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Appendix S1
Mathematical supplements

Vincent Calcagno, Nik J. Cunniffe, Frédéric M. Hamelin

S1-1 General model

S1-1.1 Model and definitions

Patches undergo disturbances that lead to the extinction of all the species consid-
ered (i=1,2,...,5). The patches are disturbed at rate uyx, where x is the age of a
patch, i.e. the time since it was last disturbed. Let X be the maximum age a patch
can reach, i.e. patches are systematically disturbed at age X. In the special cases
developed later, there is no such sharp limit, and X just tends to infinity.

The model describes the changes in p;x,:, the mixed joint probability density of
patch age x (a continuous r.v.) and occupancy by species i (a discrete r.v.) at time t.

The marginal probability of occupancy by species i is

X
Pi,-,t=f Pix,tdxX.
0

Similarly, the marginal probability density of patch age x at time t is denoted as p. x,t

(see Section S1-3 for a more explicit definition), and sums to unity as any p.d.f.:

X
f ,O.,x,th = 1 .
0

Lastly, the probability that a patch of age x is occupied by species i at time t is

denoted as:
Pix,t
Pilx,t = .
o, X,t

The general model can be expressed as the following partial differential equation

(repeating Eq. 1 in the main text):
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agt't + ap;:'t =—(Ux + €) Pix.t + (CiPio,t + M) (Pax,t — Pix,t) - (S1-1)

Since all patches are empty following a disturbance, p;o+=0foralli=1,2,...,s,
and for all t > 0. If there is a maximum patch age X, p;x,: = 0 for all x > X. Otherwise,
liMx—+00 Pix,t = 0.

At steady-state, we can drop the subscript t, and Eq. S1-1 becomes:

dpi,x
dx

=—(Ux + €)Pix+ (CiPie + M) (Pe.x — Pix) (S1-2)

where p, x is the stationary probability density of the age x of a patch.

Table S1-1 lists the model parameters/variables and their definitions.

S1-1.2 Steady state distribution of patch age

The stationary distribution of patch age satisfies

dpex _
ax MxPe,x -
Therefore, p. x can be expressed as:
X
Pe,x = Pe,0 €XP (‘f I-‘yd}’) ) (51-3)
0

where p. o is an implicit factor such that fg(p.,xdx = 1, since p. x is the probability
density function of the host age x. The function p.x is decreasing with respect
to x. In the special case where uyx = u (a constant) and X is infinite, it is simply
an exponential distribution with rate u. In general, depending on Ly, p.x can take

various shapes, including for instance uniform or Weibull distributions.

S1-1.3 Occupancy conditional on patch age

From Eq. S1-2 and S1-3 and the rule of differentiation of a ratio (p; x/p. x), the steady-

state probability of occupancy conditioned to patch age (pjx) satisfies:

dpilx
dx

= —eipix + (Cipie + M) (1 —pix) .



Parameter Meaning
s number of species considered; species are indexed with i,j=1,2,...,s
Ci colonization rate of species i (per occupied patch)
mi immigration rate from outside the metacommunity of species i
e; local extinction rate of species i
Mx catastrophic disturbance rate of a patch of age x (noted u if constant)
X maximum patch age (if any)
N total number of sites (patches) in the co-occurrence matrix considered
Variable  Meaning
t time
X age of a patch, i.e. the time since the last catastrophic disturbance event
Fit force of colonization/immigration of species i at time t
Fi steady-state force of colonization/immigration of species i
Pix.t fraction of patches that have age x and are occupied by species i at time ¢t
Pex,t fraction of patches that have age x attime t
Pi,e,t overall occupancy of species i, i.e. the fraction of patches it occupies
Pix.t fraction of patches of age x that are occupied by spp. {: Pix,t = Pi,x,t/Pex.t
Pix steady-state fraction of patches that have age x and are occupied by spp. i
Pe,x steady-state fraction of patches that have age x
Pi,e overall occupancy of species i at steady-state
p[.f. overall occupancy of species i after permutations in the co-occurrence matrix
Pilx fraction of patches of age x that are occupied by species i: pijx = Pix/Pe,x
Ti/x relative distribution profile of species i: Tyx = pix/pPi,»
n.jx relative distribution profile of species i after permutations in the matrix
T, inverse function of
Piz the probability density function of m;/x
qo.t,x fraction of patches that have age x and are unoccupied at time t
Qi,t,x fraction of patches that have age x and are occupied by a single species {
q{ij}t.x fraction of patches that have age x and are occupied by both species i and j
Qit,e overall fraction of patches occupied by species i only at time t
g{ij}.t,e overall fraction of patches occupied by both species i and j at time t
ao,x steady-state fraction of patches that have age x and are unoccupied
gix steady-state fraction of patches that have age x and are singly occupied
q{ij}.x steady-state fraction of patches that have age x and are doubly occupied
Qij,e overall fraction of patches occupied by both species i and j at steady-state
qi’fj,. overall fraction of co-occurrences of species i and j after permutations
Cij partial C-score between two species: Cij = N?(pie— qij,e)(Pj.e — Gij,e)
wi relative occupancy of species i in the matrix: w; = pz,./ZLl Pk,e
Tix weighted-average of the species distribution profiles: 7iy = Ziﬂ Wik Tk/x

Table S1-1: Model variables and parameters.
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with p;o = 0. This can be solved as

CiPi,e + m;
Pix = (1 —exp(—(cipie + Mi+ €))X)) . (S1-4)
CiPie+ M;+ €;

S1-1.4 Overall steady state occupancy

The steady state occupancy of a species is defined implicitly by

X
Pie = f PilxPe xdX, (51-5)
0

with p;x given in Eq. S1-4.
In general, this admits no explicit solution. However, we can solve for p; . using a

simple iterative algorithm:
1. Set p;. to some non-zero initial value, e.g. %;
2. Update its value using eq. S1-5;

3. Repeat 2 until the value of p;. no longer changes (fixed point).

S1-1.5 Relative distribution profiles
The relative distribution profile of species i is defined as in Eq. 2 in the main text:

_Pix 1 Cipie+my
Pie  PieCiPie+ M+ €;

(1 —exp(—(cipie + M+ €/)X)) . (51-6)

We note that the mean value of the profile is one:

X X piy
E(mi/x) =f Ty Pe,ydy =f ~—p.ydy=1. (S1-7)
0 0 PeyPi,e
Let
1 CiPie + M
A= , and R;=cppi.+m;+e;.
Pie CiPie + M+ €
We have:

Myx =Ai[1—exp(—Rx)] .

We note that m; o = 0 for all i, and that limx_x myx = Ai(1 — exp(—RiX)). The latter

is between 1 and A;, since on the one hand myy is strictly increasing w.r.t. x, and

4
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E(myx) = 1, and on the other hand limx_« Tyx = A;.
To obtain the distribution (probability density) of m;x values, we first compute the

inverse function 1,1

-+ that returns the patch age for which a particular value z of m/x

is obtained. From the above expression of myx we get:

= anla]
m,,-=—In .
vz R, Ai—z

It then follows that the probability density function of myy is:

defined on the interval 0 < z < Aj(1 —exp (—RX)). This expression was used to draw
the distribution of myx values in the inset of Figure 2 in the main text. The variance
of the above distribution is a metric of species “fastness” (see main text).

We also note that since myx and myx are increasing functions of x (Eq. S1-6),

Harris’ inequality applies:

X X X
J PexTi/xTj/xdX = J p.,xm/deJ PexTyxdx =1, (51-8)
0 0 0

or equivalently Cov(myx, myx) = 0.
Lastly, we remark that the variance of the average community profile (see Eq. 9

in the main text) can also be expressed as:

S S
var(h) = >0 > wiewy Cov(Tiyx, Tiyx) -
k=11[=1

S1-1.6 The relative distribution profiles cross exactly once
The following lemma will be used in the theorem of the next section.

Lemma. /n the general metacommunity model S1-1, for any pair of species i, j, the
relative distribution profiles myx and mjx cross exactly once beyond the initial point

(x =0), unless myx = myx for all x.

Proof. Let

6x = Tyx — Myyx = Ai[1—exp (—Rix)] — Aj[1—exp(—Rjx)] .

5
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Differentiating with respect to x,

déx
o AiRiexp (—Rix) — AjRjexp (—Rjx) ,

with 69 = 0. Let us show that éx has a single optimum (maximum or minimum). Let

X* be such that 5;* = 0, where the prime denotes the slope of §x. We find a unique

AiR;
X* = log (A/'Rj)
Ri—R;

possible such x*:

Therefore, regardless the initial sign of 6;, 6x cannot change sign more than once

(for some x > x*). Since

X X
E(6x) = J Pe,x0xdX = J Pex(Tix—Tix) =0,
0 0

6x must change sign at least once. Hence, 6x changes sign exactly once. That
means that any pair of profiles myx, mjx cross exactly once beyond the initial point

(x =0). O
S1-1.7 Variances and initial slopes of the relative distribution pro-
files

Theorem. In the general metacommunity model S1-1, for any pair of species i, j, the

inequality Var(myx) < Var(myx) is equivalent to 1 meaning that the variance

l{/O = T[j{/O’
of the profile is entirely determined by the initial slope of the profile.

Proof. The inequality Var(myx) < Var(mx) is equivalent to

X X
2 2
Jo n[./xp.,xdx < fo nj/xp.,xdx.

This inequality can equivalently be expressed as:

X X X
f (17, — T2, IPexdX = f (Tiyx + Tj1x ) (Tirx — Tiyx)Pe xdX = f (Tliyx + Tj/x)6xPexdX < 0.
0 0 0

Since (myx + mjyx) is increasing w.r.t. x, E(éx) = 0, and using the preceding lemma,

it is necessary and sufficient that 6y is positive on the interval (0,x*) for the above
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inequality to be satisfied. This condition is satisfied if and only if §; = AiRi—AjR; > 0.

Therefore, the above inequality is equivalent to A;R; > AjR;. For k =1i,j,

myg ,
ARk =ck+ — = L
Pk,e

where the prime denotes differentiation w.r.t. x. Hence the equivalence:

! >

Var(myx) < Var(mx) < o /0!

Note: this equivalence between initial slope and variance holds for any species,
but does not hold for the average profile of several species. Therefore the initial
slope of the average relative distribution profile cannot be taken as a proxy for

Var(f). It is therefore not a good proxy of average fastness.

S1-2 Link with classical metapopulation models

The model (Eq. S1-1) generalizes the classical mainland-island and Levins metapop-
ulation models, which are characterized by u(x) = u (a constant) for all x, and
X — +00. To show the connection, we integrate both sides of Eq. S1-1 over x on

[0, +0). The l.h.s. simplifies to

li ) A + dpi,o,t _ dpi,o,t
(NimPixe=piog) + == = ==,
which yields
dp[,c,t
- (CiPiot + M) (L —Piet)—(U+ €)Piet- (S51-9)

We recognize a classical metapopulation model. The special cases ¢c;=0and m;=0

correspond to the mainland-island and Levins models, respectively.
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S1-2.1 Steady-state occupancy in classical models

At steady-state, Eq. S1-9 becomes:

0=(Cipie+ M) (L —pie)— (L+ €DPie - (51-10)

Solving for p;. in Eq. S1-10 yields two real roots. One can easily check that only the

largest root is positive. The biologically relevant equilibrium is therefore

Ol ALk ym? + 22(ez +eitpmi+ (ei—ci+p)? 5111)
Ci

which requires ¢; > 0.

Mainland-island model. Assuming ¢; =0, solving for p;. in Eq. S1-10 yields

mi

Dio= — (51-12)
mi+ei+u
Levins model. Assuming m; =0, Eq. S1-11 simplifies to
e+
po=1-""H (S1-13)
Ci

provided c¢; > e; + u. Otherwise p;. = 0.

S1-2.2 Expressions of the variance/covariance of relative profiles

The overall fractions of patches occupied by species i only, species j only, and both
species ( and species j, are qgit., qgjte, and gy i t., respectively. The fractions of
patches occupied by species i and species j are pite = qit,e + d{ij},t,e AN Pjite =

gj,t.e + Q{ij}.t,e, respectively. Integrating both sides of Eq. S1-14 w.r.t. X,

dqit,.
dr Fit(1—Qit,e— Qj,t,e — Qgij}.t,0) — €iGit,e — HGit,e + €G{ij},t,e — FjtQit,e,
dg;,t,.
dr Fit(1—=Qite = Qjt,e = Q1ijd t,e) — €0 t.e — HGjt.e + €iG1i 3 t,e — FitGjt,e,
dq{ijyt,e
T dat FitQit,e + FitQjte —(€i+ €+ U)G i ) t,e -
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The above system of equations can equivalently be expressed as:

dp',t,o
dlt- = Fit(L—pite)—(€i+ LU)Pit,e,
dp',t,o
O:t = Fit(L—pjte)—(€+U)Pjte,
dqgqijy.e
dltj = FiePite = qijyte) + FielPite = Gijy.te) = (80 + € + U)G (i

At steady-state, we can drop the t subscripts: for k =,/

F . F
Fi Fipie + Fipj,e # * 0.
Pke=————, and qqij1,e= = Di,ePj,e :
Fx+ex+u Fi+Fi+tei+e+u Fi+Fi+ei+e+u

Combining both equations,

Fi+Fi+ei+e+2u (1 U )
i,j},e = Piefe = Pi,e[lj,e + .
e P eir e o Fi+Fi+ei+e+p

Therefore (see Eq. 5 in the main text),

u
Fl-+F,-+e,-+ej+u'

Cov(myx, myx) =
Using the fact that the force of colonization/immigration of species i (Eq. S1-15) is
Fi=ci(qie+ qgij3,e) + Mi=Cipie + M,

u
CiPie +Mi+CiPje+Mij+ei+ej+ U .

Cov(myx, myx) =

Last, using the expression of p;. from Eq. S1-11, we obtain:

2u

D kelij} (mk + ek + Ck + \/m,ﬁ + 2(ex + Ck + u)Mi + (ex — Ck + u)z)

Cov(myx, Myx) =

As a special case, for any species i:

u

Var(mx) = Cov(myx, Tyx) = > :
mi+ei+ci+ \/ml. + 2(ei+ ci+ )M + (ei— i + u)?
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Mainland-island model. Assuming ¢; = 0 and rearranging yields:

U u
Cov(myx, Tiy/x) = , and Var(myx) = :
(T, Trx) mi+mj+ei+e+u (Ttx) 2(ei+m)+u

Levins model. Assuming m; = 0, using and rearranging yields:

CovTyx, M) = ————, and  Var(my) = ———.
Ci+Ci—u 2Ci— U

S1-2.3 Parameter conditions to have identical relative profiles

We define as similar species that have the same relative distribution profile: for any
pair of similar species i,j, myx = myx for all x. The latter equality is equivalent to
Pix = Kpjix, Which is again equivalent to p;x = kpj,x, With K = p; «/Pj,e.

Using Eq. S1-4, this means that the following pair of equations must be satisfied:

CiPie+Mi+€; = C(CiPpje+Mj+ e,

Cipis + M = K(Cjpj,e + M;)).

Mainland-island model. Assuming ¢; = 0, using Eq. S1-12, and rearranging

yields:

m; = ij,

e

I
~
l—l
!
A
N/
3
+
0

In the mainland-island model, similar species may differ in both extinction and

immigration rates, provided they respect the above relationships.

Levins model. Assuming m; =0, using Eq. S1-13, and rearranging yields:

Cci = Cj,

€; (1—=x)(cj—u) +ke;.

In the Levins model, similar species must have equal colonization rates, but their

extinction rates may differ provided they respect the above relationship.

10
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S1-3 Independence of co-occurrences within age classes

In this section, we keep track of co-occurrences between two non-interacting species.
We will show that the probability that a patch of age x is occupied by both species
is equal to the product of the probabilities that a patch of age x is occupied by each
species irrespective of the other species. The demonstration is inspired from and
extends earlier studies in epidemiology (Kucharski and Gog, 2012; Hamelin et al.,
2019).

We consider the following model, which looks into the general metacommunity
model S1-1 into more detail for any pair of species in the set of s species considered.
These species are indexed by i = 1,2 without loss of generality. Let 9@ tx, Qitx,
and qq{1,23,t,x be the fractions of patches unoccupied, occupied by a single species

(i=1,2), and occupied by both species, respectively. For x > 0,

09z,tx 99a,tx
+

= —(F1t+ F2t+ Ux)do,t.x + €191,t,x + €202t x »

ot 0X
9q1,t,x  991,t.x
o + x F1,t9z,tx — (F2,t + Ux + €1)q1,t.x + €29{1,2},t.x, (51-14)
9Q92,t.,x 9G2,tx
o + o F2,tq@,tx — (F1,t + Ux + €2)02,tx + €19{1,2}.t,x »
094{1,2},tx  9G{1,2},t,x
o + o = Fotq1,tx+ F1xq2,tx— (Ux+ €1+ €2)q{1,2}.t.x»

and, for x = 0:

X
do.t.0 = f Hx(Q@,tx + Q1tx + 2,t.x + 4{1,2},tx)AX + Azt x + 1t x + 92,6, x + G{1,2}.t.X»
0

gi,to0 =0, Qg2t0=0, Qgq1.23.t0=0.

The force of colonization/immigration of species i=1, 2, F; ¢, can for instance take
the form:

X
Fit= CiJ (91,t.x + Q{1,2},tx)dX + m;.
0
We set patx =Qq@,t.x + d1,tx + G2,t.x + 4{1,2},tx- We have, for x > 0,

OPet,x OPetx
+
ot 90X

= —MxPe,t,x

11



and, for x =0,

X
Pe,t,0 = f UxPe,t xAX + Pot x -
0

151 Steady-state analysis. At steady state, the state variables do not depend on

152 time t, and the model simplifies to (keeping the same notations for convenience):

dZiX = —(F1+F2+Ux)qax+€191x +€202,x,

dz;,x = Figgx— (F2+ Ux+€1)q1.x + €20{1.2}.x »

d;])z(,x = F2qpx— (F1+ Ux+ €2)q2.x+ €19{1,2}.x»
% = F2q1x+ F192x— (Ux + €1+ €2)q{1.2} .

153 with initial conditions:

X
do,o = f Ux(Qz.x + 91x + G2,x + Q{123 x)AX + do.x + G1,x + 92, x + G{1,2},X
0

gio = 0, g20=0, g41,2;,0=0.

154 The force of colonization/immigration of species i =1, 2, F;, can for instance take

155 the form:

X
Fi=CiJ (91.x + q{1,23 x)dx + m;. (S1-15)
0

156 We set pox =Qgo,x + gd1,x+ g2.x + q{1,23,x. The distribution p. x has been expressed in
157 EQ. S1-3.
158 Next we define the probabilities for a patch to be unoccupied, occupied by a

159 Single species (i =1, 2), and occupied by both species, given patch age x:

qa,x qi1,x q2,x q{1,2}x
qoix = v qix = v Q2x = v q{1.23x = .
*,X po,x P.,x ,0.,x

10 Note that ggix + 91)x + 2ix + 9{1,23x = 1. Using the fact that

14 /7
po,x q@,x

dox\ 9y
Pe,x Pe,x ox  Pex

12
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and similarly for other conditional probabilities, we obtain:

dZilx = —(F1+F2)qgix + €1q1x + €292,

dz;lx = Fidox— (F2 + €1)q1x + €2G1,2}1x»

dZilx = F2qgix— (F1+ €2)q2x + €1941,2}x »
dq{dl—;}lx = Fqix+ F192;x— (€1 + €2)q{1,2}1x

with initial conditions

dz,0

Pe.0
gio = 0, g20=0, qg{1,230=0.

oo =

Let
Pix =d1x + 9{1,2}1x, P2ix =d2x + 9{1,2}1x» Dx =q{1,2})x — P1|xP2x -
We have
dp1ix
x F1(qoix + 921x) —e1(q1x + 9{1,2}1x) »

= F1(1—=pix)—e1pix.,

and similarly for the derivative of pyx w.r.t. x. Thus

d(p1ixP2|x)
# = F1(1 = p1p)p2ix + F2(1 = p2x)p1ix — (€1 + €2)P1xP2|x -
Using
dgq1,23
TX = Fi(p2;x —g1,231x) + F2(P1x — 9¢1,231x) — (€1 + €2)q (1,2} x
d(p1xP2ix)
# = F1(p2;x — P1xP2ix) + F2(P1jx — P1xP2ix) — (€1 + €2)P1xP2|x »

we end up with:
dAx

dx

=—(F1+Fx+e1+e3)Ax, Ap=0.

13



168 Therefore, Ax = 0 for all x. Hence, for all x > 0,

q{1,2}x = P1|xP2|x -

169 AS @ consequence,

X X
gi1,2,. =f g{1.2}xPexdX =J P11xP2|xPe,xdX .
0 0

1o S1-4 The case of immune species

171 In this section, we consider species that are immune to disturbance events (hereafter
172 immune species) separately from vulnerable (non-immune) species.

For immune species, the boundary conditions of the general model S1-1 have to

be updated in the following way: for all immune species indexed by i, and for all

tZOr

X
Piot= f UxPix,tdX + pix,t-
0

173 Since species have nonzero individual extinction rates (for all i, e; > 0), we have
172 liMxoi00 Pix,t = 0.

175 The patches that have age zero at time t are those that are disturbed at time t:

X
Pe,0,t = J UxPox,tAX + Po x t -
0

176 Integrating both sides of Eq. S1-1 w.r.t. x,

dp',o,t X
(pix,t—Pio,t) + d[t = —J HxPix,tdX — €iPie,t + (CiPie,t + M)(1—Piet),
0

which yields
dpi,et
dt

= (CiPije,t + M) (1 —Pie,t) — E€iPiet -

177 At steady-state, we omit the t subscripts:

0=(cipie + M) (1 —pie) —€iPie- (S1-16)

14
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192

We also have

X
pio = J HxPixdX + pix - (51-17)
0

and

X
Pe,0 = f HxPexdX + e x .
0

Let us check that P;x = piePex is solution of Eq. S1-1 at steady-state (i.e. Eq.
S1-2) with initial condition S1-17. At x =0,

X X

HUxPi,ePoxdX + Pi oo x = J UxPixdX + Pix,

Pi,0 = PiePe,0 = f
0

0

which is consistent with Eq. S1-17. We also have

d,éi,x
dx

= —UxPi,ePe,x = —HxPix -

Since

—eiPix + (Cipie + M)(Pex — Pix) = Pox(—€iPie + (CiPie + M)(1—pia)) =0,

(see Eq. 51-16), one can equally write

dﬁi,x
dx

= —UxPix — €iPix + (CiPie + M)(Pax — Pix)

which is consistent with Eq. S1-2.

Therefore, p;x = pi«Pe,x, Meaning that patch age and occupancy are independent
random variables for immune species.

As a consequence, pijx = Pix/Pex = Pie, hence myx = piyx/pi. = 1 for all x. In
other words, immune species have the same relative distribution profile as infinitely
fast non-immune species. The predictions made for very fast non-immune species
hold for immune species as well. Pairing an immune species with any other type of

species is expected to generate spurious competition.
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