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Abstract

The aim of this project was to understand the distribution and compartmental effects of
immune populations and the tissue architecture that underlies them in high grade serous
ovarian cancer (HGSOC).

The quantitative distribution of three key immune infiltrates was initially assessed in
the SEARCH cohort (n=332); CD8+ cytotoxic T-cells, CD45RO+ memory T-cells and
CD68+ macrophages. The stromal infiltration of CD68+(HR = 0.44, p = 3×10−4) and
CD45RO+(HR = 0.76,p = 7×10−4) cells was positively associated with survival and the
positive prognostic value of CD8+ cells increased when the density was averaged across
both stroma and tumour compartments(HR = 0.79, p = 6×10−4).

Multiple correlated immune infiltrates were combined to view patterns across samples.
This analysis was limited to the subset of patients with both tumour and stroma present
(n=152). A multi-dimensional view of these immune populations (an ‘immunospace’)
was obtained and the principal components of this space were analysed and used to build
complex survival models. The largest variation between patient samples was the strength
of a coordinated multi-cell immune response that was associated with improved survival
(HR = 0.88, p = 0.016).

Tumour architecture was investigated by deriving metrics from the positions of epithelial
cells in samples in the OV04 cohort (n=101). Both multiplexed pancytokeratin(CK), FOXP3
and CD8 staining and H&E serial sections were used for the localisation of epithelial
cells. The nearest neighbour distance between epithelial cells was significantly correlated
across serial sections (R = 0.65, p = 2.7×10−5), between sections from different cores
from the same tissue block (R = 0.58, p = 0.00064) and sections from differing tumour sites
(R = 0.78, p = 7.8×10−5). This measure of epithelial cell packing is therefore tumour-
intrinsic. Correlations were also examined between these structural metrics and the FOXP3
and CD8 immune infiltration. Epithelial CD8+ density was strongly correlated with epithelial
nearest neighbour distance (R = 0.91, p = 1×10−14) and moderately with border cell
percentage and epithelial fraction of the tumour. Regulatory T-cell (FOXP3+) infiltration
was positively correlated with the number of epithelial clusters across a core.



x

The conservation of structural measures across tumours and the link between structure
and immune infiltrate supported the physical border hypothesis of immune exclusion. It was
hypothesised that the link between these two features was collagen deposition. Collagen
structure was assessed via dual IF/SHG imaging. Structural metrics were correlated with
collagen Energy, Correlation and Coherency features. There was no correlation between
these collagen features and immune infiltration.

Imaging Mass Cytometry was carried out on the ICON7 cohort (n=313) to produce a
novel data set. Preliminary analyses of these images were carried out to investigate further
investigate links between collagen, infiltrates and structure. The thesis presents novel data
and numerous novel conclusions regarding the prognostic value of specific immune infiltrate
variables and quantitative links between tissue structure and immune response in HGSOC.
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Chapter 1

Introduction

1.1 High Grade Serous Ovarian Cancer

Cancer is defined by the uncontrolled proliferation of cells and formation of a mass of
malignant cells known as a neoplasm or tumour. The malignant cells may also acquire the
ability to invade surrounding tissues and also to metastasise to other sites within the body. It
is this metastasis rather than the primary tumour which usually results in death[3–5]. High
grade serous ovarian cancer (HGSOC) specifically is a cancer of the ovaries that originates
in the fallopian tube[6] and is characterized by ubiquitous TP53 mutations and genomic
instability[7].

1.1.1 Types of ovarian cancer

HGSOC is a cancer of epithelial origin, but just one of multiple histologies within epithelial
ovarian cancer (EOC). HGSOC is the most common (>70% of cases)[8–10] with clear cell,
mucinous and low grade serous cancers present in the population at reported frequencies
of approximately 3-5%, 10-15% and <10% respectively[11]. HGSOC is not only the most
common subtype but has the worst survival[12, 13]. Standard treatment for HGSOC varies
by stage at diagnosis and regional practices but typically consists of either debulking surgery
followed by paclitaxel/carboplatin combination chemotherapy or neoadjuvant chemotherapy
with subsequent interval debulking surgery (IDS). Despite these treatments, overall survival
has not improved in over 20 years. The reasoning for this is twofold; firstly the majority
of patients are diagnosed with Stage 3 or later neoplasms and then secondly, despite initial
successful treatment, the majority of patients develop platinum resistance and subsequent
metastases which prove fatal[14].
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1.2 The hallmarks of cancer in HGSOC

The hallmarks of cancer are a concept that was summarised by Hanahan and Weinberg
in 2000[15] and revisited in 2011[1]. The idea is that cancer is distinguished by a set of
processes which define and aid this malignant and uncontrolled proliferation and survival
of cells. A review of the hallmarks in 2011 highlighted that the interaction of the cancer
cell with its environment is also an intrinsic part of cancer progression and as such framed
cancer as a disease of both the malignant epithelium and its microenvironment[1]. Within
the hallmarks of cancer are 4 hallmarks that are of interest in ovarian cancer and specifically
this project;

• Genome instability & mutation

• Avoiding immune destruction

• Invasion & metastasis

• Tumour-promoting inflammation

These are summarized within the hallmarks as a whole in Figure 1.1[1]. The most
characteristic hallmark of HGSOC is genomic instability, HGSOC tumours are accepted
to have extremely unstable and heavily rearranged genomes[16]. The other three of the
hallmarks mentioned are ones which are fundamentally linked to the microenvironment and
the factors that are of interest in this thesis. The avoidance of immune destruction is of
relevance as both the presence or absence of immune cells and potential factors affecting
this are to be investigated. Spatially dependent immune infiltration or the lack of it can both
be considered immune evasion by the cancer cells. Invasion and metastasis are strongly
linked to to immune cell subsets and structural features in the tumour, both of which are to
be investigated. Tumour promoting inflammation will be investigated through evaluating
the potential negative prognostic value of several immune infiltrates. Understanding the
properties of these hallmarks in HGSOC will allow for a better understanding of HGSOC
progression and open avenues for potential new treatments.

1.3 The genome in HGSOC

As mentioned, TP53 mutation is ubiquitous in HGSOC. TP53 mutations alter the expression
of the TP53 protein, reducing a cells ability to control proliferation[17]. It should be noted
that although TP53 mutations are considered a driver of HGSOC, TP53 plays a key role
in all cell proliferation. This means that mutations of this gene are extremely common in
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Fig. 1.1 Schematic illustrating the hallmarks of cancer[1]

multiple cancer types [17, 18] and also frequently found in normal fallopian tube cells[19, 20].
This suggests that TP53 mutations are necessary but not sufficient for the development of
HGSOC. Unlike some other cancer types there are not many common mutations that occur
alongside TP53 mutations in HGSOC, making the direct cause of many HGSOC cases hard to
determine and therapy targets more difficult to locate. BRCA1/BRCA2 mutations are present
in approximately 10-20% of patients. The BRCA1 and BRCA2 genes encode for breast cancer
type 1 and type 2 susceptibility proteins, proteins which take part in DNA repair. Mutations
in these genes alter the ability of a cell to produce these BRCA1 and BRCA2 proteins
and to repair its genome or to undergo cell death if the genome is damaged. A common
genomic event in HGSOC is Phosphatase and tensin homolog deleted on chromosome
10q23.3 (PTEN) in the tumour which is prevalent in over 30% of patients and has been
identified as a prognostic driver event[21]. The predominant genomic landscape in HGSOC
however is not a mutation but large numbers of copy number alterations across the genome
as a whole[22, 16].

1.4 The microenvironment in HGSOC

The microenvironment of a tumour comprises the interaction of the malignant cells with the
cells surrounding and infiltrating the tumour and the physical and chemical properties of the
region. The tumour microenvironment (TME) has been a topic of great interest in recent work
in HGSOC, with rapidly increasing numbers of studies of its importance and the potential
of the environment of a tumour to facilitate metastasis or drive tumour progression[23–28].
Tumour infiltrating immune cells and the extracellular matrix structure are both examples of
micro-environmental features which have been shown to be prognostic in ovarian cancer.
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Fig. 1.2 Cells in the immune system and the progenitors from which they are derived[2]

1.4.1 Immune micro-environment

HGSOC tumours, although heterogeneous, are on average more inflamed than other epithelial
ovarian tumours[29, 30] and within the HGSOC subtype many links have been found between
the quantity of this immune infiltration and survival[31, 32]. With both a wealth of evidence
to support the prognostic impact of the immune micro-environment and the advent of new
technologies making it easier to image multiple cell types at once, the key component and
the most studied part of the tumour microenvironment, immune cells, is still a key feature of
research. The success of targeted immunotherapies and the interest in personalised medicine
and patient stratification make this a popular research area. Of course the umbrella term of the
immune system covers a large variety of cells with a large number of functions, comprising
the innate and adaptive immune systems. Figure 1.2 shows the lineage of immune cells and
their progenitors. The most frequently studied cells of the groups in this diagram are T-cells
(T-lymphocytes) and macrophages.

T-cells

The reason for the focus on T-cells in cancer is predominantly because of evidence of their
direct impact on tumour progression. Key historical events such as the discovery of T-cells in
1967[33] and the development of the first single surface antigen based vaccine[34] increased
scientific interest in utilising the immune system to cure disease. In the following years,
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the ability to create engineered mouse models and evidence showing that CD8+ T-cells
have a positive impact on survival in many cancers made T-cells a focal point of immune
oncology research [27, 35]. The first positive association between T-cells and Ovarian cancer
prognosis was published in 1991[36]; since then many studies have attempted to categorise
lymphocytes within Ovarian cancer. A large meta-analysis of the survival impact of various
T-cell subsets in Ovarian cancer demonstrated that CD8+ cytotoxic T-cells were a significant
prognostic infiltrate over 10 studies[37].

FOXP3+ regulatory T cells (Tregs) are a subclass of CD4+ T cells with immunosuppres-
sive characteristics but studies have demonstrated an association of Tregs with both improved
[31] and worse survival[32]. Such variety in reporting could be why Hwang et al. saw no
significant impact of FOXP3+ infiltrate upon survival in the meta-analysis[37]

Most previous attempts to study tumour infiltrating lymphocytes (TILs) have used simple
and manual methods to either count lymphocytes or evaluate the quantity as "low" or
"high". Such methods don’t account for tissue area variation between samples and unlike
computational segmentation of cells, results from manual counting methods cannot be carried
forward to analyses of spatial localisation. In the most modern research, quantitative measures
have been related to outcome, an example of which is the observation of loglinear dose-
response with survival of CD8+ cells. This study was manually scored but demonstrates a
quantitative survival benefit of CD8+ cells on a very large number of patients [27]. Automated
measures have started to generate quantitative data sets using modern cell-segmentation
software.

Results are not limited to CD8+ cells within HGSOC. The presence of other T-cell
subsets such as CD45RO+ and CD3+ cells have been shown to improve survival in HGSOC.
Despite the evidence for multiple prognostic immune populations in many cancers, immune
population analysis has not often taken into account the presence of multiple immune cell
types. Lack of this more nuanced analysis could explain conflicting findings regarding the
prognostic significance of lymphocytes in some cancers. Studies by Barua et al. amongst
others, have demonstrated improved modelling of patient survival when the average distance
between two immune cell types in a sample is taken into account[38–41]

Macrophages and their functionality

Macrophages are another very commonly studied subgroup of immune cells. Markers such
as CD68+ and CD163+ are used to identify different macrophage populations in tissue. The
prognostic impact and role of macrophages in the pro- and anti-tumour response has been
controversial. Attempts to define their affect resulted in research focusing on presenting
macrophages as one of two options, M1-anti tumour and M2-pro tumour macrophages.
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More recent research illustrates macrophages to be a highly diverse population with a much
wider range of phenotypes[42] and with context specific function. For example in HGSOC,
Yafei et al. demonstrated a negative association between stromal macrophages and survival
[43] whereas Tanaka et al. demonstrated that upregulation of Bikulin by macrophages was
associated with improved survival[44]. The prognostic impact is variable amongst other
cancers too; in gastric cancer, Huang et al. demonstrate that CD68+CD163+ macrophages
are associated with improved survival in univariable analysis[45].

Immune checkpoints and Programmed Death Ligands (PD-1/PD-L1)

As mentioned in the discussion of the hallmarks of cancer, immune escape and evasion are
key factors in the survival and propagation of cancer cells. This is as even in the presence of
immune cells, tumour cells can still evade immune destruction. One method of evasion is the
deactivation of T-cells, utilised by cells in the normal immune response to avoid overreaction
and damage by the immune system[46]. PD-1 and PD-L1 are part of one such immune
checkpoint system. PD-1 is the receptor on the immune cell and the corresponding ligand
is PD-1. When PD-1 and PD-L1 bind, they modulate cytotoxic T-cell activity and produce
signals that promote T-regulatory cell activity. This mechanism to reduce the immune
response has been shown to be co-opted by tumour cells and PD-1/PD-L1 are upregulated by
tumour cells to evade immune destruction[47]. As such, we can identify tumour cells that are
successfully evading the immune system by imaging or quantifying a cell’s PD-1 or PD-L1
expression. Multi-marker imaging methods can therefore allow not only T-cells, but also the
markers they express, to be identified. Such studies can demonstrate the functionality and
activation of T-cells. Measuring PD-1 and PD-L1 expression can therefore be informative as
to the effectiveness of the immune response to the cancer, for example expression of PD-1
correlated with exhaustion markers in carcinoma of the liver[48, 49].

1.4.2 Extracellular matrix and stromal micro-environment

Another factor effecting both immune and cancer cells is the surrounding extracellular matrix
(ECM). The ECM structure and its mechanical stress are structural properties of the tumour
micro-environment. The ECM is deregulated and disorganised in cancer; this deregulates
stroma and facilitates angiogenesis[50–52]. Changes in biomechanical properties of the ECM
have been shown to affect cell migration[53–55]. A key protein family that both regulates
and is produced by the ECM is the lysyl oxidase (LOX) family of proteins, this family is
upregulated in hypoxic environments showing that both structural and biochemical gradients
can be linked. These LOX proteins cross-link collagen fibres and change the biomechanical
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properties of the ECM. LOX expression has been directly linked to metastasis [56–58] but
over-expression of LOX alone is not enough to induce tumorigenesis[56].

The ECM has been shown to become dysregulated during HGSOC tumorigenesis. This
dysregulation is why the remodelling of collagen, as imaged by second harmonic generation
imaging, can distinguish normal from ovarian cancer samples[59]. On a gene expression
level, changes in nuclear LOX expression have been linked to poor prognosis and over
expression of collagen remodelling genes in HGSOC has been associated with reduced
survival[60, 61]. The over expression of other ECM proteins, such as fibronectin, has also
been associated with poor survival and metastasis in HGSOC[62]. In other work on the
importance of the stroma in cancer progression, carcinoma associated fibroblasts were shown
to be capable of transforming non-tumorigenic epithelial cells into tumorigenic ones and
inducing tumour growth[63]. Fibroblasts have also been linked to metastasis, a key factor in
patient survival, through reorganisation of ECM structure[64].

Collagen

Collagen is the main component of the extracellular matrix and collagen deposition is a key
part of desmoplasia[65]. In experiments that assessed the expression of genes in both cisplatin
resistant and sensitive ovarian cancer cells, many ECM genes were elevated in cisplatin-
resistant cells. COL6A3 was one of the most highly upregulated genes, and cultivation
of cisplatin-sensitive cells in the presence of collagen VI protein promoted resistance in
vitro[52]. Work by Januchowski et al. in 2016 found similar results[66]. There is much
evidence to suggest that collagen remodelling is utilized by cells to aid survival in the presence
of chemotoxic drugs[67, 68]. Collagen remodelling has also been linked to increased motility
and promotion of metastasis[69, 70, 61, 71] and the normalization of the tumor stroma has
been linked to improved sensitivity to chemotherapy in ovarian cancer[72].

Collagen also provides structure for cell migration and has been linked to immune cell
motility as well as metastasis. CD8+ cells were shown to predominantly move along collagen
fibres and to move faster in the epithelial regions than in the collagen filled stroma[73]. They
were also shown to move faster along aligned fibres than unaligned ones[74].

1.5 Immune recruitment and control

When immune cell populations are imaged in tumours, what is measured is the infiltration of
immune cells into specific regions of tissue. It is this recruitment of cells which is assigned
prognostic value. It is therefore a fundamental question of interest as to what drives or
changes this infiltration which can vary dramatically between patients. If immune cell



8 Introduction

recruitment and modulation is understood, it can perhaps be controlled in patients to improve
survival. Immune checkpoint inhibitor therapies (eg. anti-PDL1) aim to do this by stopping
the existing immune inhibition by the tumour.

Activation of specific DNA repair pathways may be responsible for some of the variation
in immune responses in HGSOC patients. Heavily rearranged genomes are prevalent in HG-
SOC and BRCA1 mutations are associated with homologous recombination deficiency[75].
DNA damage has been shown to trigger the cytosolic DNA, active cyclic GMP-AMP
synthase-stimulator of interferon genes (cGAS-STING) pathway through the formation of
micronuclei[76] and upregulation of the STING pathway has been shown to be associated
with immune signalling in breast cancer. The rearrangement and reduced ability to repair
DNA damage in BRCA1 mutated HGSOC patients may increase STING pathway activation.
This increase in STING activated signalling may be the cause of higher immune infiltration
and hence improved survival in BRCA1 mutated patients. In work supporting these ideas a
mouse model of BRCA1-deficient HGSOC tumours, PARP inhibition (immune checkpoint
inhibition) prompted a STING-dependent immune response[77, 78].

Another potential factor in the control of immune infiltration is the physical structure of
the tissue. As mentioned, remodelling of the extra cellular matrix (ECM) by fibroblasts has
been shown to increase thickness and to alter the orientation of collagen fibres which can in
turn affect immune cell motility[79]. Importantly, observed differences in tissue architecture
in BRCA1 mutated tumours could be the driver of altered immune infiltration[80]. BRCA1
mutated tumours are associated with higher immune infiltration as well as different structure
of the tissue[81, 80, 82].

Therefore we arrive at two hypotheses about how infiltration into the epithelial compart-
ment may be regulated;

• The physical barrier hypothesis: A modified epithelial structure and collagen envi-
ronment could act as a physical barrier, reducing immune infiltration into the epithelium
[83, 84].

• The chemo-control hypothesis: Cell signalling, of various origins, at the margins
between tumour and stroma may attract or repel immune cells by control through
chemotaxis.[85]

1.6 Subtyping HGSOC

The set of all HGSOC tumours is diverse but still poorly categorised. Developing a robust
classification of patients is still a key focus of HGSOC research; the aim of which is to be
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able to group patients for clinical trials more effectively and to predict differences in and
mechanisms of response when trialling new treatments.

1.6.1 Genomic subtypes

As mentioned TP53 mutations are believed to be ubiquitous in high grade serous ovarian
cancer[86]. Other specific driver mutations are uncommon but over 30% of HGSOC present
with loss of PTEN when the stromal DNA contribution is excluded, this loss was found to
be prognostic[87]. BRCA1/2 mutations are present in 10-20% of HGSOC patients and are
associated with altered morphology, survival and immune infiltration[80, 81]. Otherwise, the
HGSOC genome is characterized by being extremely complex and highly rearranged[16].
Without specific driver mutations. The direct impact of such heterogeneous genomes is hard
to elucidate but signatures addressing copy number rearrangement suggest some patterns of
rearrangement are associated with increased infiltration[88].

Copy number (CN) signatures have proven to be the best classification of genomic
instability in HGSOC so far, identifying different forms of chromosomal rearrangement that
have contributed to a patient genome[16]. Wang et al. also discovered CN aberrations and
the presence of foldback inversions stratified patients in HGSOC[89]. These recent works
show that genomic rearrangements on a larger level may stratify HGSOC patients and may
affect immune infiltration. The exact mechanism by which immune modulation occurs is
not yet known but it has been suggested that the activation of pathways such as the STING
pathway or the generation of micronuclei during genomic rearrangement may be driving
factors.

1.6.2 Gene expression sub-types

Many attempts have been made to categorise HGSOC patients into subtypes by gene ex-
pression. The molecular subtypes as defined by Tothill et al. began a series of validations
and improvements across the literature. Despite the initial analysis being carried out with
k-means clustering and as such requiring pre-defined numbers of clusters, the consensus
is now that of the 6 initially identified subtypes there exist four gene expression molecular
subtypes in HGSOC and these have been validated across multiple cohorts[90, 91]. These
subtypes are labelled as mesenchymal, immunoreactive, differentiated and proliferative.
These subtypes are associated with differences in survival, with the immunoreactive gene
expression signature conferring a survival advantage. These molecular subtypes have also
been shown to delineate the affects of treatment response, in the ICON7 trial, the proliferative
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subtype was seen to have a significant improvement in overall survival when treated with
Bevicizumab[92].

1.6.3 Morphological sub-types

Another microenvironmental aspect of the tumour is the architecture and growth patterns of
the epithelium. This tissue structure is known as architectural grade and a robust classification
has been elusive for decades[93, 94]. There are many different versions of these tissue
architectures even within HGSOC. Classifications all usually contain versions of glandular,
papillary and solid architectures, with histopathological grading scoring the whether the
tumour is predominantly any of these classifications[13]. Architectural grading has repeatedly
been associated with survival in patients[94, 93, 95] but since the important development of
robust low grade and high grade classifications, nuances in architectural features within these
subtypes have not received as much attention, possibly due to difficulties with reproducing
classifications[96].

Some recent work focusing on the architecture of tissues has reinforced the relationship
between prognosis and structure. Metastatic tissues from HGSOC patients were classified
as pushing pattern (either predominantly or exclusively), an exclusively micropapillary
infiltrative pattern, or an infiltrative pattern composed of papillae, micropapillae, glands
and nests (mixed infiltrative pattern) and these classifications were found to correlate with
prognosis[95].

In work by Soslow et al. it was observed that Solid, pseudoEndometrioid, and Transitional
cell carcinoma-like morphology (SET) features overlapped significantly in samples and these
were grouped into a single classification with tumours labelled as displaying SET features or
not[80]. BRCA mutations were associated with SET features and papillary patterns associated
with non-BRCA mutants.

Examples of solid, papillary and glandular morphologies are shown in Figure 1.3. Many
tumours can display a mixture of these growth patterns[80].

Alternate morphologies across HGSOC tumours have also been described by Murakami
[97]. Murakami et al. defined a mesenchymal type with desmoplasia, an immunoreactive
type, a papillary glandular type and solid proliferative type. These subtypes are loosely
related to the Tothill signatures and are not widely accepted architectural grades.

There is no existing automated classification of growth structures but Murakami et
al. found interobserver agreement when 6 pathologists classified slides and found that
the structure in metastases from the same patients were of the same class as the primary
tumour. These morphological subtypes were also associated with the Tothill molecular gene
expression subtypes of mesenchymal, immunoreactive, differentiated and proliferative but the
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Fig. 1.3 Heterogeneous morphology of HGSOC tissues. Examples show solid, glandular and
papillary architectures
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subtypes were not automatically derived or scored. It is worth noting that several observers
misclassified the immuno-reactive subtype. This highlights that an immuno-reactive subtype
defined this way is not a reliable architectural subtype. This is evidence that some examples
of all of the architectural patterns can be seen to have high numbers of tumour infiltrating
lymphocytes (TILs).

Methods of clustering patients by gene expression profiles have similar issues when
structure and immune infiltration are conflated. The prognostic impact of some gene ex-
pression subtypes can potentially be explained entirely from being driven by the T-cell
infiltrate contribution to the signature. Schwede et al. suggest that once adjusted for stromal
content or T-cell infiltration, the gene expression signatures are no longer prognostic[98].
The importance and interplay of structure, stromal content and immune infiltrate is further
reason to investigate the link between them and the possibilities of structural barriers to T-cell
infiltration.

1.6.4 Immune subtyping

Categorising patients into different immune subgroups is of particular interest to those
designing immunotherapy trials. As such, analyses of tumour infiltrations, and in particular
TILs, have been used to classify patients into subcategories such as immune desert, immune
inflamed and immune excluded[99]. These classes have been allocated using tools such as
a basic density analysis or visual comparison between regions. Chen et al. estimated that
approximately 50% of their cohort exhibited immune exclusion, approximately 25% inflamed
and approximately 25% immune desert phenotypes but do not detail the classification
method[99]. A classification in bladder cancer defined immune exclusion as 3× as much
infiltrate in the stromal as compared with the epithelial compartment[100]. There is, however,
a wealth of evidence that suggests that overall immune phenotyping for even a single patient
may be more complex. Zhang et al. demonstrated clonal dynamics and spatial immune
variation within a patient at diagnosis that associated with clonal subsets and that reflected
the clonal direction of the patient[101]. Kather et al. also do not observe clear subtypes
when using unsupervised clustering[102]. In HGSOC, Jimenez-Sanchez et al. showed wildly
diverse microenvironments[103] across metastases in a single HGSOC patient and varying
immune infiltrations were associated with region specific regulation of the Wnt pathway.
Robust immune subtyping remains elusive in the presence of such complex heterogeneity.
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1.7 Methodologies for the imaging of the microenvironment

In order to assess the microenvironment of a tumour we must first be able to see it. HGSOC
tissue must be obtained and then the cells and structures of interest must be marked and
then imaged. In HGSOC, samples of tissue are collected from primary or interval debulking
surgery(IDS) and stored in Fixed Formalin Paraffin Embedded(FFPE) blocks which preserve
the tissue for many years. The majority of samples are stored this way as they are easier and
cheaper to store than fresh frozen samples but the DNA is partially degraded[104].

1.7.1 Tissue microarrays (TMAs)

When analysing immune populations across whole cohorts, instead of staining, imaging
and analysing whole slide tissue sections for every patient, tissue microarrays are often
constructed from the FFPE blocks. Tissue microarrays consist of cores, punched from the
tumour block, of approximately 1mm diameter which are then arranged in a grid containing
between tens and hundreds of these samples. Sections of these new TMA blocks are then
cut, dewaxed, mounted on slides and stained. It has been shown in multiple studies that
samples in TMA sections are representative of the wider tumour [105–107]. This result is
reliant upon careful pathological sampling and there are clear limitations to the representation
of the whole tumour with one region. This is of particular note in tumours with fluid sacs
or observed distinct tissue types. Recommendations for ensuring representative sampling
include sampling from tumour peripheries where fixatives are most effective[108].

1.7.2 Haematoxylin & Eosin (H&E)

When staining the TMA or slides of patient tissue, the most common staining type used is
Haematoxylin and Eosin (H&E). Haematoxylin stains the nuclei blue and Eosin stains the
cytoplasm of the cell pink. H&E staining therefore is good at visualising the layout of the
cell and thereby the tissue. For this reason H&E stains are routinely used for diagnosis in
cancer[109] and to guide TMA construction[110]. Due to the popularity of this staining
technique, there are many repositories of H&E slides and digitally scanned images of H&E
sections and TMAs across research departments worldwide, as evidenced by many studies
utilising these slides for further analysis[111].

1.7.3 Immunohistochemistry (IHC)

Immunohistochemistry is a method of antigen visualisation that utilises the fact that anti-
bodies bind to specific antigens. The method uses conjugated antibodies to identify specific
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antigens which may be expressed on cells and as such can be used to identify specific cell
subsets. In the most common and cheapest method, chromogenic IHC, antigen specific
antibodies are attached to chromogenic dyes for visualisation, these dyes are visible under
natural light and the resultant stained sample is imaged for digital pathology using digital
light microscopy. Chromogenic IHC is frequently is used for the evaluation of p53 expression
and the identification of wildtype, gain of function (GOF) or loss of function (LOF) mutations
[112].

1.7.4 Immunofluorescence (IF)

Fluorescent IHC is the process by which fluorophores are attached to the antibodies in IHC
instead of chromogenic dyes. The number of markers on a section/single image is then
limited by the absorption and emission spectra of the fluorophores and detector limits rather
than the more limited visual spectral range. For such reason, measuring multiple markers is
easier than that of chromogenic IHC. IF staining is visualised using laser illumination under
a confocal microscope. One downside of IF is that the fluorescent nuclear counterstains,
such as DAPI, which are used to visualise underlying tissue structure do not highlight the
tissue morphology in nearly as much detail as H&E or the haematoxylin counterstain in
chromogenic IHC methods. Furthermore, even with careful refrigerated storage, fluorophores
have a limited lifetime and IF signal will eventually fade. In contrast to IHC and H&E stains
which retain high levels of detail over years and even decades, the quality of imaging of IF
stained slides is greatly reduced within weeks of staining.[113]

1.7.5 Increasing the number of markers

The imaging of more than 3 or so markers using IHC or IF becomes very complex. Very
rapidly overlapping spectra in the range detectable by standard confocal microscopy become
hard to distinguish and leakage occurs between channels. Imaging mass cytometry (IMC) is a
novel solution to this problem, using immuno-metal conjugation of antibodies to metals. The
tissue is stained with these antibodies but then the tissue is ablated, pixel by pixel, and these
ablated antibodies are detected and identified by mass spectrometry. This method allows
for over 30 distinct markers and subsequent detection channels on a single section[114].
Other methods for imaging multiple markers include consecutive fluorescent staining which
requires labour intensive washing off of markers[115]. IMC is, despite its advantages, still a
more expensive and time consuming method than IHC based methods. Metal-conjugated
antibodies cost thousands of pounds and the ablation steps take over an hour for each 1mm2

of tissue core/tissue area[116].
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1.7.6 Second-harmonic generation (SHG)

Second harmonic generation(SHG) is a nonlinear optical process in which two photons with
the same frequency interact with a nonlinear material. The linearity of a material is defined by
the relationship between the polarization and electric field in the material. In a linear material
these quantities have a linear relationship and the polarization is directly proportional to
the electric field. A non-linear material is one in which this relationship is non-linear. For
second order effects to occur such as second harmonic generation, the material must have
non-centrosymmetric structure. In non-linear materials, such as collagen, two photons of
the same wavelength can combine to make a single new photon with twice the energy of
the initial photons and therefore half the wavelength. Collagen fibres can be imaged in this
way as the bundles of fibres constitute a non centrosymmetric, non-linear material. SHG and
Third harmonic generation imaging of non-linear materials was first carried out in 1974[117]
but was first demonstrated in tissue in 2003[79]. An advantage of this method of imaging
collagen over the use of staining such as picrosirius red is that SHG imaging is marker free
and so can be carried out without antigen retrieval[118]. SHG imaging can also often be
carried out on tissues which have already had other staining applied[119]. This method
of collagen imaging in tissue has seen a large surge in publications over the last 10 years
including in HGSOC[120–124].

1.8 Methodologies for the image analysis of the microenvi-
ronment

1.8.1 Nuclei segmentation

The segmentation of cells in an image is a difficult computational problem; the identification
of cell membranes which do not stain strongly in H&E images is particularly difficult and
different software tools have shown wildly different results[125].Several papers have shown
that it is possible to accurately and automatically segment nuclei from H&E images[126, 127]
and most basic segmentation methods therefore focus on the segmentation of strongly stained
nuclei in H&E imaging and produce robust results.

1.8.2 Tissue Classification

In order to assess the spatial nature of immune infiltration in epithelium and stroma when
analysing immune infiltrate in digital pathology, the epithelium and stroma must be seg-
mented.
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An experimental method that has improved the ability to do such tissue subtyping is the
use of markers such as pan-cytokeratin; a cocktail of two antibodies that marks multiple
families of cytokeratins. The use of pan-cytokeratin or alternatively specific cytokeratin
markers in multi-marker imaging methods has allowed both epithelial cells and immune cells
to be simultaneously identified.

In downstream analyses, approaches such as stain deconvolution have improved accuracy
in the field[128]. As the abundance of publically available H&E images and their use in
digital pathology is so high, tissue classification is still the focus of research today[129,
130]. Classification and segmentation methods based on deep learning continue to improve
classification[131]. A potential drawback with these methods is that commercial software
which may perform such classification is expensive. Free software such as QuPath[132] is
improving access to effective tools for tissue classification.

1.8.3 Spatial Immune Analysis

Digital pathology, more accessible image analysis methods, more accessible software and
the availability of multiplexing has allowed for the easier extraction of the spatial location
of many cell types and consequently has increased the number of studies including spatial
analysis of immune cells in tissue.

Quantitative metrics and spatial statistics in the TME are most easily derived from images
and frequently prognostic. Carstens et al. carried out quantitative image analysis of densities
and distributions of T cells in pancreatic ductal adenocarcinoma. Using Ripley’s L function
they found heterogeneous infiltrating T cell populations whose quantity and proximity to
cancer cells was prognostic[133]. Ali et al. found that median density of lymphocytes
was prognostic in breast cancer. This metric was calculated using k-nearest neighbours to
find the average distance of a lymphocyte from the nearest 50 lymphocytes in the tumour
section[134]. Barua et al. measured the distance of T-regs from epithelium in non small cell
lung cancer and found, using the area under the curve (AUC) of the G-cross function, that the
smaller this distance, the worse the survival. They also found that smaller distances between
FOXP3+ and CD8+ cells were associated with improved survival[41]. A multitude of work,
including measures such as spatial grouping of B and T cells and densities of T follicular
helper cells, has shown that spatial measures are prognostic and a large quantity of literature
emphasises the relevance of inter-cell TME interactions that can be measured only through
image analysis[135].

The composition and development of the tumour microenvironment has also been exam-
ined by many authors from the perspective of evolving and competing populations of cells.
Ecology assesses population growth and competition and methods from this field have been
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applied to the cells in tumour samples. Yuan et al. have quantified the TME in this way in
multiple cancers, often looking at the tumour tissue from an ecological perspective. They
also found that the number of co-localized immune and cancer hot spots, regions where high
values of a variable are clustered, was prognostic in oestrogen receptor negative breast cancer
patients. They also found that this spatial metric was not correlated with gene expression in
the samples[136]. Their work may suggest that tumour micro-environmental composition is
an independent driving factor in addition to cell-intrinsic effects[137].

In HGSOC specifically, Yuan et al. showed that stroma and tumour composition and
stratification of patients into those with high or low lymphocyte density were prognostic[138].
Yuan et al. also investigated the similarity and diversity of TME in HGSOC metastases using
‘ecologically inspired’ ideas such as niches, resources, diversity and Shannon entropy[136].
This measure of diversity was prognostic, with more diverse micro-environments leading to
metastasis[139].

Massi et al. combined multiple aspects of cell based image analysis, analysing the spatial
distribution of T-cells in triple negative breast cancer in order to test the hypothesis that
immune infiltration into tumour clusters is mediated by a physical barrier [140]. They found
no evidence linking the depth and quantity of infiltration of T-cells to the collagen structure.
They also used a model of the alternate hypothesis of chemoattractants and chemorepellants
at the border of epithelial clusters and found that this model matched their data.

1.9 Project Hypotheses, Outline and Motivations

Hypothesis 1: Immune infiltration in both the epithelial and stromal regions of tissue sections is
prognostic.

Hypothesis 2: The combination of multiple immune infiltrations into a survival model will improve
the accuracy of survival modelling.

Hypothesis 3: Increased stroma-epithelium contact in a sample will increase epithelial immune
infiltration.

Hypothesis 4: Physical barrier hypothesis - Increased density of collagen deposition and increased
disorder of fibres will decrease epithelial immune infiltration.

This thesis aimed to investigate the structural nature of immune infiltration and immune
exclusion. I aimed to assess these hypotheses by developing and comparing quantitative
measures of immune infiltrate, tissue morphology and collagen. This project investigated
these hypotheses in order, starting with an exploration into immune quantification, comparing
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metrics and regions of interest and evaluating survival, then developing automated measures
of underlying tissue architecture. Thereby allowing relationships between structural metrics
and immune infiltration to be evaluated. Finally the physical barrier hypothesis was investi-
gated by analysing measures of collagen and associations of this collagen structure with both
epithelial architecture and quantity of infiltrating immune cells.



Chapter 2

Methods

2.1 External Contributions

Anne Montfort (AM) - AM carried out the staining of tissue from the SEARCH cohort and
used Definiens to extract cells and annotate stromal and epithelial regions of SEARCH cores.
Jaqueline McDermott (JMcD) - JMcD, a pathologist, was involved in the manual verifica-
tion of Definiens tissue region and cell classifications.
Anna Piskorz (AP) - AP carried out the sWGS and analysis of sWGS data for SEARCH.
Sarwah Al Khalidi (SAK) - SAK carried out the optimisation and staining of the OV04
cohort with pancytokeratin, FOXP3 and CD8 IHC antibodies. SAK carried out the follow up
sWGS and analysis for TP53 mutation on a small subset of SEARCH samples. SAK was
part of the creation of the BRITROC TMA and the staining of BRITROC with IHC and IMC
antibodies. SAK optimised the antibody panel for IMC.
Jodi Miller (JM) - JM of the histopathology core of the Cancer Research UK Cambridge
Institute (CI), carried out the staining and assisted with optimisation of the immunofluores-
cence imaging of nuclei, CD8+ and CD68+ cells.
Fatime Qosaj (FQ) - FQ carried out the staining of ICON7 with IMC antibodies.
Richard Grenfell (RG) - RG carried out the running of the Hyperion system for imaging
the ICON7 IMC slides.
Jennifer Alsop (JA) - JA carried out the construction and sectioning of ICON7 TMA blocks.

Sectioning and any automated staining of OV04 samples was carried out by the histopathol-
ogy core services at the CI.
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2.2 Patient Cohorts

Multiple patient cohorts were used throughout the thesis and are patient characteristics are
detailed below.

• SEARCH (Studies of Epidemiology and Risk Factors in Cancer Heredity)[141]
SEARCH is an ongoing population based study covering the regions of East Anglia
and the West Midlands in the UK. The study was approved by all the Local Research
Ethics Committees in East Anglia. (Reference 99/5/007)
(n=332 HGSOC patients)

• BriTROC-1 Study (British Translational Research Ovarian Cancer Collaborative)[142]
BriTROC-1 is a sample collection study to investigate the role of Homologous Re-
combination Deficiency in platinum sensitivity in recurrent high grade serous ovarian
cancer. Relapse samples were collected but only data from initial biopsy tissues were
assessed in this PhD.
Ethics approval from Cambridge Central Research Ethics Committee (Reference
12/EE/0349).
(n= 202 HGSOC patients)

• CTCR-OV04[143]
Molecular Analysis of Response to Treatment in Ovarian Cancer. To investigate the
mechanisms of treatment response in ovarian cancer through the study of sequential
tissue, ascitic and circulating tumour cells and the establishment of an ex-vivo model.
Prospective clinical study designed to identify biomarkers of heterogeneity in ovarian
cancer.
Ethics approval from Cambridgeshire Research Ethics Committee (Reference 08/H0306/61)
(n=156 HGSOC patients)

• ICON7 (International Collaboration on Ovarian Neoplasms)[144, 145]
ICON7 was randomised, two-arm, multicentre Gynaecologic Cancer InterGroup trial of
adding bevacizumab to standard chemotherapy (carboplatin and paclitaxel) in patients
with epithelial ovarian cancer. The samples were made available for further research.
Trial no. ISRCTN91273375
(n=313 HGSOC patients)
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Fig. 2.1 Individual CD8 and FOXP3 antibody stains.

2.3 Chromogenic Immunohistochemistry (IHC)

2.3.1 Sample preparation

3µm sections of FFPE blocks were cut using a Leica microtome, transferred to a water bath
pre-heated to 40◦C and collected on a glass slides. The sections were dried over-night at
37◦C then baked at 60◦C for 1h to remove some of the paraffin.

2.3.2 Manual Staining

CD8, CD3 and FOXP3 dual staining for OV04 and BRITROC

FFPE sections were further dewaxed and rehydrated using the Leica Autostainer ST020 by
incubating them twice for 10 min in xylene, followed by two 5 min incubations in 100%
ethanol, one 5 min incubation in 70% Ethanol and finally washing them in water. Antigens
were retrieved in a Tris (10 mmol)-EDTA (1mM) buffer (pH 9.2) preheated to 96◦C in a
water bath. After 1h incubation, slides were cooled in a water bath for 5 min, washed in
Milli-Q water for 5 min and incubated in 3%BSA-PBS for 1h in a hydration chamber at
room temperature. ImmEdge pen was used to draw a hydrophobic border around the tissue,
and 200µ l of primary antibody pre-diluted to the desired concentration in 1%BSA-PBS were
added to the sections. Following an overnight incubation in a hydration chamber at 4◦C, the
antibody solution was drained and the slides were washed twice for 5 min in 1% Tween-TBS,
succeeded by two washes for 5 min in TBS. For Horseradish Peroxidase (HRP)-conjugated
primary antibodies, DAB was directly added to the slides. For secondary antibody staining,
the pre-diluted secondary antibodies were added and incubated at room temperature for 30
min, followed by 2 washes in TBS. The secondary antibodies are listed in Table 2.2. The
slides were incubated in DAB chromogen for 5 min, washed in Milli-Q water, and dehydrated
and cover-slipped using the Leica Autostainer ST020. Examples of CD8, FOXP3 and the
triple Cytokeratin, CD8 and FOXP3 stain are shown in Figures 2.1 and 2.2[88].
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Fig. 2.2 An example of tissue with pancytokeratin(yellow), CD8(purple) and FOXP3(teal)
staining.

SEARCH

Sectioning and staining was carried out as follows on the SEARCH cohort. Microarray
slides composed of FFPE embedded ovarian tumour cores were dewaxed and rehydrated
prior to heat induced epitope retrieval (HIER) using a pressure cooker and a citrate-based
antigen unmasking solution (Vector Laboratory). Detection of CD8+ T cells, CD45RO+

memory lymphocytes and CD68+ macrophages was performed using the mouse anti-human
CD8 (Clone C8/144B, Dako), mouse anti-human CD45RO (Clone UCLH, Dako) and mouse
anti-human CD68 (Clone M0876, Dako) antibodies, using ultrasensitive Polymer-HRP IHC
Detection system (Biogenex). Immunohistochemical protocols and slide hybridizations were
carried out manually. Sections were counterstained with haematoxylin and mounted with
DPX mounting medium (Sigma). Stained slides were scanned using the Panoramic Slash
Scanner (3D Histech).

2.3.3 Automated Staining

Automated staining was carried out using the Ventana Discovery Ultra platform. All bulk
reagents used were purchased from Roche and are listed in Table 2.1. The slides were
rehydrated by incubating them in EZ prep solution for 32 min at 69◦C, then incubated for 1h
in VentanaCell Conditioning buffer 1 (CC1) at 96◦C for antigen retrieval (pH 8.5). Hydrogen
peroxide was then applied and incubated for 4 min to quench endogenous peroxidase activity,
followed by primary antibody incubation for 1h at 37◦C. Details of antibodies used for
chromogenic IHC are listed in Table 2.2.

After a 16 min incubation with an HRP-conjugated secondary antibody, the chromogenic
signal was developed in either 3, 3’-Diaminobenzidine (DAB) chromogen for 8 min, in
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Reagent Code
EZ prep 950-102
Ultra Cell Conditioning Solution (CC1) 950-224
Ultra Liquid Cover Slip (LCS) 650-210
Reaction Buffer 950-300
ChromoMap DAB Kit 760-159
Purple Kit 760-229
Yellow Kit 760-239
Antibody Diluent 760-108
Haematoxylin II 760-2208
Bluing reagent 760-2037

Table 2.1 Bulk Reagents (Roche)

Target Source Catalog No. Conc(µg/ml)
Secondary

CD8 Spring Bioscience M5394 0.5
OmniMap Anti-Rb-HRP Roche 760-4311 prediluted

FOXP3 Spring Bioscience M3974 0.25
OmniMap Anti-Rb-HRP Roche 760-4311 prediluted

Pan-Keratin Roche 760-2135 prediluted
OmniMap Anti-Ms-HRP Roche 760-4310 prediluted

Table 2.2 Chromogenic IHC antibodies used and their secondary antibodies.

Purple chromogen for 40 min, in Yellow chromogen for 28 min or in Teal chromogen for 8
mins. For chromogenic counter-staining, the slides were incubated for 4 min in Copper,8
min in haematoxylin and 4 min in Bluing Reagent. Slides were washed with Reaction Buffer
after each incubation. Tonsil sections were used a positive control in optimisation due to
high immune infiltration. As a negative control, the monoclonal anti-mouse and anti-rabbit
antibodies in Table 2.3 replaced the mouse and rabbit primary antibodies, respectively. Liver,
kidney and spleen samples were also included in every TMA as control tissues. Stained slides
were dehydrated using the Leica Autostainer ST020, manually cover-slipped and digitally
scanned by Aperio Scanscope XT.

Target Source Catalog No. Conc(µg/ml)
Rabbit IgG Roche 760-1029 prediluted
Mouse IgG Roche 760-2014 prediluted

Table 2.3 Antibodies used for negative controls.



24 Methods

2.4 Second Harmonic Generation

Second Harmonic Generation (SHG) images were acquired from unstained and IHC stained
tumour sections to assess the collagen content. SHG microscopy was performed using a
Leica SP5 laser scanning confocal microscope (Leica Microsystems Inc, Wetzlar, Germany)
with a mode-locked fs-pulsed IR-laser (Coherent Chameleon Ultra II, Ti- Sapphire, 680-
1080nm excitation range; Coherent Scotland Ltd., Glasgow, UK). Illumination and emission
wavelengths for the acquisition of collagen SHG signal were determined from illumination
and emission spectra as 920nm and 460nm respectively which are consistent with the
principles of SHG. Images were acquired with an HC PL APO 40x oil immersion and 20x
Dry objective. Once optimised, imaging acquisition parameters were kept constant across all
imaging sessions. SHG microscopy images were automatically acquired across TMAs using
tilescan and allocating a 1mm×1mm field for each core. Imaging was optimised on a single
slide.

The SHG signal over the whole image was quantified using ImageJ and the OrientationJ
and GLCM plugins. The energy and entropy of each image were calculated using GLCM.
Once optimised, threshold parameters were kept constant for all images. For each tumour
core the mean SHG signal, entropy, energy were calculated. The image was then split into
100 squares (each 100µm × 100µm) and a minimum signal threshold was set, the non
background squares were analysed for orientation and coherency of the fibres.

2.5 Dual IF

All slides were run using Leica’s Research Detection System 2 (DS9777) on their automated
Bond RX platform. Prior to loading, the slides were dewaxed and re-hydrated (as standard) on
Leica’s automated ST5020 and then transferred to the Bond RX for subsequent retrieval and
staining. The antibodies were applied sequentially (CD8, anti-rabbit 546, CD68, anti-mouse
647), with washes in Leica’s Bond Wash (AR9590) applied between each immunoreagent.
All antibody incubations were for 30 min except the CD8, which incubated for 60 min.
Antigen retrieval was performed with Tris EDTA (Leica, AR9640) at 100°C for 20 minutes.
The specific antibody details are listed in Table 2.4.

Slides were counterstained in DAPI (Cell Signaling, 4083 – diluted to 10ug/ml in 1x PBS)
for 5 min and mounted in Vector’s VECTASHIELD HardSet Antifade Mounting Medium,
reference H-1400.

Slides were imaged using a Leica SP5 laser scanning confocal microscope (Leica Mi-
crosystems Inc, Wetzlar, Germany). UV(405nm), Argon(543nm) and HeNe(633nm) lasers
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Target Catalogue No. Dilution/Conc. Secondary Dilution
CD8 Thermo, RM-9116 1:25 Anti-Rabbit 546 1:250

(Invitrogen, A11010)
CD68 Novocastra, NCL-L-CD68 1:25 Anti-Mouse 647 1:250

(Jackson, 715-607-003)
Table 2.4 Antibodies used for Dual IF CD8/CD68 staining with DAPI counterstain

were used to excite the fluorophores. Excitation and emission spectra are shown in Figures
5.4.

2.6 Imaging Mass Cytometry

2.6.1 Imaging Mass Cytometry (IMC) Antibody purification

Carrier proteins like bovine serum albumin (BSA) are commonly added to the storage buffer
of antibodies as preservatives. These proteins can replace antibodies in the conjugation
process,reducing the efficiency of antibody conjugation to metals. Antibodies with carrier
proteins were therefore purified using the Pierce™Antibody Clean-up Kit (ThermoFisher,
44600) following the manufacturers instruction. This involves a desalting step, where
the antibody is passed through a Zeba spin desalting column containing a resin bed and
centrifuged for 2 min at 1000×g. The antibody was then added to a spin column containing a
Purification Support slurry, incubated at room temperature for 5 min with end-to-end mixing,
then centrifuged for 1 min at 4000×g to collect the purified antibody.The purity of the
antibody was tested using a NuPAGE™4-12% Bis-Tris Gel (Invitrogen,NP0321BOX). The
antibody was mixed with LDS Sample buffer (Invitrogen, NP0007) and Sample Reducing
agent (Invitrogen, NP0009) and incubated at 70◦C for 10 min. 1µg of the original antibody
and the purified antibody were loaded onto the gel, with a BSA-only sample used as a control.
The gel was run in Bolt MPOS SDS Running Buffer (Invitrogen, B0001) at 120V for 30 min
followed by 2h at 60V. The gel was stained with InstantBlue (Expedeon, ISB1L) to visualise
the protein bands, and imaged using Antibody-Metal conjugation Carrier-free antibodies
were metal-conjugated using the Maxpar®X8 Antibody Labelling Kits (Fluidigm) according
to the manufacturers instructions. A proprietary polymer is loaded with a lanthanide metal
by mixing them in the provided L-buffer and incubating them in a 37◦C water bath for
35 min. The metal-loaded polymer is filtered to remove excess metal by centrifuging it
twice in a 30kDa Amicon Ultra500 µlV bottom (Millipore, UFC505096) at 14,000×g for
a total of 55 min. The antibody is centrifuged at 14,000×g in a 50kDa AmiconUltra500
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µlV bottom (Millipore, UFC505096) for 10 min, and then partially reduced by incubating
it in 4mM PierceTM Bond-Breaker®TCEP Solution (ThermoFisher Scientific,77720) at
37◦C for 30 min. This is immediately followed by three washes in the provided C-buffer,
with a 10 min centrifugation at 14,000×g after each wash. The metal-loaded polymer is
added to the partially reduced antibody and incubated in a 37◦C water bath for 90 min.The
metal conjugated antibody is washed four times in the provided W-buffer, with a 10 min
centrifugation at 14,000×g after each wash. The antibody is finally suspended in 100µ l PBS
containing 0.05% sodium azide as a preservative, and collected by centrifuging the inverted
filter in a fresh microcentrifuge tube for 2 min at 1,000×g. The concentration of the antibody
was measured using NanoDrop Spectrophotometer ND-1000 (LabTech International).

2.6.2 Staining and Imaging

The manual staining protocol outlined in section 2.3.2 was also followed for IMC. Metal-
conjugated primary antibodies were used instead of unconjugated or HRP-conjugated anti-
bodies. Details of all antibodies used are displayed in Table 2.5. Following the two washes
in 1% Tween-TBS and two washes in TBS, the slides were counter-stained with Cell-ID™
Intercalator-Ir for 30 min at room temperature. The slides were then washed in Milli-Q
water for 5 min, and air dried for at least 20 min before imaging on the Hyperion™Imaging
System(Fluidigm). Images were acquired using a UV laser at a frequency of 200 Hz. Metals
in each pixel ablated were plasma-ionised and their count was detected using Cytometry
by Time of Flight (CyTOF) technology. This was used to generate a stack of false-colour
images, each layer corresponding to a single metal and the intensity of each pixel reflects the
amount of each antigen present.

2.6.3 Image analysis

SEARCH

Definiens Tissue Studio was used for the tissue classification of the images from the SEARCH
cohort. Definiens image analysis algorithms for detection of epithelial and stromal areas were
trained and the segmentation for each core was manually refined by AM and a consultant
gynaecological-histopathologist (J. McD.).

OV04 - Cytokeratin, H&E

QuPath 0.1.2 was used for TMA segmentation and the segmentation and classification of
individual cells from images of Haemotoxylin and Eosin and Cytokeratin7 stained slides.
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Antigen Clone Tag Source Code Conc./Dilution
(µg/ml)

CA9 polyclonal 141Pr Novus BioAF2188 2
p53 DO-7 143Nd Fluidigm 3143026D 5
CD16 EPR16784 146Nd Fluidigm 3146020D 10
CD163 EDHu-1 147Sm Fluidigm 3147021D 5
PanK C11 148Nd Fluidigm 3148020D 1
CD56 MRQ-42 151Eu Cell Marque 156R-96 1
CD45 D9M8I 152Sm Fluidigm 3152018D 1.5
LAG3 D2G40 153Eu Fluidigm 3153028D 2.5
TIM3 D5D5R 154Sm Fluidigm 3154024D 2.5
FoxP3 236A/E7 155Gd Fluidigm 3155016D 5
CD4 EPR6855 156Gd Fluidigm 3156033D 5
CD68 KP-1 159Tb Fluidigm 3159035D 2
PD1 D4W2J 160Gd Cell Signalling 86163S 5
CD20 H1 161Dy Fluidigm 3161029D 5
CD8 aC8/144B 162Dy Fluidigm 3162034D 5
CD103 EP206 163Dy Cell Marque 437R-16 3
CK7 RCK105 164Dy Fluidigm 3164028D 10
pH2AX N1431 165Ho Fluidigm 3165036D 0.5
B7h4 D1M8I 166Er CST14572 5
GranzymeB EPR20129-217 167Er Fluidigm 3167021D 1
Ki67 B56 168Er Fluidigm 3168022D 1.5
Collagen 1 Polyclonal 169Tm Fluidigm 3169023D 1
CD3 Polyclonal 170Er Fluidigm 3170019D 7.5
CTLA4 BSB88 171Yb BioSB BSB 2885 7.5
OX40 ACT-35 172Yb CST98785 5
CD45RO UCHL1 173Yb Fluidigm 3173016D 3
HLADR TAL 1B5 174Yb ThermoFisher MA1-46109 0.5
ICOS D1K2T 175Lu CST 3148021D 5
Histone H3 D1H2 176Yb Fluidigm 3176023D 0.25
Intercalator 191Ir, 193Ir Fluidigm 201192A 1:1000

Table 2.5 IMC antibodies
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TMA Dearrayer, Watershed cell detection algorithms and Random Tree classifiers were used.
Smoothed features at 25µm, 50µm and 100µm were generated, all 133 available features
were used for the classifier and the labelled cells were split 50:50 into training and validation
sets.

Collagen Structure Analysis

ImageJ and the OrientationJ and GLCM plugins were used for analysis of collagen structure
images from SHG microscopy. Images were split into a 10× 10 grid and the features
calculated on each subimage before the median was calculated. Macros were written to
automate this process.

BriTROC, OV04, ICON7 - IMC and IHC

Analysis of images taken from both chromogenic IHC and IMC was done using the HALO
Image Analysis Platform (Indica labs). Halo was used for tissue classification and immune
cell identification and extraction in OV04 and BriTROC cohorts.

2.7 Statistical Analysis and Mathematical Background

R (version 3.5.1) was used for statistical analysis and R markdown documents were gen-
erated for all analyses. These files are stored in a Github repository https://bitbucket.org/
jamesdbrenton/search-montfort/src/master/.

2.7.1 Analysis of immune infiltrate

All count data were transformed to log base 10 after adding a small offset ( xmin
2 ) to zero values.

Continuous data were presented as median and interquartile range (IQR) and groups were
compared by the Kruskal–Wallis, pairwise Kruskal-Wallis tests and Wilcoxon signed rank
test was used to compare the mean infiltrate between groups. Discrete data were presented as
count and percentage.

Quality assurance tests for spatial bias in staining across TMAs was carried out visually
using heatmaps and statistically using Shapiro-Wilk tests. The same methods were used to
investigate whether there was spatial bias in the areas of the cores.

https://bitbucket.org/jamesdbrenton/search-montfort/src/master/
https://bitbucket.org/jamesdbrenton/search-montfort/src/master/
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2.7.2 Survival Analysis

Cox regression was used to examine the relationship between predictors (Xn) such as immune
infiltrate and stage and patient survival. The functional form of immune variables was
assessed using comparison with cubic splines. The best approximations to the functional
forms were carried forward for the Cox models.

The hazard function is the measure of relative risk over time for a patient compared to
the baseline. It is a function of other variables Xn which can be things like immune infiltrate,
age or stage. This relative hazard H(t) is given by the following formula:

H(t) = H0(t)eb1X1+...+bnXn (2.1)

Where H is the hazard, the predictors are denoted Xn. It is the cox regression method
that estimates the coefficients of the predictors bn, ie the contribution of the variables to
the survival of the patient. The proportional hazard model is semi-parametric as there is
an assumption that the hazard is a linear function of the predictors and that the hazards are
proportional (the coefficients are not a function of time). There are no assumptions about the
form of the baseline hazard function H0(t).

The Akaike Information Criterion (AIC), equation 2.2, was used to compare the perfor-
mance of survival models, which includes the loglikelihood of the model L̂ and a penalty on
the number of terms, k to reduce overfitting.

AIC = 2k−2ln(L̂) (2.2)

2.7.3 Spatial Statistics

Spatial statistics can most easily be carried upon 2D point patterns. In such analyses cells are
assumed to be points with coordinates (x,y) and zero radius r = 0. The value of the center of
the point for each cell is given in equation 2.3.

x =
xmax + xmin

2
,y =

ymax + ymin

2
(2.3)

We will see that these assumptions are violated but information can still be gleaned from
these measurements as long as the consequences and limitations of such assumptions are
understood.

The spatial patterns of a distribution can be split into first order properties (density
variation) and second order properties (how points influence the location of others).
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2.7.4 Density based analysis

Global density

The simplest measure of the density of a point pattern is the following:

λ =
n
|A|

(2.4)

Where λ is the number of points in a region and A is the area measure of the region.

Ripley’s K and L function

Ripley’s K function measures the distribution of points within a certain radius and can be
used to determine whether points are random, dispersed or clustered. It is defined as:

K(r) = λ
−1E (2.5)

Where λ is the density and E is the expected number of points in the region. The expected
number of points is

E = ∑
i= j

I(di j < r)
n

(2.6)

where I is the operand function and di j is the distance between ith and jth points.
The L function is often used in data analysis because it is variance stabilized and is

defined as
L(r) = (

K(r)
π

)
1
2 (2.7)

DBSCAN

DBSCAN stands for density based clustering of applications with noise. There are many
clustering methods in existence but DBSCAN is one which is ideal for a situation where the
number of clusters within the data is unknown.DBSCAN works on the idea of reachability
of points rather than allocating points based solely upon the distance from a central point.
DBSCAN also allows for some points to remain unallocated, a method which works well
for cells within images, some of which will not lie within clusters. DBSCAN is better for
clustering data points which have similar densities. This works well for identifying clusters
of single cell types, as all stroma or all tumour cells will have similar spatial densities within
the same tissue section. Due to its ability to exclude cells from clusters it is also shown to
be less sensitive to noise than methods such as K means clustering. This is important in
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Fig. 2.3 Example of the nearest neighbour distance for two cells in this set are highlighted in
red. This is calculated for all cells/points in an image.

applications to real data with noise and to cell classification algorithms with any accuracy
below 100%[146].

2.7.5 Distance based analysis

Average Nearest Neighbour

This analysis measures the distance from each point to its nearest neighbouring point and
takes the average over all cells/points. An example of cells within a small population and
their nearest neighbour distance is shown in Figure 2.3

k-nearest neighbour

k-nearest neighbour method derives for each point in a point pattern, the kth nearest neighbour
to it. The theoretical expected distance to the nearest neighbour in a random 2D point pattern
is given by

< rn >=
1

2
√

λ
(2.8)

Where λ is the global density of points.

Batty’s entropy

Batty’s entropy was calculated using R package SpatEntropy[147, 148]. It is defined
as follows; if a phenomenon of interest F occurs over an observation window of size T
partitioned into G areas of size Tg. This defines G dummy variables identifying the occurrence
of F over a generic area g,g = 1, . . . ,G. Given that F occurs over the window, its occurrence
in area g takes place with probability pg, where 1− pg = ∑g′ 6=g pg′ and ∑g pg = 1. The
phenomenon intensity is obtained as λg = pg/Tg, where Tg is the area size, and is assumed
constant within each area. Batty’s spatial entropy is

HB(F) =
G

∑
g=1

pglog(
Tg

pg
) (2.9)
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Batty’s entropy is high when the phenomenon of interest F is equally intense over the
G areas partitioning the observation window (i.e., when λg = λ for all g). Batty’s entropy
HB(F) reaches a minimum value equal to log(Tg∗) when pg∗ = 1 and pg = 0 for all g 6= g∗,
with g∗ denoting the area with the smallest size.

2.7.6 Intensity analysis

The Grey Level Co-occurence Matrix (GLCM) measures texture features based on second
order statistics based upon greyscale pixel intensities[149]. Initially the pixel values in the
image are scaled so they have integer values 1 to 8. The values are then normalised to the
range [0,1], the GLCM can then be calculated.

Pi j is the i, j element of the normalized GLCM. Each entry Pi j is, by default, the number
of pairs of horizontally neighbouring pixels in the scaled images with values i and j. Given
that the scaled image now only has 8 possible pixel values between 0 and 1, there are 8×8
possible values for the pixels in the neighbouring pairs. The GLCM is therefore an 8×8
matrix which is filled with the counts of each possible neighbouring pixel pair. For example,
P11 is the number of pairs of horizontally neighbouring pixels in the scaled image both with a
value of 1. Offsets other than horizontal neighbours can be used. µ is the mean of the GLCM.
The statistics that are commonly calculated on the GLCM[150] include the following:

Entropy

Entropy is a measure of information mixing. Increasing disorder increases entropy. Generally
Shannon entropy is defined in Equation 2.10 where pi is the probability of obtaining class i
summed over all possible classes.

H =−∑
i=1

pilogpi (2.10)

Entropy can also be defined on an image or image region based on pixel grayscale values.
In the GLCM notation, entropy is:

Entropy =−
N−1

∑
i, j=0

Pi jlnPi, j (2.11)
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Energy

Sum of squared elements in the GLCM that measures homogeneity. A constant image has
Energy=1.

N−1

∑
i, j=0

(P2
i j) (2.12)

Contrast

Local variation in intensity, measuring the difference in neighbouring pixel values. This
measure is the sum of all neighbouring pixel differences squared.

N−1

∑
i, j=0

Pi, j(i− j)2) (2.13)

Homogeneity

This measures the tightness of the distribution of pixel values.

N−1

∑
i, j=0

Pi, j

1+(i− j)2 (2.14)

Correlation

This measures the correlation between neighbouring pixels; a perfectly correlated image
where all pixels have the mean value would have correlation = 1.

N−1

∑
i, j=0

Pi j
(i−µ)( j−µ)

σ2 (2.15)





Chapter 3

Digital pathology and the quantification
of immune infiltrate

This work was accepted for publication in April 2020. See Appendix A.

3.1 Introduction

Modern approaches to pathology have begun to digitise and automate measures of immune
cell responses in a wide variety of tumours. The availability to normalise densities, apply
reproducible automated classification and obtain higher resolution data offers a large number
of possibilities for analysis[151]. The real strengths of such digital pathology approaches lie
in the more complex questions around quantitation and spatial resolution of such immune
responses. Furthermore, as the number of simultaneous populations we can measure in a
single sample increases with technology and the resolution and accuracy of those measures
increases, the reliance on digital pathology methods will increase and importantly must find
new ways to interpret the multi-dimensional data that results.

In this chapter I aimed to develop a robust statistical workflow for the analysis of
quantitative digital pathology data. The TMAs were investigated for bias; the cores that were
outlying in size or infiltration were extracted and examined. The infiltration densities were
calculated and normalised such that they were appropriate for a variety of statistical tests.

I worked to complete density based survival analyses on a dataset from the SEARCH co-
hort that contained the density of CD8+, CD45RO+ and CD68+ immune cells in epithelium
and stroma for each patient. I then expanded upon this density analysis to ask questions about
the properties of the multi-dimensional immune response and worked on optimising complex
survival model building and interpreting biologically patterns of immune variation. I analysed
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Fig. 3.1 Visual abstract - The project

varying functional forms of infiltrate density, combined multiple infiltrates with principal
component analysis for the first time to investigate the underlying patterns of biology and did
further analyses including quantifying and assessing the immune exclusion in samples. I also
applied some similar analyses to the other subtypes of ovarian cancer in the cohort.

Overall I aimed to address and understand the relative importance of the infiltration
in different compartments in the tissue, to understand the impact of both the stromal and
epithelial infiltration and to quantify and interpret the relationships between them.

3.1.1 History of the project

This particular part of the work began from collaboration with Anne Montfort(AM) who
approached me with raw files from Definiens™ image analysis software. Images of CD8+,
CD68+ and CD45RO+ stained slides had been segmented and regions classified as tumour
and stroma. The specific contributions of others to this chapter are outlined in Methods.

3.2 SEARCH Cohort

Samples from 570 patients from the prospective SEARCH ovarian cancer population-based
study had been used to construct tissue microarrays. Ethical approval for the SEARCH
study had previously been granted by the Eastern Multicenter Research Ethics Committee
(Reference 99/5/007) and the larger cohort is discussed in detail by Song et al.[152]. Among
the samples from 570 patients with primary epithelial ovarian tumours, 332 were high
grade serous ovarian cancer patients. Patients were staged as having localized, regional
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or distant disease (L/R/D); Walters et al. describe the mapping between LRD staging and
FIGO[153, 154].

3.3 Methodology

3.3.1 Experimental methodology

Immunohistochemistry

Immunohistochemistry on the SEARCH samples was carried out upon the tissue sections by
Anne Montfort (AM) according to the protocol in section 2.3.2. Previously published PTEN
immunostaining data was used where high PTEN expression was considered to be positive
staining and low expression to be weak, heterogeneous or negative staining respectively[87].

TP53 mutation data

Sequencing and mutation analysis was carried out prior to this PhD by Anna Piskorz (AP).
The coding regions of TP53 were sequenced by tagged-amplicon next generation sequencing
(TamSeq) as previously described[155] and confirmed by immunohistochemical analysis
using a 4-tier core system in which expression is scored as overexpression, complete absence,
cytoplasmic or wild type[156]. Sequencing of germline mutations in the BRCA1 and BRCA2
genes was performed as previously described[157]. Some samples were resequenced using
TamSeq by SAK following my initial exploratory analysis and datacleaning steps. The results
of resequencing were integrated into the final analysis.

Tissue classification

The initial utilization of Definiens™ software was carried out by AM. Definiens™ was used
to segment and classify the tissue in images of H-DAB stained tissue as epithelium or stroma;
classifications were reviewed by a gynaecological pathologist (JMcD). The same software
was used to quantify the immune populations in these tissues.

Immune cell quantification

The number of CD8+ and CD45RO+ cells in epithelial and stroma areas, the area of epithelial
and stromal areas covered by CD68 staining and the total area of epithelium and stroma in
each core, had been digitally determined using the Tissue Studio software (Definiens™).

Figure 3.2 shows examples of the cell segmentation and tissue classification.
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Fig. 3.2 Examples of the segmentation of tissues and identification of cells in the Definiens
software.

3.3.2 Statistical analyses

The clinical variables of age at diagnosis, menopause status and stage were available for the
cohort and I included them in the analysis. I used univariable Cox regressions to identify
best-fitting variables for the final multivariable Cox regression model. The refined model
was compared with a combined multivariable Cox regression model including all immune
infiltrates. Hazard ratios (HR) refer to a single unit increase in continuous variables. The pro-
portional hazards assumption was tested and satisfied in all cases using Schoenfeld residuals.
The Kaplan–Meier analysis (with log-rank test) was applied to illustrate survival differences
graphically. Two-sided P-values <0.05 were used to indicate statistical significance.

Principal component analysis (PCA) using the R package prcomp was used to extract the
independent components of variance between patients. The package prcomp uses singular
value decomposition and the variables were scaled to have unit variance before creating
composite linear independent variables. These were then passed forward to the survival
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modelling. The Akaike Information Criterion (AIC), equation 2.2 was used to compare the
performance of survival models.

Bonferroni p-value corrections were carried out for all multiple testing. P < 0.05 was
considered significant for all analyses.

3.4 Results

The SEARCH cohort included patients with HGSOC, Clear Cell, Endometrioid, Mucinous
and Low Grade Serous Ovarian Cancer. These subtypes of Ovarian Cancer have vastly
different cells of origin, different patterns of infiltration and different genomic drivers and
consequently different survival. As I was interested in survival and primarily interested in
understanding the differences within populations rather than across subtypes, I extracted the
HGSOC subpopulation for the initial analysis.

3.4.1 Patient characteristics

Figure 3.3 shows the REMARK diagram for this study and Table 3.1 shows the clinical char-
acteristics of the 332 HGSOC patients from the study cohort. Immunohistochemical analyses
on tissue microarrays (TMAs) were performed to detect CD8+, CD45RO+ and CD68+ cells
in tissue cores from primary ovarian specimens. Existing genomic data for somatic TP53 and
germline BRCA mutations was available for some cases and was incorporated to investigate
the relationship between these genomic markers and immune infiltration. PTEN expression
had also been previously assessed for a subset of SEARCH patients and had been found to
be prognostic[21]. PTEN expression data was incorporated in order to investigate whether
this association with prognosis was due to changes in immune infiltration in HGSOC as seen
in melanoma[158].

152 HGSOC cases were available for analysis after quality assurance, data cleaning and
the reduction of the data set to only cases with complete results for CD8, CD45RO and CD68
staining in both epithelium and stroma as well as survival data. The characteristics for the
152 patients with epithelial and stromal tissue for all immune markers are shown in Table 3.2.
The distribution of clinical characteristics does not appear to vary between the original 332
patients and the complete subset of 152.

Tagged amplicon sequencing data was available for 248 cases and TP53 mutation was
detected in 231 samples (93%) (Table 3.1). The number of patients with loss of function(LOF)
or gain of function(GOF) mutations to the TP53 gene are given in the table. Previously
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Fig. 3.3 REMARK diagram for the SEARCH cohort.

published data for germline BRCA1 and BRCA2 mutation and PTEN expression were
available for 297 and 155 cases respectively[87, 157].

3.4.2 Data cleaning, quality assurance and spatial bias

Analysing a large number of digitally imaged and segmented TMA cores gave me the ability
to carry out quality checking for bias across TMAs and to evaluate the variation in properties
of the tissue core such as tissue area, something typically not measured by pathologists when
assessing cores manually.

I examined the tissue area and assessed the TMAs for bias. I did this visually using
heatmaps (Figure 3.4) and statistically using Shapiro-Wilk tests (p > 0.05). The distribution
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N 332
Median Age (IQR) 58.0 (51.0-64.0)
Stage localized 64 (19.3%)

regional 42 (12.7%)
distant 202 (60.8%)
unstaged 24 (7.2%)

TP53 mutation GOF 137 (55.2%)
LOF 94 (37.9%)
wild type 17 (6.9%)
Not assessed 84

PTEN IF High 28 (18.1%)
Low 127 (81.9%)
Not available 177

Germline BRCA status wild type 256 (86.2%)
BRCA1 18 (6.1%)
BRCA2 23 (7.7%)
Not available 35

Table 3.1 Patient characteristics for the HGSOC subset of the SEARCH cohort. Table shows
the number of patients with gain of function(GOF) or loss of function(LOF) TP53 mutations,
germline BRCA mutations of each type and high and low PTEN expression measured by
immunofluorescence(IF).

N 152
Median Age (IQR) 58.0 (50.0-64.0)
Stage localized 27 (17.8%)

regional 22 (14.5%)
distant 93 (61.2%)
unstaged 10 (6.6%)

TP53 mutation GOF 55 (52.4%)
LOF 42 (40.0%)
wild type 8 (7.6%)
Not assessed 47

PTEN IF High 11 (16.4%)
Low 56 (83.6%)
Not available 85

Germline BRCA status wild type 113 (84.3%)
BRCA1 10 (7.5%)
BRCA2 11 (8.2%)
Not available 18

Table 3.2 Patient characteristics for the subset of HGSOC patients in the SEARCH cohort
with complete data (n=152). No statistical difference in clinical characteristics was found
between this subset and the full HGSOC cohort.



42 Digital pathology and the quantification of immune infiltrate

Fig. 3.4 Heatmap of total core area across TMA.The histogram on the left represents the
histogram of core areas and the colour assigned to each value. Whiter areas show large areas
of tissue, Red show small areas of tissue, black squares illustrate missing or control cores.
No obvious spatial bias is seen.

Fig. 3.5 Histogram of the distribution of total tissue area for each core in the SEARCH cohort.
Distribution is skewed as parts of cores are easily lost but once tissue is extracted area cannot
increase. Outlying cores with significantly larger areas are highlighted in red.

of tissue areas of tumour and stroma are shown in Figure 3.5. As expected these are negatively
correlated.

As mentioned, CD8+ and CD45RO+ counts were initially calculated as number of cells
in stroma and epithelium and CD68+ scoring was given as tissue area stained. I normalised
this raw data; converting cell counts into cells per unit area (µmm2 and CD68+ coverage
into percentage area. This normalization to area allows for comparison between patients
whose tissue is made up of varying quantities of stroma and epithelium. I also confirmed
using residuals that transforming the count densities to base 10 would normalize them.

Given the large variation in areas of cores I extracted outlying examples of cores for
inspection. It was important to verify that core area and position within the TMA was
independent of immune density. Figure 3.6 shows a heatmap comparing infiltration density
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Fig. 3.6 Heatmap of the density of each infiltrate for each position in the SEARCH TMA.
The histogram in the top left represents the distribution over percentage areas stained with
CD68 and the colour assigned to each value. White areas show large areas of tissue. Red
squares represent small areas of tissue. Black squares are either missing data for that tissue
type in a core, entirely missing cores from the TMA or control cores. No spatial bias is seen
in the individual TMAs.

across the CD8+ , CD68+ and CD45RO+ TMAs. No spatial relationship was observed
between the relative location in each TMA of a core and the density of immune cells or the
tissue area.

3.4.3 Stroma and tumour composition of cores

TMA blocks are built by pathologists who outline a region on H&E blocks for the extraction
of sample tissue. Cores are taken from FFPE blocks in these positions for the construction of
TMAs. Other than typically aiming to sample regions with high percentages of epithelium,
this sampling is otherwise left to the pathologist. Digital pathology and tissue segmentation
provides a unique opportunity to evaluate the sampling of stromal and epithelial areas and
the makeup of sampled tissue cores.

I wanted to investigate the variation in epithelial and stromal tissue that was sampled in
the SEARCH TMAs. The distribution of epithelial and stromal areas are shown in Figure
3.7. An example of the segmentation in Definiens used to obtain these areas was previously
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Fig. 3.7 Scatter plot and linear fit for the epithelial and stromal areas of each core. Histograms
of the distribution are shown on the axes. Stroma and epithelial area are negatively correlated.
Stromal area is strongly negatively skewed, epithelial area is a normal distribution with zero
inflation.

shown in Figure 3.2.

As a validation I compared stromal and epithelial area. These were negatively correlated
as expected. Stromal area is strongly negatively skewed, epithelial area follows a normal
distribution with zero inflation. I found that of 964 images representing 332 HGSOC patients,
69 patients (20.8%) had images which contained malignant epithelium but no stroma; 250
patients (75.3%) had images which contained epithelium and >1% adjacent stroma and
13 patients (3.9%) had images containing no tumour epithelium (Fig 3.7). The median
proportion of epithelium and stroma was 85.1% (IQR 51–100%) and 14.9% (IQR 0–49%)
respectively.

3.4.4 Mutant allele fraction and epithelial content

Mutant allele fraction (MAF) is the percentage of cells sequenced with a TP53 mutation.
Mutant allele fraction had been previously generated for all samples. The distribution of
mutant allele fraction is plotted as a histogram in Figure 3.8. The distibution had some
zero inflation. I used this distribution to ensure that the sequencing of all samples classified
as HGSOC was of high enough quality. Samples with mutant allele fraction of zero were
resequenced and if no mutation was found were excluded from HGSOC analysis.
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Fig. 3.8 Histogram of counts of samples against mutant allele fraction (MAF). Density of
distribution plotted on top of the histogram. MAF is normalised such that a MAF of 1 means
100% of cells in the sample contain a TP53 mutation.

Fig. 3.9 TP53 mutant allele fraction against epithelial area of a core. A weak correlation is
observed.

As TP53 mutations are found ubiquitously in HGSOC epithelium we would expect that
the proportion of epithelial cells in a sample is correlated with TP53 mutant allele fraction.
The mutant allele fraction(MAF) and area of epithelium are shown in Figure 3.9. MAF
and epithelial area were positively correlated (R = 0.24, p = 0.0027). The sequencing and
imaging are not carried out on exactly the same tumour region and so I would not expect a
perfect correlation due to natural noise from sampling. The correlation between technical
replicates for allele frequency and sequencing depth is shown in Figure 3.10.
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Fig. 3.10 TP53 allele fraction and sequencing depth for technical replicates.

3.4.5 Immune cell densities

An example of the segmentation of CD8+ T cell, CD45RO+ memory lymphocyte and CD68+

macrophages and the allocation of the stromal and epithelial regions was shown previously
in Figure 3.2. These cell counts and tissue areas were the data used to derive densities for
each of the immune markers.

As demonstrated, cores sample a wide range of areas of epithelium and stroma and
therefore sample different proportions of epithelial and stromal infiltrate. In order to under-
stand the impact of this sampling it was important to know how the density of infiltration
varies between epithelial and stromal compartments. The distribution of densities of immune
populations within tumour epithelium and stromal areas were compared (Fig. 3.11). I found
that the density of CD8+ and CD45RO+ cells were significantly higher in stroma than
tumour epithelium (p = 0.005 and p = 0.004 respectively; Welch’s t-test) but not significantly
different for CD68+ cells.

The predominant population of immune cells studied in the literature is epithelial CD8+

infiltrate which has been demonstrated to have a log-linear relationship with survival. In order
to evaluate the importance of this infiltrate in the multi-immune infiltrated microenvironmen-
tal context I investigated whether this infiltrate was independent of others. If this infiltrate
is not independent, the survival impact may be an indirect readout of the presence of other
infiltrates. The correlation between infiltrates is also important to understand whether there
exist spatial dynamics of infiltration and the relationship and movement between adjacent
tissue compartments. The quantitative measure of immune density in our samples allowed
me to investigate the Pearson correlation coefficient between quantities of immune infiltrate.
The quantity of the three immune populations in this cohort showed moderate to strong
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Fig. 3.11 (A), (B) and (C) show the distribution of CD8+, CD45RO+ and CD68+ immune
cell densities in epithelium and stroma. CD8+ and CD45RO+ densities were defined as
counts per mm2. CD68+ density is defined as the percentage of tissue stained for this
marker(Notches on box plots extend 1.58 × IQR /

√
n and approximate the 95% confidence

interval for the median. Box plot whiskers extend to 1.5 × IQR.)

correlation between infiltrate in epithelium and stroma and between the three infiltrates
(Figure 3.12).

Given that we see varying epithelial cell percentages and increased infiltrate in the
stroma as compared with the tumour I was interested in whether the density of immune
infiltrate reaching the epithelium was related to the epithelial percentage of the core. In other
words, does increasing the quantity of tumour in a sample increase the infiltration, perhaps
due to the presence of more tumour antigens and thereby more immune cell recruitment or
decrease it due to reduced stromal access and infiltration. I examined the relationship between
the fraction of tumour in a core and the density of immune infiltration in the epithelium
using Pearson correlation test. Intra-epithelial CD8+ and CD45RO+ densities were weakly
positively correlated with the purity/tumour fraction of the sample (R2 = 0.17, p = 0.003
and R2 = 0.16, p = 0.006) whereas CD68+ epithelial density was not.

3.4.6 Immune exclusion

When considering patterns in immune infiltration, beyond the binary of present and ab-
sent, the terms immune-inflamed, immune-desert and immune-excluded have been used
to describe varying T-cell infiltration based on histological and transcriptional analyses
[23, 102]. Immune-inflamed and immune-desert patterns reflect high positive or negative
correlations between all infiltrates but T-cell exclusion describes tumours where CD8+ cells
are significantly absent from tumour epithelium whilst still being present in the surrounding
stroma[23].
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Fig. 3.12 Scatterplots and distributions of CD68+, CD45RO+ and CD8+ infiltrate in Stroma
and Epithelium. The quantities of all infiltrates were correlated between matched samples
across both tissue region classes.
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Fig. 3.13 Immune exclusion ratio of CD8 and CD45RO T-cells. Ratios are log-transformed
like the counts. Histograms of exclusion are shown on the axes of the graph, both distributions
are log-normal.

On average there is more infiltration in the stroma than epithelial compartments as shown
in Figure 3.7 but the plot in Figure 3.13 shows that the ratio of epithelial:stromal infiltration
is log-normal. As the counts are log-transformed, the ratio of infiltration density is equal
to the difference between the logs of the epithelial and stromal infiltration. I defined this
ratio as the extent of epithelial exclusion. The standard deviation of the ratio of CD8+ and
CD45RO+ epithelial:stromal infiltration were both 0.68.

Within the patients that had epithelial and stromal tissue and therefore immune staining
for all markers 19 (10.1%) cases had 10 × as much stromal CD8+ as epithelial CD8+ and 39
(20.5%) cases had 10 × as much stromal CD45RO+ as epithelial CD45RO+. Only 3 cases
had 10× as much CD68+ stromal infiltrate as epithelial infiltrate. All ratios were normally
distributed and the CD8+ and CD45RO+ exclusion was weakly correlated (R = 0.2, p =

0.009).

3.4.7 Functional form of infiltrates in building a survival model

The aim of this project was to understand some of the impact of these infiltrate metrics
on survival. When modelling survival using Cox regression, one must assess that the
assumptions of the Cox model are met and decide upon the functional form of the predictor
(Section 2.7.2). I utilized Martingale residuals (Figure 3.14) to confirm that a base 10
transformation addressed the non-linearity of the data. In order to find the best functional
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Linear Cubic splines Log(base 10)
p-value p-value p-value

Age at diagnosis 0.18 0.36 0.24
CD8+ epithelium 0.43 0.36 0.25
CD8+ stroma 0.4 0.17 0.64
CD68+ epithelium 0.44 0.57 0.63
CD68+ stroma 0.09 0.06 0.009
CD45RO+ epithelium 0.3 0.09 0.07
CD45RO+ stroma 0.07 0.016 0.002

Table 3.3 P-values for the association of each functional form of the variable with survival us-
ing univariable Cox regression analyses. Lowest p-values demonstrate most likely functional
form and show that each relationship is approximately log linear

form for each predictor I modelled the univariate relationship between the predictor and
survival using Cox regression and plotting the residuals of the model fit against the expected
form. The relationship between each of the immune variables and survival was found to be
approximately log-linear. The only clinical variables accompanying the cohort were age at
diagnosis, stage and menopause status. Age at diagnosis is the only continuous variable of
these and the relationship between age and survival was found to be approximately linear
(Figure 3.15, Table 3.3).

3.4.8 Stromal CD68+ and CD45RO+ infiltrate are the strongest indi-
vidual prognostic markers

Initially I investigated whether survival models of the individual infiltrates in stroma and
tumour accurately predicted the data. Univariable analysis showed improved survival with in-
creasing stromal density of CD45RO+ (HR 0.76 95% CI 0.65–0.90, p=0.001) and CD68+(HR
0.53 95% CI 0.34–0.81, p=0.003) (Table 3.4). Modelling each immune variable with stage
showed improved predictive value for epithelial CD8+ density (HR=0.83, p-value=0.027) as
well as stromal CD68+ and CD45RO+ density and epithelial CD45RO+ density (Table 3.4).
Kaplan-Meier curves require an arbitary cutpoint for continuous data that impacts reported
significance, as such I used these for illustrative purposes only. Figure 3.16 shows illustrative
Kaplan-Meier survival curves for high and low stromal and epithelial CD68+, CD45RO+

and CD8+ densities.
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Fig. 3.14 Martingale residuals of each infiltrate assesses the linearity of the variables. Resid-
uals are the deviance of data from a perfectly fitted model. If the data is linear the residuals
will be symmetrically distributed. The log10 transformation is seen to reduce the distance
and improve symmetry of residuals from the perfect fit and therefore the linearity in all cases.
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Fig. 3.15 Residuals of model fit plotted against predicted value for age at diagnosis, the
relationship was found to be approximately linear.

3.4.9 Averaging immune infiltrate over a core

In clinical reporting, quantifying immune populations in exclusively tumour epithelium is
technically challenging and time consuming. I was therefore interested in examining the aver-
age density of each marker averaged across both tumour and stromal regions from each core
(Table 3.4). Averaging the tissue density of CD8+ increased the strength of the associated
hazard ratio and significance of the model (HR=0.79, p-value=0.010) indicating increased
prognostic value for CD8+ infiltrate over quantitation of individual epithelial and stromal
infiltrates. The significance did not increase for CD45RO+ and CD68+ infiltrates. Figure
3.16 shows illustrative Kaplan-Meier survival curves for high and low CD68+, CD45RO+

and CD8+ densities over combined epithelium and stroma compartments.
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Univariable Multivariable*
Cases HR p-value HR p-value

CD8+ 111 0.84 0.27 0.7 0.047
CD45RO+ 110 0.98 0.89 0.96 0.78
CD68+ 80 1.21 0.47 1.27 0.39

Table 3.5 Cox proportional hazard regression for cores with malignant epithelial tissue only.
Multivariable analysis includes stage.

3.4.10 Epithelial core subset survival analysis

As mentioned, the sampling of stroma and epithelium varied across samples. In order to eluci-
date whether there were further effects of tumour/core composition I reduced the set to purely
epithelial cores and I asked whether CD45RO+ and CD8+ epithelial infiltrate were still signif-
icant predictors in this predominantly epithelial environment. In the separate subset of cores
with <1% stroma, epithelial CD8+ malignant epithelial infiltrate remained an independent
prognostic factor but epithelial CD45RO+ density was not significant (n=110,p=0.78)(Table
3.5).

3.4.11 Combined model

Given that individually, all infiltrates were prognostic in at least one compartment, the next
step I took was to model the survival of patients based on all infiltrates together in an attempt
to account for the potentially different impacts of each infiltrate. I carried out multivariable
Cox regression analysis including all infiltrates and stage on patients with complete data for
all infiltrates (n=152) (Table 3.6). In this model only stage and CD68+ stromal infiltrate were
significant predictors of survival.

I then refined the model by removing the least significant elements (defined as those with
p>0.1) (Table 3.6, n=152). Interestingly, I found that the p-values for CD68+ and CD45RO+

stromal infiltrates in the refined model become less significant and the hazard ratios are
attenuated in comparison to both the univariable regression and the full combined model.
This is likely due to the inability of Cox regression to distinguish with confidence whether
stromal CD45RO+ or CD68+ density is the most significant predictor when there is a strong
correlation between all the immune variables.
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Fig. 3.16 Kaplan–Meier survival curves using cut point of median density of stromal CD68+

macrophages and CD45RO+ memory T cells using left truncation and right censoring.
Median entry to the study for all patients after diagnosis was 26.4 months. Median follow up
time from diagnosis to exit or death was 105.1 months.
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Multivariable (all combined) Refined model
HR p-value HR p-value

CD8+ Epithelium 0.96 0.81 - -
Stroma 1.07 0.63 - -

CD45RO+ Epithelium 1.12 0.37 - -
Stroma 0.83 0.09 0.68 0.11

CD68+ Epithelium 1.16 0.63 - -
Stroma 0.53 0.038 0.88 0.17

Stage
Localised 1 0 1 0
Regional 2.00 0.16 2.03 0.14
Distant 4.82 «0.001 4.70 0.0001
Unstaged 8.15 «0.001 8.25 0.0001

Table 3.6 Cox proportional hazard regression HR for combined and reduced models. The
Refined model is reduced down from all infiltrates to attempt to improve the model. P-values
associated with selected predictors increases. Stage is included in both models.

3.4.12 Is the immune exclusion ratio of intra-epithelial infiltrate to
stromal infiltrate prognostic?

The immune exclusion ratio or the ratio of tumour to stromal infiltrate is a quantitative
measure of the immune phenotypes mentioned earlier and may indirectly measure properties
of the ECM that allow for infiltration into the tumour core or measure the extent of the
interaction of the immune cells with epithelial cells. As shown previously, stromal and
intra-epithelial immune cell densities are correlated. I investigated whether the ratio of
epithelial infiltrate density to stromal immune infiltrate density was a significant predictor of
risk in HGSOC using the Cox proportional hazards model.

Univariable Multivariable
n HR p-value HR p-value

CD8 188 0.94 0.65 0.95 0.69
CD45RO 180 1.13 0.36 1.28 0.20
CD68 211 1.53 0.09 1.54 0.018

Table 3.7 Univariable and Multivariable (adjusted for stage) Cox proportional hazard tests
with ratios of epithelial to stromal infiltrate as predictors. Epithelial:Stromal exclusion ratio
is predictive for CD68+ alone.

There is no significant effect on survival of epithelial:stromal ratio for the T-cell subsets.
The ratio of epithelial:stromal macrophages however has an impact upon survival, with a
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higher epithelial:stromal infiltration ratio having a negative impact upon survival (Table 3.7,
p = 0.018,HR = 1.54).

3.4.13 Principal components and the combined immunospace

A problem that I encountered in analysing the effect of multiple immune populations upon
survival was that the correlation of multiple immune infiltrates hampered modelling (see
Figure 3.12, Table 3.6) and conceptually the combination of infiltrates may have additive or
suppressive effects. In order to assess the multi-dimensional nature of the immune response
in more detail I proposed that as the three types of immune infiltrate vary continuously across
epithelium and stroma these variables can be regarded as six dimensions of an ‘immunospace’
(three infiltrates, 2 localizations). Given the strong correlations between infiltrates (Figure
3.12), we can safely say these immune variables are not independent. I used principal
component analysis (PCA) to determine the independent patterns across these dimensions,
using the 152 patients for whom complete data were available.

PCA transformed the six correlated infiltrate variables into six independent axes with the
first component containing the largest proportion of variance (60%) in the data set3.8. Patients
are plotted by their PC1 and PC2 values in Figure 3.17. In Principal Component 1 (PC1),
the weightings of all immune infiltrates are positive and similar in magnitude (Table 3.8).
This indicates that as one infiltrate increases so do all the others and represents the degree
of coordination and extent of the immune response. The remaining principal components
characterize additional patterns across immune infiltrates independent of PC1. The additive
contribution of PC2 characterises negative correlation between CD8+ infiltrates and CD68+

macrophages and CD45RO+ memory cells. PC3 characterizes additional variation where
epithelial and stromal infiltrates are negatively correlated, the most positive values of PC3
correspond to high infiltration in tumour epithelium compared to stroma and the most negative
values of PC3 correspond to the opposite, the aforementioned immune exclusion.

Having calculated the principal components from the data which help visualise and
understand variation, it is possible to extract the patients who lie at the most extreme
ends of these axes of variation. Figure 3.19 shows representative images with the largest
magnitudes of PC1, PC2 and PC3 to visually illustrate the patterns described above. This
figure demonstrates especially clearly the coordinated immune infiltration and the immune
exclusion that are described by PC1 and PC3 respectively.

The variance in the remaining principal components (4-6) is smaller and less informative.
Variance in PC4 is predominantly from CD45RO+ stromal density, PC5 is from CD45RO+

epithelial density and PC6 is from CD68+ epithelial density.
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PC1 PC2 PC3 PC4 PC5 PC6
(60%) (13%) (9%) (8%) (5.5%) (4.5%)

CD8+ tumour density 0.38 -0.56 0.58 -0.1 0.4 -0.21
CD8+ stromal density 0.38 -0.59 -0.47 0.27 -0.21 0.43
CD68+ tumour density 0.41 0.47 0.37 0.11 0.09 0.67
CD68+ stromal density 0.42 0.30 -0.29 0.56 0.36 -0.45
CD45RO+ tumour density 0.45 0.11 0.21 -0.07 -0.78 -0.36
CD45RO+ stromal density 0.41 0.15 -0.42 -0.77 0.22 -0.03

Table 3.8 Contributions of normalized infiltrates to all principal components. Figures in
brackets indicate proportion of total variance

Fig. 3.17 Patients plotted on axes giving their values of Principal Component 1 and 2. A
continuous distribution of patients over the principal components is shown.
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Fig. 3.18 Kaplan Meier illustrative survival curve. Values of Principal Component 1 are split
at the median. The survival of high and low values of Principal Component 1 are plotted
against time.

In order to evaluate the prognostic impact of these patterns of infiltration, I used Cox
proportional hazard regression to assess whether these principal components were predictive
of survival. Cox regression survival models were also calculated on all combinations of
principal components and stage. Only PC1 was an independent predictor of survival in
this cohort and was associated with improved survival (Univariate: HR=0.89, p = 0.024,
PC1+Stage: HR: 0.88, p = 0.016) (Table 3.9) reflecting the good prognosis of a strong
coordinated immune response. The association of this principal component with survival is
also illustrated graphically using Kaplan Meier curves in Fig. 3.18.

Univariable Multivariable
HR p-value HR p-value

PC1 0.89 0.024 0.88 0.016
PC2 0.94 0.61 0.92 0.52
PC3 1.2 0.2 1.23 0.18
PC4 1.14 0.43 1.07 0.69
PC5 0.82 0.31 0.74 0.11
PC6 1.25 0.23 1.22 0.33

Table 3.9 Cox proportional hazard regression for principal components as predictors. Multi-
variable analysis includes stage. Only PC1 is a significant predictor of survival across both
uni and multivariable models.
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Fig. 3.20 AIC for most significant models. The best fitting model is the CD68+ stromal
model and has the minimum AIC value. The subset of models whose fit is considered
statistically undiscernable from the best fit model have a ∆AIC < 2 away from the minimum.
The models within this confidence range were CD45RO+ Stroma and PC1+PC5 and were
included in the plot.

3.4.14 Comparing Survival Models

It is possible to assess all combinations of survival models including the combination of
Principal components. This was carried out and the Akaike Information Criterion (AIC) was
used to compare the performance of these survival models and includes a penalty on the
number of terms to reduce over-fitting. The AIC values are shown in Figure 3.20. The model
combining stage, PC1 and PC5 had the best performance for predicting overall survival. The
improvement with the addition of PC5 shows that the addition of this principal component
has a suppressor effect in the model, increasing the significance of other variables when
included. This demonstrates that survival is predominantly determined by the coordinated
immune response and further variation in survival from this trend can be encoded by variation
in the epithelial CD45RO+ infiltrate from the general trend (higher CD45RO+ than expected
when CD8+ is low and vice versa). Interestingly, the models that contained stage and either
stromal CD45RO+ or CD68+ infiltrate contained a similar amount of information about
patient survival as the one that contained stage and principal components 1 and 5. In our
cohort, the density of CD68+ and CD45RO+ stromal infiltrates are therefore the best single
infiltrates for survival modelling.
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3.4.15 Are genetic defects associated with HGSOC driving individual
infiltrates or the coordinated immune response in tumours?

Infiltrate density is not significantly associated with BRCA status

To investigate the interactions between the TME and the genome, one can ask whether
a germline mutation in either of the BRCA1/2 genes results in changes in the TME and
specifically the immune infiltrate. I investigated whether tumour, stroma or full core mea-
sures of CD8+, CD45RO+or CD68+densities were related to BRCA1/2 mutations using the
Kruskal-Wallis rank sum test. I compared the infiltrate density distributions between patients
with no mutation, a mutation in BRCA1 and a mutation in BRCA2. I found that the distri-
butions of CD8+, CD45RO+and CD68+infiltrates and the principal components were not
significantly associated with BRCA mutation status (Figure 3.21). This may seem unexpected
as previous results have found increases in CD8+infiltrate with a BRCA1 mutation[159]
but the study referenced had data on both germline and somatic BRCA mutations and also
analysed methylation status.

Infiltrate density is not significantly associated with type of TP53 mutation.

Mutant p53 proteins have been linked to multiple micro-environmental changes[160]. I
investigated whether the type of TP53 mutation produced measurable changes in the TME.
Tumour, stroma or full core measures of CD8+, CD45RO+or CD68+densities were compared
between gain or loss of function mutations in TP53. I used the Kruskal-Wallis rank sum test
and found that the distribution of immune infiltrate was not significantly associated with type
of TP53 mutation.

Infiltrate density is not significantly associated with change in PTEN expression.

Changes in PTEN expression are cell-intrinsic and levels of PTEN expression are prognostic
in HGSOC[87, 161]. Tumour, stroma or full core measures of CD8+, CD45RO+ or CD68+

densities were compared between patients with high or low PTEN expression as measured
by both IHC and IF. Using the Kruskal-Wallis rank sum test I found that change in PTEN
expression was not significantly associated with any change in the density of immune
infiltrate. This particular cell-intrinsic change is not associated with a change in immune
infiltration in our cohort.
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Fig. 3.21 Boxplots of infiltrate distribution against genomic phenotype. Overlapping notches
show that no significant differences are observed between the distributions of these popula-
tions. (Notches on box plots extend 1.58 × IQR /

√
n and approximate the 95% confidence

interval for the median. Box plot whiskers extend to 1.5 ×IQR.)
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BRCA1/ BRCA2 TP53 GOF/LOF PTEN
CD8+ Epithelium 0.04 0.54 0.67

Stroma 0.17 0.29 0.07
Average 0.17 0.53 0.84

CD45RO+ Epithelium 0.2 0.42 0.92
Stroma 0.46 0.84 0.82
Average 0.1 0.36 0.87

CD68+ Epithelium 0.43 0.72 0.79
Stroma 0.78 0.85 0.65
Average 0.68 0.66 0.41

Principal Component 1 0.81 0.8 0.55
2 0.1 0.26 0.17
3 0.27 0.58 0.51
4 0.58 0.99 0.17
5 0.76 0.88 0.79
6 0.97 0.44 0.18

Table 3.10 P-values associated with Kruskal Wallis test for detecting differences in mean
ranks of immune infiltrate in patients grouped by mutation in BRCA1, BRCA2 or not-detected,
TP53 GOF or LOF and PTEN high or low in HGSOC.

3.4.16 Other ovarian cancer subtypes

The automated and reproducible nature of this workflow means similar analyses are easily
transposed across to the same immune populations assessed in the other subtypes of Ovarian
cancer. Figure 3.22 shows the number of patients with each OC subtype in the SEARCH
cohort. Due to the smaller numbers of patients with these subtypes, even before incomplete
data removal, I limited this secondary analysis to just examine the stromal and epithelial areas
and comparing correlations between infiltrates. Figure 3.23 shows the areas of epithelium and
stroma across all OC subtypes. Stromal area sampled is significantly lower than epithelial
area in all subtypes except Low Grade Serous Ovarian Cancer (LGSC), the LGSC group is
likely too small to see significant results. Endometrioid samples have a significantly lower
median stromal area than HGSOC.

Figure 3.24 shows the distribution of CD8+, CD45RO+, CD68+ cells in the stroma and
epithelium across the different OC subtypes. CD8+ cell infiltration is significantly higher in
HGSOC than all other subtypes across both epithelium and stroma. CD45RO+ infiltration in
HGSOC stroma and epithelium is significantly higher than clear cell. The three infiltrates
show similar relative patterns across the subtypes.
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Fig. 3.22 Histogram showing number of patients with each morphological subtype of OC in
the SEARCH cohort. HGSOC represents 58.2% of the cases in this cohort.

Fig. 3.23 Area of epithelium and stroma across morphological subtypes. Stromal area is
significantly lower than epithelial in all but the LGSC subtype. In LGSC the confidence
intervals overlap, likely due to the small number of cases. (Notches on box plots extend 1.58
× IQR /

√
n and approximate the 95% confidence interval for the median. Box plot whiskers

extend to 1.5 × IQR.)
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Fig. 3.24 Distribution of CD8+, CD45RO+ and CD68+ in stroma and epithelium for different
morphological subtypes of ovarian cancer. Log base 10 scale is used for counts. Endometrioid
and HGSOC/HGSC have significantly higher CD45RO and CD68 infiltration than Clear
Cell(CC). Notches on box plots extend 1.58× IQR/

√
n and approximate the 95% confidence

interval for the median. Box plot whiskers extend to 1.5× IQR.
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3.5 Discussion

This reproducible analysis of quantitative immune data allowed for a rigorous examination
of the distributions of immune infiltrates within the SEARCH population and of the potential
impacts of localisation of CD8+, CD68+ and CD45RO+ in HGSOC tumours.

I observed that stromal and epithelial populations and all infiltrates were somewhat posi-
tively correlated. This means that samples with low density of stromal immune populations
generally had low density of epithelial infiltrate and vice versa. It also meant that patients
with high quantities of one infiltrate type often had high infiltration of the others. I observed
that CD8+, CD45RO+ and CD68+ infiltrates predominantly exist on a continuum without
clear justification for cutpoints. The implication of this is that morphological subtypes based
on immune infiltration have no clear cutpoint for classification and gene expression signatures
will just distinguish higher infiltration tumours from lower ones.

It is worth noting that the CD8+ and CD45RO+ subpopulations are not biologically
mutually exclusive and as such, we expect to see some degree of correlation. The analysis
was, however, carried out on serial sections and as such the analysis is still on distinct cell
populations. A weakness of this data set for analysis was that with single slide, single
marker IHC staining there was no possibility of analysing subpopulations of CD8+CD45RO+

immune cells. Another weakness is that only single cores were taken for each patient; using
replicates through multiple sampling of the tissue block and across areas with different
epithelial and stromal composition would allow the differing impact of the infiltrates in
different tissue contexts to be explored.

One of the key and novel findings of this work was that the global measure of CD8+

infiltrate was a stronger and more significant predictor of survival over CD8+ infiltrate
alone. The implication of the average infiltration being a stronger predictor of survival is
that averaging infiltration over the intra-tumour stroma as well as the epithelium allows for
a better measure of survival. This is possible as the infiltration in the margins close to the
epithelium reflect long term infiltration dynamics and measures the presence of a reservoir of
immune cells, poised to infiltrate the epithelium. I also demonstrated here that increasing
quantity of epithelial and stromal CD45RO+ is a also positive prognostic feature, a result
which also confirms the positive incremental benefit of a long term and mature immune
response.

As discussed in the introduction, many pieces of research have illustrated that macrophage
function is micro-environment dependent and highly variable[162, 163, 42, 164], demon-
strating that localisation effects macrophage function. The predominant literature associates
macrophages with poor prognosis but Tanaka et. al showed that the expression of Bikunin,
a protease expressed by CD68+ macrophages, was associated with improved survival[44].
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My work is also in agreement with the observation by Li et al. that stromal regions are most
informative in which to evaluate macrophages. I find however, in contrast to their work in
lung cancer, that stromal CD68+ macrophages are a positive prognostic feature. There work
is however, also further evidence for distinct phenotypes of macrophages between tissue
regions. Interestingly, if CD68+ macrophages in the epithelial region are predominantly also
CD163+, then the negative prognostic epithelial to stromal ratio of CD68+ cells I derived
would loosely correlate with and be in agreement with the CD163+ ratio discussed by Yafei
et. al. [43].

The impact of specific immune cells can vary between cancer types and so further
elucidation of the nature of macrophages in HGSOC and their interaction with the TME is
required.

I investigated the concept of immune exclusion across this quantitative data set and found
that the ratio of infiltrates and thereby the extent of exclusion, was normally distributed. Such
a distribution implies that there is not a very distinct subpopulation of samples with exclusion.
I found that this ratio of epithelial:stromal infiltrate was prognostic for macrophages. In-
creased epithelial macrophage:stroma macrophage ratio had a negative impact upon survival.
Prior to this work I would have expected the quantity of T-cell infiltration from the stromal to
intra-epithelial regions to affect tumour progression. This data however suggests, as the ratio
is not prognostic and as the average density of the T-cell subsets over the core is prognostic,
that there is no explicit long term exclusion of cells. The implication is that infiltration at the
tumour-stroma interface is dynamic and random and that the overall quantity in the larger
region is reflective of impact. Specific immune exclusion, if it is an active process, was not
observed to any extreme in this cohort[23].

Using quantitative data also allowed me to observe that there was no clear threshold for
immune exclusion. A single standard deviation was equivalent to a 10 fold difference in
immune infiltration; this threshold was used for comparisons. This, along with the observation
that average infiltration is higher in stroma than tumour, is important when considering that
in the literature tumours have been classified into immune-hot, immune-cold and immune-
excluded groups without reasonable justification[99, 165, 166], and unsupervised clustering
does not identify such groups[102]. In fact, given the log-normal distribution it is likely that
attempting to classify the immune content of patients into three groups merely results in
identifying the first third, middle and last third of log-normally distributed counts. Other
work attempting to compare immune infiltrates quantitatively have sometimes forgone the
analysis of the distribution and normalisation.

The focus of many studies in immune oncology is the intra-epithelial immune infiltration;
likely due to evidence of direct contact and the cytotoxic interaction between immune and
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tumour cells. The results in this work suggest that stromal infiltrate should also be evaluated.
Even disregarding the observed survival modelling benefit, it is statistically beneficial to
evaluate a larger area of tissue. Furthermore, if tissue segmentation is not required, one can
obtain more accurate infiltrate counts more easily. For macrophages it appears that stromal
infiltration plays a distinct role and phenotype as compared to epithelial macrophages in the
immune response. In the case of the T-cell subsets evaluated here, the addition of the stromal
region also appears to provide more information about the epithelial infiltration as we can
infer some element of the longer term immune infiltration dynamics.

In this chapter I also developed the concept of the immunospace. The immunospace
views the quantity of each immune infiltration as part of a multidimensional immune land-
scape for a patient. This approach allowed me to analyse patterns across different immune
populations and to derive the principal components as measures of variation. I observed that
the correlation between infiltrates amounts to general coordinated immune response which is
a positive prognostic. It also allowed me to examine the independence of other phenomena
such as the immune exclusion from the epithelium which was obtained as an axis of variation
in PC3 in an unbiased manner. Such high dimensional methods will be of importance when
assessing higher dimensional data sets such as IMC.

Having reduced the survival analysis to cores that contained epithelium and stroma in
order to compare survival impact, the limitation of this analysis is that it assesses the impact
of these immune cells within a stromally infiltrated environment. In order to address this
I compared the survival impact of CD8 and CD45RO+ in the subset of cores with >99%
epithelium. CD45RO+ was no longer associated with survival which may imply a variation
in the functionality of these cells which depends upon their spatial location (within tumour
nest).

The presence of germline BRCA2 mutations was significantly associated with lower CD8+

cell density than patients with a germline BRCA1 mutation after multiple testing correction
(Figure 3.21). There was no significant association between the quantity of CD45RO+ or
CD68+ infiltrate and the mutational status of either BRCA1 or BRCA2 genes (Figure 3.21) .
No significant association was detected between TP53 GOF and LOF mutations or PTEN
expression and the densities of CD8+, CD45RO+ and CD68+ cells in epithelium or stroma
(Table 3.10). Similarly, changes in the principal components were not significantly associated
with PTEN expression, TP53 GOF or LOF mutation or germline BRCA1/BRCA2 mutation
status (Table 3.10). The lack of a result with respect to BRCA is likely in part due to effects of
cohort size. Studies that have found a positive result have sometimes had hundreds of patients
with a mutation and still observe p-values of approximately 0.05[82, 27, 159]. These studies
also frequently included somatic BRCA mutations and also analysed methylation status,
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neither of which we had information on. In this cohort, With approximately 20 patients with
mutations, I am underpowered to ask multiple questions about the differences in immune
infiltration between non-BRCA and BRCA-mutated patients.

I observed the differences in tissue sampling between ovarian cancer subtypes. The
observation that the distribution of tissue area sampling remains constant either demonstrates
that the distribution of epithelium and stroma across patients in all populations is similar or
that the sampling by the pathologist is consistent in extracting quantities of epithelium. Given
that the range of the epithelial tissue percentage is high I would propose that the distributions
are similar across the population. I also examined the infiltration density between subtypes
of ovarian cancer. HGSOC has significantly higher CD8+ infiltration than other subtypes
and endometrioid OC was observed to have higher infiltration than clear cell. This is in
line with other publications which identify HGSOC as the subtype with the highest immune
infiltration[167]. This data also shows that this analysis can easily be extended to other
ovarian subtypes.

Having demonstrated the importance of spatial location and the inclusion of neighbouring
stroma in terms of the impact of infiltration, questions are raised about the exact spatial nature
of the immune infiltration. It is also evident that in current approaches there is no accounting
for tumour structure as a factor in the infiltration. The differing quantities of infiltration
between epithelial and stromal regions also implies that averaged infiltration quantities could
be an indirect readout of the structure of the tumour. In addition, the difference in prognostic
impact in stroma infiltrated tumours further suggests a role for tumour structure in prognosis.



Chapter 4

Quantifying and classifying tissue
structure

4.1 Introduction

Having demonstrated in Chapter 3 that the specific stromal or epithelial localisation of several
immune infiltrates was an important factor in the prognosis of patients, I wanted to investigate
in more detail the structure of epithelium in tissue sections and assess the relationship of the
epithelial and overall structure with immune infiltrate.

In order to demonstrate the accuracy of the structure classification and its wider ap-
plicability, I opted to use both H&E and pan-cytokeratin (CK) stained images to derive
this structure. Pan-cytokeratin (a standardised mix of cytokeratin markers) was used as the
epithelial marker and provided a gold standard for epithelial cell identification for structure
analysis. This allowed me to validate tissue classification of H&E such that structures can be
compared across multiple sections from the same core.

It is clear from observing images of tumour sections that the structure of the epithelium
and stromal regions varies dramatically. Examples of these morphological differences have
been discussed by Lisio et al. [13] amongst others. The morphologies discussed by Lisio et
al. are solid architecture, glandular architecture with slit-like spaces, papillary architecture
and cribriform and pseudoendometroid architecture[13]. The automated distinction of these
has not been carried out but I aimed to at least initially build up a series of tissue metrics for
which segmentation of epithelial and stroma cells must first be acquired.

This section of the thesis aims to set out an automated classification of epithelial and
stromal cells, to derive metrics for tissue structure and to investigate whether these metrics
are conserved across a tumour and across tumour sites in a patient. I also wanted to analyse
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Fig. 4.1 Project outline for this Chapter. Red highlighted section was carried out by myself.

whether these metrics could be related to tissue architecture morphologies. Finally I aimed to
investigate whether the structure defined this way is related to the infiltration of the tumour by
particular types of immune infiltrate. The workflow of this Chapter is illustrated in Figures
4.1 and 4.2.

4.2 Methodology

4.2.1 Patient Cohorts

I utilised the OV04 Cohort for this analysis as it had existing TMA sections that had H&E
and CK staining, it also had samples from multiple sites. This cohort also had unstained
sections available for further analysis.

4.2.2 IHC

Pan-cytokeratin, CD8 and FOXP3 staining

Tissue sections from the OV04 cohort were stained with Pan-cytokeratin, CD8 and FOXP3
markers by Sarwah Al-Khalidi (SAK) and the method of staining and imaging is laid out in
section 2.3.2.

4.2.3 H&E

Automated Haematoxylin and Eosin staining was carried out by SAK and is described in
section 2.3.2.
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Fig. 4.2 Further details of the analysis in the project outline.

4.2.4 Statistical Analysis

The package dbscan in R was used for density based clustering analysis. spatstat was used
for the creation of point patterns and estimation of K and L functions. SpatEntropy was
used to analyse Shannon and Batty entropy and GGally used for correlation plots.

4.3 Results

4.3.1 Patient Characteristics

TMAs had been previously constructed from the CTCR-OV04 clinical studies, which were
designed to collect imaging, blood, and tissue samples for exploratory biomarker studies.
All patients provided written, informed consent for participation in these studies and for
the use of their donated tissue, blood specimens, and anonymized data for the laboratory
studies carried out. The CTCR-OV04 studies were approved by the Suffolk Local Research
Ethics Committee (reference 05/Q0102/160) and Cambridgeshire Research Ethics Committee
(reference 08/H0306/61)[168].

Samples were collected and tissue blocks constructed where possible for each patient
from normal fallopian tube, malignant ovary, omentum and non-omental metastases. Two
cores were extracted per tissue block where possible and two TMA blocks were constructed
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N 58
Age 77 (60-90)
Stage (FIGO) N

1 1
2 2
3 37
4 9
Unstaged 2

Treatment Hospital
Addenbrooke’s 26
Bedford 6
Other 22
Unknown 4

Table 4.1 OV04 study patient characteristics.

from these cores per tissue type. The subset of the cohort that I analysed contained 58
patients with HGSOC. Clinical data for this cohort included FIGO stage[153].

I analysed the following subsets of samples: a single TMA slide for H&E of the Ovary, 2
matched TMA slides from different cores within the same tissue block with CK staining of
the Ovary, a single TMA slide with CK staining of Omentum. In an ideal scenario with no
missing data this results in a serial H&E and CK stained section from core 1 from the ovary
block, a CK stained section from core 2 from the ovary block and a CK stained section from
an omental metastasis block. Figure 4.3 shows the subsets and numbers of patients that have
the different sample types.

4.3.2 Cell classifier performance and comparison between H&E and
cytokeratin stained images

Images of serial tissue sections stained with both H&E and a pan-cytokeratin marker were
analysed. Images of sections with cytokeratin staining are referred to in this document as
CK images. QuPath was used to segment nuclei based upon their optical density. Cells
were defined as regions at most 5 micron from and including a nuclei. These segmented
nuclei and their surrounding area will be henceforth referred to as "cells" in the image. I
utilised the cytokeratin staining in the CK images and examined the serial H&E sections to
label epithelial and stromal regions. Over 2000 cells from each TMA slide were labelled
and they were split randomly into a 50:50 ratio, 50% were used for training and the other
50% were used as a validation test set. The training subset was used to train a random
forest based classifier. Cells were then classified as tumour or stroma based upon their size,
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Fig. 4.3 UpSetR plot of the subsets of patients with images for each sample type. Numbers
above the bar plots signify the number of patients in each subset. For example 16 patients
have images of Omentum samples only, 15 patients have images from all slide types, 15
patients have samples across all 3 Ovary slides but no sample from the Omentum. H&E
refers to serial sections stained with H&E of the Ovary Core 1 sample.
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Fig. 4.4 An example of the stroma and tumour classifier built using QuPath software. Tumour
is highlighted in yellow and stroma in blue. Classifier is trained on both H&E and Pan-
cytokeratin(CK) stained images.

CK Label
Stroma Tumor

Classification Stroma 1263 2
Tumor 2 346

H&E Label
Stroma Tumor

Classification Stroma 2653 40
Tumor 11 2165

Table 4.2 Confusion matrix for QuPath H&E and CK based classifiers. Percentage of
correctly classified objects in CK test set: 99.8% (n=1613). Percentage of correctly classified
objects in HE test set: 98.95% (n=4869).

shape and smoothed features using this random forest based classifier. Examples of tissue
classification on H&E and CK stained images are shown in Figure 4.4. Confusion matrices
for the H&E and CK classifiers are shown in Table 4.2. These show a very good performance
by both classifiers and show that such analysis could be carried across to H&E images. It is
important to note that in this analysis, lymphocytes were just classified as their nearest cell
type (epithelial or stromal).

The classifiers both perform well and as further validation across the image types, Figure
4.6 shows that the percentage of epithelial cells in each image are strongly correlated, as
would be expected from serial sections. I observed in training that at least 1000 examples
of classified cells were required in the CK based images to get an over 99% classification
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accuracy across all images which naturally vary slightly in staining intensity and tissue
texture.

4.3.3 Metrics for tissue structure analysis

I was interested in being able to quantify the tissue structure of a sample and in order to
define a tissue structure of each core I selected several possible metrics to define, examine
and measure;

• Stroma/Tumour percentage

• Cell packing (Nearest Neighbour Epithelial Distance)

• Surface Area:Volume ratio of Epithelial regions

• Shannon and Batty entropy

• Number of clusters in tissue

I aimed to derive these values and then compare these metrics between serial sections,
samples from a different region of the same tissue block and between different tissues from
the same patient. As cores contained a minimum of 1000 cells and these analyses require
at least 25 epithelial cells for epithelial clusters to be identified, sections which were over
97.5% stromal cells were excluded from further structural analysis.

4.3.4 Stroma/Epithelium percentage

This most basic measure of tissue composition was utilized in the previous chapter. In this
chapter I measured this proportion as a percentage of the total cells segmented in the image
and examined whether it was conserved across intra-patient samples.

Distribution of epithelial fractions.

The distribution of epithelial cell percentages as derived from CK and H&E images are
shown in Figure 4.5. Box-plots show the distribution of epithelial percentages in the OV04
cohort based upon H&E Ovary, CK stained matched tumour block cores and Omentum core.
Boxplots display overlapping notches at the median demonstrating no significant difference
between the distributions of epithelial percentage in the different sample types.
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Fig. 4.5 Boxplots of the distribution of epithelial percentages in the OV04 cohort based upon
H&E Ovary, CK stained matched tumour block cores and Omentum TMA. Boxplots display
overlapping notches at the median demonstrating no significant difference between epithelial
percentage distributions. Notches estimate the 95% confidence interval around the median.
Whiskers extend to 1.5×IQR

Comparison across images from different samples

In order to understand how intrinsic the percentage epithelium was to a patients tumour and
whether it varied with the location of that tumour I analysed the correlation between epithelial
percentage across serial sections. To do this I analysed the epithelial fraction in cores from
the same tumour block and cores from different tumour sites (Ovary and Omentum). Figure
4.6 shows these correlations and the associated Pearson correlation coefficients and p-values.
I found that epithelial fractions from serial sections and sections from the same tumour block
were significantly correlated but epithelial fractions in matched samples from different sites
were not.

4.3.5 Epithelial Nearest Neighbour Distance

Epithelial cells are not randomly dispersed through tissue and tend to cluster, ergo the average
distance between nearest neighbour epithelial cells is a product of both the average epithelial
cell size in the sample and a function of the organization and packing of the cells. Figure
4.7 shows the L function for one of the spatial point pattern of epithelial cells. Above the
minimum distance between cells (5µm), the distance from the centre of the nuclei to the
edge, the L function is above the theoretical line. This demonstrates increased clustering;
cells are closer together than they would be if randomly dispersed. This pattern is to be
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Fig. 4.6 Epithelial percentage is compared between samples. (A)Correlation between percent-
age epithelium measured via H&E versus CK stained serial section. (B)Correlation between
percentage epithelium for different cores from the same tumour block. (C)Correlation be-
tween percentage epithelium for cores from different tumour blocks (Ovary and Omentum).
All R and p-values are Pearson correlation.

expected as tissue cells clump together and is seen across all cores.(See Methods for details
on Ripley K and L functions).

Comparing NNdist for different matched samples

In order to understand how intrinsic the cell packing distance of the epithelium was to a
patients tumour and whether it varied between tissue sites I analysed the correlation between
epithelial NN distance across serial sections, in cores from the same tumour block and cores
from different tumour sites (Ovary and Omentum). Figure 4.8 shows these correlations and
the associated Pearson correlation coefficients and p-values. I found that median epithelial
nearest neighbour densities from serial sections(R = 0.65, p = 2.7×10−5), sections from
different cores from the same tissue block (R= 0.58, p= 0.00064) and sections from differing
tumour sites were significantly correlated (R = 0.78, p = 7.8×10−5).

4.3.6 Quantifying border cells and the invasive front

In a purely diffusive model of immune infiltration where immune infiltrate travels from the
stroma into the epithelial nests, epithelial infiltrate would be proportional to the surface area
of the epithelial nodules that are exposed to the surrounding stroma.

The ratio of circumference to the area of a circle and the surface area to volume ratio of a
sphere are both proportional to 1

r . As such the surface area of a tumour nodule to its volume
can be estimated from a 2D section as the following:
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Fig. 4.7 L-function plotted against distance for a single core epithelial cell point pattern.
Within the radius of the cell, epithelial cells are less clustered than expected but beyond the
limit of physical proximity, cells are more clustered than at random.

Fig. 4.8 Correlation between median Epithelial NNdist for (A) H&E versus CK stained serial
sections (B) different cores from the same tumour block (C) cores from different sites and
tumour blocks (Ovary and Omentum).
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Fig. 4.9 Example of images with very high and very low border cell percentages. Image
is classified as stroma(blue) and epithelium(yellow) and the locations of cells in the image
designated as border cells are plotted.

SA
Vol

∝
(Nedge)

(Nepi)

Where Nborder is the number of cells on the border between an epithelial tissue compart-
ment and stromal one and Nepi is the number of cells making up the epithelial cluster.

In order to gain an approximation of this surface area, I defined border cells as those
epithelial cells which had a close stromal neighbour. Samples with no epithelial cells were
excluded from this analysis.

Tumour cells are on average clustered closer to each other than stromal cells are. As such
I used this domain knowledge and visual inspection to define the neighbour distance cutoff. I
defined this as a stromal cell within twice the distance of the nearest epithelial cell.

Figure 4.9 shows an example of two tissue sections and the cells classified as border
cells. As shown, these located cells are visually a good approximation to the edges of the
epithelium in contact with stroma in the tissue section. Figure 4.10 shows the distribution of
percentage of edge cells across samples.
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Fig. 4.10 Histogram showing the distribution of cells in an image classed as border cells as a
percentage of total epithelial cells. Samples with no epithelial cells were excluded from this
analysis.

Fig. 4.11 Correlation between percentage of epithelial cells classified as border cells for
(A) matched serial sections (B) matched cores from same tumour block (C) different blocks
from different sites (Ovary-Omentum) from the same patient. Pearson R and p-value shown.
Outliers are highlighted with purple squares as points with largest residual from linear model
of the general trend.

Comparison across different samples

I used the OV04 cohort to examine the number of epithelial cells classified as border cells
and compare this between cores extracted from the same tumour block. In order to assess
whether this element of tissue structure is conserved across serial sections, cores from the
same tumour block and different sites of tumours I compared the percent of edge cells in
each. Figure 4.11 shows the scatter plots and Pearson correlations. The percentage of border
cells is strongly correlated between H&E and CK on serial sections but less correlated within
spatially separated cores from the same tumour block and not significantly correlated between
matched samples from ovarian and omental sites.
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Fig. 4.12 Serial sections in H&E and CK staining with significantly different border cell
percentages. Despite visually similar structure and whilst both sections have only a small
epithelial region, these samples have significantly different border cell percentages. This
is because the cytokeratin stained section has an epithelial area of less than 10% of the
size of the one in the H&E(both labelled yellow). The region in the CK image is also split
into multiple regions. This extremely small area results in a much higher percentage of
total epithelial cells which are touching the adjacent stroma (blue) and hence a significant
difference between the serial sections.

Outlying cores

As shown there are a few cores whose structural metric seems to vary significantly between
cores from the same tissue block. As this metric is very visually understandable and in
order to confirm that these data points were accurate, I wanted to assess whether these
outlying sections were visually dissimilar. I extracted the single outlier in Figure 4.11A for
examination and the sections from this patient are shown in 4.12.

To extract multiple outliers from Figure 4.11B I used a linear model (lm) in R (see Table
4.3) to generate residuals. The model of Cores 1 and 2 from the same block had residuals of
median -0.03 and range (-0.29-0.55). I extracted the images of the sections for the four pairs
of cores with the largest residuals (highlighted with purple squares in Figure 4.11. Images of
the four examples of pairs of cores with significantly different percentages of border cells but
taken from the same tissue blocks are shown in Figure 4.13. These examples demonstrate
that differences in this structural metric map to very distinct morphological differences.
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.13 0.053 2.38 0.024 *
Border Cell Percentage 0.328 0.15 2.18 0.0378 *

Table 4.3 Coefficients for the linear model relating border edges between the two tumour
blocks. Residuals calculated for a linear model (y = mx+ c) with y equal to Core 1 Border
Cells and x equal to Core 2 Border Cells. Where p-values associated with the fit are less than
0.05, the result is marked with a ‘*’.

Fig. 4.13 Outlying Cores. Matched samples that have the largest differences for the percentage
of border cells between images of sections of different cores from the same tissue block.
Accompanying serial section H&E images in top left of each section verify that no random
mispositioning or mislabelling of cores during staining or image analysis was responsible.
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Fig. 4.14 Correlation between Shannon entropy for (A) matched serial sections (B) matched
cores from same tumour block (C) different blocks from different sites (Ovary-Omentum)
from the same patient. Pearson R and p-value shown.

4.3.7 Entropy

Entropy measures heterogeneity and information content and I proposed the use of Entropy
measures in order to assess the heterogeneity of samples. The Shannon Diversity Index is
one such measure that has been used in other work in the field[169, 139]. For each tissue
image I calculated the Shannon and Batty entropy for the core.

Comparing Shannon Entropy across different tissue samples

The simplest calculation for entropy is the Shannon entropy, the formula for which is given
in Methods 2.8. This calculation is also referred to as the Shannon Diversity Index. Shannon
entropy is a function of cell type frequency alone. I analysed this across the multiple sample
types to investigate whether this was conserved.

Figure 4.14A shows the correlation between the Shannon entropy of images of serial
H&E and CK stained sections. There was a moderate correlation between these samples.

Figure 4.14 also compares the measures of entropy across tissue samples from the same
tissue block but different cores(B) and the same patient but different tissues(C). The Shannon
entropy is not correlated between these, only the Shannon entropy of serial sections in H&E
and CK are correlated (R = 0.74, p = 2.9×10−7).

Given that Shannon entropy is a non-linear function of epithelial fraction and not of
spatial organisation, the third result is to be somewhat expected given the previous results in
this Chapter.
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Fig. 4.15 Examples of plotted point pattern of cells and the division of the region into 100
parts for the calculation of Batty entropy.

Fig. 4.16 Correlation between Batty entropy of point patterns split into 100 random regions
for (A) matched serial sections (B) matched cores from same tumour block (C) different
blocks from different sites (Ovary-Omentum) from the same patient. Pearson R and p-value
shown.

Comparing Batty Entropy across different tissue samples

There are many other types of entropy measure, some of which incorporate spatial features,
Batty entropy is described mathematically in the Methods. Batty entropy effectively splits a
spatial distribution into subregions, counts the points within each and calculates the entropy
of the arrangement. As the structure of the epithelium is the predominant assessment of
morphology, I reduced the point patterns to epithelial cells only and calculated the Batty
entropy over 100 regions. Examples of the plotted cell point pattern and the splitting of
the region are shown in Figure 4.15. Figure 4.16 shows the correlation plots between the
different samples.

Batty Entropy was significantly correlated over serial sections(R= 0.84, p= 1.910×10−10)
and sections from the same tissue block(R = 0.63, p = 0.00021) but was not correlated be-
tween cores from different tissues.
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Fig. 4.17 k-means neighbour clustering of epithelial cells identified in a tissue section.
Original point pattern of epithelial cells, k=2, k=3. Densely packed cells are split evenly
geometrically into pre-specified clusters with no biological meaning.

4.3.8 Cell Clustering

In observing tissues we see varying clustering of cells; some tissues have solid epithelial
sections separate from stroma, others have stromal islands surrounded by epithelium, other
are highly mixed. In order to quantify this I aimed to identify cells clustered within a tissue,
and use this to understand the overall composition of the core. I assessed multiple methods
for clustering cells in the tissue and highlight k-means and DBSCAN methods here.

k-means clustering

An example of a result the of k-means clustering method is shown in Figure 4.17. k-means
clustering, as an example, requires a pre-requisite number of clusters, a parameter that varies
dramatically between tissue sections. k-means is also an unsuitable method as when tissue
sections comprise varying numbers within groups and varying spatial densities of cells, the
method tends to split the cells equally into the pre-specified number of clusters allocating by
a distance from the center of a cluster, rather than recognising different sized clusters within
the data.

Density based clustering

I found that it was better to use DBSCAN, a density based clustering method. The DBSCAN
method requires two parameters, epsilon (eps), the distance within which two points are
considered neighbours and minPts, the minimum number of points in a cluster. Both of these
are domain knowledge that is more universal than the number of clusters.
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Fig. 4.18 k nearest neighbour (knn) elbow plot to find optimal eps. 10th nearest neighbour
plotted against index, the optimal value for the eps is at the elbow of the curve. The eps was
approximately 80 for All cells, 82 for Tumour and 85 for Stroma.

I decided to only call clusters of at least 15 cells; given that the number of cells in an
image is of the order of 1000 cells, I thought each cluster should contain more than 1%
of the cells, keeping the maximum number of clusters to the order of 100. To derive the
optimum eps distance for clustering groups of cells on the tissue structure level, I plotted
the kth neighbour distribution and located the "elbow" of the curve as discussed in Rahmah
et.al[170]. I used k = 10. The eps value obtained from these was 80µm for Epithelium and
85µm for Stromal cells. The larger value was used for clustering all cells. These plots for
tumour and stroma and the eps cutoff from each are shown in Figure 4.18.

An example of DBSCAN clustering on serial H&E and CK sections is shown in Figure
4.19. These show visually accurate identifications of cell clusters across H&E and CK images.
Boxplots of the distributions of the number of epithelial cell clusters are shown in figure
4.21.

Correlations across structure measures

Figure 4.21 shows the distribution of number of epithelial clusters across the different
tissues. The notches represent the confidence interval around the median and the overlapping
distributions show that there is no significant difference in the medians of the number of
stromal or epithelial clusters in samples.

As shown in Figure 4.22 I analysed whether the number of epithelial clusters was
correlated between matched serial sections, cores from the same tumour block and different
tissues in the same patient.

The number of epithelial clusters is correlated in serial sections(R= 0.81, p= 4.8×10−10)
and in cores from the same tissue block (R = 0.53,p = 0.00054) but not across sections from
different tissues.
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Fig. 4.19 Examples of clusters of cells generated with DBSCAN algorithm. Clusters gener-
ated from images of tissue sections when epithelial, stromal cells are viewed separately and
when all cells are input.

Fig. 4.20 Boxplots for distribution of number of stromal, epithelial and all cell types. Signifi-
cant differences are seen between distributions showing more stromal clusters in samples
than epithelial ones. Clusters over "all cell types" reflect how separated the overall core is.
As many cores are one single piece of connected stromal and epithelial tissue, the number
of clusters over the whole section is, as expected, much lower than when these tissues
are viewed separately. Notches estimate the 95% confidence interval around the median.
Whiskers extend to 1.5×IQR
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Fig. 4.21 Boxplots for distribution of number of clusters across different sample and staining
types. No significant difference is seen in the number of stromal clusters or epithelial clusters
across the tissue types. Notches estimate the 95% confidence interval around the median.
Whiskers extend to 1.5×IQR.

Fig. 4.22 Correlation between number of epithelial clusters for (A) matched serial sections
(B) matched cores from same tumour block (C) different blocks from different sites (Ovary-
Omentum) from the same patient. Pearson R and p-value shown.
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4.3.9 Correlations between structural metrics

Having defined a series of structural metrics, many of which were conserved over different
cores of the tissue block, I was interested before utilising these together for classification,
how the metrics were related to each other. Figure 4.23 shows the correlations between
Epithelial percentage, Percentage of border cells, Shannon Entropy, Batty Epithelial Entropy,
Median Epithelial NN dist.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7
(54.3%) (22.3%) (11.3%) (6.1%) (3.8%) (1.2%) (1.0%)

Batty Entropy 0.33 -0.49 0.05 -0.64 -0.21 -0.04 0.43
Epithelial Nndist -0.39 0.27 0.30 -0.64 0.47 -0.17 -0.18
Border cell % -0.46 -0.07 -0.39 -0.23 -0.12 0.75 0.01
Epithelial % 0.48 -0.12 -0.16 -0.23 0.00 0.14 -0.81
Epithelial-Stroma NN 0.40 0.25 0.55 0.07 0.24 0.61 0.19
N Epithelial Clust -0.34 -0.31 0.65 0.07 -0.52 0.05 -0.30
Shannon entropy -0.13 -0.72 0.05 0.25 0.63 0.07 -0.03

Table 4.4 Loadings for the principal components of structural metrics selected from analysis.

The most significant correlations in Figure 4.23 are that epithelial percentage is negatively
correlated with Epithelial NN dist (R = −0.74, p = 4.7×10−7) and number of epithelial
clusters. It is positively correlated with Batty Entropy (R = 0.74, p = 4.1×10−7)and
negatively correlated with the number of border cells(R =−0.75, p = 2.1×10−7). A curve
is seen between Shannon entropy and Epithelial % as it is a function of Epithelial percentage.

4.3.10 Principal components

Given that these metrics are correlated in complex manners, I performed a principal com-
ponent analysis to understand if there were patterns in the variation between patients. I
performed the principal component analysis on the following metrics extracted from CK
stained TMA1: Epithelial percentage, Percentage of border cells, Shannon Entropy, Batty
Epithelial Entropy, Median Epithelial NN dist. The loadings of the principal components are
shown in Table 4.4.

The first principal component is dominated by the border cell percentage and the epithelial
percentage which are negatively correlated. The second principal component is dominated
by Shannon entropy. The third principal component is dominated by the number of epithelial
clusters.

4.3.11 Morphology classification

Having reproducibly obtained all the properties above, the quantity of stromal and epithelial
cells, identified subclusters, entropy, density of tissue and surface area to volume ratio of the
epithelium, I aimed to then investigate whether these metrics or the principal components
containing them could distinguish the morphological subtypes mentioned earlier.
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To do this I extracted the cores at the extremes of the principal components to visualise
the differences. Solid and desmoplasia subtypes seemed to be separated at the extremes of
PC1. This axis of variation separates disparate small clusters of epithelium with large surface
area to volume ratio from large solid masses of epithelium with stromal exclusion.

I also compared individually the metrics measured earlier between samples identified as
solid, papillary/glandular and desmoplasia tissue morphologies as shown in Figure 4.24

4.3.12 Relationship between Structure and Immune infiltration

I utilised a classifier trained by Sarwah Al-Khalidi for CD8+ and FOXP3+ classification to
extract the number of CD8+ and FOXP3+ cells in these samples using HALO. In order to
keep analyses between chapters as similar as possible, these were defined as number of cells
per unit area (cells per µm2).

4.3.13 CD8+ Correlation

Table 4.5 shows the correlation between structural metrics and the density of epithelial CD8+

cells. Before multiple testing correction CD8+ density is correlated with multiple features
including PC1 and PC3 and the average nuclear epithelial size. After correction these are no
longer significant. The results that remain significant are that CD8+ infiltrate is positively
correlated with Epithelial NN distance (R = 0.91, p = 1.7×10−13) and less so with the
percentage of border cells(R = 0.54, p = 0.009).

4.3.14 FOXP3+ Correlation

Table ?? shows the correlation between structural metrics and the density of epithelial
FOXP3+ cells. Intraepithelial FOXP3+ density is positively correlated with the number of
clusters when analysed with DBSCAN over all cell types and more weakly correlated with
structural Principal Component 3. After multiple testing correction FOXP3+ infiltrate is only
correlated with the number of clusters over the whole tissue.
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Fig. 4.24 Images of cores stained with pan-cytokeratin are shown. Cores with high and low
PC1, 2 and 3 values are displayed. PC1 appears to separate solid from desmoplastic structures.
PC2 is dominated by entropy features as seen by mixed and non-mixed populations. PC3 is
dominated by epithelial clusters and epithelial and stromal contact, with low PC3 potentially
identifying papillary structures which have minimal stroma.
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Variable Correlation p-value
PC1 -0.53 1.1E-03 **
PC2 -0.14 4.3E-01
PC3 -0.36 3.2E-02 *
PC4 -0.09 5.9E-01
PC5 -0.06 7.2E-01
PC6 0.34 4.3E-02 *
PC7 0.03 8.5E-01
Tumour Clusters -0.05 7.4E-01
Stroma Clusters -0.14 3.8E-01
All cell Clusters 0.07 6.8E-01
Batty Epithelial Entropy -0.09 5.9E-01
Batty Stromal Entropy 0.18 2.8E-01
Epithelial Nucleus Size -0.35 3.2E-02 *
Border Cells 0.54 5.4E-04 ***
Shannon Entropy -0.31 5.8E-02
Epithelial NN Dist 0.91 1.0E-14 ****
Stromal NN Dist -0.29 8.3E-02

Table 4.5 Correlations between spatial metrics and CD8+ Epithelial Density. * indicates
p<0.05, ** indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001. After multiple
testing correction, values marked *** and above remain significant.
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Variable Correlation p-value
PC1 -0.03 8.52E-01
PC2 -0.06 7.31E-01
PC3 -0.34 4.84E-02 *
PC4 0.10 5.74E-01
PC5 -0.08 6.33E-01
PC6 0.04 8.03E-01
PC7 0.08 6.30E-01
Tumour Clusters -0.17 2.91E-01
Stroma Clusters 0.29 6.98E-02
All cell Clusters 0.54 2.91E-04 ***
Batty Epithelial Entropy -0.03 8.42E-01
Batty Stromal Entropy 0.04 8.18E-01
Epithelial Nucleus Size -0.21 2.08E-01
Border Cells 0.02 8.90E-01
Shannon Entropy 0.10 5.49E-01
Epithelial NN Dist -0.20 2.38E-01
Stromal NN Dist -0.08 6.50E-01

Table 4.6 Pearson Correlation and associated p-values for FOXP3+ epithelial infiltrate density
and spatial metrics. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, ****
indicates p<0.0001. After multiple testing correction, values marked *** and above remain
significant.
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4.4 Discussion

Attempts like those of Murakami et. al. [97] have been made to robustly classify morpholo-
gies of HGSOC tissue. Such a method would be useful in potentially subtyping HGSOC. It
is a varied and heterogeneous cancer and automating the classification of structures would
allow research to investigate the structural diversity between patients and its impact on prog-
nosis. There have also been observations that patterns differ between BRCA and non-BRCA
mutant tumours and so structural features may be a driver behind the difference in immune
infiltration between these groups. Murakami et al. achieved inter-pathologist agreement
in their classification study but an automated digital analysis that successfully categorises
tissues within HGSOC has not been published. Methods such as deep learning are being
attempted but even if successful will not necessarily provide clear insights into the physical
features that define the morphologies or a physical understanding of the natural structural
variation in samples.

A key problem with current subtyping methods for both morphology and gene expression
is that they frequently do not separate the presence of TILs from the classification process.
Given the widely accepted positive impact of TILs this often leads them to classify prognostic
morphologies and signatures which are purely reflective of immune infiltration[98]. As such
I made an effort to create metrics that were generated independently of TIL infiltration.

I generated structural metrics from point patterns of epithelial and stromal cells and
examined whether these metrics were maintained across multiple patient samples.

To do this I successfully built classifiers of stroma and epithelium across both Cytokeratin
stained and H&E stained slides. I validated these with training and test sets and obtained
>98% classifier accuracy for both. The fidelity of the H&E classifier demonstrates a key
finding that the methods laid out here need not require new staining of sections and could be
applied to already available H&E images that are routinely collected and part of larger public
cohorts.

I utilised the point patterns I derived from the nuclei of the segmented and classified cells
to obtain metrics of tissue structure, some of which are examined here for the first time. I
was able to examine whether these structural metrics were correlated across different patient
samples, between different cores and sites. A key finding of this work was that there was a
high and significant degree of correlation across all metrics between H&E and CK stained
serial sections, further cementing the evidence here that these methods could be transposed
to existing H&E data sets.

The metric measuring epithelial cell percentage was significantly correlated across sam-
ples from the same tumour block but not across separate sites. This demonstrates that in the
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main part the epithelial percentage is consistent across a single tumour block and reinforces
that single core sampling is still useful in understanding the development of a tumour.

I defined a metric approximating a surface area to volume ratio of epithelial regions.
This was defined as the percentage of epithelial cells which were next to stromal cells. This
"border cell percentage" metric separated highly mixed tumours from ones with separate
epithelium and stroma. I was also able to use this metric to pick out examples of patients with
highly heterogeneous structure between matched cores from the same block. This metric
has not been previously utilised but provides a good insight into visual tissue structure and a
measure of exposure of the epithelium to the stroma.

I also compared metrics based upon Shannon and Batty entropy, demonstrating that the
spatial nature of Batty Entropy increased the strength of correlations across cores from the
same tumour block. Batty entropy was significantly correlated across different cores from
the same block but Shannon entropy was not. This is likely as Shannon entropy is unable
to distinguish a tumour that is 90% epithelial from one which is 90% stromal. The Batty
entropy however in this usage incorporates spatial entropy information and is consequently
more informative of structure. Extreme values of the Batty entropy correspond to evenly
spread and tightly localised epithelium.

I explored cluster based metrics and found DBSCAN to be optimal. Analysing the point
patterns for clustering allowed me to observe strong correlations in the number of epithelial
and stromal clusters, although the absolute value of this is scale dependent, this could be
normalised in future to the tissue area to provide a better scale free metric.

I observed that tumour cell packing, the epithelial NN distance, was correlated across
all samples, even between samples in different tissue sites, something that suggests the cell
packing aspect of tumour growth is cell-intrinsic, and independent of the microenvironment.

Having derived these metrics I investigated the correlations between them, of interest
was the inverse relationship between the positively correlated epithelial cell percentage and
Batty entropy and the number of tumour clusters and percentage of border cells. This is
quantitative evidence that supports that the expansion of epithelial regions does not result
in the even distribution of epithelium but in the merging of epithelium to the exclusion of
stromal infiltration. This also is quantitative evidence of tumour cells tending to cluster
and clump rather than disperse. The negative correlation therefore between Batty epithelial
entropy and Epithelial % is reflective of the observation that the structure is dependent upon
the proportion of epithelium the core contains.

I have yet to see other work analysing the structure of tissue separately to the immune
infiltration. The lack of such an approach means that the true nature of region-specific
features(eg. epithelial infiltrate) cannot be assessed. Research currently fails to address the
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covariate of the epithelial and stromal structure that may influence the access of immune
cells to the epithelium and the rate at which they infiltrate tumours.

I hypothesised that more stromally infiltrated tumours, with higher border cell percentages,
would see higher infiltration of immune cells into the epithelium.

In order to address this question I analysed the correlation between the area density
log10(cells per µm2) of FOXP3+ and CD8+ cells in Epithelium and Stroma and the structural
metrics and their Principal Components.

I found that CD8+ epithelial infiltrate was correlated with PC1(R=−0.53, p= 1×10−3),
the percentage of border cells (R = 0.54, p = 5.8×10−4) and Epithelial NN Distance
(R = 0.91, p = 1×10−14). This finding means that the CD8+ density in the epithelium is
positively correlated with the density of the cell packing, it is also significantly positively
correlated with the percentage of cells classified as border cells. This implies that the
epithelial infiltration is a function of border length and cellular packing and unless these
factors affect the collagen structure in a tumour, CD8+ infiltration is barely affected by
structure within the stroma.

FOXP3+ cell density in the epithelium was significantly correlated with the total number
of clusters in the core (R = 0.54, p = 2.9×10−4). An increase in clusters over all cell
types was associated with more infiltrate. FOXP3+ cells are T-regulatory cells and are
immunosuppressive[171, 172]. Increased numbers of FOXP3+ cells may allow the tumour to
evade immune surveillance[173]. Increasing FOXP3+ infiltration is associated with increased
stage, metastases and worse survival in HGSOC[174, 175]. Increased stage is associated
with larger ascites volume and increased ascites volume is associated with reduced immune
infiltration and metastasis[176, 171]. Given that gaps in the tissue section may correspond to
regions of fluid it may be that the gaps in the solid tumour structure correspond to ascites
fluid build up and hence the presence of FOXP3+ cells. Future work could verify this by
comparing both structure and the number of FOXP3+ cells directly with clinical measures
such as ascites volume.

Principal components were not much more effective than the individual variables in this
case but would be useful for combining even more metrics or infiltrates and were useful for
outlining the potential links of structural metrics to morphologies.

In summary I have defined and extracted a novel combination of spatial metrics on
point patterns of epithelial and stromal cells. I have found that some structural properties of
epithelium correlate with FOXP3+ and CD8+ infiltrates. Neither the physical border nor the
chemo-attractant hypotheses of infiltration are specifically validated by these findings but
this work allows for important structural information to be incorporated that should be taken
into account when assessing results based upon these hypotheses.
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This data set also allows for easy calculation of other structural metrics that can be
carried out upon point patterns such as persistent homology[83]. Future work could utilise
differences in the metrics here or in other structural metrics across samples and across sites
to create a measure for heterogeneity within a patient.





Chapter 5

Collagen as a potential structural driver
and influence on immune infiltration

5.1 Introduction

Having explored the tissue structure in Chapter 4 and its relation to CD8 and FOXP3
infiltrate, I found that my measure of surface area to volume ratio of epithelium was positively
correlated with quantity of CD8+ infiltrate and the distance between neighbouring epithelium,
a tissue packing metric, was negatively correlated. FOXP3+ on the other hand was weakly
correlated with the number of clusters as a whole. This data implies that the structural layout
and composition of a tissue is related to the density of immune cells within the epithelium;
this motivated me to understand the influence of structure on more immune populations.

I also wanted to assess collagen for numerous reasons, it is a key structural component
of tumours and a key component of desmoplastic tissue morphology[177], something that
was identified by my structural metrics. Collagen is also associated with metastasis and with
movement of cells and immune infiltrate. I wanted to investigate how collagen fits into the
picture of structural and immune infiltration differences and investigate the physical border
hypothesis in a similar way to Li et al., assessing whether increased collagen deposition
decreased access to epithelium for immune cells[178]

In order to investigate the relationship between collagen, tissue structure and a wider
immune population at the same time I came up with two experimental plans:

• To quantify collagen through marker free Second Harmonic Generation imaging and
simultaneously image CD8+ and CD68+ infiltration with dual IF. Utilise the OV04
cohort for this to compare these properties with the structural metrics calculated in
Chapter 4.
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• To expand the assessment of links between structure and collagen to other immune
populations by measuring many more markers on a single section than standard IHC
and IF.

IMC is one of the best multiplex methods, allowing for measuring more than 30 markers
on a single tissue section by conjugating antibodies with metal isotopes. I chose to work with
Sarwah Al-Khalidi(SAK) to use IMC to assess additional markers for microenvironmental
features such as collagen and hypoxia alongside a panel of immune markers that included the
ones that had been investigated in previous chapters. I aimed to carry out the IMC analysis
to investigate links between collagen, the structural micro-environment and more immune
populations simultaneously in both epithelium and the tumour-adjacent stroma using IMC
data from the BriTROC cohort and to carry out new IMC staining and imaging on the ICON7
cohort.

5.1.1 History of the project and Collaborator roles

Jodi Miller (JM - Core facilities) worked with me to optimise the protocol for Dual IF that
would be compatible with simultaneous SHG imaging. Sarwah Al-Khalidi was in the process
of optimising an IMC panel for immune markers alone, I worked with SAK to include
collagen and hypoxia markers in this panel in order to both better delineate stromal tissues
from epithelium and investigate the structure of collagen and its interaction with immune
cells. Sarwah Al-Khalidi (SAK) carried out the panel optimization and staining on the
BriTROC cohort. Fatime Cosaj(FC) carried out the staining for me with the same panel on
the ICON7 cohort using the same protocols as optimized by SAK. Richard Grenfell (RG) of
the Institute core carried out the imaging of the stained ICON7 slides for me on the same
machine as the BRITROC cohort had been done.

From the markers included in the IMC panel, the subset of these of markers that I was
interested in were;

• CD8, CD68, CD45RO, FOXP3 - Key immune cell populations for comparison with
other datasets

• Pancytokeratin and Cytokeratin 7 - Key structural markers, gold standard for com-
parison of epithelial structure and quantity with other datasets

• Collagen1 - Marker for the most abundant form of collagen, allowing for the analysis
of collagen structure and identification of some stromal areas within tissue

• CA9 - Hypoxia marker to investigate the relationship between tissue structure and
hypoxia
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Fig. 5.1 Visual abstract for this chapter. IMC images are processed and collagen channels
as well as multi-immune channels are cleaned and then analysed for structural and spatial
features.

• Ki-67 - Proliferation marker to investigate the relationship between tissue structure
and proliferation

5.2 Methodology

5.2.1 Cohort Summary

BriTROC

Samples were collected previous to this PhD under the British Translational Research Ovarian
Cancer Collaborative (BriTROC), a non-randomised prospective study enrolling patients with
recurrent HGSOC[142]. Ethics/IRB approval for this study was given by Cambridge Central
Research Ethics Committee (Reference 12/EE/0349). Figure 5.2 shows the REMARK
diagram for this cohort. A total of 446 diagnostic samples were collected from 276 patients
with relapsed HGSOC. 247 samples from 172 patients had enough material to generate
a tissue microarray (TMA) for immunohistochemistry staining. Three 1mm cores from
the tumour area of each sample were marked on H&E-stained slides by Luiza Moore and
Michelle Loxley and used by Darren Ennis to construct the tissue microarray (TMA) of the
samples.
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Fig. 5.2 REMARK diagram for the BriTROC cohort.



5.2 Methodology 107

ICON7

ICON7 was an international, phase 3, open-label, randomised trial undertaken at 263 centres
in 11 countries across Europe, Canada, Australia and New Zealand. Eligible adult women
with newly diagnosed ovarian cancer that was either high-risk early-stage disease (Inter-
national Federation of Gynecology and Obstetrics(FIGO) stage I–IIa, grade 3 or clear cell
histology) or more advanced disease (FIGO stage IIb–IV), and the study was powered to
detect both progression free survival and a difference in overall survival[145, 179]. Samples
used for this work were obtained prior to the chemotherapy being administered in the trial.
This trial was registered as an International Standard Randomised Controlled Trial, number
ISRCTN91273375[180]. The TMAs for this analysis were prepared by the Medical Research
Council(MRC).

ICON7 had cores sampled specifically from epithelium and adjacent stroma, making it
ideal for measurement of the microenvironment and measurement of both tumour and stroma
in a single section which had been limited to a subset of the patients in previous cohorts.

5.2.2 SHG

SHG microscopy excited at wavelength 920nm and detected at 450-470nm was performed
on the Leica SP5 microscope and imaged using a 20x Dry objective. DAKO mounting media
and a coverslip of thickness 150µm was used.

5.2.3 Dual IF

Dual IF staining for CD8+ and CD68+ cells was performed by JM as described in Section
2.5. DAPI, DRAQ5, FITC, Cy3 and Cy5 dyes were all tested for optimisation. The spectra
of the optimal dyes are shown in Figures 5.4, 5.3 and 5.5. These spectra demonstrated the
least overlap.

5.2.4 Immuno Metal Conjugation Marker Panel

The marker panel is specified in Table ?? and was optimised by SAK. I worked with SAK to
include collagen in this panel for further investigation alongside the immune populations.
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Fig. 5.3 Emission spectrum for Cy5 with excitation at 633nm

Fig. 5.4 Emission spectrum for Cy3 with excitation at 542nm

Fig. 5.5 Emission spectrum for DAPI with excitation at 405nm
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5.2.5 IMC Staining and Imaging

Staining and imaging of the BriTROC panel was carried out by SAK. Staining and imaging
of the ICON7 TMAs was carried out by Fatime Cosaj(FC) and Richard Grenfell(RG)
respectively.

5.2.6 Image Analysis

Structure analysis of SHG images and IMC signal in the collagen channel was carried out
with Imagej and the GLCM, Orientationj and Directionality plugins.

Python was used for IMC data cleaning and channel labelling and Halo was used for the
subsequent analysis of the IMC data files and extraction of immune cells.

5.3 Results

5.3.1 Patient cohorts

BriTROC and ICON7 cohorts were used to analyse the interaction between immune cells
and structural markers on single tissue sections are shown.

OV04 summary

I carried forward 40 patients from the primary TMA slide for potential analysis in this section
between structural features and collagen.

BriTROC summary

IMC data was available for 136 patients across TMAs in triplicate.

ICON7 summary

There were 3×6 TMA blocks created for the ICON7 patient cohort. One set of 6 sampling
epithelium, one sampling epithelium and adjacent stroma and one sampling stroma. I utilized
the set of 6 TMA slides for this cohort which contained both epithelium and stroma (n=326).
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Fig. 5.6 Examples of SHG collagen signal. The left shows thin oriented fibres, the right
shows much more collagen distributed across the sample.

5.3.2 SHG Imaging

I imaged the OV04 TMA for SHG signal on the SP5 microscope using the multiphoton
laser with excitation at 920nm. Examples of clear collagen fibres showing clear signal and
obviously distinct collagen morphologies that were generated are shown in figure 5.6

SHG collagen structure analysis

37 of the 40 OV04 patients included in the OV04 TMA for imaging were successfully imaged
for collagen. In order to analyse the collagen structure I used ImageJ and two of its plugins,
GLCM and OrientationJ. As coherency and orientation are scale dependent I wrote an ImageJ
macro to split the image into 10×10 regions and analyse these features on each one.

I took the median value of the properties in Table 5.1 over the 100 image regions.
To visually validate my collagen analysis I extracted the images with highest coherency,

highest energy and highest entropy to confirm they were organised, had a large quantity of
collagen and were well mixed respectively.

I also analysed the correlations between these collagen metrics in order to reduce the set
to the fundamental properties.
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Feature Definition
Mean Mean pixel value
Min Minimum pixel value
Max Maximum pixel value
IntDen Sum of all pixels value normalised to area
% Area Percentage of image with signal
Energy Uniformity of the image.

Constant image returns Energy=1.
Orientation Orientation of the fibres (degrees)
Coherency Coherency measures alignment

of fibres through structure tensor
Contrast Returns a measure of the intensity

contrast between a pixel and its neighbor
over the whole image.
Constant image has Contrast=0.

Correlation Returns a measure of how correlated a pixel is to
its neighbor over the whole image.

IDM Local Homogeneity, Inverse Difference Moment
Entropy Inhomogeneous images have low entropy,

while homogeneous images have a high entropy.
Table 5.1 Definitions of collagen features

5.3.3 Correlation of structural metrics with collagen features

I used the structural metrics generated for these patients in Chapter 3 to analyse the correlation
between collagen mean, coherency, correlation and orientation and structural metrics. I
split the structural metrics into three categories, nearest neighbour properties(Figure 5.7),
entropy(Figure 5.8) and Border cell features (Figure 5.9). Mean collagen was significantly
correlated with many variables, an obvious read out of collagen quantity affecting overall
structure.

5.3.4 Dual IF and counterstain

In order to assess multiple immune markers on a slide in combination with SHG I decided
to use immunofluorescence labelling. I worked with Jodi Miller (JM) from the Institute
core to create an optimized panel to measure CD8, CD68 and nuclear stains simultane-
ously as well as being able to image the collagen in the 450nm channel. We originally
attempted to utilize DRAQ5 as a nuclear stain to keep the 450nm channel free. As shown
in Figure 5.10 the DRAQ5 successfully stained the nuclei but the FITC and Cy3 channels
for the CD8+ and CD68+ marker combinations were not successful on FFPE. This was
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Fig. 5.7 Correlation between structural metrics and collagen. Pearson R and p-values are
labelled above the plots for which correlations were significant before multiple testing
correction. After multiple testing correction, the correlation between mean collagen signal
and the epithelial-stromal and stromal-epithelial nearest neighbour distances were significant,
as is the correlation between coherency and the average nearest neighbour distance between
epithelium and stromal cells.



5.3 Results 113

Fig. 5.8 Correlation between entropy metrics and collagen. Pearson R and p-values are
labelled above the plots for which correlations were significant before multiple testing
correction. After multiple testing correction only the correlation between mean collagen
signal and both epithelial Batty entropy and stromal Batty entropy were significant.
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Fig. 5.9 Correlation between Border cell metrics and collagen. Pearson R and p-values
are labelled above the plots for which correlations were significant before multiple testing
correction. After multiple testing correction only the correlation between mean collagen
signal and both tumour percentage and border cells were significant.
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Fig. 5.10 False colour images from IF protocols. (A) DRAQ5(Cy5)-Red, CD8+(FITC)-Green,
CD68+(Cy3)-Yellow (B) DRAQ5(Cy5)-Red, CD8+(FITC)- Green, CD68+(Cy3) - Yellow
(C) DAPI - Blue, CD8+(Cy3) - Yellow, CD68+(Cy5) - Red. CD68+ Macrophages, CD8+
cells and DAPI stained nuclei are most distinct and visible in protocol C.

partly due to large amounts of autofluorescence from the FFPE section as well as over-
lapping FITC and Cy3 emission spectra meaning signal could not be easily distinguished.
DAPI(Blue)/Cy3(Yellow)/Cy5(Red) staining was very clear and chosen for the rest of the
imaging. The final protocol and antibodies used are detailed in Section 2.5.

5.3.5 IF and SHG combined

I tuned the wavelength to excite the SHG at a slightly higher wavelength of 920nm in order
to raise the wavelength of the emitted signal, this meant that excitation of and signal from
DAPI stained nuclei was minimised such that the collagen signal was clear. Images from this
dual staining and SHG are shown in figure 5.11.

5.3.6 Correlation between FOXP3+ and CD8+ infiltration and colla-
gen properties

I assessed the correlation between density of infiltrates and properties of the collagen signal.
The Pearson Correlation and p-values for CD8 Density are shown in Table 5.2. There was
no significant correlation between the collagen features calculated and CD8+ or FOXP3+
intraepithelial cell densities.

5.3.7 IMC image analysis

IMC images contain hot pixels distributed randomly across the image. In order to clean the
data, I wrote a hot-spot removal script in python using a median filter with a 3×3 pixel area.



116 Collagen as a potential structural driver and influence on immune infiltration

Fig. 5.11 Images measuring IF and SHG signal. False coloured images visualise the following
dyes in the following colours: DAPI-green, CD8+(Cy3)-dark blue, CD68+(Cy5)-cyan, SHG-
red. CD68+ Macrophages, CD8+ cells and DAPI stained nuclei are very distinct and the
fibres of collagen are visible in red. Imaged at 40x on Leica SP5 with tuneable MP, UV,
Argon and HeNe Lasers.

Correlation P-value
Contrast 0.11 0.53
Energy 0.10 0.57
Coherency -0.13 0.44
Correlation -0.06 0.75
Entropy 0.15 0.38

Table 5.2 Correlation between CD8+ epithelial density and collagen properties. No significant
relationships were observed.
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Fig. 5.12 Example of BRITROC and ICON7 classifiers (left) and cell markup (right) from
HALO on examples of IMC multichannel images.

I then built a classifier in Halo to distinguish epithelial tissue from low density and high
density collagen, specified by the intensity of the Collagen1 marker over small areas. I then
built cell segmentation algorithms based on nuclear DNA marker staining to segment nuclei.
I then used the IMC marker panel to classify cells based on their nuclear and cytoplasmic
staining. An example of tissue segmentation, cell segmentation and classification of ICON7
and BRITROC images is shown in Figure 5.12.

5.3.8 Correlations between more immune populations

The BRITROC cohort comprised 3 TMAs in triplicate, I decided to use the first TMA in
order to do an exploratory analysis for hypothesis generation. I would then be better powered
to test the statistical significance of such hypotheses on the other two TMAs and the ICON7
cohort.

The first investigation of this dataset was to investigate the correlations within immune
populations to validate the results and to build up a picture of which features of the micro-
environment are connected.

I first selected a subset of markers relevant to T-cell infiltration and investigated the
correlation between numbers of CD3, CD8 and PD-1 positive cell areas in samples (Figure
5.13). I found that these three markers were strongly correlated across samples. I also
analysed how three macrophage related markers, CD68, CD163 and PD-1 were associated
across samples (Figure 5.14). PD-1, although typically associated with T-cells, has also been
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Fig. 5.13 Correlation between markers of T-cell subsets CD3, CD8, PD-1 are shown. Scatter-
plots in lower left, distributions (log10 transformed) along the diagonal. Pearson R in top
right. Strong correlations are observed between all 3.

found to be expressed on macrophages and is associated with decrease in phagocytosis[47].
These three markers were also correlated across samples.

Figures 5.15 and 5.16 show the Pearson correlations between the number of CD8+,
CD68+, CA9, CK7, Collagen1, CD45RO, CD56 and Ki-67+ cells in the BRITROC TMA.
CD8, CD68 and CD45RO, the populations investigated in Chapter 1, show the strongest
positive correlations. I also see the negative correlation we would expect between the number
of collagen and cytokeratin positive cells as these cells are mutually exclusive and together
make up the majority of the structure of a tissue. Despite seeing a higher density of infiltrate
in stromal regions in earlier chapters, I see a negative correlation between the number of
collagen positive cells and the number of immune cells in these samples, potentially due to
collagen mediated exclusion.

5.3.9 Collagen deposition and hypoxia

There is evidence of cycles of hypoxia and collagen modification in tumours. CA9 is
a hypoxia marker and expression predominantly occurs in epithelial cells and given the
negative correlation between epithelial cell quantity and collagen, I normalised the CA9
positive cells as a percentage of total epithelial cells.

I found no correlation between the percentage of epithelium positive for CA9 staining
and the area of weak or strong Collagen1 staining. This implies that the quantity of collagen
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Fig. 5.14 Correlation between markers of macrophage subsets CD68, CD163 and PD-1
are shown. Scatterplots in lower left, distributions (log10 transformed) along the diagonal.
Pearson R in top right. Strong correlations are observed between all CD163, CD68, PD-1.

and the stromal infiltration in a sample is not related to the extent of hypoxia, as measured by
upregulation of CA9 and hence CA9 staining within the epithelium, at the time the tissue is
fixed.

5.3.10 Comparing immune cell densities between epithelium, high den-
sity and low density collagen

Macrophages

CD68 and CD163 are both macrophage markers and macrophages are associated with
collagen remodelling. I assessed the difference in the quantity of these macrophages across
different strengths of collagen staining and the epithelium. I found no difference between the
density of macrophage infiltration of collagen and epithelium.

The area density of the CD163+ infiltrate does not vary between regions but CD68+
infiltrate is excluded from dense collagen.

5.4 Discussion

Chapters 3 and 4 discussed how compartmentalised immune infiltrates had differing survival
impacts and how structural variation in the tumour epithelium could be linked to changes
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Fig. 5.15 Correlations between cells positive for each marker. Pearson correlation coefficient
is given along the top right. Distributions of each infiltrate(log10 transformed) are given
down the diagonal. Scatterplots of correlations between number of cells positive for each
marker.
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Fig. 5.16 Heatmap of correlations between number of cells positive for each marker. Correla-
tions are seen between CD45RO, CD68 and CD8 cells and negative correlations between
collagen and most immune cells.

Fig. 5.17 Distribution of densities of CD68+ and CD163+ cells in the dense collagen, loose
collagen and epithelial regions of the tumour section. There was no significant difference in
CD163+ infiltrate between regions. Significantly higher CD68+ density was seen in Tumour
Epithelium than Dense collagen as shown by non-overlapping medians.
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in this infiltration. Although this is interesting and a significant finding, this does not
provide many mechanistic links to how these structures form or how the structure affects the
infiltration and the infiltration occurs. In order to test the hypothesis that a physical collagen
border impedes immune cell axis to the epithelium, I analysed collagen on serial sections
and in IMC data.

There is a lot of evidence for collagen remodelling in tumours[61]. As mentioned in the
literature by Failmezger et. al. amongst others [83] deposition and altering of the structure of
collagen could be the important link as to how the structural differences in tumours lead to
differing immune infiltration.

I first set out to investigate the relationship of the structure of the tissue with the structure
of collagen. In order to investigate the structural properties of collagen I imaged the collagen
fibres using a technique called Second Harmonic Generation. I demonstrated that SHG can
be imaged simultaneously with dual IF CD68/CD8 and DAPI and showed that the features
measured correspond to visual differences in fibre density and alignment.

I was able to investigate the link between these measures of collagen fibre structure and
epithelial structure. I found that the collagen energy or mean value, was correlated with a
large number of properties, it was strongly negatively correlated with tumour percent and
positively correlated with the distance of Epithelial cells from stroma. However, I found no
correlation between fibre coherency, energy or correlation and the infiltration of CD8+ or
FOXP3+ cells.

This implies that the links with structure of FOXP3+ and CD8+ cells are likely due to
something other than corresponding fibre orientation.

In order to test some of these ideas and expand the relationship to more immune popu-
lations and alternate relationships to structure such as hypoxia, I utilised the multi-marker
method of IMC. I carried out analysis on images of TMAs from BRITROC. I performed
preliminary analyses of the relationship between infiltration of immune cells, collagen and
and the presence of hypoxia. I found that CD68+ cells were excluded from dense stroma
whereas CD163+ cells were not. Both CD68 and CD163 are expressed on tumour associ-
ated macrophages(TAMs) and the markers are not independent. In some literature CD68+
macrophages are associated with M1 phenotypes whereas CD163+ is associated with the
M2a and M2c phenotypes but there is a significant amount of controversy around this pheno-
typing in the literature[181–183]. CD163+ cells are associated with tissue remodelling so it
is perhaps unsuprising they are localised in more dense collagen areas[184]. I found no link
between collagen density and either epithelial infiltrate or hypoxia.

I used BRITROC TMA1 to develop an analysis pipeline which can be extended to the
other BRITROC TMAs and the ICON7 cohort in future analysis. The ICON7 cohort is ideal
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for a full analysis as it has many patients with TMAs sampled from Tumour, Tumour+Stroma
and Stroma where possible. It is a unique data set as it is a large and complete dataset for
these analyses and specifically samples the tumour-stroma margin.





Chapter 6

Conclusions and Outlook

6.1 Summary

This thesis aimed to advance the understanding of the interplay between structural and the
immune response in HGSOC through careful multimodal analyses of tissue samples and
the extraction of spatial information from them. In this project I first investigated the nature
of sampling and the corresponding compartmental infiltration by various immune cells.
Having normalised and examined the distributions and correlations of these infiltrations, I
calculated quantitative measures of immune exclusion and combined multiple infiltrations
into an immunospace. I assessed the patterns in this multi-dimensional view of the immune
infiltration by analysing the principal components within the data and revealed the underlying
pattern connecting patients was one of a predominantly coordinated immune response
between CD8+, CD68+ and CD45RO+ cells. I highlighted the important confounding
factor of the structural makeup of the tumour sample by demonstrating that direct measures
of stromal infiltration (CD68+ macrophages) were prognostic and that averaging across
epithelium and stroma (CD8+ T-cells) improved CD8 based survival models. I built the first
multi-immune survival models in HGSOC and optimised and compared these across the
SEARCH cohort.

In part due to the impact and importance of stroma and epithelium highlighted in the
initial work, I decided to quantify the tissue structure in the samples in novel ways. To do
this I developed methods for the measurement and classification of the structure of tumour
sections. I derived accurate and robust structure metrics and observed that some of these
metrics were conserved not only across spatially separated samples from ovarian tumours but
also across ovarian and metastatic samples in the same patient. I also investigated how these
structural features may then be related to immune infiltration and found some were strongly
linked to FOXP3+ T-regulatory cell infiltration and CD8+ epithelial infiltration.
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My hypothesis was that the link between this structure and the infiltration may be due to
collagen deposition. To understand this further I examined collagen as a potential structural
driver by carrying out SHG imaging and analysis of orientation and structure. I found that
many collagen metrics were correlated with epithelial structural metrics. To then investigate
whether the link between structure and infiltration was due to collagen, I developed a method
for simultaneous IF and SHG imaging and I analysed correlations between structural collagen
metrics and immune infiltrations. In SHG collagen analysis methods combined with IHC
staining I observed no link between collagen metrics and epithelial CD8+ and FOXP3+
infiltration.

Given the limited scope of the work at this point to a small subset of immune cells, I
chose do a more in depth analysis of more immune cell types and their potential relation to
structure in different cohorts. In order to do this I analysed images that had been obtained
using state of the art multimarker IMC methods on samples from the BRITROC cohort. I
found no significant correlation between collagen quantity and immune infiltration in this
cohort. I also generated a new data set, applying the 30 marker collagen-immune panel from
BRITROC to samples from the ICON7 cohort. This generated IMC data for a set of ICON7
patients and the region specific sampling process in the ICON7 trial means that this data set
will for the examination of very specific immune populations at the tumour-stroma border
and the relation of these infiltrates to structure in HGSOC.

6.2 Conclusions

This data demonstrated that immune populations are continuously distributed on a log-normal
scale and that quantitative measures of immune exclusion are too. The popular classification
of the immune infiltrate in tumours as hot, cold (immune high or low) or excluded are
merely arbitrary cutoffs for high, medium or differential immune cell infiltration where
the underlying distribution is normal. This work highlights that investing time in research
generating cut-points for these categories is not meaningful when the data is not naturally
clustered. Due to this lack of clustering many studies use the median infiltration. Using
the median value will group the majority of patients who are near the median, who have
very similar immune infiltration, in different groups. Others classifications are guided by
clinical data but Glaire et al. found similar proportions in the groups when using either of
these two methods, indicating the effect is continuous as discussed by Goode et al.[185, 27].
As demonstrated in previous work, if cutoffs continue to be used they will vary between
pathologists as well as between studies[186]. Any categorical scores of tumour inflammation
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should only be utilised with the knowledge that the infiltration in the microenvironment is
actually a continuum.

In Chapter 3 I also demonstrated that immune infiltration into the stroma and epithelium
have different prognostic impacts. This implied that structure and localisation can play a
significant role in the impact of this immune infiltration. A difference in survival impact that
depended on macrophage location was observed, with stromal macrophages being positively
prognostic and the ratio of epithelial macrophages to stromal macrophages was a negative
prognostic indicator. This observation is in agreement with the plastic nature of macrophages
and with the importance of spatial location in phenotyping[42, 45].

The derivation of structural metrics has shown that H&E can be utilised to assess tumour
structure and that some tumour structure features are conserved and related to immune
infiltration. The success of these methods may allow tumour architecture and grade, which
was previously difficult to define and measure, to be assessed practically and these structural
features to be further utilised[95, 93]. The relationship that was found between FOXP3+ and
tissue structure may reflect properties of the tumour such as fluid or ascites build up[176, 187].

In accordance with Li et al.; despite finding relationships between tumour structure and
FOXP3 and CD8 infiltration I found no link between collagen properties and infiltration[178].
This work supports the chemoattractant/repellant-model of tumour immune modulation.

This result, in combination with the analysis of structure, suggests that the spatial
localisation of epithelial cells (at the edge or centre of a tumour) may affect their phenotype
and immune cell recruitment. As shown, the structural metrics correlate strongly with
collagen features and as such care must be taken when interpreting measures of collagen that
these features aren’t being conflated. This is particularly because, for example, the physical
border hypothesis requires collagen deposition to be the driving feature of infiltration control,
but the chemo-attractive/repellant hypothesis of epithelial infiltration can have structural
dependence without the need for a collagen border.

6.3 Future Work

This project and its cohorts are well developed and allow for future work in many of the areas
this thesis covered. The findings within spatial structure analysis and the derived metrics can
be used to train classifiers to classify the architecture of tissues based on histopathologist
scoring. A robust classification of tissue structure has been something attempted for a consid-
erable amount of time[149, 188] and the methods discussed in this thesis now allow for an
automated classification system to be built. Further structural analysis and structural metrics
could also be investigated. Persistent homology, a subset of topological data analysis[189],
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and related methods are gaining traction in the analysis of biological structures and have
been found to be a prognostic classifier in breast cancer[190].

Future work upon these cohorts will also allow for in depth profiling of immune cells. Of
most interest from this work are macrophages and analysing their phenotype in more detail
with markers such as CD163 and CD56 may help to explain the results we observed which
suggest plasticity based on location as in Yang et al.[42]. Once any immune subset has been
identified, its distribution within the tumour can also be analysed. The phenotype of immune
cells within the tumour and the stroma may vary and this can be investigated by expanding
on the work in Chapter 5. This would help in further understanding why the localisation of
CD68+ macrophages in the stroma was associated with improved survival and whether this
effect is observed in other immune cell subsets.

Another question to consider within macrophages and the immune infiltration as a
whole is whether there is significant clustering between immune cells and how this impacts
survival. Macrophages have been shown to impede the function and dispersion of other
immune cells[191] and given the requirement of these cells to interact this could be somewhat
reflected in their localisation. Macrophages expressing PD1 have also been shown to be
less effective at phagocytosis and PD1 expression increases with tumour stage[47]. Given
the role of PD1 in immune suppression, the potential impacts of macrophage-lymphocyte
interactions may also be investigated through the further analysis of cells expressing surface
markers such as PD1. The data-sets in this project can be used in this way to identify cell
subsets and the relationship between expression of PD1 and immune-immune distances. The
k nearest neighbour metrics applied in this thesis to epithelial and stromal cells can also be
applied to immune cells as has been done in breast cancer and melanoma[140, 134].

This work and its analysis also leads the way for an even more thorough investigation of
the immune relationship with collagen structure, which can be obtained from both the IMC
images and using SHG. SHG can be used alongside the dual IF protocol optimised for this
project by the Core facilities at the CI. ICON7, being such a high dimensional data set with
collagen staining, also provides a good opportunity for advanced structural analysis. Future
work on the ICON7 data set will involve identifying very specific immune cell populations
as has been carried out in an IMC analysis in breast cancer by Ali et al[192]. As the ICON7
tissue sampling is specifically targeted to three tissue regions per sample, a stromal, epithelial
and tumour-stroma margin core, it is also ideal for comparing the infiltration in different
tissue regions of the same patient, allowing us to compare infiltration at the centres of
epithelial regions to infiltration at the margin.

Having demonstrated that the collagen density and coherency is not influencing infiltration
by CD8+ and FOXP3+ cells, the chemo-attractant model could be explored further on the
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cohorts from this analysis. Markers for chemokine receptor expression could be combined
with immune and structural analysis on future IF, IHC or IMC panels to assess the spatial
distribution within the epithelium and potentially explain the link between immune infiltration
and structure[193, 194]. Mathematical models of immune infiltration patterns such as that
by Li et al. could also be built and validated with these data sets[178]. Spatial modelling
techniques could be carried out using diffusion models that contain repellant and attractant
chemokine terms in similar methods to those by Makaryan et al.[195, 196]

Further work could also be done on improving the collagen metrics and the use of collagen
alignment in these samples. Gole et al. use SHG imaging in triple negative breast cancer
to classify collagen in each image into aggregated thick collagen (ATC) and dispersed thin
collagen (DTC) categories in a similar method to the one in this thesis[197]. Improvements
to my methods and metrics other than median values may both allow for more informative
descriptions of the collagen and the assessment of it as a prognostic tool in ovarian cancer.
Future work could also relate this tissue structural feature of the tumour to magnetic resonance
imaging(MRI) texture and habitats within patient tumours. Work in mouse models related
histology to MRI habitats[198] and the same could be done within human tissues to eventually
obtain more information from non-invasive MRI scans. Furthermore, even if collagen is not
the driver of immune infiltration into the epithelium, the collagen structure is strongly linked
to metastasis in the literature[69] and these multiple cohorts with collagen imaging, structural
and survival data would allow for a deeper analysis on the specific collagen structures that
can lead to metastasis in patients.
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Appendix A

Probability Density

The probability density function is the function that gives the probability of a particular value
occurring. P(x) = f (x)

And the equivalent form that all probabilities sum to 1 is the following equation:∫
∞

−∞

f (x)dx = 1 (A.1)

The expected or mean value of x is

x̄ =
∫

∞

−∞

x f (x)dx (A.2)

In 2D when we analyse a point distribution with a constant probability of a point occurring,
the point density k, the probability density function is the following;

f (r) = k (A.3)

When we integrate this in radial coordinates over a circular area with radius R;

∫
∞

0
k.2πr.dr =

∫ R

0
k.2πr.dr = 1 (A.4)

k.πR2 = 1 (A.5)

k =
1

πR2 (A.6)

The probability k of finding a point at radius, r, is 1
πR2 . The probability of finding N points is

N
πR2
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Therefore the probability of finding a point between r and r+dr is

2π

πR2 dr (A.7)
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Combining measures of immune infiltration shows additive
effect on survival prediction in high-grade serous ovarian
carcinoma
Anne Montfort1, Stephanie Owen2,3, Anna M. Piskorz2, Anna Supernat4, Luiza Moore2,3, Sarwah Al-Khalidi2, Steffen Böhm1,
Paul Pharoah2,5, Jacqueline McDermott1,6, Frances R. Balkwill1 and James D. Brenton 2,3,7

BACKGROUND: In colorectal and breast cancer, the density and localisation of immune infiltrates provides strong prognostic
information. We asked whether similar automated quantitation and combined analysis of immune infiltrates could refine
prognostic information in high-grade serous ovarian carcinoma (HGSOC) and tested associations between patterns of immune
response and genomic driver alterations.
METHODS: Epithelium and stroma were semi-automatically segmented and the infiltration of CD45RO+, CD8+ and CD68+ cells was
automatically quantified from images of 332 HGSOC patient tissue microarray cores.
RESULTS: Epithelial CD8 [p= 0.027, hazard ratio (HR)= 0.83], stromal CD68 (p= 3 × 10−4, HR= 0.44) and stromal CD45RO (p= 7 ×
10−4, HR= 0.76) were positively associated with survival and remained so when averaged across the tumour and stromal
compartments. Using principal component analysis, we identified optimised multiparameter survival models combining
information from all immune markers (p= 0.016, HR= 0.88). There was no significant association between PTEN expression, type of
TP53 mutation or presence of BRCA1/BRCA2 mutations and immune infiltrate densities or principal components.
CONCLUSIONS: Combining measures of immune infiltration provided improved survival modelling and evidence for the multiple
effects of different immune factors on survival. The presence of stromal CD68+ and CD45RO+ populations was associated with
survival, underscoring the benefits evaluating stromal immune populations may bring for prognostic immunoscores in HGSOC.

British Journal of Cancer (2020) 122:1803–1810; https://doi.org/10.1038/s41416-020-0822-x

INTRODUCTION
There is a heterogeneous immune response in the tumour
microenvironment of HGSOC, but the presence of intra-epithelial
CD8+ T cells is consistently associated with improved survival.1,2

Prolonged survival is also associated with the presence of B cells
and other immune cells, including CD45RO+ memory cells.3–6

Prognostic scoring has predominantly focused on the presence,
absence or semi-quantitative analysis of immune cells in tumour
epithelium.7 Moreover, cell densities of lymphocytes, macro-
phages and dendritic cells have also been shown to be prognostic
in breast, ovarian and lung cancer without restricting analyses to
malignant epithelial cell areas.8–10 Approaches that combine
analyses of multiple immune infiltrates, such as the CD3/CD8
immunoscore in colorectal cancer,11 have not yet been developed
for ovarian cancer prognosis.
The notion that anti-tumoural immune responses may be

altered by tumour cell-intrinsic factors is supported by several
observations. Detailed temporal and spatial histological and
genomic studies in a single patient with high-grade serous

ovarian carcinoma (HGSOC) showed that Wnt signalling was
upregulated in a progressing tumour nodule, a phenomenon
correlated with focal immunosuppression.12 Mutations in the TP53
and BRCA1/BRCA2 genes as well as loss of PTEN expression are
driver events in HGSOC development.13 HGSOC cases with BRCA1
mutations have increased CD8 and CD20 intra-epithelial
infiltrates,14,15 suggesting that loss of homologous recombination
and DNA damage may prime immune responses. Whether
different classes of TP53 mutations alter immune infiltration in
HGSOC remains unknown, but non-synonymous mutations in
TP53 may have gain-of-function or other cellular effects distinct
from loss-of-function mutations.16 Mutant p53 protein may drive B
cell responses and auto-antibody production.17 Loss of PTEN
expression in melanoma was associated with both reduced T cell
infiltration and resistance to immune checkpoint inhibitors,18 but
these associations have not been investigated in HGSOC.
Despite the strong association of CD8+ infiltrate with prognosis,

routine immunoscoring for ovarian cancer is not performed in the
clinic and development of automatic cellular recognition tools
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could be beneficial for high-throughput pathology workflows. To
test the hypothesis that a more integrated analysis of cytotoxic,
mature and organised immune responses in the tumour micro-
environment might have greater prognostic value in HGSOC, we
developed new image analysis methods and workflows to test the
single and integrated analysis of CD8+, CD45RO+ and CD68+ in
the malignant epithelium and adjacent stroma. The secondary aim
of this study was to test for association between quantitative
measures of CD8+, CD45RO+ and CD68+ cells and driver genomic
alterations in BRCA1, BRCA2, PTEN and different classes of TP53
mutation.

MATERIALS AND METHODS
Patients
Samples from 570 patients from the prospective SEARCH ovarian
cancer population-based study were used to construct tissue
microarrays (TMAs).19 Ethical approval was granted by the Eastern
Multicenter Research Ethics Committee. Among the samples from
570 patients with primary epithelial ovarian tumours, 332 were
high-grade serous ovarian cancer patients. All cases underwent
detailed histopathological review by a gynaecological pathologist
(J.Mc.D.). Patients were staged as having localised, regional or
distant disease (L/R/D).20

Immunohistochemistry
Microarray slides composed of formalin-fixed paraffin-embedded
ovarian tumour cores were dewaxed and rehydrated prior to heat-
induced epitope retrieval using a pressure cooker and a citrate-
based antigen unmasking solution (Vector Laboratory). Detection
of CD8+ T cells, CD45RO+ memory lymphocytes and CD68+

macrophages was performed using the mouse anti-human CD8
(clone C8/144B, Dako), mouse anti-human CD45RO (clone UCLH,
Dako) and mouse anti-human CD68 (clone M0876, Dako)
antibodies, using ultrasensitive Polymer-HRP IHC Detection system
(Biogenex). Immunohistochemical protocols and slide hybridisa-
tions were carried out manually. Sections were counterstained
with haematoxylin and mounted with DPX mounting medium
(Sigma). Previously published PTEN immunostaining data was
used where high PTEN expression was considered to be positive
staining and low expression to be weak, heterogeneous or
negative staining, respectively.21

Mutation analysis
The coding regions of TP53 were sequenced by tagged-amplicon
next-generation sequencing as previously described22 and con-
firmed by immunohistochemical analysis using a 4-tier core
system.23 Sequencing of germline mutations in the BRCA1 and
BRCA2 genes was performed as previously described.24

Immune cell quantification
Stained slides were scanned using the Panoramic Slash Scanner
(3D Histech). The number of CD8+ and CD45RO+ cells per mm2 of
epithelial and stroma areas, as well as the percentage of epithelial
and stromal areas covered by CD68 staining, were digitally
determined using the Tissue Studio software (Definiens™).
Definiens image analysis algorithms for detection of epithelial
and stromal areas were trained and the segmentation for each
core was manually refined by two researchers, including a
consultant gynaecological-histopathologist (J.Mc.D.). Supplemen-
tary Fig. 1 shows examples of classifications of tissue regions and
cell detection and the entire data set, including these epithelial
and stromal assignments, can be downloaded from the repository.

Statistical analyses
R (version 3.5.1) was used for statistical analysis and an R
markdown document containing the entire data set allowing
for performing all analyses is available (https://bitbucket.org/

jamesdbrenton/search-montfort/src/master/). Quality checking for
spatial bias across TMAs and effects of varying tissue area was
carried out upon all cores and across TMAs using heatmaps and
Shapiro–Wilk tests. All count data were transformed to log base 10
after adding a small offset to zero values. Wilcoxon’s signed-rank
test was used to compare the mean infiltrate between groups.
Continuous data were presented as median and interquartile
range (IQR) and groups were compared by the Kruskal–Wallis and
pairwise Kruskal–Wallis tests. Discrete data were presented as
count and percentage.
Cox proportional hazard regression analysis was applied to

assess the effect of each infiltrate on overall survival. The
functional form of each of the immune variables was assessed
using comparison with cubic splines. The best approximations to
the functional forms were carried forward for the Cox models. The
clinical variables of age at diagnosis, menopause status and stage
were available for the cohort and were included in the analysis.
Univariable Cox regressions were used to identify best-fitting
variables for the final multivariable Cox regression model. The
refined model was compared with a combined multivariable Cox
regression model including all immune infiltrates. Hazard ratios
(HRs) refer to a single unit increase in continuous variables. The
proportional hazards assumption was tested and satisfied in all
cases using Schoenfeld residuals. The Kaplan–Meier analysis (with
log-rank test) was applied to illustrate survival differences
graphically. Two-sided p values <0.05 were used to indicate
statistical significance. Principal component analysis (PCA) using
the R package prcomp was used to extract the independent
components of variance between patients. The package prcomp
uses singular value decomposition and the variables were scaled
to have unit variance before creating composite linear indepen-
dent variables. These were then passed forward to the survival
modelling. The Akaike information criterion (AIC) was used to
compare the performance of survival models, which includes a
penalty on the number of terms to reduce overfitting. Bonferroni
p value corrections were carried out for all multiple testing. P <
0.05 was considered significant for all analyses.

RESULTS
Patient characteristics
Supplementary Fig. 2 shows the REMARK diagram for this study
and Supplementary Table 1 shows the clinical characteristics of
the 332 HGSOC patients from the study cohort. Immunohisto-
chemical analyses on TMAs were performed to detect CD8+,
CD45RO+ and CD68+ cells in tissue cores from primary ovarian
specimens. One hundred and fifty-two HGSOC cases were
available for analysis after quality assurance, data cleaning and
the reduction of the data set to only cases with complete results
for CD8, CD45RO and CD68 staining in both epithelium and
stroma, as well as survival data.
Tagged-amplicon sequencing was performed on 248 cases and

TP53 mutation was detected in 231 samples (93%) (Supplemen-
tary Table 1). Previously published data for germline BRCA1 and
BRCA2 mutation and PTEN expression were available for 297 and
155 cases, respectively.18,22

Digital pathology analysis of tumour composition and immune cell
densities
Image analysis software was used to determine the area of tumour
epithelium and stroma in each core (Fig. 1 and Supplementary
Fig 1). Of 964 images representing 332 HGSOC patients, 69
patients (20.8%) had images that contained malignant epithelium
but no stroma; 250 patients (75.3%) had images that contained
epithelium and >1% adjacent stroma and 13 patients (3.9%) had
images containing no tumour epithelium (Fig. 1a). The median
proportion of epithelium and stroma was 85.1% (IQR 51–100%)
and 14.9% (IQR 0–49%), respectively. We expected the proportion
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of tumour in a sample to be correlated with p53 mutant allele
fraction, a measure of sample purity, and found them to be
positively correlated (R2= 0.25, p= 0.0004).
Quantitative densities of all immune populations were then

generated automatically through image analysis, the quantitative
assessment of CD8+ T cell, CD45RO+ memory lymphocyte and
CD68+ macrophage densities in each compartment are shown in
Supplementary Fig. 1. The relationship between the fraction of
tumour in a core and the density of immune infiltration in the
epithelium was examined. Intra-epithelial CD8+ and CD45RO+

densities were weakly correlated with the purity/tumour fraction
of the sample (R2= 0.17, p= 0.003 and R2= 0.16, p= 0.006), but
CD68+ epithelial density was not.
The three immune populations in our samples showed

moderate to strong correlation between epithelium and stroma
(Supplementary Fig. 3 and Supplementary Table 2). Samples with
low density of stromal immune populations generally had low
density of epithelial infiltrate and vice versa. The distribution of
densities of immune populations within tumour epithelium and
stromal areas were compared (Fig. 1b–d). The density of CD8+ and
CD45RO+ cells were significantly higher in stroma than in tumour
epithelium (p= 0.005 and p= 0.004, respectively; Welch’s t test),
but not significantly different for CD68+ cells.
In describing the patterns of immune infiltrate, the terms

immune inflamed, immune desert and immune excluded have

been used to describe varying T cell infiltration based on
histological and transcriptional analyses.12,25–27 Immune-
inflamed and immune-desert patterns reflect high positive or
negative correlations between all infiltrates, but T cell exclusion
describes tumours where CD8+ cells are significantly absent
from tumour epithelium while still being present in the
surrounding stroma.28,29 Given the higher infiltration in stroma
than epithelial compartments, we defined immune cell exclu-
sion as a 10-fold difference between tumour epithelium and
stromal infiltration as the standard deviation of the log 10-
transformed counts was ~1. CD8+ exclusion was present in 20
(10.6%) cases and 36 (20%) cases had CD45RO+ exclusion.
No cases had significant exclusion of CD68+ infiltrate from
tumour epithelium. Notably none of the cases had both CD8+

and CD45RO + exclusion.

Stromal CD68+ and CD45RO+ densities are the strongest
individual prognostic markers
Survival was modelled using Cox proportional hazards and the
relationship between the immune variables and survival was
found to be approximately log linear. The clinical variables
accompanying the cohort were age at diagnosis, stage and
menopause status and the relationship between age and survival
was found to be approximately linear (see Methods, Supplemen-
tary Fig. 4 and Supplementary Table 3).
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Fig. 1 Proportions of immune cells vary between epithelial and stroma areas of tumours. a Scatter plot of the average stroma and
epithelial tumour areas for each patient. b–d show respectively the distribution of densities of CD8+, CD45RO+ and CD68+ cell in epithelium
and stroma. CD8+ and CD45RO+ densities were defined as counts per mm2 and CD68+ as the percentage of tissue stained for this marker.
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Univariable analysis showed improved survival with increas-
ing stromal density of CD45RO+ [HR 0.76, 95% confidence
interval (CI): 0.65–0.90, p= 0.001] and CD68+ (HR 0.53, 95% CI:
0.34–0.81, p= 0.003) (Table 1). Modelling each immune variable
with stage showed improved predictive value for epithelial
CD8+ density (HR= 0.83, p value=0.027) as well as stromal
CD68+ and CD45RO+ density and epithelial CD45RO+ density
(Table 1). Figure 2 and Supplementary Fig. 5 shows illustrative
Kaplan–Meier survival curves for high and low stromal and
epithelial CD68+, CD45RO+ and CD8+ densities.
In cores with <1% stroma, epithelial CD8+ malignant epithelial

infiltrate remained an independent prognostic factor, but
epithelial CD45RO+ density was not significant (Supplementary
Table 4).
In clinical reporting, quantifying immune populations in

exclusively tumour epithelium is technically challenging and time
consuming. We tested the effects of using the average density of
each marker averaged across both tumour and stromal regions
from each core (Table 1). Averaging the tissue density of CD8+

increased the strength of the associated HR and significance of the
model (HR= 0.79, p value= 0.010) indicating increased prognostic
value over quantitation of individual epithelial and stromal
infiltrates. Supplementary Fig. 5 shows illustrative Kaplan–Meier
survival curves for high and low CD68+, CD45RO+ and CD8+

densities over combined epithelium and stroma compartments.
Multivariable Cox regression analysis including all infiltrates and

stage was carried out on patients with complete data for all
infiltrates (n= 152) (Table 2). In this model, only stage and CD68+

stromal infiltrate were significant predictors of survival.
We then refined the model by removing the least significant

elements (defined as those with p > 0.1) (Table 2, n= 152).
Interestingly, we found that the p values for CD68+ and CD45RO+

stromal infiltrates in the refined model become less significant and
the hazard ratios are attenuated in comparison to both the
univariable regression and the full model. This is likely due to the
inability of Cox regression to distinguish with confidence whether
stromal CD45RO+ or CD68+ density is the most significant

predictor when there is a strong correlation between all the
immune variables.

Principal components of the combined immunospace describe
biologically interpretable effects
As the three types of immune infiltrate vary continuously
across epithelium and stroma these variables can be regarded as
six dimensions of an ‘immunospace’ (three infiltrates, two
localisations). Given the strong correlations between infiltrates
(Supplementary Fig. 3), these immune variables are not
independent. We used PCA to determine the independent
patterns across these dimensions, using the 152 patients for
whom complete data were available. PCA transformed the six
correlated infiltrate variables into six independent axes with the
first component containing the largest proportion of variance
(60%) in the data set (Supplementary Table 5).
In principal component 1 (PC1), the weightings of all immune

infiltrates are positive and similar in magnitude (Supplementary
Table 5). This indicates that as one infiltrate increases so do all
the others and represents the degree of coordinated immune
response. The remaining PCs characterise additional patterns
across immune infiltrates independent of PC1. The additive
contribution of PC2 characterises negative correlation between
CD8+ infiltrates and CD68+ macrophages and CD45RO+

memory cells. PC3 characterises additional variation where
epithelial and stromal infiltrates are negatively correlated, the
most positive values of PC3 correspond to high infiltration in
tumour epithelium compared to stroma and the most negative
values of PC3 correspond to the opposite, the aforementioned
immune exclusion.
Supplementary Fig. 6 shows representative images with the

largest magnitudes of PC1, PC2 and PC3 to visually illustrate the
patterns described above. The variance in the remaining PCs (4–6)
is smaller and less informative. Variance in PC4 is predominantly
from CD45RO+ stromal density, PC5 is from CD45RO+ epithelial
density and PC6 is from CD68+ epithelial density. Patients are
plotted by their PC1 and PC2 values in Supplementary Fig. 7. Cox

Table 1. Hazard ratios from the Cox proportional model for all infiltrates in all regions and averaged across the whole core in HGSOC, measured as
log 10 (counts per mm2).

Functional form Evaluable cases Tissue compartment Univariable Multivariablea (adjusted for stage)

HR p Value HR p Value

CD8+

Log 10 301 Epithelium 0.89 0.15 0.83 0.027

Log 10 202 Stroma 0.97 0.74 0.93 0.40

Log 10 315 Average 0.79 0.010 0.72 0.0006

CD45RO+

Log 10 290 Epithelium 0.86 0.033 0.85 0.022

Log 10 196 Stroma 0.76 0.001 0.76 0.0007

Log 10 306 Average 0.82 0.006 0.80 0.003

CD68+

Linear 293 Epithelium 0.99 0.67 0.99 0.43

Log 10 226 Stroma 0.53 0.003 0.44 0.0003

Log 10 308 Average 0.67 0.042 0.62 0.017

Stage

– 312 Localised 1 0 1 0

Regional 1.47 0.26 1.15 0.25

Distant 3.96 ≪0.001 5.58 ≪0.001

Unstaged 3.35 <0.001 3.34 ≪0.001

aMultivariable analysis was adjusted for stage.
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proportional hazard regression was used to assess whether these
PCs were predictive of survival. Only PC1 was an independent
predictor of survival in our cohort and was associated with
improved survival (univariate: HR= 0.89, p value= 0.024; PC1+
stage: HR: 0.88, p value= 0.019) (Supplementary Table 6), reflect-
ing the good prognosis of a strong coordinated immune response.
The association of this PC with survival is also illustrated
graphically using Kaplan–Meier curves in Fig. 3.
Cox regression survival models were also calculated on all

combinations of PCs and stage. The AIC was used to compare the
performance of these survival models and includes a penalty on
the number of terms to reduce overfitting (Supplementary Fig. 8).
The model combining stage, PC1 and PC5, had the best
performance for predicting overall survival. The improvement
with the addition of PC5 shows that the addition of this PC has a
suppressor effect in the model, increasing the significance of other
variables when included. This demonstrates that survival is
predominantly determined by the coordinated immune response
and further variation in survival from this trend can be encoded by
the quantity of epithelial CD45RO+ infiltrate. Interestingly, the
models that contained stage and either stromal CD45RO+ or

CD68+ infiltrate contained a similar amount of information about
patient survival as the one that contained stage and PCs 1 and 5.
In our cohort, the density of CD68+ and CD45RO+ stromal
infiltrates are therefore the best single infiltrates for survival
modelling.

Are genetic defects associated with HGSOC driving individual
infiltrates or the coordinated immune response in tumours?
The presence of germline BRCA2 mutations was significantly
associated with lower CD8+ cell density than patients with a
BRCA1 after multiple testing correction (Table 3). There was no
significant association between the quantity of CD45RO+ or
CD68+ infiltrate and the mutational status of either BRCA1 or
BRCA2 genes (Table 3). No significant association was detected
between TP53 gain-of-function (GOF) and loss-of-function (LOF)
mutations or PTEN expression and the densities of CD8+,
CD45RO+ and CD68+ cells in the epithelium or stroma (Table 3).
Similarly, changes in the PCs were not significantly associated with
PTEN expression, TP53 GOF or LOF mutation or germline BRCA1/
BRCA2 mutation status (Table 3).
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Fig. 2 Survival analysis of HGSOC patients relative to the density of CD68+ macrophages and CD45RO+ cells in their stroma.
Kaplan–Meier survival curves using cut point of median density of stromal CD68+ macrophages and CD45RO+ memory T cells using left
truncation and right censoring. Median entry to the study for all patients after diagnosis was 26.4 months. Median follow-up time from
diagnosis to exit or death was 105.1 months.

Table 2. Multivariable Cox regression hazard ratios and associated
p values for a model with all infiltrates and stage and for a reduced
model with most significant variables only (n= 152).

Multivariable (all combined) Refined model

HR p Value HR p Value

CD8+

Epithelium 0.96 0.81 – –

Stroma 1.07 0.63 – –

CD45RO+

Epithelium 1.12 0.37 – –

Stroma 0.83 0.09 0.68 0.11

CD68+

Epithelium 1.16 0.63 – –

Stroma 0.53 0.038 0.88 0.17

Stage

Localised 1 0 1 0

Regional 2.00 0.16 2.03 0.14

Distant 4.82 ≪0.001 4.70 0.0001

Unstaged 8.15 ≪0.001 8.25 0.0001
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Kaplan–Meier analysis using median cut point for PC1 with left
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120 months. Median entry to the study for all patients after
diagnosis was 26.4 months. Median follow-up time from diagnosis
to exit or death was 105.1 months.
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DISCUSSION
Infiltration of immune cells in HGSOC tumours has previously been
correlated to prognosis for patients.1,30 However, translation of
these tools to the clinic has been impeded by the lack of
standardised and reliable quantitation methods. In this work, we
used a semi-automated approach to quantify the CD8+, CD45RO+

and CD68+ infiltrates in both stromal and epithelial areas of
primary HGSOC tumours. We found that immune infiltration in the
tumour microenvironment was continuously distributed across a
wide range and CD8+, CD45RO+ and CD68+ infiltrates were
strongly correlated. T cell exclusion from epithelial regions has
been previously reported.29 We only observed epithelial exclusion
of CD8+ or CD45RO+ in 10% and 20% of patients, respectively.
These groups were mutually exclusive, suggesting that immune
exclusion from epithelial or stromal regions, is a tumour-specific
effect that is distinct from coordinated multi-infiltrate immune
responses.
Our results for the positive prognostic effects of epithelial CD8+

T cells are consistent with the large study by Goode et al.,2 who
described a near log-linear relationship between the density of
epithelial CD8+ T cells and survival. However, our observations
also show that averaging CD8 density across the total core
(epithelial and stromal areas) improves survival prediction. The
alternative possibility that epithelial and stroma compartments
have been mis-assigned is highly unlikely as these assignments
were all reviewed by a gynaecological pathologist. The combina-
tion of both stroma and tumour epithelium potentially provides a
better representation of the dynamics of epithelial infiltration by
including cells that may be poised to infiltrate.
CD45RO is a memory marker for T and B cells. In the tumour

microenvironment, we and others5,31,32 have shown that CD4+

and CD8+ T cells, myeloid cells and B cells are mainly located in
the stroma of tumours, whereas CD8+ T cells can be found in both
areas. Meta-analyses investigating the prevalence of CD45RO in

solid cancers reported that high CD45RO infiltrate was associated
with better prognosis for patients.33 We confirmed these results in
HGSOC and demonstrated that the quantity of stromal and
average densities of CD45RO+ cells over the whole core are
prognostic. We also demonstrated that epithelial CD45RO+

density was a significant predictor of survival in cores with >1%
stroma, but not in those with <1% stroma. This result emphasises
the need to contextualise epithelial infiltrate and the confounding
nature of tumour composition on survival impact.
The link between tumour infiltration with macrophages and

patient survival is more complex. Previous studies demonstrated
the positive predictive value of classically activated (M1) over
tumour-promoting (M2) macrophages in ovarian cancer.9,34

However, no significant association was found between the level
of intra-epithelial CD68 infiltrate and patient survival.4 Our study
confirms this latter result and also demonstrates a significant
association between a high coverage of stromal areas with CD68+

macrophages and improved overall survival. This result is in line
with a recent study showing a high infiltration of CD68+

macrophages at the invasive front of tumour sections from
colorectal cancer patients is correlated to better response to
chemotherapy.35 Whereas tumour-associated macrophages (TAM)
promote cancer progression via stimulation of multiple processes
including angiogenesis, inflammation and immune escape, it now
appears evident that the phenotype of TAM changes in different
areas of the tumour.36,37 Taking into account the seemingly
contradictory results obtained on this subject, additional studies
aiming at deciphering the precise role distinct subpopulations of
macrophages infiltrating different areas of tumours play in cancer
progression is required.
All three infiltrates were also found to be predictive in

multivariate analyses adjusted for tumour stage. We previously
demonstrated that optimal response to neoadjuvant chemother-
apy was significantly associated with a decrease in the density of
FoxP3+ regulatory T cells in the stroma of human HGSOC
tumours.38 As we did not have access to treatment information
for patients included in this cohort, we cannot rule it out as a
potential confounding factor.
Importantly, we show that combining our six correlated types of

immune infiltrates using PCA allowed us to transform inter-patient
variations of the tumour immune landscape into independent,
biologically interpretable PCs. We find that the main source of
variation between patients is reflective of the quantity of
concerted immune response. The second PC demonstrates that
there is a pattern of significant variations in the CD8+ infiltrate of
some patients that is independent and acting in opposition to the
concerted immune response. The third PC measures the extent of
negatively correlated epithelial and stromal infiltrates and is
weighted differently by infiltrates. This supports our observation
that immune exclusion is common, variable by infiltrate and
shows that this is an additional effect to that of the concerted
immune response.
The main limitation of our analysis of the ‘immunospace’ and its

PCs is that we could only apply it to images that contain both
epithelium and stroma. This reduced the size of the cohort we
could analyse. With foresight, sampling could be designed to
include both regions in TMAs and sectioning and imputation
could be carried out for missing data. It is worth noting that being
able to combine multiple correlated infiltrates and elucidate
patterns and sources of variation will become even more
important as many more (30+) immune markers are combined
on single sections using imaging methods such as Hyperion. This
method is particularly useful in that it also allows us to measure
the strength of immune patterns occurring across multiple
infiltrates. Analysing PCs also avoids some statistical issues that
are associated with frequent co-correlation between different
immune populations. Including correlated variables in a typical
multivariable Cox regression survival model not only reduces

Table 3. Association between immune infiltrate and genetic
alterations in HGSOC tumours.

BRCA1/BRCA2 p53 GOF/LOF PTEN

CD8+

Epithelium 0.04 0.54 0.67

Stroma 0.17 0.29 0.07

Average 0.17 0.53 0.84

CD45RO+

Epithelium 0.20 0.42 0.92

Stroma 0.46 0.84 0.82

Average 0.10 0.36 0.87

CD68+

Epithelium 0.43 0.72 0.79

Stroma 0.78 0.85 0.65

Average 0.68 0.66 0.41

Principal component

1 0.81 0.80 0.55

2 0.10 0.26 0.17

3 0.27 0.58 0.51

4 0.58 0.99 0.17

5 0.76 0.88 0.79

6 0.97 0.44 0.18

P values were associated with Kruskal–Wallis test for detecting differences
in mean ranks of immune infiltrate in patients grouped by mutation in
BRCA1, BRCA2 or not-detected, p53 GOF or LOF and PTEN high or low in
HGSOC.
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interpretability but can also cause model results to be variable
under bootstrapping as seen in the refined model of our cohort.
We found that the first PC was independently associated with

survival. This result is consistent with a previous study showing
that the simultaneous infiltration of tumours by different subsets
of leucocytes (e.g. T cells, plasma cells, B cells), likely reflecting the
establishment of a concerted immune response, gives a survival
advantage to ovarian cancer patients.5 We used the PCs to model
survival and found that a model including PC1 and PC5 was as
predictive as individually modelled stromal CD45RO and CD68
infiltrates. Therefore, CD68 or CD45RO markers analysed in
epithelium-adjacent stroma constitute the best single prognostic
markers in our cohort.
In human lung adenocarcinoma, Mansuet-Lupo et al.39 showed

that oncogenic mutations in the TP53 gene were positively
correlated with CD8+ infiltrate. In their study, intra-epithelial CD8+

T cell numbers and TP53 status were both linked to prognosis with
patients harbouring tumours with low CD8+ infiltrate and non-
disruptive TP53 mutation (associated with GOF) being linked to
poorer survival. In glioblastoma, TP53 mutations were also
associated with increased immune infiltrate.40 In the present
work, we integrated histological and genomic features to evaluate
whether genetic alterations could be linked to different quantities
of immune infiltration. We found no correlation between the
nature of TP53 mutations and the amount of CD8+ T cells,
CD45RO+ memory lymphocytes and CD68+ macrophages in the
stromal and malignant areas of 197 HGSOC tumours or the values
of the PCs we derived. Overall, the exact nature of the relationship
between subtypes of TP53 mutations and immune infiltrate is still
unclear and likely to vary across different cancers, as evidenced by
two studies showing TP53 GOF mutations to be associated with
pro-tumour effects related to inflammation in glioblastoma40 and
immunosuppression in lung adenocarcinoma.41

PTEN, another essential tumour suppressor, regulates the
production of immunosuppressive cytokines by melanoma cells.42

In human melanoma, PTEN deletion was correlated with a
decrease in infiltrating CD8+ T cells.18 In HGSOC, however, we
observed no correlation between the expression level of PTEN and
the number and/or localisation of CD8+, CD45RO+and CD68+

leucocytes in the tumour microenvironment or the PCs we
derived. The discrepancy between the results obtained with
HGSOC and melanoma tumours might lie in the fact that in our
study loss of PTEN expression was only partial with tumours
divided into expressing high or low levels of PTEN.
In contradiction to a previous work,43 we did not observe a

significant correlation between the number of intra-epithelial
CD8+ T cells and mutations in the BRCA1 gene. As there were only
18 patients with a BRCA1 mutation in this cohort, this is most likely
related to a broad confidence interval as compared with the null
population. We did however find a significant difference in intra-
epithelial CD8+ T cell infiltration between patients with BRCA1 and
BRCA2 mutations, with BRCA1 patients having significantly higher
infiltration than BRCA2 cases. The discrepancy could also be linked
to the automated and continuous quantitation method used in
our study to quantify the immune infiltrate of tumours, as scoring
in the previous study was done manually and in a stratified
manner.43 Furthermore, we did not assess the methylation in
the gene coding region for BRCA1 and restricted our analysis
to the identification of germline mutations in the BRCA1 and
BRCA2 genes.
Our work shows that averaging immune infiltration over the

whole tissue core could be as useful as current methods and
potentially provides more prognostic information. Methods that
average counts of immune cells across tissues are also simpler to
implement than epithelial:stromal segmentation methods. None-
theless, careful sampling of the tumour microenvironment with
inclusion of both epithelium and stroma remains very important
as both areas have independent prognostic significance.

Our results showing strong positive prognostic significance of
stromal CD68+ infiltrate in HGSOC tumours warrants further
investigation into the role and properties of CD68+ macrophages
in HGSOC and also may caution against the use of new potential
macrophage-depleting therapies.
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