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The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the

semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited

using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and

50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is

used as the reactive gas. The structural, optical, and electrical properties are investigated for the

optimised films, which, after a post-deposition annealing at 500 �C in air, are also incorporated as

the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to

3.8 eV with increasing tin content, with an average transmission �90% in the visible range. The

surface roughness and crystallographic properties of the films are very similar before and after

annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a

switching ratio of 108, a sub-threshold slope of 0.55 V dec�1, and a field effect mobility of

15 cm2 V�1 s�1, which is a sharp increase from 0.8 cm2 V�1 s�1 obtained in a reference ZnO

TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V�1

s�1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec�1. For TFTs produced from

the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion).

The effect of tin content on the TFT electrical performance is explained in the light of preferen-

tial sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and

33% Sn to be stoichiometrically close to the common Zn2SnO4 and ZnSnO3 phases. VC 2016
Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4961608]

I. INTRODUCTION

For over two decades, hydrogenated amorphous silicon

(a-Si:H) has dominated as the material of choice for the

channel semiconductor in thin film transistors (TFTs) for dis-

play backplanes.1 Recently, amorphous oxide semiconduc-

tors (AOSs) have been identified as a promising alternative

to a-Si:H, due to their higher field effect mobility, high trans-

parency, scalability to large substrate areas, and possibility

of processing at low temperatures, making them very attrac-

tive for display backplanes and future flexible electronics.2

While the quaternary oxide semiconductors such as indium-

gallium-zinc oxide (IGZO) have been leading the way in

oxide TFTs,3,4 a simpler ternary compound, such as Zinc Tin

Oxide (ZTO), is very favourable from an economic point of

view as this material system does not contain expensive and/

or resource-scarce elements like indium and gallium.5

Early investigations of ZTO focussed on its use as trans-

parent conducting oxides (TCOs).6–11 ZTO thin films pro-

duced by rf magnetron sputtering have a wide band gap

(�3.6 eV), are n-type semiconductors with dominant crystal

structures of ZnSnO3 or Zn2SnO4, and show electrical resistiv-

ity �4� 10�3 and �10�3 X cm, respectively.6,8 While these

values are respectable, they cannot compare with the leading

TCO materials such as tin-doped indium oxide (ITO),12 which

is attributed to the difficulty in producing single crystalline

oxides10 and localised disorder of tin in the polycrystalline

ZTO.11 Despite these challenges, highly conductive and trans-

parent ZTO TCOs have recently been demonstrated for large-

area flexible organic light emitting diodes (OLEDs).13

Moreover, ZTO is highly resistant to atmospheric influences

and chemical treatments; as such this property has been

exploited in other applications such as the active material in

gas sensors,14 the buffer layer in solar cells,15,16 and passiv-

ation layers in IGZO TFTs.17

With the emergence of ionic oxides as channel materi-

als in TFTs,3,18,19 ZTO has also been explored previously.

Chiang et al. first reported high performance amorphous

(a-) ZTO TFTs produced by rf magnetron sputtering and

with a post-deposition annealing at either 300 or 600 �C,

these showed a mobility up to 50 cm2 V�1 s�1, with a drain

current switching ratio >107.20 In addition, Gorrn et al.
have investigated the stability of a-ZTO TFTs under gate

bias stress and showed a small threshold voltage shift of

30 mV after 1000 min stressing,21 thereby demonstrating

that ZTO TFTs are suitable as current drivers for transpar-

ent active matrix OLED displays.22

Various deposition techniques, such as sol-gel,23,24

atomic layer deposition (ALD),25,26 metal organic chemical

vapour deposition (MOCVD),27 and pulsed laser deposition

(PLD),21,28 have been reported for ZTO, however, rf or dc

magnetron sputtering is most commonly used.6–10,20,29–32

Ceramic ZTO targets with at. % of Zn: Sn of either 1:1 or

0021-8979/2016/120(8)/085312/10 VC Author(s) 2016.120, 085312-1
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2:1 have been widely used to develop stoichiometric ZnSnO3

or Zn2SnO4 thin films.6–8 Separate ZnO and SnO2 targets in

combinational sputtering have also been reported to produce

films with other stoichiometries.10,31,32 The deposition rate

from ceramic targets is low (a few nm min�1). Ceramic tar-

gets are also expensive, and the synthesis of such targets with

the required stoichiometry is no trivial matter. On the other

hand, reactive sputtering techniques do not require such

expensive targets since pure metal or metal alloy targets can

be used. Sputtering from a metal target also means that the

deposition rate is significantly higher, which is desirable for

mass production. However, there are very few existing reports

on the development of oxide semiconductors by reactive sput-

tering.29 In this work, we explore the use of a remote reactive

High Target Utilisation Sputtering (HiTUS) for the deposition

of ZTO channel layers for TFTs.33

In the HiTUS system, a high density plasma (�1013

cm�3) is generated in a side chamber by an rf electric field at

13.56 MHz and is brought onto the target in the main cham-

ber by steering electromagnets. Applying a negative dc bias

to the target increases the ion energy and initiates sputtering.

The high rf launch power (maximum 2.5 kW) and target bias

(maximum �1000 V) enable a wide range of sputtering con-

ditions, thus providing a large process window. Moreover,

the separation of the substrate from the plasma reduces dam-

age from ion and electron bombardment which is typically

encountered in rf magnetron sputtering.34 These advantages

have been demonstrated previously in producing high quality

dielectric films such as amorphous hafnium oxide (dielectric

constant � 30).35 Moreover, HiTUS has been previously

employed for depositions of ZnO and InZnO for TFT appli-

cations,36 and here is extended to a-ZTO TFTs. Films have

been deposited on to various substrates from zinc:tin metal

alloy targets with tin compositions of 10%, 33%, and 50%

at. %. In particular, compositions of 33% and 50% are cho-

sen to match the stoichiometry of Zn2SnO4 and ZnSnO3. For

reference, polycrystalline ZnO thin films have also been

deposited by HiTUS sputtering from pure zinc metal target,

using the same deposition conditions. The structural, chemi-

cal, and optical properties of the films are presented, fol-

lowed by the electrical characteristics of the TFTs produced.

The effect of tin content on the TFT electrical performance

is explained in the light of preferential sputtering encoun-

tered in reactive sputtering.

II. EXPERIMENTAL DETAILS

ZTO and ZnO thin films were deposited onto various

substrates from 100 mm diameter, zinc:tin metal alloy targets

(99.99% purity) and a metallic zinc (99.999% purity) target,

respectively. Typically, the chamber is evacuated to a base

pressure of 2� 10�6 mbar, while a sputtering pressure of

6–7� 10�3 mbar is used during coating. Argon is used for

the plasma generation, and oxygen is used as the reactive

gas. Before substrate coating, target cleaning was performed

in argon plasma to remove any oxide formed on the surface

of the target. All depositions were performed at room tem-

perature, and the substrate temperature increased to only

�30 �C during depositions. All films were deposited with a

rf launch power/target power of 800 W/500 W and varying

O2 flow between 15 and 45 sccm (where sccm stands for

standard cubic centimetres per minute. The deposition time

is 12 min unless otherwise stated.

For structural characterisations, film thicknesses in the

range of 200 nm–500 nm were deposited onto n-type Si (100)

wafers (resistivity q¼ 0.015–0.025 X cm). The film thickness

was determined using a Gaertner He–Ne (633 nm) ellipsometer

and Veeco Dektak profilometer. The crystallinity of the films

was determined by a Phillips PW 1820 X-ray diffractometer

(XRD) using a Cu-Ka radiation and a monochromator with

divergence slit and receiving slit settings of 0.5 mm and

0.2 mm. The surface roughness of the films was examined

using an Agilent 5400 atomic force microscope. Chemical

compositions in the thin films were estimated by a Leo Gemini

1530VP FEG SEM/EDX system and a ThermoScientific

Multilab-2000 X-ray photoelectron spectroscopy. The optical

transmission spectrum of thin films grown on Corning 7059

glass substrates was measured using an ATI Unicam UV/Vis

Spectrometer with a wavelength spectrum of 190–1100 nm.

The resistivity of the films was determined at ambient tempera-

ture using an MMR Technologies Hall Effect Measurement

System on films deposited on 0.8 cm � 0.8 cm glass substrates

with gold top contacts, using van-der Pauw structures.

Bottom gate, inverted staggered structure TFTs were

fabricated using thermally grown SiO2 films (thickness �
200 nm) on heavily doped p-type Si (100) substrates

(q¼ 0.01–0.02 X cm), which are used as the gate dielectric

and gate electrode, respectively. Prior to channel layer dep-

ositions, the substrates were ultrasonically cleaned in ace-

tone, isopropyl alcohol, and de-ionized water for 5 min

each and then dried with N2 followed by heating at 150 �C
on a hot plate, for 5 min. The thickness of the ZTO channel

layer was �50 nm. Some of the ZTO and ZnO films were

annealed at 500 �C in an oven in air for an hour. Thermally

evaporated aluminium with thickness �270 nm was used

as the source and drain contacts. The active layer and the

source/drain contacts were patterned using conventional

photolithography and lift off methods. The TFTs with a

channel length of 20 lm and a channel width of 1000 lm

(W/L¼ 50) were measured in the dark, at room tempera-

ture using a Wentworth probe station inside a Faraday cage

with an HP4140B dual voltage source picoammeter.

III. RESULTS AND DISCUSSION

A. Growth rate and Hall resistivity

Figure 1 shows the growth rate and Hall resistivity of

the as-deposited thin films of ZTO and ZnO as a function of

O2 flow. For the ZnO films grown at an O2 flow of 15 sccm,

a growth rate of �50 nm min�1 and Hall resistivity of 1 X
cm are observed. The growth rate decreases significantly as

the O2 flow increases, down to �12 nm min�1 for an O2 flow

of 35 sccm and higher. Meanwhile, the Hall resistivity

increases to �106 X cm for O2 flows between 25 and 45

sccm. A similar decrease in growth rate with the correspond-

ing increase in Hall resistivity with O2 flow is observed in

the ZTO films and is true for all tin compositions investi-

gated. The dependence of growth rate (and resistivity) on O2
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flow can be explained as follows. At a low O2 flow, there is

insufficient oxygen to react with the flux of sputtered metal

species to form stoichiometric oxides. As a result, the growth

rate is very high and the films are highly metallic and con-

ductive. On the other hand, when the O2 flow is increased,

there are more O species available for the formation of metal

oxides. Given that oxidation will likely take place also on

the surface of the metal target (target poisoning), the sputter-

ing current reduces resulting in a decrease in the growth rate.

The films formed under this condition are transparent, highly

resistive and are considered suitable for channel layers in

TFTs. Such conditions are satisfied for the O2 flow between

30 and 45 sccm, indicating a wide process window. The

growth rate in this window is �12–20 nm min�1; this is

much higher than that in magnetron sputtering which is typi-

cally a few nm min�1.

Attempts to determine Hall mobility and carrier concen-

tration of these highly resistive films are not successful as

they are beyond the detection range of the Hall instrument.

A slightly more conductive film (resistivity � 4 X cm) of

ZTO sputtered with 25 sccm O2 from 33% Sn target shows a

Hall mobility of 5.7 cm2 V�1 s�1 which is comparable to

�8 cm2 V�1 s�1 reported for a-ZTO28 and a-IGZO.37 The

carrier concentration of this ZTO is 2.5� 1017 cm�3; it can

therefore be estimated that highly resistive films used for

TFTs would have carrier concentrations �1017 cm�3. On the

other hand, the carrier concentrations for highly conductive

films range from �5� 1019 to 1021 cm�3. It should be noted

that these films cannot be used straight away as TCOs, as

they are opaque (see Section III B). Further process optimisa-

tion would be required to produce TCO films.33

B. Optical properties

Figure 2 shows the UV-visible transmission spectra of

the as-deposited thin films of ZnO and ZTO as a function of

O2 flow. The thickness of each film determined either by

ellipsometry or stylus profilometry is also shown. For the

ZnO film deposited with 15 sccm O2 flow, the transmittance

is very low over the range of 200–700 nm. When the O2 flow

is increased to 25 sccm, there is a sudden increase in the

transmittance (�90%) with the absorption edge at �380 nm.

The appearance of the film is also changed from opaque to

transparent. A similar absorption edge and transmittance are

observed when the O2 flow is further increased to 35 and 45

sccm. Similar to ZnO, the ZTO films show very low trans-

mittance with a 15 sccm O2 flow and high transmittance

(�90%) with the higher O2 flow (25–45 sccm). Unlike ZnO,

the absorption edge of the ZTO films is less abrupt and also

there is a slight shift to lower wavelength as the O2 flow

increases. This trend is observed in all ZTO films with differ-

ent tin compositions.

The optical band gap for the ZnO and ZTO films is deter-

mined using the Tauc relation a � h� ¼ B ðh� � EgÞn, where a
is the absorption coefficient, h� is the photon energy, Eg is the

band gap, B is a constant, and n is either 0.5 (for direct

allowed transitions) or 2 (for indirect allowed transitions).38

Figure 3 compares the extracted band gap of ZnO and ZTOs

as a function of O2 flow, assuming direct allowed transitions

as would be expected for this material. At 35 sccm O2 flow,

the band gaps for ZnO and ZTO are 3.28 6 0.02, 3.50 6 0.03,

3.66 6 0.04, and 3.81 6 0.04 eV for the films deposited from

0%, 10%, 33%, and 50% Sn targets, respectively. For compar-

ison, the band gaps of c-ZnO,39 c-Zn2SnO4,8,40 c-ZnSnO3,40

FIG. 1. Growth rate and Hall resistivity as a function of O2 flow for the as-

deposited ZnO and ZTO thin films. The Sn content (at. %) of the target used

in each case is shown.

FIG. 2. Optical transmission of ZnO and ZTO as-deposited thin films depos-

ited with various O2 flows between 15 and 45 sccm. Value in the bracket is

the film thickness measured by ellipsometry or profilometer. The deposition

time is 12 min except one film marked with * which is 20 min.
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and c-SnO2
41,42 (either single-crystalline or polycrystalline)

reported in the literature are also shown in Fig. 3. The ZnO

band gap is very similar to the literature value. The band gaps

of all our ZTOs are also comparable to the 3.35–3.89 eV range

reported for polycrystalline Zn2SnO4 by Young et al.8 Finally,

also shown in Fig. 3 are the band gaps of samples which were

deposited with 35 sccm O2 flow and annealed at 500 �C in an

oven in air for an hour. Only a small decrease in the band gap

is observed for samples after annealing.

From Fig. 3, the effect of tin compositions on the band

gap is clearly seen, showing a maximum band gap increase

of �0.53 eV between ZnO (0% Sn) and ZTO (50% Sn).

Such effect can be attributed to the Burstein-Moss shift

brought about by increasing carrier concentrations.43,44 The

Burstein-Moss shift due to metal cation doping has been

widely reported on many TCOs such as ZTO,8,9 aluminium-

doped ZTO,45 and aluminium-doped ZnO.46 Moreover, a

large band gap increase (up to �1 eV) has also been reported

in MOCVD ZnO, when the growth temperature is reduced

from 500 to 200 �C; this was attributed to the increase in

extended localization in the conduction band and valence

band as the films become amorphous.47 This situation of the

film becoming amorphous is also applicable in this case, as

the incorporation of Sn induces an amorphous phase in ZnO,

as will be shown by XRD in Section III C. It is likely that

both the Burstein-Moss shift and the amorphous phase of the

film brought about by Sn incorporation contribute to the

band gap increase in ZTO in this work.

It has also been reported that the oxygen partial pressure

during deposition has significant effect on the band gap in

TCOs.48–50 Increase of the oxygen partial pressure is mani-

fested in a shift of the absorption edge to longer wavelength

and narrowing of the band gap (red shift). A band gap

decrease �0.18 eV is reported for ITO.49 In our work, the

band gap increase is only �0.05 eV for the O2 flow between

30 and 45 sccm (Fig. 3), in accordance with a small shift

of absorption edge to the shorter wavelength with increasing O2

flow (Fig. 2). The a-ZTOs produced here are aimed as AOSs

for use in TFTs which means that the carrier concentrations

in these films are much lower than those in TCOs. Once there

is sufficient O2 to change the deposited film from metallic to

resistive (�25 sccm in this work as shown in Fig. 1), an

increase of O2 flow does not seem to have a significant effect

on the band gap. Such a small change in band gap is also

reported by Jayaraj et al. for a-ZTO prepared by PLD with O2

partial pressures between 2 and 9 Pa.28

Likewise, annealing the ZTO and ZnO at 500 �C in air

for 1 h only slightly decreases the optical band gap

(<0.1 eV) as shown in Fig. 3. An a-ZTO film prepared by rf

magnetron sputtering at 500 �C also shows a small shift of

transmittance towards lower wavelength (blue shift) upon

annealing at 600 �C, but a large blue shift upon annealing at

750 �C, which coincides with the appearance of crystalline

peaks.7 On the contrary, a red shift in the optical band gap

(�0.5 eV) in MOCVD ZnO is reported upon annealing at

500 �C, which also coincides with an increase in the crystal-

line phase.47 Since our films still remain amorphous after

annealing, the small change of the optical band gap in our

work is reasonable. Finally, it is also known that the thick-

ness of the film also influences the absorption edge.51 Since

there is only a small shift the absorption edge and small

change in band gap in our ZTO films, the influence of the

film thickness on the band gap is considered insignificant.

C. Structural and chemical properties

The crystallographic property of the ZnO and ZTO films

was checked on films deposited with an optimised O2 flow of

35 sccm. Fig. 4 shows the h–2h XRD scans of the films as-

deposited (a) and annealed (b) over a broad angle range

(2h¼ 20�–60�). The narrow peak at 32.9� which is present

for both as-deposited and annealed films corresponds to the

crystalline silicon substrate as shown for reference in (c). In

Fig. 4(a), the ZnO film shows a main diffraction peak at 34�

which corresponds to the ZnO (002) plane, indicating the

preferential c-axis growth of the sputtered ZnO films.52 Fig.

4(a) also shows that the ZnO (002) peaks disappear in the as-

deposited ZTO films for all tin compositions. Moreover, the

FIG. 3. Tauc band gaps of the as-deposited ZnO and ZTO as a function of

tin compositions and O2 flow. Also shown for comparison are the band gaps

for c-ZnO (Ref. 39), c-Zn2SnO4 (Refs. 8 and 40), c-ZnSnO3 (Ref. 40), and

c-SnO2 (Refs. 41 and 42). Open symbols show the Tauc band gaps of the

annealed samples which are deposited with a 35 sccm O2 flow.

FIG. 4. X-ray diffractogram of ZnO and ZTO films as-deposited and after

annealing in a h-2h configuration. The films are deposited with an O2 flow

of 35 sccm, and post-deposition annealing is performed at 500 �C for 1 h.

Also shown is the X-ray diffractogram of a bare Si wafer for reference

highlighting substrate-related peaks.
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lack of any other distinctive diffraction peak suggests that

the ZTO films are amorphous. Amorphous films are pre-

ferred over crystalline films for the production of TFTs as

they yield better device-to-device uniformity over large

areas.4

As shown in Fig. 4(b), the diffraction peak at 34� still

remains in the ZnO film after annealing, indicating that the

film is crystalline. This is consistent with the tendency of

ZnO to remain polycrystalline. The grain size of ZnO, esti-

mated using the Debye-Scherrer formula, is 42 nm as-

deposited and 52 nm after annealing. The XRD profiles of

ZTO films after annealing show that the films are still amor-

phous. However, a broad peak at 2h between 31� and 38�

begins to appear in ZTO films, possibly indicating the start

of some medium-range ordering. At high enough tempera-

tures, the amorphous ZTO film re-crystallizes to ZnO and

SnO2. Re-crystallization of ZTO films has been reported to

start at �600 �C in RF magnetron sputtering,20 and <450 �C
in -PLD.28 Jayaraj et al. have attributed this difference to the

difference in growth kinetic energies, where a higher kinetic

energy in PLD produces film which recrystallizes at lower

temperatures.28 Therefore, it is reasonable to assume that in

the HiTUS sputtered films, recrystallization will occur at

annealing temperatures higher than 500 �C. There is no sig-

nificant difference in the diffraction peaks in ZTO films

despite having different tin compositions.

Figure 5 shows the AFM images of the optimised ZnO

and ZTO films as-deposited (a) and after annealing at 500 �C
(b). The root mean square (rms) surface roughness is com-

pared in Figure 5(c), showing �4 nm for ZnO and �1.5 nm

for ZTO films. Previous reported values of rms surface

roughness for sputtered ZnO are �2 nm,52,53 which are in the

same range. The values of rms surface roughness for ZTO

are much smaller due to their amorphous nature and are

comparable to previously reported values.14,28 The rms sur-

face roughness decreases slightly after annealing the a-ZTO

films. The ZnO film shows similar rms surface roughness

before and after annealing, but the grain size increases after

annealing as clearly shown in the AFM images, agreeing

with that estimated from the XRD measurements.

Finally, the chemical composition of Zn and Sn in the

film is compared to that in the target for ZTO as shown in

Fig. 6. XPS measurements show that the atomic composition

of Sn/(SnþZn) is 34%, 51%, and 63% in the films deposited

from the 10%, 33%, and 50% Sn targets, respectively, indi-

cating a preferential sputtering of tin over zinc, resulting in a

higher tin content in the deposited films. A lower value of tin

content but a similar trend is observed from EDX measure-

ments, also shown in Fig. 6. Compared to the target, the tin

content in the film is higher by a factor of 3 for the 10% Sn

target and a factor of �1.5 for the 33% and 50% Sn targets.

Higher tin content in ZTO has also been reported in films

FIG. 5. (a). AFM images of ZnO and ZTO films deposited with a 35 sccm O2 flow as-deposited and (b) after annealing at 500 �C for 1 h in air; (c) rms surface

roughness of the as-deposited and annealed films as a function of atomic composition of tin in target.
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deposited by rf magnetron sputtering from ceramic targets but

is less pronounced (up to a factor of 1.3).6,7,11,54 Preferential

sputtering is a common phenomenon whenever a target con-

taining two or more elements is subjected to a particle impact,

and it arises from the differences in mass, chemical binding

and bombardment-induced Gibbsian segregation which are in

turn related to the sputtering yield.55 Using 500 eV Arþ ion as

the sputtering gas, the sputtering yield of elemental tin and

zinc are estimated to be 1.56 and 4.6, respectively.56 It means

that the tin content in films should have been lower than the

Zn content. However, the opposite is observed in this work,

which suggests that other factors are dominating the sputtering

process. It can be speculated that well known phenomenon

like sublimation of ZnO from the substrate might play a

role.57 Moreover, Sn-O has a higher dissociation energy than

Zn-O, as shown by Mitoma et al. in Table I of Ref. 59, which

might result in the retention of more Sn in the film than Zn.

D. Thin film transistors

The gate transfer characteristics for TFTs incorporating

optimised ZnO and ZTO films both as-deposited and after

post-deposition annealing are shown in Figs. 7(a) and 7(b),

respectively. Following the standard field effect transistor

theory,58 the field effect mobility, lFE, and sub-threshold

slope, SS, are calculated as

lFE ¼
gm

Ci W=Lð ÞVDS
; (1)

where gm is the transconductance (@IDS=@VGS), Ci is the

capacitance per unit area of the gate insulator, VDS is the

drain source voltage, and

SS ¼ dVGS

d log IDSð Þ ; (2)

where VGS is the gate source voltage and IDS is the drain

source current.

Annealed ZnO TFTs operate in an accumulation mode

with a threshold voltage of 18.5 V, a lFE of 0.8 cm2 V�1 s�1,

a switching ratio of �106, and a sub-threshold slope (SS) of

2.5 V dec�1. On the other hand, TFTs incorporating ZTO

(10% Sn) exhibited significantly improved performance with

a lFE of 14.6 cm2 V�1 s�1, a threshold voltage of 8.2 V, a

switching ratio of 108, and a sub-threshold slope of 0.55 V

dec�1. TFTs incorporating ZTO (33% Sn) exhibited a further

increase in lFE of 21 cm2 V�1 s�1 but also a slight increase

in sub-threshold slope of 0.65 V dec�1. The threshold volt-

age of ZTO (33% Sn) reduces slightly to 7.8 V. The density

of the trap states, Nit, at the interface between ZTO and

dielectric was calculated as58

Nit ¼
SS log eð Þ

kT=q
� 1

� �
Ci

q
; (3)

where kT is the thermal energy and q is the electronic charge.

The Nit of 8.2� 1011 and 9.8� 1011 cm�2 were obtained for

ZTO (10% Sn) and ZTO (33% Sn), respectively.

Finally, TFTs incorporating ZTO (50% Sn) cease to

function as a switch indicating that the channel cannot be

depleted. Moreover, when VDS is increased from 0.1 to 1 V,

the drain source current, IDS, is increased by two orders of

magnitude. The transfer characteristics of the annealed TFTs

are summarised in Table I. Interestingly, as shown in Fig.

7(a), even the un-annealed TFTs showed the effect of chang-

ing tin content. The IDS varies from �10�12 A in pure ZnO,

up to �10�6 A in ZTO with the highest tin content (50%

Sn). ZTO TFTs with medium tin content (10% and 33%)

also indicated switching behaviour.

Figure 8 shows the corresponding output characteristics

of TFTs both as-deposited (a) and after post-deposition

annealing (b). At applied bias VGS¼ 20 V and VDS¼ 2 V, the

IDS of annealed TFTs are 0.003, 0.23, 0.34, and 2 mA for un-

doped 0%, 10%, 33%, and 50% Sn, respectively, showing a

trend of increasing IDS with tin doping. No current crowding

is observed indicating a good source drain contact to the

semiconductor layer. As expected, the TFTs with as-

deposited films exhibited much lower IDS.

As shown in Fig. 7(b) and Table I, the lFE of ZnO TFT is

only 0.8 cm2 V�1 s�1. It is well known that ZnO is a the poly-

crystalline material and high defect density at the grain bound-

aries limits the performance of ZnO TFTs.36 On the contrary,

the lack of grain boundaries in the amorphous ZTO resulted in

a sharp increase of the lFE� 15 cm2 V�1 s�1 in ZTO (10%

Sn). In fact, obtaining an amorphous phase by incorporating

one or more post transition metal cations is the basis of the

multi-component amorphous oxide semiconductor system.4 A

further increase in the lFE from �15 in ZTO (10% Sn) to

�21 cm2 V�1 s�1 in ZTO (33% Sn) can be attributed to the

effect of tin content, as more Sn ions (with valency þ3 or þ4)

will contribute extra electrons and increase the carrier concen-

tration. Moreover, a very low off-current (�10�13 A) is still

achieved, indicating the suppression of carrier generation via

oxygen vacancy formation due to high dissociation energy of

the Sn-O bond.59 This is analogous to the effect of Ga in IGZO

material systems, where Ga is known as the stabilizer cat-

ion.4,60 However, the increased mobility due to the Sn content

comes at the expense of the sub-threshold slope, as observed

by the increase in SS (from 0.55 to 0.65 V dec�1) in the TFT

sputtered from the 33% Sn target. This trade-off is magnified

FIG. 6. Atomic composition of tin in the sputtered ZTO films as a function

of that in the alloy targets for films deposited with a 35 sccm O2 flow. Tin

compositions are determined using EDX and XPS methods. The dotted line

is drawn for reference which represents equal composition of tin in the target

and film.
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in the ZTO TFTs sputtered from the 50% Sn target, where the

sub-threshold slope can no longer be extracted and the device

stops functioning as a TFT.

The density of interface trap states �9� 1011 cm�2

extracted for a-ZTO TFTs in this work are in the same range

as that reported for IGZO TFTs.61 In addition to the interface

states, the defect tail states in the sub-band gap of the semi-

conductor (commonly expressed as Urbach energy) are

known to affect TFT performance.62 Using the photothermal

deflection method, the Urbach energies of 98 and 102 meV

are obtained for annealed films of ZTO (10% Sn) and ZTO

(33% Sn), respectively.63 These values are also very similar

to previously reported Urbach energies �110 meV for

ZTO64 and �110–160 meV for IGZO.60 The slightly lower

Urbach energy of ZTO (10% Sn) comparing to ZTO (33%

Sn) agrees with a slight reduction in SS of ZTO (10% Sn)

comparing to ZTO (33% Sn).

As shown in Fig. 6, ZTO films sputtered from 10% and

33% Sn actually include increased tin composition in the films

of 34% and 51%, respectively. Interestingly, these zinc/tin

compositions are very close to stoichiometric Zn2SnO4 and

ZnSnO3, respectively. This is consistent with previously

reported ZTO TFTs with an atomic ratio of zinc:tin of either

2:1 or 1:1 by rf magnetron sputtering.20,30,54

In our work, ZTO TFTs (50% Sn) which have an actual

tin content of 63% can no longer be turned off, while ZTO

FIG. 7. Gate transfer characteristics of

ZnO and ZTO TFTs with a channel

W/L ratio of 50, measured with a VDS

of 0.1 V and 1 V. Column (a) shows

devices fabricated from active layers

without annealing, and column (b)

shows the corresponding devices with

a post-deposition annealing at 500 �C
for 1 h in air.

TABLE I. Transistor parameters of ZnO and ZTO TFTs deposited with a 35

sccm O2 flow with a channel W/L ratio of 50, measured with a VDS of 0.1 V

(as shown in Fig. 7(b)). A post-deposition annealing at 500 �C for 1 h in air

is used.

Vth (V) lFE (cm2 V�1 s�1) SS (V dec�1) ION/IOFF

ZnO (0% Sn) 18.5 0.8 2.5 106

ZTO (10% Sn) 8.2 14.6 0.55 108

ZTO (33% Sn) 7.8 21.0 0.65 108
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with Sn 67% by rf sputtering still functions as a TFT with

incremental mobility �30 cm2 V�1 s�1.30 Moreover, ZTO

TFTs produced from combinational rf sputtering from ZnO

and SnO2 targets show a saturation mobility �10 cm2 V�1

s�1 and are achieved at Sn 20% and 75% content.32 Finally,

ZTO TFTs produced from MOCVD achieve field effect

mobility �7–17 cm2 V�1 s�1 ZTO with Sn 27%, 49%, and

72% content.27 The difference in the window of tin composi-

tions in the ZTO in producing respectable TFTs is attributed

to the different growth kinetics in each deposition technique.

Despite various methodologies used, the extracted carrier

mobility of TFTs produced by various deposition techniques

are of the same order.

In spite of a pronounced preferential sputtering in

HiTUS, optimisation of stoichiometric Zn2SnO4 and ZnSnO3

for TFT channel could still be achieved, as shown in this

work. Also shown is the high sputtering rate in HiTUS, as a

channel layer deposition takes �2–3 min only. In contrast to

the use of a ceramic ZTO target in magnetron sputtering, the

use of a metal alloy target in a reactive sputtering guarantees a

higher deposition rate, easier manufacture of target, and thus

reduced cost. Further, the use of a remote plasma and the

availability of high powers in HiTUS guarantee depositions of

films with high density but minimum ion bombardment from

the plasma. This effect is less immediately apparent in this

work, as the rf launch/ target power currently used is relatively

low (800 W/500 W). Further optimisation of a-ZTO with high

powers which has the potential to improve the film density

and reduce post-deposition annealing temperature is under

way.

IV. CONCLUSIONS

Amorphous ZTO has been produced using a remote-

plasma reactive sputtering from zinc:tin metallic alloy tar-

gets with various tin compositions. The films are first

FIG. 8. Drain transfer characteristics

of ZnO and ZTO TFTs with a channel

W/L ratio of 50, measured with VGS

from 0 to 20 V in 5 V intervals.

Column (a) shows devices fabricated

from active layers without annealing,

and column (b) shows the correspond-

ing devices with a post-deposition

annealing at 500 �C for 1 h in air.
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optimised by varying the O2 flow, and it is observed that a

large process window exists in producing highly resistive

ZTO films suitable for the channel layer in TFTs. The opti-

mised a-ZTO films displayed a larger optical band gap with

increasing tin compositions. The effect of post-deposition

annealing is most significant in the electrical properties of

TFTs. While ZnO TFTs exhibited a poor device performance

due to grain boundaries, a-ZTO TFTs exhibited a significant

increase in mobility and the mobility increases with tin con-

tent up to 50 at. % of Sn in the film. Device performances

are explained with the increased tin content in the films

brought about by the preferential sputtering, such that films

sputtered from 10% and 33% Sn targets are very close to

stoichiometric ZnSnO3 and Zn2SnO4. The difference in the

sub-threshold slope between ZnSnO3 and Zn2SnO4 is

explained by the Urbach energies. In summary, a-ZTO TFTs

produced by HiTUS sputtering have comparable device per-

formances and tin composition windows to the conventional

magnetron sputtering. However, HiTUS sputtering has added

advantage over the conventional magnetron sputtering in its

higher deposition rate and the potential to improve the den-

sity of a-ZTO films which thus lowers the annealing

temperatures.
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