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Bioinformatics Models to Identify 
Pathways that Mediate Influences 
of Welding Fumes on Cancer 
Progression
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Welding generates and releases fumes that are hazardous to human health. Welding fumes (WFs) are 
a complex mix of metallic oxides, fluorides and silicates that can cause or exacerbate health problems 
in exposed individuals. In particular, WF inhalation over an extended period carries an increased risk 
of cancer, but how WFs may influence cancer behaviour or growth is unclear. To address this issue we 
employed a quantitative analytical framework to identify the gene expression effects of WFs that 
may affect the subsequent behaviour of the cancers. We examined datasets of transcript analyses 
made using microarray studies of WF-exposed tissues and of cancers, including datasets from 
colorectal cancer (CC), prostate cancer (PC), lung cancer (LC) and gastric cancer (GC). We constructed 
gene-disease association networks, identified signaling and ontological pathways, clustered protein-
protein interaction network using multilayer network topology, and analyzed survival function of the 
significant genes using Cox proportional hazards (Cox PH) model and product-limit (PL) estimator. We 
observed that WF exposure causes altered expression of many genes (36, 13, 25 and 17 respectively) 
whose expression are also altered in CC, PC, LC and GC. Gene-disease association networks, signaling 
and ontological pathways, protein-protein interaction network, and survival functions of the significant 
genes suggest ways that WFs may influence the progression of CC, PC, LC and GC. This quantitative 
analytical framework has identified potentially novel mechanisms by which tissue WF exposure may 
lead to gene expression changes in tissue gene expression that affect cancer behaviour and, thus, 
cancer progression, growth or establishment.

Welding processes join rigid material pieces (usually metal) at their contact interface by using high temperatures 
to cause fusion. This process can be hazardous because it exposes the operator to extremely toxic fumes and to 
radiant energy1. The International Agency for Research on Cancer (IARC) has recognized WFs and UV radia-
tion from welding as Group 1 carcinogens2. WFs are mainly composed of metallic oxides, silicates and fluorides, 
including those of magnesium, manganese, zinc, aluminum, beryllium, copper, chromium, cadmium, lead, iron, 
nickel and vanadium3.
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Welders inhaling WFs in large quantities over a long period run a significantly elevated risk of developing 
certain types of cancer1,2. These metastatic diseases involve uncontrolled or neoplastic growth of cancer cells that 
arise after the accumulation of genomic mutations, but other factors with powerful effects on cancer behaviour 
and growth include genetic factors and environmental factors the suffer is exposed to4. Environmental factors 
include inhaled toxic fumes that affect the lungs and enter the circulation to reach many tissues, and which can 
affect cellular gene expression of cancer cells and thereby their behaviour, survival, growth and invasiveness. 
Thus, influences such as WF inhalation affects the progression of many types of cancers, including those focused 
on in this study, specifically CC, PC, LC and GC, which are among the cancers most commonly linked with WF 
exposure5–7. The aim of this study is therefore to identify mechanisms through which WFs may increase cancer 
incidence.

LC is one of the most lethal types of cancer and globally is a leading cause of death1,2,8. WFs contain toxic 
metallic oxides and silicates that directly affect the sensitive tissues of the lung when inhaled, the manner of 
exposure (by inhalation) makes this the cancer with the highest risk for welders9. CC arises in the colon and 
the rectum and has a typical 5-year survival rate of about 60%. It damages colon or rectum by uncontrollable 
and invasive cell growth10. Iron, aluminum and magnesium oxide of the welding fumes are known to affect the 
incidence of CC9, although this is not well understood. PC affects prostate, the gland which produces seminal 
fluid and controls the transportation of sperm11. Nitrogen oxides, carbon dioxide and phosgene are risk factors 
for prostate neoplasms that are found in WFs9. GC (gastric or stomach cancer)12 is linked to exposures to nickel, 
beryllium and cobalt oxides which are all present in WFs9.

In this study, we developed a systematic and quantitative network-based approach to investigate the effects of 
WFs on gene expression and how these effects may give a clue as to how they encourage the incidence and pro-
gression of cancers through affecting pathways and pathway genes that are also altered in these cancers. Thus, we 
compared gene expression effects of WF exposure with the altered pattern of gene expression seen in CC, PC, LC 
and GC. This involved, firstly, analyzing differentially expressed gene profiles, then filtering these genes through 
gene-disease association networks, signaling and ontological pathways, and protein-protein interaction networks. 
We also investigated the importance of genes and pathways thus identified by using the gold benchmark databases 
dbGaP and OMIM to identify evidence to support the involvement of these genes in pathological processes such 
as cancer development. Moreover, we analysed patient survival and its association with the genes that are dysreg-
ulated in both the WF-exposed tissue and the four types of cancers. The influence on cancer patient survival of 
these identified genes provides evidence for their involvement in WF effect on cancer progression.

Methods and Materials
Overview of the analytical approach.  We applied an analytical approach to identify links between WF 
exposure and the incidence of the cancers by employing selected microarray datasets shown in the block diagram 
of the applied analytical approach shown in Fig. 1. This quantitative approach used genes differentially expressed 
in WF exposure, and identifies those that are also common to the differentially expressed genes observed in each 
cancer study. Further, these shared or common differentially expressed genes were used to construct gene-disease 
(diseasome) association network, identify signaling and ontological pathways, protein-protein interaction (PPI) 
network and survival function analysis. This approach also used gold benchmark databases OMIM and dbGaP 
validate genes and pathways identified in our study as showing possible disease associations.

Datasets employed in this study.  To identify the gene expression dysregulation that is common to WFs 
and the four types of cancers under investigation, we analyzed gene expression microarray datasets from the 
National Center for Biotechnology Information (NCBI). We examined five different microarray datasets with 
accession numbers GSE62384, GSE25071, GSE55945, GSE10072 and GSE268513–17. Dataset GSE62384 was pro-
duced using human upper airway epithelial cells (RPMI 2650) exposed to spark generated WFs. These data were 
generated from cells exposed to WFs for 6 hours continuously at low (85 μg/m3) and high (760 μg/m3) concen-
trations. The CC dataset (GSE25071) consists of microarray data taken from 17 colorectal cancer sufferers who 
had late-onset CC (mean age 79 years) and 24 patients with early-onset CC (mean age 43 years). The PC dataset 
(GSE55945) is a microarray data on RNA taken from radical prostatectomy tissue from prostate cancer patients 
at the Beth Israel Deaconess Medical Center which compared tissue from PC sufferers (Gleason score 6 or 7) with 
normal prostate tissue. The LC dataset (GSE10072) contained microarray data comparing normal lung tissue 
and lung adenocarcinoma tissue collected from 26 former smokers, 20 non-smokers (who never smoked) and 
28 current smokers; gene expression data are reported by comparing 49 non-tumor and 58 tumor lung tissues. 
The GC dataset (GSE2685) contains microarray data from 22 gastric cancer and 8 non-cancerous gastric tissues.

To analyze the patient survival association of the altered genes that are common to WFs and the four types of 
cancers under investigation, we retrieved clinical and RNAseq data for CC, PC, LC and GC from the cBioPor-
tal 18,19. In the clinical dataset of CC (Colorectal Adenocarcinoma, TCGA, Nature 2012) there are 585 samples 
with 24 features. The samples of CC have RNAseq gene expression data included 224 cases with 224 mutated 
genes20. The clinical dataset of PC (Prostate Adenocarcinoma, TCGA, Cell 2015) includes 333 samples with 86 
features. The RNAseq gene expression data of PC has 333 cases with 333 mutated genes21. The LC clinical dataset 
(Lung Adenocarcinoma, TCGA, PanCancer Atlas) consists of 566 samples with 81 features. The samples of LC 
have RNAseq gene expression data included 510 cases with 566 genes22. The clinical dataset of GC (Stomach 
Adenocarcinoma, TCGA, Nature 2014) contains 295 samples with 52 features. The samples of GC have RNAseq 
gene expression data included 265 cases with 295 mutated genes23. We employed six clinical factors (ethnicity, 
anatomical site of cancer, histological grade of cancer, primary tumour site, and neoplasm status with tumour) to 
analyze the survival of the altered genes that are common to WFs and the four types of cancers under investiga-
tion. The summarized description of the datasets is shown in Tables 1 and 2.
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Analysis methods.  Microarray-based gene expression analysis is a global and sensitive method to identify 
and quantify possible molecular mechanisms that underlie human disorders24. We used these approaches to ana-
lyze the gene expression profiles of CC, PC, LC and GC to find the genetic effects of WFs that may influence the 
development of these cancers. To allow comparisons of the mRNA expression data generated using different 
platforms and to avoid complications arising from the different experimental systems employed in the original 
studies, we normalized the gene expression data by means of Z-score transformation (Zij) for each type of cancer 
tissue gene expression profile using =

−
Zij

g mean g

SD g

( )

( )
ij i

i
, where SD denotes the standard deviation, gij denotes the 

value of the gene expression i in sample j. After this transformation gene expression values of different diseases at 
different platforms can be directly compared. We applied unpaired t-tests to find differentially expressed genes of 
each disease over control data and selected significantly dysregulated genes. We have chosen a threshold of at least 
1 log2 fold change and a p-value for the t-tests of < = × −1 10 2. We employed the neighborhood-based bench-
mark and the multilayer topological methods to find gene-disease associations. We constructed a gene-disease 
network (GDN) using the gene-disease associations, where the nods in the network represent either gene or dis-
ease. This network can also be recognized as a bipartite graph. The primary condition for a disease to be con-
nected with other diseases in GDN is they should share at least one or more significant dysregulated genes. Let D 

Figure 1.  Flow-diagram of the analytical approach used in this study.
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is a specific set of diseases and G is a set of dysregulated genes, gene-disease associations attempt to find whether 
gene ∈g G is associated with disease ∈d D. If Gi and Gj, the sets of significantly dysregulated genes associated 
with diseases Di and Dj respectively, then the number of shared dysregulated genes n( )ij

g  associated with both 
disorders Di and Dj is as follows25:

= ∩n N G G( ) (1)ij
g

i j

The common neighbours are the based on the Jaccard Coefficient method, where the edge prediction score 
for the node pair is as26:

∩
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where G is the set of nodes and E is the set of all edges. We used R software packages “comoR”27 and “POGO”28 to 
cross check their genes-disease associations.

To investigate how molecular determinants from the WF exposed tissues relate gene expression alterations 
in the cancers, we analyzed pathway and gene ontology using Enrichr 29,30. We used KEGG, WikiPathways, 
Reactome and BioCarta databases for analyzing signaling pathway31–34. We used GO Biological Process and 
Human Phenotype Ontology databases for ontological analysis35,36. We also constructed a protein-protein inter-
action sub-network for each CD, using the STRING database, a biological database and web resource of known 
and predicted protein-protein interactions37. Furthermore, we examined the validity of our study by employing 
two gold benchmark databases OMIM and dbGaP.

To determine the patient survival association of the altered genes that are common to WFs and the four types 
of cancers under investigation, we employed Cox PH model for univariate and multivariate analysis38,39. The Cox 
PH model can be written as follows:

β| =h t X h t exp X( ) ( ) ( ) (3)i
T

i0

Here |h t X( )i  is the hazard function conditioned on a subject i with covariate information given as the vector Xi, 
h t( )0  is the baseline hazard function which is independent of covariate information, and β represents a vector of 
regression coefficients to the covariates correspondingly. We have calculated the hazard ratio (HR) based on the 
estimated regression coefficients from the fitted Cox PH model to determine whether a specific covariate affects 
patient survival. The HR for a covariate xr can be expressed by the following simple formula exp β( )r . Thus, the HR 
for any covariate can be calculated by applying an exponential function to the corresponding β( )r  coefficient.

The survival status of a patient can be estimated by calculating PL estimator40 of the survival function can be 
defined as follows:
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Sl. Disease name GEO accession

Number of samples

Case Healthy

1 Welding fumes (WFs) GSE62384 18 06

2 Colorectal Cancer (CC) GSE25071 46 04

3 Prostate Cancer (PC) GSE55945 13 08

4 Lung cancer (LC) GSE10072 58 49

5 Gastric Cancer (GC) GSE2685 22 08

Table 1.  Summarized description of the datasets used for gene expression and enrichment analysis.

Sl. Disease name Datasets name in the cBioPortal

Number of samples

Patients Clinical features RNA-Seq Mutated genes

2 Colorectal Cancer (CC) Colorectal Adenocarcinoma 
(TCGA, Nature 2012) 585 24 224 224

3 Prostate Cancer (PC) Prostate Adenocarcinoma 
(TCGA, Cell 2015) 333 86 333 333

4 Lung cancer (LC) Lung Adenocarcinoma  
(TCGA, PanCancer Atlas) 566 81 510 566

5 Gastric Cancer (GC) Stomach Adenocarcinoma 
(TCGA, Nature 2014) 295 52 265 295

Table 2.  Summarized description of the datasets used for survival prediction.
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Here Ŝ t( )j  is estimated survival function at time tj, dj is the number of events occurred at tj, and nj is the number 
of subjects available at tj. After estimating survival function, two or more groups can be compared using a 
log-rank test. We used Log-rank tests to detect the most significant genes in the case of patient’s survival time in 
altered versus normal (non-altered) groups in context of gene expression. The null hypothesis for this test can be 
symbolically explained as follows:

=H S t S t: ( ) ( ) (5)altered normal0

≠H S t S t: ( ) ( ) (6)A altered normal

Here H0 is survival functions that are the same for altered and normal gene and HA is survival functions that are 
not the same for these two groups.

If the survival function of a specific gene is different among altered and normal groups then we include it to 
the combined Cox PH model. This approach is efficient for learning the effect of a specific gene of interest on 
patient survival in the presence of the clinical factors.

Results
Gene expression analysis.  To identify and investigate the gene expression effects of WFs that may influ-
ence the behaviour of various types of cancer, we analyzed the gene expression microarray data collected from the 
National Center for Biotechnology Information (NCBI). We observed that WFs have 903 differentially expressed 
genes obtained by adjusted < = .p 0 01 and | | > =logFC 1. The differentially expressed genes of WFs contain 392 
up and 511 down-regulated genes relative to controls. Similarly, the statistical analysis identified the most signif-
icant genes with altered expression in each cancer type. The number of differentially expressed genes we identified 
was 939 (503 up and 436 down) in CC, 553 (323 up and 230 down) in PC, 890 (673 up and 217 down) in LC and 
691 (463 up and 228 down) in GC. We also employed a cross-comparative analysis to find the common genes with 
altered expression between WFs and each CD. We found that WF treated cells share a number of differentially 
expressed genes with for CC (36 dysregulated genes), PC (13 genes), LC (25 genes) and GC (17 genes). To identify 
the significant associations among these cancer types with the effects of WF exposure, we constructed two sepa-
rate gene-disease association-ship networks for up and down-regulated genes using Cytoscape plugins41, centered 
on the WF data as shown in Fig. 2(a,b). The necessary condition for two diseases to be associated is they must 
have at least one or more common differentially expressed genes in between them. Notably, two particular signif-
icant genes, C2orf88 and IGFBP5 were differentially expressed among WF exposure, CC and PC; and three sig-
nificant genes, FCGBP, IQGAP2 and HPGD are common among WF exposure, CC and GC. One gene, FGFR3, 
is commonly dysregulated among WF exposure, CC and LC.

Pathway and functional association analysis.  Pathways are constituted by a series of interactions at 
the molecular level in a cell, and are a vital key to understand the internal changes of an organism. Pathway-based 
analysis can be used to identify molecular or biological mechanisms that underlie the development of complex 
diseases42,43. We analyzed pathways of the commonly altered expression genes seen in WF exposure and in the 
cancers using Enrichr, a comprehensive web-based gene set enrichment analyzing tool29,44. Signaling pathways of 
the commonly altered expression genes of WF exposure and each type of cancer examined were analyzed using 
four globally recognized databases includes KEGG, WikiPathways, Reactome and BioCarta. We considered sign-
aling pathways from the selected four databases and identified the most significant signaling pathways of each CD 
after applying several statistical analysis. Notably, we found 6, 7, 5 and 7 signaling pathways are associated with 
CC, PC, LC and GC, respectively, as shown in Fig. 3.

Gene ontological analysis.  The Gene Ontology (GO) refers to a universal conceptual model for represent-
ing gene functions and their relationship in the domain of gene regulation. It is constantly expanded by accumu-
lating the biological knowledge to cover the regulation of gene functions and the relationship of these functions 
in terms of ontology classes and semantic relations between classes45. We analyzed ontological pathways of the 
commonly altered expression genes seen in WFs exposed cells and each cancer type using two recognized data-
bases including GO Biological Process and Human Phenotype Ontology. We considered ontological pathways 
from selected two databases and identified the most significant ontological pathways for each cancer type after 
applying several statistical analysis. We found 10, 11, 14 and 14 ontological pathways are associated with the CC, 
PC, LC and GC, respectively, as shown in Tables 3–6.

Protein-protein interaction analysis.  A protein-protein interaction network refers to the binding of pro-
teins in the cell formed by biochemical or complex biological functions. Protein-protein interactions are essential 
to understand the cell physiology in health and disease states. We constructed and analyzed protein-protein inter-
action networks of the significantly altered expression genes of each CD using the STRING database. We clustered 
protein-protein interactions of cancer types into four different groups as shown in Fig. 4.

Survival analysis.  Patient survival analysis using both gene expression and clinical data is a popularly used 
feature in research to predict and characterize gene signatures in cancer46. In this study, we estimated survival 
function for altered and normal groups of the significant genes that are common to WFs and the four types of 
cancers under investigation by employing Cox PH model and PL estimator analysis. We fitted both univariate and 
multivariate analysis of the Cox PH regression model. The significant genes of the four selected cancers with 
estimated coefficients (β), hazard ratios (HR) and p-values from those analyses are shown in Tables 7–10. After 

https://doi.org/10.1038/s41598-020-57916-9


6Scientific Reports |         (2020) 10:2795  | https://doi.org/10.1038/s41598-020-57916-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

these analyses we selected the most significant genes for the four types of cancers by choosing a threshold 
( < = .p 0 05) of the p-value. The survival curves of the most significant genes, comparing altered and normal 
groups had been obtained by using the PL estimator as shown in Fig. 5. Note that, from Fig. 5, we can see that 
those with altered expression of genes show lower survival compared to the normal group.

Discussion
In this study we investigated how WF exposure may influence a number of types of cancer whose development 
and growth is greater with exposure to WFs or the components of WFs. We compared the gene expression alter-
ations that result from WF exposure in cells with that of the genes that have dysregulated expression in several 
cancer types. The idea behind this is similar to studies of comorbidities, where dysregulated genes (or more usu-
ally gene pathways) that are common to two diseases give clues to how those diseases interact when co-occurring 

Figure 2.  (a) Up-regulated gene-disease association network of welding fumes (WFs) exposure with colorectal 
cancer (CC), prostate cancer (PC), lung cancer (LC) and gastric cancer (GC). Octagon-shaped red-colored 
nodes represent different cancer types and sky-blue colored round-shaped nodes represent commonly up-
regulated genes for WFs with the cancers examined. (b) Down-regulated gene-disease association network 
of welding fumes (WFs) exposure with colorectal cancer (CC), prostate cancer (PC), lung cancer (LC) and 
gastric cancer (GC). Octagon-shaped red colored nodes represent different cancer types and dark-cyan colored 
round-shaped nodes represent commonly down-regulated genes for WFs exposure with the different types 
of cancer examined. (c) Diseasome network showing validation of our study. Red colored octagon-shaped 
nodes represent different cancer types, pink-colored octagon-shaped nodes represent our selected four CDs 
and round-shaped sky-blue colored nodes represent differentially expressed genes for WFs exposure. A link is 
placed between a disease and a gene if mutations in that gene lead to the specific disease.
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in the same individual, even if we are unclear as to the reason for the altered expression of individual genes or 
pathways is unclear. Thus, genes or gene pathways altered in response to WF exposure and the cancers of interest 
can be means by which WF exposure encourages those cancers to develop. Note that WFs included components 
such as metal fumes that are absorbed by the lungs into the bloodstream, to expose many tissues around the body. 
Many of these fumes are carcinogenic, but cancer initiation is only one of a number of stages of cancer develop-
ment and progression, and welders commonly have regular exposure to fumes over long periods. Unlike in other 
morbidities, some altered gene expression may arise in individual cancer cells due to mutations which will affect 

(a) Pathways associated with signi�icantly common differentially expressed genes of the CC with WFs.

(b) Pathways associated with signi�icantly common differentially expressed genes of the PC with WFs.

(c) Pathways associated with signi�icantly common differentially expressed genes of the LC with WFs.

(d) Pathways associated with signi�icantly common differentially expressed genes of the GC with WFs.
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Figure 3.  Pathway analysis for identifying the most significant signaling pathways common to the WF exposed 
cells and the cancer types revealed by the common differentially expressed genes. These include significant 
signaling pathways common to WFs exposed cells and (a) CC (b) PC (c) LC and (d) GC.
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survival of those cells; if such altered expression the is detected in whole cancer tissue across many individuals (as 
in our studies) then the alteration may be affecting pathways that encourage survival and growth. Thus we have 
applied a systematic approach to identify pathways that WFs may affect the cancer behaviours.

For our analysis we employed gene regulation analysis, gene-disease association networks, signaling and onto-
logical pathways, and protein-protein interaction networks. To identify pathways and genes that are important 
in WF interactions in the cellular processes that influence cancer progression, we examined gene expression 
microarray data from WF exposed cells, CC, PC, LC and GC, each with control datasets. This identified a large 

GO Term Pathway Genes in the pathway
Adjusted 
p-value

GO:0009083 Branched-chain amino acid catabolic process BCKDHB, ACAT1 7.11E-04

GO:0009081 Branched-chain amino acid metabolic process BCKDHB, ACAT1 7.78E-04

GO:0009063 Cellular amino acid catabolic process BCKDHB, ACAT1 8.48E-04

GO:0051924 Regulation of calcium ion transport HOMER1, STC1 4.10E-03

GO:0032092 Positive regulation of protein binding BAMBI, TRIB3 5.39E-03

GO:0051726 Regulation of cell cycle SON, HPGD, CDK10 6.82E-03

GO:0009966 Regulation of signal transduction IGFBP5, HOMER1,FGFR3 8.49E-03

GO:0051099 Positive regulation of binding BAMBI, TRIB3 9.56E-03

HP:0001643 Patent ductus arteriosus HPGD, NPHP3, FGFR3 1.46E-03

HP:0001946 Ketosis BCKDHB, ACAT1 1.16E-03

Table 3.  The most significant ontological pathways common to the WFs exposed cells and CC.

GO Term Pathway Genes in the pathway
Adjusted 
p-value

GO:1903708 Positive regulation of hemopoiesis N4BP2L2, HOXA5 4.18E-05

GO:0009132 Nucleoside diphosphate metabolic process AK4 9.96E-03

GO:0045647 Negative regulation of erythrocyte differentiation HOXA5 8.72E-03

GO:2000665 Regulation of interleukin-13 secretion PRKCZ 8.72E-03

GO:0044320 Cellular response to leptin stimulus LEPR 9.96E-03

GO:0045837 Negative regulation of membrane potential PMAIP1 8.72E-03

GO:2000394 Positive regulation of lamellipodium 
morphogenesis ENPP2 9.96E-03

GO:0050730 Regulation of peptidyl-tyrosine phosphorylation ENPP2, PRKCZ 5.14E-03

GO:0032754 Positive regulation of interleukin-5 production PRKCZ 9.96E-03

HP:0000975 Hyperhidrosis SLCO2A1, FGFR3 5.38E-03

HP:0000522 Alacrima FGFR3 1.24E-02

HP:0010662 Abnormality of the diencephalon LEPR 1.86E-02

HP:0000495 Recurrent corneal erosions FGFR3 1.49E-02

HP:0001413 Micronodular cirrhosis KRT8 1.86E-02

Table 5.  The most significant ontological pathways common to the WFs exposed cells and LC.

GO Term Pathway
Genes in the 
pathway

Adjusted 
p-value

GO:0071420 Cellular response to histamine GABRB3 4.79E-03

GO:0044321 Response to leptin LEPR 5.39E-03

GO:0035024 Negative regulation of Rho protein signal transduction ARAP3 8.97E-03

GO:2000369 Regulation of clathrin-dependent endocytosis ARAP3 9.56E-03

GO:0071417 Cellular response to organonitrogen compound GABRB3, IGFBP5 1.52E-03

GO:2000146 Negative regulation of cell motility IGFBP5, ARAP3 1.52E-03

GO:0030336 Negative regulation of cell migration IGFBP5, ARAP3 2.34E-03

GO:0071407 Cellular response to organic cyclic compound GABRB3, IGFBP5 2.90E-03

GO:0014912 Negative regulation of smooth muscle cell migration IGFBP5 8.97E-03

HP:0000823 Delayed puberty LEPR 1.67E-02

HP:0000824 Growth hormone deficiency LEPR 1.67E-02

Table 4.  The most significant ontological pathways common to the WFs exposed cells and PC.
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GO Term Pathway Genes in the pathway
Adjusted 
p-value

GO:0072331 Signal transduction by p53 class mediator PMAIP1, FHIT 5.20E-04

GO:2001235 Positive regulation of apoptotic signaling pathway PMAIP1, TPD52L1 1.92E-03

GO:0097193 Intrinsic apoptotic signaling pathway PMAIP1, FHIT 3.33E-03

GO:0042981 Regulation of apoptotic process UFM1, EGR3, PMAIP1, 
THBS1 4.28E-03

GO:0010634 Positive regulation of epithelial cell migration ENPP2, THBS1 1.82E-03

GO:0045766 Positive regulation of angiogenesis ITGA5, THBS1 3.46E-03

GO:0001936 Regulation of endothelial cell proliferation EGR3, THBS1 2.07E-03

GO:0010038 Response to metal ion MTF1, THBS1 1.72E-03

GO:0043066 Negative regulation of apoptotic process UFM1, EGR3, ITGA5, THBS1 6.37E-04

GO:0051094 Positive regulation of developmental process ENPP2, RBPJ 4.14E-03

GO:0034976 Response to endoplasmic reticulum stress UFM1, THBS1 3.66E-03

GO:0043069 Negative regulation of programmed cell death UFM1, EGR3, THBS1 4.66E-03

HP:0003577 Congenital onset EGR2, HPGD 6.35E-03

HP:0000890 Long clavicles HPGD 7.63E-03

Table 6.  The most significant ontological pathways common to the WFs exposed cells and GC.

Figure 4.  Protein-protein interaction network of the four types of cancer using STRING.
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number of significant genes that were commonly dysregulated between WF-exposure and cancer profiles, and 
evident by simple gene expression comparisons. There were a number of dysregulated genes that were common 
between WF exposure responses and cancer types, which suggests that WF exposure may cause gene expression 
changes that could affect the behaviour of cancers. It should be noted that the cancer transcriptome datasets, such 

Gene symbol

Univariate Multivariate Combined

β HR p-value β HR p-value β HR p-value

NPHP3 −1.74E-01 8.40E-01 3.27E-01 −2.52E-01 7.77E-01 2.34E-01 −5.21E-02 9.49E-01 8.38E-01

SAMD13 8.58E-02 1.09E+00 6.66E-01 1.24E-02 1.01E+00 9.58E-01 1.97E-01 1.22E+00 4.55E-01

STC1 9.02E-02 1.09E+00 6.19E-01 1.08E-01 1.11E+00 6.06E-01 −1.08E-01 8.98E-01 6.56E-01

THEM6 9.20E-02 1.10E+00 5.89E-01 8.11E-02 1.08E+00 6.97E-01 2.95E-01 1.34E+00 2.10E-01

TNFRSF12A 3.16E-01 1.37E+00 8.94E-02 6.14E-01 1.85E+00 5.27E-03 8.19E-01 2.27E+00 6.48E-01

ASNS 1.35E-01 1.14E+00 5.23E-01 1.66E-01 1.18E+00 4.86E-01 2.38E-01 1.27E+00 4.17E-01

FAM89A 2.19E-01 1.24E+00 2.12E-01 3.28E-01 1.39E+00 1.12E-01 1.80E-01 1.20E+00 4.13E-01

ACAT1 −3.24E-02 9.68E-01 8.49E-01 −9.12E-02 9.13E-01 6.55E-01 1.41E-01 1.15E+00 5.78E-01

HPGD 3.90E-01 1.48E+00 6.10E-02 3.63E-01 1.44E+00 1.25E-01 2.60E-01 1.30E+00 3.36E-01

SLC7A8 −3.99E−01 6.71E-01 5.01E-02 −2.38E-01 7.88E-01 3.46E-01 −5.80E-01 5.60E-01 4.87E-02

TRIB3 1.30E-02 1.01E+00 9.39E-01 −9.81E-02 9.07E-01 6.12E-01 −3.09E-01 7.34E-01 1.58E-01

APPL2 −1.63E-01 8.50E-01 4.50E-01 −1.29E-01 8.79E-01 5.98E-01 5.43E-02 1.06E+00 8.45E-01

LRRC75B −1.42E-01 8.67E-01 4.52E-01 −3.28E-01 7.20E-01 1.35E-01 −5.23E-01 5.93E-01 3.58E-02

BAMBI 4.46E-01 1.56E+00 1.39E-02 5.17E-01 1.68E+00 1.53E-02 2.39E-01 1.27E+00 3.32E-01

FGFR3 −2.06E-01 8.14E-01 3.04E-01 −6.86E-01 5.03E-01 4.39E-03 −8.88E-01 4.11E-01 9.54E-03

DMXL2 5.36E-02 1.06E+00 7.46E-01 3.93E-02 1.04E+00 8.45E-01 1.93E-01 1.21E+00 3.98E-01

CCL20 2.16E-01 1.24E+00 2.62E-01 4.86E-02 1.05E+00 8.24E-01 1.03E-02 1.01E+00 9.67E-01

SERPINE2 −3.53E-01 7.03E-01 6.55E-02 −4.57E-01 6.33E-01 4.42E-02 −5.14E-01 5.98E-01 4.31E-01

CDK10 3.49E-02 1.04E+00 8.50E-01 1.02E-01 1.11E+00 6.21E-01 4.02E-01 1.50E+00 9.56E-02

SON 4.35E-01 1.54E+00 1.48E-02 2.89E-01 1.33E+00 1.44E-01 3.43E-01 1.41E+00 1.78E-01

FCGBP 1.18E-01 1.12E+00 5.39E-01 2.44E-01 1.28E+00 2.91E-01 2.33E-01 1.26E+00 3.44E-01

IQGAP2 −6.58E-02 9.36E-01 7.27E-01 1.66E-01 1.18E+00 4.71E-01 2.61E-01 1.30E+00 2.94E-01

LUC7L3 −9.57E-03 9.90E-01 9.57E-01 −2.53E-01 7.77E-01 2.32E-01 −2.38E-02 9.77E-01 9.22E-01

BCKDHB 2.77E-01 1.32E+00 1.01E-01 4.12E-01 1.51E+00 3.43E-02 5.91E-01 1.81E+00 6.52E-03

LYAR 2.14E-01 1.24E+00 2.71E-01 1.13E-01 1.12E+00 6.14E-01 −1.11E-01 8.95E-01 6.57E-01

NAAA −2.33E-01 7.92E-01 2.44E-01 −2.19E-01 8.03E-01 4.02E-01 −5.92E-01 5.53E-01 2.86E-02

SKAP2 −1.80E-01 8.35E-01 3.12E-01 −2.83E-01 7.54E-01 1.70E-01 −1.09E-01 8.97E-01 6.46E-01

BHLHE40 4.44E-03 1.00E+00 9.81E-01 −1.13E-01 8.94E-01 6.30E-01 −1.50E-01 8.61E-01 5.75E-01

IGFBP5 −4.24E-02 9.59E-01 8.31E-01 9.18E-02 1.10E+00 6.98E-01 2.18E-01 1.24E+00 3.99E-01

SNX14 2.05E-02 1.02E+00 9.08E-01 6.87E-02 1.07E+00 7.37E-01 −1.35E-01 8.74E-01 5.59E-01

HOMER1 −1.84E-01 8.32E-01 3.60E-01 −2.37E-01 7.89E-01 2.83E-01 −3.02E-01 7.39E-01 2.03E-01

PAPLN −3.29E-01 7.20E-01 1.23E-01 −4.48E-01 6.39E-01 8.79E-02 −2.94E-01 7.45E-01 3.21E-01

Table 7.  β coefficient, hazard ratio and p-values in univariate, multivariate and combined models of the 
identified genes that are common between WFs and CC.

Gene 
symbol

Univariate Multivariate Combined

β HR p-value β HR p-value β HR p-value

ARAP3 1.12E-01 1.12E+00 4.48E-01 1.81E-01 1.20E+00 2.57E-01 2.38E-01 1.27E+00 1.39E-01

CA14 1.49E-01 1.16E+00 3.74E-01 1.64E-01 1.18E+00 3.59E-01 2.11E-01 1.24E+00 2.45E-01

F2RL2 −4.70E-02 9.54E-01 7.53E-01 −8.16E-02 9.22E-01 6.00E-01 −5.31E-02 9.48E-01 7.41E-01

FNIP2 3.27E-03 1.00E+00 9.84E-01 −6.86E-03 9.93E-01 9.68E-01 1.20E-01 1.13E+00 4.93E-01

GABRB3 −9.83E-02 9.06E-01 4.13E-01 −1.21E-01 8.86E-01 3.28E-01 −1.14E-01 8.93E-01 3.67E-01

IGFBP5 3.63E-01 1.44E+00 2.28E-02 3.85E-01 1.47E+00 1.86E-02 4.17E-01 1.52E+00 1.23E-02

LEPR −1.95E-02 9.81E-01 8.78E-01 −2.36E-02 9.77E-01 8.57E-01 −9.40E-02 9.10E-01 4.84E-01

NDRG2 4.03E-01 1.50E+00 1.61E-02 3.80E-01 1.46E+00 2.74E-02 4.16E-01 1.52E+00 1.85E-02

SPON1 −8.50E-02 9.19E-01 6.38E-01 −2.19E-01 8.04E-01 2.66E-01 −3.41E-01 7.11E-01 8.93E-02

TOX3 −2.11E-02 9.79E-01 8.95E-01 8.41E-03 1.01E+00 9.60E-01 −5.66E-02 9.45E-01 7.40E-01

Table 8.  β coefficient, hazard ratio and p-values in univariate, multivariate and combined models of the 
identified genes that are common between WFs and PC.
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as those employed here, contain transcripts from both cancer cells and the supporting stromal cells found in the 
tumors themselves. Thus, it should be noted that WFs may exert their effects on cancers either indirectly (through 
tumor stroma) or on the cancer cells themselves.

We constructed two separate gene-disease association networks for up- and down-regulated genes showed 
strong evidence that WFs may indeed influence these cancers as indicated in Fig. 2(a,b). The pathway-based 
analysis is a technique to better understand the molecular or biological mechanisms underlying different com-
plex diseases by determining common pathways that a stimulus (such as WFs) may influence cells of interest. 
We identified significant signaling and ontological pathways of the commonly dysregulated genes of each cancer. 

Gene 
symbol

Univariate Multivariate Combined

β HR p-value β HR p-value β HR p-value

ABCA4 1.44E-01 1.16E+00 6.89E-01 2.86E-01 1.33E+00 4.53E-01 3.51E-01 1.42E+00 3.60E-01

CNN2 −9.03E-02 9.14E-01 6.45E-01 −2.10E-01 8.10E-01 3.12E-01 −3.64E-01 6.95E-01 9.73E-02

EGR2 −2.19E-01 8.03E-01 6.64E-01 −9.34E-02 9.11E-01 8.58E-01 −7.03E-02 9.32E-01 8.96E-01

EGR3 −2.51E-01 7.78E-01 4.41E-01 −1.95E-01 8.23E-01 5.64E-01 −5.92E-02 9.43E-01 8.65E-01

ENPP2 −6.84E-02 9.34E-01 8.04E-01 −6.85E-02 9.34E-01 8.10E-01 6.74E-02 1.07E+00 8.20E-01

FCGBP −5.25E-02 9.49E-01 8.66E-01 −2.88E-02 9.72E-01 9.29E-01 −6.37E-03 9.94E-01 9.84E-01

FHIT −2.65E-02 9.74E-01 9.38E-01 3.03E-01 1.35E+00 3.98E-01 3.37E-01 1.40E+00 3.51E-01

HPGD 4.71E-01 1.60E+00 8.91E-02 6.97E-01 2.01E+00 2.22E-02 6.83E-01 1.98E+00 2.90E-02

IQGAP2 −4.14E-01 6.61E-01 1.82E-01 −7.08E-01 4.93E-01 3.29E-02 −6.01E-01 5.48E-01 7.69E-02

ITGA5 −8.11E-01 4.45E-01 5.39E-02 −9.77E-01 3.77E-01 2.95E-02 −1.16E+00 3.15E-01 1.35E-02

MTF1 −9.49E-02 9.10E-01 6.40E-01 −1.21E-01 8.86E-01 5.76E-01 −6.43E-02 9.38E-01 7.71E-01

PMAIP1 −5.46E-02 9.47E-01 8.44E-01 −1.10E-01 8.96E-01 7.18E-01 −6.08E-02 9.41E-01 8.45E-01

RBPJ 5.92E-01 1.81E+00 6.64E-03 7.14E-01 2.04E+00 2.41E-03 7.31E-01 2.08E+00 2.37E-03

THBS1 −2.71E-01 7.63E-01 4.52E-01 −2.75E-01 7.60E-01 4.62E-01 −2.04E-01 8.15E-01 5.85E-01

TPD52L1 2.90E-03 1.00E+00 9.92E-01 −1.43E-01 8.67E-01 6.54E-01 −1.79E-01 8.36E-01 5.80E-01

TROVE2 −1.26E-02 9.88E-01 9.54E-01 −1.33E-01 8.75E-01 5.78E-01 −1.54E-01 8.57E-01 5.25E-01

UFM1 −1.47E-01 8.63E-01 3.50E-01 −1.61E-01 8.51E-01 3.52E-01 −2.06E-01 8.14E-01 2.46E-01

Table 10.  β coefficient, hazard ratio and p-values in univariate, multivariate and combined models of the 
identified genes that are common between WFs and GC.

Gene 
symbol

Univariate Multivariate Combined

β HR p-value β HR p-value β HR p-value

PROS1 −5.57E-02 9.46E-01 8.12E-01 2.56E-02 1.03E+00 9.28E-01 2.42E-01 1.27E+00 4.09E-01

SPON1 1.76E-01 1.19E+00 5.24E-01 4.52E-01 1.57E+00 1.72E-01 4.30E-01 1.54E+00 2.48E-01

KCNK1 −2.05E-01 8.15E-01 5.02E-01 −1.35E-01 8.73E-01 7.04E-01 −2.63E-01 7.68E-01 4.76E-01

KRT8 1.19E-01 1.13E+00 6.81E-01 2.11E-01 1.23E+00 5.35E-01 2.88E-01 1.33E+00 4.21E-01

ID3 7.21E-02 1.07E+00 8.34E-01 1.62E-01 1.18E+00 7.43E-01 1.13E-01 1.12E+00 8.39E-01

CRYAB −1.58E-01 8.54E-01 5.87E-01 −8.98E-03 9.91E-01 9.79E-01 −1.44E-01 8.66E-01 6.85E-01

FGFR3 4.95E-01 1.64E+00 1.49E-01 5.82E-01 1.79E+00 1.71E-01 4.73E-01 1.60E+00 2.80E-01

ENPP2 −3.64E-01 6.95E-01 1.99E-01 −5.45E-01 5.80E-01 1.26E-01 −5.27E-01 5.90E-01 1.44E-01

PMAIP1 2.78E-01 1.32E+00 4.37E-01 6.49E-01 1.91E+00 1.31E-01 1.02E+00 2.78E+00 2.91E-02

RGS17 −1.95E-01 8.23E-01 4.77E-01 −2.73E-01 7.61E-01 4.00E-01 −4.14E-02 9.59E-01 8.99E-01

MTHFD2 2.14E-01 1.24E+00 4.29E-01 4.27E-01 1.53E+00 2.89E-01 5.09E-01 1.66E+00 2.13E-01

ARAP3 3.37E-01 1.40E+00 2.32E-01 3.25E-01 1.38E+00 3.89E-01 5.24E-01 1.69E+00 1.83E-01

TGFA 3.10E-01 1.36E+00 3.66E-01 3.53E-01 1.42E+00 4.32E-01 4.43E-01 1.56E+00 3.62E-01

HOXA5 −6.82E-01 5.06E-01 1.41E-01 −1.59E+00 2.03E-01 9.55E-03 −1.86E+00 1.56E-01 5.18E-03

PNISR −1.38E-01 8.71E-01 6.23E-01 −6.86E-01 7.56E-01 4.19E-01 −4.15E-01 6.60E-01 2.44E-01

GADD45A 2.66E-01 1.31E+00 3.07E-01 −2.80E-01 1.07E+00 8.28E-01 2.42E-01 1.27E+00 4.78E-01

FHL2 −3.39E-02 9.67E-01 9.02E-01 7.20E-02 6.50E-01 2.89E-01 −2.87E-01 7.51E-01 4.61E-01

TOX3 −1.10E-01 8.96E-01 6.91E-01 −4.30E-01 5.89E-01 1.65E-01 −7.57E-01 4.69E-01 6.12E-02

LEPR 1.51E-01 1.16E+00 5.71E-01 −5.29E-01 1.12E+00 7.35E-01 2.02E-01 1.22E+00 5.45E-01

SLCO2A1 −2.08E-01 8.13E-01 5.45E-01 1.12E-01 8.36E-01 6.82E-01 −1.20E-01 8.87E-01 7.90E-01

SLC7A5 1.42E-01 1.15E+00 5.88E-01 −1.79E-01 1.23E+00 5.05E-01 −2.26E-02 9.78E-01 9.44E-01

MPDZ 2.37E-01 1.27E+00 3.00E-01 2.11E-01 1.34E+00 2.58E-01 4.03E-01 1.50E+00 1.42E-01

Table 9.  β coefficient, hazard ratio and p-values in univariate, multivariate and combined models of the 
identified genes that are common between WFs and LC.
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These identified pathways indicated how WFs may affect these cancer types. Similarly, protein-protein interac-
tion sub-networks of the commonly altered genes suggest that WFs affect several types of cancers. Note that if 
a pathway is a conduit for the effects of an important risk factor for a disease, this points to that pathway being 
particularly important to the pathogenesis of the disease and that reducing that pathways effects could be a way 
to attack the disease progression itself. It should be noted that these findings only point to possible ways that WF 
exposure may affect the cancers and cannot prove causation. However, when we investigated whether the gene 

Figure 5.  Survival function for an altered and normal group of the most significant genes that are common 
to WFs and the four types of cancers under investigation. These include significant genes common to WFs 
exposed cells and CC (a–e), PC (f,g), LC (h,i) and GC (j–l). Here, the cyan colored line in the survival graphs 
indicates the altered and the red indicates the normal gene expression group.
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expression patterns that we have observed could be associated with reduced survival of the patients (pointing to 
the importance of those gene expression levels either directly or indirectly) that is what we observed for several of 
significant genes that are common WF the cancer profiles under investigation as shown in Fig. 5.

It should be noted that the datasets employ a number of different cell types, which is commonly the case in this 
type of study. While gene expression patterns are, by definition, different in different cell types, here we were only 
concerned with expression alterations; certain responses to WFs may not occur in all cells so, while our approach 
cannot identify all pathways affected by WFs in nascent tumour cells, it will find some. Indeed, our data provides 
evidence to suggest the involvement of a number of genes in cancer behaviours that are linked to the noxious 
effect of WFs on cancer.

We used the gold benchmark databases OMIM and dbGaP for cross checking the validity of our outcome and 
found that there were some shared genes in between the WF exposure and cancer types as shown in Fig. 2(c). 
For validation purposes, we collected disease with associated genes from the dbGaP, OMIM Disease and OMIM 
Expanded databases using differentially expressed genes of WFs. After several steps of statistical analysis we 
selected only cancer related diseases. Interestingly, we found our selected four cancers among the list of cancers 
collected from the mentioned databases as shown in Fig. 2(c).

Moreover, we found our identified genes in Fig. 2(c) had been shown in other studies to be associated with 
disease progression in cancers. Specifically, VÃ¡zquez-ArreguÃn K. et al., Cybulski C. et al. and Wang L. et al. 
shown RAB4B, CHEK2 and FOS to be associated with CC incidence47–50; Biswas S. et al. found a link between 
TGFBR2 and CC51. Lijovic M. et al. showed CD82 to be linked to PC incidence52; Wang Y. et al. shown the associ-
ation between CHEK2 and PC progression53; Ouyang X. et al. identified a link between FOS and PC54; Gruosso T. 
et al. showed MAP3K8 to be associated with LC55; Vallejo A. et al. found a link between FOS and LC incidence56; 
Yuan S. et al. showed an association between GPC5 and LC progression57. Kim CJ. et al. found MUTYH to be 
associated to GC incidence58; Myllykangas S. found an association between FOS and GC59; Teodorczyk U. et al. 
found CHEK2 to be linked to GC progression60. Therefore, it suggested that WFs may have a strong interaction 
with CC, PC, LC and GC.

Conclusions
In this study, we considered gene expression microarray data from WFs exposure, CC, PC, LC, GC and control 
datasets to analyze and investigate the genetic links between WF exposure and the effects that they have on 
cancers. We analyzed gene expression, constructed gene-disease association networks, identified signaling and 
ontological pathways, analyzed protein-protein interaction networks and survival function of WFs exposed cells 
and cancers. The outcome of our study indicated that WFs can exert a strong influence on cancers. This kind of 
study will be useful for making more accurate disease prediction, and identifyi potentially better therapeutic 
approaches. This study will also be useful for assessing the dangerous effects of welding on the human body.
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