysed 

using the program ArchSpread (described in Figure 5.11) for various thickness ratios 

to determine the maximum spread of the abutments before collapse occurs. Some of 

the results are shown in Figures 5.13 and 5.14. Each curve begins with the least 

possible thickness ratio (from Table 5.2), and the collapse state is computed for larger 

thicknesses. As a practical limit, arches are not investigated beyond the region where 

the maximum thrust is greater than five times the minimum thrust at collapse. 
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Figure 5.13. Thrust increase at five-hinge collapse for circular arches of varying geometry. For example, an 
arch subtending 1200 (a=60 0

) with t/R=0.10 will collapse by a five-hinge mechanism with a thrust of2.17Hlllill" 
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The corresponding values of span increase to cause collapse are presented in Figure 

5.14. For arches with smaller angles of embrace, the curves are truncated at the point 

where the maximum thrust is equal to five times the minimum thrust. For circular 

arches, the percentage of span increase to cause collapse is approximately linear in 

relation to increasing thickness ratios. 
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Figure 5.14 Maximum span increase at collapse for circular arches. Some plots are terminated when 
the thrust of the arch at collapse is equal to five times the minimum thrust. These points are marked by 
"x" and correspond to the same points on Figure 5. l3 . 

In each case, the intrados hinge begins at the initial hinge location, flo, and moves 

toward the crown of the arch as the supports are moved apart. At the collapse state 

when five hinges form, the intrados hinges have moved to a critical location flu. The 

implications of this hinge movement will be discussed in the next section and 

illustrated by the experimental results at the end of this chapter. The movements of the 

hinges from the initial hinge location, flo, to the hinge location at collapse, flu, are 

summarised in Figure 5.15 for arches subtending angles of embrace of 40°, 60°, and 

80°. As the angle of embrace becomes smaller the intrados hinge is more likely to 

move by a large amount before collapsing. As before, the curves for small angles of 

embrace are truncated when the maximum thrust becomes five times the minimum 

thrust. The voussoir size is taken as 0.1 ° to provide a theoretical limit for the problem 

and allow the intrados hinges to move smoothly as the arch deforms. 
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Figure 5.15. Summary of intrados hinge movements from initial hinge location, /30' to final 
hinge location at the collapse state, fJ,,, assuming the voussoir size is 0.1 °. 

To explain Figure 5.15, we return again to the example of a circular arch with a 

thickness ratio of fi R =0.1075. If the arch subtends a total angle of 160° (a=800), the 

hinge moves from the initial location of /30=54.5° to /311 =52.2° at the collapse state. 

B ut if the arch subtends a smaller angle of embrace of 120° (a=600), the hinge begins 

at 54.5° as before, but moves all the way to 43.2° from the crown at the collapse state. 

This demonstrates that the intrados hinge locations may move substantially as the arch 

deforms to the collapse state. This will now be demonstrated with reference to a 

specific example in order to demonstrate the influence of the voussoir size. 

5.6 Effect of Voussoir Size 

The results presented in Figures 5.12 to 5.15 are based on arches with small voussoirs 

(of angle 0.1 °), in order to provide theoretical limits for the problem. This is, of 

course, much smaller than the voussoir angles used in practice, so it is of interest to 

know how the results would change for large voussoir sizes. To investigate the effect 

of larger voussoir size on the stability of arches on spreading supports, an arch 

subtending a total angle of embrace of 120° (a=600) with a thickness ratio of fi R 

=0.10 has been analysed using the ArchSpread program. The program output is 

illustrated in Figure 5.16 for an arch with 1 ° voussoirs. In addition, the same arch has 

been analysed for voussoir sizes of 0.1 °,5°, and 10°: see Table 5.3 for a summary. 
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Locus of pressure 
points at collapse 

fJ,,= 54° 
f],t = 42° 
Span increase= 8.0% 
Thrust increase= 2.17 Hmill 

Dip = 1.691 

Figure 5.16 Symmetrical collapse mechanism for an arch on spreading abutments (tIR=O.IO; a=600; 
voussoir angle =1 °). 

Voussoir size 0.1° 1° 5° 10° 

Initial hinge, fJ" 53 .8° 54° 55° 50° 

Collapse hinge, fJ" 42 .7° 42° 40° 40° 

Span increase (%) 8.2 8.0 8.6 9.3 

Thrust increase (XH lllill) 2.16 2.17 2.02 2.03 

Dip at crown (xl) 1.73 1.69 2.09 2.54 
Table 5.3 Collapse state for an arch subtendmg 120° (a=600) and tIR=O.lO with varymg voussoir sizes. 

The different response due to varying voussoir sizes is summarised in Figure 5.17, 

which plots the increasing tIu'ust as the span increases. The slight difference between 

the arches of 1 ° and 0.1 ° voussoirs is due to the difference in the hinge location fJ at 

the collapse state. The 1 ° voussoir arch fails when jF42°, while the 0.1 ° voussoir arch 

continues to deform until jF42.7°. The 5°_ and lQo-voussoir arches both fail at jF40°, 

and can resist slightly larger span increases. Most significantly, the lowest line on the 

curve is the thrust if the initial hinge is artificially constrained at jF53.8° , and does 

not move to the final position of approximately 42°. The intrados hinge movement 

leads to increased tlu'usts as the span increases, which may be significant in some 

cases. The effect of the hinge movement is an important factor in the response of 

arches to moving supports, and engineers should be aware of this possibility. 
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Figure 5.17. Thrust increase with span increase for various voussoir sizes (a=60°, tIR=O.lO). 

The importance of the hinge movement is illustrated by the "stepped" effect of the 

thrust increase. As the hinge moves from one voussoir to the next, the sudden change 

in geometry -- corr~sponding to the hinge moving inwards by one voussoir -- causes 

discontinuities in the thrust increase. In actual arches, this geometrical change can 

lead to a dynamic effect, where the arch adjusts to the shifting hinge and the crown 

drops suddenly. This effect may reduce the safety of arches by causing collapse at 

smaller span increases than those predicted by the analysis applied in this chapter. 

In summary, defining the arch as finite voussoirs has several important effects: 

1) Larger voussoirs limit the possible hinge locations. For smaller voussoirs, the 

intrados hinge at fJ can move more smoothly from one voussoir to another. 

Large voussoirs require sudden changes in the geometry of the arch to adjust 

to the changing hinge locations. 
2) Using larger voussoirs generally increases the capacity of the arch for 

abutment spreading, although not always. Increasing the size of the voussoir 

can "strengthen" the arch by preventing the movement of the intrados hinge, 

or in some cases can cause premature collapse if the hinge location is limited. 
3) As the intrados hinge moves position, larger voussoirs ' will cause sudden 

changes in geometry and sudden increases in horizontal thrust. This can 
introduce dynamic effects into arches with spreading abutments. 
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5.7 Experimental Results 

Small scale experiments have been conducted in order to investigate the collapse 

mechanisms of arches on spreading supports. Two model arches were made from 

voussoirs cast as individual concrete blocks, 50mm in radial thickness. Archl had a 

radius of 220mm and a thickness ratio, tlR, of 0.23, with voussoirs of approximately 

11 0. Arch2 had a radius of 385mm and a thickness ratio, tlR, of 0.13, with voussoirs 

of 10°. Both arches were tested to collapse by spreading the supports, and the results 

are presented in Figures 5.18-5.21 and in Table 5.4. 

Figure 5.18. Undeformed masonry arch of approximately 11 ° blocks (Arch 1: (IR=O.23, a=900). 

Figure 5.19. Deformed Arch 1 on spreading supports just before collapse. 
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Figure 5.20. Undeformed masonry arch of 10° blocks (Arch2: tIR=0.13, a=800). 

Figure 5.21. Deformed Arch2 on spreading supports just before collapse. 

Arch1: tlR = 0.23 Arch2: fiR = 0.13 

(voussoir size -11 0, a=900) (voussoir size of 10°, a=800) 

Predicted Test % diff. Predicted Test % diff. 

Initial hinge, /30 56° 56° 0% 60° 60° 0% 

Collapse hinge, /3u 56° 56° 0% 50° 50° 0% 

% Span increase 
16.9% 15.4% -8.9% 8.8% 7.8% -11.4% 

just before collapse 

Dip at crown just 
1.01 0.8t -20% 1.21 0.8t -33% 

before collapse 
Table 5.4. PredIcted response and expenmental results for arches on spreadmg supports. 
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In each case, the methods presented in this chapter conectly predicted the final 

collapse mechanism. In the first arch, the intrados hinges remained in their initial 

configuration and did not move as the support spreads. In the second arch, the hinges 

occurred at 60° initially, and then moved to the next voussoir (at 50°) before reaching 

the final collapse state. In both arches, collapse occurred by a four-hinge mechanism 

when the thrust from the central region of the arch exceeded the stability conditions 

for one of the supporting regions of the arch (i.e. the locus of pressure points atTives at 

the extrados at the support). For perfectly symmetrical arches, the collapse is a five­

hinge mechanism as predicted by the program ArchSpread, but in practice, very small 

asymmetries cause collapse by a four-hinge mechanism. 

Importantly, the theoretical approach presented in this chapter predicts slightly larger 

support movements than the movements measured just before collapse. For Arch! and 

Arch2 the actual support movements were less than the predicted support movements 

for collapse by 8.9% and 11.4%, respectively. The explanation for this discrepancy is 

due to the nature of the collapse mechanism and the imperfect modelling of the 

blocks. As the arch approaches the collapse state, the thrust from the central region is 

nearly equal to the resistance of the supporting region of the arch. Any small 

movement will lead to changes in the stability of the system and premature collapse of 

the arch. In patiicular, small vibrations will lead to the collapse of the arch and 

therefore it is highly difficult to reach the theoretical limit for spreading of the 

supports. Furthermore, the edges of the blocks were not perfectly defined and thus 

the hinge locations could not occur exactly at the edge of the blocks as assumed in the 

analysis. This could have been avoided by using carefully machined steel voussoirs, 

but this would not have modelled the reality of masomy structures, which are inexact 

in their construction. Finally, the slight asymmetry of real structures may cause 

collapse to occur prematurely by a four-hinge mechanism rather than a perfectly 

symmetrical five-hinge mechanism. 

5.8 Summary 

This chapter has analysed the specific problem of a circular arch segment on 

spreading abutments, and the following points are significant: 
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1) The arch of minimum thickness for a gIven angle of embrace can be 
determined exactly with a work-balance calculation, or from the exact 
equations for thrust in a circular arch. 

2) The Heyman (1969) equation for minimum thickness is not precisely 
correct, and can underestimate the minimum thickness by a small amount 
(about 1 % for a semicircular arch). 

3) The conventional "thrust line" is not precisely tangential to the arch at the 
intrados hinge. A locus of pressure points -- a more precise concept -- can 
be constructed by making "cuts" in the structure and finding the "pressure 

point" where the resultant axial forces pass through the joint between 
voussoirs to satisfy equilibrium. The locus of pressure points is equivalent 

to the "line of resistance" defined by Moseley (1843). 

4) Each thickness ratio has an initial position of the intrados hinge, /30' where 
the initial hinges will occur in the case of spreading abutments (provided 

that the total angle of embrace is greater than 2/30). 

5) For the problem of spreading abutments, the method presented here predicts 
that circular arches will collapse due to the formation of a five-hinge 
mechanism. Though this mechanism is symmetrical, only four hinges are 

required for collapse to occur so the actual collapse mechanism may not be 
exactly symmetrical due to slight asymmetries in practice. 

6) The vertical force reaction at the arch support remains constant, but the 
horizontal thrust increases substantially as the supports move apart. 

7) As the suppOlis move horizontally, the intrados hinge in a circular arch will 

move toward the crown, altering the geometry of the arch and further 
increasing the tln-ust of the arch prior to collapse. 

8) A given span increase may be accommodated by a number of possible 
equilibrium configurations, each with different hinge locations and different 
deformed shapes. To determine the collapse condition the analyst must 
begin from a known equilibrium configuration. 

9) For spreading abutments, typical masonry arches may exert a thrust up to 

five times the minimum thrust before they collapse. 

10) The theoretical span increase to cause collapse is approximately linear in 
relation to the thickness ratio for a circular arch. 
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11) The size of individual VOUSSOlrs can alter the response of the arch to 
spreading supports; and finite voussoirs can cause sudden changes III 

geometry as the intrados hinge "jumps" between voussoirs. 

12) Actual arches collapse at slightly lower span increase than predicted due to 
the precarious nature of the collapse mechanism and the imperfect 
"corners" of the voussoirs, which do not form hinges exactly at the edge as 

theorised. 

13) The collapse of masomy arches on spreading abutments is a complex 
problem, with uncertainties in the exact collapse mode due to uncertainties 
in the hinge locations in the arch. 

14) Only circular arches of constant thickness have been considered here, but 
the general procedure can be adapted to arches of any shape and thiclmess. 
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Chapter 6 The Masonry Arch under Lateral Acceleration 

6.1 Introduction 

As the previous chapter demonstrated, masonry arches can be analysed as rigid-block 

assemblies that collapse due to instability of the structure rather than failure of the 

material. In addition to the threat of support movements, earthquake loading can apply 

large horizontal accelerations, which may de-stabilise a masonry arch. This chapter 

investigates the resistance of the circular masonry arch to constant horizontal 

acceleration, combined with the vertical acceleration due to gravity. This is equivalent 

to tilting an arch on a plane until the arch collapses, and the critical angle of tilt gives 

the minimum value of lateral acceleration to cause the arch to collapse. Thus, an 

analysis of tilting arches provides an initial approximate procedure for the equivalent 

static analysis of masonry structures in earthquake loading. This provides insight into 

the relative stability of various arch geometries, and can be used to investigate the 

change in internal forces as a result of lateral acceleration. In general, the seismic 

performance of vaulted masonry buildings is poorly understood, and this chapter 

provides a basic introduction to the response of arches to lateral acceleration by 

defining the governing mechanisms for circular arch segments. 

For vertical loading due to gravity, the internal line of forces (the locus of pressure 

points) is contained within the arch initially. As the arch is tilted, the internal forces 

shift to account for the horizontal component of acceleration. Eventually, the line of 

forces cmU10t be contained within the thickness of the arch, hinges form, and the arch 

becomes a mechanism with four hinges, commonly called a four-bar chain (Fig. 6.1). 

Ag 

g 

Figure 6.1 Hinge formation and the collapse of an arch as a four-bar chain due to lateral acceleration. 
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In the previous chapter, it was necessary to determine the exact locus of pressure 

points in order to find the critical hinge locations throughout the history of 

deformation. For · an arch on spreading suppOlis, the geometry of the structure 

continues to change and a new equilibrium state must be found for the new geometry 

at each stage. The arch on spreading abutments involves large support displacements 

and the structure changes continuously to adapt to the new geometry. For the current 

problem, the initial (circular) geometry of the arch is unchanged as the arch tilts, and 

the critical loading to cause collapse can be solved directly from a work calculation 

based on an infinitesimal motion. This follows Heyman's upper-bound approach for 

the limit analysis of masomy arches, and the critical collapse mechanism must be 

found for the applied loading. 

6.2 Method of Analysis 

To determine the minimum constant horizontal acceleration for collapse, it is first 

necessary to postulate a failure mechanism, and determine the amount of work 

required to form the mechanism~ To ensure that the correct hinge locations are found, 

it is necessary to check other possible mechanisms, and to verify that the correct 

mechanism requires the smallest value of lateral acceleration. At the collapse state, 

the masomy arch r~quires four hinges to form - two hinges at the extrados, Band D, 

and two hinges at the intrados, A and C - as shown in Figure 6.2. Clemente (1998a) 

demonstrated that the hinge at point D will always form at the extrados of the support. 

The location of the three other hinges, C at the intrados, B at the extrados, and A at 

the intrados, must be found by iterative calculations. For this dissertation, a uniform 

horizontal acceleration is applied to the structure, and the calculation is independent 

of the uniform density of the material. The combined action of the vertical 

acceleration of gravity with the horizontal acceleration is equivalent to a resultant 

acceleration acting at an angle of [' from the vertical. 

As in the previous chapter, the arch is a circular segment with a centreline radius of R, 

thickness t, and angle of embrace 2 a. The only loading is due to the self-weight of the 

arch. The hinge locations for A, B, and C are defined by the angles a, b, and c 

measured from the horizontal line at the geometric centre of the arch. The four hinges 

divide the arch into three rigid segments, each with a centre of mass Mj, for i = 1,2,3. 
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Figure 6.2. Geometry of a circular masonry arch with four hinges due to horizontal acceleration. 

The lateral acceleration is defined as a factor, A, multiplied by the acceleration of 

gravity, g . The lateral acceleration .,1g and the vertical acceleration g, are related by r, 

where: 

.,1g 
tan(r) = - = A . 

g 
[6.1 ] 

The angle r is equivalent to the inclination at which the equivalent lateral acceleration 

would be applied if the entire structure were tilted on a plane. Based on the initial 

assumptions of rigid blocks which can form hinges at any location between voussoirs, 

there is no energy dissipated within this system, and therefore the sum of internal 

work done is zero. The work equation relating the horizontal and vertical 

displacements, Ui and Vi, of each centre of mass, to the total work done by the 

acceleration is: 

IM;gv; + IM;.,1gu; = 0 [6.2] 
;=1 ,2 ,3 ;=1 ,2,3 
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which states that the sum of veliical work plus the sum of horizontal work must equal 

zero (i.e., external work must equal internal work) . Rearranging [6.2], and 'solving for 

A yields: 

IM;v; 
A = _ -;;====1 , 2~,3 __ 

IM;u; 
;=1,2,3 

[6.3] 

The factor A is defined as the sum of the vertical gravitational work divided by the 

sum of the horizontal work. From [6.1], the equivalent angle oftilt r is: 

[6.4] 

Figure 6.3. Equivalent tilted arch and work done by components due to the applied acceleration 

To determine the mllllmum lateral acceleration factor to produce a collapse 

mechanism, All/ill> the work calculation is summarised in the following steps: 

1) For assumed hinge locations A, B, C, and D, determine the centre of mass of 

each segment, and the location of the instantaneous centre, I, for the central 

portion. (Figure 6.2). 

2) Apply a small rotation to segment BC of the arch, and calculate the 

corresponding rotations of the two remaining arch segments. (The 

mechanism has one degree of freedom, so the relative rotations are defined 

by the rotation of one component.) 
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3) Based on the relative rotations of each segment, compute the small vertical 

and horizontal displacements, Vi and Ui , of each centre of mass, U~ 

4) Compute the vertical and horizontal components of work done as the sum of 

the displacements multiplied by the masses, including the unknown A (Figure 

6.3). 

5) The value of horizontal acceleration, A, is computed from [6.3] by dividing 

the total vertical work by the total horizontal work. 

6) Store the current value of A and repeat the calculation for all kinematically 

admissible positions of hinges A, B, and C. 

7) The hinge locations resulting in the lowest value of A identify the collapse 

mechanism and the corresponding value of Alliin' 

This process is carried out by the program ArchTilt, written m MATLAB and 

attached in Appendix A, in which the user inputs the angle of embrace and thiclrness 

ratio, and the program performs the algorithm described above. The program output 

provides the hinge locations A, B, and C for the critical mechanism and the minimum 

lateral acceleration, Alliin ' 

6.3 Collapse Mechanisms 

The previous chapter demonstrated that the symmetrical five-hinge mechanism 

governs for small thiclrness ratios, suggesting that a similar mechanism will govern 

for angles of embrace slightly less than the maximum possible angle of embrace. But 

in this case, essentially the same failure mechanism will occur, though the hinge 

locations will rotate by the angle of tilt, 1 , to new positions. Thus, it is the same 

problem of the minimum thiclrness arch, with the axes of the coordinate system 

rotated by the angle 1 . This is equivalent to building in the arch foundation by an 

angle of 21 (Figure 6.4), because each suppOli would rotate by 1 from the original 

position. The suppOli with the extrados hinge D is fixed, so the opposite suppOli 

would rotate around the arch by an angle of 21. Of course this simplified approach is 

only valid for the unique case of the circular arch, in which the entire arch can be 

"rotated" without altering the mechanics or the geometry of the problem. Importantly, 

only four hinges are needed for collapse to occur, so that the entire five-hinge 

mechanism does not have to form. Thus, it is valid to apply a four-hinge collapse 

mechanism, derived from the geometry of the five-hinge mechanism. 
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B 

Figure 6.4. Minimum thickness arch rotated through an angle, r. 

If the minimum thickness arch is rotated through r clockwise, a symmetrical arch of 

the same thickness will be on the point of collapse under an acceleration vector angled 

at r. This mechanism holds true until the point when 2r exceeds the hinge location 

of the right-hand abutment. After this point, the hinge at A will form at the support, 

and not in the span of the arch. This will occur for an angle of tilt: 

r = a m 3X - f3 
2 

[6.5] 

where fJ is the angle of the intrados hinge from the crown at the maximum angle of 

half embrace, all/OX, for the given thickness ratio. 

For arches with small thickness ratios and large angles of embrace, the relationship 

between r and a will be linear with a slope of -1 , until the point that the angle a 

forms at the support, when the slope will increase due to greater resistance to lateral 

loading. Until this point, three of the hinges occur in the span, with only one hinge at 

the support. After this point, a hinge forms at each support and two hinges form in the 

span. 
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The minimum thickness arches presented in Table 5.2 have been considered for 

smaller angles of embrace than the critical angle, all/aX, at which they will no longer 

stand. For each thickness, the minimum required lateral acceleration to induce 

collapse is summarised in Figure 6.5. This graph plots the minimum angle of tilt, r , 
necessary for collapse of arches with various thickness ratios and angles of embrace. 

The thiclmess ratios presented in Figure 6.5 range from 0.011 to 0.108, and are plotted 

for total angles of embrace from 80° up to 180° (a=40° to 90°). As postulated, the 

relationship between r and a is linear with slope -1, and then rises more steeply for 

smaller angles of embrace when the hinges A and D form at the supports. 
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Figure 6.5. Maximum angle of tilt for circular arches of various thickness ratios. 

The behaviour is consistent regardless of the thickness, suggesting that a general rule 

for determining the threshold acceleration of circular arches can be derived. For an 

arch of given fiR and angle of embrace 2a, it is possible to approximate the critical 

angle r , which will cause the onset of a collapse mechanism. This approximation is 

shown as the set of dashed lines in Figure 6.5. The direct relationship between a and 

r means that if the angle of tilt, r , is zero for all/aX, then the r for a given a is simply: 

[6 .6] 
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The minimum thickness ratio, which will collapse at the maximum possible angle of 

embrace, all/OX , can be approximated by the equation: 

() 

4 t a max 

R min - -4-8- [5.2] 

where all/OX is given in radians, as presented previously in Chapter 5. Rearranging and 

solving for the maximum angle of embrace, all/OX , yields: 

[6.7] 

For a given fiR ratio, this can be used to approximate the maximum angle, aI/laX, at 

which an arch of that thickness would stand. Combining [6.5] and [6.7] gives: 

[3f]X 
r~2 R - a [6.8] 

where r and a are given in radians. This equation can be applied to existing arches of 

known angle of embrace and thickness ratio, to determine the approximate critical 

angle of tilt for collapse to occur. For example, a circular arch subtending an angle of 

1300 (a=1.13 radians), with a thickness ratio of 0.09, would have an approximate r of 

0.31 radians, or 180 according to equation [6.8]. From [6.l], this value corresponds to 

A=0.32, or a lateral acceleration of 0.32g. The exact solution from the ArchTilt 

program is rcr of 0.37 radians, or 21 0, corresponding to a lateral acceleration of 

A=0.38g. This approximation provides a conservative estimate of the minimum lateral 

acceleration necessary to form a collapse mechanism in a circular arch. The minimum 

lateral acceleration for collapse is summarised in Figure 6.6 below, from the tangent 

of the r values in Figure 6.5. 
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Figure 6.6 Value of horizontal acceleration for collapse of a circular arch . The simple approximation 
described in this chapter is tangent to each curve for small values of acceleration, as in Figure 6.5. 

Typical arch geometries range from fiR =0.04 to 0.1 0 and a =60 0 to 800
• For these 

cases, the horizontal acceleration for collapse is less than 0.5g, which is within the 

range of peak ground accelerations experienced in a strong earthquake. The values 

presented here are simply a threshold acceleration for the formation of the collapse 

mechanism. Below this acceleration the arch translates as a rigid body, as will be 

discussed in Chapter 8 regarding seismic safety. An arch can sustain values of 

horizontal acceleration greater than Ag if the acceleration is applied for a short period 

of time, but such a situation has not been analysed in the current disseliation. 

The key values from Figures 6.5 and 6.6 are presented in Table 6.1. 

Thickness ratio 0.011 0.023 0.041 0.069 0.108 

amox (degrees) 50° 60° 70° 80° 90° 

/30' initial intrados hinge 33.6° 39.5° 45 .0° 49.9° 54.5° 
(degrees) (from Table 3.2) 
Angle of tilt r (degrees) 
when hinge A forms at the 8.0° 10.0° 12.5° 15.0° 17.5° 
support (from eqn. [4.5]) 
Horizontal acceleration A. 0.14 0.18 0.22 0.27 0.32 
for hinge A at the SUppOlt 
Half embrace a (degrees) 
when hinge A forms at the 42.0° 50.0° 57.5° 65.0° 72.5° 
support .. 

Table 6.1. Values for the transitIOn between the four-hmge mechal1lsm with a hmge at each 
support, and the four-hinge mechanism with only one hinge at one support. 
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6.4 Critical Hinge Locations 

For circular arches, the hinge locations of the critical failure mechanisms follow a 

very clear pa~tern. For small angles of embrace, at which the arch is very stable, the 

hinge A always forms at the right abutment. Thus, the angle at which A forms is 

simply 90-a. The central hinge B is typically close to A for very stable 

configurations, but as the angle of embrace increases and the necessary angle of tilt r 
decreases, the hinge B tends toward the centre of the arch (90°). Similarly, as the 

angle of embrace increases, the angle at which C forms continues to increase. This 

behaviour is illustrated in Figure 6.7 for a circular arch with a thickness ratio of 0.108, 

in which the angle of each hinge location is measured from the horizontal line below 

the right abutment. The plot terminates when a reaches a lllax=90°, the angle of 

embrace at which the circular arch can no longer stand under vertical loading for the 

given thickness. 
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Figure 6.7. Critical hinge locations for collapse of a circular arch with fiR = 0.108 under constant 
horizontal acceleration. 

Thus, a circular arch demonstrates two different collapse mechanisms. The first 

mechanism is a typical four-bar chain, of the type investigated by Oppenheim (1992), 

in which two of the hinges always form at the abutments. The second mechanism of 

collapse occurs as the angle of embrace approaches the maximum allowable angle for 

the given thickness, and the mechanism corresponds to part of a symmetrical five­

hinge mechanism for the arch of least thickness. In the case of the five-hinge 
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mechanism, only four hinges are necessary for failure, and the angle A, formerly at 

the right support of the arch, moves into the span. The change in the type of governing 

mechanism is illustrated by the abrupt change in slope in the location of hinge A, as 

illustrated in Figure 6.7. This occurs when the angle 90-a equals the critical angle of 

tilt r. After this point (which occurs at a=72.5° in Figure 6.7), the distance between 

the hinges A, B, and C remains constant and the same mechanism merely rotates 

around the circular arch. This continues until the maximum angle of embrace is 

reached, at which point the mechanism will be symmetrical with B occurring at 90°, 

and hinges A and C equidistant on either side of B (at an angle of /3). For the 

semicircular arch of minimum thickness, the critical intrados hinges occur 55° from 

the crown of the arch, so the angle a=35° and b=145° for the case of a=90°. 

6.5 Thrust at Collapse 

As the lateral acceleration is applied to the arch, the force reactions at each suppOli 

can change significantly. The reactions on the far side of the arch (hinge D) increase, 

while the reactions on the near side of the arch (hinge A) decrease. For an arch on 

buttresses, the far side of the arch (hinge D) is most interesting because the lateral 

accelerations will tend to destabilise the buttress on that side. The support reactions at 

the collapse state have been computed for varying arch geometries: see Figure 6.8. 
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Figure 6.S. Change in support reactions at hinge D at collapse due to constant lateral acceleration. 
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As the lateral acceleration is applied, the horizontal thrust on the far supp0l1 increases 

significantly over the minimum thrust, Hmil/ ' Interestingly, the vel1ical reaCtion at the 

supp0l1 remains largely constant for angles of embrace greater than 120 degrees 

(a=600). For typical arch geometries the vertical reaction remains constant and the 

horizontal thrust increases in a nearly linear fashion. The increase in horizontal thrust 

may be significant for some arches supported on buttresses, particularly due to the 

lowered resistance of the buttress as a result of the lateral acceleration. This will be 

discussed in the next chapter for the analysis of arches supported on buttresses. 

The reactions at the hinge on the near side of the arch (hinge A) are reduced 

considerably by the lateral acceleration, but remain compressive for all of the cases 

considered. As long as compression force reactions exist at the hinge, the assumption 

of failure by a four-hinge mechanism is appropriate. Tensile forces would separate the 

hinge and invalidate the assumption of failure by a four-hinge mechanism. 

6.6 Effect of Voussoir Size 

To illustrate the ArchTilt program and to investigate the effect of voussoir size on the 

stability of arches, an arch subtending a total angle of embrace of 120° (a=600) with a 

thickness ratio of tIR=O.1 0 is considered. In addition, the same arch is analysed for 

voussoir sizes of 1°, 5°, and 10°. The results for each different voussoir size are 

summarised in Table 6.2. 

Voussoir size 1° 5° 10° 

Collapse hinges (a-b-c) 30°-64°-116° 30°-65°-110° 30°-60°-100° 

Lateral acceleration, A (xg) 0.58 0.59 0.66 

Equivalent angle of tilt, r 30.1° 30.7° 33.5° 

Thrust increase at hinge D (HIHlllill) 2.01 2.03 2.11 
Table 6.2. Collapse state for an arch subtendmg 1200 with t/R =0 .10 for varymg voussolr sizes. 

Constructing an arch with larger voussoirs limits the possible hinge locations and 

generally increases the capacity of the arch for horizontal acceleration. In theory, a 

10-degree voussoir arch can sustain 10% higher lateral accelerations than an arch with 

small voussoirs. All of the results presented in this chapter are based on arches of 1-

degree voussoirs, which allow the hinges to form in the critical locations. Based on 

the comparison between various voussoir sizes, this is a conservative approach. 
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6.7 Summary 

This chapter has identified the governing collapse mechanisms and illustrated the 

effect of varying the arch geometry on the resistance to lateral acceleration. The study 

of circular arches with constant thickness has established the patterns of behaviour for 

arches under constant horizontal acceleration, and the general approach can be 

extended to arches of varying shapes and varying thickness. The following 

conclusions can be drawn: 

1 ) Under increasing horizontal acceleration, a masonry arch will 
undergo rigid-body motion until a threshold value of acceleration, A.g, 
is reached, which is sufficient to form a four-hinge mechanism. 

2) This approach verifies the minimum-thickness analysis of the 
previous chapter. The arch of minimum thickness will collapse for 
zero horizontal acceleration, or ,.1=0. 

3) The critical value of A.g increases with an increase in thickness or a 
decrease in the angle of embrace. 

4) For a relatively stable arch with a large thickness ratio and a small 
angle of embrace, two of the four hinges will form at the arch 
abutments, and the other two hinges will form within the span of the 
arch. 

5) As arches become less stable (smaller thickness ratios or greater 
angles of embrace), the failure mechanism will become more 
symmetrical and three of the hinges will form in the span of the arch. 

6) For typical arch proportions, the relationship between angle 
subtended and critical angle of tilt, r, is linear. This provides a 
conservative method for estimating the horizontal acceleration to 
cause collapse for a given arch. 

7) Under horizontal acceleration, the equivalent static tIU'ust of the arch 
may increase by a factor of about two before the collapse mechanism 
is reached. 

8) Larger voussoir sizes will increase the resistance of the arch to lateral 
acceleration's compared with arches of small voussoirs. 
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Chapter 7 Collapse of Buttressed Arches 

7.1 Introduction 

This chapter combines the results from preceding chapters to investigate the collapse 

state of arches supported on buttresses. Tlu'ee general loading situations can lead to the 

collapse of buttressed arches: applied loads, applied support displacements, and applied 

ground accelerations. The present chapter investigates the collapse of buttressed arches 

due to applied displacements and applied lateral acceleration. The goal of this study is 

to determine the general patterns of behaviour and the likely failure modes for 

buttressed arches. 

7.1.1 Applied loading 

Using principles of limit analysis, it is straightforward to determine the collapse state of 

a rigid-block structure due to an applied load. The hinge locations are postulated, and a 

work calculation is performed to determine the maximum applied load, P. The critical 

collapse mechanism will occur for the lowest value of applied load which forms a 

kinematically admissible mechanism (Heyman 1969; Livesley 1978). For an arch on 

masonry buttresses, the analyst must consider collapse mechanisms involving a 

combined arch-buttress mechanism, including the possibility of a fracture surface in the 

buttress, as in Figure 7.1. 

Locus of 
pressure 
points 

p 

Figure 7.1 Collapse ofa buttressed arch due to a point load and the self-weight of the masonry 

If the buttress were so massive as to provide effectively rigid abutments to the arch, 

collapse of the arch could be considered in isolation. But in other cases, a combined 
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Using principles of limit analysis, it is straightforward to determine the collapse state of 

a rigid-block structure due to an applied load. The hinge locations are postulated, and a 

work calculation is performed to determine the maximum applied load, P. The critical 

collapse mechanism will occur for the lowest value of applied load which forms a 

kinematically admissible mechanism (Hey man 1969; Livesley 1978). For an arch on 

masonry buttresses, the analyst must consider collapse mechanisms involving a 

combined arch-buttress mechanism, including the possibility of a fracture surface in the 

buttress, as in Figure 7.1. 
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"arch-buttress" mode may lead to lower values of the collapse load than for the arch 

alone. For masomy buildings, a concentrated load on top of the vault is unlikely, though 

Heyman (1993) has demonstrated that this can occur in the event of a heavy roof 

collapsing onto the arch or vault below. This disseliation does not investigate the 

influence of applied loads, since previous researchers have investigated this topic in 

detail. For buttressed arches, it is sufficient to state that engineers must consider 

mechanisms involving the failure of the buttress by the formation of a fracture surface, 

as discussed in Chapters 3 and 4 and as illustrated in Figure 7.1. 

7.1.2 Applied displacements 

Applied displacements are a significant threat to the safety of buttressed arches. Various 

kinds of displacement may de-stabilise the structure, and this chapter will focus on the 

most common pathology: outward leaning of the buttresses. As the buttresses lean, the 

change in geometry alters the equilibrium conditions. The thrust capacity of the buttress 

decreases and the thrust of the arch increases due to the displacements. The current 

chapter considers the collapse state · of the buttressed arch system by combining the 

results of Chapters 3,4, and 5. The goal is to demonstrate the conditions for the failure 

of the system as a result of leaning buttresses and determine in a given case which 

component is more likely to fail first: the buttress or the arch. 

7.1.3 Applied accelerations 

Seismic loading can cause the collapse of buttressed arch systems as a result of ground 

accelerations (Croci 1998; Spence and D'Ayala 1999). The CUlTent chapter presents a 

simple method for determining the minimum constant lateral acceleration to form a 

collapse mechanism. This is a preliminary step in understanding the response of a rigid­

block structure to earthquake loading. Chapter 6 developed this approach for the 

circular arch, and this chapter extends the analysis to circular arches supported on 

buttresses. The goal is to provide a general methodology for assessing the stability of 

buttressed arch systems, based on the calculation of the minimum horizontal 

acceleration to form a collapse mechanism. This is not an exact or full method for 

analysing the seismic response of buildings, rather it is a method for determining the 

influence of geometry on the resistance to horizontal acceleration. 
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7.2 Geometry of Buttressed Arches 

Traditional masonry structures are built III a wide variety of forms, with different 

buttressing systems and endless variations in vaulting geometry. This dissertation 

adopts the simplest possible form: circular arches suppOlied on rectangular buttresses. 

This system is typical of barrel vaults suppOlied on rectangular masonry walls, or of 

individual masonry arches supported on individual buttresses. The chosen geometry of 

circular arches and rectangular buttresses is applied only to illustrate the general 

patterns of behaviour and the likely causes of collapse. In practice, each individual 

structure is unique and the analyst should apply the general methods to the specific 

structure being considered. 

The current chapter investigates two particular extreme configurations for buttressed 

arches (Figure 7.2). In each case, the width, b, of the buttress at its base is regarded as 

the unit of length. 

l.Sb 

b 4.Sb 

b I 2b b b 3b b 

Figure 7.2: a) Buttressed arch Case A b) Buttressed arch Case B 

Case A is a highly conservative configuration, with the buttress width equal to half the 

span, and the height of the arch support equal to the span. Fmihermore the buttresses are 

very conservative with a height to width ratio of three. Case B is more daring, and is 
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approximately the same as the propOliions of the high transverse arches and slender 

buttresses of the Sainte-Chapelle in Paris (Heyman 1996). The span of the m'ch is three 

times the width of each buttress, and the height of the arch is 1.5 times the span of the 

arch. In addition, the buttresses of Case B are much more slender than Case A, with a 

height to width ratio of six. For both cases, the half angle of embrace, a, and the 

thickness ratio, fi R, are variable as in Chapters 5 and 6. Thus, the buttress systems of 

Case A and Case B can be investigated for a wide variety of arch geometries. Each case 

will be analysed for collapse due to outward leaning of the buttresses as well as applied 

horizontal acceleration in the following sections. 

7.3 Arch on Leaning Buttresses 

Many buttressed arches and vaults have collapsed throughout history, for example the 

partial collapse of the dome of the Hagia Sophia and the partial collapse of vaulting 

bays in many Gothic cathedrals. Inmost cases, the arch or vault collapses and the 

buttresses remain standing. The current section analyses the collapse on account of the 

lean of buttresses, and seeks to explain the collapse of vaulting and the apparent 

resilience of buttresses. 

As the buttresses lean, the span of the arch increases. Chapter 4 demonstrated that the 

capacity of buttresses for horizontal thrust decreases linearly with the rotation rjJ as the 

buttress leans. The arch will deform to accommodate the span increase, and the change 

in geometry will lead to increased values of horizontal tlu'ust, as discussed in Chapter 5. 

In the case of buttressed arches, the progressive increase in the rotation of the buttresses 

will lead to increasingly unfavourable conditions until the arch collapses. To assess the 

safety of a buttressed arch, the engineer must determine if the arch will collapse first, or 

if the capacity of the buttress will be exceeded by the increased thrust of the arch. This 

section proposes a method for analysing the problem. 

For arches with small thickness/radius ratios, Chapter 5 demonstrated that collapse will 

occur for small values of span increase. For larger thiclmess ratios, the arch can resist 

greater span increases and will provide greater increases in horizontal tlu'ust before 

collapsing. As the thiclmess/radius ratios increase fmiher, eventually the arch thrust is 
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sufficient to cause the buttress to fail, and the failure of the buttress will lead to collapse 

of the arch. The program ArchLean, written in Matlab and included in Appendix A, 

analyses the problem for a prescribed geometry of the arch-buttress combination by 

increasing the lean of the buttress until the arch collapses. The program is illustrated 

here with reference to the buttress configurations of Cases A and B (Figure 7.2) For an 

angle of embrace of 120° (a=600), the collapse state is determined for varying values of 

the thickness ratio, tlR. The results are presented in Figures 7.3 and 7.4 for thiclmess 

ratios ranging from 0.05 to 0.20. 
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Figure 7.3 Collapse state for buttressed arch Case A due to leaning buttresses (a=600). The problem 
is analysed using the program ArchLean, for an arch constructed of 1° voussoirs in each case. 

The change in horizontal thrust is plotted in Figures 7.3 and 7.4, normalised by the 

maximum thrust capacity of the vertical buttress, HI/' The horizontal axis is the angle of 

inclination of the buttress in degrees. Sketches indicate the left-hand buttress 

configuration at ~ =0° and ~ =5°, respectively. The arch of thiclmess ratio 0.10 IS 

illustrated at the point of collapse due to excessive span increase. 
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Figure 7.4 Collapse state for buttressed arch Case B due to leaning buttresses (a=600). The problem 
is analysed using the program ArchLean, for an arch constructed of 1° youssoirs in each case. 

For a given geometry, the program ArchLean calculates the resistance of the vertical 

buttress to horizontal loads based on the methods presented in Chapter 3. The buttress 

lean, rp, is slowly increased, thereby decreasing the resistance of the buttress and 

increasing the span of the arch. The new geometry increases the tlu·ust of the arch, 

which is computed with the algorithm presented in Chapter 5. In all cases the arches 

have been analysed for 10 voussoirs, so that the intrados hinge can move freely as the 

span increased (as in Figure 5.16). 

The program terminates when one of the two collapse scenanos occurs: either the 

"strong-buttress" or the "weak-buttress" collapse mode. Each failure mode is defined as: 

1) Strong-buttress: Failure occurs when the arch reaches the maXImum span 
increase for the given geometry, and the arch collapses, leaving the buttresses 
intact (illustrated as • on Figures 7.3 and 7.4). In this case, the buttresses are 
"strong" enough to resist the increased tlu·ust of the arch, but the arch collapses 
due to the span increase. All five hinges of the symmetrical collapse 
mechanism occur in the arch. This failure mode occurs for smaller thickness 
ratios in general. 
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2) Weak-buttress: Failure occurs when the buttress capacity for horizontal thrust 
is exceeded, the buttress rotates additionally, and the arch collapses (illustrated 

as - on Figures 7.3 and 7.4). In this case the buttresses are too "weak" to resist 
the increased thrust of the arch, and collapse occurs when the buttress gives 
way. At this point, the arch will collapse, relieving the horizontal thrust on the 
buttress, and the buttress will remain standing. The symmetrical collapse 
mechanism has till'ee hinges in the arch and one hinge at the outer edge of each 
buttress. 

These two failure modes will be used to describe the collapse of buttressed arch systems 

due to outward leaning of the buttresses. 

For Case A, the capacity of the vertical buttress is more than five times the initial 

minimum till'ust of the arch: see Figure 7.3. As the buttresses lean, the arch will collapse 

before the till'ust capacity of the buttress is exceeded for most thickness values, i.e. in a 

"strong-buttress" failure mode. But at very high thickness ratios, such as fiR =0.20, the 

capacity of the buttress may be exceeded. In this case the buttress is unable to resist the 

till'ust of the arch, and the buttress fails according to the theory presented in Chapters 3 

and 4. When the arch till'ust exceeds the buttress capacity, a five-hinge mechanism 

forms in theory, with one hinge at the base of each buttress and three hinges in the 

central arch. In practice, only four hinges are required for collapse, and any asymmetry 

will cause one buttress to give way first. The buttress will begin to rotate outwards 

freely, and the arch will collapse. As a result, the horizontal till'ust acting on the buttress 

becomes zero, and the buttress remains standing. Thus, for high thickness ratios, failure 

will occur by a "weak-buttress" mode. The geometry of the buttressed arch of Case A is 

highly conservative (as evidenced by the much higher capacity of the buttress in 

comparison to the thrust of the arch), so the system is able to withstand considerable 

angles of tilt without collapse. The conservative design of the buttresses means that in 

most cases failure will occur in the arch before the capacity of the buttress is reached. 

For Case B, the capacity of the buttress is approximately three times the initial 

minimum till'ust of the arch: see Figure 7.4. The springing of the arch is more than twice 

as high as the springing in Case A, and small angles of tilt will lead to larger increases 

in the span length for the arch. In addition, the buttresses are more slender and the 

higher centre of gravity will lead to greater reductions in the capacity as the buttress 

leans (since the capacity of the buttress decreases as the veliical centroid shifts 
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horizontally). This is reflected in the greater negative slope (by a factor of about 2) of 

the buttress resistance for Case B compared to Case A. The relative slenderness of Case 

B is apparent, and the arch will collapse at less than 2° of buttress leaning for most 

thickness ratios. For thickness ratios above 0.10, the buttress capacity will be exceeded 

and the arch will collapse when the leaning buttresses give way, i.e. "weak-buttress" 

failure will occur. Thus, in Case B, weak-buttress failure is more likely due to the more 

daring design of the buttressing system. 

From these two examples, the behaviour of the structural system is clear. For most arch 

thickness ratios, "strong-buttress" failure will occur and the arch will collapse before the 

buttress. But for large thiclmess ratios, the thrust of the grossly-deformed arch may 

exceed the capacity of the leaning buttress, in which case the buttress will give way and 

the arch will collapse in a "weak-buttress" failure. In all cases, the buttress will remain 

standing after the collapse of the arch, due to the absence of the thrust from the arch. 

Thus, deformation of the buttress by leaning will lead to the collapse of the arch, but the 

removal of the thrust from the arch ensures that the buttress survives. For the buttress to 

overturn in static conditions, the centroid of the buttress must approach the horizontal 

coordinate of the hinge about which ove11urning will occur. This is not possible because 

the arch will collapse well before the buttress resistance approaches zero horizontal 

thrust. (This is the maximum amount of leaning a buttress can withstand, defined as tPlllax 

in Chapter 4, equation [4.11].) 

In order to investigate the influence of the angle of embrace of the arch on the behaviour 

of the system, additional values of a have been considered. Cases A and B have been 

analysed for angles of embrace 2a of 120° and 160° (a=60° and 80°, respectively), with 

the thickness ratio varying from the minimum thickness (as determined in Chapter 5) up 

to a very large value of tIR=0.20. The results have been summarised in Figure 7.5, 

which illustrates that greater angles of embrace will lead to collapse for smaller values 

of buttress leaning. (This follows from the results of Chapter 5 illustrated in Figure 

5.14.) In each of the two specific buttress systems A and B it is possible to determine 

the threshold thiclmess beyond which the buttress capacity will be exceeded. For Case 

A it is tIR=0.156, and for Case B it is tIR=0.104 for a=60°, as indicated on Figure 7.5. 
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Figure 7.5 Comparison of collapse states due to leaning buttresses for Case A and B. 

This threshold thickness is presented for a range of angles of embrace in Figure 7.6, 

marking the limit between the two failure modes depending on the geometry of the arch. 
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Figure 7.6 Minimum thickness for the thrust of the deformed arch to exceed the capacity of the leaning 
buttress, i.e. threshold thickness between "weak-buttress" and "strong-buttress" failure. For example, an 
arch subtending 120° (a=600) will fail by weak-buttress collapse when the thickness ratio is greater than 
fi R =0 .104. 
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The experimental results in Chapter 5 demonstrated that an arch on spreading supp011s 

will actually collapse for slightly smaller span increases than those predicted by 

analysis. For the current problem this suggests that collapse will occur at slightly lower 

values of lean than predicted, because the grossly-deformed arch will exist in a 

precarious state. Any small movement would lead to the collapse of the arch. In actual 

structures any shift in the buttress due to the formation of the fracture or a sudden 

increase in leaning could lead to the collapse of the arch at lower values of lean than 

predicted. Methods for assessing the safety of buttressed arches will be discussed in 

detail in the next chapter. 

In summary, for collapse due to leaning buttresses the arch may collapse before the 

buttress capacity is reached, in a mode defined here as strong-buttress failure. 

Alternatively, failure may occur by a "weak-buttress" mode, in which the horizontal 

thrust capacity of the buttress is exceeded. For relatively tall buttresses, such as those 

presented in Case B, collapse of the arch may occur for a small amount of leaning, even 

less than 10
, for typical arch geometries. In both cases, the arch will collapse and the 

buttress will remain standing, since the arch will no longer exert a horizontal 

overturning force. The following section analyses the same buttressed arch structures 

under combined acceleration due to gravity and constant lateral acceleration. 

7.4 Collapse Due to Horizontal Acceleration 

Seismic loading presents a significant threat to many buttressed arches. Engineers have 

not determined the general conditions for the collapse of such structures and this section 

is a first attempt to do so. The previous chapter investigated the critical hinge locations 

and the collapse conditions for circular arches under constant horizontal acceleration. 

This section extends the same approach to circular arches on rectangular buttresses. The 

application of a constant horizontal acceleration, Ag, is statically equivalent to tilting the 

entire structure on an inclined plane at angle r, as explained in Chapter 6. 

Two possible collapse mechanisms are illustrated in Figure 7.7 for a buttressed arch 

acting under its own weight at the minimum value of constant horizontal acceleration 

for collapse, Ag. For buttressed arches, horizontal acceleration can cause collapse by a 
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combined arch-buttress mechanism (A-B-C-D), with a hinge at the outer edge of the 

buttress. This is similar to the situation described in Chapter 6 for circular arches, except 

that the extrados hinge D now occurs at the base of the buttress instead of at the arch 

suppOli (as in Figure 6.2) for the arch with a rigid abutment. 

a) solid buttress b) fractured buttress 

Figure 7.7 Collapse mechanisms for buttressed arches under horizontal acceleration. The instantaneous 
centre, I, of the central portion can be used to calculate the relative rotation of each segment. 

The mechanism of Figure 7.7(a) assumes the buttress remains solid at the collapse state. 

This assumption may be unsafe, since the buttress is likely to fracture at the overturning 

limit, as in Figure 7.7(b). The previous chapter demonstrated that the horizontal thrust 

of the arch will increase due to the lateral acceleration while the vertical reactions will 

remain relatively constant. In addition, Chapter 4 demonstrated that the fracture location 

does not move substantially due to small values of leaning, and the same assumption 

can be extended to small values of horizontal acceleration here. (This is a reasonable 

assumption for angles of "tilt" -- or applied acceleration r -- up to 20°, which 

corresponds to a horizontal acceleration of O.36g.) Therefore it is valid to determine the 

fracture location for the vertical buttress due to the maximum horizontal thrust, and 

assume that the same fracture will form due to horizontal acceleration. Of course this is 

an approximate method for estimating the location of the fracture, but it provides an 

approach to understanding a possible collapse state for buttressed arches under constant 

lateral acceleration. For the current analysis the buttresses are assumed to be veliical, 

rather than leaning, and the system is analysed in an undeformed configuration. 
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The Matlab programs SolidTilt and ButtressTilt were written to analyse the buttressed 

arches of Figure 7.7(a) and (b) respectively. (The full code is presented in Appendix A 

for both programs.) As with the program ArchTilt used in the previous chapter, the 

algorithm searches for the critical hinge locations to give the minimum value of 

horizontal acceleration at collapse, Ag. In each case, the hinge D is assumed to act at 

the base of the outer buttress and the program determines the critical location of the arch 

hinges A, B, and C and computes the corresponding value of A for collapse. 

The programs have been used to analyse the buttressed arch systems of Cases A and B. 

Each case has been analysed for an arch embracing 120° (i.e. a=600) with varying 

thickness ratios. The results are presented in Figures 7.8 and 7.9 considering the buttress 

as a solid and as fractured, respectively. For small values of thickness ratio, with fiR 

slightly greater than (tIR)/11il1' the arch will collapse by a four-hinge mechanism 

contained entirely within the arch and not involving the buttress. As the thickness ratio 

increases, the maximum horizontal acceleration is limited by the combined arch-buttress 

failure mechanism of Figure 7.7. The heavier lines indicate the critical mechanism for 

collapse of the buttressed arch system, and the dashed lines illustrate the collapse limit 

for the arch and the buttress independently. 

0.4 ,-________ --.~ _______________ __, 

. . . . 
0.35 _ • 
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. , ; ; : : :. -- -- -- -- -- -- -_- _- _- _- _- _- _- -,' -------A"r"di aiid soifd buttress --------------------

0.3 _ 

0.25 _ 0.243 Fractured buttress alone (A,hllllre.f,,=X~Yb) 
. - ~ ... - - - - - .... - -J.::"--:..:-.:.-.:.,:--:.::,-.:.--:..:-..:..-:..:--:..:.-.:.--:..:-..:..-:.:--:..:.-.:.--:..:-..:,-.:.,:--~-~-~--::::-::::--:..:-..;:-,::--;;;:-:-.-:.;;--.--..... ----, -. -.. - ...... --
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o -r---~-,------.-----.-----,----~ 
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Thickness ratio, fiR 

Figure 7.B. Collapse of buttressed arch Case A due to horizontal acceleration (a=600). 
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0.2 -r---------~--------------------------------------__. 
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Figure 7.9. Collapse of buttressed arch Case B due to horizontal acceleration (a=600) 

Figures 7.8 and 7.9 illustrate the significance of the buttress for the seismic resistance of 

buttressed arches. For small arch thickness ratios, the arch will collapse independently 

of the buttress, as in the strong-buttress failure mode for arches on leaning buttresses in 

the previous section. However, as the thickness ratio increases, the governing failure 

mechanism will involve the buttress and the buttressed arch collapse mechanism will 

form at much lower values of horizontal acceleration than would be the case for the arch 

alone, i.e. an arch supported on rigid abutments . This is similar to the "weak-buttress" 

scenario in the previous section. Interestingly, higher thickness ratios for the arch lead 

to lower values of horizontal acceleration to form the combined arch-buttress 

mechanism. This reflects the influence of the mass of the arch, which can reduce the 

stability of the structure under horizontal acceleration. In addition, the influence of the 

buttress fracture has a significant effect on the resistance of the buttressed arch. For both 

cases, the mechanism involving the fractured buttress will occur for a horizontal 

acceleration approximately 30% lower than the mechanism with the solid buttress. 

Finally, it is important to note that the conservative geometry of Case A requires more 

than twice the value of horizontal acceleration than Case B to form the collapse 

mechanism for most thickness ratios. 

124 



CHAPTER 7 COLLAPSE OF BUTTRESSED ARCHES 

Based on this analysis, a simple method can be developed for assessing the value of the 

acceleration for onset of buttressed arch mechanisms. For a given buttressed arch 

system, the analyst must determine the mechanism which governs the collapse of the 

arch alone. (This is accomplished by following the methods presented in Chapter 6.) 

This mechanism can then be compared to the combined arch-buttress mechanism of 

Figure 7.7(a). The mechanism for the fractured buttress results in a lower estimate of the 

onset acceleration for collapse than the solid buttress, and is a safer approximation. The 

minimum horizontal acceleration for the buttressed arch can be approximated by the 

minimum horizontal acceleration for the fractured buttress alone. In this case, the 

minimum acceleration is: 

A x" 
hullres,\' = - [7.1 ] 

Y" 

where Xb and Yb are the horizontal and vertical coordinates of the centres of gravity for 

the effective mass of the buttress (measured from an origin at the outer edge about 

which overturning occurs). For a rectangular solid buttress, this value is simply the 

width of the base divided by the height, or b/hb. For more complex buttress shapes and 

to consider the influence of the buttress fracture, the centres of gravity must be 

calculated. For the fractured buttresses of Case A and Case B, the minimum horizontal 

accelerations, Abu/lress, are O.243g and O.114g. (These should be compared to the values 

for the solid buttresses ofO.333g and O.l67g in Figures 7.8 and 7.9.) 

As in the previous section, the formation of this mechanism will cause the arch to 

collapse first, as section ABC collapses in what is essentially a snap-through failure . In 

most cases, the buttress would then recover without collapsing. To determine the 

conditions for collapse under actual ground accelerations, it is necessaJY to carry out a 

detailed study of the dynamics of motion and the potential energy of the system. As 

discussed in the previous chapter, the value of horizontal acceleration A is a minimum 

threshold which must be surpassed in order for the mechanism to form. This will be 

discussed in further detail in the following chapter, on methods for appraising the safety 

of existing buttressed arch structures. 
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7.S Discussion 

This chapter has investigated the collapse state for buttressed arches. The pmiicular case 

of a circular arch suppOlied on rectangular buttresses can be used to gain a wider 

understanding of the collapse state for buttressed arches of more general geometry. In 

addition to the conventional collapse analysis due to an applied load, engineers should 

consider two significant threats to the stability of this structural system: the outward 

leaning of the buttresses and the influence of horizontal ground acceleration. 

The resistance of buttressed arch structures to horizontal ground acceleration, as 

analysed above, has been restricted to cases where the buttresses are vertical; but the 

analysis can be extended to the case of leaning buttresses. The main conclusion to be 

drawn from Figures 7.8 and 7.9 is that the minimum horizontal acceleration for collapse 

is largely determined by the geometry of the buttress system. Buttress leaning will shift 

the horizontal centroid of the buttress closer to the point of overturning, thereby 

reducing the minimum value of acceleration, A blll/ress, and causing the collapse 

mechanism to form at a lower value of ground acceleration. Hence, the leaning buttress 

will be more likely to collapse in a seismic event. 

This chapter has presente,d two particular extreme cases in the geometry of buttressed 

arches: the highly conservative Case A and the more daring Case B. These cases 

provide boundaries on the usual geometry for circular arches supported on rectangular 

buttresses. The next chapter will analyse a case study of an existing circular barrel vault 

supported on masomy walls, which provides a specific example of the somewhat 

idealised general cases presented in this chapter. Even for the extreme cases of Case A 

and Case B, the structural behaviour of both systems is essentially the same. For small 

values of arch thickness the arch will fail first, in a failure mode termed "strong­

buttress" failure. For larger values of arch thickness the buttress capacity may be 

exceeded by the thrust of the arch, causing a failure described as the "weak-buttress" 

collapse. Both types of collapse are possible, and which will occur depends on the 

geometry of the system. 

Most impOliantly, this section has demonstrated that engineers should make a careful 

study of the collapse conditions for the arch or vault alone, as well as for the buttress 

alone. These studies can be taken together to elucidate the collapse conditions for the 
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combined buttress-arch system. In most cases, the arch is likely to collapse regardless of 

the buttress capacity, and the buttress will not be ruined by the collapse of the arch. The 

historical evidence of many collapsed vaults, which have left the buttresses intact, 

suppOlis this conclusion. In these cases, new vaults have often been reconstructed on the 

original buttresses, suggesting that the buttresses typically remain intact. This would 

suggest that failure is often due to the "strong-buttress" mode of collapse. 

For the specific case of seIsmIC loading, it is necessary to consider a collapse 

mechanism involving the combined arch and buttress. However, the mechanism for the 

collapse of the buttress alone, in isolation, is a close approximation to the minimum 

horizontal acceleration required for collapse of the buttressed arch as a combined 

mechanism. Thus it is useful to consider the buttress and arch individually, as in the 

problem of leaning buttresses. In all cases considered here, the minimum horizontal 

acceleration to form a mechanism is less than O.5g, which is a typical value of peak 

ground accelerations in seismic events. For example, Spence and D'Ayala (1999) have 

reported peak ground accelerations of up to O.55g for the Umbria-Marche eatihquake of 

1997, which caused the collapse of significant masonry structures in Italy including 

several bays of vaulting in the Basilica of St. Francis in Assisi. Therefore, the collapse 

mechanism described in this chapter for buttressed arches may form in a moderate 

earthquake and engineers should be concerned about the safety of such structures. 

7.6 Summary 

This chapter has examined the collapse state of an arch suppOlied on buttresses, and 

several conclusions may be drawn. In the case of leaning buttresses: 

1) Engineers should consider the possible collapse state of buttressed arches due 
to outward inclination of the buttresses. 

2) For a range of geometrical configurations, the arch may collapse before the 
buttress capacity is reached, in a mode defined here as strong-buttress failure. 
For strong-buttress failure, collapse will occur in a symmetrical five-hinge 
mechanism, with the central three hinges in the arch, and the two outer hinges 
at the arch support. As with the arch on spreading supports, the actual 
collapse mode is likely to be a four-hinge mechanism, due to any small 
asymmetry in the construction, rather than a symmetrical five-hinge 
mechanism. 

127 



CHAPTER 7 COLLAPSE OF BUTTRESSED ARCHES 

3) Alternatively, failure may occur by a "weak-buttress" mode, in which the 
horizontal thrust capacity of the buttress is exceeded. In this caSe, the two 
outer hinges occur at the critical failure location at the outer edge of the 
buttresses. Again, only four hinges are required for collapse, so the failure of 
one buttress is sufficient to cause the arch to collapse. 

4) For relatively tall buttresses, such as those presented in Case B, collapse of 
the arch may occur for a small amount of leaning, even less than 10

, for 
typical arch geometries. 

5) In the case that the buttress capacity is exceeded, the arch will collapse and 
the buttress will remain standing, since the arch will no longer exert a 
horizontal overturning force. Thus, even in the case of "weak-buttress" 
failure, the buttress will not collapse. 

For the buttressed arch under constant horizontal acceleration: 

1) Engineers should consider the possible collapse state due to horizontal 
acceleration, which presents a significant threat for buttressed arches. Even in 
geographic regions of low seismic activity, this analysis is meaningful 
because it provides a measure of the stability of a buttressed arch. 

2) The critical collapse mechanism is the mechanism that forms for the lowest 
value of constant horizontal acceleration. 

3) For arches with small thickness ratios, the critical collapse mechanism will 
occur entirely within the arch. In this case, collapse will be governed by a 
four-hinge mechanism as determined in Chapter 6 for circular arches and the 
arch can be assumed to be suppOlied on rigid abutments. (This is similar to 
the "strong-buttress" mode for leaning buttresses.) 

4) For arches of larger thickness ratios, the minimum value of horizontal 
acceleration will form a combined collapse mechanism with tlu'ee hinges in 
the arch and one extrados hinge at the support. 

5) In the event of a combined arch-buttress mechanism, the existence of a 
fracture in the buttress will reduce the minimum acceleration to form a 
mechanism. In the case of rectangular buttresses, this minimum acceleration 
may be reduced by more than 30% in comparison to a solid buttress. 

6) For typical masomy buttresssed arch configurations, it is likely that the arch 
will collapse first and the buttress will remain standing in the event of 
collapse due to lateral acceleration. 

7) The critical mechanism will form at a horizontal acceleration less than 0.5g 
for most buttressed arches, which is well within the range of actual peak 
ground accelerations in seismic events. 
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Chapter 8 Safety of Buttressed Arches 

8.1 Introduction 

Most buttressed arches exist in a deformed state and engineers must assess the safety 

of the structure as it now stands. Previous chapters have demonstrated that the 

buttress is not typically in danger of collapse, though numerous situations may 

threaten the stability of the arch. The current chapter proposes various methods for 

assessing the safety of a buttressed arch and presents a simple case study to illustrate 

the proposed safety measures. 

To assess the safety of a buttressed arch, the analyst must investigate three problems: 

I) the safety of the arch; 

2) the safety of the buttress; and 

3) the safety of the arch and buttress together as a system. 

This chapter outlines a general approach and various options for evaluating the safety 

of a buttressed arch. The methods are explained and illustrated with reference to a 

masomy church in India, which will be analysed following the methods outlined in 

this dissertation. The safety measures here focus on the problem of leaning buttresses, 

although methods are also proposed for assessing safety under seismic loading. 

8.2 Case Study: Church at Goa, India 

The 16th century Capella da Nossa Senora do Monte in Old Goa is one of the first 

monuments built by the POliuguese in the Indian subcontinent, and it has impOliant 

historical significance. Deshpande and Savant (2001) recently carried out restoration 

work and added exposed steel ties to reduce the thrust of the vault on the masomy 

walls. The structure of this church provides a simple case study to illustrate the 

methods presented in this disseliation. This chapter will examine the safety of the 

structure and seek to determine if the addition of steel ties across the vault was indeed 

necessary. 

8.2.1 Structural Description 

The chapel consists of a barrel vault suppOlied on rectangular masomy walls, and is 

constructed entirely of laterite stone derived from weathered basalt. The vault spans 
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approximately 9.0 m and is supported on solid walls of approximately 2.7 m 

thiclmess: see Figure 8.1. The barrel vault on the rectangular walls can be analysed for 

a I-metre wide section along the nave, which is approximately equivalent to an arch 

supp0l1ed on rectangular buttresses. To determine the magnitude of the forces in the 

structure, the unit weight of the material is assumed to be 25 leN/m3
. 
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are rectangular and the vault is circular of constant thickness. 

Figure 8.1. Capella da Nossa Senora do Monte, Goa, India (after Deshpande and Savant 2001). 
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In the current configuration, the South wall of the church (shown on the left in Figure 

8.1) is leaning by nearly 0.1 m at the top of the wall, which is equivalent to a lean of 

approximately 0.4° (Deshpande and Savant 2001). The NOlih wall is suppOlied by the 

adjacent structure and remains nearly vertical. As a result of the leaning of the South 

wall, the span of the vault has increased and the vault has deformed. As predicted in 

earlier chapters, the vault has accommodated the increase in span by forming three 

hinges (A, B, and C in Figure 8.1). For the purposes of the current chapter, which 

aims to demonstrate the various measures of safety for a buttressed arch, the structure 

will be approximated as a circular arch supported on rectangular buttresses to simplify 

the analysis: see Figure 8.1 b. To simplify the problem further, the weight of the 

timber roof will be neglected for the current analysis . In addition, the effect of various 

openings in the walls, including several doorways and a number of circular openings, 

will not be considered. A thorough structural analysis would account for these factors, 

and would use a more accurate geometrical approximation of the arch and the 

buttress. The current study aims to determine the general equilibrium conditions, 

which can be quantified by using the various measures of safety proposed later in this 

chapter, and does not purpOli to be an exact analysis of the problem. Indeed, it will be 

demonstrated that an approximate analysis can be used to define the safety to 

sufficient accuracy. 

8.2.2 The Arch at Goa 

The vault is circular with a radius of approximately 5.0 m and a thickness of 

approximately 0.5 m. The vault can be approximated as a circular arch subtending 

120° with a thickness ratio of fi R =0.1, as in Figure 8.1 (b). For a I-metre wide section 

of the vault at Goa in its original conformation, the minimum thrust is found to be 39 

kN, corresponding to intrados hinge locations at 54° from the crown. (The thrust and 

hinge locations are calculated following the procedure developed in Chapter 5.) The 

computed hinge locations of 54° compare well to the actual hinges in the vault, which 

are located approximately 50° from the crown. The veliical reaction at each support 

due to the weight of the vault is approximately 64 kN per metre width. An arch of this 

geometry was analysed in Chapter 5 for the problem of spreading suppOlis, and the 

collapse state has been illustrated in Figure 5.16. For collapse due to spreading 

supports, the span must increase by approximately 8%. For the span of the vault at 

Goa of 9.0 m, this corresponds to a span increase of 0.72 m, which may be compared 
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to the current increase of 0.1 m. At this collapse state, the thrust would have increased 

to approximately 2.2 times the initial minimum thrust of the arch, corresponding to a 

maximum possible horizontal thrust of 86 kN at the point when the vault will collapse 

due to spreading supports. 

8.2.3 The Buttress at Goa 

The buttresses are assumed to be rectangular, with a width of 2.7 m at the base and a 

height of 13.4 m, giving a h,Jb ratio of 5.0. The springing of the arch is assumed to be 

at a height of h =12.5 m, so that Jt =0.9. The weight of the buttress is 905 kN per 

metre width, so considering the vertical reaction of the arch, V =64 kN, gives IjI =0.07 

(where IjI=V/Wb). The capacity of the buttress for horizontal thrust is then determined 

from equations [3.23]-[3.26]. The maximum horizontal tlu'ust for the vertical buttress 

is approximately HI/ =69 kN, corresponding to a fracture height of e =8.7 m. The 

reduction in tlu'ust capacity as the buttress leans is approximately 10 kN per degree of 

leaning (from equation [4.1 0] or Figure 4.5). Therefore, in the existing state with a 

lean of 0.40
, the buttress capacity has been reduced to HIjJ =65 kN from 69 kN. To 

prevent failure of the buttress by sliding, the weight of the buttress above the 

springing is 61 kN and the weight of the arch provides a veliical force of 64 kN. 

Assuming a static coefficient of friction of 0.7, sliding will occur for horizontal forces 

greater than 88 kN, from equation [3.15]. Therefore the buttress will fail by 

oveliurning before sliding. 

The adjacent structure to the North provides additional support to the NOlih wall, and 

therefore the North wall can be assumed to remain vertical. The South wall is 

currently leaning by 0.40
, and the analysis here will assume that the South wall will 

continue to lean fmiher, thereby endangering the structure and possibly leading to 

collapse. 

8.2.4 The Buttressed Arch at Goa 

The analysis of the arch on spreading supports and the leaning buttress is combined 

and presented in Figure 8.2. The South buttress is assumed to lean progressively up to 

collapse, increasing the span of the arch; while the North buttress remains vertical. 

The program ArchLean has been adapted for the problem of only one leaning buttress, 
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and has determined that collapse will occur when the South buttress leans by slightly 

more than 2.0°. At this point, the thrust of the arch exceeds the capacity of the South 

buttress and the arch will collapse due to the failure of the buttress. Thus, the failure 

state is a "weak-buttress" mode, as described in Chapter 7. In the current state, with 

the South buttress leaning by 0.4°, the thrust of the arch has increased to 41 kN, from 

its initial value of39 kN. The collapse state of the church at Goa due to the leaning of 

the South buttress is illustrated in Figure 8.2. 

13.4 m 

1< >1< 
2.7 m 9.0 m 

>1< )i 
2.7 m 

North buttress 
is assumed to 
remain vertical 

Figure 8.2. Collapse state of the church at Goa due to leaning of the South buttress. When 
the buttress has leaned outward by 2°, the thrust from the distorted vault will exceed the 
thrust capacity of the buttress and the vault will collapse. At this point, the crown of the vault 
has descended by 0.4 m and the thrust of the arch will have increased from 41 kN to 52 kN. 

The relationship between the horizontal thrust in the structure and the leaning of the 

South buttress is illustrated in Figure 8.3. The current state of the structure can be 

compared to the final collapse state due to the thrust of the arch exceeding the 

capacity of the leaning South buttress. For comparison, another plot is given for the 

same structure but with the actual arch replaced by an arch of smaller thickness ratio 

(tIR =0.05). In this case, analysis shows that the arch would collapse well before the 

thrust exceeds the capacity of the buttress and that the . failure mode would be of the 

"strong-buttress" kind. This section has described the collapse condition for the 

church at Goa due to the outward leaning of the South buttress. The following 

sections apply measures of safety to the church, as well as a general procedure for 

assessing the safety of buttressed arches. 
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Figure 8.3 Changing horizontal thrust as the South buttress leans for the church at Goa. Collapse 
occurs when the buttress leans by just over 2°, and the thrust of the deformed arch exceeds the 
capacity of the leaning buttress . If the arch were half the thickness (fIR =0.05), then the arch 
would collapse before exceeding the buttress capacity, at a buttress lean of 1.1 ° (shown by the 
lowest curve) . 

8.3 Load Factor for Collapse 

For an arch supported on buttresses, the most obvious measure of safety is a simple 

load factor applied to the thrust of the arch. The load factor is equal to the horizontal 

thrust capacity of the leaning buttress Hrp divided by the thrust of the arch, or 

[8.1 ] 

For the church at Goa as originally built, the vertical buttress has a thrust capacity of 

69 kN, and the arch provides a minimum tlu'ust of 39 kN, so the initial load factor of 

safety against collapse is 1.8. As the buttress has increased its lean over several 

centuries, the load factor has reduced. This can be appreciated from Figure 8.3 , where 

the buttress capacity is decreasing and the applied thrust is increasing. For the church 

in its present state with a lean of 0.4°, the buttress capacity is 65 kN and the applied 

tIu'ust is approximately 41 kN due to the deformation of the arch. Thus, the load factor 

of safety has been reduced from 1. 8 to 1. 6 due to the current lean of the buttress. If the 
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Figure 8.3 Changing horizontal thrust as the South buttress leans for the church at Goa. Collapse 
occurs when the buttress leans by just over 2°, and the thrust of the deformed arch exceeds the 
capacity of the leaning buttress. If the arch were half the thickness (fIR =0.05), then the arch 
would collapse before exceeding the buttress capacity, at a buttress lean of 1.1 ° (shown by the 
lowest curve). 

8.3 Load Factor for Collapse 

For an arch supported on buttresses, the most obvious measure of safety is a simple 

load factor applied to the tlu'ust of the arch. The load factor is equal to the horizontal 

tlu'ust capacity of the leaning buttress Hr/! divided by the tlu'ust of the arch, or 

H I/! 
SF;o(l(' = H [8.1 ] 

For the church at Goa as originally built, the veliical buttress has a tlu'ust capacity of 

69 kN, and the arch provides a minimum thrust of 39 kN, so the initial load factor of 

safety against collapse is 1.8. As the buttress has increased its lean over several 

centuries, the load factor has reduced. This can be appreciated from Figure 8.3, where 

the buttress capacity is decreasing and the applied tlu'ust is increasing. For the church 

in its present state with a lean of 0.4°, the buttress capacity is 65 kN and the applied 

tlU'ust is approximately 41 kN due to the deformation of the arch. Thus, the load factor 

of safety has been reduced from 1. 8 to 1. 6 due to the current lean of the buttress. If the 
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lean of the buttress were to increase steadily to 2°, the thrust of the arch and the 

carrying capacity of the buttress would be equal at 52 kN per metre,' and the arch 

would collapse. At the collapse state, when the thrust of the arch equals the capacity 

of the buttress, the load factor is 1.0 (i.e. there is no reserve of safety). 

It is impOliant to recall from Chapter 7 that the load factor measurement of safety is 

not valid in the event of a "strong-buttress" failure, in which the arch collapses first. 

This can be illustrated for the Goa church by assuming a smaller thickness ratio for 

the arch. Thus, if the thickness ratio were 0.05 instead of its actual value of 0.10, the 

arch would collapse before the buttress fails (as shown by the lower curve in Figure 

8.3). In this case, the thrust capacity of the buttress would still be 1.6 times greater 

than the thrust from the arch at the point when the arch collapses. Thus, the load 

factor for the thrust of the arch is only rationally applicable to a "weak-buttress" 

failure, in which the thrust of the deformed arch can exceed the capacity of the 

buttress. For the actual church at Goa, the arch could exert a thrust as high as 88 kN 

before collapsing due to spreading supports, which is greater than the thrust capacity 

of the buttress. Therefore collapse will occur due to a "weak-buttress" failure, and the 

load factor of safety of 1.6 is a valid measure of the safety against collapse. 

8.4 Pressure-Point Factor 

The pressure-point factor described III Chapter 4 for buttresses is an additional 

measure of the influence of the horizontal overturning force. This measure considers 

the reaction point at the critical section of the buttress and investigates the location of 

this reaction point as the horizontal force increases and as the buttress leans outwards. 

(Sections 4.5-4.7 present the concept of the pressure-point and the influence of 

applied loads and increased leaning on the location of the reaction point in the 

buttress.) The pressure-point co-ordinate 17 is measured from the outer edge of the 

buttress about which overturning would occur, and can be compared to the initial 

reaction point co-ordinate 170 if the buttress did not suppOli any horizontal thrust. For 

the church at Goa, the hypothetical reaction at the base of the South buttress for zero 

horizontal force occurs at 170 =0.53. For a given lean and applied thrust, the reaction 

point 77 can be used to define the safety as 
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SF . = 71" 
jJI'C,\',\'III'CPOlllt 

71" -71 
[4.15] 

as presented for buttresses in Chapter 4. When the buttress is vertical (rp =00) and the 

initial horizontal thrust of the arch is applied (Ha =39 kN), the reaction point at the 

base of the Goa buttress is 71 =0.35, which lies within the middle third of the buttress. 

In its current state of leaning, the horizontal thrust of the arch has increased to 41 kN 

and the reaction point at the base has moved to 71 =0.29. This reaction point is 

computed for the leaning buttress by assuming that cracking has begun and that some 

of the buttress is no longer effective, since the reaction point is outside of the middle 

third. The pressure-point factor is summarised for the church at Goa in Table 8.1. 

Angle of lean, rp Thrust of arch, H Reaction point, 71 Pressure-point 
Factor 

00 OkN 0.53 (710) w 

00 39kN 0.35 2.9 

0.40 41kN 0.29 2.2 

rpll=2.0° 52kN 0 1.0 (i.e. collapse) 

Table 8.1. Pressure-pomt factor for the church at Goa. 

In its undeformed state, the church at Goa had a pressure-point factor of 2.9, 

suggesting considerable safety. But with the slight lean of the South buttress to its 

current state of 0.40, the reaction point at the base shifts from 0.35 to 0.29, decreasing 

the pressure-point safety factor to 2.2. 

Just as with the load factor for collapse of the buttress, the pressure-point factor is 

only valid in the case of weak-buttress failure. If the arch collapses before the 

capacity of the buttress is reached, the reaction point at the base of the buttress cannot 

be used to assess the safety of the structure. For example, if the vault at Goa were half 

the thic1mess, with fi R =0.05, the vault would collapse before the capacity of the 

buttress is exceeded. In this case, the pressure-point safety factor would be 2.3, 

indicating that the buttress could withstand higher values of thrust; yet the arch would 

collapse before the capacity of the buttress is exceeded. Thus, the pressure-point 

safety factor is only valid when the horizontal thrust capacity · of the buttress is 

exceeded and failure is governed by a "weak-buttress" collapse. 
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8.5 Safety Assessment of an Arch on Leaning Buttresses 

The previous measures of safety have been concerned only with the value of the 

horizontal thrust applied to the buttress. However, in the event of a "strong-buttress" 

failure, the horizontal thrust capacity of the buttress is irrelevant (so long as it is 

greater than the maximum possible thrust from the arch). In this case, the safety 

factors presented above are irrelevant and positively misleading. 

To determine the safety of an arch supported on leaning buttresses, the analyst must 

first investigate the arch and buttress independently and then together as a system. 

The most common structural problem for buttressed arches is the progressive outward 

leaning of the buttress. This disseliation has presented the general procedure to 

analyse this problem, although each individual structure will require a slightly 

different approach. To assess the safety of this structural system against collapse due 

to excessive leaning of the buttresses, the analyst should follow the approach 

summarised below in Figure 8.4. 

Analyse arch and buttress independently. Determine maximum 
allowable span increase for the arch and the corresponding value 
of horizontal thrust. Determine buttress capacity for horizontal 
thrust and its reduction with increased leaning . .. 
Construct diagram of arch thrust and buttress capacity as buttress 
lean increases, a long the lines of Figures 7.3, 7.4, and 8.3 . 

... 
Check: Can the thrust of the deformed arch exceed 
the capacity of the leaning buttress? 

t ~ 
If "Yes", failure will occur If "No", failure will occur by 
by "weak-buttress" collapse. "strong-buttress" collapse. 

t + 
Compute safety factors for Investigate the safety of the 
the structure in its present arch (or vau lt) alone, and 
state based on the thrust assess the possibility for 
capacity of the buttress. collapse of the arch. 

~ ~ 
Determine the implications of additional buttress leaning for 
the safety of the structure. 

Figure 8.4. Analysis procedure for assessing the safety of an arch supp0l1ed on leaning buttresses. 
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Thus, there is no single measure to determine the safety of an arch suppOlied on 

leaning buttresses and the engineer must use judgement to assess the implications of 

additional buttress leaning. This will depend largely on the type of failure expected 

and the conditions of the particular structure. In general, there are two types of failure 

for an arch on leaning buttresses: strong-buttress and weak-buttress. In addition, it 

may sometimes be useful to think of an intermediate mode of failure between the two. 

Each particular case requires an understanding of the current state of the structure and 

the implications of future movements on the safety of the structure. The best way to 

assess the structure is to produce a diagram summarising the changing capacity of the 

buttress and the thrust of the arch in relation to the lean of the buttress, as illustrated in 

Figure 8.5. 

0; 
E 
o 
N ·c 
o 

::r: 

o 

Buttress 

Arch 

Buttress lean 

(a) Strong-buttress failure 

o Buttress lean o 

(b) Weak-buttress failure (c) Intermediate failure 

Figure 8.5. Three types of failure for an arch supported on leaning buttresses. The horizontal 
axis presents the inclination of the buttress and the veliical axis presents the change in 
horizontal thrust as the buttresses lean outwards. The arch collapse state is marked by "x". 

For each of these cases, additional leaning of the buttresses will have different 

implications. For example, the intermediate mode of failure is characterised by a 

sharp increase in the tlu'ust of the arch (Figure 8.5c), in which case the maximum safe 

angle of buttress lean should be well below this region of the curve. Thus, although 

the two curves intersect, as in the weak-buttress case, the portion of the plot for small 

angles of inclination may be like the strong-buttress case. 

This procedure for safety assessment can now be applied to the specific example of 

the church at Goa. Because failure occurs by a weak-buttress mode, the two measures 

of safety presented in this chapter can be applied to gain insight into the implications 

of increased buttress leaning. For comparison, the load factor and pressure-point 
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factor are plotted in Figure 8.6 for the church at Goa as the angle of buttress lean 

increases. 

3.0 .-----------------------------------------~ 

2.2 
Pressure-point factor 

2.0 -

Collapse 

1.0 -~----~~--------~------~------~~------~ 

o 0.5 1 1.5 2 2.5 

Angle of South buttress lean, t/J (degrees) 

Figure 8.6. Comparison of safety factors for the church at Goa. 

The load safety factor and pressure-point factor are both equal to 1.0 at the collapse 

state, though in general the load factor gives consistently lower values of safety. From 

this comparison, it is clear that the load safety factor is superior to the geometric 

safety factor. The pressure-point factor gives higher (i.e. more conservative) estimates 

of the safety and is much more difficult to calculate. Determining the geometric safety 

factor for different values of buttress leaning requires a computation of the 

progression of cracking and the movement of the reaction point up until the collapse 

state. The load safety factor is a very simple calculation, with immediate physical 

meaning in relation to the failure of the buttress. To assess the safety of the buttress 

against horizontal loads, the load factor of safety is the preferred method. However, 

the pressure-point factor can be used to assess serviceability issues for the structure, 

such as the danger of a fracture in the buttress due to the eccentric loading on the 

buttress (as discussed in Chapters 3 and 4). 

For the church at Goa, the load factor suggests a level of safety of approximately 1.6. 

This factor is derived for the general structure in its current state, acting under only its 

own weight. Furthermore, this analysis did not consider the reduced weight of the 
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buttress due to the presence of doorways and other openings in the masomy wall. 

Finally, this analysis assumes that the North buttress remains veliical and does not 

lean as the thrust increases. If the North buttress and South buttress were to lean apart 

at the same angle, then the arch would collapse for a smaller angle of buttress lean of 

approximately rjJ =1.2°. Thus, an analysis taking into account these factors would 

reduce the measure of safety filliher. The pressure-point factor suggests a higher level 

of safety, but the pressure-point is located at 0.29b, outside the middle third, 

suggesting that the walls may be fractured due to the eccentricity of the thrust at the 

base of the buttress. Is this a reasonable level of safety for this structure? The structure 

is clearly approaching a precarious state and additional leaning may lead to collapse. 

Although the church has survived for over 400 years, the current state of leaning is 

approaching a dangerous level, and a factor of safety of 1.6 is not sufficient to ensure 

the long-term survival of the structure. In summary, there is significant uncertainty in 

the exact collapse state, and engineers should exercise caution to ensure that the 

structure does not approach the conditions for collapse. 

8.6 Seismic Safety 

The previous measures of safety have only considered the threat of collapse due to the 

outward leaning of the buttresses. In addition to this common pathology, buttressed 

arches may collapse due to ground accelerations resulting from seismic activity. The 

previous chapter outlined a method for determining the minimum constant horizontal 

acceleration to form a collapse mechanism, and this can be used as a first attempt to 

assess the stability of existing buildings. 

The simplified geometry of the church at Goa has been analysed using the methods 

outlined in Chapter 7 for constant horizontal acceleration. The horizontal acceleration 

is assumed to be parallel to the arch and normal to the nave of the church. The 

minimum acceleration to form a collapse mechanism for the Goa church geometry is 

summarised in Figure 8.7 for a range of vault thickness ratios, and the actual 

configuration of the church with a thickness ratio of 0.1 0 is illustrated by the vertical 

chain-dotted line. If the buttresses are assumed to be solid -- i.e. unfractured in the 

sense of Chapter 3 -- and the thickness ratio of the arch is 0.10, then a collapse 
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mechanism will form at a horizontal ground acceleration of approximately 0.13 g. But 

if the critical buttress is assumed to fracture, the minimum horizontal acceleration is 

reduced to 0.07g. 

0.25 .---______ --.--______________ _____ ---, 

. 
. . . 

0.2 . . .............. :' ................ ~.0.1!~ .~~!~I:e.s~. ~I.~~~ ~~~I!I!"P;\·=:~(~/?~ ....... . 
" . . '. .... . 

0.15 _ 
Arch and solid buttress 

' .. 
0.1 .. ~ 

Arch and fractured buttress 

0.05 

o -~--~--r-----~-~--~-----~----~ 
o 0.04 0.08 0.12 0.16 0.2 

Thiclmess ratio, fiR 

Figure 8.7. Minimum horizontal acceleration to form a collapse mechanism for the undeformed 
geometry of the church at Goa. 

I O.13g 

g 

Figure 8.8. Collapse state of the church at Goa due to constant horizontal acceleration ofO.13g. 
The South buttress is assumed to remain solid, and three hinges form in the arch at the collapse 
state. The collapse state has been determined using the program SolidTilt, and the structure has 
been analysed in its undeformed state using work calculations based on an infinitesimal motion. 

141 



CHAPTER 8 SAFETY OF BUTTRESSED ARCHES 

Figure 8.8 illustrates the collapse mechanism due to constant horizontal acceleration, 

assuming that the buttress remains solid. In this case, the minimum horizontal 

acceleration to form a collapse mechanism is 0.13g, corresponding to an acceleration 

angled at r =7.5° from the veliical. (As described in Chapter 6, the angle r, 

equivalent to the angle of "tilt" if the entire structure were tilted on a horizontal plane, 

is simply tanA.) As demonstrated in Chapter 6, for small angles of r, the hinges in a 

circular arch will shift by the angle r from their initial positions. The arch at Goa has 

initial hinge locations at /lo =54°, which would correspond to a=36°, b=90°, and 

c=144° in the notation of Chapter 6. The angle of applied acceleration of r=7.5° 

simply shifts each of these hinges by 8° around the circular arch (rounded from 7.5° 

to 8° since the program assumes 1 ° voussoirs). Thus, the hinges at Band C shift by 8° 

to b=82° and c=136°. The intrados hinge A can only move 6° before reaching the 

support, so it occurs at the support, or a=30°. 

Figure 8.9 illustrates the collapse mechanism due to constant horizontal acceleration, 

assuming that the buttress fractures due to excessive horizontal thrust found using the 

program ButtressTilt. In this case, the minimum horizontal acceleration to form a 

collapse mechanism would be reduced to O.07g, corresponding to an acceleration 

angled at r =4 ° from~the vertical. 

I 

-- g 

Figure 8.9. If the South buttress is assumed to fracture as predicted under a constant veliical 
load and an increasing horizontal load, the church will collapse for a lower value of 
horizontal acceleration. As before, three hinges would form in the arch at the collapse state, 
though the reduced buttress mass would lower the threshold acceleration to O.07g. 
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In this case, the smaller angle of applied acceleration (r=4°), shifts each of the hinges 

by 4° around the circular arch. Thus, the hinges A, B, and C move by 4° from their 

initial configuration of a=36°, b=90° and c=144° to a=32°, b=86° and c=140°. In 

general, the value of the minimum horizontal acceleration to form a collapse 

mechanism is not very sensitive to the hinge locations, so for practical purposes it is 

possible to assume reasonable hinge locations and analyse the corresponding 

mechanism. 

To assess the safety of a structure under seismic loading, the engineer must consider 

the geographical location and the seismic activity of the region. For the church at Goa, 

the minimum values of acceleration for the onset of the mechanism are extraordinarily 

low, given the seismicity of the Indian subcontinent. Bhatia et al. (1999) have 

identified the region as a Moderate Damage Risk Zone (Zone In), which can expect 

earthquakes of Modified Mercalli intensity VII. In this zone, typical peak ground 

accelerations on rock are 0.1 Og, though this can be amplified by local soil conditions. 

This result supports the conclusion that the church at Goa exists in a precarious state. 

The values for minimum horizontal acceleration to form a collapse mechanism have 

been computed for the veliical buttress and would be slightly lower for the leaning 

state of the South buttress. For example, the minimum horizontal acceleration for the 

solid buttress would be reduced to 0.19g from 0.20g due to the shift in the horizontal 

centroid as a result of leaning by 0.4°. The postulated collapse mechanism under 

lateral acceleration loading is assumed to involve the South buttress, since the North 

buttress is suppOlied by the adjacent structure: see Figure 8.1(a). 

For the case of the fractured south buttress under lateral acceleration, the result does 

not mean that the structure will actually collapse due to a horizontal acceleration of 

0.07g, but that the acceleration is sufficiently large toform a collapse mechanism. For 

arches supported on buttresses, it is relatively straightforward to compute the value of 

minimum constant acceleration to form a collapse mechanism. For more complex 

masomy structures, such as large cathedrals, the analysis would be more difficult, but 

is possible using tIu·ust-line techniques for static equilibrium under combined vertical 

and horizontal loading. 
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For a complete analysis of the seismic response of a masonry structure, it is necessary 

to consider the potential energy of the system and the approximate acceleration 

spectrum of the seismic event. This requires a time-history analysis of the input 

accelerations to determine the response of the mechanism. Oppenheim (1992) has 

illustrated such an approach for the masonry arch independently, and it would be 

straightforward to extend his analysis to an arch on buttresses using the mechanisms 

presented in this dissertation. A complete dynamic study is beyond the scope of the 

current work, although the principles will be presented briefly here. 

A masonry structure will undergo rigid-body motion for a peak horizontal 

acceleration less than the minimum horizontal acceleration Amin to form a mechanism. 

The structure can sustain accelerations higher than this value if applied for a Sh011 

period of time, which do not impart sufficient kinetic energy to bring the structure to 

collapse. The structure will collapse when the mechanism has rotated sufficiently and 

the maximum potential energy of the mechanism is reached. If the maximum potential 

energy is not reached, then the structure may "recover" and return to its initial 

configuration. This concept is illustrated by the acceleration pulse curve presented in 

Figure 8.10. The critical mechanism can be determined from an equivalent static 

analysis as described in Chapters 6 and 7. The dynamic response of this critical 

mechanism can then be analysed for varying acceleration pulses of finite-time 

duration. Each acceleration magnitude Ai will correspond to a finite time period ti in 

order to impart sufficient energy to cause collapse. These values can be computed for 

Ai > Amill and a general curve similar to Figure 8.l 0 can be constructed for each 

mechanism. This curve can then be compared to expected seismic events in the region 

in order to assess the danger of collapse due to horizontal ground acceleration. 
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Collapse occurs for 
region above the curve 

Time, 1 

Figure 8.10. Concept of acceleration pulse curve for an assumed mechanism of collapse in a masonry 
structure. 

The seIsmIC analysis of structures involves a great deal of unceIiainty, but the 

methods presented here can be used to carry out risk assessments of existing 

structures. This disseIiation has presented methods for determining the critical 

mechanism for collapse of a masomy arch on buttresses; and additional research is 

required to examine the dynamic response of this mechanism to idealised acceleration 

loading. This can be useful to fmiher understand the general stability of a structure, as 

in the example of the church at Goa. Furthermore, this approach can be extremely 

valuable for comparative studies of different structures within a geographical area. A 

comparative study of masomy vaulted structures in Italy may have identified the 

Basilica of St. Francis of Assisi as a vulnerable structure prior to the 1997 Umbria­

Mm·che earthquake. Such a study could be useful for future assessment of seismic risk 

among families of masomy structures in a region . . 
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8.7 Maintenance and Repair 

This chapter has illustrated methods of quantifying the safety of buttressed arches to 

provide guidance for engineers in the assessment of existing masomy buildings. The 

example of the church at Goa has demonstrated that the church recently existed in a 

precarious state and justifies the decision by Deshpande and Savant (2001) to add 

steel ties across the vault in order to reduce the thrust on the supporting walls. 

The maintenance and repair of masomy structures is not the focus of this disseliation, 

but it merits a brief discussion. This disseliation has argued that current displacements 

are an important consideration in the long-term safety of a masomy structure. It 

follows that a proper maintenance program requires a regular accurate survey to 

record the current geometry of the structure, and particularly the outward lean of the 

walls and buttresses. These measurements can be repeated and monitored over long 

periods of time, in order to provide valuable information about the relative safety of 

the structure. In the case of the leaning tower of Pisa, careful measurements provided 

engineers with the knowledge that the tower was progressing towards collapse and 

thus enabled them to intervene successfully (Burland 2001). Such measurements are 

most valuable when they are documented over a long period of time to provide 

engineers with an indication of the rate of change of movements in the structure. 

There are numerous methods of reinforcing or repairing masomy structures; and the 

discussion here will be limited to the specific case of an arch supported on leaning 

buttresses. For severely deformed buttressed arches, Huelia (1997) has argued for the 

advantages of inseliing exposed tension ties to reduce the thrust of the arch on the 

walls or buttresses. This solution is inexpensive, reversible, completely effective, and 

it may indeed provide visual reassurance to the occupants of a severely deformed 

building. Another way of repairing inclined buttresses or walls is to remove a thin 

wedge of material at the base of the buttress in order to bring the wall back to its 

veliical position. This was a technique practised by master masons in past centuries, 

and it is an effective method for straightening a wall or buttress without 

reconstructing the entire structure: see for example the work by Scott (1879) at St. 

Alban's cathedral. Such a method could also be applied to buttresses supporting 

masomy arches or vaults, although it would be necessary to provide temporary 

support for the arch or vault during the repairs. 
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8.8 Summary 

This chapter has presented general methods for assessing the safety of a buttressed 

arch and the following conclusions can be drawn: 

1) There is no single measure for the safety of an arch on leaning buttresses to 

encompass the complexity of the problem. To understand the safety of the 

structure, engineers should analyse the arch and buttress individually, and produce 

a diagram as in Figure 8.3 or 8.5 illustrating the influence of increased buttress 

leaning. 

2) For collapse due to weak-buttress failure, the load factor of safety is the simplest 

method of measuring safety and is here recommended. However, this method is 

invalid if collapse occurs by strong-buttress failure, in which the arch collapses 

before the capacity of the buttress has been reached. 

3) A calculation of the existing equilibrium condition has revealed that the church at 

Goa existed in a vulnerable state and that the recent decision to insert steel ties 

was justified. 

4) The ability of a masomy structure to withstand constant horizontal acceleration 

provides an additional measure of the stability of masomy structures. This 

analysis can be used to assess the likelihood of collapse for an individual 

structure, or it can be used to study the relative safety of a group of structures in 

order to highlight those at greater risk of collapse. 

5) A complete assessment of the seismic vulnerability of a masomy structure 

requires a detailed study of the dynamics and potential energy of the system. This 

type of analysis should focus on the critical mechanism that has been identified 

from the static analysis of the masomy structure under constant horizontal 

acceleration. 

6) Long-term monitoring of the geometry is an essential component of the 

assessment and maintenance of masomy structures. 
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Chapter 9 Conclusions 

9.1 Summary of Results 

Traditional masomy structures can be analysed as rigid-block structures that may 

collapse due to applied loading, long-term displacements, or ground accelerations. 

Hitherto, researchers have focussed on understanding the load capacity of masomy 

structures, and have not sufficiently investigated the impOliance of displacements or 

ground accelerations. For traditional masomy buildings, such as a masomy vault 

supported on buttresses, collapse is more likely to occur due to excessive displacements 

or ground accelerations than on account of an applied load. 

9.1.1 The Masomy Buttress 

Oveliurning failure will typically govern the collapse of masomy buttresses under 

lateral loads. For failure due to oveliurning, a fracture will develop at collapse and the 

capacity of the buttress to resist horizontal loads will be reduced substantially. A simple 

approximate method for computing the shape of this fracture finds that it is always a 

straight line for rectangular buttresses. This provides the analyst with a straightforward 

approach for estimating the horizontal thrust capacity of a buttress. For a buttress 

leaning away from the applied load, the buttress capacity reduces linearly with the angle 

of lean. For leaning buttresses, the location of the fracture at the collapse state does not 

change considerably from the theoretical fracture location for a veliical buttress. Thus, 

the analyst can estimate the capacity of the vertical buttress to horizontal loads and 

reduce this capacity in accordance with the current angle of lean. 

9.1.2 The Masomy Arch 

Two specific problems have been analysed for the circular masomy arch: the arch on 

spreading supports and the arch under base motion due to uniform horizontal 

acceleration. The arch on spreading supports is a complex problem and the exact 

collapse mode is difficult to ascertain. Various statically admissible mechanisms exist 

for a given increase of span (i.e. different hinge locations can satisfy the same geometry 

change). An algorithm has been presented for following the history of distortion in an 

arch under spreading abutments and in all cases the thrust of the arch is found to 

increase as the supports spread apmi. When the abutments begin to move apart, the arch 
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forms a tlu'ee-hinge mechanism with an extrados hinge at the apex and two hinges on 

the intrados. As the abutments spread fmiher, the intrados hinges migrate towards the 

centre. Eventually, two more hinges will form at the supports and collapse of the arch 

will occur by a symmetrical five-hinge mechanism for typical arch geometries. The 

vertical reaction of the arch remains constant tlu'oughout, while the horizontal reaction 

can increase substantially. 

An equivalent static analysis of masomy arches can be used to determine the critical 

collapse mechanism due to uniform horizontal acceleration. Masomy arches will 

collapse due to the formation of a four-hinge mechanism with a predictable pattern of 

hinge locations for different geometries. In general, circular masomy arches with 

moderate thickness ratios have significant capacity for horizontal acceleration before 

forming a collapse mechanism. 

9.1.3 The Buttressed Arch 

In practice it is common to have an arch suppOlied on leaning buttresses. The angle of 

lean may increase steadily over time, due primarily to foundation settlements; and the 

structure will eventually collapse. There are two general modes of collapse for this 

system: "weak-buttress" failure, in which the arch tlu'ust will exceed the capacity of the 

buttress, and "strong-buttress" failure, in which the arch collapses before the tlu'ust 

capacity of the buttress is exceeded. In both cases the arch will collapse and the buttress 

will remain standing. 

For collapse due to horizontal acceleration, a buttressed arch may form a four-hinge 

collapse mechanism for much lower values of acceleration than for an arch alone. 

Generally, this mechanism involves tlu'ee hinges in the arch and one hinge at the base of 

the buttress. Equivalent static analysis to determine the critical collapse mechanism can 

be used to assess the stability of a pmiicular structure or compare the safety of a number 

of structures within a geographical region. 

9.1.4 Measures of Safety 

Engineers should apply several different measures of safety in order to gain an overall 

understanding of the safety of a masomy structure. This disseliation has proposed two 

primary measures of safety for the case in which the buttress capacity is exceeded by 
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the thrust of the arch: a load factor and a pressure-point factor. These measures are not 

applicable if the arch collapses in a "strong-buttress" failure mode; in which case the 

engineer must determine the limit of safe displacements depending on the specific case 

under consideration. 

9.2 Future Wori{ 

This disseliation has outlined analysis methods for the collapse of masonry arches 

supported on buttresses. To illustrate the approach, the discussion has been limited to 

circular arches on rectangular buttresses. There is significant research to be carried out 

in extending these methods to more complex masonry structures and in validating the 

methods proposed by means of fmiher experiments. 

There are three broad areas for future work based on the findings of this dissertation: 

1) The results can be extended to more complex structural forms. 

• The failure of buttresses must be analysed for more complex buttress forms, 

such as buttressed walls or multiple flying buttresses loading a pier. 

• The failure of arches can be extended to various arch geometries, such as 

pointed arches or arches of varying thickness. 

• The analysis for arches can be extended to three-dimensional vaults, such as 

spherical domes or crossing vaults, by analysing individual slices of the vault 

as independent arches. This could lead to a general theory for the collapse of 

masonry domes on spreading supports. 

• The collapse of buttressed arches can be extended to consider more complex 

forms, such as multiple span arches, as in the case of large churches or 

cathedrals with lateral naves. The method could also be extended to 

buttressed domes under constant horizontal acceleration to simulate 

earthquake loading in an elementary way. 

2) Systematic studies of actual structures and model tests are necessary to verify the 

theoretical approach proposed in this dissertation. 

• Actual structures can be analysed to develop an understanding of the levels of 

safety in existing structures. In pmiicular, this approach would be valuable 

within a geographical region to compare the safety of masonry structures and 

identify those structures which may be at greater risk of collapse. 
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• Buttress failure under horizontal loads may occur in a combined sliding­

overturning mechanism, similar to the experiment by Vicat (1832) illustrated 

in Figure 2.2. Future work is necessary to investigate and define the 

possibility of this type of mechanism, which may occur for lower values of 

horizontal load than calculated for the sliding mechanism alone. 

• Model testing can be calTied out on small-scale masomy structures to verify 

the modes of collapse proposed in this disseliation, patiicularly for more 

complex structural forms. 

• For seismic analysis, accurate model testing is difficult due to scaling effects. 

Model testing can be used for simple analyses, such as the minimum constant 

horizontal acceleration, but large-scale structures are necessary to understand 

the seismic response of actual buildings. In this case, actual buildings should 

be instrumented in seismic zones and monitored over long periods of time. In 

addition, previous vault collapses, such as the partial collapse of the dome of 

Hagia Sofia and the Basilica of St. Francis in Assisi, could be analysed using 

the methods presented in this disseliation in an attempt to explain historical 

failures. 

3) Engineers must develop more complex methods for the collapse analysis of rigid­

block structures. 

• There are no satisfactory computer programs for analysing rigid-block 

structures as presented in this disseliation. Linear-programming methods are 

promising, but do not exist in a commercially available form at present. 

• For seismic analysis, more complex analytical methods are required to 

determine the response of the mechanism to a given pattern of ground 

acceleration. Possible collapse mechanisms must be identified and analysed 

for their response to specific patterns of horizontal acceleration. In particular, 

the potential energy of the rotated mechanism must be investigated to 

determine if the structure will collapse or return to its initial state. 

• The analysis of more complex systems will require new computer programs 

to analyse the stability of rigid-block systems. An ideal program would 

compute a range of possible internal thrust-lines in the initial state and allow 

the user to impose support displacements and ground accelerations. The 

solution procedure should be based on equilibrium solutions derived from 

kinematically-admissible displacements, rather than from finite-element 

solutions based on the "stiffness" or elasticity of the masomy material. 
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Appendix A: ArchSpread program 

ApPENDIX A: COMPUTER PROGRAMS 

A.l PROGRAM ArchSpread 

FOR COMPUTING THE COLLAPSE OF CIRCULAR ARCHES ON SPREADING SUPPORTS 

% User defines arch geometry 
halfembrace = input('alpha: ' ); 
alpha = (pi/180)*(ha l fembrace) ; 
t over_R = input('ratio of t/R : ' ) ; 
v = input( ' voussoir size (degrees) : ' ) ; 

% Initialise thrust and other variables 
thrustmin = [ 0 ]; 
spread = [0]; 
spreadrnax= [10]; 
thrustmax = [1]; 
fail = [0]; 
thrustincrease = [0]; 
acrit = [ O] ; 
vrads=v*(pi/180) ; 

% Coordinate system is XY wi th ori gin at the centre of circle 
X_O= [ O]; 
Y_O=[O] ; 
phi= [0] ; 

% Ass i gn arbitrary thickness to R 
% Compute half-thickness h and thickness t from given rat i o and R 
R [ 100] ; 
t 
h 
L 

R*t over R; - -
t/2 ; 
(2*R- t) *sin(a l pha) ; 

% Compute inner radius and outer radius for use i n centroid 
calculations 
r1 = R-h; 
r2 = R+h; 
rad = (r1 A3 - r2 A3)/(r1 A2 - r2A2); 

% Find coordinates at crown , the hinge at the extrados d u e to the 
span increase 
XC [0]; 
YC = R+h ; 

% Find coordinates of 0 , the extrados at the support 
XD (R+h)*sin(alpha) ; 
YD = (R+h)*cos(alpha) ; 

% Angle a must be a whole number between the support and the crown 
ami n = [0]; 
amax = amin + (halfembrace); 
bmax=halfembrace/v ; 

for b 1 : bmax 
a = amin + b*(amax- amin)/bmax; 

-% Compute angle in radians and find coordinates of a 
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arads = (pi/180)*a; 
XA (R-h)*sin(arads); 
YA = (R-h)*cos(arads); 

Appendix A: ArchSpread program 

% Find x-coordinate of centre of gravity of arch segment AC 
Cent_1 = (4/3)*rad*(sin(arads/2))/arads; 
XM = Cent_1*sin(arads/2); 
M = arads*(r2 A2-r1 A2)/2; 

% Compute value of thrust 
rise = (YC-YA); 
thrust = (M*(XA-XM))/(rise); 

if thrust > thrustmin 
thrustmin=thrust ; 
a init=a; 

end 
end 

% Print critical hinge location (from crown) and minimum thrust 
ainit 
thrustmin 

% Now impose displacements and find new position and new thrust 
% Impose horizontal displacements only 

% Search possible hinge locations 

% Find coordinates at crown due to the span increase 
XC [0] ; 
YC = R+h; 

% Compute angle in radians and find coordinates of intrados hinge 
% Round to nearest voussoir 
n= (ainit/v) ; 
o=(halfembrace/v) ; 
q= [0]; 

p=(n-q)*v; 
prads = (pi/180)*p; 
XA (R-h)*sin(prads); 
YA = (R-h)*cos(prads); 

% Find weight of arch segment AC 
Cl = (4/3)*rad*(sin(prads/2))/prads; 
XM1 = C1*sin(prads/2); 
YM1 = C1*cos(prads/2); 
M1 = prads*(r2 A2-r1 A2)/2; 

% Compute maximum horizontal thrust f or hinge location 

% Find x-coordinate of centre of gravity of arch segment DA 
C2 = (4/3)*rad*(sin((alpha-prads)/2) )/(alpha-prads); 
XM2 = C2*sin((alpha+prads)/2) ; 
M2 = (alpha-prads)*(r2 A2-r1 A2)/2; 

%Compute maximum thrust supported by sect i on DA 
Hmax = (M2*(XD-XM2) + M1*(XD-XA))/(YA-YD); 

% Compute initial l engt h and orientation of line AC 
LAC = (((XA_XC)A2+(YC-YA)A2)A.5); 
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phiac = atan( (YC-YA)/(XA)) ; 

% Determine maximum amount of spreading before snapthrough occurs 
XCMAX=LAC - XA ; 

% Now begin to displace crown 
for c=l :l OOO 

% Give output of thrustincrease=lOO if program does not converge 
if c>999 

thrustmax=lOO*thrustmin; 
acrit=p ; 
break 
break 

end 

% Search for crit i cal position of crown at the collapse state 
XC = - XCMAX*c/1000; 

% Verify that snap-through has not occurred 
if LAC A2> (XA- XC)A2 

YC = ((LAC A2-(XA- XC)A2)A.5)+YA ; 
end 

% Angle rotated so far is phiac-phic 
phic=asin((YC- YA)/LAC) ; 
phi=phiac-phic ; 

%Find new origin 0' 
X_ O=XA-r l*sin(prads-phi); 
Y_O=YA- rl*cos(prads-phi) ; 

% Compute new centroid for curved section AC (based on small angles) 
Cl = (4/3)*rad*(sin(prads/2))/prads; 
XM1=X_0+C l*cos (pi/2-prads/2+phi); 
YM1=Y_0+Cl*sin(pi/2 - prads/2+phi); 

% Compute value of thrust 
rise = (YC-YA) ; 
thrus t = (Ml*(XA- XM1))/(rise) ; 
increase=thrust/thrustmin; 

% Store results of thrust increase and span increase for plot at end 
results (c)=increase; 
xvalue(c , 1) =- 200*XC/L ; 

% Make sure snap through has not occurred 
if YC<YA 

end 

i f YA<YD 
thrustmax=lOOO*thrustmin; 
acrit=p; 
break 
break 
break 
end 

%Check for failure condition if locus reaches the extrados at support 
if YA>YD 

if thrust>Hmax 
thrustmax=Hmax; 
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end 

acrit=p i 
break 
break 
break 
end 

Appendix A : ArchSpread program 

% Now check hinge location to see if it wants to move 

% Check for hinges al l the way up to t he crown 
Rd=r1 i 

f= [ 1] i 
Cv (4/3)*rad*(sin(f*vrads/2))/(f*vrads) i 
Xv = X_ O+Cv*cos(pi/2 - prads+f*vrads/2+phi ) i 
Yv = Y_O+Cv*sin(pi/2 - p r ads+f*vrads/2+phi) i 
m = vrads*(r2 A 2- r1 A 2)/2 i 

% Find orientati on of vousso i r from horizontal 
sum=pi/2 - prads+ f *vrads+phii 

% Find radius of pressure point one vousso i r away from intrados hinge 
Rf = ((M1- f* m)*(XA- X_O) +thrust*(YA- Y_O) - f*m*(Xv ­

XA))/(thrust*sin(sum) + (M1 - f*m)*cos(sum)) i 

%check for thrust line within masonry at intrados hinge 
% i f hinge wants to move , compute new geometry and move hinge 

if Rf <r1 

%Determine span increase and dip when hinge moves for the f i rst time 
if q<l 

spanmove=-200*XC/L i 
dipmove=(r2 - YC)/t i 
thrus t move=thrust/ t hrustmin i 

end 

q=q+ 1i 
spanincrease=- 200*XC/Li 
p=(n- q)*v i 
pr ads = (pi/180)*P i 
XA (R-h)*sin(prads) i 
YA = (R- h)*cos(prads) i 

% Compute maximum horizontal thrust for hinge location 
C2 = (4/3)*rad*(sin((alpha - prads)/2) )/(a l pha - prads) i 
XM2 = C2*sin((alpha+prads)/2) i 
YM2 = C2*cos( (a l pha+prads)/2)i 
M2 = (a l pha- prads) * (r2 A 2- r1 A 2)/2i 
Hmax = (M2*(XD- XM2) + M1*(XD- XA))/(YA- YD) i 

% Compute new length and orientation of l ine AC 
LAC = (((XA) A2 +(r2 - YA)A2)A . 5) i 
ph i ac = atan( (r2 - YA)/(XA)) i 

% Compute new crown position - - end if snap-t hrough has occurred 
if (XA- XC»LAC 
thrustmax=Hmax i 
acrit=p i 
break 
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break 
break 
end 

YC = ((LAC A2- (XA-XC)A2)A.5)+YA i 
phic=asin((YC-YA)/LAC) i 

% angle rotated so f~r is phiac- phic 
phi=phiac- phici 

%Find new origin 0 ' 
X_O=XA- rl*sin(prads - phi)i 
Y_O=YA-rl*cos(prads - phi)i 

% Find weight and centroid of arch segment AC 
Ml prads*(r2 A2-rl A2)/2 i 
Cl = (4/3)*rad*(sin(prads/2))/pradsi 

Appendix A: ArchSpread program 

% Compute new centroid for curved section AC (based on small angles) 
XMl=X_0+Cl*cos(pi/2-prads/2+phi)i 
YMl=Y_0+Cl*sin(pi/2-prads/2+phi)i 

% Compute new value of thrust 
rise = (YC - YA) i 

thrust = (Ml*(XA-XMl) )/(rise)i 

% Store results for plot at end 

% Make sure snap through has not occurred 
if YC <YA 
thrustmax=lOOO*thrustmini 
acr it=pi 
break 
break 
break 
break 
end 

% Check for thrust line (locus) leaving masonry at support 

end 
end 

if YA>YD 

end 

if thrust>Hmax 
thrustmax=Hmaxi 
acrit=p i 
break 
break 
break 
break 
end 

% Compute locus of pressure points at failure : 
% Find orientation of voussoir from horizontal 

for i = 1 : (n - q+l) 

% Find centroid of rotated voussoir next to hinge 
Cvi (4/3)*rad*(sin(i*vrads/2))/(i*vrads)i 
Xvi X O+(Cvi*cos( (pi/2)-prads+(i*vrads/2)+phi))i 
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mi = i*vrads*(r2 A 2-r1 A 2)/2; 
sumi=pi /2-prads+(i-1)*vrads+phi; 

Appendix A: ArchSpread program 

Ri = ((M1-mi)*(XA-X O)+thrustmax*(YA-Y O)-mi*(Xvi­
XA))/(thrustm~x*sin(sumi)+(M1-mi)*cos(sumi)); 

pressure=(Ri -rl) /t ; 
press (i)=pressure; 

%store results to pltit y - va lue of the locus of pressure points 
against the angle from the crown 

l oc(i) =Ri *sin(sumi)+Y_O; 
iv(i)=X_ O+( Ri*cos(sumi) ); 
radi(i)=r1*sin(sumi)+Y_O ; 
r1i(i)=X_O+(r1*cos(sumi)); 
radi2(i)=r2*sin(sumi)+Y_O; 
r2i(i)=X O+(r2*cos(sumi)); 
end 

%Plot outline of segment AD of arch 
for j = 1 : (o -n+q+1) 

sumj =pi/2 - alpha+(j -1) *vrads; 
radb(j) =r1 *sin(sumj) ; 

end 

r1j (j)=(r1*cos(sumj)); 
rad2b(j)=r2*sin(sumj) ; 
r2j (j) =(r2*cos(sumj)) ; 

%Plot locus of p r essure points in segment AD of arch 
for k = 1 (o-n+q+ 1) 

% Find centroid of rotated voussoir next to hinge 
Cvk = (4/3)*rad*(sin((k-1)*vrads/2))/((k-1)*vrads); 
Xvk = (Cvk*cos((pi/2)-alpha+((k-1)*vrads/2))); 
sumk=pi/2 - alpha+(k-1) *vrads ; 
Rk=(m*o*XD+m*XD-m*k*Xvk+thrustmax*YD)/ 

(thrustmax*sin(sumk)+m*(o-k+1)*cos(sumk) ); 
ylocus=Rk*sin(sumk) ; 
xlocus=Rk*cos(sumk) ; 

if k>(o-n+q) 
ylocus=r1*sin(sumk); 
xlocus=r 1* cos(sumk) ; 
end 

if k<2 
ylocus=r2*sin(sumk) ; 
xlocus=r2*cos(sumk); 
end 

%store results to plot the locus of pressure points in x ,y co-ods. 
locb(k)=ylocus; 
kv(k)=xlocus; 

end 

%Plot lines on chart 
for x=1 :round(XD+2) 
lined(x)=(x-1) /tan(alpha); 
xval(x)=x-1 ; 
end 

for z=1 :round(r2+1) 
lino(z) =z-l; 
zval(z)=O ; 
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end 

beta=atan(XA/YA); 

for y=1 : round(XA+t+1) 
1ina(y)=(y- 1)/tan(beta); 
yva 1 (y) =y- 1; 
end 

beta2=atan( (XA- X_O)/(YA-Y_O)) ; 
wmax=round(r2*sin(beta2)+.5) ; 

for w=1 : wmax+1 
lina2(w)=Y_0+(w- 1)/tan(beta2); 
wval(w)=X_0+w- 1; 
end 

smax=round(r2*sin(prads-beta2)+.5) ; 

for s=1 : smax+1 
linc(s)=Y_0+(s - 1)/tan(prads- beta2); 
sval(s)=X O- s+l ; 
end 

for wr=1:2 
linm1(wr)=Y 0; 
wrval(wr)=X_O; 

end 

if wr> l 
1inm1(wr)=YM1 ; 
wrval(wr)=XM1; 
end 

% Print out final values as output 
spanincrease=- 200*XC/L; 
thrustincrease=thrustmax/thrustmin ; 
dip=(r2 - YC)/t ; 
acrit 
spanincrease 
thrustincrease 
dip 

Appendix A: ArchSpread program 

grid on 
plot(wrval , linm1 , iv , loc,kv,locb,r1i , radi,r2i,radi2 , r1j , radb,r2j , rad2b 

,xval , lined,zval , lino , yval , lina,wval , lina2 , sval, l inc) 
axis([Y O,r2,Y_O,r2]) 
xlabel( ' x-Distance, cm') , ylabel( ' y- Distance , cm ' ) 
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A.2 PROGRAM ArchTi~t 

FOR COMPUTING THE COLLAPSE OF CIRCULAR ARCHES DUE TO CONSTANT 
HORIZONTAL ACCELERAT ION 

% User inputs arch geometry 
embrace = input('twoalpha: '); 
alpha = (pi/180)*(embrace/2); 
t over R = input('ratio of t/R : '); 

theta 
drads 

(pi/2) - alpha; 
(pi - theta); 

% Initialise minimum value criterion for ratio of a to g 
agmin = [100]; 

% Assign arbitrary thickness to R 
R= [100]; 

% Compute half-thickness h and thickness t from given ratio and 
t R*t over R; 

- -
h = t/2 ; 

% Compute inner radius and outer radius for use in centroid 
calculations 

r1 = R-h; 
r2 = R+h; 
rad = (r1 A 3 - r2 A 3)/(r1 A 2 - r2 A 2); 

% Coordinate system is XY wi th or i gin at the centre of circle 
% Find coordinates of D, the hinge at the extrados at the left 

support 
XD (R+h)*cos(drads); 
YD (R+h)*sin(drads); 

% Angle a must be a whole number greater than or equal to theta 
amin (90-(embrace/2))/2; 
amax = amin + embrace/Si 

% Angle b must be a whole number greater than amin and less than bmax 
bmax = [60]; 

% Angle c must be a whole number less than theta + two alpha and 
greater than b 

cmax = (embrace - 10 + round((180/pi)*(theta) ))/2; 

%Begin iteration by assuming a value of a , and checking mechanisms 
for various locations of band c 

for a = amin amax 

bmin = a + 2 ; 

for b = bmin bmax 

cmin = b + 4; 

for c = cmin : cmax 

% Compute angles in radians 
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arads 
brads 
crads 

2* (pi/lSO) *a; 
2* (pi/lSO) *b ; 
2*(pi/180)*c; 

% Find coordinates of hinge C 
xc (R-h)*cos(crads) ; 
YC = (R-h)*sin(crads); 

% Find coordinates of hinge B 
XB (R+h)*cos(brads); 
YB = (R+h)*sin(brads); 

% Find coordinates of hinge A 
XA (R-h)*cos(arads) ; 
YA = (R-h)*sin(arads); 

Appendix A: ArchTilt program 

% Find coordinates and mass of centre of gravity of arch segment AB 
C1angle = brads - arads ; 
Cent_1 = (4/3)*rad*(sin(C1angl e/2))/C1angle ; 
XC1 = Cent_1*cos( (brads+arads)/2) ; 
YC1 = Cent_1*sin((brads+arads)/2) ; 
M1 = C1angle/(drads-arads); 

% Find coordinates and mass of centre of gravity of arch segment BC 
C2angle = crads - brads; 
Cent_2 = (4/3)*rad*(sin(C2angle/2))/C2angle ; 
XC2 = Cent_2*cos( (brads+crads)/2); 
YC2 = Cent_2*sin( (brads+crads)/2) ; 
M2 = C2angle/(drads - arads) ; 

% Find coordinates and mass of centre of gravity of arch segment CD 
C3angle = drads - crads; 
Cent_3 = (4/3)*rad*(sin(C3angle/2))/C3angle ; 
XC3 = Cent 3*cos((drads+crads)/2) ; 
YC3 = Cent_3*sin((drads+crads)/2) ; 
M3 = C3angle/(drads - arads); 

% Find instantaneous centre I 
MDC = (YC - YD)/(XC - XD); 
MAB = (YA- YB)/(XA- XB); 
XI (XD*MDC - XB*MAB - YD + YB)/(MDC - MAB) ; 
YI = MDC*(XI - XD) + YD; 

% Find ratios of 
gamma 
phi 
psi = 

rotations for the mechanism being considered 
= [1]; 
gamma*( (XI - XC)/(XC - XD)) ; 
gamma * ( (XB-XI)/(XA-XB)) ; 

% Equation of work 
gravity work = - (XC3 - XD)*phi*M3 - (XI-XC2)*gamma*M2 + 

(XA-XC1) *psi*M1; 
horiz_work = (YC3 - YD)*phi*M3 + (YI - YC2)*gamma*M2 + (YC1-

YA) *psi *M1; 
a_over_g = - (gravity_work/horiz work) ; 
ag = abs(a_over_g) ; 

%Compare output -- if the minimum acceleration is lower than previous 
values , then store the current value 

if ag < agmin 
agmin=ag; 
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A_ang 2*ai 
B _ang 2*b i 
C ang 2*C i -
lamda a over gi -
end 

end 
end 

end 

%Compute angle of tilt, GAMMA, for the minimum acceleration 
GAMMA = (180/pi)*atan(agmin)i 

%Print the following variables as output 
A_ang 
B_ang 
C_ang 
GAMMA 
lamda 
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Appendix A: ArchLean program 

A . 3 PROGRAM ArchLean 

FOR COMPUTING THE COLLAPSE OF CIRCULAR ARC HES ON LEANING RECTANGULAR 
BUTTRESSES 

% User defines geometry of arch 
halfembrace = input( ' alpha : ' ) ; 
alpha = (pi/180)*(halfembrace) ; 
t over R = input( ' ratio of t/R : ' ) ; 
v = input( ' vou ssoir size (degrees): ' ) ; 

% Initia l ise thrust 
thrustmin = [ 0 ]; 
spread = [ 0 ]; 
spreadmax= [ 10 ]; 
thrustmax = [ 1 ] ; 
fail = [ 0] ; 
thrust increase [ 0] ; 
acr i t=[O] ; 
ycrit= [ 0 ] ; 
vrads=v*(pi/180) ; 
X_O= [ O]; 
Y_O=[O] ; 
ph i =[O] ; 

%Density of mater i al 
density= [25] ; 

% Assign arbitrary thickness to R 
% Compute half-thickness h and thickness t from given ratio and R 
R (1. 5) / ((l+t over R/2) *sin (a l pha)); 
t R*t over R; 
h t/2 ; 
L (2*R+t) *sin (a l pha) ; 

% Compute inner radius and outer radi us for use in centroi d 
ca l culations 

rl = R- h ; 
r2 = R+h ; 
rad = (rlA3 - r2 A3)/(rl A2 - r2 A2) ; 

% Vertical reaction at support (weight of half arch) 
V = density*alpha*(r2 A2- rl A2)/2 ; 

% COMPUTE CAPACITY OF BUTTRESS 
% Input proport i ons of rectangular buttress and height of applied 

force (given here for Case B of Chapter 7) 
base= [l] ; 
height= [ 6] ; 
springing=[4.5 ]; 

%Compute weigh t and cent roid of buttress 
Wb=density*base*height ; 
xb=base/2; 

%Compute factors for rectangular buttress 
mu=springing/height ; 
psi=V/Wb ; 
% Solve for maximum hor i zontal thrust , Hmax , by solving the quadrat i c 

equation 
B = (- .5 - 3/(2*mu)-3*psi/mu) ; 
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C (psi+l)/mu; 

%Fracture height as a percentage of arch springing height 
crack = (( ((8 A2)-4*C)AO.5) - 8)/2; 

if crack>1 
crack = ((-((8A2) -4*C) AO .5) - 8)/2; 
end 

% If there is no (real) solution between 0 and 1, end program 
if crack> 1 
crack 
break 
break 
end 

%Capaci ty of vertical buttress 
thrust capacity = density*(base A2)*( (1+2*psi)/(2*mu)-crack/3); 

%Compute vertical centroid of fractured buttress including V 
Wc=density*springing*crack*base/2; 
Wbeffective=Wb-Wc; 
ybar=(Wb*height/2+V*springing-Wc*springing*crack/3)/(Wbeffective+V); 

% Coordinate system is XY with origin at the centre of circle 
% Find initial coordinates at crown (hinge C) 
XC [0); 
YC = R+h; 

% Find coordinates of D, the extrados hinge at the support 
XD (R+h)*sin(alpha); 
YD = (R+h)*cos(alpha); 

% Angle a must be a whole number between the support and the crown 
amin = [0); 
amax = amin + (halfembrace); 
bmax=halfembrace/v; 

for b = 1 : bmax 

a = amin + b*(amax-amin)/bmax; 

% Compute angle in radians and find coordinates of a 
arads = (pi/180)*a; 
XA (R-h)*sin(arads); 
YA = (R-h)*cos(arads); 

% Find x-coordinate of centre of gravity of arch segment AC 
Cent 1 = (4/3)*rad*(sin(arads/2))/arads; 
XM = Cent_ l*sin(arads/2); 
M = density*arads*(r2 A2-rl A2)/2 ; 

% Compute value of thrust 
rise = (YC-YA); 
thrust = (M*(XA-XM) )/(rise); 

if thrust > thrustmin 
thrustmin=thrust ; 
ainit=a; 
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end 
end 

% Print critical hinge location (from crown) and minimum thrust 
ainit 
thrustmin 

%Compute pressure point at base in original configuration 
nu=(l/base)*(V*base+Wb*xb-thrustmin*springing)/(Wb+V)i 
nuinit=nui 

% Now impose displacements and find new position and new thrust 
% Impose horizontal displacements only 

% Search possible hinge locations 

% Compute angle in radians and find coordinates of intrados hinge 
% Round to nearest voussoir 
n= (ainit/v) i 

0= (halfembrace/v) i 

q= [D] i 

p = (n-q)*vi 
prads = (pi/18D)*Pi 
XA (R-h)*sin(prads)i 
YA = (R-h)*cos(prads) i 

% Find weight of arch segment AC 
Cl = (4/3)*rad*(sin(prads/2) )/pradsi 
XMl = Cl*sin(prads/2) i 

YMl = Cl*cos(prads/2) i 

Ml = density*prads*(r2 A2-rl A2)/2i 

% Compute maximum horizontal thrust for hinge location 

% Fi nd x-coordinate of centre of gravity of arch segment DA 
C2 = (4/3)*rad*(sin( (alpha-prads)/2))/(alpha-prads)i 
XM2 = C2*sin((alpha+prads)/2)i 
M2 = density* (alpha-prads)*(r2 A2-rl A2)/2i 

%Compute maximum thrust supported by section DA 
Hmax = (M2*(XD-XM2) + Ml*(XD-XA))/(YA-YD) i 

% Compute initial length and orientation of line AC 
LAC = (((XA_XC) A2+(YC-YA) A2) A.S) i 

phiac = atan( (YC-YA)/(XA))i 

% Determine maximum amount of spreading before snapthrough occurs 
XCMAX=LAC-XAi 

%Compute and store values for calculating thrust in case of 
stationary hinge 
ainitrads = (pi/18D)*ainiti 
XAinit (R-h)*sin(ainitrads) i 

YAinit = (R-h)*cos(ainitrads)i 
Clinit = (4/3)*rad*(sin(ainitrads/2))/ainitradsi 
XMlinit = Clinit*sin(ainitrads/2)i 
Mlinit = density*ainitrads*(r2 A2-rl A2)/2i 
LACinit =LACi 
phiacinit=phiaci 
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% Now begin to displace crown 

for c=l : lOOO 

% Give output of thrustincrease=lOO if maximum spread occurs 
i f c>999 
thrustmax=lOO*thrustmin ; 
acrit=p; 
b r eak 
break 
end 

% Search for critical position of crown at collapse 
XC - XCMAX*c/1000 ; 
YC = ((LAC A2- (XA-XC}A2}A . 5}+YA ; 

% Angle rotated so far is ph i ac-phi c 
phic=asin((YC- YA)/LAC} ; 
phi=phiac-phic ; 

%Find new origin 0 ' 
X_O=XA-rl*sin(prads - ph i} ; 
Y O=YA-rl *cos(prads - phi} ; 

% Compute new centroid for curved sect i on AC measured from displaced 
origin 

XM 1=X_0+Cl*sin(prads/2 -phi} ; 

% Compute va lue of thrust 
r is e = (YC-YA) ; 
thrust = (Ml*(XA- XM 1}} /(rise) ; 

% Compute angle of ti l t in degrees 
tilt - XC/spring ing ; 
lean = tilt*180/pi ; 

% Check t o see if butt r ess capacit y is exceeded 
l eanreduct ion=ybar*tilt*(Wbeffective+V}/springing ; 
l eaningcapaci ty=thrustcapacity-leanreduct i on ; 

if thrust>leaningcapacity 
thrust=leaningcapacity ; 
nu=[O) ; 
break 
break 
end 

increase=thrust/thrustcapacity ; 
increase2=leaningcapacity/thrustcapacity ; 

% Store results for plot at end 
results (c} =increase ; 
xvalue(c}=lean; 
results2(c}=increase2 ; 

%Compute and store thrust in case of hinge not moving for compar i son 
YCinit = ((LACinit A2-( XAinit - XC}A2}A . 5}+YAini t ; 
phicinit=asin((YCinit - YAinit )/LACinit} ; 
phiinit=phiacinit-phicinit ; 
X Oinit=XAinit- rl*s in (ainitrads - phi i nit} ; 
Y_Oi nit=YAinit- rl*cos(ain i trads - phiinit} ; 
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XMlini t=X_Oinit+Clinit*s in(ainitrads/2-phiinit)i 
riseinit = (YCinit - YAinit) i 
thrustinit = (Mlinit*(XAinit-XMlinit))/(riseinit)i 
initresults(c)=thrustinit/thrustmin i 

% End program if snap through has occurred 
if YC<YA 

if YA<YD 
thrustmax=lOOO*thrustmini 
acrit=p i 
break 
break 
break 
end 

e nd 

%Check for fa ilure due to format ion of S-hinge mechanism 
if YA>YD 

end 

if thrust>Hmax 
thrustmax=Hmax i 
acrit=p i 
break 
break 
break 
end 

%Now check hinge location to see if it wants to move 

% Find centroid of rotated voussoir next to hinge 
Cv (4/3)*rad*(sin(vrads/2))/vrads i 
Xv = x_o+cv*cos (pi /2 - prads+vrads/2+phi)i 
Yv = Y_O+Cv*sin(pi/2 - prads+vrads/2+phi) i 
m = density*vrads*(r2 A 2- rl A 2)/2 i 

% Find orientation of voussoir (U) from horizontal 
s um=pi/2 - prads+vrads+phi i 

% Find radius of pressure point one voussoir away from intrados hinge 
Rd = ((Ml - m)*(XA- X_O)+thrust*(YA- Y_O) - m*(Xv­

XA )) /(thrust*sin( sum ) +(Ml-m)*cos(sum))i 

% Check for thrust line within masonry at intrados hinge 
% If hinge wants to move , compute new geometry and move hinge 

if Rd<r l 

%Determine span increase and dip when hinge moves for the first time 
if q<l 
spanmove=- 200*XC/ Li 
dipmove=(r2-YC)/t i 
thrustmove=thrust/thrustmini 
end 

% Move hinge at A to next voussoir 
q=q+li 
spanincrease=- 200*XC/ Li 
p=(n- q)*vi 
prads = (pi/180)*P i 
XA = (R- h)*sin(prads) i 
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YA = (R-h )*cos(prads); 

% Compute maximum horizontal thrust for hinge l ocation 
C2 = (4/3)*rad*(sin( (alpha-prads)/ 2 ))/(alpha-prads); 
XM2 = C2*sin( (alpha+prads)/2) ; 
M2 = density*(alpha-prads)*(r2 A2-rl A2)/2 ; 
Hmax = (M2*(XD- XM2) + Ml*(XD- XA))/(YA-YD) ; 

% Compute new length and orientation of line AC 
LAC = (( (XA) A2 +(r2 - YA)A2)A.5) ; 
phiac = atan( (r2 - YA)/(XA)); 

if (XA-XC»LAC 
results2( c)=Hmax/thrustmin; 
pvalue(c)=p ; 
thrustmax=Hmax; 
acrit=p ; 
break 
break 
break 
end 

YC = ((LAC A2-(XA-XC)A2)A . 5)+YA; 
phic=as i n( (YC- YA)/LAC); 

% angle rotated so far is phiac- phic 
phi=phi ac-phic ; 

%Find new origin 0 ' 
X_O=XA- rl*sin(prads - phi); 
Y O=YA- rl*cos(prads-phi) ; 

% Find weight and centroid of rotated arch segment AC 
Ml density*prads*(r2 A2-rl A2)/2 ; 
Cl = (4/3)*rad*(sin(prads/2))/prads ; 

% Compute new centroid for curved section AC measured from new or i gin 
XMl =X_0+Cl*sin(prads/2) ; 

% Compute value of thrust 
rise = (YC - YA) ; 
thrust = (Ml*(XA- XMl))/(r ise); 

results4(c)=thrust/thrustmin ; 
pvalue(c)=p ; 

% Make sure snap through has not occurred 
if YC<YA 

end 

if YA<YD 
thrustmax=lOOO*thrustmin; 
acrit=p ; 
break 
break 
break 
brea k 
end 

if YA>YD 
if thrust>Hmax 
thrustmax=Hmax ; 
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end 
end 

end 

acrit=p ; 
break 
break 
break 
break 
end 

% Compute l ocus of pressure po i nts at fai lure : 
% Find orientat i on of voussoir from horizontal 

for i = 1 : (n - q+l) 

% Find centroid of rotated voussoir next to hinge 
Cvi = (4/3)*rad*(sin(i*vrads/2))/(i*vrads)i 
Xvi = X_O+(Cvi*cos( (pi/2) - prads+(i*vrads/2)+phi)) i 
mi = density*i*vrads*(r2 A 2 - rl A 2)/2 i 
sumi=pi/2 - prads+( i-l) *vrads+phi i 
Ri = ((Ml - mi)*(XA- X_O)+thrust*(YA-Y_O) -mi*(Xvi ­

XA))/(thrust*sin(sumi)+(Ml - mi)*cos(sumi) )i 
pressure=(Ri - r l) /t i 
end 

spanincrease=- 200*XC/L i 
thrustincrease=thrustmax/thrustmini 
dip=(r2 - YC)/t i 
acrit 
span i ncrease 
thrust increase 

%Compute new pressure point in un fractured buttress 
if nu>O 
nulean=ybar*ti lt /base i 
nu=nuinit-nulean i 
end 

grid on 
plot (xvalue , results,xvalue, result s2) 
axis ( [ 0 , lean+. 5 , 0 , 1] ) 
xlabe l( ' % Buttress lean, degs ' ) , y l abel( ' Thrust Increase 

Capacity ' ) 

170 

H/Buttress 



Appendix A: ButtressTiLt program 

A.4 PROGRAM ButtressTi~t 

FOR COMPUTING THE COLLAPSE OF CIRCULAR ARCHES SUPPORTED ON . 
RECTANGULAR BUTTRESSES DUE TO CONSTANT HORIZONTAL ACCELERATION 

% User defines geometry of arch 
embrace = input( ' two a l pha : ' ) ; 
alpha = (pi/180)*(embraGe/2) ; 
t_over_R = input ( ' ratio of t/R : ' ) ; 
theta (pi/2) - alpha ; 
drads = (pi - theta) ; 

% User inputs depth - density of materia l here 
density=[25 ) ; 

% Initialise minimum value criterion for ratio of a to g 
agmin = [ 1 00) ; 

% Compute half - thickness h and thickness t from given ratio and R 
R (1)/( (l+t over_R/2)*sin(alpha)); 
t 
h 

R*t over R; 
- -

t/2 ; 

% Compute span of arch 
L = (2*R+t)*sin(alpha) ; 

% Compute inner radius and outer radius for use in centroid calcs 
r1 = R- h ; 
r2 = R+h ; 
rad = (r1 A3 - r2 A3)/(r1 A2 - r2 A2) ; 

% Vertica l reaction at support (weight of half arch) 
V = density*alpha*(r2 A2- r 1 A2)/2 ; 

% COMPUTE CAPACITY OF BUTTRESS 
% User inputs buttress geometry here (Case A used for example) 
base=[l); 
height=[3 ); 
springing=[2); 

%Compute weight and centroid of solid buttress 
Wb= density*base*he i ght ; 
xb=base/2; 

%Compute factors for rectangular buttress 
mu=springing/height ; 
psi=V/Wb ; 
% Solve for maximum horizontal thrust , Hmax , from quadratic eqn. 
B = (-. 5-3/(2*mu) - 3*psi/mu) ; 
C = (psi+1)/mu; 
%Fracture height as a percentage of arch springing height 
crack = ((( (B A2) - 4*C)AO.5) - B)/2 ; 

% End program if no rea l solution exists 
if crack>l 
crack = (( - ( (B A2)-4*C)AO . 5) - B)/2 ; 
end 

if crack>l 
crack 
break 
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break 
end 

%Capacity of vertical buttress 

Appendix A: ButtressTilt program 

thrustcapacity = density*(base A 2)*((1+2*ps i )/(2*mu) - crack/3) ; 

% Coordinate system is XY with origin at the centre of circ l e 
% Find coordinates 6f D, the hinge at the base of the buttress 
XD - (R+h)*cos(theta)-base ; 
YD = (R+h)*sin(theta)-springing ; 

%Compute centroi d of fractured buttress 
Wc=density*spr ingi ng*crack*base/2; 
Wbeffective=Wb-Wc ; 
ybar=YD+(Wb*he i ght/2 - Wc*springing*crack/3)/Wbeffective ; 
xbar=XD+(Wb*xb - Wc*base*2/3)/Wbeffective ; 

% Angl e a must be a who l e number greater than or equal to theta 
amin (90 - (embrace/2))/2 ; 
amax = ami n + embrace/S i 

% Angl e b must be a whole number greater than amin and less than bmax 
bmax = ( 60 ) ; 

% Angl e c must be a whole number less than theta + two alpha and 
greater than b 

cmax = (embrace + round ( (180/pi)*(theta)) )/2 ; 

%Begin iterat i on by assuming a value of a , and checking mechanisms 
for various l ocations of band c 

for a = amin amax 

bmin = a + 10 ; 

for b = bmin bmax 

cmin = b + 10 ; 

for c = cmin : cmax 

% Compute angles in 
arads 
brads 
crads 

radians 
2*(pi/180)*a; 
2* (pi/180) *b; 
2* (pi/180) *c; 

% Find coordinates of hinge C 
XC (R- h) *cos (crads) ; 
YC = (R-h)*sin(crads) ; 

% Fi nd coordinates of hinge B 
XB (R+h) *cos (brads); 
YB = (R+h)*sin(brads); 

% Find coordinates of hinge A 
XA (R- h)*cos(arads) ; 
YA = (R- h)*sin(arads); 

% Find coordinates and mass of centre of gravi t y of arch segment AB 
C1angle = brads - arads ; 
Cent 1 = (4/3)*rad*(sin(C1angl e/2))/C1angle ; 
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XC1 = Cent_1*cos((brads+arads)/2) ; 
YC1 = Cent_1*sin((brads+arads)/2) ; 
M1 = density*C1ang1e*(r2 A 2 - r1 A 2)/2 ; 

% Find coordinates and mass of centre of gravity of arch segment BC 
C2ang l e = crads - brads ; 
Cent 2 = (4/3)*rad*(sin(C2angle/2))/C2angle ; 
XC2 = Cent_2*cos((brads+crads)/2) ; 
YC2 = Cent_2*sin((brads+crads)/2) ; 
M2 = density*C2angle*(r2 A 2- r1 A 2)/2 ; 

% Find coordinates and mass of centre of gravity of arch segment CD 
C3angle = drads - crads ; 
Cent_3 = (4/3)*rad*(sin(C3angle/2) )/C3angle ; 
M3arch = density*C3angle*(r2 A 2-r1 A 2)/2 ; 
XC3=(M3arch*Cent_3*cos( (drads+crads)/2)+Wbeffective*xbar)/ 

(Wbeffective+M3arch) ; 
YC3=(M3arch*Cent_3*sin( (drads+crads)/2)+Wbeffective*ybar)/ 

(Wbeffective+M3arch) ;; 
M3 = M3arch+Wbeffective ; 

% Finding instantaneous centre I 
MDC = (YC-YD)/(XC-XD); 
MAB = (YA- YB)/(XA- XB) ; 
XI (XD*MDC - XB*MAB - YD + YB) / (MDC - MAB) ; 
YI = MDC*(XI - XD) + YD ; 

% Finding rat i os 
gamma 
phi 
psi = 

o f rotations for the g i ven mechan i sm 
= [1]; 
gamma*((XI - XC)/(XC - XD)) ; 
gamma*((XB- XI)/(XA-XB)); 

% Equation of work 
gravity_ work =- (XC3 - XD) *phi*M3-(XI - XC2) *gamma*M2+ (XA-

XC1)*psi*M1 ; 
horiz_wor k=(YC3-YD)*phi*M3+(YI - YC2) *gamma*M2+(YC1 - YA) *p si*M1; 
a over_g = - (gravity_work/horiz_work) ; 
ag = abs(a over_g) ; 

%Compare output -- if the minimum acce l eration i s lower than previous 

end 

va lues, then store the current value 
if ag < agmin 
agmin=ag ; 
A_ ang 2*a; 
B_ang 2*b; 
C_ang 2*c ; 
lamda a ove r g ; 
end 

end 
end 

%Compute angle of tilt , GAMMA , for the minimum acceleration 
GAMMA = (1 80/pi) *atan(agmi n); 

%Print the following variables as output 
A_ang 
B_ang 
C_a ng 
GAMMA 
lamda 
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A.S PROGRAM So~idTi~t 

FOR COMPUTING THE COLLAPSE OF CIRCULAR ARCHES SUPPORTED ON 
RECTANGULAR BUTTRESSES DUE TO CONSTANT HORIZONTAL ACCELERATION 
ASSUMING THAT THE BUT TRESS REMAINS SOLID AND DOES NOT FRACTURE 

% User defines geometry of arch 
embrace = input ( 'tw6 alpha : ' ); 
alpha = (pi/180)*(embrace/2) ; 
t over_R = input( ' ratio of t/R: ' ) ; 

theta 
drads 

(pi/2) - alpha; 
(pi - theta) ; 

% User inputs depth - density of material here 
density=[25] ; 

% Initialise minimum va lue criterion for ratio of a to g 
agmin = [100]; 

% Compute half - thickness h and thickness t from given ratio and R 
R (1) / ((1+t_ over_ R/2) *sin(alpha)) ; 
t R*t over R; 
h t/2 ; 

% Compute span of arch 
L = (2*R+t)*sin(alpha); 

% Compute inner radius and outer radius for use in centroid calcs 
r1 = R- h ; 
r2 = R+h ; 
rad = (r1 A 3 - r2 A 3)/(r1 A 2 - r2 A 2) ; 

% Vertical reaction at support (weight of half arch) 
V = dens it y*alpha*(r2 A 2-r1 A 2)/2; 

% User inputs buttress geometry here (Case A used for example) 
base=[l ] ; 
height =[ 3] ; 
springing=[2]; 

%Compute weight and centroid of solid buttress 
Wb= density*base*height ; 
xb=base/2 ; 

% Coordinate system is XY with origin at the centre of circle 
% Find coordinates of 0, the hinge at the base of the buttress 
XD -(R+h)*cos(theta)-base; 
YD = (R+h)*sin( theta)-springing; 

%%%%%%LEAVE BUTTRESS AS SOLID% %%%%%%%%%% 
Wbeffective=Wb ; 
ybar=YD+height/2 ; 
xbar=XD+xb ; 
%%%%%% 

% Angle a must be a whole number greater than or equal to theta 
amin (90 -( embrace/2))/2 ; 
amax = amin + embrace/5 ; 

% Ang~e b must be a whole number greater than amin and less than bmax 
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bmax = [ 60]; 

% Angle c must be a whole number less than theta + two alpha and 
greater than b 

cmax = (embrace + round ( (180/pi)*(theta)))/2; 

%Begin iteration by assuming a va lue of a, and checking mechanisms 
for various l ocat i ons of band c 

for a = amin amax 

bmin = a + 10; 

for b = bmin bmax 

cmin = b + 10 ; 

for c = cmin : cmax 

% Compute angles in 
arads 
brads 
crads 

radians 
2*(pi/180)*a ; 
2* (pi/180) *b ; 
2*(pi/180)*c ; 

% Find coordinates of hinge C 
XC (R- h)*cos(crads); 
YC = (R-h)*sin(crads); 

% Find coordinates of hinge B 
XB (R+h) *cos (brads); 
YB = (R+h)*sin(brads); 

% Find coordinates of hinge A 
XA (R-h) *cos(ar ads) ; 
YA = (R-h)*sin(arads); 

% Find coordinates and mass of centre of gravity of arch segment AB 
Clangle = brads - arads ; 
Cent 1 = (4/3)*rad*(sin(C1angle/2))/C1angle; 
XC1 = Cent_ 1*cos( (brads+arads)/2); 
YC1 = Cent_1*sin(( brads+arads)/2) ; 
M1 = de nsity*C1angle*(r2 A 2-r1 A 2)/2 ; 

% Find coordinates and mass of centre of gravity of arch segment BC 
C2angle = crads - brads; 
Cent 2 = (4/3)*rad*(sin(C2angle/2))/C2angle; 
XC2 = Cent_2*cos((brads+crads)/2) ; 
YC2 = Cent_2*sin((brads+cr ads)/2) ; 
M2 = d e nsity*C2angle*(r2 A 2- r1 A 2)/2; 

% Find coordinates and mass of centre of gravity of arch segment CD 
C3angle = drads - crads ; 
Cent 3 = (4/3)*rad*(sin(C3angle/2))/C3angl e ; 
M3arch = density*C3angle*{r2 A 2-r1 A 2)/2 ; 
XC 3= (M3arch*Cent 3*cos((drads+crads)/2)+Wbeffective*xbar) / 

(Wbeffect i ve+M3arch); 
YC3= (M3arch*Cent_3*sin((drads+crads)/2)+Wbeffective*ybar)/ 

(Wbeffective+M3arch) ;; 
M3 = M3arch+Wbeffective ; 

% Finding instantaneous centre I 
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% Finding 

% Equation 

MDC = (YC-YD)/(XC-XD); 
MAB = (YA-YB)/(XA-XB); 

Appendix A: SolidTilt program 

XI (XD*MDC XB*MAB - YD + YB)/(MDC - MAB) ; 
YI = MDC*(XI - XD) + YD ; 

ratios of rotations for the g i ven mechanism 
gamma = [1] ; 
phi gamma* ( (XI - XC) / (XC-XD) ); 
psi = gamma*((XB-XI)/(XA-XB) ) ; 

of work 
gravity_work=-(XC3-XD)*phi *M3-( XI-XC2)*gamma*M2 + (XA­

XC 1 )*ps i *Ml; 
horiz_wo rk=(YC3-YD)*phi*M3 + (YI-YC2)*gamma*M2 + (YC1-

YA) *ps i *Ml; 
a_over_g = -( gravity_work/hor iz work); 
ag = abs(a over_g) ; 

%Compare output -- if the minimum acce l eration is l ower than previ ous 

e nd 

values, then store the current va lue 
if ag < agmin 
agmin=ag ; 
A_ang 2*a ; 
B_ ang 2*b ; 
C_ang 2*c ; 
lamda a over g ; 
end 

end 
end 

%Compute angle of ti l t , GAMMA , for the minimum acce l eration 
GAMMA = (lBO/pi)*atan(agmin) ; 

%Print the following variab l es as output 
A_ang 
B_ ang 
C_ ang 
GAMMA 
l a mda 
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ApPENDIX B: EXPERIMENTAL DESCRIPTIONS 

B.I Description of Model Blocks 

The blocks were cut from a plywood sheet, and coated uniformly with a layer of glue 

and sand to increase the coefficient of friction of the blocks. Each whole block 

measured approximately 51 x 51 x 27 mm, and weighed 38.4 grams on average. Each 

half block was approximately one half this dimension, weighing 19.4 grams on 

average and measuring 26 x 26 x 27 mm. 

B.2 Construction of Model Buttresses 

Each model buttress was constructed of alternating layers of model blocks as 

illustrated below in Figure B.l. 

DODO 
DODO 

Ca) Rectangular buttress 

Cl 

DODO 
Cl 

DODO o 
Cb) T-buttress with adjoining wall 

Figure B.1 Layout of blocks for each buttress experiment presented in Chapter 3. 

B.3. Predictions for Buttress Experiments 

Figures B.2 and B.3 illustrate the predictions for the four buttress experiments 

presented in Chapter 3. These predictions are based on the methods outlined in 

Chapter 3 for rectangular buttresses and T -shaped buttresses. All four buttresses were 

built to a height of 72.8 cm, with the horizontal load applied at a height of 36.4 cm. 
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I< 18.2 cm >1 1< 18.2 cm >1 

8.45 cm 

=} 
667 g 

8.56 cm 

1 949g 

36.4 cm 36.4 cm 

26.2 cm 22.6 cm 

/ 

2879 g 3466g 

Figure B.2. Predicted fracture location and collapse state for tests on rectangular buttresses (Section 3.8). 

1< 18.2 cm >1 1< 18.2 cm >1 

9.90 cm 
9.86 cm 
/' 

3776 g 
3834 g 

1023 g 1279 g 

36.4 cm 36.4 cm 

24.8 cm 

3776 g 4334 g 

Figure B.3. Predicted fracture location and collapse state for tests on T-shaped buttresses (Section 3.8). 
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