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Summary

Today, drug discovery predominately focuses on the design of ligands with high selectivity
towards a specific biological target. A significant limitation in the case of multi-factorial
diseases (e.g. neurodegenerative disorders) is that effective therapy may require multi-target
drugs addressing the complexity of multi-factorial pathologies. Here, single- and multi-target
ligand design was investigated to discover novel compounds active at multiple
proteins/multiple binding sites including allosteric ligands.

Calpain-1, a challenging target, was selected to develop and evaluate computational approaches
to the discovery of novel ligands. Current selective calpain-1 inhibitors are reported to bind to
an allosteric site and their mode of action has remained elusive. To elucidate this, a structure-
based virtual screening protocol was implemented to find chemically novel compounds with

improved selectivity and a reduced side-effects profile.

To develop methods for the discovery of multi-target ligands, a multi-target design approach,
which could be beneficial in the treatment of Lung Carcinoma and Neurodegenerative diseases,
was investigated. A novel ensemble of proteins was targeted to elevate intracellular cCAMP,
deemed to be beneficial in these diseases resulting in the discovery of ligands with high binding

affinity at three targets, PDE10A, A1 and Axa receptors.

In tandem, functional activity at the Axa receptor and PDE10A was investigated, resulting in
the discovery of novel compounds, which exhibited anti-proliferative effects in lung carcinoma
cell-lines correlating with the co-expression of the two targets and increased cAMP levels.
Critically, the dynamics of one amino acid residue, Valss, was identified as a novel

conformational descriptor of Aza receptor activation.

Overall, novel single- and multi-target ligand design approaches are presented in this work,
which could be applicable to a wide range of ligand design problems, across (multi-factorial)
disease areas and target families. The findings may facilitate improved design of allosteric
calpain-1 inhibitors using the PEF(S) domain, and encourage investigating the therapeutic

benefits of dual ligands at the Axa receptor and PDE10A against lung cancer in vivo.



Table of Contents

Do - U] =] SR RRRPRR I
ACKNOWIBAGEMENTS ...ttt ettt ii
LISt OF PUDIICALIONS ...ttt v
SUMIMEBIY ...ttt h e a et e st e et e e et e ekt e ea bttt e b e e e s e e e nnbe e v
TabIE OF CONENES ...ttt vi
R 1011 (o 1 {0 o O TP U PP UPP VPP PP 1
1.1 DIUQ GISCOVEIY ...ttt ettt ettt ettt ettt ettt be e b 1
1.1.1  Tuning ligand selectivity in drug diSCOVEIY ........ccccoiiriiiiriiiiiie e 1

1.1.2  The transition from single-target to multi-target drug approach for the treatment
Of MUILI-FACIONIAl ISEASES ....vveieiiiiieee et errea e 3

1.1.3  Current status of multi-target drugs in relation to other therapeutic strategies... 3

1.1.4  Examples of clinical success of multi-target drugs encourages movement
towards multi-target ligand deSIgN...........eoiiee e 5

1.2 Rational design of Multi-target drugs........ccecereiiiee i 7
1.2.1  Existing challenges in selecting multi-target combinations in drug discovery ... 7

1.2.2  Reported Strategies for addressing the challenge in selecting the ‘right’ target

combination for multi-target ligand deSigN ..........coovuveiiiie i 8
1.2.3  Promising target combinations for multi-target drug design (focusing on
GPCRS @N0 ENZYIMES) ....vvvieiiiie ettt e e e a et e e e taa e e snaa e e snae e e s e e e snnee e 9
1.2.4 A novel multi-target combination- modulation of A; and Aza receptors and
inhibition of the enzyme PDELOA ........ccoii i 11
1.2.5  Current computational approaches for the design of multi-target drugs .......... 13
1.3 AIMS OF thiS WOTK. ... .eeiiiieiie ettt 35
2  Structure-based design of allosteric calpain-1 inhibitors populating a novel bioactivity
0L (oL PP PPRRTPR 37
P20 A [ 011 £ T [N o o PSPPSR 37
2.2 Materials and MethOUS.........cocviiiieiii s 42
2.2.1  Extraction and preparation of purchasable compounds for structure-based
virtual screening against PEF(S)........oooiiiiiiiiiiec e 42
2.2.2  Receptor Preparation Of PEF(S) .....ccoivviiiiiiiie e 42
2.2.3  Cut-off generation for compound selection from docking model .................... 42

vi



2.2.4  DOCKING ...ttt 44
2.25  Multi-Dimensional Scaling (MDS) analysis of the shortlisted compounds 1-

O S SPPRR P POPPPPRPPR 44
2.2.6  Experimental validation of the virtual screening protocol ...............ccccccvernee. 45
2.3 ReSUILS aNd DISCUSSION......uuieiiiieiiiieeiiieeesiteeesieeesteaeateeesteeeasneeeesnaeeesnaeeeanseeeannes 50
2.3.1  Structure-based virtual screening of purchasable ligands against PEF(S)........ 50
2.3.2  MDS plot shows that shortlisted PEF(S) binders occupy a novel region in
CREMICAI SPACE ...ttt 50
2.3.3  FRET based INNIDItION ASSAY .......coiiiiiieiiieiieeiie e 52
2.3.4  TNS DiSplacement ASSAY........cccouieriuiiiireiiieiieeniee ettt 56
2.3.5  Analysis of molecular docking studies of representative calpain-1 inhibitors 1
and 10, and COMPOUNIS 2-5......oiiiiiiieiiiie ettt et e e e et e e nes 57
2.3.6  Computational assessment of CNS permeability for representative calpain-1
INNIDITOIS 1 AN 10 ....eiiiiiee et e e st e e st e e st e e anseeeenes 60
2.4 CONCIUSIONS ...ttt ettt et esbb et 61

3  Structure- and ligand-based design of multi-target ligands at A1R, A2aR and PDE10A-

key proteins in Neurodegenerative dISEASES. .......uueiuureiirreiiireerireesieeeseeeesaeeesieeesaeeesaeeens 62
3.1 INEFOTUCTION ...t 62
3.2 Materials and MethoOS ..........coviiiiiieie e 65

3.2.1  Method for the selection of reference molecules for the design of multi-target
10T Va0 OSSR 65
3.2.2  Designing new multi-target ligands..........cccccovvreiiiieiiiie e 66
3.2.3  Target PrediCtion..........cciiieieiiie e 66
3.2.4  ReCeptor Preparation ...........cccveeiiieeiiiee e e seeesee e s siee et e e srae e e e e saae e 68
3.25  Ligand Preparation...........c.cocieeiiieeiiiee e ciee e see st siea et e e 68
3.2.6  Cut-off generation for compound selection from docking models................... 68
KT A B 1o To3 ([ 1o [PPSR 71
3.2.8  Substructural @NalYSIS ..........ccouviiiiieiiiee e 71
3.2.9  Experimental validation of 2-aminopyridine-3-carbonitriles as multi-target
ligands at AR, A2aR, aNd PDELOA ........oii it 72
3.3 ReSUIS aNd DISCUSSION. .......eiiiiiiiieiiiaie ettt 80
3.3.1  Design of synthetically feasible A1R/A2aR-PDE10A multi-target ligands ...... 80
3.3.2  Target prediction of the designed RECAP library.........ccccccovvviieiiiiinic i, 80

vii



3.3.3  Docking of the compounds predicted as AiR/A2aR-PDE10A multi-target

FIANGS. . . et 81
3.3.4  Substructure analysis of the compounds predicted as A1R/A2aR-PDE10A multi-
TArGET IGANGS. ... 81
3.3.5  Synthesis of novel 2-aminopyridine-3-carbonitriles...............cccooviiiiiennnnnn, 82
3.3.6  Pharmacological evaluation of novel 2-aminopyridine-3-carbonitriles............ 82
3.3.7  (SAR) Structure-activity relationship analysis...........c.cccoveiviiiniiiiiiniienen, 87
3.3.8  Compound Selectivity aSSESSIMENT .........ccivierieiiieiiieiie e 92
3.3.9  Analysis of the predicted binding modes of the synthesized 2-aminopyridine-3-
CAMDONIITIIES ...t 97
3.3.10 Computational assessment of CNS permeability ...........cccccoviiiiiiiiiiiinnnn, 100
34 CONCIUSIONS ...ttt ettt et 100
4 Structure-based identification of dual ligands at A2aR and PDE10A with anti-
proliferative effects upon lung carcinoma Cell-liNes...........ccceiiiiiiiiieiii 102
4.1 INEFOTUCTION ...t 102
4.2 Materials and MetNOUS ..........c.ccviiiiiiii s 105
4.2.1  Design approach of the dual ligands at the A2aR and PDE10A..................... 105
4.2.2  Selection of the A2aR protein crystal structure for shortlisting
triazoloquinazoline candidates as A2aR agONISS ........cccvvveiiiieiiiie e 105
4.2.3  Ligand Preparation..........ccueeiueeeiiiieeiiisessis s eee e e e e e e nae e anee e 107
4.2.4  ReCEPLOr Preparation........ccccciveeiiiieeiiieesiie e s sieessee e sie e sae e saee e snaeeanee e 107
4.2.5  Enrichment of agonists by the A2aR docking model (PDB ID: 2YDO) ........ 107
4.2.6  Cut-off generation for compound selection as candidates of A2aR agonists from
the docKing MOMEL...........oooiiiie e 108
N A T Tox {11 RSP PP 108
4.2.8  MD SIMUIBLIONS.......iiiiiiiiieiie e 109
4.2.9  Experimental validation of the virtual screening protocol..............c...ccve...e. 110
4.3 ReSUIS and DISCUSSION.......ccuuiiiiiiiaiiiie sttt 113

4.3.1  Method of selecting triazoloquinazolines as candidates of dual ligands at A2aR
AN PDELODA ... oottt ettt ettt et et e e be e te e n e e te e reenre e e e 113

4.3.2  Analysis of the predicted binding modes of representative triazoloquinazolines
36-39 shortlisted for experimental validation...............cccocviieeiiiiii e, 114

viii



4.3.3  MD simulation suggests that the conformational change of the Hiszso residue
contributes to shaping the orthosteric site pocket to favor selectivity for A2aR

10 0] 0T 51 £ PSSP TP UP P PUPTOPPPPURPRRPTR 116
4.3.4  MD Simulation analysis reveals the shift in Valgs as a requirement for receptor
activation by AoaAR TIQaNAS .........ooiiiiiiiic e 119
4.3.5  Confirmation of triazoloquinazolines as PDE10A inhibitors................c........ 122
4.3.6  Experimental validation of triazologquinazolines as A2aR agonists................ 124
4.3.7  Mammalian validation ...........ccoeiiiriiiiiecie e 127
4.3.8  Dual PDE10A inhibition and A>aR agonism is anti-proliferative in CHO-K1-
AOAR CRIIS ... 129
4.3.9  Dual PDE10A inhibition and A>aR agonism is anti-proliferative in Lung
CarCiNOMA CEII-IINES ... e 132
OO0 o] 11 (o] LRSS 141
5 Conclusions & FULUIrE WOTK..........cuueiiiieiiiie st snee e 142
=] (=] =SSR 144
N 0] 1= 0L RO OPRR USRS 172
N o] 1= 0 LDl = RO OPRRSURRSUR 173
N 0] 1= 0 |G PSS OPR USRS 174
APPENAIX D .o e e e e arra e 175
APPENAIX E .ot a e arra e 176

ix



1 Introduction

1.1 Drug discovery
1.1.1 Tuning ligand selectivity in drug discovery

A contemporary approach in drug discovery has been the design of potent ligands with high
selectivity towards a target associated with a particular disease of interest, followed by
structural optimization for drug development.[1] Generally, undesirable side effects might arise
when ligands interact with e.g. other targets, DNA, RNA, lipids, sugars, metabolites.[2]
Therefore, huge effort has been made to measure the off-target interactions that might lead to
adverse side effects such as those with ion channels[3], transporters and cytochrome P450s
(CYPs) etc.[4, 5] In addition, research has been directed to achieve family or subtype selectivity
for homologous targets binding to similar native substrates. For instance, this has been a
challenge in the kinase family (phosphotransferases), where each kinase could bind to its co-
factor ATP while transferring a phosphate group to a substrate.[6] Hence, one of the aims was
to find a ligand that could either inhibit selectively one or alternatively a group of kinases that
share a particular biochemical pathway of interest, in order to avoid the undesirable side effects
that might arise.[7] Thus, it has generally been achievable to tune the selectivity of ligands to

a subset of kinases rather than a single kinase.[8]

In practice, it is challenging to design a drug exhibiting narrow selectivity over undesirable
targets. It would be essential then, to develop an understanding of the factors driving selectivity
towards any particular target of interest, and in turn this would allow for more effective design
of ligands with the desired selectivity.[9-11] This gives rise to the need for rational approaches
to tune ligand selectivity. One of the currently existing computational approaches for designing
selective ligands is proteochemometrics (PCM) used for simultaneously modeling bioactivity
of a group of ligands against a set of related protein targets.[12] In addition, structure-based
approaches are generally employed to enhance ligand selectivity by improving the shape and
electrostatic complementarities between the ligand and the binding pocket of the protein, as

well as addressing issues such as conformational selection and the flexibility of proteins.[2]

Designing allosteric ligands which target a site specific to the protein of interest but does not
include all of, or is distinct from, the site occupied by e.g. a substrate or ligand, usually termed
the active or the orthosteric site, would be one way to approach this problem.[13] Allosteric
binding, through transmission of conformational effects, can in some cases inhibit or activate

a protein mediated mechanism.[14] For instance, Hemoglobin (Hb) is one classical example of



allostery where a protein, which is a subunit of a multi-subunit protein, contributes to regulating
the physiological properties of Hb allosterically.[14]

To illustrate this approach, one of the challenges of designing selective ligands has been
addressed in this work by selecting calpain-1, one of the dimeric calpains, as a protein target.
Calpain-1 constitutes a promising therapeutic target for many diseases e.g. in cardiovascular,
neurodegenerative and ischaemic diseases.[15, 16] Most compounds that target the active site
of calpain-1 inhibit a broad spectrum of cysteine proteases, thereby resulting in undesirable
side effects.[17] Selective calpain-1 inhibitors, such as PD150606, which included a specific
a-mercaptoacrylic acid sub-structure, were reported to bind to an allosteric site of calpain, the
penta-EF hand calcium binding domain, PEF(S), but their mode of action has remained unclear.
[18]. Here, the crystal structure of PEF(S) was used in virtual screening to discover allosteric
PEF(S) binders that populate a novel chemical space to assist in elucidating their mode of
action while having promising selectivity and a reduced side-effects profile (Figure 1).

Structure-based virtual screening Discovery of allosteric calpain-1 inhibitors with
novel structural frameworks

Vidupiprant PD150606
HO
(]
F s |
Y o o
o + N oH novel allosteric
versus SH mode of inhibition
0=$=0 O
Cl 7 N
2
novel allosteric classical allosteric
calpain-1 inhibitor calpain-1 inhibitor

Figure 1. The use of the crystal structure of the penta-EF hand calcium binding domain, PEF(S)
of calpain-1 in virtual screening to discover PEF(S) binders that populate a novel chemical
space, and elucidation of a novel allosteric mode of action with promising selectivity and a
reduced side-effects profile.



1.1.2 The transition from single-target to multi-target drug approach for the
treatment of multi-factorial diseases

The design of selective ligands[1, 2] has been proven successful for diseases with well-defined
mechanism and pathophysiology. In the case of these diseases, multi-target drugs were
undesirable and have been long associated with adverse side effects.[1, 2] In contrast, for multi-
factorial diseases, such as neurodegenerative disorders, inflammatory diseases, and cancer that
exhibit more-complex pathological mechanisms due to an ensemble of factors (e.g. genetic and
environmental) contributing to the severity of the diseases,[19-28] a single target approach
often fails to demonstrate reliable therapeutic effects.[29-32]This gives rise to the need for
multi-target drugs, which could address the complexity of multi-factorial diseases with
improved therapeutic efficacy. Additionally, they may exhibit additive or synergistic effects.
This could result then in better safety profiles in comparison to single-target drugs due to the
lower dosage requirements and improved efficacy.[33]

On this basis, multi-target drug design has emerged as a new paradigm in drug discovery, with
more research being directed towards finding novel and effective multi-target drugs
particularly for the treatment of multi-factorial diseases. In confirmation of this approach, many
marketed multi-target drugs are already available exemplifying the success of this
methodology. These drugs exhibit complex pharmacological profiles.[34] For instance, in the
case of cancer and infectious diseases, the choice of drugs active at multiple targets may be
attributed to the emergence of resistance in e.g. cancer or bacterial infection, resulting from
genetic mutations or in the case of anxiolytic drugs to the requirement to modulate multiple
receptors in the central nervous system (CNS).[35] This suggests that specifically designing

multi-target drugs is a promising approach to treat multi-factorial diseases.
1.1.3 Current status of multi-target drugs in relation to other therapeutic strategies

An analysis was conducted by Ramsay et al[35] for the US Food and Drug Administration
(FDA) of approved new molecular entities (NMEs) over the period of 2015 to 2017. This
analysis aimed to showcase the success of multi-target drugs in the clinic at that time, and was
similar to a previous analysis done by Lin et al.[36] Information about the currently approved
drugs was extracted from the DrugBank database, which includes drug target(s) and
mechanism(s) of action (MoA), and they were subdivided into single-target and multi-target
drugs. The major highlight of the analysis is shown in Figure 2, illustrating that the number of

single-target drugs (34%) is greater than that of multi-target drugs (21%); however, the latter



have constantly increased over a period of years (16%).[37] In addition, combining the 21% of
multi-target drugs and newly approved therapeutic combinations (10%), the total percentage
of the two approaches is 31%, which is approaching that of single-target drugs (34%). This
clearly reveals the rising interest in polypharmacological approaches in certain therapeutic
areas, in particular multifactorial diseases such as CNS disorders, cancer, and infectious
diseases.[35]

FDA-approved agents 2015-2017
(status September 2017)

2%

i biotech drugs
31% i diagnostics
34%
therapeutic combinations
K multi-target drugs

10% 29% single-target drugs

‘ unknown target/MOA

Figure 2. Analysis was done by Ramsay et al[35] for FDA approved new molecular entities
(NMEs) from 2015 to 2017. Information about currently approved drugs was extracted from
the DrugBank database, which includes drug target(s) and mechanism(s) of action (MoA).
They were subdivided into single-target and multi-target drugs. The major highlight of the
analysis was that despite the fact that the number of single-target small molecules (34%) is
more than that of multi-target drugs (21%), the latter has consistently increased (16%).

An alternative polypharmacological approach to multi-target drugs is combination therapy,
which uses drugs with different modes of action for the treatment of complex diseases.[34] The
percentage distribution of multi-target drugs and therapeutic combinations approved in 2015-
2017, according to the Anatomical Therapeutic Chemical (ATC) Classification System, is
depicted in Figure 3. Generally, multi-target drugs are much more widely used as compared to
combination therapies across all disease areas, in particular as anti-neoplastic agents and for

the treatment of nervous system disorders.[35]
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Figure 3. Distribution of multi-target drugs and therapeutic combinations approved in 2015—
2017 according to the Anatomical Therapeutic Chemical (ATC) Classification System reveals
that generally, multi-target drugs are much more widely used as compared to combination
therapies across all disease areas, in particular as anti-neoplastic agents and for the treatment
of nervous system disorder[35].

In fact, the use of multi-target drugs exhibiting multiple biological properties may have
advantages over combination therapies, where different challenges are encountered. The first
is coping with several drugs with different bioavailabilities, pharmacokinetic properties (PK),
and metabolism, which may not be the case when administering a single multi-target drug with
multiple modes of action on several targets into the body.[34] In addition, pre-clinical
development of a multi-target drug, which includes PK and ADMET (absorption, distribution,
metabolism, and excretion — toxicity) optimization, is similar to that of single-target drugs.
Thus the multi-target drug approach may be less complicated than combination therapies. One
major advantage is that undesirable drug—drug interactions would not be encountered in the
case of multi-target drugs.[34] Hence, from these considerations, the multi-target drug
approach may be a more efficient and cost-effective poly-pharmacological option as compared
to drug combinations. On the other hand, many challenges are encountered with multi-target

drugs, which are mentioned in section 1.2.1.

1.1.4 Examples of clinical success of multi-target drugs encourages movement towards

multi-target ligand design

The multi-target approach appears to be promising, in particular for the treatment of
neurodegenerative disorders, given their complexity and multifactorial nature.[38] For

example, rasagiline is a drug that was approved in 2006 for the treatment of neurodegenerative



diseases, and it exhibits a multi-target profile. In addition, safinamide is the first multi-target
drug approved for neurodegeneration for more than a decade.[39] It was originally developed
as an anticonvulsant agent and recently in March 2017 it was approved as an adjunctive
treatment for Parkinson’s disease due it its multi-target nature. It is thought that this drug
confers neuroprotective effects by combining monoamine oxidase-B inhibition with activity at
sodium-gated ion channels with the release of glutamate, which in turn controls motor
symptoms.[40] In addition, recently an increased number of multi-target drugs have been

developed to treat schizophrenia and major depressive disorders.[38]

For example, antagonizing three targets simultaneously, namely D, serotonin 5-HT2a and a1-
adrenergic receptors has been a common approach used for the treatment of schizophrenia.[41]
This generally aimed to improve antipsychotic efficacy and minimize adverse effects. For this
purpose, the arylpiperazine substructure was used for analogue modification in order to tune a
fine balance of receptor activities at D,, 5-HT1a and 5-HT2a. As a result, aripiprazole, was
released into the market in 2015, as the first modulator of serotonin/dopamine activity.
However, it exhibited undesirable side effects, reported to be related to its interaction with post-
synaptic D> receptors. Subsequently, brexpiprazole was approved on October 2015, as a novel
D> and 5-HT1a partial agonist. In comparison to aripiprazole, it exhibited reduced inherent
activity at D receptors and more balanced activities at 5-HT2a, 5-HT 14, and the 1B receptor
subtypes.[41] Cariprazine is also another FDA approved drug that modulates
serotonin/dopamine activity, also having an arylpiperazine substructure. It was marketed in
September 2015 for the treatment of schizophrenia and bipolar disorders. Being a partial
agonist of the D, and Ds receptors, this mode of action is novel compared to other

antipsychotics, which are D, and 5-HT.a partial agonists.[42]

Besides neurodegenerative disorders, another key multi-factorial disease where
polypharmacological approaches are the most relevant is cancer. Several proteins and pathways
contribute to the complexity of this disease, often leading to the progression of tumor
growth.[43-45] Inhibiting multiple kinases and pan-inhibitors of histone deacetylases
(HDACS) have recently been the most investigated polypharmacological approaches for cancer
treatment. For example, lenvatinib is a reversible inhibitor of multi-tyrosine kinase receptors
that simultaneously modulates their activities (vascular endothelial growth factor receptors
(VEGFR), fibroblast growth factor receptors (FGFR), RET, mast/stem cell growth factor
receptor kit (SCFR), and platelet-derived growth factor receptor (PDGFR) beta). These

receptors are associated with pathogenic angiogenesis, tumor growth, and cancer



progression.[46] In addition, due it to its multi-target activity profile, lenvatinib was approved
for the treatment of radioiodine-refractory thyroid cancers. Neratinib is another multi-tyrosine
kinase inhibitor, which is irreversible, and it targets epidermal growth factor receptor (EGFR),
and human epidermal growth factor receptor 2 (HER2), receptors that are highly expressed in
several carcinomas, and are thought responsible for its anti-tumor activity.[47]

Another common approach to multi-kinase inhibition includes dual inhibitors of cyclin-
dependent kinase (CDK) 4 and 6, which have been approved by the FDA for breast cancer
therapy e.g palbociclib, abemaciclib and ribociclib.[48] In addition, midostaurin, is a multi-
kinase inhibitor derived from the pan kinase inhibitor staurosporine. It was approved on April
2017 for the treatment of acute myeloid leukemia via the inhibition of the activities of protein
kinase C alpha (PKC alpha), VEGFR2, KIT, PDGFR and WT and/or mutant FLT3 tyrosine
kinases.[49]

In summary, there are several examples of clinically successful multi-target drugs and this
suggests that more effort towards the development of multi-target ligand design would be
beneficial. Examples such as these have inspired the implementation of multi-target ligand
design approaches documented in this work, with the objective of further exploring the

potential therapeutic benefits in multi-factorial diseases.
1.2 Rational design of multi-target drugs

1.2.1 Existing challenges in selecting multi-target combinations in drug discovery

Based on an analysis of FDA-approved new molecular entities (NMEs) from 2015 to 2017,[35]
highlighting the increasing number of marketed multi-target drugs, it appears that extending
the applicability of multi-target drugs across different therapeutic areas would allow the
discovery of more effective treatments. It remains a challenging task however, to rationally

design multi-target drugs.[50-52]

The first challenge lies in selecting the right combination of targets for a particular disease.
Despite the availability of many online resources[53-55] which can be used to identify possible
targets, target selection is often ambiguous. For this reason, it is essential to develop an in-
depth understanding of the relationships between target(s) and disease(s), the associations
between key metabolic pathways, which targets, are key, which drugs have the correct
therapeutic profile, and which diseases are druggable by this approach in the absence of

potential adverse events.[56] Moreover, it is highly beneficial to achieve additive or synergistic



effects.[57]. Hence, to achieve all these simultaneously requires the design of multi-target
compounds with a particular functional activity profile.[58]

In most cases multi-target drug design has historically been based on a fairly simple approach,
that of merging two distinct pharmacophores derived from sets of active compounds, where
each compound is initially selective towards its corresponding target, into the design of a single
compound[59-61]. Based on the degree of similarity of the starting structural frameworks of
each compound, pharmacophores could either be fused or merged. In contrast, if they are
sufficiently different, then pharmacophores could be conjugated with cleavable or non-
cleavable linkers This strategy however could result in compounds with poor properties as
drugs e.g. poor pharmacokinetics, which may not be suitable for acute or chronic diseases.[62]
The nature of the targets involved and the availability of starting frameworks are both important
parameters to be considered when generating multi-target compounds. It is also important that
each framework retain interactions with specific target (i.e. those compounds from which the
fragment was derived).[52] This is quite challenging to achieve and requires structure—activity
relationships of the starting compounds with their corresponding targets, especially if these
targets are either slightly related or completely unrelated e.g. belonging to different protein

classes.[52]

Other critical factors that need to be addressed include modulating each target to the required
degree and avoiding any off-target effects. In particular, the latter aspect is of high importance
in designing multi-target compounds against same protein family. Examples are multi-kinase
inhibitors, or those of shared functional domains and/or binding sites across target families.[52]
It is evident then that the rational design of multi-target compounds is challenging - the right
choice of target combination is key while achieving balanced activity towards each target

without any off-target activity whilst keeping drug-like properties.

1.2.2 Reported Strategies for addressing the challenge in selecting the ‘right’ target

combination for multi-target ligand design

From the literature, network graphs are one approach that can help to obtain insight into the
association of protein targets with multi-factorial diseases, and reveal a mechanism that can
explain how perturbations in cellular networks might result in certain phenotypes, including
disease. Hence, this is one approach to guide the selection of the ‘right’ combination of targets
to find therapies for complex diseases The approach is to model metabolic and signaling

pathways by mining high-throughput experimental datasets and integrating the data into



network models. This can assist in modeling outcomes of drug intervention and also in
understanding the complex interactions between multi-target drugs and their cellular targets
with the objective of explaining their efficacy and potential side effects.[63—70] A better
understanding of the mode of action of multi-target drugs can then be achieved by focusing on
the more promising targets in the disease networks where inhibition can influence the
development of disease phenotypes such as cancer progression.[63, 70—73] In addition, this
may allow better understanding of drug resistance and side effects, for example by highlighting
particular targets or how their pathways are interconnected.[74—79] The robustness of disease
networks can be used to explain the efficacy of multi-target drugs, for example by perturbing
a specific subset of nodes in the network that are key to phenotypic development. Network-
based drug discovery is therefore one approach to search for target combinations that represent
nodes in disease networks that could potentially be perturbed by multi-target drugs, enabling
the development of more effective and safer therapies.

1.2.3 Promising target combinations for multi-target drug design (focusing on GPCRs

and Enzymes)

G protein-coupled receptors (GPCRs) have been widely studied as drug targets due to their
pharmacological tractability and strong association with human pathophysiology. Around 34%
of all FDA approved drugs are GPCR targeted.[80, 81] Since GPCRs are in general druggable
receptors, GPCR targeted ligands are appealing as part of multi-target compounds. For
instance, histamine receptor antagonism was combined to cholinesterase and monoamine

oxidase inhibition in a drug for Alzheimer’s disease.[82]

However, defining the precise mode of action and mechanism can be challenging. The mode
of action of GPCRs can be modulated by multiple signaling pathways[83], including functional

selectivity (biased agonism).

Over the past twenty years, a significant number of receptors have been characterized by X-
ray crystallography, including membrane-bound receptors such as GPCRs. This has been made
possible by significant progress in cloning and purification of membrane-bound proteins and
advances in structure solution and refinement. In fact, the currently available data on the
structure and function of GPCRs evolved from homology modeling of related GPCRs such as
rhodopsin (class A GPCRs) and has since been expanded to include X-ray structures of GPCR
receptor subtypes belonging to other classes (B, C, D, E and F that don’t share any sequence

homology among each other).[84-86] It is challenging to desigh GPCR ligands and understand



the mechanism by which they elicit agonism or antagonism. This requires an analysis of the
complex dynamics of the system including allosteric effects. For this reason, MD simulation
and analysis of the ligand-protein complexes is a promising approach.[87] A challenging aspect
that needs to be considered in the design of GPCR ligands is the relatively large degree of
flexibility exhibited by GPCR proteins. To take this into account, this can be partially addressed
by docking methods that consider receptor flexibility (discussed in section 1.2.5.3 Docking
methodologies). To develop a better understanding of signaling in cells and in vivo, efforts
have been made to explore transient dimerization[88], heterodimers,[89] and internalized
megamers[90] with a view to assist in the design of selective ligands that would lead to various

aggregation states.

Enzymes play a key role in life processes and in pathophysiologies, and they are also key drug
targets. Approximately half of existing drugs are active against enzymes and recent studies of
the human genome suggest that enzymes constitute the majority of druggable targets. Enzymes
are therefore key targets for a number of diseases and the design of modulators of enzyme
activity e.g. inhibitors continues to be an important avenue of research in drug discovery and

development.[91]

In fact, the active site of an enzyme and if present, allosteric pockets, may be suited for
interactions with drug-like inhibitors. In comparison to GPCRs, it is often more straightforward
to design inhibitors that compete with the native substrate (competitive inhibitors). Hence,
targeting an enzyme active site is generally seen as an attractive approach in drug design. This
is assisted by availability of many enzyme crystal structures. However, focusing on
reversible/competitive active site inhibitors may not be the best approach in all cases. For
example, effective drugs could be non-competitive or could be irreversible inhibitors of

enzyme activity[91, 92].

An important measure of enzyme activity in the presence of an inhibitor is to study its kinetics.
Two frequently used tools for the evaluation of binding to purified enzymes are surface
plasmon resonance and isothermal titration calorimetry (ITC). In contrast, in GPCRs, it is

important to measure functional effects, rather than binding.[93]

Many successful examples of multi-target ligands targeting both enzymes and GPCRs have
been reported in the literature. Examples include dual ligands of Cannabinoid CB1R inverse
agonists and acetylcholine (AChE) inhibitors, p-opioid receptor (MOP) agonists and nitric
oxide synthase (NOS) inhibitors for the treatment of pain, and norepinephrine (NER)
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antagonists and NOS inhibitors for the treatment of neuropathic pain.[94] Another example is
that of compounds acting as Azxa adenosine receptor antagonists and monoamine oxidase B
(MAO B) inhibitors;[95] a promising target combination for the treatment of Parkinson’s
disease. Additional examples include dual-active ligands of histamine HzR antagonists and
AChE inhibitors, which have been suggested to be beneficial in treating cognitive
disorders.[94] Given all of these examples, it would be beneficial to design multi-target ligands
that simultaneously target specific enzymes and receptors as this may produce improved

therapeutic benefit in multi-factorial diseases.[94]

1.2.4 A novel multi-target combination- modulation of A; and Aa receptors and
inhibition of the enzyme PDE10A

Cyclic-AMP (cAMP) is involved in many biological processes such as cell growth and
adhesion, neuronal signaling, immune function, and metabolism etc. As a second messenger
involved in multiple signaling pathways, in specific instances and in particular disease states,
elevation of intra-cellular cAMP concentrations has demonstrated therapeutic benefit in multi-
factorial diseases such as CNS traumas, autoimmune disease, inflammatory diseases, and
cancer.[96-98] For example, intracellular cAMP levels have been shown to have both pro-[99—
101] and anti-proliferative effects,[101-106] depending on the cancer cell type. CAMP levels
are spatially and temporally coordinated (e.g. by specifically positioned PDE4 enzymes),

creating concentration gradients within the cell to elicit specific actions and outcomes[107].

The intracellular elevation of cCAMP can be achieved by various ligands that preferentially
target single receptors, such as Bay K8644 (a calcium channel agonist), TTX (a sodium channel
antagonist) and H89 (a protein kinase A inhibitor). Other examples of compounds that elevate
CAMP include KT5720 (a protein kinase A (PKA) inhibitor), LY29400 (an inhibitor of
phosphoinositide 3-kinases (P13Ks)), PD98059 (a MAPK kinase inhibitor), tyrphostin AG490
(a tyrosine kinase inhibitor), myelin-associated inhibitors, and Forskolin.[33, 108-112]
Inhibition of phosphodiesterases also results in maintenance of elevated intracellular cAMP
concentrations; examples of known inhibitors include IBMX, a non-competitive selective
phosphodiesterase inhibitor, and rolipram, a selective phosphodiesterase-4 inhibitor.[113, 114]
Additionally, the modulation of adenosine A; and Axa receptors contribute to the elevation of
CAMP levels.[115, 116]

11



One particular enzyme of interest in this work is the phosphodiesterase 10A (PDE10A), which
plays a role in neurodegenerative,[117-119] inflammatory[120] and cancer-related
diseases.[98] Inhibition of PDE10A resulting in maintenance of elevated intracellular cAMP
concentrations was suggested to be effective in the treatment of these diseases (Figure 4A.
adapted and modified from Lee et al). Similarly, the modulation of two GPCRs the adenosine
A1 and A;a receptors (AiR and A2aR), plays an equivalent role in elevating cAMP,
demonstrating therapeutic benefits in these diseases (Figure 4B. adapted and modified from
Ham et al).[121-129] Hence, it would be informative to design ligands that would elevate
CAMP at A1R, A2aR, and PDE10A and investigate the potential therapeutic benefits of a multi-

target approach.
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Figure 4. A. The inhibition of PDE10A results in the elevation of the concentraton of CAMP
which is suggested as an effective treatment in multi-factorial diseases such as CNS traumas,
autoimmune disease, inflammatory diseases, and cancer [121-125] B. The antagonism of the
AR and the agonism of the A2aR, receptors plays an equivalent role in elevating cAMP,
demonstrating therapeutic benefits in these diseases[127, 128]. Hence, designing ligands that
elevate CAMP levels at the AiR, A2aR, and PDE10A targets would be interesting to be explored
further for their therapeutic benefits in the aforementioned diseases.[96-98]

Dual PDE inhibition and A2aR activation, via compound combinations, was synergistic in
elevating CAMP, and was observed to inhibit proliferation of multiple myeloma and diffuse
large B-cell lymphoma as well as induce apoptosis.[98] As such there is the possibility of

targeting both the A;aR and PDE10A, in particular, as an anti-proliferative strategy for the
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treatment of diseases with up regulated proliferation, such as cancer. The A2aR is expressed in
e.g. both lung adenocarcinoma and squamous cell carcinomas.[130, 131] Similarly, PDE10A
IS overexpressed in lung adenocarcinoma, and its inhibition was found to suppress
growth.[132]

To explore this approach, a computational method that combines ligand- and structure-based
techniques is presented, which employs in silico target prediction[133] and docking[134] for
the design of synthetically feasible multi-target ligands that bind to the A; and A2a receptors
and that also inhibit PDE10A. The method has been extended to consider functional effects
and aims to identify chemical series that show agreement in both ligand- and structure-based

predictions at A2aR and PDE10A, as a sufficient dual-target combination to elevate CAMP.

In this work, known PDE10A inhibitors belonging to the chemical series were identified and
shortlisted as A>aR agonists via a structure-based approach, which consisted of docking and
MD simulation. The MD simulation analysis also enabled the identification of a novel
conformational descriptor characterizing AzaR activation. This addresses one of the
outstanding challenges in designing GPCR ligands that is predicting their functional effects.
The compounds were then validated experimentally as A2aR agonists in relevant biochemical

assays, and subsequently tested for their anti-proliferative effects in lung carcinoma cell-lines.
1.2.5 Current computational approaches for the design of multi-target drugs

Rational drug design is widely practiced to find lead compounds, typically to generate leads or
optimize candidate structures for a specific target. However, there is growing interest in finding
multi-target ligands that exhibit a specific multi-target activity profile. Ligand- and structure-
based computational approaches are employed in e.g. virtual screening (Figure 5) to generate
starting structures for optimization.[57, 135, 144-148, 136-143] The use of structure- and
ligand-based techniques in drug design, is however dependent on whether there is sufficient

structural information of the drug targets/ligands of interest.

13



[ Drug Design ]

/Ligand Docking \ / \

[Similarity Search]
QM/MM
Structure-based Ligand-based
[Molecular Dynamics ] Pharmacophore
Mapping
[Fragment-based ]
design
[Target Prediction]
[ Homology Modelling ]

N

Lead Optimization

+

8 )

Drug Candidate

\

Figure 5. The use of structure- and ligand-based techniques in drug design is dependent on the
available data. Where no structural information is available, this would lead to the sole use of
ligand-based techniques, where known active compounds are used for the discovery of drug
candidates based on similarity search, pharmacophore mapping or target prediction. Where
structural information is available, e.g. a protein X-ray structure, then structure-based
techniques may be employed. Structure-based techniques include docking, molecular
dynamics, QM/MM, fragment-based design, and homology modelling etc. Both approaches
can me employed in combination where data is available.

14



Ligand-based techniques

In the case where no structural information is available this would lead to the use of ligand-
based techniques, where known active compounds are used for the discovery of similar and
more suitable drug candidates (e.g. better pharmacokinetics or higher potency). The most
commonly used ligand-based techniques are similarity search, pharmacophore mapping and
target prediction. Similarity-based or fingerprint-based approaches select novel compounds on
the basis of their chemical and physical similarity to known compounds with activity at the
target of interest, implementing the theory that structurally similar molecules tend to have
similar binding properties.[147] Quantitative structure—activity relationship (QSAR) models
can be used to find a relationship between structures of molecules and their target
response.[144] Pharmacophore mapping relies on a geometric molecular framework defining
the fundamental features accounting for the bioactivity of a compound. Pharmacophore models
generally employ key functional groups at defined locations for active ligands binding to the
target of interest.[149] One of the pioneering pharmacophore modeling techniques was the

active analog approach described by Marshall et al.[150]
Structure-based techniques

In cases where structural information is available for the targets of interest, then structure-based
techniques may be employed either alone or combined with ligand-based techniques. The
Protein Data Bank (PDB)[151] constitutes the biggest depository of protein structures
determined by X-ray crystallography and NMR techniques and generally serves as the basis
for most structure-based drug discovery projects. Structure-based techniques include docking,
which predicts the preferred orientation of a compound to form a stable complex with a
particular target of interest and a scoring scheme that can be used to rank structures, and binding
solutions. In addition, molecular dynamics simulations describe the dynamics of proteins by
simulating motion according to Newtonian mechanics.[144, 152] Furthermore, quantum and
molecular mechanical (QM/MM) based methods may be employed to determine energetics of
binding, reaction coordinates or to optimize the active site placement of ligands.[153] These
methods are however very time consuming. Other structure-based methods include fragment-
based design, which attempts to identify fragments (low molecular weight compounds) as weak
binders to the target of interest that are subject to fragment growing, which adds additional
fragments or functional groups to optimize interactions with the binding site. Fragment linking

is an alternative approach to link fragments to adjacent sites of a protein target to increase
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binding affinity. The objective is e.g. to generate leads with high affinity and selectivity.[154]
In the case where the structure of the protein target of interest is not yet solved, homology
modeling might be required. Homology modeling is used to build a model for the protein

structure by the use of a structural template protein (homologous) of similar sequence.[144]
1.2.5.1 Virtual Screening in multi-target ligand design

Virtual screening (VS) is an inexpensive computational approach with an essential role in drug
discovery assisting expensive experimental high throughput screening to optimize compound
screening and improve hit discovery.[148] Both ligand-based (LB-) and structure-based (SB-)
techniques can be implemented in VS. In fact, the application of SB-VS has been successful
across various protein targets in drug discovery.[148] For example, potent inhibitors of Hsp90
(heat shock protein 90), a key therapeutic target in cancer, were discovered by applying SB-
VS of several hundred thousands of compounds from the 1.62M compound rCat database [155]
against Hsp90. Another example involves the discovery of novel series, 1-(N-substituted
piperidin-4-yl) benzimidazolones, by using the homology model of the M1 acetylcholine
receptor (MAChR) derived from the crystal structure of bovine rhodopsin.[148] In addition,
the SB-VS protocol devised by Jaiteh et al led to the discovery of dual-target ligands at the Aza
adenosine receptor (A2aR) and monoamine oxidase B (MAO-B), a polypharmacological
profile relevant for Parkinson's disease. Similarly, compounds discovered by LB-VS and 3D-
QSAR analysis, were successful in inhibiting MAO-A, MAO-B, AChE, and BuChE.[156]
Hence, in many instances, the use of SB-VS and LB-VS have been successful in providing new

avenues for drug discovery against multi-factorial diseases.[95]

Besides the separate application of LB-VS and SB-VS in drug discovery, the combination of
both could also be implemented. For instance, Lepailleur et al discovered benzo[h]-[1,6]
naphthyridine ligands as dual HsR (Transcriptional elongation factor) antagonists/5-HT4R
(Serotonin 4 receptor) agonists by applying a combination of pharmacophore-based virtual
screening, similarity based clustering methods, and molecular docking.[157] Binding
experiments confirmed the affinities of the selected ligands towards Hz and 5-HT receptors.
In addition, fragments that exhibited dual activity against B-secretasel (BACE-1) and glycogen
synthase kinase 3B (GSK-3P) protein targets, two structurally unrelated enzymes associated
with the onset of Alzheimer’s disease, were identified by a combined SB-VS and LB-VS
protocol developed by Bottegoni et al.[136] Also Butini et al reported their combined SB-VS
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and LB-VS of multi-target ligands at the dopamine, serotonin 5-HT1a and 5-HT2a receptors,
which are key proteins in neurological disorders.[158]

Hence, VS is a cheaper and faster method than HTS, which could be used for screening large
in silico libraries, and could be combined with HTS as a prior step. In addition, VS allows the
investigation of totally novel compounds that have neither been synthesized nor purchased.
However, it cannot completely replace HTS that experimentally tests the activities of hundreds
to thousands of compounds against a particular protein target of interest, which is a
fundamental step in drug discovery.

In this work, SB-VS is employed both separately and in combination with LB-VS. An
important consideration in VS is to shortlist a list of candidates that are synthetically feasible,
for this reason RECAP (Retrosynthetic Combinatorial Analysis Procedure) has been
employed.[159, 160] Ligand-based approaches are used in combination with structure-based
approaches, and in particular target prediction is employed to find compound series that show
agreement with the predictions of multi-target ligands at the AiR, A2aR, and PDE10A via target
prediction and docking. A comprehensive description of the ligand-based techniques employed
is included in section 1.2.5.2. In addition, structure-based approaches, in particular molecular
docking and molecular dynamics simulations, which are used in designing allosteric calpain-1
inhibitors and multi-targeted ligands that elevate intracellular cCAMP are discussed extensively

in sections 1.2.5.3 and 1.2.5.4 respectively.
1.2.5.2 LB-VS —target prediction

In general, ligand-based approaches are based on the principle of chemical similarity, where
similar compounds are predicted to exhibit similar biological properties. Similarity searching
for ligand-based in silico target prediction has been widely practiced. It is a popular approach
that can predict whether candidate compounds are active against a particular target of
interest[161] based on their molecular similarity to known bioactives reported in
chemogenomic databases.[162, 163] Target prediction tools may be employed for this purpose.
For instance, SwissTargetPrediction is a web server that implements 2D and 3D compound
descriptors to predict whether test compounds are active (against a particular target) based on
the similarity of the descriptors to those of known active compounds against the same protein
target.[164] In addition, PIDGIN 1.0 (Prediction including Inactivity) is a tool that uses ECFP
4 circular Morgan fingerprints trained on ChEMBL actives and PubChem inactives to predict

the activity of the query compounds, and it has been later updated to its newer version (PIDGIN
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2.0).[133, 165] Another tool for target prediction, which accounts for the polypharmacological
profile of the query compounds, is PolyPharmacology Browser (PPB). PPB is a web-based
platform that searches for nearest neighbors to predict the multi-activity profile of small
molecules using ten different fingerprints accounting for composition, substructures, molecular

shape and pharmacophores.[166]

In this work, AiR, A2aR, and PDE10A were the protein targets of interest for the investigation
of novel multi-target ligand design approaches. Target prediction using PIDGIN 1.0 was
employed to find compound series that show agreement between target predictions and docking
focusing on multi-target ligands at these targets. The series found by this method were
synthesized and then experimentally validated as multi-target ligands in relevant biochemical

assays.

PIDGIN 1.0 uses Naive Bayes (NB) classifiers, which are probabilistic models implementing
Bayes' theorem and assuming independence between the features used. This family of
algorithms has been extensively used for bioactivity prediction, due to their rapid training and
prediction times, as well as their insensitivity to noise.[167] Other example of a multi-class
Naive Bayes classification algorithm includes one that has been trained by Nidhi et al[168] on
data composed of over 960 target proteins extracted from the ‘World Of Molecular
BioAcTivity” (WOMBAT).[169] Another example was developed by Koutsoukas et al,[170]
for predicting structure activity relationships (SARs) of orphan compounds. This employed
either a Laplacian-modified Naive Bayes classifier or a Parzen-Rosenblatt Window (PRW)
learning algorithm. The algorithm was trained on data from the ChEMBL14 database,[171]

consisting of more than 155,000 ligand-protein pairs of 894 different human protein targets.

Given that these methods only consider the structure of the compound without taking into
account that of the protein target, this may limit their predictivity. Hence, it would be best if
ligand-based approaches are combined with structure-based techniques, which has been done
here. This combination of techniques might provide a more complete picture of drug-target
interactions, and it is expected to considerably increase confidence in the predictions being

made, which would potentially yield a higher rate of success for rational drug design.[172]
1.2.5.3 SB-VS-Molecular Docking

Molecular docking is often used to predict the interactions between small molecules and protein
targets, along with their optimum poses and conformations when fitting the protein-binding

site as well as providing an estimate of the stability of the ligand—protein complexes formed.
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Commonly used docking software include Glide[134], GOLD[173], DIVALI[174],
DARWIN[175], CDOCKER[176], and AutoDock.[177] Docking is more efficient when the
binding site of the protein target is experimentally determined by X-ray crystallography and
available in the protein data bank (PDB). However, in the case where it is not known,
information about the sites could be obtained by comparing them with a family of proteins of
similar function, co-crystallized with other ligands. When nothing is known about the binding
site, programs such as GRID[178, 179], POCKET[180], SurfNet[181, 182], PASS[183] and
MMC[184] may be employed to predict potential binding pockets within proteins. In the case
where docking is performed without knowledge of the binding site, this would be referred to
as blind docking.[185]

Furthermore, it is important to find the most stable binding mode of a ligand by optimizing its
geometry while docked to the protein target; hence, objective functions (e.g. molecular
mechanics) are calculated and used to optimize docking. In addition, several sampling
algorithms have been developed to estimate binding affinity using scoring functions, often used
for ranking generated conformations or ranking series of binders. This help avoid generating
all the possible conformations that would be too computationally expensive when taking into
account all the translational, rotational, and conformational degrees of freedom of both the

ligand and protein.[35]
Various docking algorithms

Matching algorithms (MA)[186-188] use molecular shape to map ligands into the active site
of a protein taking into account chemical information and shape features. For this purpose,
calculations are performed that generate a distance matrix, which aids in the search for ligand
conformations that lead to the best match between pharmacophores representing the protein
and the ligand atoms. In addition, chemical properties such as hydrogen-bond donors and
acceptors are generally considered in these matching algorithms. These algorithms are used
since they are fast, they enrich active compounds from large libraries,[189] and they are
implemented in programs such as DOCK[190], FLOG[191], LibDock[192] and
SANDOCK.[193]

Incremental construction (IC) methods[194-196] place the ligand into the binding site in a
fragmental and incremental manner, where the ligand is fragmented into many parts often by
breaking rotatable bonds. Subsequently one of these fragments is chosen to be docked first into

the active site, usually the largest fragment or one with a major functional role in contributing
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in the interactions with the protein (e.g. a warhead structure). Then the remaining fragments
are added incrementally, generating various orientations and conformations. This requires
some flexibility of the docked ligands, until their optimum fit is obtained in the active site.
These methods may be used in programs such as Glide,[134] DOCK 4.0,[197] FlexX,[194]
Hammerhead,[198] SLIDE[199] and eHITS[200].

Multiple Copy Simultaneous Search (MCSS)[201, 202] and LUDI[203] are also fragment-
based methods that are used for the de novo design of ligands. They rely on modifying known
ligands to improve their binding to the protein target. Around 1,000 to 5,000 copies of
functional groups are generated by the MCSS method and randomly positioned into the binding
site, while concurrently exposed to energy minimization and/or quenched molecular dynamics
within the force field of the protein. The copies are only allowed to interact with the proteins
but not among themselves. Then, based on the interaction energies, a group of energetically
favorable binding sites and orientations for the functional groups is identified, enabling
mapping the whole binding site using different functional groups. By linking those different
functional groups, new candidate compounds may be designed that optimally fit the mapped

binding site (at least, optimum in terms of the fitness function employed).

LUDI is a computer program which is focused on the interaction sites between the ligand and
protein that are treated as distinct locations in space suitable for hydrogen bonding or
hydrophobic interactions.[203] These interaction sites may be generated either by using rules
or searching the database. Fragments are then placed into the interaction site and assessed by

their distance to this site; by joining all the fitted fragments this would form a single compound.

Monte Carlo (MC) algorithms belong to stochastic methods, whereby it is be possible to
generate many ligand poses[204, 205] via bond rotation, rigid-body translation or rotation.
Based on their interactions (and internal) energies, the ligand conformations are assessed, and
if they pass, are modified to produce subsequent conformations. This is performed iteratively
until a pre-defined quantity of conformations is assembled, allowing ligands to overcome
energy barriers on the potential energy surface. Monte Carlo methods may be used in programs
such as Glide, AutoDock (earlier version)[206], ICM[207], QXP[208] and Affinity
(Accelrys)[209].

Genetic algorithms (GAs) are another class of well-known stochastic methods.[177, 210, 211]
The idea for GAs originates from Darwin’s theory of evolution. In computer-based

implementations, binary strings, which can be termed genes, are used to encode the degrees of
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freedom of the ligands. The three main genetic operators in GAs are mutation, crossover, and
selection. Random changes to the genes are made during mutations. Genes are exchanged
between chromosomes during crossover (this is in fact the most effective optimization process).
The fittest combinations are generally selected for further optimization by using a scoring
function. New ligand structures result when genetic operators modify the genes. Scoring
functions are used to assess the new structures, and those that are above a selection threshold
may be used for the next generation. GAs are used in programs such as AutoDock[177],
GOLDI[173], DIVALI[174] and DARWIN[175]. There are differences in the selection

algorithms employed e.g. using Darwinian (Gold) or Lamarkian (AutoDock) evolution.

In this work, Glide is employed for protein-ligand docking in structure-based approaches for
the design of allosteric calpian-1 inhibitors and multi-target ligands at A:R, A2aR, and
PDE10A. Glide’s docking algorithm is represented as a docking “funnel” in Figure 6. It utilizes
a hierarchical search protocol and estimates a full systematic search over ligand positions,
orientations, and conformations in the receptor site. Then minimization of the poses selected
by the initial screening is performed using the OPLS-AA force field in combination with a
distance-dependent dielectric model. Subsequently, the lowest-energy poses are subject to a
Monte Carlo procedure to examine nearby torsional minima. Finally, the total Coulomb-van
der Waals energy (Ecvdw), with the Coulomb energy screened by a distance-dependent
dielectric constant determines the final ligand pose that is selected. The scoring function,
GlideScore, which is used to calculate binding affinity, is an extension of an empirically based

scoring function, Chem-Score function of Eldridge et al.[134]

Ligand Conformations
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Figure 6. Glide docking “funnel” shows the Glide docking hierarchy. [134]
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Scoring functions

Given that binding of ligands to their targets depends on their molecular interactions,
physicochemical properties, as well as their conformations, scoring functions including these
properties have been used in docking. Scoring functions are used to select the right poses of
the ligands in a realistic time frame, where many assumptions and simplifications are
made.[212] They are classified into three categories: force-field-based, empirical and
knowledge-based scoring functions.[212]

Force-field-based scoring functions,[213-215] are used to evaluate the binding energy by
calculating the sum of steric, electrostatic and van der Waals interactions. For electrostatic
interactions, a distance dependent dielectric term is used with a cutoff distance for inclusion of
electrostatics. A Lennard-Jones potential is used to describe the van der Waals interactions.
Implemented force-field-based scoring functions have limitations e.g. the cut-off distance
employed to deal with the potentially large number of electrostatic and van der Waals
interactions decreases the accuracy of computing interaction energies over longer distances.

Furthermore, entropy contributions, polarizability and solvation effects could be accounted for
in extensions of force-field-based scoring functions. These extensions are offered in software
such as DOCK]216] GOLD and AutoDock, with differences in implementation in each
program. Moreover, refinement of the docking results with these functions can be combined
with other techniques, such as linear interaction energy[217] and free-energy perturbation
methods (FEP),[218] which could potentially improve the accuracy of binding energy

prediction.

In the empirical scoring functions[219-223] the binding energy is divided into a number of
components: hydrogen bonding, ionic interactions, hydrophobic effects and binding entropy.
A final score is obtained by adding each energy component multiplied by a coefficient that is
derived from regression analysis fitted to known ligand-protein complexes with reported

binding affinities.

Despite the simplicity of the energy terms that are evaluated in the empirical scoring functions,
it is not clear whether their applicability domain is suited for ligand-protein complexes that are
not included in the training set. The applicability domain is the region in the ligand-protein
chemical activity space where the scoring functions would be reliable. Moreover, various
software packages treat each term in the empirical scoring functions differently. Examples of

programs using empirical scoring functions include LUDI, PLP,[224] and ChemScore.[225]
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In knowledge-based scoring functions,[226-231] crystal structures of ligand-protein
complexes are used to perform statistical analysis of the ligand-protein distances and/or the
frequencies of their interatomic contacts. It is assumed in these analysis that the higher the
frequencies of the protein-ligand interactions the more they are favorable. The distributions of
frequencies are transformed into pairwise atom-type potentials, where a score is computed
according to a cut-off that considers favored interactions and penalizes repulsive ones.

There are many advantages to knowledge-based functions, such as their simplicity and speed,
which allows their use for screening large compound databases. Also these functions may be
used in modelling uncommon interactions (if data were available and included in the scoring
function generation) such as cation-n and halogen- w-aromatic interactions, which might not be
accounted for in empirical approaches. Some interactions, in particular those involving metals
or halogens, are still not well represented in training sets that might involve insufficient number
of crystal structures, which limits their applicability domains. Examples of knowledge-based
functions include PMF,[226] DrugScore,[232] SM0G[233] and Bleep[227] that vary in their
distance cut-offs, size of training sets, the form of their energy functions, definition of atom

types, and training data etc.

Consensus scoring[234] has been used to evaluate docking and scoring by combining the
results of several scoring functions. When the pose of a candidate ligand scores well across
different scoring functions, it could be more confidently predicted to be a potential binder. This
approach has been seen to improve enrichment and prediction of bound conformations and
poses in VS.[235] However, accurate binding energy prediction is a severe challenge. There
are some (named) scoring functions that are already a combination of other scoring functions
e.g. CScore[236] is an example that combines DOCK, ChemScore, PMF, GOLD, and FlexX

scoring functions.

Scoring functions in general share a common problem in affinity prediction can be attributed
to limitations in considering solvation effects, entropy, kinetics, heat capacity and the generally
inaccurate nature of empirical scoring. An approach to move towards addressing this could be
the use of physics-based scoring functions such as MM-PB/SA and MM-GB/SA (MM stands
for molecular mechanics, PB and GB for Poisson-Boltzmann and Generalized Born,
respectively, SA for solvent-accessible surface area). Some studies suggested improved results
obtained with MM-PB/SA[237, 238] or MM-GB/SA.[239] Nonetheless, it was reported that

the GB/SA model poorly estimated protein desolvation in certain systems. In contrast, better

23



results were obtained when WaterMap was incorporated into the MM-GB/SA method instead
of GB/SA protein desolvation.[240] Many comparative studies for various methods of affinity
evaluation for protein-ligand complexes have been reported in the literature. One suggestion
was that PDLD/S-LRA/B (protein dipoles Langevin dipoles linear response approximation)
might be a good option for use in the final stages of VS. As for PB/SA, it might not provide an
accurate estimate of binding energies because of its erroneous estimation of entropies and its
mishandling of electrostatic energies.[241] Recent work on Deep Learning and artificial

intelligence (A.l.) methodologies claim to improve scoring performance.[242, 243]

In this work, GlideScore is the scoring function used in shortlisting ligands from the structure-
based design approaches. It is an extension and a modification of ChemScore, an empirical
scoring function.[134] The equations of ChemScore and GlideScore functions are discussed
further in Appendix A.

Two forms of GlideScore may be employed, GlideScore 2.5 SP, Standard-Precision Glide and
GlideScore 2.5 XP Extra-Precision Glide.[134] The GlideScore 2.5 SP is a “softer”, more
lenient function, which predicts ligands to bind to the protein target of interest with reasonable
affinities despite the imperfections in their poses. Thus, this GlideScore version would be more
convenient for screening databases to minimize as much as possible false negatives. In contrast,
GlideScore 2.5 XP is a stricter function that applies more stringent penalties for poses violating
e.g. atom pair interactions. This version would then minimize false positives, which could be
useful for lead optimization or for the selection of the final top candidates by VS.[134] In this
work, the choice of SP or XP parameters in docking has been deduced from experiments
performed on known actives and inactives for each of the protein targets considered, allowing

for the maximum separation between their docking score distributions.
Docking methodologies

Rigid ligand and rigid receptor docking is one type of docking, where both the ligand and
receptor are kept rigid, by limiting their space to three translational and three rotational degrees
of freedom. This method can account for the ligand flexibility by a pre-computed set of ligand
conformations, or by enabling some degree of atom-atom overlap between the protein and
ligand. It has been used in programs such as DOCK, FLOG, Glide and some protein-protein
docking programs, such as FTDOCK.[244]

The first automated procedure for ligand-protein docking was DOCK, and it has been

constantly improved. In this program, the ligand and receptor are treated as sets of spheres that
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could be overlaid using a clique detection procedure.[245] And the scoring of the ligand-
protein complexes is done according to some criteria such as pharmacophore similarity,
chemical complementarity, or steric fit, where geometrical and chemical matching algorithms

are implemented.

Flexible ligand and rigid receptor docking is another type of docking that could be used for
ligand-receptor systems behaving within the induced fit paradigm. Usually it would be better
to account for the flexibility of the ligand and the receptor, since both change conformation on
association, and in particular in the cases where the receptor is highly flexible. However,
sometimes a compromise between accuracy and computational time has to be made where it
would be more feasible to keep the receptor rigid and the ligand more flexible during docking.
This method is implemented in many docking programs such as AutoDock, FlexX, and Glide
etc.[246, 247]

Flexible ligand and flexible receptor docking is a third type of docking. As suggested by the
literature, the flexibility of proteins is affected by ligand binding (induced fit);[248] however,
it would be very challenging to account for receptor flexibility in docking alone. MD
simulations could better account for protein flexibility by modeling most of the possible
degrees of freedom of ligand-receptor complexes. Yet, sometimes due to the high
computational expense of MD and inadequate sampling, this method might not be suitable for

screening large chemical databases.

Furthermore, various theoretical models - conformer selection, conformational induction, and
historic induced fit, have been proposed to account for flexible ligand-protein binding. When
a ligand binds selectively to a favorable protein conformation over a number of possible protein
conformations, this is referred to as conformer selection. As in the case of conformational
induction, the ligand transforms the protein’s conformation upon binding from what was in the

unbound state.[174]

“Soft-docking” is a method used to account for receptor flexibility[249] by allowing for some
atom-atom overlap between the ligand and the receptor via modifying the van der Waals
repulsion energy term in the scoring function used. Examples where this method is
implemented include the LJ 8-4 potential in GOLD and the smooth potential in AutoDock 3.0.
Given that the receptor coordinates are fixed in this method, and it simply relies on modifying
the van der Waals parameters, this optimizes its computational efficiency, though it might

result in inadequate flexibility.
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Using rotamer libraries is another method for modeling receptor flexibility.[250, 251] These
libraries consist of side-chain conformations derived from statistical analysis of structural
experimental data. Employing this method offers relatively quick sampling, and it avoids
minimization barriers. Coupled with biased probability methodology,[207] and Monte Carlo
search of ligand conformations, rotamer libraries are used in the ICM (Internal Coordinates

Mechanics) program.[207]

Additionally, in order to account for side chain flexibility, AutoDock 4 adopts a simultaneous
sampling method,[252] where users can select several side chains of the receptor to be sampled.
As for the rest of the receptor it is dealt with as rigid during sampling with an energy grid map.
Using a combination of protein conformations, utilizing the theory of conformer selection,
would be another way to account for receptor flexibility.[152, 253] Ligands may be separately
docked to each of the rigid protein conformations, in order to merge the results depending on
the method chosen.[254] This method was first used in DOCK, where it produces an averaged
potential energy grid for a combination of protein conformations.[152] Also in other programs
such as FlexE several crystal structures of a particular protein are used, merging analogous
parts and marking the dissimilar ones as different parts to be considered as alternatives. Protein
conformations are sampled in a combinatorial manner during the incremental construction of
a ligand, where the best scoring is selected based on the comparison between the ligand and its

alternative.

Hybrid docking is another approach used for modelling receptor flexibility. This method is
implemented in Glide, and uses a set of hierarchical filters in the search for possible ligand
poses and orientations within the receptor-binding site. As for ligand flexibility it may be
accounted for by performing a thorough search of the ligand torsion energies, based on which
ligand conformations are selected with a soft potential for docking into the receptor binding
sites. Subsequently, to further model receptor flexibility rotamer exploration may be employed.
For instance, IFREDA[254] accounts for receptor flexibility by employing a hybrid method
that combines soft potentials and multiple receptor conformations. As for other programs like
QXP and Affinity, a Monte Carlo search of ligand conformations may be done accompanied
by a minimization step, where the user defines parts of the protein that are allowed to move to
avoid clashes between the ligand and receptor. In addition, flexibility may be incorporated with
SLIDE by removing clashes through directed single bond rotation of either the side chains of
the protein or the ligand. In order to model induced-fit complementarities between the ligand

and protein, an optimization approach based on the mean-field theory may be applied.
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All of the methods mentioned either deal with the side chain or the full receptor flexibility.
However, sometimes loops constituting the active sites of several enzyme families such as
Bromodomains,[255, 256] contribute a major role in ligand binding, and undergo dramatic
conformational changes while keeping the other parts of the receptor unchanged. In this case,
methods that account for side chain and full receptor flexibility fail to deal with loop flexibility.
Local Move Monte Carlo (LMMC) loop sampling method could be used in this case. This
method relies on sampling ligand conformations within loop-containing active sites. It is the
torsion angles resulting from side chain movements as well as the motion of the loop backbones
that generates the allowed loop conformations. A grid-based force field that represents the
protein environment and solvation effects was developed to minimize the computational costs

for the evaluation of energy in these calculations.[257, 258]

In this work, the flexible ligand and rigid receptor docking methodology in Glide is employed
for the structure-based design of allosteric calpain-1 inhibitors and multi-target ligands at A:R,
A2aR, and PDE10A. This docking methodology has been selected since all the protein targets

of interest are fairly rigid as assessed by thermal stabilities (B factors)[259] in Glide.
1.2.5.4 SB-VS-Molecular Dynamics Simulations

Molecular dynamics (MD) is extensively used in molecular modelling. MD can account for the
flexibility of the docked ligand-protein structures by moving each atom separately in the field
of the other atoms in order to rationalize or even predict experimental behavior of the system.
[260-262] MD is often used as a sampling technique to explore as many configurations as
possible, which allows for the identification of low energy configurations or the calculation of
the system’s equilibrium or dynamic properties. It may be used to generate trajectories to study
the system’s kinetics e.g. folding of a protein.[263] Programs such AMBER[264] and

Desmond[265] are available to perform MD simulations.

First, a structure of the ligand-protein complex is prepared, then mathematical equations
(Equations 1-3)[263] are used to estimate the forces acting upon each atom of the system
(molecular mechanics (MM)). The trajectories of the atoms are determined by numerically

solving Newton's equations of motion.

MD is an efficient method, which although relatively fast (compared to QM), enables
consideration of the physics of biomolecular systems with an approximation that neglects the
quantum effects. This is the Born-Oppenheimer approximation, where each particle in the

system, whether a single atom or a rigid set of atoms, is treated as a point mass i.e. only the

27



nuclear displacements need to be considered, and not the quantum mechanical effects of the

motions of the electrons.[266]

The relationship between the velocity of an atom i, and its momentum, pi, with a mass mi, and

a position indicated by the 3-dimensional vector ri, is illustrated in Equation 1.

ari _ pi -
Ty (Equation 1)

Equation 2 shows the net force, Fi, exerted on the atom i by the remainder of the system as
the negative gradient of the potential energy function in relation to its position.

Fi = —j—;’i (Equation 2)

Equation 3 is the Newtonian equation of motion for atom i.

% = F; (Equation 3)

In an MD system, the position and the velocity of each particle is recorded and Equations 1-3
are iteratively and simultaneously solved over short time steps, whereby the system’s
deterministic trajectory is computed. Given the discrete nature of the calculations, the Verlet

algorithm[267] is employed as a correction. See Appendix B.

The process is repeated iteratively as the simulation time progresses. An important
consideration is that the time step has to be substantially shorter than the motions of the highest
frequencies, which are the C-H stretches. Otherwise simulations might be inaccurate and
deviations from the standard bond lengths might occur resulting in high forces and velocities
that could lead to the “explosion” of the system. The standard time step is 1 fs, in order to
increase the time, constraint algorithms are usually applied. The SHAKE algorithm[268] is
often implemented and constrains the X-H bond lengths, eliminating the fastest motions, which
allows increased time steps to 1.4 fs. The LINCS[269] and M-SHAKE[270] algorithms may
further extend the time step to 2 fs by constraining all bond lengths. It has been reported that it
would be possible to increase the time step further to 5 fs for instance, in the case where there

are no explicit hydrogen atoms in a system using the LINCS algorithm.[271]

An important consideration in any MD is the choice of the system ensemble[272] that has to
be computed taking into account the nature of the simulation that is being performed. The
factors constituting the simulation are the conservation of each of: matter (N), volume (V) or
pressure (P), and temperature (T) or Energy (E). A canonical ensemble (NVT) is used in the

simulations. In general, the ensemble used is the Isothermal-lsobaric (NPT), since biological
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systems are normally maintained at constant pressure conditions with little change in
temperature. In both types of ensembles a thermostat e.g. Berendsen[273] or Nose Hoover, is
used to keep a constant temperature by adding or removing energy from an isothermal bath. In
the case of the NPT ensemble, a barostat[274] is required e.g. Berendsen or Parrinello-Rahman

to sustain a constant pressure.

Periodic boundary conditions (PBC)[275] are employed in most biomolecular simulations in
order to avoid artefacts at the edge of the simulation box. By applying PBC, leaving one face
of the system (e.g. in a cubic system) would take the particle to the “opposite” side of the
system, which can e.g. be implemented as a cube, octahedron etc. PBC better accounts for an
‘infinite’ system, though it also exhibits artefacts arising from the interactions of the molecules
with themselves in small systems, or interacting twice (in both sides of the box for example)
with other molecules in somewhat larger systems. Hence, to ensure the best performance of
PBC, the sizes of the system should be substantially larger than the interaction cut-off

distances.

Reproducing realistic motions of atoms requires all the necessary potential functions and
parameters, optimized to be self-consistent, and this is termed a force field.[263] A force field
generally employs a set of well-defined equations for bonding and non-bonding interactions,
which contain harmonic potentials for bond lengths, bond angles, torsion angles and associated
force constants, pair-wise calculated van der Waals and Coulombic functions with associated
parameters and electrostatic terms.[276] Depending on the equations used and the parameters
incorporated into them, which are determined for the systems of interest, this would determine
which force field is selected for a particular problem. Commonly used force fields in Biological
MD simulations are AMBER, CHARMM,[262] GROMOQOS,[277] and OPLS3,[278] which are
parameterized differently.[279] In some force fields, the parameters are based on experimental
data and quantum mechanics calculations, with assumptions and approximations implicit in the
force field equations and MD simulations, which often result in inaccurate “macroscopic”
results. In other force fields each parameter could be virtually meaningless by its own, but
rather all together they would result in simulations that are in agreement with experimental
observations. In general, the latter types of force fields perform better in the systems that they
are parameterized to work in, but poorly in systems that fall outside the scope of
parameterization, which is often attributed to over-fitting. The majority of force fields lie
between the two types by primarily using parameters derived from theory and experiments,

which are then subject to some modifications in order to improve the simulations.[276]
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There are many challenges in terms of computational costs that are encountered in large-scale
simulations with non-bonding interactions, since every atom has to interact with every another
atom. Also in the case where PBC is used, atoms might interact with themselves, which might
result in infinite interactions. One of the easiest ways to solve these issues is to use a cut-off
distance, beyond which no interactions would be calculated. For instance, a cut-off of 1.0-1.5
nm is suitable for van der Waals interactions but not the long-range electrostatic interactions,
where large errors might result, intensified by the abrupt change at the cut-off distance from
full interaction to no interaction.[276] The commonly used techniques to account for this are:
the Reaction Field (RF),[280] which merges the electrostatic interactions into a simple field
beyond the cut-off; Ewald summation that uses Fourier transforms to sum up electrostatic
interactions to infinity over PBC; Particle Mesh Ewald (PME),[281, 282] where the summation
is done upon a mesh, which is a faster but somewhat less accurate form of the Ewald

summation.

Finally, the use of implicit atoms is one of the fundamental properties characterizing force
fields. A dielectric constant and an adequately parameterized force field may be employed to
approximate solvent molecules in order for them to be completely removed from simulations.
Though this might substantially decrease the accuracy of the simulations, an advantage is that
the computational cost is massively reduced. For instance, the implicit hydrogen atoms are
used in united atom force fields such as GROMOS[277] to reduce the computational load.
Given that the X-H bond length is short, since the van der Waals radius of the hydrogen gets
shortened by the atom it is bonded to (in the case of X=C for example) it would be possible to

approximate the —CH> and the —CHjs to a sphere that is slightly bigger than carbon itself.

In this work, Desmond[283] with the default force field OPLS3 was employed to perform MD
simulations. The choice of this force field is that it has been reported in the literature to include
much more reference data and associated parameter types in comparison to other force fields
often used for small molecules (e.g. MMFF and OPLS 2005).[278] In addition, across
different validation studies, OPLS3 appeared to exhibit higher accuracy when assessing
different conformational and solvation properties of small molecules. A detailed description of

the functional form of the OPLS3 force field is included in Appendix C.

However, one of the limitations of MD is its high computational demand for simulation of large
systems (although clearly not as high as QM). Implementations for the simulation of large

biological systems generally require many processors and a significant time to be completed.
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In addition, another disadvantage is the over-simplification of the force fields that are used to
replicate the quantum-mechanical reality of the simulated systems, in particular where
electronic effects (e.g. polarization (not generally present in most current force fields),
aromaticity, dispersion) are important. These can be significant e.g. when transition metal
atoms are involved in binding. Another limitation is the small-step progression, which makes
it difficult to surpass conformational barriers of high-energy in a realistic time-scale that might
result in inadequate sampling. Nonetheless, MD is an effective method in local optimization,
and for this reason it is beneficial to carry out MD simulations after selecting the best
conformation of the ligand/protein complex. Hence, an effective approach is to combine
molecular docking with molecular dynamics simulations to predict key molecular interactions
and dynamics upon ligand binding to protein targets. This can then be associated with potential
biological effects.[263] The described approach is implemented in this work, where docking is
followed by MD simulation analysis to find a conformational descriptor characterizing receptor

activation.

Given that e.g the A2aR is a GPCR, which is a transmembrane protein, then it is essential to
mimic its natural environment in order to correctly predict its dynamics in MD simulations.
The thickness of the cell membrane is approximately 7 nm, and it consists mostly of
phospholipids with other molecules such as glycolipids and steroids. It is amphipathic by
nature i.e. extremely apolar from the inside (mainly hydrocarbon) and polar from the outside.
The homogenous bilayer made up of an ensemble of a single phospholipid is commonly used
to simulate the membrane. It is capable of mimicking many of the physical properties of the
bi-layer despite being less structurally diverse than the real cell membrane. The use of the
homogenous bilayer of a single phospholipid avoids artefacts resulting from poor mixing or
incorrect component ratios, and simplified molecular topologies. 1-palmitoyl-2-oleoyl-
phosphatidylcholine (POPC),[284] 1-palmitoyl-2-elaidoyl-phosphatidylcholine (PEPC),[285]
1,2-dimyristoyl-phosphatidylcholine  (DMPC),[286] and 1,2-dimyristoyl-sn-glycero-3-
phosphocholine and dipalmitoylphosphatidylcholine (DPPC)[271] are the commonly used
phospholipid bilayers in the simulations of GPCRs. It has been reported in the literature that
the use of POPC allows maximum mobility and flexibility of the receptor,[287, 288]. In this
work (simulations of the A2aR) POPC has been selected to construct the membrane used in the

simulations.
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1.2.5.1 Examples of successful applications of molecular docking and MD simulations
in drug discovery

Molecular docking has been extensively used in SB-VS and has been successful in finding
novel bioactives[289, 290] For instance, when docking was combined with other
computational techniques and experiments, it has assisted in the analysis of drug metabolism
by increasing understanding of the cytochrome P450 system.[291-293] Furthermore, the
structure based design performed by Boehm et al using LUDI and CATALYST resulted in
several novel and potent DNA gyrase inhibitors, where HTS proved ineffective.[294] In
addition, Doman et al performed a comparative study for SB-VS and HTS,[295] where both
were applied to screen protein tyrosine phosphatase-1B (PTP-1B) inhibitors. The results of the
study highlight the success of SB-VS, where the hit rate was enriched by 1700-fold via docking
as compared to random screening. It has been noted however, that the hits are more diverse in

the VS and HTS, which suggests that it might be beneficial to combine both for lead discovery.

Furthermore, docking and MD simulations using the Autodock Vina program were performed
for synthesized donepezil-indolyl hybrids[156] and donepezil-pyridyl hybrids[296] against the
PDB crystal structures of four enzymes (AChE/BUChE/MAO-A/MAO-B). MD simulations
identified the most promising donepezil hybrid[297] as a good starting point for analog

modification for the design of novel multi-target ligands for the treatment of AD.

Hence, docking and molecular dynamics simulations are key tools in drug discovery, and given
all their successful implementations in pharmaceutical research, they have been employed here
in structure-based ligand design approaches. Docking is used in the structure-based design of
allosteric calpain-1 inhibitors, also it has been combined with molecular dynamics simulations
to design and rationalize the functional effects of multi-target ligands that elevate intracellular
CAMP.

1.2.5.2 Computational approaches for lead optimization and prediction of

physicochemical properties for compounds
QSAR modelling

In order to optimize the physico-chemical and biological properties of the identified lead
compounds, and to efficiently minimize experimental work, quantitative structure—activity
relationship (QSAR) modeling may be used. This approach is used to predict the effects of

changes in molecular structure upon the physico-chemical properties of compounds. For this
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purpose, representative molecular descriptors are selected as molecular features that are related
to bioactivity, and which are, based on other studies, shown to be useful in QSAR modeling,
and also have been used to assess structural similarity or diversity.[298, 299] 2D-QSAR
methods tend to require less intensive calculations and therefore these are used as preliminary
filters to screen compounds for later stages of drug development. In 3D-analyses, the usual
approach is to construct pharmacophores from the geometric disposition of key functional and
binding groups and are used to define the functional associations between the 3D-molecular

determinants and bioactivity.[299]

The results of QSAR analysis may be used to rationalize favorable molecular interactions
between the protein and the compounds of interest. For instance, the design of tacrine- and
donepezil-like multi-target ligands for the treatment of Alzheimer’s diseases constitutes an
example of the use of 3D-QSAR approaches which are successful[300, 301] However, care is
required in the use of QSAR modeling, as there are drawbacks associated with, in particular,
over-fitting the data. False connections can be drawn when there are many experimental errors
in the biological data (not uncommon in large databases)[62, 299], or there are few examples,
or very similar bioactive compounds in the training set. Hence it is vital that a QSAR analysis

is associated with an applicability domain assessment.[302]
Prediction of CNS permeability

For drugs that act centrally (CNS), it is important to understand drug partitioning across the
blood-brain barrier (BBB). This is particularly relevant in this work, as all of the ligands
designed (targeting PDE10A, A1 and Axa receptors, and calpain-1 proteins) are required to act

centrally. Hence, it would be essential to understand CNS permeability of the studied ligands.

CNS permeability is determined by several factors such as the ability to penetrate the BBB
(between the blood capillaries and brain tissue, active and passive transport and diffusion
across membranes), the extent of their distribution in the brain, and their activities at the targets.
Taking all of these aspects into account, this increases the complexity of CNS drug
discovery.[303] One important parameter to be considered is the drug unbound brain
concentration (Cu,b), which is determined by the drug concentration at the site of the target,
and how it affects the in vivo drug efficacy. Another important experimental parameter is the
receptor occupancy, which is indicative of the level of target engagement by the drug. As for
the total brain concentration (Cb), this indicates the level of nonspecific binding of the drug in

the brain.[304, 305] It would be possible then to predict the efficacy of CNS drugs by drawing
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quantitative structure-exposure relationships that relate the experimental parameters of brain
exposure to the molecular parameters characterizing drugs.[305, 306]

CNS drug efficacy and its penetration in the brain are favored by optimizing drug
physicochemical properties, in particular lipophilicity, hydrogen bonding, aqueous solubility,
pKa, and molecular weight. Transport of CNS drugs is facilitated through the BBB by moderate
lipophilicity at a physiological pH of 7.4, where cLogP and cLogD are both in the range of 2—
5.[307] Higher lipophilicity may be associated with an increase in plasma protein binding
leading to a decrease in drug solubility in the plasma, and increased metabolic and toxicity
risks.[308]

Unbound brain concentration (Cu,b) of CNS drugs is a major contributor to their in vivo drug
efficacy, which is controlled by hydrogen bonding parameters such as hydrogen bond donor
(HBD) and hydrogen bond acceptor (HBA) counts.[309] Accordingly, parameter ranges have
been determined from analysis of available data that appear to optimize exposure in the CNS.
These are to decrease the count of the HBD and HBA parameters to HBD < 3 and HBA <
7.[310] In addition, the unbound brain concentrations of CNS drugs may increase with
moderate lipophilicity (cLogP < 4) and a topological polar surface area (tPSA) range of 40—
80A2. Also, it appears that CNS drugs may exhibit a lower safety risk when the aqueous
solubility is more than 100 pM.[311]

Programs such as QikProp in the Schrddinger[312] and FAF-Drugs3[313] software may be
used to predict CNS permeability. It is still a challenging task to design CNS drugs with
optimized physicochemical properties enabling efficient brain exposure.[307, 314, 315] In
order to achieve more efficient penetration into the brain and gain enhanced efficacy, the
computational predictions require further development including further exploration of the
physicochemical properties space for available data on CNS drugs. In this work, FAF-Drug3
is employed to predict the CNS permeability of the compounds shortlisted by the various

design approaches.
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1.3 Aims of this work

In this work, single- and multi-target ligand design approaches for multi-factorial diseases were

explored.

In chapter 2, calpain-1, which constitutes a promising therapeutic target in a number of disease
areas including cardiovascular, neurodegenerative and ischaemic disease was explored. The
discovery of selective calpain-1 inhibitors has been extremely challenging due to the similarity
of its active site to a wide range of cysteine proteases[316] In this chapter, a structure-based
virtual screening protocol, which employs docking, was devised to design allosteric inhibitors
in an attempt to address the issue of selectivity of inhibitors against this enzyme.[317]
Previously, selective calpain-1 inhibitors, such as PD150606[18], which included a specific a-
mercaptoacrylic acid sub-structure (the chemical structure is depicted in Figure 7), were
reported to bind to the penta-EF hand calcium binding domain, PEF(S) as well as the active
site domain.[18] Although these are selective to calpain-1 over other cysteine proteases, their
mode of action has remained elusive.[318] The structure-based virtual screening protocol
reported here is a novel approach for the discovery of PEF(S) binders that populate a novel
chemical space. This approach aims to elucidate an allosteric mechanism of action, which may

offer improved selectivity and a reduced side-effects profile.

In chapter 3, a multi-target approach was investigated in order to find compounds, that in a
targeted fashion for a specific disease state, elevate intracellular cAMP. Specifically, the
adenosine receptor (A1R and A2aR) targeted elevation of CAMP has already been shown to be
beneficial for many multi-factorial diseases such as in CNS trauma, autoimmune diseases,
inflammatory diseases, and cancer.[96-98, 115, 116] Similarly, the elevation of intracellular
cAMP concentrations upon PDE10A inhibition was suggested to be effective in the treatment
of these diseases.[98, 117-121] Designing compounds that target this novel combination of G
protein-coupled receptors (GPCRs) and an enzyme has not been previously exploited. A
computational method that combines in silico target prediction and docking for the design of
synthetically feasible multi-target ligands, which bind to the A; and Aza receptors and inhibit
the phosphodiesterase 10A (PDE10A) enzyme is described. Ligands designed with this multi-
target combination in mind are intended as starting points for future development of multi-
target drugs. These could be beneficial in treating multi-factorial diseases (as discussed

previously), particularly in this case neurodegenerative diseases.[116, 119]
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In chapter 4, the method was extended to consider functional effects focusing on compounds,
which are simultaneously agonists at A2aR and inhibitors of PDE10A, as a dual-target
combination to elevate intracellular cAMP, and provide a proof of concept for the therapeutic
benefits that might be exhibited in lung cancer. Triazoloquinazolines were computationally
identified as a chemical series that showed agreement in both the ligand- and structure-based
predictions of binding to A2aR and PDE10A (which is described in chapter 3). For the purpose
of validating this chemical series as dual ligands at these targets, triazoloquinazolines, which
are experimentally known PDE10A inhibitors, were docked into the orthosteric site of the A2aR
crystal structure. This was performed as a virtual screening step in a structure-based approach
that aimed to identify A;aR agonists as part of the dual-target ligand design objective.
Subsequently, MD simulations were performed to study the dynamics of a specific amino acid
residue in the orthosteric site,[319-321] in order to find a conformational descriptor
characterizing A2aR activation. Finally, the anti-proliferative effects of the dual ligands at
A2aR and PDE10A in lung carcinoma cell-lines were experimentally measured in order to
provide proof of concept for the potential therapeutic benefits that these dual-target ligands

might exhibit in lung cancer.
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2 Structure-based design of allosteric calpain-1 inhibitors

populating a novel bioactivity space

2.1 Introduction

Calpains are proteins that belong to the family of calcium-dependent, non-lysosomal cysteine
proteases expressed ubiquitously in mammals and other organisms.[317] Although the
physiological roles of calpains are still poorly understood, they have been shown to be involved
in many processes such as cell motility, long-term potentiation in neurons and cell fusion in
myoblasts.[322] In particular, dimeric calpains have been reported to be involved in cell
degeneration processes that characterize numerous disease conditions.[323] The discovery of
selective calpain inhibitors however, has been extremely challenging.[316] In this chapter, a
structure-based virtual screening protocol, which uses the PEF(S) crystal structure,[18] is
reported in order to address this problem. It is shown for the first time that the inhibition of
enzyme activity can be attributed to an allosteric mode of action, which may offer improved

selectivity and a reduced side-effects profile.

Calpain-1 (u-calpain) and calpain-2 (m-calpain) are heterodimeric proteases composed of a
large subunit with a molecular mass of ~80 kDa, associated with a small subunit of mass ~30
kDa. The small subunit consists of two domains, namely the penta-EF hand calcium binding
PEF(S) domain and a glycine rich (GR) domain which are essential for stabilizing calpain-1
and calpain-2.[324] High sequence similarity of 62% is exhibited by the large subunits of
calpain-1 and -2 in humans.[324] They consist of four different domains, an N-terminal anchor
helix, the active site domain (CysPc), a domain that resembles the C2 membrane binding
domains of phosphokinases (known as the C2L domain) and a second penta-EF hand calcium
binding domain known as PEF(L). The PEF(L) domain is the determinant of the calcium
concentration that is required for protease activation, which differentiates between the two
isoforms: calpain-1 requires micromolar concentrations of Ca?*, whereas calpain-2 requires

millimolar concentrations for activation.[18]

Calpain-1 is a target dysregulated in many diseases such as neurodegenerative disorders,
cardiovascular diseases, ischaemic disorders, arterial sclerosis, leishmaniasis and cancer.[15,
16] In most cases of disease, calpain-1 activity is elevated (and hence its inhibition would be

beneficial in treatment). However, it has been recently suggested that the up regulation of
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calpain-1 appears to be beneficial in some cases, such as stage Il Alzheimer’s disease, where

its activation could be neuroprotective and beneficial in controlling cellular damage.[325]

Until recently, it has been challenging to design selective calpain-1 inhibitors, and this is
attributed to the fact that most compounds that target the active site inhibit a broad spectrum
of cysteine proteases, thereby resulting in undesirable side effects.[326] For example, it has
been previously reported that calpain-1 inhibitors,[326] which also inhibit the proteasome may
induce apoptosis, whereas selective calpain-1 inhibitors do not. Hence, it may be beneficial to
design selective calpain-1 inhibitors to avoid off-target related side effects.

Classical allosteric inhibitors of calpain-1, which were originally reported to bind to PEF(S),
exhibit a specific type of chemistry - that is a-mercaptoacrylic acid-based, such as compounds
PD150606 and PD151746.[327] These inhibitors are potent, cell permeable and selective
inhibitors of calpain-1 and calpain-2 exhibiting selectivity towards calpain over other cysteine
proteases, with a slight selectivity for calpain-1 over calpain-2. It has been reported however
that PD150606 could equally inhibit the active site domain of calpain-1 without the presence
of PEF(S).[318] This obviously suggests that its mode of action is rather unclear. The reported
a-mercaptoacrylic acid based calpain inhibitors (Figure 7A. PD150606 and B. PD151746) and
their disulfide analogues (Figure 7C. and D.) were synthesized by Adams et al, and shown to
bind to PEF(S) from X-ray diffraction analysis (PDB IDs: 1NX3, 4WQ2 and 4WQ3).[18, 328-
330] Additional calpain-1 inhibitors that were reported to inhibit the calpain-1 complex, which
consists of the PEF(S) and CysPc (active site of calpain-1), are also depicted in Figure 7,
including their chemical structures. CHEMBL203568,[17] shown in Figure 7E. is a compound
reported to inhibit the calpain-1 complex with an 1Cso value of 4.9 nM. While
CHEMBL204883[17], shown in Figure 7F. is a compound reported to inhibit the calpain-1
complex with an ICso value of 8 nM. However, CHEMBL203568 and CHEMBL 204883 have
not been confirmed as PEF(S) binders i.e. exhibiting an allosteric mode of inhibition. Their
reported confidence score is 7 (in ChEMBL) indicating that these compounds might be binding
to any of the subunits involved in the full-length calpain-1 complex. Hence, the use of PEF(S)
(calpain-1 small subunit) in structure-based virtual screening may be an appealing approach
for the design of allosteric calpain-1 binders with completely different structural architectures
from the classical allosteric binders and inhibitors. In addition, this approach is expected to
answer the question of whether PEF(S) binding would confer inhibition, given that the

shortlisting of candidates is based on the prediction of their binding to PEF(S).
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Figure 7. PD150606 A. PD151746 B. bind to the PEF(S) of calpain, and show modest
selectivity for calpain-1 over calpain-2. Adams et al, 2015, synthesized their disulphide
analogues C. and D. respectively, which bind to PEF(S) and were reported with improved
potencies in comparison to their monomer compounds. CHEMBL203568 E. is a compound
reported to inhibit the calpain-1 complex (Uniprot IDs: P04632 and P07384) with an ICso value
of 4.9 nM and confidence score of 7. CHEMBL204883 F. is a compound reported to inhibit
the calpain-1 complex (Uniprot IDs: P04632 and P07384) with an I1Cso value of 8 nM and
confidence score of 7

In this work, the PEF(S) (PDB ID: 4WQ2, calpain-1 small subunit) has been used in a structure-
based virtual screening protocol to ascertain whether novel chemical series bind to the allosteric
pocket. To validate this approach, purchasable ligands of diverse and novel structural
frameworks (very different from those that have been previously investigated) were evaluated
in silico, using ligand/protein docking against PEF(S), and the compounds were subsequently
tested in relevant assays. This pipeline for the structure-based virtual screening protocol is

depicted in Figure 8.
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Figure 8. The pipeline of the structure-based virtual screening protocol followed for
shortlisting candidates of PEF(S) binders started with the collection of a pool of compounds
with diverse chemical structures (very different from those that have been previously
investigated), then candidates were shortlisted based on docking into the crystal structure of
PEF(S) (PDB: 4WQ?2, calpain-1 small subunit). The top ranked candidates were assessed for
their chemical novelty in comparison to the classical allosteric binders and inhibitors using an
MDS plot. The subset of compounds was then investigated using relevant experimental assays.

As a general approach, it was hypothesized that the functional effect of PEF(S) binders on the

active site of calpain-1 may be predicted by carrying out Molecular Dynamics (MD)

40



simulations[331, 332] on the full-length calpain-1 complex (PEF(S) and CysPc) in both the
unbound and the ligand bound states at the PEF(S) domain. If the bound compound increases
the average distance between the substrate and the interacting residues in the active site of
calpain-1, then it was further postulated that it would inhibit the activity of the enzyme. In
contrast, if the compound decreases this distance, it would favor interactions between the
enzyme and the substrate, thus facilitating the enzyme reaction. A crystal structure of the full-
length calpain-1 complex (PEF(S) and CysPc) is currently unavailable, and hence the problem
was approached by using the pipeline shown in Figure 8. Accordingly, the compounds that are
predicted to bind to PEF(S) are either expected to inhibit or activate calpain-1.

To explore the small molecule chemical architecture that would most likely alter the geometry
of the calpain-1 active site, to inhibit its substrate cleavage allosterically, compounds with a
diverse chemical structures were investigated computationally based on their predicted binding
affinities towards PEF(S). The candidate PEF(S) binders, which were shortlisted by the
structure-based virtual screening protocol depicted in Figure 8 were sulphonamides, N-{3-[3-
(2-alkoxyethoxy)-5-(4-substituted-phenyl)-1H-1,2,4-triazol-1-yl]phenyl} -4-methyl-3-

(trifluoromethyl)benzamides, and [1,2,4]triazolo[4,3-b]pyridazin-6-yl]pyridines.
Experimentally these compounds were also shown to bind to PEF(S) by displacing 2-p-
toluidinylnaphthalene-6-sulfonate (TNS, which binds to the allosteric site).[327] In addition,
three compounds were able to inhibit the full-length calpain-1 complex (which includes PEF(S)
and CysPc) allosterically, but not the active site domain of calpain-1 in the absence of PEF(S).
The micro-molar inhibitory activity, via a proposed allosteric mechanism is a crucial finding
given that these compounds show specificity in their mode of action, which is not the case for
the classical allosteric inhibitors such as PD150606. The new inhibitors possess different
scaffolds from the classical allosteric inhibitors. These compounds serve as a novel starting
point for the expansion of the compound series (including SAR) to improve their potency. In
addition, this finding suggests that compounds can inhibit the enzyme activity via the PEF(S)
domain. An important aspect of this study is that by designing allosteric inhibitors, which do
not inhibit the active site domain (that is common to a wide variety of cysteine proteases) these
may be effective in treating calpain-1 related diseases without the side effects associated with

inhibitors which inhibit the active site domain as well.[316]
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2.2 Materials and Methods

2.2.1 Extraction and preparation of purchasable compounds for structure-based
virtual screening against PEF(S)

Purchasable compounds (36,503) with diverse chemistry, including sulphonamide-, amide-,
pyridine-, urea- and enamine-based compounds, were downloaded from the Aldrich market
select database-2016.[333]

The entire set of extracted ligands were prepared for docking with LigPrep 2.5[334] using the
default settings and the Epik option, which introduces energy penalties associated with
ionization and tautomerization.[335]

2.2.2 Receptor Preparation of PEF(S)

The preparation of the human PEF(S), calpain-1 small subunit (regulatory subunit) of the
protein crystal structure (PDB[151] ID: 4WQ2)[18] bound to (Z)-3-(6-bromondol-3-yl)-2-
mercaptoacrylic acid was performed for protein-ligand docking with Glide[134]. The structure
was prepared using the Protein Preparation Wizard of Maestro 9.3,[334] following the default
protocol, which accounts for energy refinement, hydrogen addition, pKa assignment, and side-
chain rotational isomer refinement. Resolved water molecules were discarded and the structure
was centered using the co-crystallized ligand as the center of the receptor grid generated for
the protein structure. The co-crystal structure of the human calpain PEF(S) protein crystal
structure (PDB ID: 4WQ2) bound to (Z)-3-(6-bromondol-3-yl)-2-mercaptoacrylic acid was

selected as the target structure.
2.2.3 Cut-off generation for compound selection from docking model

In an attempt to validate the docking model, a set of known active and inactive compounds
were docked against the PEF(S) protein crystal structure to ensure that it enriched actives. 32
compounds manually extracted from ChEMBL[171] with ICso values < 1 uM (protein complex
of the calpain-1, catalytic and small regulatory subunits: P07384, P04632 with confidence
scores of 6 or 7) were docked against the PEF(S) model. In addition, 20 inactive compounds
of the PEF(S) calpain-1 small regulatory subunit (Uniprot ID: P04632), extracted from
PubChem (using the SQL query in Appendix D),[336] were docked.

A good separation was obtained for the medians of the docking score distributions for actives

versus inactives for the docking model indicating that the actives are enriched. Figure 9 shows
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the separation of the medians for the PEF(S) docking model, the medians are -7.48 (actives) vs
-4.60 (inactives). In addition, the indole and the phenyl a-mercaptoacrylic acid-based inhibitors
and their disulfide analogues (33 compounds), which were synthesized by Adams et al,[18]
and shown by X-ray crystallography to bind to PEF(S), were docked against the PEF(S)
docking model. The median of the docking score distribution obtained is -7.25 in comparison
to the median of inactives, which is -4.60 (Figure 10). This further indicates that the model
enriches these set of actives. A Mann-Whitney test, which included statistical analysis on the
active and inactive docking score distributions, was performed with R[337] using the script
provided by Kalash et al.[338] The differences in the medians was significant with p values
less than 0.05.
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Figure 9. A good separation was obtained for the medians (dashed lines) of the docking score
distribution for active versus inactive compounds for the calpain-1 docking model A. -7.48
(active compounds) vs. B. -4.60 (inactive compounds). Statistical analysis was performed
using a Mann-Whitney test on the docking score distributions of each target. The difference in
medians was significant (p value < 0.05), indicating that the ChEMBL actives are enriched.
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Figure 10. The median (dashed line) of the docking score distribution obtained for the a-
mercaptoacrylic acid based inhibitors and their disulfide analogs, which were synthesized by
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Adams et al,[18] was -7.25. The difference between this median and the median of PubChem
inactives was significant (p value < 0.05), indicating that the actives of the Adams library are
enriched.

The Matthews correlation coefficient (MCC), which takes into account true and false positives
and negatives, was computed using a Python script[338] for all the docking scores of the
ChEMBL actives and PubChem inactives for the model. A search was performed for a docking
score threshold that gave the highest MCC for the docking model. This has been done in order
to shortlist purchasable candidates as PEF(S) binders, which displayed docking scores that are
more negative than the docking score threshold with the highest MCC for the PEF(S) docking
model (which was -6.35).

2.2.4 Docking

The purchasable compounds, prepared according to the protocol described in section 2.2.1,
were docked into the PEF(S) protein crystal structure (PDB ID: 4WQ2). The Glide docking
parameters included extra precision (XP) and the flexible ligand sampling option, which were
deduced from docking experiments using known actives and inactives against the protein
model. The highest ranked compounds with respect to their predicted affinity towards PEF(S)
were selected for binding assessment and calpain-1 activity evaluation i.e. those which
displayed docking scores that are more negative than the score with the highest MCC for the
PEF(S) docking model, which was -6.35. The compounds that did not exhibit potential
PAINs[339] liabilities (with regard to the recent analysis of the use of this approach
(Tropsha))[313, 340] upon virtual screening with the FAFDrug3 ADME-Tox filtering tool,
were selected for experimental validation. The shortlisted compounds exhibited diverse
structures (depicted in Table 1), with five sulphonamides 1-5, two substituted N-{3-[3-(2-
alkoxyethoxy)-5-(4-substituted-phenyl)-1H-1,2,4-triazol-1-yl]phenyl}-4-methyl-3-
(trifluoromethyl)benzamides 6-7, and three substituted [1,2,4]triazolo[4,3-b]pyridazin-6-
yl]pyridines 8-10.

2.2.5 Multi-Dimensional Scaling (MDS) analysis of the shortlisted compounds 1-10

This step of the analysis aimed to plot the chemical space of ChEMBL compounds which are
active against the full-length calpain-1 complex (with 1Cso values < 1 uM (protein complex of
calpain-1, catalytic and small regulatory subunits: P07384, P04632 and confidence scores of 6
or 7)), and the Adams library,[18] which were all validated against the PEF(S) docking model.

In addition, the shortlisted candidates from the structure-based design protocol were included
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in the same plot. This analysis enables an assessment of the novelty of the chemical space
coverage of the shortlisted compounds 1-10. For this purpose, the SMILES of all compounds
involved were standardized using the ChemAxon Command-Line Standardizer, where the
following options were selected: “Remove Fragment” (keep largest), ‘“Neutralize”,

“RemoveExplicitH”, “Clean2D”, “Mesomerize” and “Tautomerize”.[341]

Subsequently, Morgan fingerprints (radius 2, 1024 bits) were generated for all the compounds
using KNIME 2.11.3.[342] The workflow generated Morgan fingerprints in the following
sequence: It (a) read chemical data from an SDF file, (b) generated RDKit molecules from a
molecule string representation (SDF), (c) generated hashed bit-based fingerprints for an input
RDKit Mol column (d) converted RDKit molecules into string based molecule representations
(SDF or SMILES) (e) excluded columns from the input table (f) renamed columns (g) and
saved data table into a CSV file.

A 2D-similarity matrix based on Euclidean distance of generated Morgan fingerprints was
computed using the dist() function in R.[337] Then, a multidimensional scaling metric of the
similarity matrix was computed by embedding it into two dimensions (k=2). Then, for each
data set in the plot (corresponding to the Adams library, ChEMBL compounds, and the
shortlisted compounds), 90% confidence ellipses were computed using the ellipse package.
Finally, based on the generated Morgan fingerprints, a 2D MDS plot with 90% ellipse-like
confidence regions was obtained using the R ggplot2 package,[343] with the x-axis and the y-
axis labeled Dimension 1 and Dimension 2 respectively. These are two relative and unit-less
dimensions that recapitulate the pairwise similarity of the all points observed in the distribution

of Euclidean distances in a lower dimensional space.
2.2.6 Experimental validation of the virtual screening protocol

The experimental validation of the structure-based design of PEF(S) binders was performed by
Joel Cresser-Brown (JCB) and Connor Morgan (CM) (in the group of Professor Allemann) at

Cardiff University, and their experimental protocols are described below.
2.2.6.1 Expression and purification of PEF(S)

The codon optimized gene encoding human PEF(S) was purchased from Epoch Biolabs (Texas,
USA) in a pET21d vector. Human PEF(S) was produced in E. coli BL21-CodonPlus (DE3)-
RP (Agilent Technologies), and purified using the same procedure previously described for
PEF(S) (work done by JCB).[18]
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2.2.6.2 Evaluating calpain-1 activity of the shortlisted candidates of PEF(S) binders 1-
10

This assay uses a fluorogenic peptide from the calpain-1 substrate a-spectrin, containing a
FAM-DABCYL FRET pair (H2N-K(FAM)-EVYGMMK(DABCYL)-OH). Cleavage by
calpain-1 occurs between the Tyr-Gly residues and results in enhanced fluorescence as the
quenching effect is relieved. The assays using purified porcine calpain-1 (CalBiochem, 25 nM)
were performed in a buffer containing 1 uM calpain-1 substrate, 10 mM HEPES, 10 mM DTT,
0.5 mM EDTA, bovine serum albumin (0.1%) pH 6.8. The assay was carried out using a
fluorescent plate reader (BMG Optistar) with a final assay volume of 100 pl at a temperature
of 37°C, using an excitation band pass filter centered at 490 nm and emission detected at 520
nm. The compounds were added to the assay mixture before the reaction was initiated by the
addition of CaCl, (5 mM). None of the compounds had significant fluorescence at this
wavelength. The compounds were dissolved in DMSO at 40 mM and diluted into assay buffer
to give range of concentrations from 5 nM to 200 uM. In each assay run, the effect of DMSO
alone over the concentration used was also measured. Although there was no effect of DMSO
at lower concentrations, in some assay runs, DMSO at 0.005%-0.5% produced some inhibitory
effect. This DMSO effect (which was only relevant for compounds with poor inhibitory ability)
was subtracted before constructing the inhibition curves.[18] The ICso values were obtained by
fitting the data with non-linear regression using the SigmaPlot software,[344] and the reported
results are the mean +/- standard deviation of three independent experiments (work done by
JCB and CM).

2.2.6.3 TNS displacement for compounds 1-5

10 uM PEF(S) in 20 mM Tris base, 1.1 mM CaCl,, 1 mM EDTA and pH 7.4 was incubated
with 46.7 uM 2-p-toluidinylnaphthalene-6-sulfonate (TNS, 1mM stock in 40% ethanol) in a
Greiner CELLSTAR 96 well black flat bottom plate for 5 minutes at 25 °C.

Compounds 1-10 were stored as 40 mM stock solutions in DMSO, then diluted from 500 uM
to 500 nM by serial dilution over 10 wells with an Integra Viaflow 96 multichannel pipette in

triplicate.

The plates were then incubated in a FLUOstar Omega plate reader at 25 °C for 5 minutes then
were analyzed using an excitation wavelength of 355 nm and an emission wavelength of 450

nm with 10 flashes per well with orbital averaging.
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The baseline (just TNS) was subtracted from the fluorescence (B). B was then subtracted from
the Bmax (with no inhibitor) to invert the data. The data was plotted in excel as bar diagrams for
the mean +/- standard deviation of three independent experiments (n=3) in triplicate. Whereas
for compounds 6-10, their fluorescence interfered with TNS, (refer to Figure 11. for the blanks
obtained for compounds 1-10) for this reason their results were omitted (work done by JCB).
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Figure 11. Blanks for compounds 1-10 measured at the TNS excitation and emission
wavelengths, 355 and 450 nm respectively. It appeared that compounds 6-10 interfered with
the fluorescence of TNS so they were not subject to the TNS displacement method to assess
their binding to the PEF(S) domain.

Compounds and reagents Compound 1 was purchased from Tocris, and compounds 2-10 were
purchased from Ambinter, and used without further purification. PD150606 was purchased
from Sigma Aldrich and used without further purification.

2.2.6.4 Cloning of CysPC gene

The pET28a-GB1-MAAKLVFF plasmid, a kind gift from Dr Cornelius Krasel of the Institut
fiir Pharmakologie (Marburg, Germany), was used to create a Golden Gate acceptor plasmid
by standard PCR, overlap extension PCR, endonuclease digestion and T4 DNA ligase
reactions. When subjected to Golden Gate digestion/ligation with Bsal and T4 DNA ligase with
an appropriate complimentary PCR product, the resulting plasmid has a section of DNA
encoding RF under a constitutive promotor removed and the PCR product is incorporated in

such a fashion that the translation product contains the protein of interest with an N-terminal
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hexahistidine tag GBI fusion tag that can be removed by the action of tobacco etch virus

protease (TEV) (work done by JCB).

Digestion/ligation proceeds as expected despite the presence of an additional Bsal site within
the sequence encoding RFP. The CysPC domain of calpain-1 was inserted into this acceptor by

PCR with the following primers (work done by JCB):
Fwd: CGACTAGTGGTCTCCAGTCCATGGGTCGCCATGAGAA

Rev: CGACTAGTGGTCTCCATCAGTCCGGGGTCAGGTTACA for ligation using the
golden gate protocol into the pET28a-GB1-MAAKLVFF plasmid.[345]

Plasmid Sequencing
T7 Fwd

TAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCAT
CATCATCATCACACTTACAAATTAATCCTTAATGGTAAAACATTGAAAGGCGAAAC
AACTACTGAAGCTGTTGATGCTGCTACTGCAGAAAAAGTCTTCAAACAATACGCT
AACGACAACGGTGTTGACGGTGAATGGACTTACGACGATGCGACTAAGACCTTTA
CAGTTACTGAACATATGGAAAACCTGTATTTTCAGTCCGAGACCTTTACGGCTAGC
TCAGCCCTAGGTATTATGCTAGCTACTAGAGAAAGAGGAGAAAAACTAGTATGGTT
AGCAAAGGCGAGGAGCTGATTAAGGAGAATATGCACATGAAACTGTACATGGAAG
GCACCGTGAACAACCACCACTTCAAGTGCACCAGCGAGGGTGAAGGCAAACCGT
ATGAAGGCACCCAGACCATGCGTATCAAAGTGGTTGAGGGTGGCCCGCTGCCGTT
CGCGTTTGATATTCTGGCGACCAGCTTCATGTACGGTAGCCGTACCTTTATCAACCA
CACCCAGGGCATTCCGGATTTCTTTAAACAGAGCTTCCCGGAAGGTTTTACCTGGG
AGCGTGTGACCACCTACGAAGACGGTGGCGTTCTGACCGCGACCCAGGACACCA
GCCTGCAAGATGGCTGCCTGATCTATAACGTGAAGATTCGTGGTGTTAACTTTCCG
AGCAACGGCCCGGTGATGCAGAAGAAAACCCTGGGTTGGGAGGCGAACACCGA
AATGCTGTATCCGGCGGATGGTGGCCTGGAGGGCCGTAGCGACATGGCGCTGAAG
CTGGTTGGTGGCGGTCACCTGATCTGCAACTTCAAAACCACC

T7 Rev

CGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTTATC
AGGAGACCGCTAGTTCAGTTTGTGACCCAGCTTGCTCGGCAGATCGCAATAACGC
GCAACCGCCACTTCGTGTTGCTCAACGTAGGTCTCTTTATCCGCTTCCTTAATACGC
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TCCAGACGGTGATCAACATAGTACACACCCGGCATTTTCAGGTTCTTCGCCGGTTT
CTTGCTACGATAGGTGGTTTTGAAGTTGCAGATCAGGTGACCGCCACCAACCAGC
TTCAGCGCCATGTCGCTACGGCCCTCCAGGCCACCATCCGCCGGATACAGCATTTC
GGTGTTCGCCTCCCAACCCAGGGTTTTCTTCTGCATCACCGGGCCGTTGCTCGGA
AAGTTAACACCACGAATCTTCACGTTATAGATCAGGCAGCCATCTTGCAGGCTGGT
GTCCTGGGTCGCGGTCAGAACGCCACCGTCTTCGTAGGTGGTCACACGCTCCCAG
GTAAAACCTTCCGGGAAGCTCTGTTTAAAGAAATCCGGAATGCCCTGGGTGTGGT
TGATAAAGGTACGGCTACCGTACATGAAGCTGGTCGCCAGAATATCAAACGCGAA
CGGCAGCGGGCCACCCTCAACCACTTTGATACGCATGGTCTGGGTGCCTTCATACG
GTTTGCCTTCACCCTCGCTGGTGCACTTGAAGTGGTGGTTGTTCACGGTGCCTTCC
ATGTACAGTTTCATGTGCATATTCTCCTTAATCAGCTCCTCGCCTTTGCTAACCATAC

2.2.6.5 Expression and purification of CysPC

BL21-CodonPlus (DE3) RP cells containing the human calpain-1 CysPC gene were grown at
37 °C in kanamycin selective LB media until ODgoo = 0.6 then induced with 1 mM IPTG. The
protein was expressed overnight at 20 °C and cells harvested by centrifugation in a Sorvall
RC6 Plus centrifuge (Thermo Fisher Scientific, Inc, MA, USA) using an SLA-3000 rotor at
6080 RCF for 20 minutes at 4 °C. The cells were re-suspended in 20 mM HEPES, 100 mM
NaCl, 0.5 mM TCEP pH 7.6 (buffer A) and lysed by sonication for 5 mins (pulsed 5 s on, 10 s
off). The lysate was clarified by centrifugation at 4 °C for 40 minutes at 30310 RCF in a Sorvall
RC6 Plus centrifuge. The supernatant was passed through a 0.2 pm syringe filter and applied
to a Ni-NTA column. The bound protein was washed with 15 CV buffer A and eluted with 10
CV buffer A containing 250 mM imidazole, which was further dialyzed in buffer A overnight
in a 10 kDa membrane containing 1 mL aliquot of TEV protease. The cleavage product was
then passed back through a Ni-NTA column to remove the 6xHis-GB1 solubility tag and TEV
protease, with the flow through containing active CysPC as confirmed by SDS-PAGE, mass

spectrometry and calpain-1 activity assay (work done by JCB).
2.2.6.6 Expression and purification of TEV protease

BL21 (DE3) cells containing the TEV gene codon optimised for E. coli expression were

obtained from Prof. Nigel Richards (Cardiff University).

The cells containing the TEV protease gene were grown at 37 °C in ampicillin selective LB

media until ODgoo = 0.6 then induced with 1 mM IPTG. The protein was expressed overnight
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at 20 °C and cells harvested by centrifugation in a Sorvall RC6 Plus centrifuge (Thermo Fisher
Scientific, Inc, MA, USA) using an SLA-3000 rotor at 6080 RCF for 20 minutes at 4 °C. The
cells were re-suspended in 20 mM HEPES, 100 mM NacCl, 0.5 mM TCEP pH 7.6 (buffer A)
and lysed by sonication for 5 mins (pulsed 5 s on, 10 s off). The lysate was clarified by
centrifugation at 4 °C for 40 minutes at 30310 RCF in a Sorvall RC6 Plus centrifuge. The
supernatant was passed through a 0.2 um syringe filter and applied to a Ni-NTA column. The
bound protein was washed with 15 CV buftfer A and eluted with 10 CV buffer A containing 250
mM imidazole. The eluent was mixed with 20% v/v glycerol (20 mL final volume), and stored
at -80 °C in 1 mL aliquots (work done by JCB).

2.3 Results and Discussion
2.3.1 Structure-based virtual screening of purchasable ligands against PEF(S)

36,503 commercial compounds consisting of diverse chemical structures including
sulphonamide-, amide-, pyridine-, urea-, and enamine-based compounds, were docked using
Glide into the pre-prepared (see methods for details) protein crystal structure of human PEF(S)
(PDB[151] ID: 4WQ?2).[18] From the docking scores, the distribution for actives versus
inactives was obtained. The active molecules displayed a more favorable distribution of scores,

which allowed differentiation of actives and inactives (see methods for details).

Candidate PEF(S) binders from the purchasable database were shortlisted on the basis of a cut-
off with the highest Mathews Correlation coefficient. The cut-off obtained was -6.35, according
to which compounds with more negative binding score were predicted to bind. The selected
candidates were further screened against PAINS[339] using the FAFDrug3 ADME-Tox
Filtering Tool.[313] Those compounds that didn’t exhibit any potential PAINs liability were
considered for evaluation of calpain-1 activity. As a result, five sulphonamides 1-5, two
substituted N-{3-[3-(2-alkoxyethoxy)-5-(4-substituted-phenyl)- 1H-1,2,4-triazol-1-
yl]phenyl}-4-methyl-3-(trifluoromethyl)benzamides 6-7, and three substituted
[1,2,4]triazolo[4,3-b]pyridazin-6-yl]pyridines 8-10, which were the top ranked compounds

according to the virtual screening criteria were shortlisted as candidates for PEF(S) binding.

2.3.2 MDS plot shows that shortlisted PEF(S) binders occupy a novel region in

chemical space

An MDS plot of the chemical space was generated consisting of the ChEMBL compounds
inhibiting the full-length calpain-1 complex (PEF(S) and CysPc) with ICsg values < 1 uM, and
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the Adams library (a library of a-mercaptoacrylic acid-based calpain-1 inhibitors and their
disulfide analogues),[18] which were all validated against the PEF(S) docking model (see
methods for details) (Figure 12). In addition, the shortlisted candidates 1-10 from the structure-
based design protocol were also included in the plot, which enabled the assessment of the
novelty of chemical space coverage of the shortlisted PEF(S) binders, in comparison to the
classical calpain-1 inhibitors and PEF(S) binders. Figure 12, which is a two dimensional MDS
plot based on Morgan fingerprints of radius 2 with 90% ellipse-like confidence regions, shows
that the shortlisted compounds 1-10 exhibited new structures in comparison to the previously

reported compounds by occupying a novel region in the chemical space of calpain-1 actives.

ZEQEMSBEESPain-1 Complex actives
107 ~ﬁu q[&?gllgﬁoé%?%xy)-5-(4-substituteq-phenyl)-1 H- o
R RS rsgyencamide orar

Dimension 2

10

Figure 12. Atwo dimensional MDS plot based on Morgan fingerprints of radius 2, with 90%
ellipse-like confidence regions for 32 ChEMBL compounds, 33 compounds synthesized by
Adams et al,[18] and the 10 shortlisted candidates from the structure-based design protocol.
These were shortlisted from a purchasable database based on their high predicted binding
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affinity towards the PEF(S) domain of calpain via docking with Glide. The compounds
identified belong to a new chemical space in comparison to the previously reported compounds
that bind to the PEF(S) (Adams library) and the compounds which inhibit the full-length
calpain-1 complex. Compounds 1, 9, and 10 were then experimentally tested as novel allosteric
inhibitors of calpain-1.

2.3.3 FRET based Inhibition Assay

FRET based inhibition experiments were carried by JCB and CM. A fluorogenic assay of the
full-length calpain-1 complex (which includes PEF(S) and CysPc) was used to determine the
activity of compounds 1-10. Amongst the identified compounds, 1, 9, and 10 inhibited the full-
length calpain-1 complex with ICso values of 7.5 (£1.1), 20.5 (£1.9), and 29.7 (¥5.2) uM,
respectively (Table 1). The same experimental protocol was performed to measure the activity
of compounds against the active site domain of calpain-1, without the presence of PEF(S), to
investigate a possible allosteric mode of action. None of the compounds showed any inhibition
in the absence of PEF(S), except for compound 1, which weakly inhibited the active site
domain with an ICso value >100 puM. In contrast, compound 3 exhibited higher inhibitory
activity against the active site domain of calpain-1 with an ICso value of 41.1 (+15.4) uM as
compared to the full-length calpain-1 complex, which showed an activity of >100 uM,
suggesting that in the presence of PEF (S) it preferentially binds to PEF(S). This could explain
the reduction in the inhibitory activity of compound 3 since it is most likely unable to alter the
geometry of the active site while it binds allosterically. The 1Cso values were also measured for
the classical a-mercaptoacrylic acid based calpain inhibitor PD150606, and these were 19.3
(x1.6) uM for the full-length calpain-1 complex, and 17.8 (x2.4) uM with the active site domain
without the presence of PEF(S). Hence, in contrast to compounds 1, 3, 9, and 10, PD150606
exhibited an unspecific mode of action by equally inhibiting via both binding sites (active and
allosteric sites). It is worth stating here that compound 1 is an asthma drug, Vidupiprant or
AMG 853,[346] which exhibited higher potency than PD150606 in inhibiting the activity of
calpain-1. The dose response curve of compound 1 (ICso = 7.5£1.1 uM) is displayed in Figure
13. Interestingly, identifying Vidupiprant as an allosteric inhibitor of calpain-1 is in agreement
with previous reports showing a direct link between calpain inhibition and anti-inflammatory
properties, where it was shown that non-steroidal anti-inflammatory drugs (NSAIDS) inhibit
calpain, and that calpain inhibition reduces allergic inflammation.[347, 348] Potentially, this
finding could highlight the importance of considering calpain inhibitors for the development

of new anti-asthma therapies.
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Table 1. 1Cso values for compounds 1-10, and PD150606 determined by the FRET based
inhibition assay, with the full-length calpain-1 complex and the active site domain of calpain-
1, reported as mean +/- standard deviations from three independent experiments (NR = no

response)
1Csp full- 1Cs0
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The allosteric inhibitory activity exhibited by compounds 1, 9, and 10 confirms the design

approach, which shortlisted PEF(S) binders. The three active compounds include scaffolds that
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are distinct from the classical allosteric inhibitors. The 1Cso values obtained could be improved
by efficient choice of substituents using standard medicinal chemistry approaches. In particular
compound 1, which is a sulphonamide, exhibited specificity in its allosteric inhibition of
calpain-1, and was more potent (7.5 uM) than PD150606 (19.3 uM) that additionally inhibits

the active site domain, in the absence of PEF(S), with a similar 1Cso value.

Compound 1 - Calpain-1 FAM inhibition assay

100 -
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O T T T T -
0.01 0.1 1 10 100

Inhibitor Concentration / uM

Figure 13. Dose-response curve for the inhibition of full-length calpain-1 complex by
compound 1, ICso= 7.5+ 1.1 uM. The ICso value is reported as mean +/- standard deviation of

three independent experiments (plot generated by JCB).
2.3.4 TNS Displacement Assay

TNS, which is a sensitive fluorophore that binds to PEF(S) was used to probe protein dynamics
and conformational change. It fluoresces in the bound state i.e. in a hydrophobic environment,
whereas when another compound displaces it, its fluorescence gets quenched. This fluorophore
was used previously to assess the binding of PD150606 to PEF(S), a compound which has
already been shown to bind to PEF(S) by X-ray crystallography (PDB ID: 1NX3).[327, 328]
In this work, PD150606 (as a control), compound 1, the most potent allosteric inhibitor,
compound 3, a weak allosteric inhibitor, and compounds 2, 4 and 5 which did not exhibit any
inhibitory activity, have been tested (by JCB) for PEF(S) binding by the TNS displacement

method. The results for compounds 6-10 were unreliable as it became apparent that they
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fluoresced under the assay conditions, therefore for this reason these results were omitted. As
shown in Figure 14, all tested compounds, except for compound 5, quenched the fluorescence
of TNS, exhibiting a similar trend in their quenching effect to that of the known PEF(S) binder,
PD150606, hence confirming their binding to PEF(S). Therefore, it appears that compounds 2-
4 do indeed bind to PEF(S) ina similar fashion to compound 1, but they either weakly inhibited
or failed to allosterically alter the geometry of the active site.
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Figure 14. PD150606, which was shown by X-ray crystallography to bind to PEF(S) (PDB
ID: INX3), compound 1 (the most potent allosteric inhibitor), 3, which was the least potent
among the identified allosteric inhibitors, 2 and 4, which did not exhibit any inhibitory activity,
all quenched the fluorescence of TNS. All compounds showed a similar effect to that of
PD150606 confirming their binding to PEF(S), except for compound 5, which neither exhibited
any inhibitory activity nor displaced TNS.

2.3.5 Analysis of molecular docking studies of representative calpain-1 inhibitors 1

and 10, and compounds 2-5

Docking studies predicted molecular interactions of the sulphonamide 1 and the
[1,2,4]triazolo[4,3-b]pyridazin-6-yl]pyridine 10 with the PEF(S) protein crystal structure (PDB
ID: 4WQ2). Figure 15A. shows the 2-chloro-4-cyclopropylsulfonamido phenyl ring of
compound 1 is w-stacked with Hisiz1. The carbonyl of its carboxylic acid moiety H-bonds with
same residue. The carbonyl of its amide moiety H-bonds with Trpies, and the phenyl ring
attached to the tert-butylcarbamoyl moiety is n-Stacked with the same residue. Figure 15B.
shows a m-stacking interaction between the pyridine ring of compound 10 and Trpies, and H-
bonding of the nitrogen in that ring with the same residue. The hydrophobic interactions
predicted for compounds 1 and 10 with Trpieg are also seen in the co-crystallized ligand/protein
crystal structure (PDB 1D: 4WQ3).[18] In addition, a more favorable binding affinity towards
PEF(S) was predicted for compound 1 (ICsp = 7.5 £1.1 pM) as compared to compound 10,
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(1Cs0 = 29.7 £5.2 uM), which could be the reason for the higher inhibitory activity exhibited
by compound 1. In order to further explore the activities of compounds 1-10, MD simulations
on the full-length calpain-1 complex, which includes the PEF(S) domain would be beneficial
when (if) the crystal structure is available. As previously intimated, the inhibitory activity of
each compound is predicted to correlate with the average distance between the substrate and

the interacting residues in the active site of calpain-1.

A. f e B.
S

HIP 131

Figure 15. Docking studies predicted molecular interactions of compounds 1 and 10 with
the human PEF(S) of calpain-1 small subunit (regulatory subunit) protein crystal structure
(PDB ID: 4WQ?2). A. The 2-chloro-4-cyclopropylsulfonamido phenyl ring of compound 1
shows m-stacking with Hisyz1 and the carbonyl of its carboxylic acid moiety H-bonds with the
same residue. The carbonyl of its amide moiety H-bonds with Trpies and the phenyl ring
attached to the tert-butylcarbamoyl moiety is n-stacked with the same residue B. The pyridine
ring of compound 10 is n-stacked with Trpies and the nitrogen of that ring H-bonds with same
residue. The hydrophobic interactions of 1 and 10 with Trpiesare also seen in the co-crystallised
ligand/protein crystal structure (PDB I1D: 4WQ3).[18]

Docking studies predicted molecular interactions of the sulphonamides 2-5 with the PEF(S)
protein crystal structure (PDB ID: 4WQ2), which suggest that the hydrophobic interactions
with Trpies are essential for PEF(S) binding. Figure 16A. has the phenyl ring of compound 2,
which is attached to the sulfonyl moiety, n-stacked with Trpies, and the same residue H-bonds
with the carbonyl of the amide group. The hydroxyl of its cyclohexyl ring H-bonds with GlIn;qo,
and its sulfonyl group H-bonds with Hisis:. Figure 16B. shows the predicted molecular
interactions between compound 3 and the PEF(S) crystal structure. These are H-bonding
between its carboxyl moiety and the Lysi72 and Trp1es residues, H-bonding between its sulfonyl
group and His131, and wt-stacking with the Trpies via its pyridine ring. Figure 16C. demonstrates
the predicted molecular interactions for compound 4. The amino group of its amide moiety H-
bonds with the Glug7 and Trpies residues, the phenyl ring of its benzamide group m-stacks with

Trpies, and the carbonyl of its amide moiety H-bonds with Lysi7.. Figure 16D. shows the H-
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bonding interactions predicted for the carbonyl of the oxopyrrolidin-1-yl moiety in compound
5 to the Lysi72 and Trpies residues, the H-bonding interactions of its sulfonyl moiety with
Hisi31, and m-stacking of the same residue with the aromatic ring of its trifluorophenyl moiety.
Interestingly, the hydrophobic interactions predicted for compounds 1-4 with Trpies are also
seen in the co-crystallized ligand/protein crystal structure (PDB 1D: 4WQ3).[18] However,
compound 5 was predicted to exhibit hydrophilic interactions with Trpies, which could explain
why it didn’t displace TNS, suggesting that the hydrophobic interactions with this residue are
essential for PEF(S) binding.

A.
HIS 131 HIS 131
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TRP 168
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Figure 16. Docking studies predicted molecular interactions of the sulphonamides 2-5 with
the PEF(S) protein crystal structure (PDB ID: 4WQ2), which suggest that hydrophobic
interactions with Trpies are essential for PEF(S) binding A. The phenyl ring of compound 2,
which is attached to the sulfonyl moiety is -stacked with Trpies, and the same residue H-bonds
with the carbonyl of its amide group, the hydroxyl of its cyclohexyl ring H-bonds with Glniqo,
and its sulfonyl group H-bonds with Hisiz: B. H-bonding interactions are predicted to occur
between the carboxyl moiety of compound 3 and the Lysi72 and Trpies residues, H-bonding
between its sulfonyl group and Hisi31, and m-stacking with the Trpieg via its pyridine ring C.
The amino group of the amide moiety for compound 4 H-bonds with Glug7 and Trpies, and the
phenyl ring of its benzamide group n-stacks with Trpieg, and the carbonyl of its amide moiety
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H-bonds with Lysi17> D. H-bonding interactions are predicted to occur between the carbonyl of
the oxopyrrolidin-1-yl moiety for compound 5 and the Lysi72 and Trpies residues, H-bonding
between its sulfonyl moiety and Hisis1, and w-stacking of the same residue with the aromatic
ring of its trifluorophenyl moiety.

2.3.6 Computational assessment of CNS permeability for representative calpain-1
inhibitors 1 and 10

Given that calpain-1 may serve as a therapeutic target for neurodegenerative disorders, a
computational assessment of the CNS permeability for compounds 1 and 10 was performed
with FAFDrug3[313] to see whether these compounds could be considered as good starting
points to target these diseases. Their physicochemical properties were calculated and CNS
diagrams were obtained and are presented in Figure 17A. and B. Compound 1 did not pass the
CNS filter, which takes into consideration the assessment of its ability to pass the blood brain
barrier. Hence, it is predicted not to exhibit the desired permeability,[304] since the values of
all the descriptors for compound 1 (logP, HBD, HBA, MW-molecular weight, tPSA (blue line))
fall outside the CNS filter area (light blue). As for compound 10, it is predicted to exhibit
medium permeability since all the descriptors, except for the HBA, have passed the CNS filter.

Hence, compound 10 might serve as a good starting point for analogue development.

B. HDA

Figure 17. Compounds 1 and 10 are represented in diagrams A and B. 1 did not pass the CNS
filter which takes into consideration the assessment of its ability to pass the blood brain barrier,
values of descriptors for 1 (the descriptors logP, HBD, HBA, MW, tPSA (blue line)) fall
outside the CNS filter area (light blue). For 10, it is predicted to exhibit medium permeability
since only the HBA value lies outside the CNS filter area.
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2.4 Conclusions

In this work, the structure-based design method devised has been successfully validated, which
has led to the discovery of chemically novel allosteric inhibitors of calpain-1, for the first time
demonstrating an allosteric mode of action. Compounds 1, 9, and 10 inhibited the full length
calpain-1 complex (which includes PEF(S) and CysPc) with ICso values of 7.5 (x1.1), 20.5
(x1.9), and 29.7 (£5.2) uM respectively. Compounds 9 and 10 did not inhibit the active site
domain of calpain-1 in the absence of PEF(S), and compound 1 inhibited the active site domain
weakly with an ICso value >100 puM. In contrast, compound 3 exhibited higher inhibitory
activity against the active site domain of calpain-1 with an ICso value of 41.1 (£15.4) uM as
compared to the full-length calpain-1 complex, which was >100 pM, suggesting that it
preferentially binds to PEF(S). In addition, 1Cso values were measured for PD150606, giving
19.3 (£1.6) uM with the full-length calpain-1 complex and 17.8 (£2.4) uM with the active site
domain (without the presence of PEF(S)). In comparison to the classical a-mercaptoacrylic
acid based calpain inhibitor, PD150606, compounds 1, 9, and 10, exhibited specificity in their
allosteric mode of action, since they didn’t inhibit the active site domain in the absence of

PEF(S).

Furthermore, PD150606, compound 1, the most potent allosteric inhibitor, compound 3, a weak
allosteric inhibitor, and compounds 2, 4 and 5 (which did not exhibit any inhibitory activity)
have been tested for PEF(S) binding by the TNS displacement method. Compounds (1-4)
quenched the fluorescence of TNS, exhibiting a similar trend in their quenching effect to that
of the known PEF(S) binder, PD150606.

The micro-molar ICsp values obtained for compounds 1, 9, and 10 suggest that they may be
good starting points for optimization, having novel scaffolds. Allosteric inhibitors discovered
by this approach could exhibit more selectivity towards calpain-1 since they are unlikely to
inhibit the active site domain, which is similar for a wide variety of cysteine proteases. This
could translate to more effective treatments with less side effects for calpain-1 related
diseases.[316]
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3 Structure- and ligand-based design of multi-target ligands at
AR, A2aR and PDE10A- key proteins in neurodegenerative

diseases

3.1 Introduction

Compounds designed to display polypharmacology may have utility in treating complex
diseases, where activity at multiple targets is required to produce a clinical effect. In particular,
suitable compounds may be useful in treating neurodegenerative diseases by promoting
neuronal survival in a synergistic manner via their multi-target activity at the adenosine A; and
Aoa receptors (AiR and A2aR) and phosphodiesterase 10A (PDE10A), which modulate
intracellular cAMP levels.[98, 349-351] In this chapter, a computational method for the design
of synthetically feasible ligands that bind to A and Aza receptors and inhibit phosphodiesterase
10A (PDE10A) is described. The method involves a retrosynthetic approach employing in
silico target prediction and docking,[133, 134, 159, 352] which may be generally applicable to

multi-target compound design at several target classes.

Neurodegeneration involves the progressive loss of the structure and function of neurons,
which is common in Parkinson’s, Huntington’s disease and schizophrenia.[353] Recently,
there has been substantial interest in the search for alternative non-dopamine (non-DA) based
approaches for the treatment of neurodegenerative diseases, as the classical DA-based
approaches have long been associated with many undesirable side effects such as dyskinesia,
hallucinations, and on/off effects.[354] Given that the adenosine neuromodulation system (via
the adenosine A1 and Axa receptors) has been identified as a key target for the management of
neurodegenerative diseases, via the targeted modulation of cAMP levels, this qualifies its
targeting as a potential non-DA based treatment approach.[349, 355] Indeed, modulation of
cAMP levels has proven to have benefits in neuronal survival in an adenosine receptor-
dependent manner.[356] In addition, recent findings suggest that phosphodiesterase 10A
(PDE10A) also plays a role in neurodegenerative diseases with similar etiology such as
Parkinson’s, Huntington’s disease, and schizophrenia.[117-119] Inhibition of PDE10A
resulting in the maintenance of elevated intracellular cAMP concentrations has been suggested

to be effective in the treatment of these diseases. Thus multi-target ligands that bind to different
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adenosine receptors subtypes (A1 and Axa receptors) while simultaneously inhibiting PDE10A
might be synergistic in modulating cAMP levels, and of therapeutic potential [98, 115, 116]
In this work, a computational strategy is offered for the design of synthetically feasible ligands
that bind to A:R and A2aR, and inhibit PDE10A - a novel multi-target combination of G
protein-coupled receptors (GPCRs) and an enzyme, which has not been previously exploited.
The designed ligands with this multi-target combination are intended as starting points for
future development of multi-target drugs treating neurodegenerative diseases. It should be
noted here that the current study considers only affinity of ligands to the above receptors, which
are also experimentally validated as outlined below. However, for therapeutically relevant
purposes, functional effects and optimization of selectivity towards A1R, A2aR and PDE10A
also need to be considered, - which will be the area of future study.

The workflow of the current study is shown in Figure 18. Starting with a focused chemical
space consisting of known actives against A1R, A2aR and PDE10A, new synthetically feasible
compounds were identified via RECAP (Retrosynthetic Combinatorial Analysis
Procedure),[159, 352] which fragments molecules at pre-defined bonds and recombines them
in a combinatorial manner. These were then evaluated in silico, using target prediction and
ligand/protein docking. Compounds with favorable assessments in both steps were carried
forward for substructural analysis. This analysis identified compound series with the highest
frequency of prediction as multi-target ligands against the desired set of targets, which has the

practical advantage of synthetic accessibility via a common synthetic route.
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Extraction of ChREMBL 20 AR, A;4R, and PDE 10A inhibitors
|

Finding the most frequent and common heterocycles
between AR, A,5R, and PDE 10A inhibitors

Substructure filtering according to the most frequent
and common heterocycles identified

|
RECAP analysis/synthesis of the filtered compounds

Substructure filtering of the RECAP
compounds according to the most frequent
and common heterocycles identified

Enriched target prediction

Docking of RECAP compounds
predicted as multi-target ligands
\
|dentification of compound
series predicted as multi-
target ligands

Target prediction for
selectivity profiling

Synthesis and
pharmacological
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Figure 18. The computational strategy for rational design of A1R/A2aR-PDE10A multi-target
ligands started with a focused chemical space consisting of known actives of A1R, A2aR and
PDE10A. Then formed new synthetically feasible compounds, which were subjected to target
prediction and docking for synthesis and pharmacological evaluation.

A series of 2-aminopyridine-3-carbonitriles were selected for prospective validation of the
pipeline, a series that was synthetically accessible via a one pot synthetic scheme i.e. providing
products with the desired properties: cost-effective, synthetically efficient and available in a
timely fashion.[357, 358]

Subsequently the synthesized compounds were experimentally tested and confirmed as
A:1R/A>AR-PDE10A multi-target ligands. Selectivity against other subtypes of both protein
families (A2sR, AsR, PDE7A, PDE7B, and PDE9A) was assessed due to the high degree of
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conservation of residues between the adenosine receptor subtypes in their orthosteric sites and
PDEs in their active sites.[351, 359-363] Additionally the pharmacological profile of the
compound series was confirmed, and structure activity relationships (SAR) were also deduced.
Hence, in this work a successful computational strategy is reported, which allowed the
discovery of the first AiR/A2aR-PDE10A multi-target ligands.

The novel A1R/A2aR-PDE10A ligands are thought to display a an additive effect in modulating
the A1R, A2aR, and PDE10A targets simultaneously similar to that of combination compounds
of Adenosine receptors and PDEs, reported by Rickles et al, which were synergistic in
modulating cCAMP levels.[98]

3.2 Materials and Methods

3.2.1 Method for the selection of reference molecules for the design of multi-target

ligands

Using an SQL script,[338] human A:R (2,860), A2aR (3,566) ligands and PDE10A inhibitors
(843) were extracted from the ChEMBL 20 database with K; and 1Cso values less than or equal
to 1 uM respectively, and confidence scores of 8 or 9.[171] Following extraction, the most
frequent and common heterocycles between A1, Aza receptor ligands and PDE10A inhibitors
were found by performing substructure analysis on each structure using the “Chemistry-
>Analyze scaffolds” function in DataWarrior 4.2.2.[364] Analysis of AiR, A2aR ligands and
PDE10A inhibitors identified common and frequent heterocycles (pyridine, 1H-pyrazole,
pyrimidine and 9H-purine for AiR and A2aR), and these were extracted from each set using
RDK:it, 9.1.[365] It should be noted that compounds containing 9H-purine were also extracted
from the original set even though this substructure is characteristic of AiR and A2aR only.
These are structurally similar to the common and frequent heterocycles identified (pyridine,
1H-pyrazole, and pyrimidine). Figure 19 shows the most frequent heterocycles for the A(R,
AxaR ligands, and PDE10A inhibitors and their relative frequencies in each set. It was found
that they are furan, pyridine, xanthine, 1H-pyrazole, pyrimidine, piperazine, and 9H-purine.
All of these heterocycles ranked among the top 30 for AiR, A2aR ligands and PDE10A
inhibitors. This indicated their suitability for the design of multi-target ligands at these protein
targets, given the overlap in chemical (heterocyclic) space. In the case where no percentage is
displayed for a particular target, this means that the heterocycle does not appear among the top

30 for the set of compounds involved.
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Figure 19. Percentage occurrence of the most frequent substructures in the AR, A2aR, and
PDE10A ChEMBL compounds (Ki and ICsp < 1 uM) reveals the following substructures for
AiR, A2aR, and PDEI0A inhibitors: benzene, furan, pyridine, xanthine, 1H-pyrazole,
pyrimidine, piperazine, and 9H-purine. In cases where no percentage is displayed for a
particular target, this means that the substructure does not appear among the top 30 for the set
of compounds involved.

3.2.2 Designing new multi-target ligands

AR (2,104), A2aR (2,489) and PDE10A inhibitors (679) consisting of the common and
frequent heterocycles, were subjected to RECAP analysis/synthesis in MOE.[352] The RECAP
function electronically fragments and recombines molecules based on chemical knowledge of
11 chemical bond types derived from common chemical reactions.[159] As a result, 458,839
novel RECAP-derived compounds were found. Finally, the designed RECAP library was
filtered using RDK:it library according to the common and frequent heterocycles identified,

which narrowed the list down to 22,233 compounds.
3.2.3 Target prediction

The SMILES of the designed RECAP library were standardized using the ChemAxon
Command-Line Standardizer where the following options were selected: “Remove Fragment”
(keep largest), ‘“Neutralize”, “RemoveExplicitH”, “Clean2D”, ‘“Mesomerize” and
“Tautomerize”.[341] The standardized canonical SMILES were exported to CSV files, and
subjected to enriched target prediction using PIDGIN 1.0 implementing the method developed
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by Liggi et al.[133, 366] The target prediction for the designed RECAP library was performed
using a recall probability threshold of 0.01 (which is a value consistent with greater confidence
in the more positive predictions).

Enrichment calculations for the predicted targets of the designed RECAP library were
performed as a complementary approach in order to assess the likelihood of the active
compounds against the targets of interest. In this procedure, the frequency of predicting A1R,
AR and PDE10A targets for the designed RECAP library was compared with a background
distribution of a diverse library covering a large chemical space and was assessed by two
parameters: the estimation score and the average ratio. The cutoff selected for considering a
target as sufficiently enriched required an estimation score less than or equal to 0.01.[366] The
statistical relevance of the prediction was assessed via a Chi-squared test with Yates correction
in Scipy,[367] using the contingency table of the RECAP library and a background of randomly
sampled PubChem compounds (Figure 20).

A. 11,371 11,735
5,449
AR AR PDE10A
B.
Predicted
Contingency Table
Yes No
RECAP 11,371 10,862
AR
PubChem Sample 1,029 21,204
RECAP 11,735 10,858
PubChem Sample 945 21,288
RECAP 5,449 16,784
PDE10A
PubChem Sample 803 21,430

Figure 20. A. A1R, A2aR and PDE10A were predicted as enriched targets with an estimation
score equal to O (enriched) and average ratios less than 0.1 (enriched) for the focused RECAP
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library, where the percentage of RECAP compounds that were predicted as actives against the
AR, A2aR and PDE10A targets are: 51.1%, 52.8%, and 24.5%, with Chi-squared p values <
0.005 and Chi-squared statistics of 11958.8, 12842.1, and 4015.7, respectively B. The results
of the contingency table for the Chi-squared calculation are passed to a Scipy[367] i.e. the
script for the calculation for A:iR is scipy.stats.chi2_contingency ([[1029, 21204], [11371,
10862])).

3.2.4 Receptor preparation

The human AzaR protein crystal structure (PDB ID: 4EIY) bound to the antagonist ZM 241385
and the PDE10A crystal structure (PDB ID: 4DDL) complexed with an inhibitor,[368, 369]
were selected for docking with Glide[134]. Protein structures were prepared using the Protein
Preparation Wizard of Maestro 9.3,[334] following the default protocol, which accounts for
energy refinement, hydrogen addition, pKa assignment, and side-chain rotational isomer
refinement. Resolved water molecules were discarded, and the structure was centered using the
co-crystallized ligand as the center of the receptor grid generated for each protein structure.
The co-crystal structures of AxaR with 4-{2-[(7-amino-2-furan-2-yl[1,2,4]triazolo[1,5-
a][1,3,5]triazin-5-yl)amino]ethyl}phenol (PDB ID: 4EIY), and PDE10A with 2-{1-[5-(6,7-
dimethoxycinnolin-4-yl)-3-methylpyridin- 2-yl]piperidin-4-yl}propan-2-ol (PDB ID: 4DDL),

were selected as target structures.

The Air homology model was provided by Dr. Hugo Gutiérrez-de-Teran, and it was
constructed according to the method reported by Yaziji et al,[283, 370, 371] where the protein
sequence of the human A:R (accession number P30542) was aligned with the A>aR template
of PDB ID: 4EIlY.

3.2.5 Ligand Preparation

The entire set of 2,563 ligands was prepared for docking with LigPrep 2.5[372] using the
default settings and the Epik option, which introduces energy penalties associated with

ionization and tautomerization.[335]
3.2.6 Cut-off generation for compound selection from docking models

In an attempt to validate the A2aR, A:R, and PDE10A docking models, a set of known actives
and inactives were docked against each target to ensure that they enriched actives. 81 Aza
receptor ligands reported in the literature were docked against the A2aR model.[373, 374] For
consistency 81 ChEMBL actives were also extracted manually (for each of the A:R and

PDE10A proteins whose Kjand I1Cso values are less than 10 uM), and these were docked against
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their respective target class. In addition, PubChem inactives (200 compounds) of each target
class were docked.

A good separation was obtained for the medians of the docking score distributions for actives
versus inactives confirming that the actives are enriched. Figure 21 shows the separation of the
medians for the three docking models, -6.93 (actives) vs. -5.64 (inactives) for the PDE10A
docking model, -7.66 (actives) vs. -6.01 (inactives) for the A2aR docking model, and -7.60
(actives) vs. -5.66 (inactives) for the AiR docking model. Statistical analysis was performed
with R using a Mann-Whitney test[337] on the active and inactive docking score distributions
of each target. The differences in medians were significant with p values less than 0.05 (Script
[338]).
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Figure 21. The separation in the medians (dashed lines) obtained for the three docking models
A. -6.93 (ChEMBL actives) B. -5.64 (PubChem in-actives) for the PDE10A docking model,
C. -7.66 (ChEMBL actives) D. -6.01 (PubChem inactives) for the A2aR docking model, E. -
7.60 (ChEMBL actives) F. -5.66 (PubChem inactives) for the A1R docking model, indicating
that actives are enriched in the three docking models

The F1 score which is the harmonic mean of precision and recall, was computed (using a Python
script[338]) for all the docking scores of the ChREMBL actives and PubChem inactives for each
model. A search was performed for a docking score threshold that gave the highest F1 score.
Subsequently, substructure analysis was performed on compounds that were simultaneously

predicted as A:R/A2aR-PDE10A multi-target ligands by target prediction, which also
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displayed docking scores that are lower than or equal to those with the highest F1 score for each
of the three docking models (A:R, A2aR, and PDE10A, using script provided by Kalash et al
[338]). Furthermore, the thresholds found are intended to serve as reference scores for any

structure-based design problem at these target classes.
3.2.7 Docking

The RECAP compounds that were predicted as A1R/A2aR-PDE10A multi-target ligands were
docked against the A2aR protein crystal structure (PDB ID: 4E1Y),[368] the A:R homology
model and the PDE10A protein crystal structure (PDB IB: 4DDL)[369] to use their predicted
binding energies as a filter, and investigate the molecular interactions. The Glide docking
parameters used here are given in Table 2. The parameters were deduced from docking
experiments using known actives and inactives against each protein model.

Table 2. Glide docking parameters used for the A:1R, A2aR, and PDE10A models were deduced
from docking experiments using known actives and inactives against each protein model

Docking model AR Az2aR PDE10A
Precision Standard Standard Extra precision
option precision (SP)? | precision (SP)? (XP)?
Ligand
'g _ Flexible® Flexible® Flexible®
sampling option

& SP option allows better coverage of conformational space whereas XP option gives higher
accuracy on docked poses ° Flexible ligand sampling is a default choice, which generates
conformations internally during the docking process

3.2.8 Substructural analysis

Subsequently, substructure analysis was performed using DataWarrior 4.2.2, on the proposed
A1R/A2aR-PDE10A multi-target ligands predicted by both ligand-based and structure-based
techniques (considering docking scores less than or equal to the threshold of the best F measure
for each docking model). The chemical series found were [1,2,4]triazolo[1,5-c]quinazolines
(50.4%), imidazo[1,5-a]quinoxalines (14.4%), 6,7-alkoxyisoquinolines (10.6%), and 2-
aminopyridine-3-carbonitriles (9.2%), which are depicted in Figure 22, in addition to various
compounds consisting of the common and frequent heterocycles identified originally in the

substructural analysis of the extracted ChEMBL compounds.
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Figure 22. 2,563 compounds of the focused RECAP library were predicted as AiR/AzaR-
PDE10A multi-target ligands, and docked against the A2aR protein crystal structure (PDB ID:
4ElY), A1R homology model, and the PDE10A protein crystal structure (PDB IB: 4DDL). The
RECAP series which showed an agreement between the ligand-based and structure-based
predictions were mainly a. 6,7-alkoxyisoquinolines b. [1,2,4]triazolo[1,5-c]quinazolines c. 2-
aminopyridine-3-carbonitriles d. imidazo[1,5-a]Jquinoxalines

3.2.9 Experimental validation of 2-aminopyridine-3-carbonitriles as multi-target
ligands at A1R, A2aR, and PDE10A

The experimental validation of 2-aminopyridine-3-carbonitriles as multi-target ligands at A:R,
A2aR, and PDE10A, included the synthesis, characterization and pharmacological evaluation
of the compounds 11-35. Cristina Val (CV) and Jhonny Azuaje (JA) at the Center for Research
in Biological Chemistry and Molecular Materials (CIQUS) in the University of Santiago de

Compostela performed the experiments.
3.2.9.1 Synthesis of novel 4,6-substituted 2-amino-pyridin-3-carbonitriles

Due to both synthetic accessibility of the reaction and yield, CV optimized a one-pot synthetic
scheme for the purpose of synthesizing 2-aminopyridine-3-carbonitriles. For the other series,
the synthetic routes were multi-step reactions, which due to synthetic complexity were not

considered for synthesis.

The synthetic routes reported in the literature for the formation of derivatives of 6,7-
alkoxyisoquinolines as selective PDE10A inhibitors involved multi-step reactions ranging
from 3 to 13 steps.[375, 376] Whereas, the procedures for the synthesis of the imidazo[1,5-
aJquinoxalines, known PDE10A inhibitors, consisted of 3 to 7 step reactions.[377—379] The
[1,2,4]triazolo[1,5-c]quinazolines have been reported as potent and selective A2aR antagonists
and PDE10A inhibitors, and their synthesis involved 4 to 7 step reactions.[380-382]
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Hence, given the fact that the 2-aminopyridine-3-carbonitriles were the only RECAP series
that could be synthesized via a one-pot synthetic scheme,[383—-385] they were selected for
synthesis and subsequent validation as multi-target ligands by CV and JA. In particular, the
compounds selected for synthesis did not exhibit any potential PAINS liability upon screening
with the FAFDrug3 ADME-Tox Filtering Tool.[313] The one-pot synthetic route is shown in
Scheme 1.

Rs
R
| 4 0 Toluene-Ethanol N CN
+ )L + NH,'OAC — e I y
NC CN Rs 120°C Re N NH,

Scheme 1. The one-pot synthetic route followed for the synthesis of novel 4,6-substituted 2-
amino-pyridin-3-carbonitriles

Chemistry. Unless otherwise indicated, all starting materials, reagents and solvents were
purchased and used without further purification. After extraction from aqueous phases, the
organic solvents were dried over anhydrous sodium sulfate. The reactions were monitored by
thin-layer chromatography (TLC) on 2.5 mm Merck silica gel GF 254 strips, and each of the
purified compounds showed a single spot; unless stated otherwise, UV light and/or iodine
vapor were used to detect compounds. The synthesis of the target compounds was performed
in coated Kimble vials on a PLS (6x4) Organic Synthesizer with orbital stirring. Filtration and
washing protocols for supported reagents were performed in a 12-channel vacuum manifold.
The purity and identity of all tested compounds were established by a combination of HPLC,
elemental analysis, mass spectrometry and NMR spectroscopy as described below. Purification
of isolated products was carried out by column chromatography (Kieselgel 0.040-0.063 mm,
E. Merck) or medium pressure liquid chromatography (MPLC) on a CombiFlash Companion
(Teledyne ISCO) with RediSep pre-packed normal-phase silica gel (35-60 um) columns
followed by recrystallization. Melting points were determined on a Gallenkamp melting point
apparatus and are uncorrected. The NMR spectra were recorded on Bruker AM300 and XM500
spectrometers. Chemical shifts are given as & values against tetramethylsilane as internal
standard and J values are given in Hz. Mass spectra were obtained on a Varian MAT-711
instrument. Analytical HPLC was performed on an Agilent 1100 system using an Agilent
Zorbax SB-Phenyl, 2.1 mm x 150 mm, 5 pm column with gradient elution using the mobile
phases (A) H20 containing 0.1% CF3COOH and (B) MeCN and a flow rate of 1 mL/min. The
purity of all tested compounds was determined to be greater than or equal to 95% (work done
by CV and JA).
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The synthesis of the 4,6-substituted 2-amino-pyridin-3-carbonitriles 11-35 was done via the
one-pot synthetic route shown in Scheme 1. Varying both substituents on the ylidene
malononitrile and the ketone reagents resulted in a variation of the substituents on positions 4

and 6 of the pyridine ring.
Synthetic procedure

Substituted ylidene malononitrile (1.0mmol), ketone (1.0mmol) and ammonium acetate
(5.0mmol) in a 1:1 toluene/EtOH mixture (7mL) were stirred in a coated Kimble vial at 120°C
for 12-24 h. After reaction completion (TLC control), distilled water was added and the mixture
was extracted with ethyl acetate (3 x 10 mL). The organic phase was dried (Na>SO4) and
evaporated under reduced pressure to afford an oily residue that was purified by column
chromatography using n-hexane — ethyl acetate in 2:1 mixture (work done by CV and JA).

2-amino-6-(4-fluorophenyl)-4-phenylpyridine-3-carbonitrile (11)

Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.246 g, 85% yield (97% purity by HPLC). MP 226228 °C. *H NMR (300 MHz,
CDCI13), 6 (ppm) 8.08-7.95 (m, 2H), 7.69-7.58 (m, 2H), 7.60-7.47 (m, 3H), 7.23-7.09 (m,
3H), 5.34 (s, 2H). MS (El) m/z (%): 289.07 (M*, 100), 262.07 (7). Analysis calculated for
CigH12FNa: C, 74.73; H, 4.18; F, 6.57; N 14.52. Found: C, 74.70; H, 4.19; F, 6.55; N, 14.54.

2-amino-6-(4-hydroxyphenyl)-4-phenylpyridine-3-carbonitrile (12)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.227 g, 79% yield (96% purity by HPLC). MP 241-243 °C. *H NMR (300 MHz,
CDCI3), 6 (ppm) 9.92 (s, 1H), 7.99 (d, J = 8.6 Hz, 2H), 7.78-7.59 (m, 2H), 7.58-7.47 (m, 3H),
7.15 (s, 1H), 6.88 (s, 2H), 6.83 (d, J = 8.7 Hz, 2H). MS (EI) m/z (%): 287.04 (M*, 100), 259.89
(10). Analysis calculated for C1gH13N30: C, 75.25; H, 4.56; N, 14.63; O, 5.57. Found: C, 75.27;
H, 4.54; N, 14.62; O, 5.59.

2-amino-4-phenyl-6-(1,3-thiazol-2-yl)pyridine-3-carbonitrile (13)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.172 g, 62% yield (95% purity by HPLC). MP 154-156 °C. *H NMR (300 MHz,
CDCI13), & (ppm) 7.95 (d, J = 3.0 Hz, 1H), 7.72 (s, 1H), 7.66—7.65 (m, 2H), 7.52—7.50 (m, 4H),
5.30 (s, 2H). MS (El) m/z (%): 278.03 (M*, 100), 276.97 (45). Analysis calculated for
CisH10N4S: C, 64.73; H, 3.62; N, 20.13; S, 11.52. Found: C, 64.85; H, 3.48; N, 20.25; S, 11.42.
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2-amino-6-(1-methyl-1H-pyrrol-2-yl)-4-phenylpyridine-3-carbonitrile (14)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.189 g, 69% yield (98% purity by HPLC). MP 152153 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 7.67—7.54 (m, 2H), 7.56-7.42 (m, 3H), 7.30 (s, 1H), 6.91 (s, 1H), 6.66—6.59
(m, 2H), 5.23 (s, 2H), 3.70 (s, 3H). MS (EI) m/z (%): 274.14 (M*, 100). Analysis calculated for
Ci17H1aN4: C, 74.43; H, 5.14; N, 20.42. Found: C, 74.57; H, 5.12; N, 20.30.

2-amino-4-(2-methoxyphenyl)-6-phenylpyridine-3-carbonitrile (15)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.238 g, 79% yield (97% purity by HPLC). MP 199-200 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 8.03-7.93 (m, 2H), 7.52-7.41 (m, 4H), 7.31 (dd, J1 = 7.5 Hz, J2 = 1.8 Hz,
1H), 7.17 (s, 1H), 7.11-7.02 (m, 2H), 5.27 (s, 2H), 3.88 (s, 3H). MS (El) m/z (%): 301.16 (M",
100), 270.12 (7), 120.10 (16.3). Analysis calculated for C19H1sN3O: C, 75.73; H, 5.02; N,
13.94; O, 5.31. Found: C, 75.76; H, 5.04; N, 13.92; O, 5.33.

2-amino-4-(2,4-dimethoxyphenyl)-6-phenylpyridine-3-carbonitrile (16)
Purified by column chromatography (n-hexane—ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.238 g, 72% yield (99% purity by HPLC). MP 155-157 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 8.02-7.90 (m, 2H), 7.52-7.38 (m, 3H), 7.32-7.22 (m, 1H), 7.16 (s, 1H), 6.69—
6.55 (m, 2H), 5.25 (s, 2H), 3.88 (s, 3H), 3.86 (s, 3H). MS (El) m/z (%): 331.14 (M*, 100),
165.51 (9), 120.16 (11.3). Analysis calculated for C20H17N3O2: C, 72.49; H, 5.17; N, 12.68; O,
9.66. Found: C, 72.50; H, 5.19; N, 12.71; O, 9.70.

2-amino-4-(2H-1,3-benzodioxol-5-yl)-6-phenylpyridine-3-carbonitrile (17)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.236 g, 75% Yield (96% purity by HPLC). MP 220221 °C. *H NMR (300 MHz,
CDCI3), 6 (ppm) 8.12-7.86 (m, 2H), 7.56-7.38 (m, 3H), 7.20-7.08 (m, 3H), 6.95 (d,
J=8.0 Hz, 1H), 6.06 (s, 2H), 5.33 (s, 2H). MS (EIl) m/z (%): 315.11 (M*, 100), 157.52 (5).
Analysis calculated for C19H13N3O2: C, 72.37; H, 4.16; N, 13.33; O, 10.15. Found: C, 72.45;
H, 4.06; N, 13.49; O, 10.00.

2-amino-4-cyclohexyl-6-phenylpyridine-3-carbonitrile (18)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.216 g, 78% yield (98% purity by HPLC). MP 125-126 °C. *H NMR (300 MHz,
CDCl3) 6 (ppm): 7.95-7.92 (m, 1H), 7.53-7.43 (m, 3H), 7.05 (s, 1H), 6.73 (s, 1H), 5.22 (s,
2H), 2.90-2.85 (m, 2H), 1.90-1.78 (m, 4H), 1.52-1.39 (m, 4H), 1.33-1.25 (m, 1H). MS (EIl)
m/z (%): 277.25 (M, 74), 246.15 (56), 222.15 (100). Analysis calculated for CigH19Ns: C,
77.95; H, 6.90; N, 15.15. Found: C, 78.03; H, 6.96; N, 15.01.
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2-amino-4-cyclohexyl-6-(2-fluorophenyl)pyridine-3-carbonitrile (19)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.186 g, 63% yield (95% purity by HPLC). MP 126127 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 7.89 (td, J = 7.8, 1.9 Hz, 1H), 7.47-7.31 (m, 1H), 7.25-7.03 (m, 3H), 5.18 (s,
2H), 2.98-2.67 (m, 1H), 1.99-1.73 (m, 5H), 1.53-1.16 (m, 5H). MS (EI) m/z (%): 295.15 (M",
98.05), 263.05 (23.28), 251.00 (12), 240.00 (100). Analysis calculated for C1gH1sFN3: C, 73.20;
H, 6.14; F, 6.43; N, 14.23. Found: C, 73.22; H, 6.17; F, 6.44; N, 14.25.

2-amino-4-cyclohexyl-6-(2-methylphenyl)pyridine-3-carbonitrile (20)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.236 g, 81% yield (97% purity by HPLC). MP 120-121 °C. 'H NMR (300 MHz,
CDCI3), & (ppm) 7.73-7.10 (m, 4H), 6.71 (s, 1H), 5.20 (s, 2H), 2.95-2.77 (m, 1H), 2.35 (s,
3H), 2.01-1.69 (m, 5H), 1.56-1.34 (m, 4H), 1.34-1.18 (m, 1H). MS (E1) m/z (%): 291.14 (M",
100), 236.12 (48), 208.10 (91.7). Analysis calculated for C19H21N3: C, 78.32; H, 7.26; N, 14.42.
Found: C, 78.48; H, 7.18; N, 14.34.

2-amino-4-cyclohexyl-6-(thiophen-2-yl)pyridine-3-carbonitrile (21)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.167 g, 59% yield (98% purity by HPLC). MP 160162 °C. *H NMR (300 MHz,
CDCI3), 6(ppm) 7.63-7.62(m, 1H), 7.44 (d, J = 4.5 Hz, 1H), 7.12-7.09 (m, 1H), 6.96 (s, 1H),
5.14 (s, 2H), 2.82-2.79 (m, 1H), 1.90-1.78 (m, 5H), 1.55-1.43 (m, 4H), 1.30-1.19 (m, 1H).
MS (El) m/z (%): 283.04 (M*, 100), 251.99 (19), 228.02 (92). Analysis calculated for
Ci6H17N3S: C, 67.81; H, 6.05; N, 14.83; S, 11.31. Found: C, 67.89; H, 6.13; N, 14.77; S, 11.21.

2-amino-4-cyclohexyl-6-(thiophen-3-yl)pyridine-3-carbonitrile (22)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.147 g, 52% yield (96% purity by HPLC). MP 145-146 °C.*H NMR (300 MHz,
CDCI3), 8(ppm) 7.94 (dd, J = 3.0, 1.3 Hz, 1H), 7.59 (dd, J = 5.1, 1.3 Hz, 1H), 7.38 (dd, J = 5.1,
3.0 Hz, 1H), 6.93 (s, 1H), 5.14 (s, 2H), 2.95-2.73 (m, 1H), 2.06-1.73 (m, 5H), 1.56-1.37 (m,
4H), 1.38-1.19 (m, 1H). MS (El) m/z (%):(%): 283.07 (M*, 100), 228.04 (93), 214.96 (52).
Analysis calculated for C16H17NsS: C, 67.81; H, 6.05; N, 14.83; S, 11.31. Found: C, 67.91; H,
6.09; N, 14.67; S, 11.33.

2-amino-4-cyclohexyl-6-(furan-2-yl)pyridine-3-carbonitrile (23)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.174 g, 65% yield (98% purity by HPLC). MP 177-178 °C. *H NMR (300 MHz,
CDCI13), d(ppm) 7.55 (dd, J =1.7, 0.8 Hz, 1H), 7.06 (dd, J = 3.4, 0.8 Hz, 1H), 7.03 (s, 1H),
6.54 (dd, J = 3.5, 1.8 Hz, 1H), 5.15 (s, 2H), 3.01-2.68 (m, 1H), 2.04-1.74 (m, 5H), 1.55-1.39
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(m, 4H), 1.34-1.20 (m, 1H). MS (El) m/z (%): 267.11 (M*, 100), 212.02 (69). Analysis
calculated for C16H17N3O: C, 71.89; H, 6.41; N, 15.72; O, 5.98. Found: C, 71.91; H, 6.43; N,
15.71.
2-amino-6-(2-fluorophenyl)-4-(4-methoxyphenyl)pyridine-3-carbonitrile (24)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.188 g, 59% yield (97% purity by HPLC). MP 180181 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 7.96 (td, J1 = 7.8, J2 = 1.9 Hz, 1H), 7.65-7.58 (m, 2H), 7.47-7.37 (m, 1H),
7.31-7.23 (m, 2H), 7.23-7.09 (m, 1H), 7.09-6.98 (m, 2H), 5.32 (s, 2H), 3.88 (s, 3H). MS (EI)
m/z (%): 319.12 (M*, 100), 304.18 (12), 249.13 (16). Analysis calculated for C19H14FN3O: C,
71.46; H, 4.42; F, 5.95; N, 13.16; O, 5.01. Found: C, 71.48; H, 4.44; F, 5.97; O, 5.05.
2-amino-4-(4-methoxyphenyl)-6-(2-methylphenyl)pyridine-3-carbonitrile (25)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.205 g, 65% vield (95% purity by HPLC). MP 151-152 °C. 'H NMR (300 MHz,
CDCI3), & (ppm) 7.61 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 7.37-7.27 (m, 3H), 7.03
(d, J=8.2 Hz, 2H), 6.86 (s, 1H), 5.32 (s, 2H), 3.87 (s, 3H), 2.42 (s, 3H). MS (El) m/z (%):
314.10 (M*, 100), 271.06 (7), 208.11 (52). Analysis calculated for C20H17N3O: C, 76.17; H,
5.43; N, 13.32; O, 5.07. Found: C, 76.31; H, 5.33; N, 13.52; O, 4.84.
2-amino-6-(furan-2-yl)-4-(4-methoxyphenyl)pyridine-3-carbonitrile (26)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.198 g, 68% yield (99% purity by HPLC). MP 205-207 °C. *H NMR (300 MHz,
CDCl3) 6 (ppm): 7.65-7.54 (m, 3H), 7.16 (s, 1H), 7.11 (d, J = 3.5 Hz, 1H), 7.03 (d, J = 8.8 Hz,
2H), 6.62-6.51 (m, 1H), 5.30 (s, 2H), 3.88 (s, 3H). MS (EI) m/z (%): 291.12 (M™, 100), 145.63
(5). Analysis calculated for C17H13N302: C, 70.09; H, 4.50; N, 14.42; O, 10.98. Found: C,
70.21; H, 4.38; N, 14.68, O, 10.73.
2-amino-6-(4-hydroxyphenyl)-4-(4-methoxyphenyl)pyridine-3-carbonitrile (27)
Purified by column chromatography (n-hexane- ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.222 g, 70% yield (99% purity by HPLC). MP 248-250 °C. *H NMR (300 MHz,
CDCI13), & (ppm) 9.89 (s, 1H), 7.98 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 7.11-7.06 (m,
3H), 6.84-6.81 (m, 4H), 3.82 (s, 3H). MS (EI) m/z (%): 317.17 (M*, 100), 302.04 (6), 158.50
(14). Analysis calculated for C19H1sN3O2: C, 71.91; H, 4.76; N, 13.24; O, 10.08. Found: C,
71.94; H, 4.79; N, 13.25; O, 10.11.
2-amino-4,6-bis(2-fluorophenyl)pyridine-3-carbonitrile (28)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.219 g, 73% yield (98% purity by HPLC). MP 180181 °C. *H NMR (300 MHz,
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CDCI13), 6 (ppm) 8.05-7.90 (m, 1H), 7.56-7.41 (m, 2H), 7.33-7.06 (m, 6H), 5.34 (s, 2H). MS
(El) m/z (%): 307.06 (M*, 100), 279.99 (8). Analysis calculated for C1gH11F2N3: C, 70.35; H,
3.61; F, 12.36, N, 13.67. Found: C, 70.37; H, 3.63; F, 12.33; N, 13.66.
2-amino-6-(2-fluorophenyl)-4-(2-methoxyphenyl)pyridine-3-carbonitrile (29)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.245 g, 78% yield (97% purity by HPLC). MP 187-188 °C. *H NMR (300 MHz,
CDCI3), & (ppm) 7.97 (td, J=7.8, 1.9 Hz, 1H), 7.52-7.35 (m, 2H), 7.31 (td, J=7.2, 1.5 Hz,
1H), 7.26-7.19 (m, 2H), 7.17-6.95 (m, 3H), 5.27 (s, 2H), 3.88 (s, 3H). MS (EI) m/z (%): 319.12
(M*, 100), 290.14 (7), 138.01 (14). Analysis calculated for C19H1aNsFO: C, 71.46; H, 4.42; F,
5.95; N, 13.16; O, 5.01. Found: C, 71.44; H, 4.43; F, 5.92; O, 5.04.
2-amino-4-(2-methoxyphenyl)-6-(2-methylphenyl)pyridine-3-carbonitrile (30)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.186 g, 64% yield (98% purity by HPLC). MP 181-183 °C. 'H NMR (300 MHz,
CDCl3) 6 (ppm): 7.47-7.40 (m, 2H), 7.32-7.28 (m, 4H), 7.09-7.02 (m, 2H), 6.86 (s, 1H), 5.29
(s, 2H), 3.88 (s, 3H), 2.43 (s, 3H). MS (El) m/z (%): 315.13 (M*, 100), 298.16 (12), 284.09
(18), 208.10 (81.6). Analysis calculated for C20H17N3O: C, 76.17; H, 5.43; N, 13.32; O, 5.07.
Found: C, 76.19; H, 5.41; N, 13.36; O, 5.03.
2-amino-6-(furan-2-yl)-4-(2-methoxyphenyl)pyridine-3-carbonitrile (31)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.244 g, 77% yield (96% purity by HPLC). MP 187-188 °C. H NMR (300 MHz,
CDCls), & (ppm): 7.55 (s, 1H), 7.44 (t, J=8.1 Hz, 1H), 7.30 (dd, J= 7.4, 1.7 Hz, 1H), 7.15-
6.98 (m, 4H), 6.54 (dd, J = 3.3, 1.7 Hz, 1H), 5.24 (s, 2H), 3.87 (s, 3H). MS (EI) m/z (%): 291.10
(M7, 100), 262.14 (10). Analysis calculated for C17H13N3O2: C, 70.09; H, 4.50; N, 14.42; O,
10.98. Found: C, 70.11; H, 4.51; N, 14.41; O, 11.01.
2-amino-6-(4-hydroxyphenyl)-4-(2-methoxyphenyl)pyridine-3-carbonitrile (32)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.193 g, 60% yield (96% purity by HPLC). MP 210-212 °C. *H NMR (300 MHz,
DMSO-ds), 6 (ppm): 9.91 (s, 1H), 7.93 (d, J = 9.0 Hz, 2H), 7.45 (t, J = 7.8 Hz, 1H), 7.29 (dd,
J=7.4,17Hz 1H), 7.16 (d, J =8.3 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.03 (s, 1H), 6.82 (d,
J=8.9 Hz, 2H), 6.77 (s, 2H), 3.77 (s, 3H). MS (EIl) m/z (%): 317.13 (M*, 100), 300.09 (8),
286.11 (6). Analysis calculated for C19H1sN3O2: C, 71.91; H, 4.76; Cl, 13.24; O, 10.08. Found:
C, 71.92; H, 4.74; Cl, 13.27; O, 10.05.
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2-amino-4-(2-chlorophenyl)-6-(4-hydroxyphenyl)pyridine-3-carbonitrile (33)
Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.179 g, 59% yield (98% purity by HPLC). MP 215-217 °C. *H NMR (300 MHz,
DMSO-d¢), & (ppm): 9.90 (s, 1H), 8.16-7.22 (m, 2H), 7.69-7.30 (m, 4H), 7.16-6.50 (m, 5H).
MS (EI) m/z (%): 320.99 (M™, 100), 286.04 (5). Analysis calculated for C1gH12CIN3O: C, 67.19;
H, 3.76; CI, 11.02; N, 13.06; O, 4.97. Found: C, 67.37; H, 3.94; Cl, 11.18; N, 12.88; O, 4.63.

2-amino-4,6-bis(4-hydroxyphenyl)pyridine-3-carbo-nitrile (34)

Purified by column chromatography (n-hexane—ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.151 g, 53% yield (97% purity by HPLC). MP 299-300 °C. *H NMR (300 MHz,
DMSO-d¢), & (ppm) 9.92 (s, 2H), 8.19-7.79 (m, 2H), 7.68-7.37 (m, 2H), 7.42-6.99 (m, 1H),
7.01-6.62 (m, 6H). MS (El) m/z (%): 303.06 (M*, 100), 184.01 (6). Analysis calculated for
C1sH13N302: C, 71.28; H, 4.32; N, 13.85; O, 10.55. Found: C, 71.40; H, 4.54; N, 13.75; O,
10.31.

2-amino-4-(furan-2-yl)-6-(thiophen-3-yl)pyridine-3-carbonitrile (35)

Purified by column chromatography (n-hexane-ethyl acetate 2:1) and then recrystallized from
EtOH to give 0.123 g, 46% yield (95% purity by HPLC). MP 156-157 °C. *H NMR (300 MHz,
CDClz) 6(ppm): 8.01 (dd, J = 3.0, 1.2 Hz, 1H), 7.66 (dd, J = 5.1, 1.2 Hz, 1H), 7.62 (dd, J = 1.8,
0.6 Hz, 1H), 7.48 (dd, J = 3.6, 0.6 Hz, 1H), 7.45 (s, 1H), 7.40 (dd, J=5.1, 3.0 Hz, 1H), 7.40
(dd, J=5.1, 3.0 Hz, 1H), 6.61 (dd, J = 3.6, 1.8 Hz, 1H), 5.26 (s, 2H). MS (EI) m/z (%): 267.06
(M*, 100), 237.98 (6), 210.99 (7). Analysis calculated for C14HgN3OS: C, 62.91; H, 3.39; N,
15.72; 0, 5.99; S, 11.99. Found: C, 63.11; H, 3.47; N, 15.58; O, 5.97; S, 11.87.

3.2.9.2 Pharmacological evaluation of novel 4,6-substituted 2-amino-pyridin-3-

carbonitriles

Pharmacological evaluation was performed by CV. The assay used a radioligand binding
competition assay, with Az, Aza, Azs, and Az human receptors expressed in transfected CHO
(A1), HelLa (A2a and Asz), and HEK-293 (A2g) according to the procedure reported by Bosch et
al.[385]

The activity measurements against the phosphodiesterases PDE7A, PDE7B, PDE9A and
PDE10A were performed using AD293 cells that were transiently and separately transfected
with human PDE7A, PDE7B, PDE9A, and PDE10A following the procedure described by

Shipe et al.[386] The ICso values were obtained by fitting the data with non-linear regression
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using Prism 2.1 software (GraphPad, San Diego, CA),[387] and the reported results are the
mean of three experiments (n = 3) each performed in duplicate.

3.3 Results and Discussion
3.3.1 Design of synthetically feasible A1R/A2aR-PDE10A multi-target ligands

Human enzyme and receptor data were extracted from ChEMBL 20.[171] Substructure
analysis of AiR, A2aR ligands and PDE10A inhibitors with K; and 1Cso values less than or
equal to 1 uM revealed that the most frequently occurring common heterocycles among the
actives against the three target classes were pyridine, pyrimidine, piperazine, and 1H-pyrazole
(Figure 19). Subsequently, AR (2,104), A2aR (2,489) and PDE10A inhibitors (679) containing
those frequent heterocycles were subjected to RECAP analysis/synthesis in MOE (see Methods
for details). As a result, 458,839 (potentially) synthetically accessible ligands were found in
silico. This list of candidates was filtered to those retaining the common heterocycles (listed
above), in order to create a focused chemical space characteristic of AiR, A2aR and PDE10A

(with the simultaneous trade-off of reduced novelty), giving rise to 22,233 compounds.
3.3.2 Target prediction of the designed RECAP library

To assess the likelihood of active compounds against AiR, AaR and PDE10A via a
complementary approach, PIDGIN 1.0 (Prediction including Inactivity), a tool which uses
ECFP 4 circular Morgan fingerprints trained on ChEMBL actives and PubChem inactives was
used to perform in silico target prediction for the focused RECAP library (22,233
compounds).[133] Subsequent enrichment analysis of the predictions was done using an
estimation score, the average ratio as developed by Liggi et al[366] and via a Chi-square test.
For targets to be considered as enriched according to these methods, the estimation score and
the Chi-square test p value should be less than or equal to 0.01 and 0.05, respectively. Hence,
upon analyzing the enrichment parameters for the A1R, A2aR and PDE10A targets that were
predicted for the focused RECAP library (Figure 20), the three targets were predicted with an
estimation score equal to 0 (enriched) as well as average ratios less than 0.1 (enriched) with
Chi-squared p values less than 0.005. The percentage of RECAP compounds of the focused
library that were predicted as actives against the AiR, A2aR and PDE10A targets were 51.1%,
52.8%, and 24.5% respectively. These numbers are relatively high, which however is
understandable given that the input to the RECAP analysis consisted of experimentally

established known ligands of the above protein targets.
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3.3.3 Docking of the compounds predicted as A1R/A2aR-PDE10A multi-target ligands

In the next step, docking and further substructure analysis were performed on compounds of
the focused RECAP library, which were predicted as A1R/A2aR-PDE10A multi-target ligands
from the ligand-based side in the previous step. 2,563 compounds were predicted as actives
against the three desired targets and they were subsequently docked against a high resolution
(1.8A) AzaR protein crystal structure (PDB ID: 4E1Y)[368], its corresponding A:R homology
model (see Methods for details) and PDE10A (PDB ID: 4DDL).[369]

Compounds, which were carried forward to substructural analysis, were selected when their
docking score gave a value less than a pre-determined cut-off value computed from the docking
scores. This cut-off value was evaluated as the docking score with the best F measure statistic
obtained by docking a set of known actives and inactives against the protein crystal structures
and the homology model (see Methods for details).

As a result, a distribution of RECAP compounds that were favorable as multi-target ligands by
target prediction and docking was obtained, where 62.47% of the RECAP compounds that were
predicted as AiR/A>aR-PDE10A multi-target ligands and docked against PDE10A exhibited
docking scores lower than -6.49 (the threshold of the best F measure discriminating between
actives and inactives for known ligands). Out of the RECAP compounds, which displayed
docking scores, lower than -6.49 against PDE10A, 48.89% and 35.23% displayed docking
scores lower than -7.26 and -8.49 against A1R and A2aR (the thresholds of the best F measures).

3.3.4 Substructure analysis of the compounds predicted as A1R/A2aR-PDE10A multi-
target ligands

Substructure analysis was performed on compounds having a favorable assessment by target
prediction and docking (i.e. those compounds whose docking scores were below the threshold
for all three targets). The analysis revealed frequently occurring series, which shared the same

core structure, and are shown in Figure 22.

The chemical series were identified as [1,2,4]triazolo[1,5-c]quinazolines (50.4% of all
positively predicted multi-target ligands by in silico target prediction as well as docking),
imidazo[1,5-a]quinoxalines (14.4%), 6,7-alkoxyisoquinolines (10.6%), and 2-aminopyridine-
3-carbonitriles (9.2%). These were in addition to various compounds containing the common
and frequent heterocycles identified earlier (15.4%). Each series identified could be considered
for synthesis, SAR studies and validation as A1R/A2aR-PDE10A multi-target ligands.
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3.3.5 Synthesis of novel 2-aminopyridine-3-carbonitriles

Due to both ease of the reaction and anticipated yield, a one-pot synthetic scheme was selected
for synthesizing one promising series, 2-aminopyridine-3-carbonitriles. The design resulted in
25 compounds for synthesis of which 21 were novel compounds and four (11, 12, 15, and 27)
have previously been reported in the literature.[388—391] Compounds 11-35 were synthesized
according to the synthetic route illustrated in Scheme 1, and all products were obtained with
good yields, ranging from 46% to 85% (see Methods for details).

3.3.6 Pharmacological evaluation of novel 2-aminopyridine-3-carbonitriles

Bioactivity testing was performed using A; and Axa human adenosine receptors expressed in
transfected CHO (A1) and HelLa (A2a) cells, as well as AD293 cells that were transiently
transfected with human PDE10A. Table 3 includes the list of synthesized 4,6-substituted 2-
amino-pyridin-3-carbonitriles, along with their K; values against AiR, A2aR, and ICso values
against PDE10A. It can be seen that 15 compounds of the 25 synthesized 2-amino-pyridin-3-
carbonitriles exhibited inhibitory activity against PDEIOA below 10 uM. In addition, 13
compounds were adenosine receptor binders exhibiting selectivity towards A;1R and A2aR,
which is a new profile not seen in previous work reported by Mantri et al., where 2-amino-

pyridin-3-carbonitriles were promiscuous towards the four adenosine receptor subtypes.[390]

Given that the objective of this work is to find compounds displaying specific multi-target
activity, compounds 18, 26, 31, and 35 were identified as AiR/A2aR-PDE10A multi-target
ligands, inhibiting PDE10A with ICso values of 2.4, 3.2, 10.0, and 5.1 uM respectively, and
binding to A:R with K; values of 294 and 34 nM (compounds 18 and 26, respectively), and to
AxaR with K values of 41, 95, and 55 nM (compounds 26, 31, and 35, respectively). Notably,
compound 26 exhibited the desired multi-target profile as a PDE10A inhibitor and a dual binder
to AcaRand A(R.

It was previously reported that substituted pyridines exhibited PDE inhibitory activity,[392,
393] and 2-amino-pyridin-3-carbonitriles are adenosine receptor ligands.[390] In this study
suitable compounds matching both criteria as AiR/A;aR-PDE10A multi-target ligands,

satisfying the original compound design objective have now been identified.
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Table 3. Percent inhibition of the synthesized 4,6-substituted 2-amino-pyridin-3-carbonitriles
at 10 uM (PDE10A) or ICso (uM)? and percentage displacement at 0.1 uM (A1R and A2aR), or
KiP

% Inhibition at 10 pM (PDE10A)
or 1Cso (uM)
% displacement at 0.1 pM (A:R and A2aR)
Compound R4 Rs or Ki
AR AcaR PDE10A
F
,/J:C:r-
11 [| 1 394 + 12 nM 32% 22%
OH
12 142 £ 7 nM 38% 52%
[s
13 12% 8% 20+£0.2uM
N/)\/ [
/\
14 °N 26% 32% 3.6+£0.3uM
¢H,
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15 @ & 53% 543 + 13 nM 28%
I
O/
16 12% 1% 5.7 0.3 uM
0O
I
9=\
0
17 25+2nM 5% 17%
18 @ 294 + 10 nM 50% 2.4%0.2 uM
19 @ . 84 +8nM 34% 68%
20 @cm 17% 18% 3.70.3 uM
21 / S\ 16% 11% 1220.1 uM
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S
22 {/ /f 44% 60% 0.9+ 0.2 uM
23 /o\ 70+3nM | 49+4nM 550
24 @\ - | 108£6nM 30% 10%
O/
25 - 6% 32% 1.5+ 0.2 uM
3
m 34 0M £ 2
26 / 41+2nM | 3.2+04 M
0 nM
OH
27 @ 46% 29% 65%
28 @\ . 78+50M | 948 +13nM 38%
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29 @ . 58% | 338+12nM | 73%
30 @CHJ 12% 50% | 6.4+0.4 uM
0
|
7\ 10.0 £ 0.6
31 O\/ 38% 95 + 4 nM
(0] uM
OH
32 @ 8% 1% 5.6+ 0.5 UM
33 i 20% 0% | 40+03uM
OH
OH ;
34 19% 7% 3.1+ 0.4 uM
O_f‘*-. / S
35 = {/f 15% 55+2nM | 5.1+0.4 uM

(a) 1Cso values of the 2-aminopyridines-3-carbonitriles were measured for the four
phosphodiesterases PDE7A, PDE7B, PDE9A and PDE10A at 10 uM concentration. For those
compounds that showed percentage inhibition greater than 70% and selectivity against other
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measured isoenzymes, ICso were determined (b) Calculation of the K; values at AiR, A2aR,
AR and A3zR was approximated using the Cheng-Prusoff equation: K; =ICso/[1 + (C/Kp)],
where ICsp is the concentration of compound that displaces the binding of the radioligand by
50%, C is the concentration of radioligand, and Kp is the dissociation constant of each
radioligand.

3.3.7 (SAR) Structure-activity relationship analysis

The purpose of the SAR analysis was to rationalize the variation in activity of the newly
discovered AiR/AaR-PDE10A multi-target ligands against PDE10A, given that 2-amino-
pyridin-3-carbonitriles are a novel class of PDE10A inhibitors. Compounds of this
substructural class were also previously documented as adenosine receptor ligands.[390]
Computational SAR studies focused on the PDE10A data, where the variation in potency was
rationalized in relation to the physicochemical properties of the compounds (which were
computed by FAFDrug3, Table 4).

A trend observed repeatedly in several cases was that when logP decreased, associated with an
increase in tPSA, then this led to an improvement in the activity against PDE10A. Initial
analysis concentrated on compounds 11-14, which have a phenyl substituent at position 4 of
the pyridine ring. Compound 13 was the most potent PDE10A inhibitor with an ICso of 2.0
1M, and a computed logP of 3.1 and tPSA of 103.9A2. Similarly, for compounds 15-17 having
a phenyl substituent at position 6 of the pyridine ring, compound 16 was the most potent against
PDE10A with an 1Cso of 5.7 uM and a computed logP of 4.0 and tPSA of 81.2A% For
compounds 18-23, which have a cyclohexyl ring at position 4 of the pyridine ring, compound
22 displayed the most potent PDE10A inhibitory activity with an 1Cso of 0.9 uM and a
computed logP of 4.7 and tPSA of 90.9A2. For compounds 24-27, with a p-methoxyphenyl
substituent at position 4 of the pyridine ring, compound 26 with the smallest predicted
lipophilicity of 3.1 and tPSA of 85.1A2? displayed a good PDE10A inhibitory activity with an
ICso value equal to 3.2 uM. A more potent compound was 25 with an 1Csg value of 1.5 M and
a computed logP of 4.4 and tPSA of 71.9A2. For compounds 29-32, with an o-methoxyphenyl
substituent at position 4 of the pyridine ring, compound 32 displayed PDE10A inhibitory
activity with a higher potency (I1Cso value of 5.6 uM), and a computed logP of 3.7 and tPSA of
92.2A2. Finally, a similar general trend is observed for the compounds 33 and 34 with a 4-
hydroxyphenyl substituent at position 6 of the pyridine ring, where compound 34 was a more
potent PDE10A inhibitor with an 1Csp of 3.1 uM and computed logP of 3.4 and tPSA of

103.2A2. Hence, it could be deduced that in the majority of the series considered, where the
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substituents on a single position is varied, a decrease in computed lipophilicity associated with
an increase in polarity generally improved the activity of compounds against PDE10A. This
general trend can be attributed to the hydrophilic nature of the pocket, which favors the
interactions between the ligand and the PDE10A protein by compounds exhibiting these
properties.

Table 4. Physicochemical properties (LogP and tPSA) computed for the synthesized 4,6-
substituted 2-amino-pyridin-3-carbonitriles using FAFDrug3 ADME-Tox tool

R,

\CN

| —

Ry~ N7 NH,

Compound R4 Re logP tPSA (A?)
F
.f’J:C.‘r-
11 I ] 4.2 62.7
OH
12 3.7 82.9

13 [i\/ 3.1 103.8

14 N 2.8 67.6
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71.9

81.2

81.2

62.7

62.7

62.7

90.9

4.0

4.0

3.9

5.0

5.1

4.7

¢

;

15

16

17

18

19

20

21
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90.9

75.8

71.9

71.9

85.1

92.2

62.7

4.7

4.1

4.1

3.1

3.6

4.3

OH

:

22

23

24

25

26

27

28
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62.7

71.9

85.1

92.2

82.9

103.2

104.1

4.3

3.1

3.7

4.3

3.4

2.8

OH

OH

»3

OH

29

30

31

32

33

34

35
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3.3.8 Compound selectivity assessment

The selectivity of compounds 11-35 against the selected major off-targets AzsR, AsR, PDE7A,
PDE7B, and PDE9A, was predicted using PIDGIN at a threshold for binding greater than or
equal to 0.8, and subsequently tested experimentally. The 1Cso values were determined for
compounds with % inhibition at phosphodiesterases greater than 70%. As shown in Table 5,
the synthesized compounds are mostly inactive against those off-targets except for compounds
26, 27, 31, and 33 that exhibited 1Cso values of 3.4, 3.5, 15.1 and 1.8 uM against PDE7A, and
compounds 33 and 35, which exhibited ICso values of 7.3 and 4.7 uM against PDE7B.
Remarkably, compound 18 was found to exhibit selectivity over all tested off-targets using the
above criterion, with the lowest selectivity measured for PDE7B (of 55% inhibition at 10 uM
ligand concentration). This can be compared to the I1Cso value of 18 at PDE10A, which is 2.4
UM (indicating approximately 2-fold selectivity for 18).

In general, the experimental results on off-targets for the synthesized 4,6-substituted 2-amino-
pyridin-3-carbonitriles 11-35 agree with the predictions generated using PIDGIN utilized to
bias the compound design towards more selective compounds such as 18 (Table 5). This
compound would serve as a good starting point for analog modification to improve selectivity
of the synthesized ligands towards PDE10A.
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Table 5. Percentage inhibition of the synthesized 4,6-substituted 2-amino-pyridin-3-
carbonitriles at 10uM (PDE7A, PDE7B, PDE9A), or I1Cso (uM) and percentage displacement
at 0.1uM (A2eR and AsR), or K;

R,

\CN

L.
Ry~ N7 NH,

Compound| Rs Re AR A:R | PDE7A |PDE7B | PDE9YA
F
.f’lx“.‘r-

11 I ] 2% 27% 9% 28% 1%
OH

12 2% 2% 47% 39% 1%
S

13 (/; ,)\/ 3% 6% 24% 36% 5%
/R

14 N 5% 13% 50% 48% 2%
CH,

15 & @ 5% 26% 24% 30% 3%

I
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16 1% 6% 51% 27% 1%

0]

I

O

’\O
17 1% 2% 22% 8% 19%
18 @ 1% 13% 26% 55% 30%
19 @ F 2% 7% 19% 34% 1%
20 @\CH;, 1% 28% 31% 35% 9%
21 <S \ 1% 26% 33% 45% 6%

j S

22 G/j\ 2% 14% 29% 60% 3%
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23 o 3% 19% 44% 41% 4%
24 @ F 1% 27% 22% 20% 7%
O/
25 CH.- 4% 17% S571% 55% 16%
/R 34+04
26 33% 21% 30% 2%
(0] uM
OH
35204
27 1% 8% 44% 7%
uM
28 F @ F 1% 1% 25% 36% 0%
29 @ F 2% 1% 49% 42% 19%

—0O
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30 3% 6% 31% 23% 129
= 15.1+ 0.6
31 206 23% 30% 17%
0 uM
OH
32 @ 1% 206 63% 16% 9%
18+03 | 7.3+£03
33 & 8% 1% 250
OH M M
OH ;
34 1% 1% 47% 38% 7%
o f 3 47+0.4
35 = 7 506 204 48% y 14%
T
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3.3.9 Analysis of the predicted binding modes of the synthesized 2-aminopyridine-3-

carbonitriles

The synthesized 2-aminopyridine-3-carbonitriles were docked against A2aR (PDB ID: 4EIY),
the A:R homology model, and PDE10A (PDB ID: 4DDL). Figure 23 shows the common
predicted ligand-target interactions for representative multi-target ligands of A{R-PDE10A,
AiR-A24R, and A2aR-PDE10A, namely for compounds 18, 28, and 35.

It can be seen that compounds 18 and 35, with I1Cso values of 2.4 and 5.1 uM respectively, share
similarities in predicted binding modes, since their pyridine rings display n-stacking with
Phesgs and Phe719 of PDE10A (Figure 23). These are the type of interactions predicted to be
exhibited by the majority of the synthesized ligands from this work, as well as the only existing
interactions between co-crystallized PDE10A inhibitors discovered by fragment screening
(PDB IDs: 5C2E, 5C1W, 5C29, 5C2A having ligands with K; values of 2, 8,700, 880, and 4.8
nM, respectively).[386] It is noted that the ligand bound to 5C2A exhibits a considerable
selectivity towards PDE10A over all the other PDEs (in the range of 100-1000 fold and greater
over the majority of PDEs, with the least selectivity observed being in the range of 25-100
fold). This ligand exhibits only m-stacking interactions with Pheegs and Phe71g, similar to the
mode of interactions of compound 18 with PDE10A, which is relatively selective over all tested
PDEs, with the lowest selectivity being measured for PDE7B (of 55% inhibition at 10 uM
ligand concentration) and compound 35, which is selective against all tested PDEs except
PDE7B (Tables 3 and 5). Additional interactions were seen in analogs discovered by fragment
screening, namely hydrogen bonding with Glnzis and Tyress in the PDE10A selectivity pocket
(PDB IDs: 5C28 and 5C2H with K; values of 2200 and 0.0082 nM respectively).[386] The
ligand bound to 5C2H exhibits n-stacking with Phesgs and Phe719 and hydrogen bonding with
Tyregs in the PDE10A selectivity pocket. The 5C2H ligand showed a very high selectivity
towards PDE10A, greater than 5000-fold, which emphasizes the consideration of compound
18 for analog modification to target the selectivity pocket in order to improve the selectivity
towards PDE10A. In addition, hydrogen bonding with Tyress in the PDE10A selectivity pocket
is also seen in many other highly selective PDE10A inhibitors reported in the literature[394]
(PDB IDs: 5DH5,[395] 5B4L,[396] with Ki =0.23 nM, and ICso =0.76 nM respectively). This
further highlights the importance of analog modification to target the PDE10A selectivity
pocket.
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Figure 23. Docking studies predicted molecular interactions characteristic of the 4,6-
substituted 2-amino-pyridin-3-carbonitriles with the A>aR protein crystal structure (PDB ID:
4ElY), A:R homology model, and PDE10A protein crystal structure (PDB ID: 4DDL), which
are displayed for representative multi-target ligands with the following combinations:
compound 18 (A:R-PDE10A), 28 (A:R-A2aR), and 35 (A2aR-PDE10A) a. interactions with
AxaR-the overlaid compounds 28 and 35 exhibit H-bonds via amino and carbonitrile groups
with Asnzss, and the pyridine rings are m-stacked with Pheisg b. interactions with AiR-the
overlaid compounds 18 and 28 exhibit H-bonds via amino and carbonitrile groups with Asnasa,
and the pyridine rings are m-stacked with Phei7: c. interactions with PDE10A-the overlaid
compounds 18 and 35 have the pyridine rings n-stacked with Phesgs and Phe719. The molecular
interactions predicted for the active molecules are consistent with observed interactions
between co-crystallized ligands and their corresponding protein crystal structures (PDB IDs:
4E1Y and 4DDL) and the interactions with the A1R homology model reported in the literature.

Moreover, it is noted that compounds 26 and 31 with ICso values of 3.2 and 10.0 uM
respectively (which are selective against all tested PDEs except PDE7A, Tables 3 and 5) were
predicted to exhibit an additional type of interaction, H-bonding with Glnzs6 via their overlaid
furan rings at position 6 of the pyridine ring (Figure 24). In fact H-bonding with Glnz1s was the
only interaction, besides n-stacking with Phesgs and Phez19, which has been observed in many
of the highly selective PDE10A ligands reported in the literature (PDB I1Ds: 4DDL,[369] 3SN7,
3SNL, and 3SNI,[379] 5DH4 and 5DH5[395] with 1Cso values 0f 4.9, 0.7, 0.7, 11 nM and K; =
0.23 nM respectively). As for other type of interactions generally exhibited by known PDE10A
inhibitors such as hydrogen bonding with Glnz2¢ and m-stacking with Phe7ze (PDB ID: 5EDE),

[397]none were predicted for any of the compounds presented in this work.

98



PHE 686
GLN 711&
.‘ v
- [

Figure 24. Docking studies predicted molecular interactions for the overlaid compounds 26
and 31 with PDE10A: n-stacking of the pyridine rings with Pheggs and Pher1g, and H-bonding
with GlIn716 via their overlaid furan rings at position 6 of the pyridine ring

Common predicted binding modes could also be observed for the synthesized compounds
against the adenosine receptors A2aR and AiR. Figure 23 displays the interactions of two
representative compounds 28 and 35, which exhibit K; values of 948 and 55 nM respectively.
These are H-bonding of their pyridine rings with Asnzs3 and =-stacking of their amino and
carbonitrile groups with Pheisg of A2aR. As for A:R, the overlaid compounds 18 and 28, with
Ki values of 294 and 78 nM respectively, H-bond via their amino and carbonitrile groups with
Asnzss, and their pyridine rings are m-stacked against Phei71. It can be observed that the
ligand/protein interactions predicted for the active compounds against the A2aR are also those
seen in the co-crystallized ligand/protein crystal structures (PDB IDs: 4EI1Y,[368] 3EML,[398]
51U4,[399] with a K; value of 0.8 nM for ZM 241385, which is the ligand common to the three
PDB IDs). The interactions with the A:R are similar to those reported with the A:R homology
model (for ligands with 1Cso values of 2.9 and 6.2 nM (from the literature) and predicted to
interact with the AR homology model).[400, 401]

Generally, the compounds exhibited good selectivity towards A;R and A2aR (Tables 3 and 5)
with a nanomolar range of binding affinities. As for the selectivity towards PDE10A, this could
be improved by analog modification of compound 18 to favor the hydrogen bonding interaction
with Tyregz in the PDEL10A selectivity pocket. In addition, the potency of compounds against

PDE10A could also be optimized to achieve therapeutically relevant efficacy.
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3.3.10 Computational assessment of CNS permeability

Compounds 18 and 26 exhibited the desired multi-target profile by inhibiting PDE10A and
binding to A2aR and/or AiR. The physicochemical properties of these compounds were
calculated by FAFDrug3,[313] and both compounds passed Lipinski rule of 5 and the CNS
filter, which takes into consideration the assessment of their ability to pass the blood brain
barrier (Figure 25).[304] Hence, while further experimental work would be needed to establish
the validity of those predictions, compounds 18 and 26 may serve as good starting points for
further functional efficacy assessment and selectivity optimization towards PDE10A, A2aR
and/or AiR for subsequent consideration of development for the treatment of

neurodegenerative diseases.

A, HBA B. HBA

weo /S Heo [

Figure 25. Compounds 18 and 26 (represented in A. and B. respectively), have passed the CNS
filter which takes into consideration the assessment of their ability to pass the blood brain
barrier, values of compounds 18 and 26 (blue line) fall within the CNS filter area (light blue)

3.4 Conclusions

Here, a successful computational strategy is reported for designing the first AiR/A2aR-
PDE10A multi-target ligands with potential therapeutic utility for neurodegenerative diseases.
A retrosynthetic approach was employed using MOE/RECAP, followed by target prediction
and docking of the resulting library against the desired targets. 2-aminopyridine-3-carbonitriles
have been identified as a series that showed agreement between both the ligand- and structure-
based predictions of activity against A:R, A2aR and PDE10A. The synthesis of this series via
a one-pot synthetic scheme was pursued experimentally. As a result, compounds 18, 26, 31,
and 35 were validated as A1R/A>aR-PDE10A multi-target ligands with 1Cso values of 2.4, 3.2,
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10.0, and 5.1 uM against PDE10A, and binding to A:R with K; values of 294 and 34 nM (18
and 26 respectively), and to A2aR with K values of 41, 95, and 55 nM (26, 31, and 35

respectively).

Furthermore, selectivity profiling of the synthesized 4,6-substituted 2-amino-pyridin-3-
carbonitriles against other subtypes of both protein families showed that the multi-target ligand
18 exhibited a minimum of 2-fold selectivity over all tested off-targets. In addition, compounds
18 and 26 exhibited the desired multi-target profile against AiR, A2aR and PDE10A, which
would serve as good starting points for further functional efficacy assessment and analog
modification for the improvement of selectivity. In particular, investigating the signal
transduction profiles of these compounds using techniques previously described,[400] as well
as evaluating functional effects in cAMP signaling assays may help determine if these
compounds do indeed provide synergistic elevations in intracellular cAMP. The functional
profile investigated here is likely to elevate cCAMP levels synergistically via the combination
effect on multiple targets simultaneously (as an AR antagonist/A2aR agonist, and PDE10A
inhibitor).

In summary, a computational approach for the design of multi-target ligands has been
investigated. The method was validated experimentally via the synthesis and pharmacological
evaluation of 2-aminopyridine-3-carbonitriles as AiR/A2aR-PDE10A ligands. This approach
is generally applicable to a wide range of multi-target ligand design problems, across disease

areas and target families.
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4 Structure-based identification of dual ligands at A2aR and
PDE10A with anti-proliferative effects upon lung carcinoma

cell-lines

4.1 Introduction

Targeting compounds that elevate cCAMP concentrations via the agonism of A>aR and the
inhibition of PDE10A is a promising way to inhibit cancer cell proliferation.[98] This is
achieved through the AaR-Gas-adenylate cyclase axis, while further promoting cAMP
elevation by the inhibition of its breakdown via PDE10A. In fact, elevation of CAMP has been
shown to exhibit anti-proliferative effects,[101-106] in various cell types. Given that A>aR and
PDEZ10A are both expressed in non-small cell lung cancer (NSCLC) cell-lines, [130, 131] then
their targeting could be a promising anti-proliferative strategy in NSCLC. Indeed, there is the
opportunity for multi-target approaches to improve therapy in NSCLC given that the first
generation therapies have failed due to the use of single target agents that allow the survival of

cancer cells via other pathways.[28]

In chapter 3, triazoloquinazolines were predicted as dual ligands at the A;aR and
PDE10A.[338] It has been challenging however, to identify compounds, which elevate cCAMP
at these targets.[402-404] In this chapter, this problem is addressed by docking
triazoloquinazolines, which are known PDE10A inhibitors, into the orthosteric site of an active
form of A2aR.[319] Subsequently, MD simulation analysis was performed in order to identify
a conformational descriptor that characterizes Aoa receptor activation.[320, 321, 405]
Following this, the compounds are validated as A2aR agonists in relevant biochemical assays

and tested for their anti-proliferative effects in lung carcinoma cell-lines.

Cyclic adenosine monophosphate (CAMP) is a second messenger that has a major role in
transduction and cell signaling in several pathways and biological systems.[96] cAMP
elevation may be achieved via the activation of the adenylate cyclases by Gs proteins, and the
inhibition of cAMP-degrading phosphodiesterases.[406] Given that cAMP intracellular
signaling has been shown to inhibit proliferation, this signaling pathway would impact the
survival and growth of cancer cells.[406] Indeed, compounds that elevate CAMP demonstrate
therapeutic benefits in several cancer-related diseases such as breast cancer, colon cancer, lung

cancer, glioblastoma etc.[407] In some cases, however, they exhibited pro-proliferative effects,
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[99-101] whereas in many other cases anti-proliferative effects[101-106] depending on the
cell type. For instance, CAMP elevation leads to the blockade of growth factor-stimulated cell
growth via the inhibition of the mitogen-activated protein (MAP) kinase cascade, resulting in
anti-proliferative effects in mesangial cells, fibroblasts, and smooth muscle cells. In contrast,
CAMP elevation exhibits pro-proliferative effects in other cell types such as hepatocytes,
thyroid cells, and PC12 cells.[99-106]

AzaR is expressed in both lung adenocarcinoma and squamous carcinoma cell-lines, which are
two histologically distinct types of non-small cell lung cancer (NSCLC cell-lines).[130, 131]
Likewise, PDE10A is overexpressed in lung adenocarcinoma, and its inhibition was found to
suppress growth,[132] demonstrating a correlation between the levels of overexpression and
survival.[408] Also, a recent study suggests that the cAMP signaling pathway contributes to
the suppression of cell growth in NSCLC.[409] Therefore there is the possibility of targeting
both A2aR and PDE10A as an anti-proliferative strategy for NSCLC, given that the agonism
of the A2aR and inhibition of PDE10A lead to cAMP elevation.

Indeed, dual PDE inhibition and A2aR activation via compound combinations has exhibited
synergy in CAMP elevation and been observed to inhibit proliferation of multiple myeloma and
diffuse large B-cell lymphoma, as well as induce apoptosis.[98] Based on these results, the
anti-proliferative effects of dual ligands at A2aR and PDE10A in lung adenocarcinoma an