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Abstract

Background: Accurate knowledge of the core components of substitution rates is of vital importance to understand
genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon
remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome.

Results: The rates are characterised through rate constants in a time-domain, and are made available through a
dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed
stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations.
Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal
substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone
and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a
number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human.

Conclusions: The extended set of rate constants we report may enrich our resources and help advance our
understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations
in the emergence of pathological genotypes and neutral evolution of proteomes.

Keywords: Nucleotide substitutions, Spontaneous mutations, Germline, Context-dependence, Genome composition,
Somatic mutations, Cancer

Background
The stability, organisation and dynamics of genomes are
key factors that influence the molecular evolution of life
[1]. Genomic single-nucleotide mutations, with their sub-
sequent fixation in a population, occur an order of magni-
tude more frequently than common insertions/deletions
[2, 3], hence are major contributors in defining the
genome evolution. An understanding of the descriptors
that govern single-nucleotide mutations and substitutions
is thus essential to comprehend genome dynamics and its
link to the underlying molecular processes.
For the sake of lucidity in pointing to different contri-

butions on substitution rates, which may encompass both
mutation- and fixation-based effects, let us introduce a
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break down of the rate into a number of general compo-
nents. For a given genomic position and i→j nucleotide
conversion, the substitution rate, as expressed by the rate
constant ri,j, can be roughly presented as a single-base
average value rsbi,j and fluctuations contributed by short-
range context (δrsri,j), CpG-associated (δrCpGi,j ), long-range
(δrlri,j), gene/functional (δr

gene
i,j ), and specific (δrspeci,j ) effects

(1):

ri,j = rsbi,j + δrsri,j + δrCpGi,j + δrlri,j + δrgenei,j + δrspeci,j (1)

The rsbi,j term can be estimated through genomic aver-
ages for the individual i→j substitutions, and has been
explored for the genomes of human [4, 5] and other
species [6–8]. By investigating the aggregation patterns in
substitution frequencies, it was shown that the ri,j vari-
ation is subjected to two distinct, short-range (< 10 nt)
and long-range (> 1000 nt), effects [9, 10]. In the equation
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above, the short-range effect is captured through the δrsri,j
term and mainly describes the totality of the intrinsic
properties and sequence-dependent interactions of DNA
with overall mutagenic and reparation processes in a given
organism [11]. The better-studied substitution patterns at
a CpG context [12–14] are separated in the δrCpGi,j term,
since besides having a specific short-range dyad con-
text, the CpGmutations underlying the δrCpGi,j substitution
term also depend on a number of regional factors that
alter the epigenetic targeting of the CpG sites [10, 15–18].
Many relatively recent studies provide essential insights
into the δrlri,j variation caused by the regional effects
that depend on a long-range (megabase) sequence con-
text through general mechanisms, such as recombination
and GC-biased gene conversion [1, 19–21], transcription-
coupled biased genome repair [22] and instability [23],
chromatin-organisation- [24] and replication-associated
mutational bias [25] and inhomogeneous repair [26], dif-
ferential DNAmismatch repair [27], non-allelic gene con-
version [28], and male mutation bias [29]. The term δrgenei,j
captures the change in substitution rates in genes and
other functional elements under elevated selection bias
and may reflect observations such as the increased neu-
tral substitution rates in exons [30, 31] and the possible
reduction of mutation rates in the X-chromosome [32].
δrspeci,j holds the highly specific increase or decrease in
substitution rates governed by a strong selection or tar-
geted underlying hyper- and hypomutations [33] present,
for example, in the genes of immune system, and may
additionally include other effects not captured in prior
terms.
Herein, we propose a methodology to obtain the core

components (2, capturing only the short-range sequence
caused variation) of the neutral single-nucleotide substi-
tution rates via the direct analysis of 39,894 L1 mobile
DNA remnants [34] in the same, human, genome (a
single-genome approach).

rcorei,j = rsbi,j + δrsri,j (2)

Our transposon exposed k-mer rate (Trek) method
provides the rcorei,j rate constants at single-nucleotide res-
olution in L1, where we demonstrate sufficient sequence
variability to cover a wide-range of sequence contexts. We
use this coverage to determine the core rate constants
for all possible nucleotide substitutions (3 per position)
at each of the 3.2 billion positions in the human genome.
The Trek aims at revealing the rcorei,j variation in a rela-
tively model-freemanner and at a level beyond accounting
for only the two immediate neighbouring nucleotides [35].
We make our dataset of the time-dependent rate con-
stants for individual substitutions publicly available. To
exemplify the usage of Trek data, we demonstrate that
the rcorei,j values can generate a sequence starting from a

random DNA sequence, whose key features are in better
agreement with the short-range oligomeric organisation
of the human genome. We next calculate the basal substi-
tution propensity profile of the human genome, evaluating
the core predisposition to single-nucleotide substitutions.
We outline the decreased frequency of the sequence
motifs that are stable in germline among the sites linked
to somatic cancer mutations.

Results and discussion
Revealing the core single-nucleotide substitution rates
The repetitive occurrence of mobile DNA elements in
different regions within the same genome [34] provides
the opportunity to obtain the rcorei,j (2) rate constants that
account for the δrsri,j immediate effects of neighbouring
nucleotides. After the initial inactivation at different time
epochs [36–39], individual remnants of many transpo-
son subfamilies within a genome have been subjected to
largely the same overall mutagenic and repair conditions
as the rest of the genome [40], hence can also serve as
markers of rcorei,j neutral substitution rates applicable to
genomic sites that share the immediate sequence-context.
For the purpose of this study, we have used the homi-
noid lineage of the L1 (long interspersed nuclear element
1, LINE-1) retrotransposons, spanning 3.1 to 20.4 myr
(million years) of age [37]. The constituent subfamilies
of the lineage are L1PA5, L1PA4, L1PA3, L1PA2 and the
most recent L1Hs. Their respective age and the number of
insertions in the human genome are presented in Table S1
in Additional file 1. The choice was made through the
following reasoning. The L1 elements have a long (∼6 k
nt) sequence without extended repeats like in the LTR
(long terminal repeat) elements [34]. This enables their
robust mapping on a chosen template and provides essen-
tial local sequence variability around different nucleotide
positions within L1 elements. There are distinct L1 sub-
families that were active at different time epochs, with
detailed molecular clock analyses available [36–39] to
reveal and, importantly, validate the age of each subfam-
ily. They are well-represented and, unlike other classes
of transposable elements, are uniformly scattered across
mostly the intergenic regions of the human genome
[34, 41, 42], and are less prone to recombination and con-
text bias [43, 44]. The young L1 subfamilies have most
of their remnants coming from the genomic regions with
G+C content close to the genomic average value (Fig. 1,
see also [41]). Unlike SINEs (small interspersed nuclear
elements) and LTRs, LINE sites show a very low level of
RNA polymerase enrichment, as a marker of transcrip-
tional association, in normal tissues [45]. The selected
most-recent subfamilies are sufficiently young [37] a) to
enable an unambiguous identification of the genomic
coordinates of the borders for the remnants; b) to assume
that each position in those elements would be unlikely
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Fig. 1 Long-range G+C context of the young L1 insertion sites in the
human genome. a and b The distribution of the G+C contents for all
the w-sized (1000-nt in a and 10,000-nt in b) bins in the human
genome (orange lines) is shown, as compared to the same distribution
but using only the bins centred at the midpoints of all the remnants
of young (L1Hs, L1PA2, L1PA3, L1PA4, L1PA5) L1 elements (green lines)

to undergo repeated substitutions over the studied period
of their existence as remnants in the human genome
(see Methods); c) to attribute a time-invariance to the
rates during the analysed period of mutation accumula-
tion [20, 46, 47]. Finally, many matching positions in our
studied five L1 representatives share the same consensus
bases, hence, such positions are not polymorphic due to
adaptive pressure and can serve as internal references for
inferring the rcorei,j rates.
The Trek methodology of obtaining rcorei,j rates, along

with the considerations for filtering out the possible selec-
tion and non-neutral substitution sites, is presented in
Fig. 2 with further details in Methods, Figures S1 and S2
in Additional file 1. The acquired data on the full set of
position-specific substitution rates are presented in Fig. 3,
to highlight the revealed variation per substitution type,
along with the fully averaged values for the rate constants.
A total of 661 positions, at the 3’ side of the L1 ele-

ments, passed our robustness checks (see Methods) and

were thus employed to infer the corresponding rcorei,j val-
ues from the analysis of all the young L1 remnants in
the human genome. We recorded the data in the Trek
database that contains a set of well-defined rcorei,j constants
(see below for the extent of sequence context coverage in
the Trek database) capturing the influence of the unique
arrangement of neighbouring nucleotides at those posi-
tions. Owing to the nature of the selected L1 elements, as
discussed above, and the Trek procedure design (Fig. 2),
we expect the absence of the δrgenei,j contribution, the elim-
ination of δrlri,j at the averaging stage (Fig. 2b) and the
removal of the δrCpGi,j and δrspeci,j effects through our robust-
ness checks embedded within the Trek procedure (see
Fig. 2c, d and Methods). Therefore, our method provides
the rcorei,j =rsbi,j + δrsri,j core variation (Fig. 3) of the substi-
tution rates at around the rsbi,j genomic average values for
each i→j base substitution. If the above is correct and
Trek indeed results in rcorei,j values, further averaging of the
core rsbi,j +δrsri,j rates (median values shown in Fig. 3) should
give us the single-base rsbi,j genomic average substitution
rates, cancelling out the remaining δrsri,j contribution. In
fact, the comparisons of our Trek-derived rsbi,j with two
published datasets that reflect on the genomic average
rsbi,j rates [4, 20] show an excellent correlation (Figure S3
in Additional file 1, Pearson’s R > 0.99) confirming the
absence of any biased averaging and unusual substitution
rates in the time-accumulated substitutions at the L1 sites
that pass the Trek procedure. The genome simulation,
described later in this work, provides an additional valida-
tion for our rate constants. The rcorei,j values (Eqs. 1 and 2)
for all possible i→j neutral substitutions inferred for each
of the eligible individual L1 positions are thus assumed to
be common for any other sites in the human genome that
share the short-range sequence context.

The influence range of neighbour nucleotides
To apply the rcorei,j constants to the human genome, we
first established the optimal length of a DNA sequence
(k-mer, where k is the length of the sequence) capturing
most of the influences that modulate substitution rates of
the base at the centre. For this, we evaluated the power
of the knowledge of the neighbouring arrangement of
nucleotides in predicting the rcorei,j constants for each of the
twelve i→j substitution types, where i and j are the four
DNA bases. We built test predictors for individual substi-
tution types via a tree-based gradient boosting machine
(GBM, machine learning technique) [48, 49], while using
varying lengths of sequences centred at the positions
where the rate constants were to be predicted (see
Methods). The aim of the machine learning procedure
was to establish the optimal sequence length to min-
imise the error in the predicted rate constants (Figures
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Fig. 2 Single genome determination of the context-dependent substitution rate constants. a–d The Trek approach is applicable to a genome
containing multiple remnants of retrotransposon subfamilies silenced at different time epochs (a). We can consider those subfamilies as
substitution counters that had different resetting ages (b). The full consensus sequence of the most recent subfamily is taken as a reference (a). The
remnants are then grouped by their age and fully mapped onto the reference sequence (b). For each position i in the reference sequence, the
fractions of the four bases in all the time groups are calculated (c). The comparison of these fractions coming from individual base types across
different time periods enables a linear model fitting, through which we can reveal the rates for the substitutions into the b2, b3 and b4 bases from
the consensus (b1) state of the given position (d). The steps (c) and (d) are repeated for all the positions in the reference sequence, producing
single-nucleotide resolution core substitution rate constants with sequence-context dependency as sampled in the reference sequence of the
mobile element. To assure the high quality and neutrality of the retrieved rates, we accounted for the sites in the reference sequence that had at
least 700 mapped occurrences in each time group (b), with the same wild-type variant being always the prevalent one (more than 80%) in each
subfamily (c) and producing a Pearson’s correlation coefficient of at least 0.7 in the time-evolution plots (d)

S4 and S5 in Additional file 1). In agreement with prior
evidence [9, 10, 44, 50], but now obtained for each indi-
vidual i→j substitution type from Trek data, the optimal
window was found to be 5-7-nt (both 5- and 7-nt result-
ing in comparable results for many substitution types) and
was subsequently used as guidance for the direct map-
ping of the Trek rate constants from the L1 sequence
onto any given human nuclear DNA sequence for the rcorei,j
assignment.

Mapping the Trek rcorei,j data on any DNA sequence
The upper 7-nt size window for determining the single-
nucleotide substitution rate constants at the central base
accounts for three upstream and three downstream bases
relative to each nucleotide position. Our neutral substi-
tution positions that pass the Trek criteria capture 636
unique 7-mers out of the possible 16,384 (47). Therefore,
for many loci in the human genome we need to use a
smaller window (< 7-mer) as amatch criterion to assign to
one of the Trek rate constant sets. By trimming the size of

the k-mer to five, hence accounting for two upstream and
two downstream bases, we cover 404 unique sequences
out of possible 1024 (45). Further reduction of the size to
three, allows having data for 56 unique triads out of 64
(leaving out only the CpG containing triads, see below).
For the single-base case (1-mers), where we average out all
short-range neighbour effects and longer-range sequence
variability, we obtain data for all the four bases and 4 × 3
possible substitutions as shown in Fig. 3 (the median val-
ues on the top of the figure). The coverage of the longer k-
mers is, however, increased nearly twice when we account
for the strand-symmetry, as described in Methods. Please
note, that for each unique k-mer we obtained three rcorei,j
constants via the described analysis of a large pool of L1
remnants from different genomic loci.
With the above considerations, we created a program

(Trek mapper, Methods, Note S1 in Additional file 1)
to produce rcorei,j core substitution rate constants for any
sequence, accounting for the context information within
up to the 7-mer window and pulling the matching core
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Fig. 3 Transposon exposed (Trek) rcorei,j substitution rate constants of
the human genome. The boxplots are shown for each i→j
substitution type inferred from the hominoid L1 remnants spread
across the human genome. Each point comes from a specific position
in the L1 element, reflecting the substitution rate constant averaged
across multiple occurrences of that specific position with the same
sequence-context in multiple regions of the human genome. The
complementary i→j pairs are plotted in adjacency. The median
values of the overall substitution rates (rsbi,j ) in byr−1 (billion years) unit,
averaged across the varying sequence-context within the L1
elements, are shown on the top

data from the Trek database. Should a representative
match be absent with the full 7-nt long sequence, the
window around the given position in a query sequence
is shortened into the longest variant possible (out of the
5-nt, 3-nt or 1-nt lengths) with a full match in the Trek
database (Methods, Figure S6 in Additional file 1). In
this way, for all the possible 16,384 7-mers, our Trek
database reports 49,152 rate constants (3×16,384), of
which 3168 (6.4%) account for the 7-mer context, 23,232
(47.3%) account for the nested 5-mer context, 17,120
(34.8%) for 3-mer and only 5632 (11.5%, CpG containing
sequences) constants do not account for any context effect
on the central base (since we eliminate those by design,
due to the δrCpGi,j contribution). Our full dataset reports
and makes publicly available (Additional file 2), the time-
dependent rcorei,j rates for all individual i→j substitutions
accounting for the context effects beyond the 64 triads
[35]. If we consider only the unique values in the Trek
database, we report 2078 unique rate constants (taking
into account different extent of averaging, where multi-
ple entries are present for the different context ranges), of
which 1208 (58.1%), 782 (37.6%), 85 (4.1%) and 3 (0.1%)
entries account for 7-, 5-, 3- and 1-mer contexts respec-
tively. The 1-mer averaged data were used for only the
k-mers that contain either C or G bases of a CpG dyad
at the centre, to assign the overall substitution rate con-
stants by the Trek mapper. This was done since none

of the CpG sites in the L1 remnants passed our robust-
ness checks (Methods), due to the targeted, epigenetic-
(δrCpGi,j ) or APOBEC-affected single-nucleotide substitu-
tions there [12–14]. The latter effects were likely to be
non-uniform with time (active targeting, δrspeci,j , while in
the viable epoch for each L1 subfamily, at both DNA and
RNA levels) and may had been present in order to silence
the active retrotransposons.
Our current data are for the human nuclear genome.

However, the general approach for obtaining rcorei,j con-
stants is applicable to any organism where the genome
contains a set of well-characterised and related young
mobile elements silenced at different time epochs and
without notable genomic context bias.

rcorei,j rates and the oligomeric composition of the human
genome
The full set of sequence-dependent human rcorei,j substi-
tution rates (all three constants per position) enabled
us to perform a sophisticated in silico evolution of a
random DNA sequence, guided solely by our rcorei,j val-
ues. We started from a random sequence of 5 million
(mln) nt with a G+C content of 60% (substantially greater
than the 40.45% G+C content for the human genome).
We performed random nucleotide substitutions weighted
by Trek-inferred probabilities (Methods, Figure S7 in
Additional file 1), where, after each cycle, the substitution
rate constants were updated for the sequence positions
that were either mutated or fell within the influence zone
of the performed substitutions. The simulation was con-
tinued until the overall G+C content of the simulated
sequence became constant (see Fig. 4a–c).
The simulation converged to generate a sequence with

the A, T, G and C compositions of 30.91, 30.90, 19.06
and 19.13% respectively. Note, that these values are close
to the A, T, G and C compositions of the repeat-masked
human genome of 29.75, 29.79, 20.24 and 20.22% respec-
tively (Methods), being slightly AT rich. Furthermore,
the simulated sequence captures the contents of different
individual oligomers (k-mers) in the human genome. The
data for all the possible 16 dyads, 64 triads, 1,024 pentads
and 16,384 heptads are presented in Fig. 4d–g and show
a significant (see the correlation coefficients on the plots)
correlation between the compositional landscapes of the
Trek-simulated sequence and the actual human genome.
Regardless of the starting composition of the initial DNA
sequences, our simulations always equilibrated to a state
with similar oligomer (up to 7-mer) content. The k-mer
contents shown in Fig. 4d–g for the actual human genome
were calculated from the repeat-masked version of the
RefSeq human genome, where all the identified repeat ele-
ments, including the L1, were disregarded. This assured
the removal of a potential bias due to the presence of L1
elements (Methods), used to infer the rate constants, in
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Fig. 4 Comparison of the in silico evolved sequence and the actual human genome. a The 5-mln-nt starting sequence is randomly generated with
60% G+C content. (b and c) The sequence is then neutrally evolved using rcorei,j only, until the base-compositional equilibrium is established (c). This
was reached after about 20 mln substitutions (or an average of 4 substitutions per site (b), where x-axis shows the number of substitutions divided
by the simulated sequence length). The equilibration converges faster when we start from a sequence with lower G+C content. d–g The plots
showing the correlation of the k-mer contents in the equilibrated genome with the corresponding content in the real human genome. The lengths
of the k-mers along with the correlation coefficients are shown on the bottom right corners of the plots. Two correlation coefficients are shown with
the exclusion and the inclusion (the value in the bracket) of CpG containing oligomers (red points in the plots). The dashed lines depict the diagonals
for the ideal match of the k-mer contents

the human genome. As rcorei,j constants are free of the δrCpGi,j
contribution (see above), the simulated genome produced
higher alterations in representing the k-mer contents that
have CpGs (red points in Fig. 4d–g). These alterations
visually demonstrate the role of δrCpGi,j in the background
compositional landscape of the human genome. The cor-
relations in Fig. 4 are from simulations where the rate
constants were symmetrised according to the inherent
strand-symmetry in double-helical DNA (see Methods).
The results without such equalisation are still significant,
though producing slightly worse correlation coefficients
(Figure S8 in Additional file 1).
To confirm that the observed correlations for differ-

ent k-mer contents (Fig. 4d–g) present an improvement
due to our sequence-context-dependent rates, rather than
being a side effect, by a pure chance, in a sequence
where the simulation makes only the single-base compo-
sition converge to that of the real human genome (such
as in a sequence generated using an ideal 4 × 4 single-
nucleotide substitution rate matrix), we calculated the
expected distribution of different k-mers in a genomewith
fully random base arrangement but with the exact human
A, T, G and C overall base composition. In the complete
absence of any sequence-context effects, the probability
of the occurrence (fraction) of any k-mer in a sufficiently

long sequence is equal to the product of the occurrence
probabilities of their constituent bases. For instance, the
probability of observing the AGT triad is the pAGT =
pApGpT product, where the individual pi probabilities are
the base contents expressed in fractions. The comparison
of the k-mer fractions obtained in this way with the human
genome data (Fig. 5) shows a substantially reduced corre-
lation (for the genomic 7-mer content, Pearson’s R = 0.59
compared to 0.74 using Trek rates). The discrepancies are
minimal while accounting for only the dyad and therefore
singleton contents, however, while using context-invariant
singleton substitution rates in the simplistic in silico sim-
ulations descried above, we observe slight but system-
atic underestimation of the overall G+C content in the
sequence at compositional equilibrium (Fig. 6). Although
excluded via the specificities of the Trek methodology
(Fig. 2), to completely rule out the presence of any circu-
larity in the reproduction of the human genome higher
k-mer (up to 7 nt) content through the Trek rate constants,
we also demonstrated the overall poor agreement between
the k-mer contents of L1 elements used to infer the rate
constants and the human nuclear genome (Figure S9 in
Additional file 1).
The described simulations therefore support the attri-

bution of a contributory role that the rcorei,j variability plays
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Fig. 5 Oligomeric composition of the ideal neighbour-invariant sequence. a–d The oligomeric content of the human genome (x-axis) is compared
to the content expected by chance (y-axis) in a sequence that has the exact single-base composition as the human genome, but has substitution
rates that are purely context independent. This corresponds to a hypothetic genome simulation with perfectly correct rsbi,j single-base rate constants,
but without any δrsri,j sequence-context dependency present. The lengths of the k-mers, along with the Pearson’s correlation coefficients without
and with (the values in the brackets) the CpG containing oligomer data (red points) are shown on the bottom right corners of the plots. The
correlation coefficients are notably smaller compared to the in silico sequence, equilibrated based on the full set of context-dependent Trek rcorei,j
constants. The dashed lines depict the diagonals for the ideal match of the k-mer contents

in shaping the compositional landscape of the human
nuclear genome [51]. Importantly, our study demonstrates
that the non-specific core substitution rates are capa-
ble of producing apparent selection or depletion patterns
in higher k-mers, beyond dyads, in the human genome.
To this end, the 7-mer content from our in silico equili-
brated sequences, obtained solely based on the set of rcorei,j
constants, can serve as a background standard to reveal
specific selection [52] for or against different sequence
motifs in the human genome.
Similar link between the context-dependent mutation

pressure and the nucleotide composition has recently
been shown for the triad counts in the bacterial genome of
Mesoplasma forum [53] and in the human mitochondrial
genome [54]. Interestingly, the latter study employed the
somatic mutation propensities found by analysing can-
cer genomes to reproduce the triad count of the human
mitochondrial genome, as an evidence of the link between
the somatic and germline mutation rates in human mito-
chondria. That link is further visible in the cancer anal-
ysis presented here (vide infra) for the human nuclear
genome.

Basal substitution propensity profile of the human
genome, substitution prone and resistant motifs
Trek mapper provides the full set of rcorei,j constants for
each position in the whole human genome. Such data
enables us to calculate the germline context-dependent
basal substitution propensity (BSP) by taking the sum of
the individual rate constants for the three possible sub-
stitutions at each base position, thus producing the core
rcorei,N constant for the substitution of a given base i by
any other base N. Figure S10 in Additional file 1 shows
the BSP profiles calculated for the individual chromo-
somes (red) as compared with the whole genome profile
(green), where most of the chromosomes exhibit the same
overall distribution as the whole genome. Further group-
ing and analysis [55] of the unique sequences found in
regions of different BSP for the whole human genome
reveals motifs with varying substitution propensities of
the bases at the centre of 7-mers (Fig. 7). In particular,
adhering to the standard nucleobase notation in small
letters (a=A, c=C, g=G, k={G, T}, m={A, C}, n={A, C,
G, T}, r={A, G}, t=T, w={A, T}, y={C, T}), the compar-
ative examinations of the sequences reveal the overall



Sahakyan and Balasubramanian BMCGenomics  (2017) 18:81 Page 8 of 17

Fig. 6 G+C content equilibration of random sequences with 60 and
30% initial G+C contents. Here, the in silico genome is equilibrated by
using either the Trek rcorei,j constants with up-to 7-mer context
dependence (green lines), or only the singleton rates from Trek
without any context dependence (red line, shown for only the 30%
G+C content start). The simulation accounting for the context
dependence results in 38.19 and 38.18% of G+C content (compare to
40.45% for the repeat-masked human genome), starting from
random sequences with 60% and 30% G+C contents respectively.
The simulation with only the singleton rates converged at lower
37.36% value for the G+C content, where we expected the least
disagreement between the “most-ideal” singleton vs. 7-mer
description of the substitution rates (see Fig. 5a). Please note, that in
the hypothetic case of the most ideal singleton substitution rate
constants, the discrepancy is more pronounced while analysing the
genomic contents of the higher k-mers, as presented in Fig. 5

stability of C in the wntCnwn context, and analogously, G
in the nwnGanw context. Those bases become prone to
substitutions, independently from the well-studied CpG
context, in the nmrCarn and nytGyknmotifs for the C and
G bases respectively. Furthermore, A and T bases become
prone to more frequent substitutions in the ncwAtnn and
analogous ngwTannmotifs (Fig. 7).

Basal substitution propensity profile and cancer-linked
somatic mutations
A recent study, which correlated the cancer and cell divi-
sion frequencies, suggested that cancers, with their multi-
etiologic nature, are linked to random mutation events
upon cell division/DNA replication [56], in addition to
expressing unique type-dependent mutational signatures
[57]. To this end, genomic sites with higher intrinsic BSP
(lower stability) may potentially exhibit a higher preva-
lence of cancer-related genome alterations, as compared
to sites of lower intrinsic BSP (higher stability), should the
germline and cancer-linked somatic mutations share com-
mon mechanisms [54]. Although the sequence context
signatures of cancer mutations and their variation across
different cancer types is out of the scope of the present
work and is covered in detail elsewhere [57–62], here we
examined the simple relationship between our calculated
germline BSP values and the observed cancer-associated
somatic mutations accessed via the annotated COSMIC
database of somatic mutations in cancer [63] (Methods).
Since the Trek data are for the core neutral substitu-
tions, we restricted the analysis to the non-coding and
non-polymorphic (not identified as SNP) point mutations
(6 mln) in cancer. By mapping these sites to the human
genome and retrieving the sequence-context information

Fig. 7 Sequence-context dependence of the rcorei,N basal substitution propensity (BSP) constants. a–h Sequence logos [55] are shown for all the
unique 7-mer sequences grouped by the central base type (columns) and the category of the BSP range the sequences fall in (rows, BSP range is
shown in byr−1 rate constants). The y-axes in the individual sequence logos show the information content in bits. The x-axes outline the
neighbouring base positions relative to the central base. For each sequence, the BSP of the central base (i) depicts the sum of the core rate constants
for the substitutions to the three other (non-i) bases, rcorei,N = rcorei,b2 + rcorei,b3 + rcorei,b4 . As can be seen from the plots, the bases A and T are highly mutable
when the neighbouring positions are enriched in the same, A and T, bases (compare the logos a and d with e and h). The adjacent enrichment in A
increases the BSP of C (b), and decreases the BSP of G (g) bases. Conversely, the adjacent enrichment in T increases the BSP of G (c) and decreases
that of C (f) bases. Note, that our data are for rcorei,N , thus independent from the methylation-driven increased mutation rates in CpG dyads [12–14]
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(7-nt long sequences centred at the mutation points), we
processed the data with Trek mapper and obtained the
BSP (rcorei,N ) profile for the non-coding sites detected in
human cancer. The outcome in Figure S11 in Additional
file 1, overlapped with the whole-genome BSP profile,
shows that stable sites in the human genome, assigned by
the Trek mapper to have rcorei,N below 1.13 byr−1, are signif-
icantly less likely to undergo somatic mutations in cancer.
Like many other disease-causing mutation sites [64], most
of the sites that are highly enriched in cancer (Figure S12a
in Additional file 1) are CpGs [65], which, even without
accounting for the methylation driven increase [12–14]
of the mutation rates, show high basal mutability [66].
However, Figure S12b, c in Additional file 1 demonstrates
the discussed trend in the 7-mer cancer enrichment ratio
(Methods) vs. BSP dependence even when all the CpG
sites are removed from the analysis. Furthermore, while
investigating the same relationship in different varieties
of cancer (as classified based on the primary tissue and
primary cancer types, see Methods) we can see that the
trend is mostly in place for the 11 cancer types where
we have enough data on non-coding somatic mutations
(Fig. 8), with the only exception being the oesophageal
carcinoma (Fig. 8e, l). The latter deviation might stem
from the greater role of carcinogen driven mechanisms of
somatic mutations in a tissue (oesophageal) more exposed
to external carcinogens.
Overall, the results show that the intrinsic BSP of differ-

ent sites in DNAmay contribute to their absence/presence
in pathological genotypes. In particular, we observe that
7-mers with low germline BSPs of the central base are rel-
atively depleted in cancer-linked somatic mutation data
(Figure S12 in Additional file 1 and Fig. 8). They present
a cancer enrichment ratio that is smaller than 1, whereas
for the unstable 7-mers, the enrichment ratio, on aver-
age, tends to 1, meaning that their presence in cancer
is overall comparable to the one in the whole genome.
Focusing on the average trend (red lines in Fig. 8) that
does not expand to the k-mers with > 1 cancer enrich-
ment ratio, we cannot comment about the behaviour of
the sites of higher mutability in cancer by the present
work. Those could potentially be better reflected in
the cancer mutational signature analyses done by others
[57, 60, 61]. Our results, however, further outline the
potential role of the general imbalance in repair machin-
ery in determining the accumulation of somatic mutations
in cancer, where the mutations are originally caused by
errors in replication that possibly emerge viamechanisms
more or less common in somatic and germline cells [54].

The relation between the Trek rcorei,j and germline mutation
rates
Since the rates of point mutations can be indirectly
estimated by determining the rates at which neutral

substitutions accumulate in a genome [5, 51, 67], (also
see Box 1 in [68]), and, we have applied stringent cri-
teria for filtering out L1 positions with a potential to
be non-neutral, our Trek rcorei,j substitution rate con-
stants may serve as contributory estimates for germline
mutation rates (especially for the relative mutation rates
across individual base conversions). The Trek method
complements previous studies on the germline muta-
tion rates [5], and retrieves rate constants (per site, in
time domain, byr−1) in a single genome manner, where
all the detected substitutions in L1 remnants (their neu-
tral positions only) retrieved from a single genome have
accumulated while evolving in multiple (39,894) copies
within a lineage of a single organism. This may have a
potential to minimise fixation biases and further eliminate
biases attributed to the change (mutations) in background
mutagenic and reparatory machineries, from an individ-
ual to individual, when comparing data from multiple
genomes. Taking into account the singleton composi-
tion of the unmasked human genome (Additional file 2)
and the rsbi,j constants for the individual transitions and
transversions brought in Fig. 3, as estimated through Trek
method, we can provide a new estimate for the overall
germline mutation rate for the human genome to be 1.176
mutations per site per billion year for the used reference
human genome. This makes 2.35 × 10−8 mutations per
site per generation, assuming 20 years of average gen-
eration span [2]. Interestingly, the value is slightly lower
than the ∼2.5 × 10−8 estimate [2, 5, 67, 69, 70] based on
phylogenetic-based approaches, which can be attributed
to the more aggressive elimination of biases built in the
Trek design (see above). However, the estimate is still
greater than the more recent 1.2 × 10−8 to 1.45 × 10−8

evaluations from pedigree-based studies [71–74], known
to be free from background recombination influence but
highly dependent on the paternal age [75]. Less so for the
relative values of the rates for individual base-conversions,
we expect the absolute values in Trek to be dependent on
the absolute timing of the used five subfamilies of L1 ele-
ments. Although the latter reliancemay be the cause of the
relatedness of the Trek estimate to the phylogeny-based
ones, our estimate is still a useful addition to the ongoing
debate on calibrating the average germline mutation rates
[76–78].

Conclusions
We have employed a single-genome approach (Trek) that
reveals the core (rcorei,j =rsbi,j + δrsri,j) component of the spon-
taneous single-nucleotide substitution rates and basal
substitution propensity constants (rcorei,N ) for the human
nuclear genome (Figs. 2 and 3). Although the mobile
DNA elements have been used before [20, 40, 46, 79]
for estimating averaged substitution rates, the increased
quality of the human reference sequence and the detailed
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Fig. 8 Enrichment of 7-mers with varying BSPs in somatic mutation sites linked to different cancer types. a–k Each point in the plots corresponds to
a unique 7-mer sequence. All the 7-mers that had either C or G of a CpG dyad at the centre were excluded from the plots representing the zoomed
[0, 3] byr−1 range of BSPs. The plots (a–k) show data from 11 cancer types, with their primary tissue and primary cancer types indicated at the
top-right corner of each plot. The red lines in (a–k) represent the Lowess [87] smoothing fits, outlining the decrease of the cancer enrichment ratio
with the decrease in BSP. The numbers at the top-left corners of the plots show the slopes of the linear fits (not shown) for the data points below
the 1.3 byr−1 (vertical line), where the depletion of stable k-mers is the most pronounced. The linear model slopes coming from all 11 cancer types
are shown in (l) for comparing the extent of the cancer enrichment ratio vs. BSP dependence across the analysed cancer types

subfamily divergence studies for the L1 elements [36–39]
done during the past decade enabled the construction of
a specific direct method for the single-genome retrieval
of the core rcorei,j rate constants at a single-nucleotide
resolution, while also accounting for the comprehensive
short-range context effects beyond the previous estimates
for the +1/-1 base effects [35]. The retrieval of our rcorei,j
data in a single-genome manner adds additional value,
since it ensures the absence of potential bias present a) in
the comparison of the genomes of different species due
to the differences in the molecular machinery (presence
of mutations in the respective genes) that influence the
overall mutation rates, and b) in the SNP-counting based
methods that rely on sites where the visible polymorphism
may contain significant selection bias.
Our context-dependent rate constants were then used

to drive the equilibration of a random DNA sequence
(Fig. 4). The resulting DNA had k-mer (up to 7) contents
in better agreement with those of the human genome, as

compared to the analogous contents from the calculations
based on the singleton substitution rates. The calculated
basal substitution propensities revealed motifs that are
prone or resistant to substitutions (Fig. 7), and confirmed
the presence of a link between core substitution rates in
the germline and the somatic mutations in cancer, outlin-
ing possible commonalities in the mechanisms of muta-
tions at both levels (Fig. 8). The discussed parallel between
the Trek rcorei,j substitution rates and the germline muta-
tions makes the observed link with the somatic mutations,
inferred from a cancer database, be more logical.
We have become aware of a recently published paral-

lel study [80], where the authors revealed the context-
dependent mutation probabilities by analysing the vari-
ation reflected in the multiple genomes of the 1000
Genomes Project [81, 82]. By arriving to the CAAT muta-
ble motif (Fig. 7a) and outlining the importance of the
heptameric context (Figure S5 in Additional file 1) in
explaining the mutational patterns, the work provided
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means to additionally validate part of our results by com-
pletely different means. Appealingly, the Trek method
retrieves rate constants (in time domain, byr−1) in a
single genome manner (see above). Besides the potential
minimisation of fixation biases, this may provide an
opportunity to detect some of the biases attributed to
the change (because of mutations) in background muta-
genic and repair machineries, from individual to individ-
ual, when comparing two or more genomes. In particular,
Fig. 9 demonstrates that neutral substitution probabili-
ties may be elevated in one population as compared to
the other. The difference was detectable owing to the
multi-genomic analyses within each population done in
[80]. Trek may thus serve as a single-genome independent
and complementary method to assess inter-individual and
inter-population variation of the substitution rates, and
retrieve the context-dependent rates for species with only
single sequenced genome available.
The extended set of core substitution rate constants

and the associated program we report may enrich our
resources and potentially help advance our understanding
of genome dynamics, with possible implications for the
role of random substitutions in the emergence of patho-
logical genotypes and the neutral evolution of proteomes.

Methods
The human reference genome sequence was taken from
the Ensembl database (www.ensembl.org), and was of
the version hg19/GRCh37. The positions and span of
the retrotransposons were taken from the output of
the RepeatMasker [83] processing, accessed through the
UCSC genome database (www.genome.ucsc.edu). The
repeat annotations were those corresponding to the ver-
sion of the used human RefSeq genome. The R [84]
programming language (www.r-project.org) was used for
all the consecutive analyses. Most of the computations
were performed on the available Linux workstation and
computing cluster facilities hosted at the Department
of Chemistry, University of Cambridge, and the Cancer
Research UK Cambridge Institute. The specific details
on the employed methods are brought below, with the
general flow and the reasoning behind the approach pre-
sented in Results and discussion.

Revealing the core substitution rate constants
All the remnant sequences of the selected L1 subfamilies
(Fig. 1, Table S1 in Additional file 1) were first aligned onto
the 6064 nucleotide (nt) reference sequence. As the refer-
ence, we took the consensus sequence of the human L1Hs
retrotransposon (Fig. 2a, b, Figures S1 and S2 in Addi-
tional file 1). The alignment was done in a pairwise man-
ner with high end-gap penalties (“overlap” mode) that,
while allowing insertions and deletions, did not severely
break the queried sequences for false mappings with a

Fig. 9 Agreement between the 7-mer context-dependent Trek rate
constants (in byr−1), determined in a single-genome manner, and the
context-dependent substitution probabilities from the 1000 Genomes
Project. a–c The correlation plots are shown for the substitution
probabilities inferred [80] from three different (African, European and
Asian) populations [81]. Only 7-mers with data present in both works
were used for the comparisons. Overall, the plots highlight the good
agreement between the two methods, and show the variation in
substitution probabilities across different populations. This variation
may be caused by genetic differences in those populations affecting
genes/proteins involved in the background mutagenic and repair
machineries, thus altering the spontaneous mutation rates

www.ensembl.org
www.genome.ucsc.edu
www.r-project.org
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better global alignment score. R [84] with the Biostrings
library for alignment was used. After the alignment, all
the relevant substitution fractions were collected for each
position in the five L1 subfamilies reporting on a specific
time epoch (Fig. 2b, c). For example, if the position i in the
reference sequence was G (b1), the substitution rate con-
stants were calculated for the G→A (b1→b2) transition
and G→C (b1→b3), G→T (b1→b4) transversions. First,
the base fractions were calculated for five time-reporting
L1 subfamilies; i.e. to get the fraction of substitutions
accumulated in ∼20.4 myr (age of L1PA5 [37]), all bases
in L1PA5 remnants that were precisely mapped on the ith
position of the reference sequence were counted, and the
fractions of G, A, C and T bases retrieved (Fig. 2c). Here,
we applied one of the robustness checks (1st stringency
criterion) and made sure that the fractions were estimated
if at least 700 mapped bases were present for the ith posi-
tion in each time-reporting subfamily (Fig. 2b, Figure S1
in Additional file 1).
The acceptability of taking 700 as the minimum num-

ber of L1 remnants mapped onto a given ith position of
the L1 reference sequence, while retrieving substitution
rate constants, was checked via the following test. We
divided the L1 sequence pool into two and retrieved the
substitution rates twice, in each case using the L1 rem-
nants from the halved pool only. This resulted in two
sets of position-specific rate constants, however, with the
dataset division resulting in a less number of positions
that passed the 700 threshold and the other filtering cri-
teria described below. The high correlation between the
two sets (Pearson’s R > 0.9), demonstrated the validity
of 700 as a threshold. The high correlation held when
decreasing the threshold to 500, decaying after. We have,
however, adhered to 700 to ensure the quality of the final
values.
We also aimed at calculating such substitution rates for

only the positions where the substitutions are neutral and
not specifically selected for or against (2nd stringency cri-
terion). In other words, the position should not be a poly-
morphic or a subfamily speciation-defining nucleotide.
We filtered out such cases by ensuring that any eligi-
ble ith position had the same nucleotide of the reference
sequence as its most prevalent variant with a minimum
of 80% occurrence in all subfamilies (Fig. 2c, Figure S1 in
Additional file 1).
The 80% threshold was taken from the following consid-

eration. The average crude single-nucleotide substitution
rate is noted to be 12.85 × 10−9 substitutions per site
per generation [4]. Assuming an average generation length
of 20 years [2], the substitution rate constant in a time
domain can be crudely approximated as 0.64 byr−1. In
the course of 20.4 myr (the age of L1PA5), this should
result in only a 1.31% substituted base fraction at a given
site, caused by the average spontaneous substitution rates.

Therefore, by assuming a threshold of 80%, we allow up to
15 times the variation of the rates from the average esti-
mate, which is a safe range [4] for the direct estimation
of the single-nucleotide substitution rates and their core
variation.
Having the substitution fraction data, from five different

ages and for three (b1→b2, b1→b3, b1→b4) possible sub-
stitutions at the position i, allowed the fitting of a linear
model via the least squares methodology for the fraction-
versus-time dependence for each substitution separately
(Fig. 2d). If the data, hence the fitted line, were of high
quality, the slope was expected to represent the rcorei,j sub-
stitution rate constant. We applied the final robustness
filtering at this stage, by making sure that the rates were
calculated for only the cases where the time correlation
of the substitution fractions in Fig. 2d had greater than
0.7 Pearson’s correlation coefficient (3rd stringency cri-
terion, Figure S1 in Additional file 1). This ensured that
the retrieved fractions of the substitutions comprised of
only the time-accumulated substitutions, rather than of
targeted substitutions during the active life-span of the L1
elements, before their silencing.
Please note, however, that the correlation coefficients

in most of such time correlations that passed the whole
Trek procedure were substantially higher (the observed
Pearson’s correlation coefficients were centred at 0.92
with 0.07 standard deviation). Furthermore, the resulting
slope (rate constant) estimates had significantly high t-
values, averaged at 6.2, showing that the standard error in
estimates was, on average, 6.2 times smaller than the esti-
mated value. The individual t-values are presented in the
Additional file 2 along with the rate constants.
The procedure was done for all the 6064 positions in

the L1 reference sequence, except the positions 5856–
5895 and 6018–6064, close to the 3’-end (Figure S2 in
Additional file 1) that engulf low-complexity G-rich and
A-rich sequences correspondingly, prone to alignment
errors.
One of the reasons for the usage of only the young L1

subfamilies (spanning 20.4 myr age) was to minimise the
potential error in rate constant determination in the Trek
procedure caused by repeated substitutions hitting the
same position during the considered period of the sub-
stitution accumulation. The effect is indeed negligible for
20.4 myr span, as we can estimate using the above men-
tioned 0.64 byr−1 value [4] for the average i→j substitu-
tion rate constant, r. Since the rate constant is sufficiently
small to induce only a small δfj change in substituted base
fraction during the δt = 0.0204 byr (20.4 myr) time period
(see above), we can equate the δfj change in the fraction of
the base j (at the given position that had the original base i
identity in a large population of homologous sequences) to
the p ≈ δfj ≈ rδt substitution probability within δt period.
We can thus make a crude estimation for the probability
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of the second substitution to another, k �= j, base happen-
ing at the same position to be (rδt)2, which is the product
of individual substitution probabilities assuming that the
rate constant does not change from our average estimate
r across those two substitution types. We can permit this
for the sake of the back-of-the-envelope estimation of the
order of the effect expected from the repeated substitu-
tions hitting the same site within 20.4 myr period. To
this end, the δf appj apparent change in i→j substitution
fraction that we would observe by neglecting the addi-
tional j→k substitution, would underestimate the more
realistic δfj and be equal to δf appj =rδt-(rδt)2, as we would
not count the j bases that emerged but became addition-
ally substituted by k. Hence, the corresponding apparent
rate constant that neglects second substitution would also
underestimate the actual value r, and can be expressed as
rapp=δf appj /δt=(rδt-(rδt)2)/δt=r(1-rδt). This means that
the underestimation of the actual rate constant would be
by [ r-r(1-rδt)]×100/r=100 × rδt %. Putting 0.64 byr−1

for r and the 0.0204 byr for δt, we can expect only 1.3%
contribution to rate constants from the repeated second
substitution at the same position within 20.4 myr. Since
some of the other non-j bases could revert to js and bal-
ance the underestimation of the δfj fraction, the error
could be even smaller. This shows that repeated substi-
tutions could be neglected in our 20.4 myr time-scale.
Furthermore, the validity of the rcorei,j rate constants (Fig. 3)
was further checked through the independent analyses
reflected in Figure S3 in Additional file 1 and Fig. 9.

Finding the influence range of neighbour nucleotides
We have used gradient boosting machines (GBM) [48,
49] to elucidate the effective range for the core sequence-
context effects. This was achieved by developing testmod-
els to evaluate the predictive strength of only the neigh-
bouring bases in defining the core substitution rate of
the central base. Tree-based gradient boosting machines
(GBM) are a class of machine learning methodologies
that produce strong regression or classification models by
creating an ensemble of weaker models. The technique
consecutively adds weaker models in the forms of decision
trees that aim to reduce the residuals of the predictions
[48, 49]. It was used as implemented in the gbm library
for R. For each i→j substitution type, all the found Trek
data were taken without the possible outliers, which were
filtered by allowing only the usage of the values that were
within the 1.65 × standard deviation range (keeps ∼90%
data if normally distributed) of the constants in a given
substitution category. The sequences were then processed
to produce pos/bi decoupled features that were associated
with the relative adjacent positions (pos, - for upstream
and + for downstream positions) and their possible four
bi base types. Those features took values 0 or 1, depend-
ing on whether the base at an associated relative position

was of the bi (1) or any other base type (0). For instance,
if we want to develop a model accounting for only a single
upstream (pos = −1) and a single downstream (pos = +1)
nucleotides, hence predicting the substitution rates for
different 3-mers, where the central base is the one that
mutates, then we would produce 8 pos/bi features for the
GBM fitting. There, 4 binary features (-1/A, -1/C, -1/G
and -1/T) would describe whether the upstream -1 posi-
tion is of base type A, C, G or T, and 4 binary features
(pos/bi) would describe the same for the downstream +1
position. We built the models using 3-, 5-, 7-, 9-, and 11-
mers, thus accounting for one, two, three, four and five
upstream and the same number of downstream neigh-
bour bases (Figure S4 in Additional file 1). The absence
of the coupling in the binary features, unlike in the case
where, for instance, one employs only two binary features
per 4 states, enabled us to also investigate the predictive
significance of each nucleobase identity at a given neigh-
bouring position, which was useful in deciding against
the construction of more complex machine learning mod-
els (see below) using additional features with higher level
of abstraction for the sequence information (overall base
content, sequence-derivative properties). The GBMmod-
els were then fitted by systematically trying different per-
mutations of the tuning values [49] for the number of
trees (50-7500), interaction depth (1-10), shrinkage (0.001,
0.01 and 0.1), the number of minimum observations per
node (1-28) and the bag fraction (0.25-0.65). The optimal
combinations of the tuning parameters were found per
substitution type and sequence length, via a 16-fold cross
validation repeated 7 times. The found best parameters
are accessible in the Additional file 2, and the predic-
tive performances of the best models, from the repeated
cross validation studies, are presented in Figure S5 in
Additional file 1. To make a predictor of rcorei,j based on a
sequence only, we, however, found it much better to use
direct averaged values coming from the proposed Trek
methodology for each k-mer, rather than the GBM mod-
els, as the Trek values are already well averaged across
multiple occurrences of the same sequence in different
loci of the human genome (Figs. 1, 2 and 3, Figure S3 in
Additional file 1). Furthermore, the overall poor perfor-
mance of the decision-tree-based GBM models implies
that the influence of the immediate context is highly
non-additive and non-Bayesian, which is expected tak-
ing into account the nature of the core context-dependent
mutations. The latter reflect the intrinsic short-range
sequence properties, interactions and recognition with
the overall mutagenic and repair machinery present in
a given organism. There, the whole sequence at a cer-
tain small (< 10 nt) scale [9] is what likely defines the
interaction [11], and it is hard to represent such effects
through even smaller-scale constituents linked with each
other at a certain dimension. The direct model-free
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approach used in our Trek mapper methodology (see
below) thus seems preferable in mapping the rcorei,j rate
constants throughout the human genome. To this end,
the GBM models here had a sole purpose of identifying
the optimal range of influence for accounting the neigh-
bouring nucleotides. The optimal range was found to be
captured, on average, by a 5-7-nt long window (Figures
S4 and S5 in Additional file 1) which is in an excellent
agreement with the prior < 10 nt estimate [9–11, 44,
50]. We thus used the maximum 7-nt length to strat-
ify the Trek data for the further model-free mapping
on any provided sequence, including the whole human
genome.

Mapping the Trek substitution data
We developed an open source Trek mapper program. For
each i position in a query sequence (Figure S6 in Addi-
tional file 1), the program looks at the bases i − 3 to
i + 3. If the exact 7-mer, with the associated rate con-
stant values, is not available in the Trek database, the
program reduces the size of the sequence to 5, by con-
sidering i − 2 to i + 2 positions, or, if necessary, to 3- or
1-mers, until an exact match is found in the database. This
would mean that some reported substitution rates would
come from the actual triad data. In any case, about half
will come from pentads and some from heptads, account-
ing for more precise sequence-context information (see
Results and discussion for the numbers). A few will orig-
inate from the fully averaged single-base (1-mer) Trek
rates. For each unique sequence in the discussed 7-, 5-,
3- and 1-mers, if the k-mer appears more than once in
the reference L1 sequence, of course with different neigh-
bours at the positions out of the k-mer range, we average
the Trek values by taking the median. For instance, the
rG,A substitution rate constant in the 3-mer AGT rep-
resents the rate averaged across all the appearances of
AGT in the L1 reference sequence, which would nor-
mally be with varying other neighbour bases, out of the
3-mer range. The rG,A in AGT will therefore represent the
average rate constant across all the representatives of the
significant range, the NNAGTNN 7-mers, present in L1,
where N can be any of the four bases. In the same way, the
substitution rate constants for the single bases (1-mers)
can be considered as fully averaged across all the possible
neighbour effects in NNNGNNN sequences. Our algo-
rithm therefore makes the most of transposon exposed
substitution rate data of the human genome, returning the
best possible values inferable from our Trek database and,
where uncertainty is present, returning the best averaged
values for a shorter context range. Furthermore, we have
enabled the usage of symmetrized Trek parameterisation,
assuming an overall strand-invariance of the substitution
rates. In the latter case, the complementary rate con-
stants of the central bases in two reverse complementary

k-mers were equalised. For example, the G→A substitu-
tion rate constant (r1) in the 3-mer AGC was set equal to
the complementary C→T rate constant (r2) in the reverse
complementary GCT. The data equalisation was done in
the following way: if both r1 and r2 were of the same
quality accounting for the whole sequence-context infor-
mation in both 3-mer variants, then both values were
set to (r1 + r2)/2; however, if one of the rate constants
was determined with a better quality, since the full 3-
mer data for the other case was missing and the 1-mer
average was used as a replacement, then the rate con-
stant of the better quality variant was assigned to both
r1 and r2. Accounting for the strand symmetry improves
the results of the validation studies, further refining the
substitution rate constant values and increasing the cover-
age of longer k-mers in the Trek database. The described
open source program, along with the associated data can
be accessed through the http://trek.atgcdynamics.org web
page. Future improvements in data and the program,
through extending the types of mobile DNA in the Trek
procedure, will be reflected on the same web site. The
Trek mapper server application was written in R, using
the Shiny library and server backend (http://shiny.rstudio.
com). The stand-alone program, supporting both graph-
ical and programmatic (terminal) interaction and multi-
processor computing, can be obtained from the same web
page, to be used for larger projects and genomes.

Equilibration of a randomDNA sequence with Trek rates
A 5 million (mln) nt sized random sequence (in silico
“genome”) was created with the initial A, T, G and C
base contents set to 20, 20, 30 and 30% correspondingly,
hence with 60% genomic G+C content. The length was
selected to cope with the finite computational and time
resources, though operating on lengthier sequences will
not change the outcome of the calculations, since the cap-
tured sequence-context effects are within 7-nt window.
We first calculated the probabilities of all the possible sub-
stitution in this random sequence, which basically meant
the assignment of three substitution rate constants per
position in the genome, describing the conversion into
the three bases other than the base already present in
the respective position. This was done using the Trek
mapper described above. Next, at each step, we sampled
5000 substitution weighted by the calculated 3 × 5 mln
rate constants. We then identified those 5000 positions
and the corresponding substitution types that were sam-
pled to happen (Figure S7 in Additional file 1), performed
those substitutions, and, updated the probability values
via the Trek mapper. Repeated multiple times, the process
evolved the sequence ruled by the core spontaneous sub-
stitution rate constants that are sensitive to the changes in
the sequence composition at the immediate vicinity in the
genome (Figs. 4, 5 and 6, Figure S8 in Additional file 1).

http://trek.atgcdynamics.org
http://shiny.rstudio.com
http://shiny.rstudio.com
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The same simulation was also done by using the substitu-
tion rates averaged to singletons only, thus with no context
dependence (Fig. 6).
For the comparison of the simulated sequence at equi-

librium with the real human genome (RefSeq), we calcu-
lated the fractions of different oligomers (k-mers) in both
sequences (Additional file 2). The k-mer contents of the
human genome were calculated by sliding a window of
size k (from 1 to 7) and counting the occurrence of each
4k unique sequence. We used a direct calculation of the
lexicological index [85] of a string to increase the compu-
tational efficiency of the k-mer counting. Although, data
from the masked human genome were used in the k-mer
analyses to rule out any bias from the presence of the
same L1 elements in the object of application of Trek data,
the comparison of the masked and unmasked genomes
showed only negligible differences in both single base and
short k-mer contents. If, however, we consider only the
L1 elements, the k-mer content in L1 is markedly differ-
ent from the rest of the genome (Figure S9 in Additional
file 1), additionally signifying the absence of circularity in
our procedure and results.

Basal substitution propensity at cancer-linked sites
The basal substitution propensities were defined and
retrieved for the human genome as presented in the
Results and discussion (Fig. 7, Figure S10 in Additional
file 1). We took all the non-coding somatic point mutation
data associated with cancer from the COSMIC database
[63] (http://cancer.sanger.ac.uk/cosmic, NCV dataset
accessed in February, 2015). Since our Trek rate constants
are for the spontaneous core substitutions, we only con-
sidered the sites that were also not declared as known
SNPs (the status was present in the NCV dataset). This
was to ensure that we excluded sites where an active poly-
morphism is potentially encouraged by natural selection.
About 3.7% data from the remaining set of cancer-linked
somatic mutations were duplicates, with no differences
found in genomic location and mutation types. We
removed those, keeping only the single first-encountered
copies of such entries (Figure S11 in Additional file 1).
The resulting data contained 5,984,711 mutation entries.
The cancer enrichment score (Figure S12 in Additional

file 1) for a given k-mer sequence was calculated by taking
the ratio of the occurrence fractions, calculated in (numer-
ator) only the cancer-linked sites (where the linked base
is the central one in the k-mer) and (denominator) in the
whole repeat-masked human genome (Additional file 2).
We next repeated the above analysis by examining non-
coding somatic mutations from different types of cancer
(Fig. 8), as guided by the primary tissue (primT) and
primary cancer (primC) types recorded in the COSMIC
database. To stratify data, we examined the primT:primC
pair as a cancer type identifier for each mutation.

The data contained 29 unique primT:primC pairs, of
which 11 had a substantial number of records (2,422,060
non-coding mutations for liver:carcinoma, 1,287,384 for
pancreas:carcinoma, 851,028 for ovary:other, 411,076
for kidney:other, 331,520 for oesophagus:carcinoma,
286,800 for haematopoetic and lymphoid tissue:lymphoid
neoplasm, 92,276 for breast:carcinoma, 79,342 for cen-
tral nervous system (CNS):primitive neuroectodermal
tumour/medulloblastoma, 69,721 for prostate:carcinoma,
62,714 for pancreas:carcinoid endocrine/tumour, 38,835
for lung carcinoma). This list was followed by 19,004
records with non-specified primary tissue and cancer
types, and substantially low number of records for the
rest (at or below ∼10 k records). We thus analysed the
results from the top 11 identifiers with the most number
of recorded somatic mutations.

Additional files

Additional file 1: Supplementary note, table and figures. Additional
supporting note, table and figures referenced in the text (Note S1, Table
S1, Figures S1-S12), as well as the detailed description of the Additional
file 2 content. The file is in the PDF format. (PDF 3307 kb)

Additional file 2: Supplementary numerical data. The raw data on the
substitution rate constants in the reference L1 sequence (data 1), the
resulting Trek database processed with (data 2) and without (data 3) the
strand-symmetry considerations, the k-mer content for the masked and
unmasked human genomes (data 4), the full set of 7-mer sequences with
the respective cancer enrichment scores and basal substitution propensity
values (data 5), and the GBM parameters that were minimising the error of
the tree-based test models (data 6). The file is in the plain TXT format.
(TXT 3266 kb)
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