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Practical quantum tokens without quantum memories and
experimental tests
Adrian Kent 1,2, David Lowndes3, Damián Pitalúa-García 1✉ and John Rarity3

Unforgeable quantum money tokens were the first invention of quantum information science, but remain technologically
challenging as they require quantum memories and/or long-distance quantum communication. More recently, virtual “S-money”
tokens were introduced. These are generated by quantum cryptography, do not require quantum memories or long-distance
quantum communication, and yet in principle guarantee many of the security advantages of quantum money. Here, we describe
implementations of S-money schemes with off-the-shelf quantum key distribution technology, and analyse security in the presence
of noise, losses, and experimental imperfection. Our schemes satisfy near-instant validation without cross-checking. We show that,
given standard assumptions in mistrustful quantum cryptographic implementations, unforgeability and user privacy could be
guaranteed with attainable refinements of our off-the-shelf setup. We discuss the possibilities for unconditionally secure
(assumption-free) implementations.
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INTRODUCTION
Quantum tokens, also called quantum money, were invented by
Wiesner1 in 1970. In Wiesner’s original quantum token scheme
Bob (the bank) secretly and securely generates a classical serial
number s and a quantum state ψj i of N qubits, prepared from a
set of different bases, gives s and ψj i to Alice, and stores s and the
classical description of ψj i in a database. Alice presents the token
by giving s and ψj i back to Bob, and Bob validates or rejects the
token after measuring the received quantum state in the basis in
which ψj i was prepared. In refinements of this scheme2–10, Alice
can present the token to Bob or to one of a set of verifiers, by
communicating the classical outcomes of quantum measurements
applied on ψj i, as requested by Bob or the verifier. Alternatively,
Alice presents the token by giving s and ψj i to the verifier, who
applies quantum measurements on ψj i. The verifier communi-
cates with Bob to validate or reject the token.
There exist quantum token schemes satisfying unforgeability,

i.e., they guarantee that a token cannot be validated more than
once, with unconditional security, i.e., based only on the laws of
physics without restricting the technology of dishonest Alice2–10.
Intuitively, this follows from the no-cloning theorem, stating that it
is impossible to perfectly copy unknown quantum states11,12.
Unforgeable quantum token schemes based on computational
assumptions have also been investigated (e.g., 13–16), with some of
these schemes not requiring communication with the bank for
token validation (e.g., 15,16).
However, there exist purely classical token schemes that can

also guarantee unforgeability with unconditional security. For
example, the token may comprise a classical serial number s and a
classical secret password x that Bob gives Alice and that Alice
presents by giving to one of a set of verifiers; validation of the
token comprises cross-checking; for example, the verifier commu-
nicates with Bob and validates the token if this has not been
presented before and if the given serial number and password
correspond to each other.

In addition to unforgeability, some important properties of
quantum token schemes are the following. First, quantum tokens
can be transferred while keeping Bob’s database static. On the
other hand, since classical information can be copied perfectly, in
order to satisfy unforgeability, when a purely classical token with
serial number s is transferred from Alice to another party Charlie,
Bob must change the classical data associated to s; for example,
Bob must change x to another value x0 and give s and x0 to Charlie
in the example above2.
Second, some quantum token schemes satisfy instant validation.

This means that the schemes do not require communication
between the verifiers and Bob for validation after Alice presents
the token4. This implies in particular that the token can be
presented by Alice at one of a set of different spacetime points
that can be spacelike separated without validation delays by the
verifier due to cross-checking with Bob and/or with other verifiers.
Third, quantum token schemes satisfy future privacy for the user

or simply user privacy. That is, neither Bob, nor the verifiers, can
know where and when Alice will present the token.
It is not difficult to construct purely classical token schemes that

satisfy with unconditional security any two of unforgeability,
instant validation, and user privacy. For example, the classical
token scheme above satisfies unforgeability and user privacy with
unconditional security, but not instant validation. To the best of
our knowledge, no purely classical token scheme has been shown
to satisfy all three properties simultaneously with unconditional
security. Classical variations of the quantum token schemes we
consider here, based on classical relativistic bit commitments,
whose security is hypothesized but not proven, were proposed in
ref. 17, which considers their potential advantages and disadvan-
tages. As far as we are aware, aside from these, there are no
known classical schemes that plausibly satisfy all three properties
simultaneously with unconditional security.
Among plausible future applications of quantum token

schemes are very high value and time-critical transactions
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requiring very high security, such as financial trading, where many
transactions take place within half a millisecond18, or network
control, where semi-autonomous teams need authentication as
fast as possible. A reasonable assumption for such applications is
that tokens may be transferred a relatively small number of times
among a relatively small set of parties—the tokens may be valid
for a relatively short time, for example. In this context, Bob having
a static database does not seem to be a great advantage of
quantum token schemes over classical schemes whose databases
must be updated after each transaction, given that processing
classical information is much easier and cheaper than processing
quantum information. Furthermore, for very high-value transac-
tions one might expect that the communication network among
Bob and the verifiers is sufficiently protected that communication
among them is very rarely (if ever) interrupted. So, in this context,
it appears to be a major advantage of quantum token schemes
over classical token schemes that a quantum token can be
presented at one of a set of spacelike separated points with near-
instant validation without time delays due to cross-checking, while
satisfying unforgeability and user privacy with unconditional
security.
Standard quantum token schemes satisfying unforgeability,

user privacy and instant validation with unconditional security
require to store quantum states in quantum memories and/or to
transfer quantum states over long distances in order to give Alice
enough flexibility in space and time to present the token1–10,13–16.
Recently, a quantum memory of a single qubit with a coherence
time of over an hour has been experimentally demonstrated19,20.
However, storing large quantum states for more than a fraction of
a second remains challenging21,22. Furthermore, the transmission
of quantum states over long distances in practice comprises
the transmission of photons through optical fiber or through the
atmosphere via satellites. In both cases a great fraction of the
transmitted photons is lost. For these reasons, standard quantum
token schemes are impractical for most purposes at present.
Recently, experimental investigations of quantum token

schemes have been performed23–27. References23,27 investigated
the experimental implementation of forging attacks on quantum
token schemes. Reference24 presented a simulation of a quantum
token scheme in IBM’s five-qubit quantum computer. Refer-
ences25,26 reported proof-of-principle experimental demonstra-
tions of the preparation and verification stages of quantum token
schemes, by transmitting quantum states encoded in photons
over a short distance—for example, ref. 26 reports optical fiber
lengths of up to 10m. A full experimental demonstration of a
quantum token scheme that includes storing quantum states in a
quantum memory and/or transmitting quantum states over long
distances remains an important open problem.
“S-money”17 is a class of quantum token schemes, which is

designed for the settings described above comprising networks
with relativistic or other trusted signaling constraints. These
schemes can guarantee many of the security advantages of
standard quantum token schemes—in particular, instant valida-
tion, unforgeability, and user privacy—without requiring either
quantum state storage or long-distance transmission of quantum
states. Furthermore, S-money tokens that can be transferred
among several parties and that give the users great flexibility in
space and time to present the token are also possible28. In this
paper, we begin to investigate how securely S-money schemes
can be implemented in practice with current technology.
Our results are twofold. First, we introduce quantum token

schemes that extend the quantum S-money scheme of ref. 29 in
practical experimental scenarios that consider losses, errors in the
state preparations and measurements, and deviations from
random distributions; and, in photonic setups, photon sources
that do not emit exactly single photons, and single-photon
detectors with non-unit detection efficiencies and with nonzero
dark count probabilities, which are threshold detectors, i.e., which

cannot distinguish the number of photons in detected pulses. In
our schemes, Alice can present the token at one of 2M possible
spacetime presentation points, which can have arbitrary timelike
or spacelike separation, for any positive integer M. Our schemes
satisfy instant validation and comprise Bob transmitting N
quantum states to Alice over a distance which can be arbitrarily
short, Alice measuring the received quantum states without
storing them, and further classical processing and classical
communication over distances which can be arbitrarily large.
Thus, our schemes are advantageous over standard quantum
token schemes because they do not need quantum state storage
or transmission of quantum states over long distances. We use the
flexible versions of S-money defined in ref. 28, giving Alice the
freedom to choose her spacetime presentation point after having
performed the quantum measurements. We show that our
schemes satisfy unforgeability and user privacy, given assump-
tions that have been standard in implementations of mistrustful
quantum cryptography to date (see Table 6) but are nonetheless
idealizations.
Second, we performed experimental tests of the quantum stage

of one of our schemes for the case of two presentation points,
which show that with refinements of our setup our schemes can
be implemented securely, giving guarantees of unforgeability and
user privacy, based on the standard assumptions in experimental
mistrustful quantum cryptography mentioned above.

RESULTS
Preliminaries and notation
We present below two quantum token schemes that do not
require quantum state storage, are practical to implement with
current technology, and allow for experimental imperfections. We
show that for a range of experimental parameters our token
schemes are secure.
In the token schemes below, Bob (the bank) and Alice (the

acquirer) agree on spacetime regions Qi where a token can be
presented by Alice to Bob, for i∈ {0, 1}M and for some agreed
integer M ≥ 1. Bob has trusted agents B and Bi controlling secure
laboratories, and Alice has trusted agents A and Ai controlling
secure laboratories, for i∈ {0, 1}M. The agent Ai can send
messages to Bi in the spacetime region Qi, for i∈ {0, 1}M. All
communications among agents of the same party are performed
via secure and authenticated classical channels, which can be
implemented with previously distributed secret keys. Alice’s agent
A and Bob’s agent B perform the specified actions in a spacetime
region P that lies within the intersection of the causal pasts of all
Qi, unless otherwise stated.
The token schemes comprise two main stages. Stage I includes

the quantum communication between B and A, which can take
place between adjacent laboratories, and must be implemented
within the intersection of the causal pasts of all the presentation
points. In particular, this stage can take an arbitrarily long time and
can be completed arbitrarily in the past of the presentation points,
which is very helpful for practical implementations. Stage II
comprises only classical processing and classical communication
among agents of Bob and Alice, and must be implemented very
fast in order to satisfy some relativistic constraints. A token
received by Bb from Ab at Qb can be validated by Bb near-
instantly at Qb, without the need to cross-check with other agents.
We note that Alice chooses her presentation point in stage II,
meaning in particular that it can take place after her quantum
measurements have been completed. This is basically the
application of the refinement of flexible S-money tokens discussed
in ref. 28, which gives Alice great flexibility in spacetime to choose
her presentation point. See Tables 1–3 for details.
In stage I, B generates quantum states randomly from a

predetermined set and gives these to A. A measures the received
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states in bases from a predetermined set. A sends some classical
messages to B, mainly to indicate the set of states that she
successfully measured. For all i∈ {0, 1}M, A communicates her
classical outcomes to Ai ; B sends classical messages to Bi ,
indicating mainly the labels of the states reported by A to be
successfully measured.
In stage II, Alice chooses the label b∈ {0, 1}M of her chosen

presentation point in the intersection of the causal pasts of the
presentation points. Further classical communication steps among
agents of Alice and Bob take place. The token schemes conclude
by Alice giving a classical message x (the token) to Bob at her
chosen presentation point Qb and Bob validating the token at Qb if
x satisfies a mathematical condition.
The main difference between the first and second token

schemes below (either in their idealized or realistic version) is that,
in the first one, Alice measures each received qubit randomly in
one of two predetermined bases, while in the second one Alice
measures large sets of qubits in the same basis, which is chosen
randomly by Alice from two predetermined bases. The first token
scheme is more suitable to implement with setups used for
quantum key distribution. The second token scheme requires a
slightly different setup.
We say a token scheme satisfies instant validation if, for any

presentation point Qi, an agent of Bob receiving a token from
Alice at Qi can validate or reject the token nearly instantly at Qi,
without the need to wait for any messages from other agents at
spacetime points spacelike separated from Qi.
We say a token scheme is:

● ϵrob− robust if the probability that Bob aborts when Alice and
Bob follow the token scheme honestly is not greater than ϵrob,
for any b∈ {0, 1}M;

● ϵcor− correct if the probability that Bob does not accept
Alice’s token as valid when Alice and Bob follow the token
scheme honestly is not greater than ϵcor, for any b∈ {0, 1}M;

● ϵpriv− private if the probability that Bob guesses Alice’s bit-
string b before she presents her token to Bob is not greater
than 1

2M
þ ϵpriv, if Alice follows the token scheme honestly, for

b ∈ {0, 1}M chosen randomly from a uniform distribution
by Alice;

● ϵunf− unforgeable, if the probability that Bob accepts Alice’s
tokens as valid at any two or more different presentation
points is not greater than ϵunf, if Bob follows the token scheme
honestly.

We say a token scheme using N transmitted quantum states is:

● robust if it is ϵrob− robust with ϵrob decreasing exponentially
with N.

● correct if it is ϵcor− correct with ϵcor decreasing exponentially
with N.

● private if it is ϵpriv− private with ϵpriv approaching zero by
increasing some security parameter.

● unforgeable if it is ϵunf− unforgeable with ϵunf decreasing
exponentially with N.

Note that our definition of privacy is different because it
depends on different parameters: see Lemma 4 below. In our
schemes each of the N quantum states is a qubit state with

Table 1. Ideal quantum token schemes IQT 1 and IQT 2 for two presentation points. Steps 1 to 8 in IQT 1 , and 1 to 5 in IQT 2 , take place within
the intersection of the causal pasts of the presentation points.

Ideal quantum token scheme IQT 1

Stage I

1. For k∈ [N], B generates the qubit state ψkj i ¼ ϕtkuk

�� �
randomly from the BB84 set and sends it to A with its label k. Let the N− bit strings t= (t1,…,

tN) and u= (u1, …, uN) denote the states and bases of preparation by B.
2. For k∈ [N], Ameasures each received qubit randomly in the computational basis (yk= 0) or in the Hadamard basis (yk= 1) and obtains a string of N
bit outcomes x. Let the N-bit-string y= (y1, …, yN) denote Alice’s measurement bases.

3. A sends x to Ai , for i∈ {0, 1}.

4. A chooses a bit z randomly and gives B a string d, where d= y if z= 0, or d ¼ y if z= 1.

5. For i∈ {0, 1}, B sends d to Bi , who computes di in the causal past of Qi, where d0= d and d1 ¼ d.

6. B sends t and u to Bi , for i∈ {0, 1}.

Stage II

7. A chooses the presentation point Qb for the token, for some b∈ {0, 1}. A computes the bit c= b⊕ z and sends it to B.
8. B sends c to Bi , for i∈ {0, 1}.

9. For i∈ {0, 1}, in the causal past of Qi, Bi computes the string ~di ¼ di if c= 0, or ~di ¼ di if c= 1.

10. A sends a signal to Ab indicating to present the token at Qb, and Ab presents the token x to Bb in Qb.

11. Bb validates the token x received in Qb if xb= tb, where av is the restriction of a string a∈ {x, t} to entries ak with k∈Δv, where
Δv ¼ fk 2 ½N�j~dv;k ¼ ukg, and where ~dv;k is the kth bit entry of the string ~dv , for k∈ [N] and for v∈ {0, 1}. That is, Bob validates the token if Alice reports
the correct measurement outcome for each qubit that she measured in Bob’s preparation basis.

Ideal quantum token scheme IQT 2

Stage I

1. As step 1 of IQT 1 .

2. The step 2 of IQT 1 is replaced by the following. A chooses a bit z randomly. A measures each received qubit in the computational basis if z= 0 or
in the Hadamard basis if z= 1. The string y∈ {0, 1}N denoting Alice’s measurement bases has bit entries yk= z for k∈ [N].

3. As step 3 of IQT 1 . The steps 4 and 5 of IQT 1 are discarded.

4. As step 6 of IQT 1 .

Stage II

5. As steps 7 and 8 of IQT 1 .

6. The step 9 of IQT 1 is replaced by the following. For i∈ {0, 1}, in the causal past of Qi, Bi computes the string ~di 2 f0; 1gN with bit entries ~di;k ¼ i � c,
for k∈ [N].

7. As steps 10 and 11 of IQT 1 .
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probability 1− Pnoqub, and a quantum state of arbitrary Hilbert
space dimension greater than two with probability Pnoqub, where
Pnoqub= 0 in ideal schemes and Pnoqub > 0 in practical schemes. In
photonic implementations, each pulse transmitted by Bob is
either vacuum or one-photon with probability 1− Pnoqub, and
multi-photon with probability Pnoqub.
Below we present token schemes for two presentation points

(M= 1) that satisfy instant validation and that are robust,
correct, private, and unforgeable. The extension to 2M presenta-
tion points for any M 2 N is given in Supplementary Note VIII.
For clarity of the presentation, we first present the ideal
quantum token schemes IQT 1 and IQT 2 where there are
not any losses, errors, or any other experimental imperfections.
These are given in Table 1. More realistic quantum token
schemes QT 1 and QT 2 that allow for various experimental
imperfections are presented in Tables 2 and 3, respectively.
A summary of the used notation is given in Table 4. An
illustration of implementation in a token scheme for the case of
two spacelike separated presentation points is given in Fig. 1. A
diagram of the schemes is given in Fig. 2.
We use the following notation. We use bold font notation a for

strings of bits. The bit-wise complement of a string a is denoted by
a. The kth bit entry of a string a is denoted by ak. We define the set
[N]= {1, 2, …, N}. The symbol “⊕” denotes bit-wise sum modulo 2
or sum modulo 2 depending on the context. We write the
Bennett-Brassard 1984 (BB84) states30 as ϕ00j i ¼ 0j i, ϕ10j i ¼ 1j i,
ϕ01j i ¼ þj i and ϕ11j i ¼ �j i, where ±j i ¼ 1ffiffi

2
p 0j i± 1j ið Þ, and

where D0 ¼ f 0j i; 1j ig and D1 ¼ f þj i; �j ig are qubit orthonormal

bases, called the computational and Hadamard bases, respec-
tively. The Hamming distance is denoted by d( ⋅ , ⋅ ).
The quantum token schemes IQT 1 and IQT 2 given in Table 1

have the following properties.
First, the token schemes are correct. Since we assume there

are not any errors in the state preparations and measurements, if
Alice and Bob follow the token scheme honestly then Bob validates
Alice’s token at her chosen presentation point Qb with unit
probability. If Alice and Bob follow IQT 1 honestly,
~db;k ¼ db;k � c ¼ dk � b� c ¼ yk � z � b� c ¼ yk , for k∈ [N].
Thus, ~db ¼ y, which means that yk= uk for all k∈ Δb, hence, Alice
measures in the same basis of preparation by Bob for all states ψkj i
with labels k∈ Δb. Therefore, Alice obtains the correct outcomes for
these states: xb= tb. Similarly, if Alice and Bob follow IQT 2
honestly then we have that ~db has bit entries ~db;k ¼ b� c ¼ z ¼ yk ,
for k∈ [N]. Thus, as above, ~db ¼ y, i.e., ~db corresponds to the string
of measurement basis implemented by Alice. Therefore, in both
token schemes IQT 1 and IQT 2, Alice obtains xb= tb and Bob
validates Alice’s token at Qb with unit probability.
Second, the token schemes are robust. More precisely, neither

Bob nor Alice have the possibility to abort. This is because we
assume there are not any losses of the transmitted quantum states
and that Alice successfully measures all the received quantum
states. Thus, Alice does not need to report to Bob any labels of
states that she successfully measured, in contrast to the extended
token schemes QT 1 and QT 2 discussed below.
Third, the token schemes are private, i.e., Bob cannot obtain any

information about b in the causal past of Qb. This is because the

Table 2. Practical quantum token scheme QT 1 for two presentation points. Steps 1 to 9 take place within the intersection of the causal pasts of the
presentation points. See Table 4 for a summary of the notation and Fig. 2 for an illustration of the scheme.

Preparation Stage

0. Alice and Bob agree on a reference frame, on two presentation points Q0 and Q1 in the agreed frame, and on parameters N 2 N, βPB 2 ð0; 12Þ, and
γdet, γerr∈ (0, 1).

Stage I

1. For k∈ [N], B prepares bits tk and uk with respective probability distributions PkPS ðtkÞ and PkPB ðukÞ, satisfying 1
2 � βX � PkXðtÞ � 1

2 þ βX, where
βX 2 ð0; 12Þ is a small parameter, for X∈ {PS, PB}, t∈ {0, 1} and k∈ [N]. We define t= (t1, …, tN) and u= (u1, …, uN). For k∈ [N], B prepares a quantum
system Ak in a quantum state ψkj i and sends it to A with its label k. B chooses k∈Ωnoqub with probability Pnoqub > 0 or k∈Ωqub with probability 1−

Pnoqub. For k∈Ωqub, ψkj i ¼ ϕk
tkuk

�� E
is a qubit state, where hϕk

0ujϕk
1ui ¼ 0 for u∈ {0, 1}, where the qubit orthonormal basis Dk

u ¼ f ϕk
tu

�� �
g1
t¼0 is the

computational (Hadamard) basis up to an uncertainty angle θ on the Bloch sphere if u= 0 (u= 1). For k∈Ωnoqub, ψkj i ¼ Φk
tkuk

�� E
is a quantum state of

arbitrary finite Hilbert space dimension greater than two. In photonic implementations, a vacuum or one-photon pulse has label k∈Ωqub, with a one-
photon pulse encoding a qubit state, while a multi-photon pulse has label k∈Ωnoqub and encodes a quantum state of finite Hilbert space dimension
greater than two.

2. For k∈ [N],Ameasures Ak in the qubit orthonormal basis Dwk , for wk∈ {0, 1} and k∈ [N]. Due to losses,A only successfully measures quantum states
ψkj i with labels k from a proper subset Λ of [N]. LetW be the string of bit entries wk for k∈Λ and let n= ∣Λ∣. Conditioned on k∈Λ, the probability that
A measures Ak in the basis Dwk satisfies PMBðwkÞ ¼ 1

2, for wk∈ {0, 1} and k∈ [N]. A reports to B the set Λ. B does not abort if and only if n ≥ γdetN.

3. A chooses a one-to-one function g:Λ→ [n], for example, the numerical ordering, and sends it to B. Let yj∈ {0, 1} indicate the basis Dyj on which the
quantum state ψkj i is measured by A and let xj∈ {0, 1} be the measurement outcome, where j= g(k), for k∈Λ and j∈ [n]. Let y∈ {0, 1}n and x∈ {0, 1}n

denote the strings of Alice’s measurement bases and outcomes, respectively.

4. A sends x to Ai , for i∈ {0, 1}.

5. A chooses a bit z with probability PE(z) that satisfies 1
2 � βE � PEðzÞ � 1

2 þ βE , for z∈ {0, 1}, and for a small parameter βE 2 ð0; 12Þ. A computes the
string d∈ {0, 1}n with bit entries dj= yj⊕ z, for j∈ [n]. A sends d to B.
6. For i∈ {0, 1}, B sends d to Bi and Bi computes the string di∈ {0, 1}n with bit entries di,j= dj⊕ i, for j∈ [n].

7. B uses t, u, Λ, and g to compute the strings s, r∈ {0, 1}n, as follows. We define rj= tk, and sj= uk, where j= g(k), for j∈ [n] and k∈Λ. We define r and s
as the strings with bit entries rj and sj, for j∈ [n]. B sends s and r to Bi , for i∈ {0, 1}.

Stage II

8. A chooses the presentation point Qb where to present the token, for some b∈ {0, 1}. A computes the bit c= b⊕ z and sends it to B.
9. B sends c to Bi , for i∈ {0, 1}.

10. For i∈ {0, 1}, in the causal past of Qi, Bi computes the string ~di 2 f0; 1gn with bit entries ~di;j ¼ di;j � c, for j∈ [n].

11. A sends a signal to Ab indicating to present the token at Qb, and Ab presents the token x to Bb in Qb.

12. Bb validates the token x received in Qb if the Hamming distance between the strings xb and rb satisfies d(xb, rb)≤∣Δb∣γerr, where
Δv ¼ fj 2 ½n�j~dv;j ¼ sjg, and where av is the restriction of a string a∈ {x, r} to entries aj with j∈Δv, for v∈ {0, 1}.
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messages Alice sends Bob in the causal past of Qb carry no
information about b and we assume that Alice’s laboratories and
communication channels are secure.
Fourth, the token schemes are unforgeable. This follows from

the following lemma, which is shown in Supplementary Note IV.
Alternative proofs are given in ref. 31, based on quantum state
discrimination tasks. We have chosen the proof given in
Supplementary Note IV because an extension of it allows us to
prove Theorem 1 too.

Lemma 1: The quantum token schemes IQT 1 and IQT 2 are
ϵunf− unforgeable with

ϵunf ¼
1
2
þ 1

2
ffiffiffi
2

p
� �N

: (1)

Fifth, the token schemes satisfy instant validation. We note from
step 11 of IQT 1 that a token received by Bob’s agent Bb from
Alice’s agent Ab at a presentation point Qb can be validated by Bb

near-instantly at Qb. In particular, Bb does not need to wait for any
signals coming from other agents of Bob.
Finally, the token schemes above can be modified in various

ways. For example, in IQT 1, step 3 can be discarded, and step 10
can be replaced by the following: after choosing b, A sends x to
Ab and Ab presents the token x to Bb in Qb. In another variation,
step 5 in IQT 1 can be modified so that B computes di and sends
it to Bi ; in both versions of step 5, Bi must have di in the causal
past of Qi, for i∈ {0, 1}. In another variation, the step 9 in IQT 1 is
performed only by Bob’s agent Bb receiving a token from Alice.
The version we have chosen for step 9 allows Bb to reduce the
computation time after receiving a token, hence, allowing faster
token validation. Further variations of the token schemes can be
devised in order to satisfy specific requirements; for example,
some steps might need to be completed within very short times,
which might require reducing the computations within these
steps, which can be achieved by delegating some computations
within some other steps, for instance.

Practical quantum token schemes QT 1 and QT 2 for two
presentation points
The quantum token schemes QT 1 and QT 2 presented in Tables 2
and 3 extend the quantum token schemes IQT 1 and IQT 2 to
allow for various experimental imperfections (see Table 5), and
under some assumptions (see Table 6). QT 1 and QT 2 can be
implemented in practice with the photonic setups of Fig. 3.

The token schemes QT 1 and QT 2 can be modified in various
ways, as discussed for the token schemes IQT 1 and IQT 2.
Regarding correctness, we note in the token scheme QT 1 that if

Alice follows the token scheme honestly and chooses to present
the token in Qb, then we have that ~db has bit entries
~db;j ¼ db;j � c ¼ dj � b� c ¼ dj � z ¼ yj , for j∈ [n]. Thus, ~db ¼ y,
i.e., ~db corresponds to the string of measurement bases imple-
mented by Alice on the quantum states reported to be successfully
measured. Similarly, in the token scheme QT 2 if Alice follows the
token scheme honestly and chooses to present the token in Qb,
then we have that ~db has bit entries ~db;j ¼ b� c ¼ z ¼ yj , for j∈
[n]. Thus, as above, ~db ¼ y, i.e., ~db corresponds to the string of
measurement bases implemented by Alice on the quantum states
reported to be successfully measured. Therefore, in both token
schemesQT 1 andQT 2, if Alice can guarantee her error probability
to be bounded by E < γerr then with very high probability she will
make less than ∣Δb∣γerr bit errors in the ∣Δb∣ quantum states that she
measured in the basis of preparation by Bob.
Let Pdet be the probability that a quantum state ψkj i transmitted

by Bob is reported by Alice as being successfully measured, with
label k∈ Λ, for k∈ [N]. Let E be the probability that Alice obtains a
wrong measurement outcome when she measures a quantum state
ψkj i in the basis of preparation by Bob; if the error rates Etu are
different for different prepared states, labeled by t, and for different
measurement bases, labeled by u, we simply take E ¼ maxt;ufEtug.
The robustness, correctness, privacy, and unforgeability of QT 1

and QT 2 are stated by the following lemmas, proven in
Supplementary Note V, and theorem, proven in Supplementary
Note VII. These lemmas and theorem consider parameters γdet,
γerr∈ (0, 1), allow for the experimental imperfections of Table 5,
and make the assumptions of Table 6. A diagram presenting the
conditions under which robustness, correctness, and unforge-
ability are satisfied simultaneously is given in Fig. 4.

Lemma 2: If

0< γdet < Pdet; (2)

then QT 1 and QT 2 are ϵrob− robust with

ϵrob ¼ e
�PdetN

2 1� γdet
Pdet

� �2

: (3)

Lemma 3: If

0< γerr
2 < E < γerr;

0< νcor <
Pdetð1�2βPBÞ

2 ;
(4)

Table 3. Practical quantum token schemeQT 2 for two presentation points. See Table 4 for a summary of the notation and Fig. 2 for an illustration of
the scheme.

Preparation Stage

0. As step 0 of QT 1 .

Stage I

1. As step 1 of QT 1 .

2. The step 2 ofQT 1 is replaced by the following. A chooses a bit z with probability PE(z) satisfying 1
2 � βE � PEðzÞ � 1

2 þ βE , for z∈ {0, 1} and for a small
parameter βE 2 ð0; 12Þ. Ameasures Ak in the qubit orthonormal basis Dz , for all k∈ [N]. Due to losses,A only successfully measures quantum states ψkj i
with labels k from a proper subset Λ of [N]. A reports to B the set Λ. Let n= ∣Λ∣. B does not abort if and only if n ≥ γdetN.

3. As step 3 of QT 1 . The string y∈ {0, 1}n of Alice’s measurement bases has bit entries yj= z for j∈ [n].

4. As step 4 of QT 1 . The steps 5 and 6 of QT 1 are discarded.

5. As step 7 of QT 1 .

Stage II

6. As steps 8 and 9 of QT 1 .

7. The step 10 of QT 1 is replaced by the following. For i∈ {0, 1}, Bi computes the string ~di 2 f0; 1gn with bit entries ~di;j ¼ i � c, for j∈ [n].

8. As steps 11 and 12 of QT 1 .
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then QT 1 and QT 2 are ϵcor− correct with

ϵcor ¼ e
�Pdetð1�2βPBÞN

4 1� 2νcor
Pdetð1�2βPB Þ

� �2

þ e�
EνcorN

3
γerr
E �1ð Þ2 : (5)

Lemma 4: QT 1 and QT 2 are ϵpriv− private with

ϵpriv ¼ βE: (6)

Theorem 1: Consider the constraints

0< γerr < λðθ; βPBÞ;
0< Pnoqub < νunf < min 2Pnoqub; γdet 1� γerr

λðθ;βPBÞ

� �n o
;

0< βPS <
1
2 e

λðθ;βPBÞ
2 1� δ

λðθ;βPBÞ

� �2

� 1

2
4

3
5:

(7)

We define the function

f ðγerr; βPS; βPB; θ; νunf ; γdetÞ

¼ ðγdet � νunfÞ λðθ;βPBÞ
2 1� δ

λðθ;βPBÞ

� �2
� lnð1þ 2βPSÞ

	 


� 1� ðγdet � νunfÞð Þ ln 1þ hðβPS; βPB; θÞ½ �;

(8)

where

hðβPS; βPB; θÞ ¼ 2βPS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 þ 2β2PB þ 1

2 � 2β2PB
� �

sinð2θÞ
q

;

δ ¼ γdetγerr
γdet�νunf

:
(9)

Table 4. Summary of notation used for QT 1 and QT 2 .

Symbol Brief description

Qi Presentation points

A (B) Alice’s (Bob’s) agent participating in the quantum
communication stage

Ai (Bi ) Alice’s (Bob’s) agent by the presentation point Qi

Ak Quantum systems sent to Alice by Bob

N Number of quantum states that Bob sends Alice

Ωqub Set of labels for prepared qubits states

Ωnoqub Set of labels for prepared quantum states with dimension
greater than two

Pnoqub Probability that a prepared quantum state has dimension
greater than two

t String of bits encoding the quantum states prepared by Bob

u String of bits encoding the bases of preparation by Bob

Dk
u Qubit orthonormal bases of preparation by Bob

Dwk Qubit orthonormal bases of measurement by Alice

PMB(wk) Probability distribution for Alice’s measurement bases

βPB Bias for preparation basis

βPS Bias for preparation state

Λ Set of labels for quantum states successfully measured
by Alice

W String of bits encoding the measurement bases for the
quantum states successfully measured by Alice

γdet Minimum rate for states reported by Alice as successfully
measured for Bob not aborting

γerr Maximum error rate allowed by Bob for validating
Alice’s token

g One-to-one function g: ∣Λ∣→ [n]

y (x) String of bits encoding Alice’s measurement outcomes (bases)

z Bit chosen by Alice

PE(z) Probability distribution for bit z chosen by Alice

βE Bias for the probability distribution PE(z)

d String with bit entries dj= yj⊕ z that Alice sends Bob

di String with bit entries di,j= dj⊕ i computed by Bob’s agent Bi

r (s) String of bits encoding Bob’s prepared states (preparation
bases) for the states that Alice reports as successfully
measured

b Bit encoding Alice’s chosen presentation point

c Bit c= b⊕ z, which Alice sends Bob
~di String with bit entries ~di;j ¼ di;j � c computed by Bob’s agent

Bi

Δν Set of labels defined by Δν ¼ j 2 ½n�j~dν;j ¼ sj
n o

, for ν∈ {0, 1}

aν The substring of a∈ {x, r} restricted to bit entries ak with k∈
Δν, for ν∈ {0, 1}

Fig. 1 Illustration of implementation in a quantum token scheme.
A case of two presentation points in a Minkowski spacetime
diagram in 1+ 1 dimensions is illustrated. Bob has laboratories B, B0,
and B1, controlled by agents B, B0, and B1 (yellow rectangles), and
Alice has laboratories A, A0, and A1, controlled by agents A, A0 , and
A1 (green rectangles), adjacent to Bob’s laboratories. The quantum
communication stage takes place within B and A, can take an
arbitrarily long time and can be completed arbitrarily in the past of
the presentation points (Q0 and Q1). Alice’s classical measurement
outcomes x are kept secret by Alice and communicated to her
laboratories A0 and A1 via secure and authenticated classical
channels. In this illustrated example, Alice sends classical messages
to Bob at laboratory B, and either at B0 or B1. The messages sent to B
can take place anywhere in the past of Q0 and Q1 after the quantum
communication stage and includes a message indicating the labels
of the quantum states successfully measured by Alice. These
messages are communicated from B to B0 and B1 via secure and
authenticated classical channels. Alice chooses to present her token
at Qb within the intersection of the causal pasts of Q0 and Q1. The
message at either B0 or B1 is the bit c= b⊕ z, effectively committing
Alice to present her token at Qb. Alice presents the token by giving
Bob x at Qb. The case b= 1 is illustrated. The small black box
represents a fast classical computation performed at Bob’s labora-
tory receiving the token, to validate or reject Alice’s token, as
described in step 12 of the scheme QT 1 (see Table 2), for instance.
As illustrated, this would require this computation to be completed
within a time shorter than the time that light takes to travel
between the locations of laboratories B0 and B1, which could be
10 μs if B0 and B1 are separated by 3 km, for example. This is because,
as discussed in the introduction, we require presentation and
acceptance to be completed within spacelike separated regions in
order to achieve an advantage over purely classical token schemes.
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There exist parameters satisfying the constraints (7), for which f
(γerr, βPS, βPB, θ, νunf, γdet) > 0. For these parameters, QT 1 and QT 2
are ϵunf− unforgeable with

ϵunf ¼ e
�

PnoqubN

3
νunf

Pnoqub
�1

� �2

þ e�Nf ðγerr ;βPS ;βPB;θ;νunf ;γdetÞ:
(10)

We note in step 0 of QT 1 and QT 2 that Alice and Bob agree
on parameters N, βPB, γdet, and γerr. As follows from Lemmas 2–4,
in order for Alice to obtain a required degree of correctness,
robustness, and privacy, she must guarantee her experimental
parameters Pdet, E, and βE to be good enough. This is
independent of any experimental parameters of Bob, except
for the previously agreed parameter βPB, which plays a role in
correctness but not in robustness or privacy. Additionally, Alice
must choose a suitable mathematical variable νcor to compute a
guaranteed degree of correctness, as given by the bound of
Lemma 3.
On the other hand, as follows from Theorem 1, in order for Bob

to obtain a required degree of unforgeability, he must guarantee
his experimental parameters Pnoqub, θ, βPB, and βPS to be good
enough. This is independent of any experimental parameters of
Alice. Additionally, Bob must choose a suitable mathematical
variable νunf to compute a guaranteed degree of unforgeability, as
given by the bound of Theorem 1.
Furthermore, as follows from Lemma 4, in order for Alice to

obtain a required degree of privacy, she must guarantee her
experimental parameter βE to be small enough.
The parameters N, βPB, γdet, and γerr agreed by Alice and Bob

must be good enough to achieve their required degrees of
robustness, correctness, and unforgeability. But they must also be
achievable given their experimental setting.

Extension of QT 1 and QT 2 to 2M presentation points
Extensions of the quantum token schemes QT 1 and QT 2 to 2M

presentation points, for any integer M ≥ 1, and the proof of the
following theorem are given in Supplementary Note VIII.

Theorem 2: For any integer M ≥ 1, there exist quantum token
schemes QT M

1 and QT M
2 extending QT 1 and QT 2 to 2M

presentation points, in which Bob sends Alice NM quantum states,
satisfying instant validation and the following properties. Consider
parameters βPB, βPS, βE, Pdet, Pnoqub, E, and θ satisfying the
constraints (2), (4), (7) of Lemmas 2 and 3 and Theorem 1, for
which the function f(γerr, βPS, βPB, θ, νunf, γdet) defined by (8) is
positive. For these parameters, QT M

1 and QT M
2 are ϵMrob�robust,

ϵMcor�correct, ϵMpriv�private, and ϵMunf�unforgeable with

ϵMrob ¼ Mϵrob;

ϵMcor ¼ Mϵcor;

ϵMpriv ¼ 1
2M

ð1þ 2ϵprivÞM � 1
h i

;

ϵMunf ¼ Cϵunf ;

(11)

where C is the number of pairs of spacelike separated presenta-
tion points, and where ϵrob, ϵcor, ϵpriv, and ϵunf are given by (3), (5),
(6), and (10).

Quantum experimental tests
We performed experimental tests for the quantum stage of the
QT 1 scheme for the case of two presentation points (M= 1),
using the photonic setup of Fig. 3 and reporting strategy 1 (see
Methods for details). Using a photon source with Poissonian
distribution of average photon number μ= 0.09, and a repetition
rate of 10 MHz, we generated a token of N= 4 × 107 photon
pulses, with detection efficiency of η= 0.21, detection probability
of Pdet= 0.019, and error rate of E= 0.058. We obtained deviations
from the random distributions for the basis and state generation
of βPB= 2.4 × 10−3 and βPS= 3.6 × 10−3, respectively. In order to
guarantee unforgeability using Theorem 1, we need to improve
some experimental parameters (see Fig. 5).
Guaranteeing privacy in our schemes QT 1 and QT 2 can be

satisfied with good enough random number generators, as follows
from Lemma 4. Due to the piling-up lemma, by using a large
number of close-to-random bits, we can guarantee ϵpriv to be
arbitrarily small in practice.

DISCUSSION
We have presented two quantum token schemes that do not
require either quantum state storage or long-distance quantum
communication and are practical with current technology. Our
schemes allow for losses, errors in the state preparations and
measurements, and deviations from random distributions; and, in
photonic setups, photon sources that do not emit exactly single
photons, and threshold single-photon detectors with non-unit
detection efficiencies and with nonzero dark count probabilities
(see Table 5).
Our analyses follow much of the literature on practical

mistrustful quantum cryptography (e.g., 32–36) in making the
assumptions of Table 6. Under these assumptions, we have shown
that there exist attainable experimental parameters for which our
schemes can satisfy instant validation, correctness, robustness,

Fig. 2 Diagram of the quantum token schemes QT 1 and QT 2. Alice’s (Bob’s) steps are indicated with the blue (red) arrows. The differences
betweenQT 1 and QT 2 are shown. b The steps perfomed by Alice’s and Bob’s agents A and B inQT 1 are illustrated. a The steps of Alice’s and
Bob’s agents Ai and Bi in QT 1 are shown, for i ∈ {0, 1}. The case i= b represents Alice’s token presentation and Bob’s validation/rejection.
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unforgeability, and user privacy. Importantly, Theorem 2 shows
that this holds, in principle, for 2M presentation points with
arbitrary M. As in the schemes of ref. 28, our schemes allow the
user to choose her presentation point Qb after her quantum
measurements are completed, as long as she chooses Qb within
the intersection of the causal past of all the presentation points.
This means that the quantum communication stage of our
schemes can take an arbitrarily long time and can be implemen-
ted arbitrarily in the past of the presentation points, which is very
convenient for practical implementations.
We note that the security of our quantum token schemes

does not rely on any spacetime constraints. In principle, all

presentation points could be timelike separated, for example.
However, as discussed in the introduction, in order for our
quantum token schemes to have an advantage over purely
classical schemes, some spacetime presentation points need to
be spacelike separated.
In practice, this means that some classical processing and

classical communication steps in our schemes must be imple-
mented sufficiently fast. This is in general feasible with current
technology (for example, using field programmable gate arrays), if
the presentation points are sufficiently far apart, as demonstrated
by previous implementations of relativistic cryptographic proto-
cols33,34,37–39. Furthermore, Alice’s and Bob’s laboratories must be

Table 5. Allowed experimental imperfections for QT 1 and QT 2 .

No Brief description Explanation and comments

1 For k∈ [N], there is a small probability Pnoqub > 0 for B
to prepare a quantum state ψkj i of arbitrary finite
Hilbert space dimension greater than two.

In photonic implementations, we define Pnoqub and Ωnoqub⊆ [N] as the probability that a
pulse is multi-photon and as the set of labels for multi-photon pulses (see Methods). We
define Ωqub= [N]⧹Ωnoqub as the set of labels for vacuum or one-photon pulses, where
the subindex refers to “qubit”. When showing unforgeability, we treat vacuum pulses as
one-photon pulses encoding the qubit state Bob attempted to send. Since this gives
Alice extra options that cannot make it more difficult for her to cheat, the deduced
unforgeability bound holds in general. A Poissonian photon source (e.g. weak coherent)
with average photon number μ < < 1 gives Pnoqub ¼ 1� ð1þ μÞe�μ ¼ μ2

2 þ Oðμ3Þ, while a
heralded single-photon source can give extremely small values for Pnoqub, of the order of
10−10 for usual experimental parameters.

2 For k∈Ωqub, B prepares ψkj i ¼ ϕk
tkuk

�� E
in a qubit

orthonormal basis Dk
uk that is the computational

(Hadamard) basis within an uncertainty angle θ 2
ð0; π4Þ on the Bloch sphere if uk= 0 (uk= 1).

Thus, the angle on the Bloch sphere between the states ϕk
t0

�� �
and ϕk

t1

�� �
is guaranteed to

be within the range ½π2 � 2θ; π2 þ 2θ�, for k∈Ωqub. We define OðθÞ ¼ 1ffiffi
2

p ðcos θþ sin θÞ,
where the notation refers to “overlap” on the Bloch sphere. It follows that
jhϕk

t0jϕk
t01ij � OðθÞ, for some OðθÞ 2 ð 1ffiffi

2
p ; 1Þ, for t; t0 2 f0; 1g and k∈Ωqub.

3 For k∈ [N], B generates the bits tk and uk with
probability distributions PkPS ðtkÞ and PkPB ðukÞ that
have small deviations from the random distributions
given by biases βPS, βPB > 0.

That is, we have 1
2 � βX � PkXðtÞ � 1

2 þ βX, with 0< βX <
1
2, for t∈ {0, 1}, k∈ [N] and X∈ {PS,

PB}. The subindices “PS” and “PB” refer to “preparation state” and “preparation basis”,
respectively. It is useful for our security analysis to define:

λðθ; βPBÞ ¼ 1
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½1� ðOðθÞÞ2�ð1� 4β2PBÞ

q �
. It follows from 0<βPB<

1
2 and

1ffiffi
2

p <OðθÞ<1
that 0<λðθ; βPBÞ< 1

2 ð1� OðθÞÞ< 1
2 ð1� 1ffiffi

2
p Þ.

4 A fraction of the quantum states transmitted from B
to A is lost. In photonic setups, A has single-photon
detectors with non-unit detection efficiencies.

Because of losses and non-unit detection efficiencies (in photonic setups), A must report
to B the set Λ⊂ [N] of labels of the successfully measured states. B does not abort if and
only if ∣Λ∣ ≥ γdetN, where the subindex “det” stands for “detection”.

5 For k∈ [N], A measures the received state ψkj i in one
of two distinct orthogonal qubit basis, D0 and D1 ,
where this pair of bases is arbitrary.

A applying a measurement on a qubit basis D0 (D1) on a received quantum state that is
not a qubit, i.e., for k∈Ωnoqub, means that A sets her devices as she would do to apply a
measurement in the qubit basis D0 (D1)—we note that A does not know the sets Ωqub

and Ωnoqub. For photonic setups, this may include arranging a set of wave plates,
polarizing beam splitters and single-photon detectors in a particular setting. If D0 and D1
are very different from the computational and Hadamard bases, the number of
measurement errors in Alice’s outcomes is high. But, this is considered in our security
analysis via Alice’s error rate. Moreover, the set of two measurement bases applied by A
could vary slightly for different quantum states ψkj i, i.e., for different k∈ [N]. However, we
can include these deviations from the measurement bases D0 and D1 of A in the bases
Dk

uk
of preparation by B, and assume that A applies either D0 or D1 to ψkj i, for k∈ [N]. In

other words, the uncertainty angle θ on the Bloch sphere accounts for both preparation
and measurement misalignments. Thus, our analysis is without loss of generality.

6 There are errors in Alice’s quantum measurements. Thus, Alice obtains some errors in the measurements that she performs in the same basis
of preparation by Bob. For this reason, in the validation stage, Bob allows a fraction of bit
errors in Alice’s reported measurement outcomes, up to a predetermined small threshold
γerr > 0, where “err” stands for “errors”.

7 A generates the bit z with probability distribution
PE(z) that has small deviation from the random
distribution given by a bias βE > 0.

That is, we have that 1
2 � βE � PEðzÞ � 1

2 þ βE , for z∈ {0, 1}. The subindex “E” refers to
“encoding”. A can guarantee the parameter βE to decrease exponentially with a number
NCRB of close-to-random bits with biases not greater than βCRB 2 ð0; 12Þ, as follows from
the Piling-up Lemma56.

8 In photonic setups, the single-photon detectors used
by A are threshold, i.e., they cannot distinguish the
number of photons activating a detection. Moreover,
the detectors have nonzero dark count probabilities.

Thus, for some photon pulses received from B, more than one of the detectors of A click.
In order to counter multi-photon attacks53, in which B sends and tracks multi-photon
pulses to obtain information about the measurement bases of A, and guarantee privacy,
A must carefully choose how to report multiple clicks to B, i.e., how to define successful
measurements. For this reason, in the second step of our token schemes QT 1 and QT 2
with the photonic setups of Fig. 3, A implements the reporting strategies 1 and 2,
respectively. As follows from straightforward extensions of Lemmas 1 and 12 of ref. 53,
assumption F (see Table 6) guarantees that these reporting strategies offer perfect
protection against arbitrary multi-photon attacks (see Lemma 5 in Methods).
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synchronized securely to a common reference frame with
sufficiently high time precision. This can be implemented using
GPS devices and atomic clocks33,34,37–39, for example. A detailed
analysis of these experimental challenges is left for future work.
Using quantum key distribution for secure communications in

our quantum token schemes can be useful, but it is not crucial. As
discussed, Alice’s and Bob’s agents must communicate via secure
and authenticated classical channels, which can be implemented
with previously distributed secret keys. In an ideal situation where
Alice’s and Bob’s agents have access to enough quantum
channels, for example in a quantum network40–43 or in the
envisaged quantum internet44,45, these keys can be expanded
securely with quantum key distribution30,46,47. However, it is also
possible to distribute the secret keys via secure physical
transportation, as implemented in previous demonstrations of
relativistic quantum cryptography33,34,37–39.
We note that in our proof of unforgeability, our only potential

restriction on the technology and capabilities of dishonest Alice is
indirectly made through assumption G in photonic setups (see
Table 6), in the case where Bob’s photon source does not perfectly

conceal phase information. In fact, we believe that assumptions A,
B, and G can be significantly weakened. Investigating unforge-
ability for realistic weaker forms of these assumptions is left as an
open problem.
We implemented experimental tests of the quantum part of our

scheme (QT 1) using a free space optical setup48,49 for quantum
key distribution (QKD) that was slightly adapted for our scheme,
and which can operate at daylight conditions. Importantly, Bob’s
transmission device is small, hand-held, and low cost. These type
of QKD setups are designed for future daily-life applications, for
example with mobile devices (see e.g., 50–52).
Experiments with our relatively low precision devices do not

guarantee unforgeability, but show it can be guaranteed with
refinements. Crucial experimental parameters that we need to
improve to achieve this are the deviations βPB and βPS from
random basis and state generation, respectively. In our tests we
obtained βPB= 2.4 × 10−3 and βPS= 3.6 × 10−3. An implementa-
tion in which the uncertainty in basis choices was bounded by
θ= 5∘ and the error rate by E= 0.03 would guarantee unforge-
ability if βPB ≈ βPS ≈ 2.3 × 10−4 (about a factor of 10 and 16 lower

Table 6. Assumptions for QT 1 and QT 2.

Label Brief description Explanation and comments

A For k∈Ωqub, B prepares ψkj i ¼ ϕk
tkuk

�� E
, where hϕk

0ujϕk
1ui ¼ 0,

defining the qubit orthonormal basis Dk
u ¼ f ϕk

tu

�� �
g1t¼0 , for u∈

{0, 1}.

That is, we assume that B prepares each qubit state from exactly two qubit
bases. However, in the most general case (not considered here), B prepares
each qubit state from a set of four qubit states that does not necessarily
define two qubit basis.

B B generates the bit strings t= (t1, …, tN) and u= (u1, …, uN)
with probability distributions that are exactly products of
single bit probability distributions.

In the general case (not considered here), the strings t and u could be
generated with a probability distribution in which t and u, and different bit
entries of t and u, could be correlated.

C The set Λ of labels transmitted to B in step 2 of QT 1 and QT 2
gives B no information about the string W and the bit z.

In the photonic setups of Fig. 3 to implement QT 1 and QT 2 , with the
reporting strategies 1 and 2, respectively, assumption C (and also assumption
D for QT 1) follows from assumptions E and F (see Lemma 5 in Methods).

D In QT 1 , conditioned on reporting the quantum state ψkj i as
successfully measured, i.e., conditioned on k∈Λ, A measures
ψkj i in an orthogonal qubit basis Dwk with a probability
distribution PMBðwkÞ ¼ 1

2, for wk∈ {0, 1} and k∈ [N], where the
subindex denotes “measurement basis”.

This is a necessary, but in general not sufficient, condition for QT 1 to satisfy
assumption C. If this assumption did not hold, there would be at least one
label k0 2 Λ for which PMBðwk0 ¼ iÞ>PMBðwk0 ¼ i � 1Þ, for some i∈ {0, 1}. Thus,
B could in principle guess the entry wk0 of W with probability greater than 1

2.
This would mean that the set Λ reported by A would have given B some
information about W, in contradiction with assumption C.

E B cannot use degrees of freedom not previously agreed for
the transmission of the quantum states to affect, or obtain
information about, the statistics of the quantummeasurement
devices of A.

This assumption guarantees that A is perfectly protected from any side-
channel attack by B in any type of physical setup (not necessarily photonic)53.

F In the photonic setup of Fig. 3, the detectors D0, D1, D+ and
D− of A have equal detection efficiencies η∈ (0, 1), and
respective dark count probabilities d0, d1, d+, d−∈ (0, 1)
satisfying (1− d0)(1− d1)= (1− d+)(1− d−), for k∈ [N]. In the
photonic setup of Fig. 3, the detectors D0 and D1 of A satisfy
that: (1) their detection efficiencies have the same value η∈ (0,
1), for k∈ [N]; and (2) their dark count probabilities have values
d0∈ (0, 1) and d1∈ (0, 1), for k∈ [N]. Dark counts and each
photo-detection are independent random events, for k∈ [N].

In our notation, the term ‘detection efficiency’ includes the quantum
efficiency of the detectors of A and the transmission efficiency from the setup
of B to the detectors. We note that the condition (1− d0)(1− d1)= (1− d+)
(1− d−) can be satisfied if d0= d+ and d1= d−, or if d0= d− and d1= d+, for
instance. Exactly equal detection efficiencies cannot be guaranteed in
practice. But, attenuators can be used to make the detector efficiencies
approximately equal. Furthermore, A can effectively make the dark count
probabilities of her detectors approximately equal by simulating dark counts
in the detectors with lower dark count probabilities so that they approximate
the dark count probability of the detector with the highest dark count
probability. To our knowledge, that dark count and each photo-detection are
independent random events is a valid assumption.

G In photonic setups, from the perspective of A, the pulses of B
are mixtures of Fock states: in particular A has no information
about relative phases of the components with definite photon
number.

If this assumption is not satisfied, the quantum state received by A could not
be described by our analysis, opening the possibility to attacks more powerful
than the ones considered in our security proof (e.g., more powerful state
discrimination attacks57). This assumption is consistent with our security
analysis and is satisfied in practice if B uses a weak coherent source and he
uniformly randomizes the phase of each pulse transmitted to A; or if B uses
an arbitrary photonic source with arbitrary signal states and he applies a
physical operation to the transmitted pulses with the property that it applies a
random phase φ per photon—i.e., an l-photon pulse acquires an amplitude
eilφ58 . Alternatively, this condition can be satisfied to a good approximation if
B uses a photonic source with low spatiotemporal coherence, for example, a
source comprising LEDs59, as in our experimental tests reported below.

A. Kent et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2022)    28 



than our values). This highlights that it is crucial to consider the
parameters βPS and βPB in practical security proofs. For example, if
we simply assumed βPS= βPB= 0 as our experimental values then
our results would imply that we had attained unforgeability, even
for θ= 10∘ (see Fig. 5). Taking βPS= βPB= θ= 0, as implicitly
assumed in some previous analyses of practical mistrustful
quantum cryptography (e.g., 33,34,36), is unsafe.
User privacy can also be guaranteed by using good enough

random number generators. However, further security issues arise
from the assumptions that Bob cannot use degrees of freedom
not previously agreed for the transmission of the quantum states
to affect, or obtain information about, the statistics of Alice’s
quantum measurement devices; and, in photonic setups, that
Alice’s single-photon detectors have equal efficiencies and equal
dark count probabilities (assumptions E and F in Table 6). These
issues are not specific to our implementations or to quantum
token schemes: they arise quite generally in practical mistrustful

quantum cryptographic schemes in which one party measures
states sent by the other. The attacks they allow and defences
against these (such as requiring single-photon sources and using
attenuators to equalize detector efficiencies) are analysed in detail
elsewhere53. As noted in ref. 53, further options, such as iterating
the scheme and using the XOR of the bits generated, also merit
investigation. Importantly, our analyses here take into account
multi-photon attacks53 in photonic setups, and the reporting
strategies we have considered offer perfect protection against
arbitrary multi-photon attacks, given our assumptions (see Fig. 3,
and Lemma 5 in Methods).
In conclusion, our theoretical and experimental results give a

proof of principle that quantum token schemes are implemen-
table with current technology, and that, conditioned on standard
technological assumptions, security can be maintained in the
presence of the various experimental imperfections we have
considered (see Table 5). As with other practical implementations

Fig. 3 Photonic setups to implement the quantum stage of QT 1 and QT 2. In both QT 1 and QT 2, the setup of honest B comprises an
approximate single-photon source and a polarization state modulator, encoding the quantum state ψkj i in the polarization degrees of
freedom of a photon pulse labeled by k, for k∈ [N]. a In QT 1, the setup of honest A comprises a 50:50 beam splitter, a wave plate, two
polarizing beam splitters (PBS01 and PBS+−), and four threshold single-photon detectors D0, D1, D+, and D−. In order to counter multi-photon
attacks by B,A implements the following reporting strategy that we call here reporting strategy 1: A assigns successful measurement
outcomes in the basis D0 (D1) with unit probability for the pulses in which at least one of the detectors D0 and D1 (D+ and D−) click and D+
and D− (D0 and D1) do not click. As follows from ref. 53, this reporting strategy offers perfect protection against arbitrary multi-photon attacks,
given assumption F (see Table 6, and Lemma 5 in Methods). b In QT 2, the setup of honest A comprises a wave plate set in one of two
positions, according to the value of her bit z, a polarizing beam splitter, and two threshold single-photon detectors D0 and D1. In order to
counter multi-photon attacks by B, A implements the following reporting strategy that we call here reporting strategy 2: A reports to B as
successful measurements those in which at least one of her two detectors click. As follows from ref. 53, this reporting strategy offers perfect
protection against arbitrary multi-photon attacks, given assumption F (see Table 6, and Lemma 5 in Methods).
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of mistrustful quantum cryptography (and indeed quantum key
distribution), completely unconditional security would require
defences against every possible collection of physical systems Bob
might transmit to Alice, including programmed nano-robots that
could enter and reconfigure her laboratory54. Attaining this is
beyond current technology, but such far-fetched possibilities also
illustrate that security based on suitable technological assump-
tions (which may depend on the context) may suffice for practical
purposes. More work on attacks and defences in practical
mistrustful quantum cryptography is undoubtedly needed to
reach a consensus on trustworthy technologies. That said, as our
schemes are built on simple mistrustful cryptographic primitives,
we expect they can be refined to incorporate any agreed practical
defences53.

METHODS
Protection against multi-photon attacks in photonic
implementations
The following lemma is a straightforward extension of Lemmas 1 and 12 of
ref. 53 to the case of N > 1 transmitted photon pulses. Note that Alice (Bob)
in our notation refers to Bob (Alice) in the notation of ref. 53. The proof is
given in Supplementary Note VI.

Lemma 5. Suppose that Bob sends Alice N photon pulses, labeled by
k ∈ [N]. Let the kth pulse have Lk photons. Let ρ be an arbitrary quantum
state prepared by Bob in the polarization degrees of freedom of the
photons sent to Alice, which can be arbitrarily entangled among all
photons in all pulses and can also be arbitrarily entangled with an ancilla
held by Bob. Let D0 and D1 be two arbitrary qubit orthogonal bases.
Suppose that either Alice uses the setup of Fig. 3 with reporting strategy
1 to implement the quantum token scheme QT 1 (see Table 2), or Alice
uses the setup of Fig. 3 with reporting strategy 2 to implement the
quantum token scheme QT 2 (see Table 3). Suppose also that
assumptions E and F (see Table 6) hold. For k ∈ [N], let mk= 1 if Alice
assigns a successful measurement to the kth pulse and mk= 0 otherwise;
let wk= 0 (wk= 1) if Alice assigns a measurement basis to the kth pulse in
the basis D0 (D1). If Alice uses the setup of Fig. 3 and reporting strategy 1
to implement the scheme QT 1, without loss of generality, suppose also

that Alice sets wk= 0 with unit probability, if mk= 0, for k ∈ [N]. Let m=
(m1, …, mN), w= (w1, …, wN) and L= (L1, …, LN).
If Alice uses the setup of Fig. 3 with reporting strategy 1 to implement

the scheme QT 1, then the probability that Alice reports the string m to
Bob and assigns the string of measurement bases w, given ρ and L, is

Pð1Þrep ðm;wjρ; LÞ ¼
YN
k¼1

Gð1Þ
mk ;wk

ðd0; d1; η; LkÞ; (12)

where

Gð1Þ
1;bðd0; d1; η; aÞ ¼ ð1� d0Þð1� d1Þ 1� η

2

� �a � ð1� d0Þ2ð1� d1Þ2ð1� ηÞa;

Gð1Þ
0;0ðd0; d1; η; aÞ ¼ 1� 2Gð1Þ

1;0ðd0; d1; η; aÞ;

Gð1Þ
0;1ðd0; d1; η; aÞ ¼ 0;

(13)

for b∈ {0, 1}, m,w∈ {0, 1}N and a, L1, …, LN ∈ {0, 1, 2, …}. Furthermore, the
probability PMB(wk) that Alice assigns a measurement in the basis Dwk ,
conditioned on the value mk= 1, for the kth pulse, satisfies

PMBðwkÞ ¼
1
2
; (14)

for wk∈ {0, 1} and k ∈ [N].
If Alice uses the setup of Fig. 3 with reporting strategy 2 to implement

the scheme QT 2, then the probability that Alice reports the string m to

Fig. 4 Illustration of security conditions for QT 1 and QT 2. A
diagram presenting the conditions under which robustness, correct-
ness, and unforgeability of the quantum token schemesQT 1 andQT 2
are satisfied simultaneously is illustrated (see Lemmas 2 and 3 and
Theorem 1). The function f is defined by (8). If all the conditions are
satisfied (filled area) then there exist a sufficiently large integer N such
that QT 1 and QT 2 are ϵrob-robust, ϵcor-correct and ϵunf-unforgeable,
for desired values of ϵrob, ϵcor, ϵunf > 0.

Fig. 5 Numerical example. The plots denote the maximum value
βmax for βPB and βPS that our bounds can allow to guarantee
correctness, robustness, and unforgeability simultaneously in a
numerical example with the allowed experimental imperfections of
Table 5 and under the assumptions of Table 6 for our quantum
token schemes QT 1 and QT 2 . The region below the plotted curves
denotes the secure region in which we have set ϵrob= ϵcor= ϵunf=
10−9 in Lemmas 2 and 3 and in Theorem 1. The plotted values keep
all parameters fixed to the experimental values reported above,
except for the deviations from the random distributions for basis
and state generation, βPB and βPS, the uncertainty θ on the Bloch
sphere in the state generation, and the error rate E. The blue curve
denotes the values obtained for the experimentally obtained value
E= 0.058. The red square denotes the assumed upper bound for our
experimental values of θ ≤ 10∘, and corresponds to a value of
βmax ¼ 6 ´ 10�6, which is about 400 and 600 times smaller than the
obtained experimental values of βPB= 2.4 × 10−3 and βPS= 3.6 ×
10−3, respectively. The orange and gray curves plot the values of
βmax assuming E= 0.03 and E= 0.01, respectively. In an ideal case in
which θ= 0∘ and E= 0.01, the value for βmax would be ~6 × 10−4,
which is about four and six times smaller than our obtained
experimental values for βPB and βPS, respectively. In a more realistic
case, with θ= 5∘ and E= 0.03, our numerical example gives
approximately βmax ¼ 2:3 ´ 10�4; meaning that with these experi-
mental values, by reducing our obtained experimental values for βPB
and βPS by respective factors of ~10 and 16, we could guarantee
correctness, robustness, and unforgeability simultaneously in our
schemes.
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Bob, given ρ, w, and L, is

Pð2Þrep ðmjw; ρ; LÞ ¼
YN
k¼1

Gð2Þ
mk
ðd0; d1; η; LkÞ; (15)

where

Gð2Þ
0 ðd0; d1; η; aÞ ¼ ð1� d0Þð1� d1Þð1� ηÞa;

Gð2Þ
1 ðd0; d1; η; aÞ ¼ 1� ð1� d0Þð1� d1Þð1� ηÞa;

(16)

for m, w∈ {0, 1}N and a, L1, …, LN ∈ {0, 1, 2, …}.
In any of the two cases, the message m gives Bob no information about

the bit entries wk for which mk= 1. Equivalently, the set Λ⊂ [N] of labels
transmitted to Bob in step 2 of QT 1 and QT 2 gives Bob no information
about the string W and the bit z.

Clarification about unforgeability in photonic
implementations
A subtle technical issue when implementing our quantum token schemes
with photonic setups is that in our schemes we have assumed the
quantum systems Ak that Bob transmits to Alice to have finite Hilbert space
dimension, for k ∈ [N]. However, some light sources, like weak coherent
sources, or other photon sources with Poissonian statistics, can emit pulses
with a number of photons J, where J can tend to infinity, although with a
probability tending to zero. This issue is easily solved by fixing a maximum
number of photons Jmax and assuming that unforgeability is not
guaranteed whenever Bob’s photon source emits a pulse with more than
Jmax photons. By fixing Jmax to be arbitrarily large, but finite, the probability
that among the N emitted pulses there is at least one pulse with more than
Jmax photons can be made arbitrarily small. Thus, with probability
arbitrarily close to unity, honest Bob is guaranteed that each of his N
emitted pulses does not have more than Jmax photons, i.e., the internal
degrees of freedom—like the polarization degrees of freedom— of each
pulse, represented by the quantum system Ak, have a finite Hilbert space
dimension.

Experimental setup
Our experimental setup is based on a free space optical quantum key
distribution (QKD) system, which can operate at daylight conditions. This

setup was developed by one of us (DL) during his PhD49, based upon the
work of ref. 48. The main features of our experimental setup are illustrated
in Figs. 3 and 6.
Only minor changes to our quantum setup are needed to implement the

quantum stage of QT 2. For example, the 50:50 beam splitter in Alice’s site
can be replaced by a suitably placed mirror directing the received photon
pulses to one of the two polarizing beam splitters. This mirror can be set in
a movable arm, which positions the mirror in place if z has a specific value
(e.g., if z= 1) and out of place, letting the photon pulses reach the other
polarizing beam splitter, if z takes the other value (e.g., z= 0). The movable
arm putting the mirror in place or out of place does not need to move very
fast, as it remains in the same position during the transmission of all N
pulses from Bob in the case of two presentation points, or during the
transmission of each set of N pulses from the total of NM in the case of 2M

presentation points (see quantum token scheme QT M
2 in Supplementary

Note VIII).

Experimental tests and numerical example
The quantum stage of the token scheme QT 1 was implemented with the
experimental setup described above. Below we describe our experiment
and the numerical example of Fig. 5. Unless we consider it necessary or
helpful, all values smaller than unity obtained in our experiment and
numerical example are given below rounded to two significant figures.
As we explain below, our obtained experimental values for the

parameters in Lemmas 2 and 3 and in Theorem 1 are N= 4 × 107, Pdet=
0.019, E= 0.058, βPB= 2.4 × 10−3, βPS= 3.6 × 10−3, Pnoqub= 3.8 × 10−3. We
assume an angle θ ≤ 10∘ in our experiment.
In the numerical example of Fig. 5 we used the previous experimental

values, except for θ and E, which were varied as shown in the plots, and for
βPB and βPS. In the plots of Fig. 5, if βPB � βmax and βPS � βmax hold, then
we obtain from Lemmas 2 and 3 and from Theorem 1 that ϵrob, ϵcor, ϵunf ≤
10−9. We do not claim that our numerical example is optimal. In other
words, we do not claim that with our experimental parameters every point
above the curves of Fig. 5 is insecure, in the sense that the conditions ϵrob,
ϵcor, ϵunf ≤ 10−9 do not hold. Our claim is only that given our experimental
parameters, the regions of points below the curves of Fig. 5 satisfy the
conditions ϵrob, ϵcor, ϵunf ≤ 10−9.
For the three curves of Fig. 5, we set γdet= 0.018. Thus, condition (2) of

Lemma 2 is satisfied, and from (3), we have ϵrob= e−1052 < 10−9.

Fig. 6 Photograph of the experimental setup. Bob’s quantum transmitter (white box in the left) is a small and low-cost hand-held device of
~20 cm × 15 cm × 5 cm. Alice’s quantum receiver is contained within a box of ~20 cm × 12 cm × 5 cm (grey box on the right), with further
electronics contained within another box of ~30 cm × 50 cm × 15 cm (bigger black box). At Bob’s site, the QKD transmitter comprises a field
programmable gate array (FPGA) which pulses 4 LEDs, each polarized in one of the horizontal (H), vertical (V), diagonal (D), and anti-diagonal
(A) states, corresponding to the 0j i, 1j i, þj i and �j i BB84 states, respectively. The light from the LEDs is collimated by a diffraction grating and
pinholes. The statistics of Bob’s photon source is assumed Poissonian49,55. Neutral-density (ND) filters (small black cylinders) are used to
attenuate the pulses down to the required mean photon number, which in our experiment was μ= 0.09. Since Bob’s photon source consists of
LEDs, and LEDs have low spatiotemporal coherence59, no phase randomization is required to satisfy assumption G to a good approximation
(see Table 6). At Alice’s site, the received light pulses from Bob are focused from the transmitter pinhole, through a 50:50 beam splitter (BS,
small transparent cube) which performs basis selection, and wave plate (WP, thin white cylinder), and polarizing beam splitters (PBS, small
black boxes) which perform the measurement of the polarization. The photons are detected with single-photon avalanche diodes (SPAD,
small golden cylinders), which are threshold single-photon detectors with efficiency η= 0.21, including the quantum efficiency of the
detectors and the transmission efficiency from Bob’s setup to the detectors. An FPGA time tags the detections with 52 bit precision, equivalent
to 30.5 ps60, and sends them to a PC for processing. Alice’s grey and black boxes are closed during operation to decrease noise due to
environment light. But they are shown open here for illustration.
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For the three curves of Fig. 5, we set νunf= 3.9 × 10−3. This is the
minimum value for which the first term of ϵunf in (10) equals 10�9

2 . This is
because, as we describe below, we also chose the parameters satisfying
that the second term of ϵunf in (10) equals 10�9

2 , from which we have ϵunf=
10−9. We recognize that although this particular choice seems natural, it
probably does not optimize our results.
Then, for each of the three considered error rates E= 0.01, E= 0.03, and

E= 0.058, and for each of the angles θ= 0∘, 1∘, …, 11∘, we set βPB ¼ βPS ¼
βmax and varied βmax, νcor, and γerr trying to find the maximum value of
βmax for which both terms of ϵcor in (5) and the second term of ϵunf in (10)
were as close as possible to 10�9

2 , but not bigger than 10�9

2 , while
guaranteeing that the constraints (4) and (7) were satisfied. Our results
for βmax are plotted in Fig. 5.
We describe how we obtained the experimental parameters presented

above. At a repetition rate of 10 MHz, Bob transmitted photon pulses to
Alice during 4 s. Thus, the number of transmitted pulses was N= 4 × 107.
Since the photon statistics of Bob’s source is assumed Poissonian49,55, the

probability that a photon pulse has two or more photons is Pnoqub= 1−
(1+ μ)e−μ. Since in our experiment μ= 0.09, we obtain Pnoqub= 3.8 × 10−3.
As discussed below, Alice assigned successful measurements using

reporting strategy 1. The number of pulses for which Alice assigned
successful measurement was n= 742,491. The obtained estimation for the
probability Pdet, was obtained as Pdet ¼ n

N ¼ 0:019.
The measured detection efficiency, including the quantum efficiency of

the detectors and the transmission probability from Bob’s setup to the
detectors, was η= 0.21. We note that our obtained value of Pdet= 0.01856,
which we reported above with the less precise value Pdet= 0.019, is a good
approximation to the theoretical prediction in which the photon statistics
of Bob’s source follow a Poisson distribution with average photon number
μ= 0.09, Alice uses reporting strategy 1 with her four detectors having the
same efficiency η= 0.21, and the dark count probabilities are assumed to
be zero. As follows from (12) and (13) in Lemma 5, this theoretical
prediction for Pdet is given by

Ptheodet ¼
P1
k¼0

e�μμk

k! Gð1Þ
1;0ð0; 0; η; kÞ þ Gð1Þ

1;1ð0; 0; η; kÞ
� �

¼ 2
P1
k¼0

e�μμk

k! 1� η
2

� �k � ð1� ηÞk
h i

¼ 2 e�
μη
2 � e�μη

� �
¼ 0:01863;

(17)

where in the last line we used our experimental parameters μ= 0.09 and
η= 0.21. This gives a ratio Pdet

Ptheodet
¼ 0:996.

As mentioned in Fig. 3, Alice applies reporting strategy 1, in order to
protect against multi-photon attacks53 (see Lemma 5). That is, Alice assigns
successful measurement outcomes in the basis D0 (D1) with unit
probability for the pulses in which at least one of the detectors D0 and
D1 (D+ and D−) click and D+ and D− (D0 and D1) do not click. It is clear that
when only the detector Di clicks, Alice associates the measurement
outcome to the BB84 state ij i, for i∈ {0, 1, +, −}. However, it is not clear
how Alice should assign measurement outcomes to the cases in which
both D0 and D1 (D+ and D−) click and D+ and D− (D0 and D1) do not click.
The results of Lemma 5 are independent of how Alice assigns these
outcomes. In order to make clear this generality of the results of Lemma 5,
we have not included how these outcomes are assigned by Alice in the
definition of reporting strategy 1 in Fig. 3. Nevertheless, how these
outcomes are assigned by Alice plays a role in the error rate E, and thus
also in the degrees of correctness and unforgeability that can be
guaranteed (see Lemma 3 and Theorem 1). In our experiment, Alice
assigns a random measurement outcome associated to the state 0j i and
1j i ( þj i and �j i) when both D0 and D1 (D+ and D−) click and D+ and D−

(D0 and D1) do not click.
As mentioned above, in our experiment we obtained Alice’s error rate

E= 0.058, and deviations from the random distributions for basis and state
generation by Bob of βPB= 2.4 × 10−3 and βPS= 3.6 × 10−3, respectively.
These values were computed as we describe below.

Statistical information
In our experimental tests, the number of photon pulses transmitted from
Bob to Alice was N= 4 × 107. The number of pulses for which Alice
assigned successful measurement was n= 742,491. The obtained estima-
tion for the probability Pdet, was obtained as Pdet ¼ n

N ¼ 0:019.

The error rate E= 0.058 was computed as follows. From the n pulses that
Alice assigned as successful measurements, nsame

tu pulses were prepared by
Bob with polarization given by the qubit state ϕtuj i and were measured by
Alice in the same basis of preparation by Bob (Du ¼ f ϕtuj ig1t¼0), from
which n error

tu gave Alice the outcome opposite to the state prepared by

Bob, i.e., an error, for t, u∈ {0, 1}. We computed Etu ¼ nerrortu
nsame
tu

, for t, u∈ {0, 1}.

The estimation for the error rate E was taken as E ¼ maxfE00; E10; E01; E11g.
We obtained n same

00 ¼ 80786, n same
10 ¼ 121159, n same

01 ¼ 93618,
n same
11 ¼ 80653, n error

00 ¼ 4725, n error
10 ¼ 2250, n error

01 ¼ 1602, and
n error
11 ¼ 3851. From these values, we obtained E00= 0.058, E10= 0.019,

E01= 0.017, E11= 0.048, and E= 0.058.
Our experimentally obtained estimations βPB= 2.4 × 10−3 and βPS=

3.6 × 10−3 were obtained from the number n of pulses that Alice reported
as successfully measured. We did not use the whole number N of
transmitted pulses for these estimations, because the software integrated
into our experimental setup is configured to output data for the pulses that
produce a detection event in at least one detector. From the n= 742,491
pulses reported above, Bob produced ntu pulses in the state ϕtuj i, for t, u∈
{0, 1}. We note that n= n00+ n10+ n01+ n11. We computed βPB ¼
n00þn10

n � 1
2

�� �� and βPS ¼ max n00
n00þn10

� 1
2

��� ���; n01
n01þn11

� 1
2

��� ���n o
. We obtained n00=

185,166, n10= 187842, n01= 184251, n11= 185232, βPB= 2.4 × 10−3, and
βPS= 3.6 × 10−3.
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