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Abstract

This article calculates the temperature increase resulting from the motion of a dislocation. The

temperature rise is ascribed to two separate effects, both of which are calculated: the dissipative

effect resulting from the energy lost by the dislocation as it overcomes the intrinsic lattice resistance

to its motion; and the thermomechanical effect arising from the constrained changes in volume the

dilatational field of a moving dislocation may entail. The dissipative effect is studied in an uncoupled

continuum solid, whilst the thermomechanical effect is studied in a fully coupled thermo-elastodynamic

continuum. Explicit solutions are provided, as well as asymptotic estimates of the temperature field

in the immediacy of the dislocation core.
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I. INTRODUCTION

Fast moving dislocations are usually associated with an increase in the temperature of the

surrounding medium because the motion of a dislocation is overdamped [1]: a dislocation

will not move unless an external stimulus is applied to it, and any energy spent in moving a

dislocation will eventually be dissipated as heat [2]. The energy required to move a dislocation

increases with its speed [3]; but, at the same time, the ability of the medium to dissipate heat

away from the dislocation’s core is limited by its thermal conductivity. Thus, one ought to

expect increased localised heating around the dislocation as its moves with increasing speeds.

In addition to this ‘dissipative’ heating effect, edge dislocations carry a dilatational1 field

about their core. Since constrained changes in volume are associated with an increase in

temperature [4], one ought to expect an increase in temperature associated with the dilatational

field of the dislocation. This temperature increase would be caused by thermomechanical

effects alone (see [5, 6]), which are separate from (albeit sometimes accounted for by) the

dissipative heating described above, but that could prove to be equally relevant for high speed

dislocations, because an edge dislocation’s dilatational fields are known to contract and magnify

with increasing speed (see [7]). Because of their inherent cylindrical symmetry, the stress tensor

of a screw dislocations is traceless, so unlike the dissipative effect, the thermomechanical heating

effect can only be associated with edge dislocations.

Based on the asymptotic behaviour of the stationary temperature field radiated by a steady

point source in a cylinder, Eshelby and Pratt [2] suggested that a distribution of moving dis-

locations could explain localised thermal stresses leading to micro-cracks. Similar models were

subsequently used to argue that, for instance, adiabatic shear band formation could be ex-

plained by an avalanche of dislocations suddenly released from a pile-up[8, 9]. De Hosson et

al. [10], employing arguments in line with Eshelby and Pratt’s, went further to produce a

numerical model that coupled the total energy radiated by a planar distribution of dislocation

with Fourier’s law applied in a periodic planar system constricted by adiabatic walls. Their

model suggested that the heating resulting from moving dislocations could be considerable, and

associated the latter with the appearance of thermomechanical effects affecting the plastic de-

formation of the solid. Brock [11] employed a coupled thermomechanical model of a crack with

an injected dislocation to determine the temperature rise around a loaded crack tip. Experi-

mental studies have associated such effects with plastic deformation [12], adiabatic shear band

formation [13–15], flash heating in earthquakes [16], and microcrack formation under fatigue

loading [17, 18], amongst many others. Thus, the temperature increases resulting from the

1 Equivalent to a hydrostatic or pressure field.
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activity of fast moving dislocations appears to have a definite impact in the local temperature

distribution in a crystalline solid and in its mechanical response.

The aim of this article is to study the localised increase in temperature that may be induced

by a moving dislocation in a crystalline medium, developing models able to estimate the tran-

sient heating effects induced by a dislocation in its motion. To this end, section II introduces an

analytical model to estimate, on energetic grounds alone, the dissipative temperature increase

by a moving dislocation modelled as a point heat source. Since the point source model neglects

thermomechanical transport, section III will be devoted to the thermomechanical dislocation,

deriving the field equations for a dislocation moving in a dynamic thermomechanical medium;

these solutions will be approximated in section IV. Finally, section V will summarise the main

findings of this article.

II. ANALYTICAL ESTIMATES OF THE DISSIPATIVE TEMPERATURE INCREASE

INDUCED BY A MOVING DISLOCATION

The simplest way to study the temperature increase induced by a moving dislocation is to

revisit Eshelby and Pratt’s suggestion that all the work exerted to make a dislocation move

must eventually be dissipated as heat[2].

The value of the physical constants involved is assumed to remain independent of temper-

ature; as will be seen, this is a reasonable approximation. In that case, an infinite straight

dislocation of either edge or screw character can be modelled as a heat source moving in a

planar medium, in which case the temperature field will be governed by Fourier’s law:

K∇2θ(x, y, t) = ρcvθ̇(x, y, t)− qv(x, y, t) (1)

where hereafter θ = T − T0 is the temperature field relative to some reference value T0, K the

thermal conductivity, ρ the material’s density, cv the specific heat at constant deformation, and

qv(x, y, t) a heat source term.

Although the dislocation will have some spatial width [1], it can be modelled as a point

heat source. In the following, the dislocation will be gliding along the x axis with speed v. As

said, the motion of a dislocation is overdamped, any work exerted to move it will eventually be

released and dissipated in the form of heat. Thus, one may estimate the heat radiated by the

dislocation in terms of the work exerted to move the dislocation (see [2]):

qv = Bτvδ(x− vt)δ(y) (2)

where τ is the resolved shear stress applied over the dislocation, B the magnitude of the Burgers
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vector, and v the dislocation’s glide speed; the δ(x − vt)δ(y) factor accounts for the fact that

the heat source moves along the x axis, and is concentrated on the y = 0 plane.

The glide speed v is related to the resolved shear stress τ via the dislocation’s mobility law.

Generally, the mobility law may be written as

τ = τ(v) (3)

where τ(v) appropriately captures the different microscopic dissipative effects (phonon wind[10,

19], phonon scattering[1], radiative damping [20], etc) that contribute to the crystalline lattice’s

intrinsic resistance to the motion of the dislocation. The specific form of the mobility law is a

matter of choice; here the main requirement is that for low speeds the slope of τ(v) matches the

observed linear viscous drag coefficient (see [1]), and that it saturates as the speed approaches

the transverse speed. Here, as a first approach one can assume a relationship of the following

kind [21]:

Bτ = v
d0

1− v2

c2t

(4)

where d0 is the low speed drag coefficient, and ct the transverse speed of sound. This mobility

law accounts, phenomenologically, for the relativistic effects that drive the dislocation’s elastic

(and kinetic) energy towards infinity as its speed approaches the transverse speed of sound, ct.

This enables the writing of eqn.1 as

κv∇2θ = θ̇ + qδ(x− vt)δ(y) (5)

where κv = K/(ρcv) is the material’s thermal diffusivity at constant deformation, and where

q = 1
ρcv

v2d0
1−b2v2 is the source’s energy release rate.

For simplicity, assume that v is independent of t (i.e., that the applied resolved shear stress

τ is kept constant throughout the motion of the source). In that case, the problem is reduced to

that of a moving heat source that releases energy at a constant rate q. As an initial condition,

it is assumed that at t = 0 the temperature of the system is undisturbed, i.e., θ(x, y, 0) = 0.

The solution to this problem is derived in the following.

Define the following Fourier transform for the two spatial variables x and y:

Θ(k, t) =

∫
R×R

θ(r, t)eikrdr (6)

where k = (kx, ky)
T and r = (x, y)T .

Applying it to eqn.5

κvΘ|k|2=
∂Θ

∂t
−Q(k, t) (7)

where

Q(k, t) =

∫
R×R

q · δ(x− vt)δ(y)ei(kxx+kyy)dxdy = qeikxvt (8)
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FIG. 1: Temperature fields for a uniformly moving dislocation, relative to a base temperature

T0 = 298K. The parameters of pure aluminium have been used, with K = 205W/m K,

ct = 2980m/s, κv = 9.7 · 10−5m2/s, d0 = 2 · 10−5Pas. The initial position of the dislocation is

marked with a green circle, and it moves in the x direction at the specified uniform speed.

The plots display the resulting temperature field at instant t = 1ns.

The solution to the equation provided that initially θ(x, y, 0) = 0 throughout the infinite

domain, will be[22]

Θ(k, t) =

∫ t

0

e−κv |k|
2(t−t′)Q(k, t′)dt′ (9)

For later convenience, call:

G(k, t, t′) = e−κv |k|
2(t−t′), (10)

The inverse Fourier transform will be

θ(x, y, t) =
1

2π

∫
R×R

Θ(k, t′)e−ikrdk =
1

2π

∫ t

0

dt′
∫
R×R

dk G(k, t, t′)Q(k, t)e−ikrdk (11)

Invoking the convolution theorem for Fourier transforms,∫
R×R

G(k, t, t′) ·Q(k, t, t′)eikrdk =

∫
R×R

g(r − r′, t)q(r′, t)dr′ (12)
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FIG. 2: Evolution of the temperature field of a moving dislocation in the immediacy of the

core of the dislocation.

it follows that

θ(x, y, t) =
1

2π

∫ t

0

dt′
∫
R
g(r − r′, t, t′)q(r′, t, t′)dr′, (13)

where the inverse Fourier transform of the function G is in fact known:

g(r, t, t′) =
1

2π

∫
R×R

e−κv |k|
2(t−t′)e−ikrdk =

1

2κv(t− t′)
e
− |r|2

4κv(t−t′) (14)

From this, it immediately follows that

θ(x, y, t) =
1

2π

∫ t

0

1

2κv(t− t′)

∫
R×R

e
− (x−x′)2+(y−y′)2

4κv(t−t′) qδ(x′ − vt)δ(y′)dr′ (15)

Resolving the spatial integral is immediate, and substituting the value of q, one finally obtains:

θ(x, y, t) =
1

4πK

v2d0

1− v2

c2t

∫ t

0

e
− (x−vt′)2+y2

4κv(t−t′)

t− t′
dt′, (16)

which provides a simple estimate of the temperature field surrounding a dislocation moving

with uniform speed v.

This procedure could also be used to derive a more general expression relevant for the case

in which the dislocation moves non-uniformly with speed v = v(t). In that case, one would find

that 2

θ(x, y, t) =
1

4πK

∫ t

0

v2(t′)d0

1− v(t′)2

c2t

e
− (x−v(t′)t′)2+y2

4κv(t−t′)

t− t′
dt′, (18)

2 More generally, for any one form of q such that q(t) is integrable and spatially localised in the bulk (i.e., not

a boundary), eqn.15 may be written as

θ(x, y, t) =
1

4πK

∫ t

0

q(t′)
e
− (x−v(t′)t′)2+y2

4κv(t−t′)

t− t′
dt′, (17)

which holds for any one q = Bτv so long as these variables are integrable.
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Equation 16 describes the temperature field around the dislocation in terms of a quasi-

exponential integral function (cf.[23]), which is easily solved numerically. It also allows for a

number of asymptotic expressions outlined in the following. For values of x close to the core’s

position at vt, the integral in eqn.16 may be asymptotically approximated to first order3 as:

θ(x, y, t) ≈ 1

4πK

v2d0

1− v2

c2t

∫ t

0

e
− y2

4κv(t−t′)

t− t′
dt′, (19)

which entails that about the dislocation’s core and in the direction of slip (y = 0), the dissipative

temperature field ought to scale with the prefactor alone, i.e., that the dependence of the

temperature field around a dislocation’s core with respect to the dislocation’s speed is, to a

good approximation, of the form

θ(v) ≈ 1

4πK

v2d0

1− v2

c2t

(20)

For v = 0.99ct, using the material properties of FCC aluminium, θ(v) has a magnitude of

≈ 15K; for v = 0.01ct, it has gone down to 10−5K. One should expect that a dislocation

moving at speeds close to the shear wave speed would heat up the surrounding material with

an intensity about 5 order of magnitudes higher than at low speeds. The evolution of eqn.20

with increasing v is depicted in fig.2.

This is confirmed in fig.1, which shows the temperature distributions arising from eqn.16

for dislocations moving at different speeds. As can be seen, at a distance roughly ≈ 0.5µm

away from the dislocation core, the temperature increase this model entails ranges from 10−5K

at v = 0.01ct (fig.1a) through to 10−1K at v = 0.66ct (fig.1c) all the way up to temperature

increases in excess of 5K for dislocations moving with v = 0.99ct (fig.1d).

More generally, one may expand eqn.16 in series of v about 0, in which case,

θ(x, y, t) ≈ 1

4πK

v2d0

1− v2

c2t

∫ t

0

e
− x2+y2

4κv(t−t′)

t− t′
dt′, (21)

The integral is a pure exponential integral function. For values of r =
√
x2 + y2 very close

to the dislocation core (i.e., r → 0), the asymptotic behaviour of the exponential integral is

dominated by ln(r2/(4tκv)) (see [23]), so that

θ(x, y, t) ≈ 1

4πK

v2d0

1− v2

c2t

ln

(
x2 + y2

4κvt

)
(22)

which, excluding dimensionality4, may be compared to the asymptotic expression achieved by

Eshelby and Pratt [2] when t = r/v for the quasi-stationary case:

θ(x, y, t) ≈ 1

2πK

v2d0

1− v2

c2t

ln

(
v
√
x2 + y2

2κv

)
(23)

3 By expanding the integrand in Taylor series of v about x/t.
4 The solution employed by Eshelby and Pratt applies to axisymmetric systems.
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The energy dissipated in this way by a single dislocation will be superimposed to that of

others; for dense distributions of fast moving dislocations such as those that may be encoun-

tered at high strain rates, the increase in temperature can therefore be substantial. Still, the

temperature increase predicted by this simple model is modest enough to justify the constant

value of the material constants in this analysis, as well as the invariance with temperature of

the dislocation’s phonon drag coefficient (here, d0).

The model above is fully uncoupled from the elastic fields of the dislocation; however, in-

creased temperature ought to entail the appearance of thermal stresses about the dislocation

core and, vice versa, the mechanical fields of the dislocation ought to entail changes in the

temperature about the core. In fact, since the primary mode of energy radiation away from the

core is through elastic waves (acoustic phonons) [20], it seems necessary to modify the account

given above to relate the increase in temperature driven by the dislocation with the thermal

stresses these may produce. This is done in the following section.

III. THERMOMECHANICAL EFFECTS ON DISLOCATION MOTION

In thermodynamical systems, constrained changes of volume entail variations of temperature,

and vice versa [4]. The elastic field of an edge dislocation carries a hydrostatic component

around the dislocation’s core [1], so it is to be expected that the dislocation will act as a source

of thermal stress. Since the moving dislocation is known to experience contractions as it speeds

up towards the transverse speed of sound [24], the thermal distribution and thermomechanical

effects surrounding the dislocation core are expected to be modified. Here the way in which

this process happens is explored.

A. Governing equations of the dynamic thermoelastic problem

The way temperature affects volumetric changes may be expressed via following eigenstrain

(cf.[25]):

ε∗ij = αL(T − T0)δij (24)

where αL is the linear thermal expansion coefficient, T0 some reference temperature, and εij

denotes the first order strain tensor. This eigenstrain associates a dilatational strain with

a change of temperature from a reference value T0; as a first approach approximation, the

dilatation strain is made to be linearly dependent with temperature. As in section II for

brevity, hereafter

θ ≡ T − T0 (25)
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The eigenstrain will modify the general elastic strain tensor as εij−ε∗ij (see [25]). Accordingly,

Hooke’s law for a linear isotropic solid is modified into [5]

σij = Λεkkδij + 2µεij − αL(3Λ + 2µ)θδij (26)

where σij is the Cauchy stress tensor, and Λ and µ are respectively Lamé’s first and second

constants5.

Conservation of linear momentum is enforced by invoking Newton’s second law, which in

this case takes the form[25]:

σij,j + fi = ρüi (27)

where fi is any one body force, here assumed to not be present for simplicity, ρ is the material’s

density, and ui denotes the displacement field components, so that (x1, x2, x3) ≡ (x, y, z). Here

repeated index denotes summation, and f,j = ∂f
∂xj

; time derivatives are denoted using Newton’s

dot notation, i.e., ḟ = ∂f
∂t

.

Substituting the modified Hooke’s law (eqn.26) over the equation of conservation of linear

momentum (eqn.27) leads to the thermoelastic Navier-Lamé equation

(Λ + µ)uj,ji + µui,jj − αL(3Λ + 2µ)θ,i = ρüi (28)

In the thermoelastic system, heat transport is allowed to occur. It is assumed that heat flow

is governed by Fourier’s law (i.e., eqn.1), which in the thermoelastic problem must be modified

to account for heat sources driven by volumetric changes (see [5, 26]):

Kθ,kk = ρcvθ̇ + (3Λ + 2µ)αLT0ε̇kk (29)

Eqns.28 and 29 conform the coupled thermo-elastodynamic system of equations that govern

the system’s heat and momentum transport.

1. Uncoupling of the dynamic thermoelastic problem

The general uncoupling of the system of equations defined by eqns.28 and 29 is possible

by invoking the Kelvin potentials, which requires expressing the displacement as the sum of a

dilatational and an equivoluminal potential:

ui = φ,i + εijkψk,j (30)

where φ is the dilatational potential (a scalar) and ψ the equivoluminal potential (a vector). In

index notation, and where εijk is the Levi-Civita symbol. For the 2D case under consideration

5 Thus, µ is the shear modulus.
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here, the edge dislocation is assumed to be moving along the x axis in the x− y plane, so that

the equivoluminal potential can be reduced to a single component, i.e. ψ ≡ (0, ψy, 0)T . For

simplicity, hereafter ψy ≡ ψ.

In that case, the displacement field components may be expressed as:

ux =
∂φ

∂x
− ∂ψ

∂y
, uy =

∂φ

∂y
+
∂ψ

∂x
, uz = 0 (31)

Substituting eqn.31 into the thermo-elastic governing equations (eqns.28 and 29), it is found

that

(Λ + 2µ)∇2φ− αL(3Λ + 2µ)θ = ρφ̈ (32)

ρ
∂2ψ

∂t2
= µ∇2ψ (33)

ρcvθ̇ + αT0(3Λ + 2µ)
∂

∂t
∇2φ = K∇2θ (34)

The temperature field can be further uncoupled from the dilatational potential by extracting

it from eqn.32, so that:

θ =
1

αL(3Λ + 2µ)

(
(Λ + 2µ)∇2φ− ρφ̈

)
(35)

Substituting eqn.38 into eqn.34, the following fully uncoupled thermo-elastodynamic problem

is reached: [
∇2 − ℵ ∂

∂t

] [
∇2φ− a2φ̈

]
= Q∇2

(
φ̇
)

(36)

∇2ψ = b2ψ̈ (37)

θ = (Λ + 2µ)MT

(
∇2φ− a2φ̈

)
, (38)

where

a2 =
ρ

Λ + 2µ
, b2 =

ρ

µ
, MT =

1

αL(3Λ + 2µ)
,

ℵ =
ρcv
K
, Q =

T0
KM2

T (Λ + 2µ)
(39)

Here, a and b are the athermal longitudinal and transverse slownesses of sound, respectively;

ℵ the inverse of the material’s thermal diffusivity at constant deformation; Q is a heat source

rate term, and MT a coupling term. Notice that

ε =
Q

ℵ
(40)

is the (dimensionless) thermoelastic coupling constant (see [5]), which serves as a measure of

the strength of the coupling between the elastodynamic and thermal fields. When ε = 0, the

dilatational field in eqn.36 is unaffected by the temperature field, and in the case of the injected,

moving dislocation the problem reverts to the classical elastodynamic problem solved in (cf.

[7, 27]). For most metals, ε ≈ O(−2)−O(−3), meaning that the coupling is generally weak [5].
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FIG. 3: Thermoelastic system. The dislocation of Burgers vector B is injected at the origin,

and glides along the x axis following a certain x = l(t) history. The system’s material

properties are its two elastic Lamé constants Λ and µ, its density ρ, its linear expansion

coefficient α and its thermal conductivity K.

It is important to notice that the equivoluminal field equation (eqn.37) is fully uncoupled

and does not directly impart on the temperature field (eqn.38). Thus, in the thermoelastic

problem under consideration here, temperature changes will drive and be driven by dilatational

changes in volume alone; further heat release via phonon dispersion will not be accounted for

in this model.

B. Boundary conditions

The boundary conditions of interest here are those describing the injection and motion of a

straight edge dislocation along the x-axis. As is depicted in fig.3, x is assumed to be the glide

direction. As discussed in [7, 27], this process can be modelled as:

ux(x, y = 0, t) =
B

2
H(l(t)− x)H(t) (41)

where l(t) is the past history function that stores the position of the dislocation relative to

the origin of coordinates over each instant t, and B the magnitude of the Burgers vector. For

mathematical convenience (see [7]), this problem may be divided into the superposition of the

following two:

1. An injected, quiescent dislocation, described by

ux(x, y = 0, t) =
B

2
H(−x)H(t) (42)

2. An injected dipole, one of which dislocations remains quiescent while the other glides

according to l(t):

ux(x, y = 0, t) =
B

2
(H(l(t)− x)−H(−x))H(t) (43)
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Two additional boundary conditions have to be enforced. First of all, in order to ensure

that the normal stress is zero on the slip plane as a result of the injection and motion of the

dislocation, it is specified that

σyy(x, y = 0, t) = 0 (44)

Equally, in order to ensure the symmetry of the thermal field about the glide plane,

∂θ(x, y = 0, t)

∂y
= 0 (45)

All boundary conditions apply for t > 0; for t < 0 the system is assumed to be undisturbed,

i.e., ui = 0 and θ = 0 ∀(x, y) ∈ R2.

C. Solution in the Laplace domain for the injected, quiescent dislocation

The quiescent dislocation problem, i.e., the problem when l(t) = 0, is studied first. This

describes the creation (injection) of a new dislocation that does not move afterwards. The

relevant displacement boundary condition is given by eqn.42, i.e.,

ux(x, y = 0, t) =
B

2
H(−x)H(t)

In order to solve this problem, one may define the following sequence of unilateral and

bilateral Laplace transforms:

f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, (46)

F (λ, y, s) =

∫ ∞
−∞

f̂(x, y, s)e−λsxdx, (47)

and apply them over both the governing equations (eqns.36 and 37), which respectively leads

to the following equations

∂4Φ

∂y4
+ (2λ2s2 − a2s2 − ℵs−Qs)∂

2Φ

∂y2
+ (−α2λ2s4 + ℵs3α2 −Qs3λ2)Φ = 0 (48)

∂2Ψ

∂y2
= β2s2Ψ (49)

where α2 = a2 − λ2 and β2 = b2 − λ2.

The solution to both equations is immediate:

Φ = Cφ+e
−p+y + Cφ−e

−p−y + Cφ1e
p+y + Cφ2e

p−y (50)

and

Ψ = Cψe
−sβy + C ′ψe

sβy (51)
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Here p± are the positive values of the solutions to equation

p4 + (2λ2s2 − a2s2 − ℵs−Qs)p2 + (ℵs3α2 − λ2s4α2 −Qλ2s3) = 0, (52)

which can be expressed as

p± =
+1√

2

√
−A±

√
A2 − 4B (53)

with

A = 2λ2s2 − a2s2 − ℵs−Qs, B = ℵs3α2 − λ2s4α2 −Qλ2s3 (54)

Crucially, it must be noted that p± = p±(λ, s).

In order to ensure the stability of the solutions, the latter must vanish as y →∞. Invoking

the Laplace transform’s final value theorem, this renders Cφ1 = Cφ2 = C ′ψ = 0. Thus, the

solutions are reduced to

Φ(λ, y, s) = Cφ+(λ, s)e−p+y + Cφ−(λ, s)e−p−y, Ψ(λ, y, s) = Cψ(λ, s)e−sβy (55)

The values of the integration constants Cφ+ , Cφ− , and Cψ can be obtained from the boundary

conditions.

The σyy stress component in this case is of the form

σyy(x, y, t) = Λ(uy,y+ux,x)+2µuy,y−(3Λ+2µ)αLθ = (Λ+2µ)(φ,yy+ψ,xy)+λ(φ,xx−ψ,xy)−(3Λ+2µ)αLθ

(56)

After some manipulations, this can be reduced to

σyy(x, y, t) = 2µ(ψ,xy − φ,xx) + ρφ̈ (57)

Applying the sequential Laplace transforms, one obtains the following boundary condition

Σyy(λ, 0, t) = 2λs

(
∂Ψ

∂y
− λsΦ

)
+ b2s2Φ = 0 (58)

Substituting the solutions in,

(b2 − 2λ2)s2Cφ+ + (b2 − 2λ2)s2Cφ− − 2λβs2Cψ = 0 (59)

Equally, the other two field variables giving a boundary condition can be expressed in terms

of the dilatational and equivoluminal potentials. The displacement boundary condition is

ux(x, y = 0, t) = φ,x − ψ,y =
B

2
H(−x)H(t) (60)

which leads to

λsCφ+ + λsCφ− + βsCψ =
B

2λs2
(61)
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The temperature boundary condition is

∂θ(x, y = 0, t)

∂y
= (Λ + 2µ)MT

∂

∂y

(
∇2φ− a2φ̈

)
= 0 (62)

which leads to

p+(p2+ − α2s2)Cφ+ + p−(p2− − α2s2)Cφ− = 0 (63)

Equations 59, 61 and 63 form a linear system of equations


(b2 − 2λ2)s2 (b2 − 2λ2)s2 −2λβs2

λs λs βs

p+(p2+ − α2s2) p−(p2− − α2s2) 0

 ·

Cφ+

Cφ−

Cψ

 =


0

B
2λs2

0

 , (64)

the solution of which is the following:

Cφ+(λ, s) =
Bp−

(
p2− − α2s2

)
b2s3(p− − p+) (p2− + p−p+ + p2+ − α2s2)

(65)

Cφ−(λ, s) = −
Bp+

(
p2+ − α2s2

)
b2s3(p− − p+) (p2− + p−p+ + p2+ − α2s2)

(66)

Cψ(λ, s) =
B(2λ2 − b2)

2b2βλs3
(67)

The inversion of the equivoluminal potential is immediate employing the Cagniard-de Hoop

technique, and leads to the solutions for the shear wave component of the injected dislocation

provided by Gurrutxaga-Lerma et al.[7]. As expected, it does not affect the dilatational and

temperature fields.

1. The temperature field

Consider the thermal field in the Laplace domain

Θ(λ, y, s) =
1

s3
F (λ, s)

(
p+e

−p+y − p−e−p−y
)

(68)

where

F (λ, s) =
BMT (Λ + 2µ)

b2

(
p2− − α2s2

) (
p2+ − α2s2

)
(p− − p+) (p2− + p−p+ + p2+ − α2s2)

(69)

The spatial inversion will be:

θ̂(x, y, s) =
1

2πi

∫ i∞

−i∞

1

s2
F (λ, s)

(
p+e

−p+y − p−e−p−y
)
esλxdλ (70)

In the expression above, the integrand has exponential factors that may be expressed as

e−s(q±y−λx), (71)

where for convenience, p± = sq±, i.e.,
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q± =

√√√√
−λ2 +

a2s+ ℵ+Q±
√

2ℵ (Q− a2s) + (a2s+Q)2 + ℵ2

2s
(72)

This is reminiscent of a Cagniard-de Hoop kernel (see [28]). However, q± is dependent on

both s and λ, so the inversion cannot be directly performed over a conventional Cagniard path.

Still, one can define a contour along which the exponential factor takes the form

e−sτ (73)

where

τ = q±y − λx (74)

Thus, the integration variable can be expressed in terms of τ by making the following change

of variable:

λ =
−τx± iy

√
τ 2 −R2 a

2s+ℵ+Q±
√

2ℵ(Q−a2s)+(a2s+Q)2+ℵ2
2s

R2
(75)

where R2 = x2 + y2.

For convenience however, it is best to regroup variables as follows

λ =
−τx± iy

√
τ 2 − κ2±R2

R2
(76)

where

κ2± =
a2s+ ℵ+Q±

√
2ℵ (Q− a2s) + (a2s+Q)2 + ℵ2

2s
(77)

It is easy to check that for s > 0, κ+ > κ−. In the following, when invoking λ, κ+ will be

applied for the e−p+y integral, and κ− for the e−p−y integral. This means that for each of those

two branch, p± takes different values, since p± = s
√
κ2± − λ explicitly depends on λ.

For clarity, here the case of e−p+y will be discussed; analogous reasoning can be extended to

the case of e−p−y. Thus, here the following λ will be considered:

λ± =
−τx± iy

√
τ 2 − κ2+R2

R2
(78)

As in the standard Cagniard-de Hoop path (see [7]), eqn.78 describes a parametrised hy-

perbola in the complex λ plane. The following convention will be used here. For y > 0, the

λ+ branch is in the upper half plane (Im[λ] > 0), and the λ− branch in the lower half plane

(Im[λ] < 0). In this same convention, the x < 0 branches are the branches in the right half

plane (for which Re[λ] > 0); for x > 0, the branches are in the left half plane. This is shown in

fig.4a.
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(a) Inversion path when κ+|x|
R < κ−.
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Im[λ]
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(b) Inversion path when κ+|x|
R > κ−.

FIG. 4: Inversion paths

The intersection of the hyperbola with the real axis will define its vertex, which is found

when Im[λ±] = 0. At that point, the variable τ takes the value +κ+R, whilst the real part of

λ± is −τx/R. This defines a vertex ‘A’ at

λA = −xκ+
R

(79)

As λ+ moves from λA towards the asymptote of the corresponding λ+ branch, the value of τ

goes from +κ+R at the vertex to τ →∞ at the asymptotic limit. This remains analogous for

the y < 0 branches.

Thus, the hyperbolic path in the λ plane is mapped onto a path along the real axis of the τ

plane, with τ ∈ [+κ+R,∞). In this sense, the present integration path mirrors a Cagniard-de

Hoop inversion path.

Particularly care must be taken to avoid branch cuts and poles in the integrand, which is of

the form

p+

(
p2− − α2s2

) (
p2+ − α2s2

)
(p− − p+) (p2− + p−p+ + p2+ − α2s2)

The integrand has poles when its denominator cancels, which occurs for

λ1,2 = ±
√

2a2 (κ2− + κ2+)− a4 − κ4− − κ2−κ2+ − κ4+√
2a2 − κ2− − κ2+

In principle, |λ1,2|> λA for κ+ > κ−, which means the poles leave no residue.

In addition, the integrand has branch cuts defined for Im[λ] = 0,Re[λ] ∈ (−κ−, κ−) ∩

(−κ+, κ+). The branch cut may therefore be crossed for values of x such that |λA|= κ+|x|
R

> κ−.

When this occurs, λ has only a real part, defined by

λ∗ =
−τx+ y

√
κ2+R

2 − τ 2
R2

(80)
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Necessarily, this specifies that κ2+R
2 > τ 2, and since κ+|x|

R
> κ−, the values τ may take here can

be parametrised as

τ ∈
(
κ−x+ y

√
κ2+ − κ2−,+κ+R

)
(81)

This entails that when κ+|x|
R

> κ− (in general, for very small values of x and y in close proximity

to the dislocation’s injection site), the contour defined by the λ± hyperbola branch must be

extended to include the values defined in eqn.80.

With this in place, the contour along the imaginary axis defined in eqn.70 can be distorted

in a way akin to the Cagniard-de Hoop technique. The complete contour is shown in fig.4a.

For either x > 0 or x < 0, a closed contour of integration in the λ plane will be defined, formed

by the corresponding side of the imaginary axis, the λ− and λ+ hyperbola branches that meet

at λA (corresponding, respectively, to the lower and upper half planes); the asymptotes of the

hyperbola branches are joined together with the imaginary axis via a circular contour at infinity.

The latter’s contribution to the value of the closed contour integral is zero by properties of the

Laplace transform. Thus, as in Cagniard’s method, invoking Cauchy’s integral theorem the

integral along the imaginary axis (the one in eqn.70) will be of the same value as the one along

the hyperbola branches, which in turn describes an integration along the real axis of the τ plane

in the interval τ ∈ [+κ+R,∞). If κ+|x|
R

> κ−, then the contour must be modified to avoid the

branch cut in the way described in fig.4b, and outlined above in eqn.80. The case of x < 0 is

entirely analogous, and so is the case of e−p−y, with the exception that in the latter κ− must

be used where κ+ was used here.

Although agreeable to be written in Cagniard form, the contour defined above is not a

classical Cagniard path because q± and by extension, κ±, depend on s. One can still write the

inversion integral in time as a single integral

θ̂(x, y, s) =
1

π
Im

[∫ ∞
Rκ+

[
∂λ+
∂τ

1

s2
F (λ+, s)p+e

−sτ+
]
λ+,κ+

dτ −
∫ ∞
Rκ−

[
∂λ+
∂τ

1

s2
F (λ+, s)p−e

−sτ−
]
λ+,κ−

dτ

]
(82)

The case when κ+|x|
R

> κ− only affects the first integral (for the second, κ−|x|/R < κ+ always).

In that case, following eqn.81 the first integral must be extended as follows:

θ̂∗(x, y, s) =
1

π
Im

∫ Rκ+

κ−x+y
√
κ2+−κ2−

[
∂λ∗

∂τ

1

s2
F (λ∗, s)p+e

−sτ+
]
λ∗,κ+

dτ H

(
κ+|x|
R
− κ−

)
where λ∗ is given by eqn.80.

The inversion of this integral is challenging because s cannot be extracted from the integrand

(nor from the integration limits), and therefore the latter cannot be written in a Cagniard form.
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In general, the inversion would be

(83)

θ(x, y, t) =
1

2πi

∫
Br

[
θ̂∗ +

1

π
Im

[∫ ∞
Rκ+

[
∂λ+
∂τ

1

s2
F (λ+, s)p+e

−sτ+
]
λ+,κ+

dτ

−
∫ ∞
Rκ−

[
∂λ+
∂τ

1

s2
F (λ+, s)p−e

−sτ−
]
λ+,κ−

dτ

]]
estds

The general, closed form solution to eqn.83 is probably unachievable in view of the fact that

κ± is a function of the transformed parameter s. However, one can still achieve asymptotic

solutions to the temperature field by invoking the Abelian-Tauberian theorems of the Laplace

transform (see [29]).

The small times behaviour of the temperature field can be deduced as follows. According to

the Abelian theorem,

lim
t→0

θ(t;x, y) = lim
s→∞

sθ̂(s;x, y) (84)

It is easy to check that in that limit, the integrands in eqn.83 tend to 0, which simply guarantees

that the temperature field is initially undisturbed. The converse Tauberian theorem can also

be applied to check the stability of the solution given by eqn.83 at t → ∞, which guarantees

that limt→∞ θ(t;x, y) = 0 as well. Since the thermal field is diffusive in nature, this means that

after a transient, the temperature in the system will return to its initial values.

Asymptotic expansions employing the Abelian theorem enable us to estimate the magnitude

of the early temperature transients. In the limit of s→∞, κ+ → a and κ− → 0, so the integral

becomes

lim
s→∞

sθ̂(x, y, s) = lim
s→∞

1

π
Im

[∫ ∞
+Ra

[
∂λ+
∂τ

1

s
F (λ+, s)p+e

−sτ+
]
λ+,κ+

dτ−

−
∫ ∞
0

[
∂λ+
∂τ

1

s
F (λ+, s)p−e

−sτ−
]
λ+,κ−

dτ

]
(85)

The variables p± are expanded in Taylor series of 1/s about 1/s = 0+ (i.e., about s → ∞)

(cf.[5]) which yields (to first order)

p+ ≈ αs+
Q

2α
+ O(s−1) (86)

p− ≈ −iλs− i
ℵ
2λ

+ O(s−1) (87)

Substituting in the integrands in the Abelian limit, one can reach an asymptotic expression

to first order in t of the form

θ ≈ BMT (Λ + 2µ)a2

πb2
y

R2

√
t2 − a2R2H(t−Ra) (88)
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The y
R2 factor corresponds with the geometric factor that governs the hydrostatic pressure field

around the core of a dislocation (see [1]). Thus, eqn.88 shows that in the immediacy of the

core, the temperature field around is homologous to the hydrostatic pressure field that, in fact,

causes it.

The magnitude of the initial temperature field around the dislocation can therefore be esti-

mated from eqn.88. For aluminium, at a distance of about 100B from the core over very short

timescales (t ≈ 1ps), the temperature increase may be estimated at around 1K, for a previously

undeformed unbounded solid where a dislocation has just been injected. This transient heating

effect is often observed in molecular dynamics simulations of dislocations: in the equilibration

of an atomistic system with a dislocation, one often observes an initial transient heating that

quickly dies out (cfr.[30]).

The small magnitude of the thermomechanical heating is in agreement with previous esti-

mates of this effect, such as those by Lothe [31], and must be attributed to the weak coupling

between the thermal and mechanical fields, which is conventionally measured via ε.

Lessen [32] proposed that any thermoelastic problem may be studied perturbatively by

expanding the Kelvin potentials in series of the coupling constant about ε = 0. Albeit this

approach hardly ever leads to a practical solution of the problem at hand, it enables the study

the effect of the weakness of the coupling in the current situation. Accordingly, the solutions

p± are expanded in terms of the ε, which leads to

p+ ≈
√
s (ℵ − l2s) +

ℵ2s
2 (ℵ − a2s)

√
s (ℵ − l2s)

ε− (ℵ3s2 (3a2ℵs− 4a2l2s2 + ℵ2))

8
(

(ℵ − a2s)3 (s (ℵ − l2s))3/2
)ε2 + O(ε3)

p− ≈ αs− a2ℵs
2α(ℵ − a2s)

ε+
a2ℵ2s(3a2ℵ − 4ℵλ2 + a4s)

8α3/2(ℵ − a2s)3
ε2 + O(ε3)

Taking this onto eqn.55, it will be found that the dilatational potential in the Laplace domain

may be written as

Φ = Φ0 + Φ1ε+ O(ε2)

where Φ0 is Φ for the case when ε = 0. In that case, the solutions in the Laplace domain

(eqn.55) undergo heavy simplifications; in particular

Φε→0 =
B

b2s3
e−sαy

because Cφ+ = 0 when ε = 0. This Φ0 happens to be the solution for the dilatational potential

in the uncoupled problem (see [7]), which is discussed in detail in section IV. The form of Ψ1 is

lengthy and protracted, and does not allow for a direct inversion. Still, it can be approximated

as a series expansion in time, the first order term of which is O(t−1/2); this entails that the ratio

ψ1/ψ0 ≈ t−3/2, which indicates that the first order perturbation will be very small compared
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with the uncoupled solution ψ0, and therefore that the influence of the thermoelastic coupling

will be small. As remarked by Boley and Weiner [33], the relative weakness of the coupling is

consistent with the nature of the loading rate, which in the present case, and at a sufficient

distance away from the dislocation core (where the elastodynamic solution itself becomes invalid

[1]) and of the injection fronts (where, again, a weak divergence takes place [24]), is going to

be very similar to that of the temperature, so that the coupling is going to be weak. This is

driven by the fact that the thermal perturbations are brought about by the dilatational fields.

D. Solution in Laplace domain for the injected, moving dislocation

The moving dislocation is modelled via the appropriate boundary condition,

ux(x, y = 0, t) =
B

2
H(l(t)− x)H(t) (89)

where as mentioned above l(t) is the past history function. Following [34], it is more convenient

to rewrite this as

ux(x, 0, t) =
B

2
(H(η(x)− t)−H(−x))H(t) +

B

2
H(−x)H(t) (90)

where l−1(t) ≡ η(x) is the inverse past history function, i.e., the function that returns the

instant in time when the dislocation core reaches position x. The second summing term on

the right hand side correspond with the injection of a quiescent dislocation which was solved

before; here only the problem associated with the first summing term in eqn.90 will be solved,

i.e.,

ux(x, 0, t) =
B

2
(H(η(x)− t)−H(−x))H(t) (91)

Upon transforming ux to the Laplace domain, one can construct the following system of

equations and associated solutions to the governing equations:


(b2 − 2λ2)s2 (b2 − 2λ2)s2 −2λβs2

λs λs βs

p+(p2+ − α2s2) p−(p2− − α2s2) 0

 ·

Cφ+

Cφ−

Cψ

 =


0

B
2s

∫∞
0
e−s(η(ξ)+λξ)dξ

0

 , (92)

the solution of which is the following:

Cφ+(λ, s) =
Bλp−

(
p2− − α2s2

)
b2s2(p− − p+) (p2− + p−p+ + p2+ − α2s2)

∫ ∞
0

e−s(η(ξ)+λξ)dξ (93)

Cφ−(λ, s) = −
Bλp+

(
p2+ − α2s2

)
b2s2(p− − p+) (p2− + p−p+ + p2+ − α2s2)

∫ ∞
0

e−s(η(ξ)+λξ)dξ (94)

Cψ(λ, s) =
B(2λ2 − b2)

2b2βs2

∫ ∞
0

e−s(η(ξ)+λξ)dξ (95)
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In the particular case when l(t) = v · t, i.e., when the dislocation glides with uniform speed v,

the system is amenable to a more explicit solution. In that case, η(x) = x/v = dx, for d = 1/v

the dislocation’s glide slowness, whereby the coefficients of the solution are

Cφ+(λ, s) =
Bλp−

(
p2− − α2s2

)
b2s3(λ+ d)(p− − p+) (p2− + p−p+ + p2+ − α2s2)

(96)

Cφ−(λ, s) = −
Bλp+

(
p2+ − α2s2

)
b2s3(λ+ d)(p− − p+) (p2− + p−p+ + p2+ − α2s2)

(97)

Cψ(λ, s) =
B(2λ2 − b2)

2b2β(λ+ d)s3
(98)

The inversion follows same procedure outlined for the quiescent case, mimicking the

Cagniard-de Hoop technique along the path defined by τ = q± − λx. The same consider-

ations related to the branch cuts in figure 4 apply; so long as d > a, the additional pole at

λ = d is never encountered along the integration path, so it will leave no residue. After careful

manipulations, one reaches the following expression for the temperature field

θ̂ = θ̂∗ +
1

π
Im

[∫ ∞
τκ+

[
∂λ+
∂τ

λ+
(λ+ + d)

1

s3
F (λ+, s)p+e

−sτ
]
λ+,κ+

dτ−

−
∫ ∞
τκ−

[
∂λ+
∂τ

λ+
(λ+ + d)

1

s2
F (λ+, s)p−e

−sτ
]
λ+,κ−

dτ

]
(99)

where

F±(s) =
BMT (Λ + 2µ)

b2

(
p2− − α2s2

) (
p2+ − α2s2

)
(p− − p+) (p2− + p−p+ + p2+ − α2s2)

and

θ̂∗(x, y, s) =
1

π
Im

∫ Rκ+

κ−x+y
√
κ2+−κ2−

[
∂λ∗

∂τ

λ+
(λ+ + d)

1

s2
F (λ∗, s)p+e

−sτ+
]
λ∗,κ+

dτ H

(
κ+|x|
R
− κ−

)
(100)

As in the case of the injected dislocation, the greatest problem here is that τ = τ(s). The

inverted temperature field will be

θ =
1

2πi

∫
Br

[
θ̂∗ + Im

∫ ∞
τκ+

[
∂λ+
∂τ

λ+
(λ+ + d)

1

s2
F (λ+, s)p+e

−sτ
]
λ+,κ+

dτ−

−
∫ ∞
τκ−

[
∂λ+
∂τ

λ+
(λ+ + d)

1

s2
F (λ+, s)p−e

−sτ
]
λ+,κ−

dτ

]
estdt (101)

One may again invoke the Abelian theorem and perform an asymptotic expansion about s→∞

to find the small times behaviour of the solution. Using the same procedure as in the case of

the injected, quiescent dislocation, one finds that
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θ(v) ≈ −BMT (Λ + 2µ)Q

πb2
y

R2

(
t− sign(y)

√
d2 − a2
a

arctan

(
t− dx

y
√
d2 − a2

))
(102)

As before, using the same approach the behaviour at R → 0 may also be inferred. If R is

small, one may estimate θ̂ to be

θ̂(x, y, s) ≈ BMT (Λ + 2µ)

πb2s2

∫ ∞
0

−a2s2y(τ − 2dx)

R2τ (d2R2 − 2dτx+ τ 2)
e−sτdτ, (103)

which is in Cagniard form, so that the time inversion can be performed by inspection:

θ(x, y, t) ≈ Ba2MT (Λ + 2µ)

πb2
y

R2

−t(t− 2dx)

(d2R2 − 2dtx+ t2)
(104)

In this case, the magnitude of the temperature field increases with the dislocation’s glide speed

in an almost quadratic fashion; to a good approximation, for slow moving dislocations

θ(x, y, t) ≈ Ba2MT (Λ + 2µ)

πb2
ytv

R2

(
tv (R2 − 4x2)

R4
− 2x

R2

)
(105)

For slow moving dislocations, the thermomechanical temperature increase due to a moving

dislocation will therefore approximately scale quadratically relative to the dislocation’s speed.

One may again estimate the magnitude of the thermomechanical effect about the dislocation

core, in this case motivated by a moving dislocation. The prefactor is in this case the same as

in the injected case, so for Al it will be of the order of 10−6K·m; for a dislocation moving at

low speeds (v = 0.01ct), this entails a temperature rise at a distance of 100B about the core of

about 1K for times of t = 1ps; for a dislocation moving at v = 0.99ct, the temperature raise

is about 3.8K. This temperature increase might seem unexpectedly small; however, it must be

born in mind that whilst the limiting speed of the dislocation is the transverse speed of sound

ct, the representative speed of the dilatational field is the longitudinal speed of sound cl, which

is about twice as large: even a dislocation moving at the transverse speed of sound will still

be moving at half the longitudinal speed of sound, which entails that the dilatational fields

will hardly experience a Doppler-like contraction and, therefore, that the ensuing thermal field

remains largely undisturbed by the dilatational field of the moving dislocation.

IV. APPROXIMATING THE THERMOMECHANICAL FIELD OF A DISLOCA-

TION AS AN THE UNCOUPLED THERMOELASTIC PROBLEM

As was found by Hertnaski [35, 36] and Nowacki [37] for line sources, in the current study the

strength of the coupling between the elastodynamic and the thermal fields is weak enough that

the thermal field arising from the dilatational radiation of a moving source may be approximated
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by simply considering uncoupling the elastodynamic and the thermal fields in such a way that

the latter remains excited by the dilatational field.

This means that the elastodynamic field will be fully uncoupled from the thermal field, so

that the injection and motion of the edge dislocation may be described as done by Markenscoff

and Clifton [27] and Gurrutxaga-Lerma et al.[7] for the case, respectively, of a non-uniformly

moving edge dislocation and an injected edge dislocation.

In turn, the thermal field will be excited by the dilatational field (i.e., φ(x, y, t)) the elasto-

dynamic dislocation described in [7, 27] entail. This dilatational excitation φ triggers heating

in the thermal field, which is simply governed by eqn.38

θ =
1

α(3Λ + 2µ)

(
(Λ + 2µ)∇2φ− ρφ̈

)
Notice that unlike in the fully coupled problem, here θ will not appear in the modified Hooke’s

law, and will therefore not contribute to the Navier-Lamé equation.

Specifically, the dilatational excitations of concern here may be found, in the Laplace domain,

in [7]. For the injected dislocation, they are of the form

Φ(λ, y, s) =
B

b2s3
e−sαy, (106)

For the non-uniformly moving dislocation, they are given by [7],

Φ(λ, y, s) =
Bλ

b2s2

[∫ ∞
0

e−s(η(ξ)+λξ)dξ

]
e−sαy, (107)

For the special case of a uniformly moving dislocation with speed v = 1/d, the dilatational

potential in the Laplace domain takes the form [24]

Φ(λ, y, s) =
B

b2s3
λ

λ+ d
e−sαy (108)

Throughout here, the same spatial variables and kinematic notation as in previous sections has

been employed. Note that α2 = a2 − λ2.

This dilatational excitation, φ, triggers heating in the thermal field, which is simply governed

by eqn.38

θ = MT

(
(Λ + 2µ)∇2φ− ρφ̈

)
whereupon in the Laplace domain,

Θ = MT (Λ + 2µ)

[
α2s2Φ +

∂2Φ

∂y2

]
Substituting the expressions above, eqns. 106, 107, and 108, one obtains respectively,

Θ(λ, y, s) = MT (Λ + 2µ)
2B

b2s
α2e−sαy, (109)
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Θ(λ, y, s) = MT (Λ + 2µ)
2B

b2s
α2λ

[∫ ∞
0

e−s(η(ξ)+λξ)dξ

]
e−sαy (110)

Θ(λ, y, s) = MT (Λ + 2µ)
2B

b2s
α2 λ

λ+ d
e−sαy (111)

These expressions can be inverted immediately using Cagniard-de Hoop; no poles or extra-

neous branch cuts are observed, so the inversion follows the same integration contour as in

[7].

It is found that, for the case of the injected and uniformly moving dislocations, the Cagniard

form is, respectively,

θ̂injected(x, y, s) =
2BMT (Λ + 2µ)

πb2
1

s

∫ ∞
0

τy (3a2R2x2 + τ 2 (y2 − 3x2))

R6
√
τ 2 − a2R2

H(t−Ra)e−sτdτ (112)

and

θ̂uniform(x, y, s) =
2BMT (Λ + 2µ)

πb2
1

s

∫ ∞
0

yd

R4
√
τ 2 − a2R2 (d2R2 − 2dτx+ τ 2 − a2y2)

(
a4x3R2

− 3a2dτx2R2 + a2τ 2x
(
x2 + 3y2

)
+ dτ 3

(
3x2 − y2

)
− 2τ 4x

)
H(τ −Ra)e−sτdτ

(113)

The final inversion in these two cases is immediate by invoking Laplace transform properties,

which for the injected case render

θ(x, y, t)injected =
2BMT (Λ + 2µ)

πb2
y
√
t2 − a2R2 (a2R2 (3x2 + 2y2) + t2 (y2 − 3x2))

3R6
H(t− aR)

(114)

For the uniformly moving case, the resulting expression is too long to be contained in here, and

is provided in the appendix.

The generally non-uniformly moving dislocation’s case leads to

θ(x, y, t)non-uniform =
2BMT (Λ + 2µ)

πb2
FT (t)

where

FT (t) =

∫ ∞
0

H(t̃− R̃a)G(t̃, ξ)dξ

where t̃ = t− η(ξ), R̃2 = x̃2 + y2, x̃ = x− ξ and

G(t̃, ξ) =
y
√
t̃2 − a2R̃2

(
a2R̃2 (3x̃2 + 2y2) + t̃2 (y2 − 3x̃2)

)
3R̃3

The resulting temperature fields can readily be evaluated. For distances far away from the

core which are thermally excited at timescales of the order of 1ns, the thermomechanical heating
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FIG. 5: Uncoupled temperature field for an injected edge dislocation. The dislocation was

injected at the origin, and the instant in time represented is 0.1ns; the material constants of

FCC Al have been used.

resulting from the dilatational fields of the dislocations is yet again observed to be of very small

magnitude, irrespective of the speed of the dislocation. Figure 5 shows the temperature field

at a distance of ≈ 1µm away from the core of an edge dislocation injected in FCC Al; as can

be observed, at time 0.1ns after the injection, the underlying rise in temperature as a result of

the injection itself is entirely negligible (O(-11)K). The predicted heating only seems to exceed

O(1)K for extremely short timescales (i.e., < 1ps), and only for positions of the order of 1Å

(i.e., over one atomic distance away from the core, where the whole continuum treatment of

the dislocation is invalid anyway). The magnitude of θuniform is directly proportional to the

dislocation speed, and may be expanded to first order as

θ(v) ≈ BMT (Λ + 2µ)

πb2
v

(
−2txy

√
t2 − a2R2

R4
− a2 arctan

(
2txy
√
t2 − a2R2

R2(t2 + a2y2)

))

For the same distances and timescales, one expects temperature rises of O(−3) as v → ct.

These estimates agree well the results derived from the fully coupled problem, and confirms

that the thermomechanical heating due to the injection and motion of a dislocation can safely

be neglected in comparison with the dissipative heating effect described in section II.
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V. CONCLUSIONS

This article has examined the temperature increase in a crystalline solid resulting from a

moving dislocation. Two separate effects have been studied: the dissipative effect associated

with the viscous and radiative drag effects, and the thermomechanical temperature rise resulting

from the dilatational fields radiated away from the core of edge dislocations.

Simple expressions for the temperature increase associated with the dissipative heating effect

have been provided. It has been found that the temperature rise associated with this effect

is only considerable for dislocations moving with speeds a significant fraction of the speed of

sound, but still insufficient on its own to produce large amounts of localised heating unless

large densities of fast moving dislocations are present (cf.[8]). The thermomechanical effect

has initially been studied both for a coupled thermal and elastodynamic continuum, providing

expressions for the temperature field surrounding the core of an injected and moving edge dislo-

cation. The resulting temperature fields have been shown to be very weak, both in terms of the

strength of the coupling between the thermal and elastodynamic continua, and in terms of the

actual temperature rise. In the coupled problem, asymptotic expressions for the temperature

fields have been provided. Based on the weakness of the coupling between the thermal and

elastodynamic continua, the uncoupled problem has also been solved, leading to closed-form

solutions of the temperature field which may be added to the growing corpus of closed-form

solutions of the time-dependent continuum fields of dislocations. In the uncoupled case the

magnitude of the thermomechanical effect has also been seen to be small in comparison with

the dissipative heating effect.

This study has therefore shown that in the motion of dislocations, the single most important

thermal effect is dissipative heating resulting from the overdamped nature of dislocation motion.

Effects associated with the presence of dilatational radiation emanating from the core (i.e.,

thermomechanical heating) may be neglected.
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APPENDIX

The uncoupled temperature field due to the dilatational fields of the uniformly moving

dislocation is

θuniform(x, y, t) =
BMT (3Λ + 2µ)

πb2
dy

2R4

 √d2 − a2R4
(
d
(
y
√
a2 − d2 + dx

)
− a2x

)
y
√
d
(
d (y2 − x2)− 2xy

√
a2 − d2

)
+ a2x2

ln

(
K1

K2

)

+

√
d2 − a2R4

(
d
(
y
√
a2 − d2 − dx

)
+ a2x

)
y
√
d
(
2xy
√
a2 − d2 + d (y2 − x2)

)
+ a2x2

ln

(
K3

K2

)

− 2
√
t2 − a2R2

(
dR2 + tx

)
(115)

where

K1 = 2y

(√
d
(
−2xy

√
a2 − d2 − dx2 + dy2

)
+ a2x2

√
t2 − a2R2 + ty

√
d2 − a2 − ia2R2 + idtx

)
(116)

(117)
K2 =

√
a2 − d2R4

(
d
(
y
√
a2 − d2 + dx

)
− a2x

)√
d
(
d (y2 − x2)− 2xy

√
a2 − d2

)
+ a2x2

(
y
√
a2 − d2 + dx− t

)

(118)

K3 = 2iy

(
i

√
d
(

2xy
√
a2 − d2 − dx2 + dy2

)
+ a2x2

√
t2 − a2R2 + ity

√
d2 − a2 + a2x2

+ a2y2 − dtx

)
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