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The genotype–phenotype (GP) map of RNA secondary structure links each
RNA sequence to its corresponding secondary structure. Previous research
has shown that the large-scale structural properties of GP maps, such as the
size of neutral sets in genotype space, can influence evolutionary outcomes.
In order to use neutral set sizes, efficient and accurate computational methods
are needed to compute them. Here, we propose a newmethod, which is based
on free energy estimates and is much faster than existing sample-based
methods. Moreover, this approach can give insight into the reasons behind
neutral set size variations, for example, why structures with fewer stacks
tend to have larger neutral set sizes. In addition, we generalize neutral set
size calculations from the previously studied many-to-one framework,
where each sequence folds into a single energetically preferred structure, to
a fuller many-to-many framework, where several low-energy structures are
included. We find that structures with high neutral sets in one framework
also tend to have large neutral sets in the other framework for a range of par-
ameters and thus the choice of GP map does not fundamentally affect which
structures have the largest neutral set sizes.
1. Introduction
Functional RNA molecules fold into well-defined structures and perform bio-
logical functions. Research on how these structures evolve has focused on the
secondary structure, i.e. the pattern of base pairing of folded RNA strands
(as illustrated in figure 1a).

For the evolution of RNA secondary structures, one factor has been shown
to be particularly important [7–9]: the neutral set size of a structure, which
quantifies how many sequences fold into that structure [9]. There are several
reasons why a high neutral set size can make it more likely for a structure to
evolve: for a given structure to fix in a population, it first has to appear in
the evolving population through random mutation and structures with high
neutral set sizes are more likely to be generated through random mutations
[7,9]. Even a structure with a selective advantage is only likely to be acquired
if it appears a sufficient number of times and a structure that does not
appear even once in the relevant time scale cannot evolve [9]. A second
factor favouring structures with high neutral set sizes is that they tend to be
more robust to mutations [10,11] and higher robustness can be selected for in
populations evolving at high mutation rates since it ensures that mutations
are less likely to be deleterious [12]. Thus, models predict that neutral set
sizes are crucial for the outcomes of evolutionary processes and this prediction
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Figure 1. RNA secondary structure folding model and minimum free energy (mfe) set size definition. (a) Structural features in a folded RNA molecule: the secondary
structure is formed by the formation of base pairs (red lines), with no pseudoknots (i.e. without crossing pairs) [1]. Throughout this paper, we follow the Turner free
energy model [2] (using the ViennaRNA [1] implementation) and thus assume that both Watson–Crick and GU ‘wobble’ base pairs can form. A set of adjacent base
pairs is called a stack (or stem). All other regions are unpaired or loop regions and further classified as hairpin/exterior/bulge/multi/internal loops. This description is
standard in the field (see similar schematics in [2,3]), except for minor differences in the naming of loop regions. (b) Each RNA sequence can fold into a number of
structures and the free energy of folding can be calculated for each of these structures with the Turner [2] free energy model. Here all structures with free energies
G≤−3.2 kcal mol−1 are shown for the sequence CAGAGGACUGCUCGCCACGCGCAAGAUAAUGCUUA as an example. The free energy G is computed
relative to the unfolded structure, i.e. the structure with no base pairs [4]. When computing neutral set sizes, it is usually assumed [5] that each sequence folds only
in its minimum-free-energy (mfe) structure (circled) and so there is a unique structure for each sequence (many-to-one map [5]). However, in practice several low-
energy structures will fold if they have similar free energies, and thus we can build a map, where each sequence folds into several low-energy structures (a many-to-
many map [5]). (c) Schematic for the mfe set: the mfe set of a given structure contains all sequences whose mfe structure matches the given structure (usually
referred to as neutral set, but here we use the term mfe set to distinguish it from the second neutral set studied in this paper, the low-energy set). Panel (b) is
adapted from [6].
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has been supported by data from functional RNA sequences
[7,8,11,13]: these data suggest that the functional RNA struc-
tures that have evolved in nature are structures with high
neutral set sizes [7,8,11,13], even when accounting for ther-
modynamic stability as a confounding factor [7]. Owing to
its relevance for evolutionary processes, several terms exist
for the neutral set size and related quantities: it has also
been referred to as phenotype abundance [7] or occasionally
neutral network size [11], but both of these terms are ambigu-
ous since some authors [5,14] use them synonymously with
neutral component size to describe the number of sequences,
which not only correspond to the same structure, but are also
connected by a network of neutral mutations.

To analyse the genotype–phenotype (GP)map and compute
neutral set sizes, we need a method of obtaining secondary
structures from sequences. For this, computational methods
are used, which implement the following model: each sequence
can fold into a number of structures (schematic in figure 1b). A
free energy value can be calculated for each of these structures
according to the Turner free energy model [2,15,16], as
implemented by the ViennaRNA package [1]. The free energy
depends on both sequence and structure [15]. A structure with
lower free energy is more likely to fold and so a common con-
vention is to assume that each sequence folds solely into its
minimum-free-energy (mfe) structure (e.g. [7–9,11,14]).

With this structure prediction method, neutral set sizes
for mfe structures, here referred to as mfe set sizes Nmfe, can
be computed by folding all sequences of a given length into
their mfe structures and recording how frequently each
structure is found [7], as illustrated in figure 1c. However,
this is only feasible for short sequences because the number
of all sequences of a given length L grows exponentially as
4L. Thus two methods have been developed, which generate
a sequence sample according to specific criteria, predict the
mfe structures in this sample and infer neutral set sizes
from these data [11,17]. These sample-based methods are
accurate [8,17] and so we will use the sample-based method
by Jörg et al. [11], referred to as the NNSE [17], as a reference
method in this paper. However, sample-based methods are
computationally expensive, with .� 103 structure predictions
per neutral set required even by the faster method [17].

Because of the computational cost associated with struc-
ture prediction, there is a demand for faster sample-free
methods which distinguish frequent structures with large
mfe set sizes Nmfe from rarer structures with small mfe set
sizes Nmfe directly from structural features such as stacks
and loops (as defined in figure 1a). Several approaches
address this gap: firstly, the contiguity statistic, which is
based on several structural features, including the number
of base pairs and the number of stacks [7], secondly the
two-versatility model, which only takes the number of base
pairs into account [14,18] and thirdly a simple structural indi-
cator, the number of stacks [8]. However, these approaches
are contradictory: a higher number of base pairs is positively
correlated with the computed mfe set size in one case [7], but
negatively in another approach [14,18]. In this paper, we will
thus revisit the connection between structural characteristics
and neutral set sizes and propose a new method, which is
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rooted in the free energy model of RNA folding. Previously
[6], we have found that stability values are linked to neutral
set sizes, suggesting that thermodynamic approaches could
be effective for neutral set size prediction. However, the
mean stability of a structure had to be estimated through
sampling and so a fast sample-free approach for neutral
set size prediction has to rely on free-energy calculations
instead of stability arguments. Therefore we follow concepts
developed for protein models in order to use free-energy cal-
culations for neutral set size predictions: for proteins,
England & Shakhnovich [19] estimated mfe set sizes Nmfe

by arguing that the neutral set size for a given structure A,
NA,mfe, is correlated to the number of sequences which have
A as a low-energy structure, even if not necessarily as the
mfe structure. We will refer to this quantity as the low-
energy set size N(G≤ x). There is some evidence that low-
energy set sizes are correlated with mfe set sizes in RNA
(electronic supplementary material of [13,20]), but here we
will use a different definition of the low-energy set size: we
define the low-energy set size NA(GA ≤ x) as the number of
sequences which fold into a given structure A with a free
energy GA lower than x. These sequences do not necessarily
have to fold into A as their lowest-energy (i.e. mfe) structure;
A can merely be one of several low-energy structures. This
definition was chosen because a simple free-energy inequal-
ity, GA ≤ x, determines if a sequence is in the low-energy set
of structure A and this will allow us to estimate low-energy
set sizes based on the free energy model. A central com-
ponent of this paper focuses on the connection between the
mfe set size NA,mfe and the low-energy set size NA(GA ≤ x)
in order to apply our low-energy set size predictions to mfe
set sizes.

Thus, several neutral set size definitions are used in this
paper with the following terminology: the neutral set size
in the GP map from sequences to their mfe structures (the
‘mfe map’) will be referred to as the mfe set size Nmfe. In
the mfe map each sequence corresponds to exactly one struc-
ture and so it is a many-to-one framework [5]. The GP map
from sequences to several low-energy structures on the
other hand (the ‘low-energy map’) is a many-to-many frame-
work [5] and neutral set sizes in this map will be referred to
as low-energy set sizes N(G≤ x). This definition has one free
parameter, the low-energy cut-off x. Estimates of these quan-
tities derived from our free-energy-based calculations or
other sample-free methods are denoted by a tilde, i.e. as
~Nmfe and ~NðG � xÞ respectively.

The low-energy set size, N(G≤ x), is important in its own
right because low-energy structures can be close in energy to
the mfe structure [21], or even within the resolution of the
energy model [22]. A given sequence can therefore fold into
several structures. This is not just an artefact of the thermo-
dynamic model: RNAs fold into several structures [23,24]
and this can be relevant for their function [23] and observed
in their evolution [25]. If low-energy structures matter in the
function and evolution of an RNAmolecule, then they should
be included in the neutral set size and thus the low-energy set
size would be a more appropriate way of quantifying how
many sequences correspond to a given structure and how
likely a given structure is predicted to evolve.

This paper thus analyses the relationship between mfe set
sizes and low-energy set sizes, uses thermodynamic argu-
ments to estimate low-energy set sizes and combines these
results into a fast and accurate method for mfe set size
estimates. This calculation will draw a direct line from free-
energy terms in the folding model to neutral set sizes and
thus, in addition to being useful for fast large-scale analyses
in the future, it provides insight into why the neutral set
sizes of some structures are orders of magnitude higher
than those of others. This analysis is performed for sequences
of length L = 35. We use a folding model without isolated
base pairs since this is likely to be more realistic [26,27].
Data for alternative sequence lengths and a folding model
with isolated base pairs are presented in the electronic
supplementary material (section S3).

The paper is structured as follows. Firstly, we compute
and compare low-energy set sizes N(G≤ x) to the correspond-
ing mfe set sizes Nmfe. Secondly, we estimate low-energy set
sizes ~NðG � xÞ based on the free energy model underlying
RNA secondary structure predictions. Finally, we synthesize
these concepts to predict mfe set sizes ~Nmfe and compare
the accuracy of our predictions to previous methods.
2. Results
2.1. Low-energy set sizes are correlated with mfe

set sizes
2.1.1. Low-energy set sizes
First, we will analyse the relationship between the established
mfe set size Nmfe and the low-energy set size N(G≤ x). The
low-energy set size N(G≤ x) has one free parameter, the
low-energy cut-off x, up to which structures are included in
the many-to-many framework. We will consider several
values for this parameter: x = 0 kcal mol−1 in figure 2a and
x =−7 kcal mol−1 in figure 2b. Data for a wider range of
cut-offs are included in the electronic supplementary material
(section S1.3) and support the qualitative trends in figure 2a,b.

Firstly, we find a linear trend on the log–log scale for both
values of x. This correlation is strong: the Pearson correlation
coefficient between the logarithms of non-zero set sizes is
0.79 for x = 0 kcal mol−1 and 0.84 for x =−7 kcal mol−1.
Thus, the low-energy set size and the mfe set size are
correlated on a logarithmic scale.

Secondly, the low-energy set size N(G≤ 0 kcal mol−1) in
figure 2a is greater than the mfe set size, Nmfe, for all struc-
tures in the sample. This is because all sequences with a
structure A as their mfe structure also satisfy the low-
energy criterion GA ≤ 0 kcal mol−1 since all mfe structures
are lower in free energy than the unfolded structure, which
has 0 kcal mol−1 by definition. Thus, NA(G≤ 0 kcal mol−1)≥
NA,mfe is guaranteed to hold for any structure A. For the
other cut-off (x = 7 kcal mol−1 in figure 2b), no upper or
lower limits exist. In fact, structures with a non-zero mfe
set size, Nmfe > 0, can have a zero low-energy set size,
N(G≤−7 kcal mol−1) = 0. This is true for about 4% of struc-
tures in our data. However, this value should be interpreted
only as an upper limit on the number of zero low-energy
set sizes because it is possible that for some structures,
where a small number of sequences with G≤−7 kcal mol−1

exist, these are simply not found with the RNA inverse
folding heuristics (as described in §5.2).

Thirdly, the gradients of the linear trends on the log–log
scale differ for the two values of x: the gradient is greater
than one for x = 0 kcal mol−1, whereas it is close to one for
x =−7 kcal mol−1. Thus, for Nmfe and N(G≤−7 kcal mol−1),
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Figure 2. The mfe set sizes NA,mfe (i.e. number of sequences with A as their mfe structure) for a structure sample are plotted against the corresponding low-
energy set sizes NA(G≤ x) (i.e. number of sequences with A as a low-energy structure for which GA≤ x). The low-energy cut-offs are: (a) x = 0 kcal mol−1

and (b) x =−7 kcal mol−1. Further low-energy cut-offs between −11 kcal mol−1≤ x≤ 0 kcal mol−1 are included in the electronic supplementary material (sec-
tion S1.3). (c) Heuristic: x = (1.5− nbp) kcal mol

−1, where nbp is the number of base pairs in structure A. The number of base pairs in each structure is indicated by
the colour and the black line indicates a one-to-one correspondence (x = y). A set of 5000 structures of length L = 35 is used—these were sampled from a full list
of valid structures as described in §5.4. The methods used to compute these set sizes are Jörg et al.’s [11] NNSE for mfe set sizes and a custom adaptation for low-
energy set sizes, as described in §5.2. This figure is adapted from [6].
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the non-zero values span ≈10 orders of magnitude, compared
to only ≈5 for N(G≤ 0 kcal mol−1). In the electronic sup-
plementary material (section S1.1), we model this
qualitative difference by using a Gaussian approximation
for the free energy distribution of each structure. Essentially,
we find that small structure-specific differences in the mean
of this distribution have a much bigger effect on the
number of sequences which satisfy the stricter free energy cri-
terion G≤−7 kcal mol−1 than the number of sequences which
satisfy the more lenient criterion G≤ 0 kcal mol−1.

Finally, we consider the number of base pairs, nbp, of each
structure, and identify another difference between the data in
figure 2a,b: for a group of structures with a fixed mfe set size,
Nmfe = a, N(G≤ 0 kcal mol−1) is highest for structures with a
small nbp, whereas N(G≤−7 kcal mol−1) is highest for struc-
tures with a large nbp. This observation agrees with
previous research, which has argued that the relationship
between the structural characteristics and set sizes can be a
trade-off between energetics and base pairing constraints
[28]. In our case this argument can be applied as follows:
on the one hand, base pairs can contribute stacking terms
and lower the free energy. Therefore, structures with a high
nbp are more likely to have sequences which satisfy strict
free energy criteria like G≤−7 kcal mol−1. On the other
hand, structures with a smaller number of base pairs have
a higher number of sequences which are at least compatible
with the structure [29]. Thus, the number of sequences
which meet a lenient free energy criterion like G≤ 0 kcal
mol−1 is higher for structures with small nbp.

2.1.2. Heuristic approximation of mfe set sizes
This brings us to the key question: if we want to estimate mfe
set sizes from low-energy set sizes, which cut-off x should we
choose? In the following, we will use a simple heuristic:
xheuristic = (1.5− nbp) kcal mol−1, where nbp refers to the
number of base pairs in a structure. This cut-off was chosen
to approximate Nmfe values with low-energy set sizes, as
described in the electronic supplementary material (section
S2.1). Figure 2c shows that this heuristic approximates Nmfe

well (Pearson correlation r = 0.93). Why a different cut-off is
used for structures with different numbers of base pairs is
discussed in the electronic supplementary material (section
S2.3): in brief, we find that the low-energy sequences for
structures with a high number of base pairs have an excep-
tionally high number of competing low-energy structures
and so there are many low-energy structures, but only one
of them can be the mfe structure. One can imagine that a
sequence with high GC content would be one example. To
compensate, the heuristic uses a stricter cut-off for structures
with a high number of base pairs.

It is important to emphasize that the heuristic is just a
method of approximating Nmfe by arguing that the number
of sequences with GA≤ xheuristic quantifies the energetics of
structure A is in a way that is relevant for the mfe set size,
NA,mfe. However, the heuristic does not suggest that the
sequences with GA≤ xheuristic for a structure A will have A
as its mfe structure. This point is discussed in more detail
in the electronic supplementary material (section S2.2).
An additional caveat is that about 2:1% of structures are
predicted to have NA,heuristic = 0 even though they have
NA,mfe > 0, but again this may be an artefact of inverse folding
heuristics.
2.1.3. Summary: low-energy set sizes and mfe set sizes
To sum up, we found that structures with large mfe set sizes
also tend to have large low-energy set sizes for a range of
low-energy cut-offs. However, the details of this relationship
depend on the cut-off and the number of base pairs in the
structure and therefore we constructed a heuristic to link
mfe set sizes to low-energy set sizes.
2.2. Low-energy set sizes can be estimated without
sampling

The link between low-energy set sizes, N(G≤ x), and mfe set
sizes, Nmfe, allows us to estimate mfe set sizes by predicting
low-energy set sizes, similar to existing work on neutral set
size differences for proteins [19]. Estimating low-energy set
sizes from the free energy model is simpler than estimating
mfe set sizes: it is easier to determine if A is a low-energy
structure for sequence s than to find out whether A is the
lowest-energy structure of sequence s. Thus, we will take the
Turner [2] free energy model of RNA folding and estimate,
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with some simplifications, how many sequences fold into a
given structure and satisfy the free energy criterion GA≤ x.

Since base pairs can only form between certain nucleo-
tides, not all sequences can fold into all structures.
Therefore, we can already exclude sequences which cannot
fold into A at all and thus start our analysis with the compa-
tible sequences [30] of A, which are the sequences for which A
is an allowed structure: since the compatibility of a sequence
with a structure only depends on whether the sequence has a
correct pair of nucleotides at each set of paired positions
(either a Watson–Crick or a wobble base pair), the number
of compatible sequences can be computed with a simple for-
mula: for a structure with nbp base pairs, it is given by [29]

NC,A ¼ 4L�2nbp � 6nbp : ð2:1Þ

The fact that a sequence is compatible with a structure is
a simple first step, but it says nothing about energetics. There-
fore, the key part of the calculation is determining which
fraction fA of compatible sequences meet the low-energy
criterion GA≤ x when folding into A.

We will begin with a brief overview of the method: we
work with the Turner free energy model [2], but make several
simplifications. In this model, the free energy GA is a sum of
free energy terms from loops, stacking interactions and dan-
gling ends/terminal mismatches. Free energy contributions
from loop regions are usually positive and thus destabilizing
[4]. Stacking terms are usually stabilizing and occur between
two directly adjacent base pairs (i.e. in a stack). Dangling
ends and terminal mismatches are free energy terms applied
to certain loop sites adjacent to base pairs and are also
usually stabilizing (as seen from the parameter tables in
[2]). The details and parameters for these terms in the
Turner free energy model can be found in [2].

We address each of these three free energy contributions
in turn to estimate how many sequences fulfil GA≤ x for a
structure A. First, we compute the free energy of loop regions
Gloop. We simplify this calculation by ignoring sequence-
dependent loop free energy contributions. With this approxi-
mation, the loop free energy only depends on the structure
(details in §5.5.1). Because Gloop is usually destabilizing, sta-
bilizing free energy contributions from stacks, dangling
ends and terminal mismatches are required to stabilize the
structure. These terms are sequence-dependent [2] and so
only some of the sequences which are compatible with a
structure fulfil the low-energy criterion GA ≤ x.

In our treatment of sequence-dependent terms, we will
start with stacking terms since they can have higher free
energy contributions. The sequence dependence of stacking
term is complex and depends on two adjacent base pairs,
but on average GU stacking terms are less stabilizing than
GC stacking terms (parameter table in [2]). Therefore,
depending on energetic constraints, it could be the case that
sequences only satisfy the low-energy criterion for A if they
have GC base pairs at all paired positions. However, it
could also be the case that any valid base pair at paired
positions is sufficient. This depends on free-energy consider-
ations and many structures are likely to lie somewhere
between those two extremes. For these structures, having a
GC base pair at a given position will make it more likely
for the full sequence to meet the low-energy criterion for A,
but it is not a strict requirement for there to be GC base
pairs at all paired positions for the low-energy requirement
to be satisfied. These different levels of constraints on the
sequence at individual paired positions can be used to esti-
mate the total number of sequences that satisfy the low-
energy criterion for A if we describe the different levels of
sequence constraints quantitatively: for this, we can use the
versatility framework by Manrubia and colleagues [14,18],
which we review in more detail in §5.6.1, and quantify the
constraints on base pairs by their versatilities. We argue
that imposing stricter constraints and restricting base pairs
to GC will decrease the versatility and lower the free
energy. We assume that this relationship between free
energy contribution and site versatilities is a linear one for
both base pairs and dangling ends/terminal mismatches
and use this approximation to estimate site versatilities.
Once we have estimated versatilities based on free-energy
arguments, we can use the known relationship between
versatilities and neutral set sizes from [14] to calculate
low-energy set sizes (details in §§5.5.2–5.6).

Thus, our method of estimating the low-energy set size
~NðG � xÞ is rooted in the Turner [2] free energy model of
RNA folding, but makes a number of approximations, for
example, by ignoring sequence-dependent terms in loop
regions and by assuming a linear relationship between
sequence constraints in stacks and their free energies. To
test if our method is accurate despite these simplifications,
we plot our low-energy set size predictions against reference
data from a low-energy adaptation of an established sample-
based prediction method, the NNSE by Jörg et al. [11], which
relies on the ViennaRNA [1] implementation of the free
energy model (figure 3): our predictions are highly correlated
with the reference data with a coefficient of determination of
r2 = 0.82 for x = 0 kcal mol−1, r2 = 0.67 for x =−7 kcal mol−1

and r2 = 0.73 for xheuristic. However, our estimates systemati-
cally underestimate the low-energy set size. One reason
may be that we do not perform a full combinatorial calcu-
lation of different ways in which a structure may be
stabilized, for example, by a combination of dangling end
and stacking terms, and thus miss some combinations of sta-
bilizing terms.

2.3. Comparison with existing methods for Nmfe
predictions

In the previous sections, we found a heuristic linking low-
energy set sizes N(G≤ x) to mfe set sizes Nmfe and con-
structed a method of estimating low-energy set sizes based
on free-energy arguments. In this section, we synthesize
these results to estimate mfe set sizes: we use the calculations
introduced in the previous section to estimate N(G≤ xheuristic),
where xheuristic = (1.5− nbp) kcal mol−1, and use the result as
an approximation to Nmfe.

A key advantage of sample-free methods—including our
method—is that they are much more computationally effi-
cient than sample-based methods: our method is about
three orders of magnitude faster than existing sample-based
methods (figure 4). Our new method is faster even than
our custom low-energy set size adaptation of the sample-
based approach by Jörg et al. [11], which only computes
free energies without identifying mfe structures, and is there-
fore faster than the original approach by Jörg et al. [11]. This
highlights the difference between sample-based and sample-
free approaches: our new method is sample-free and only
performs a single free-energy calculation per structure,
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Figure 3. New free-energy-based method for estimating the low-energy set size N(G≤ x). (a) Test of the new method ( y-axis) against reference data from a custom
adaptation of Jörg et al.’s [11] NNSE (x-axis) for x = 0 kcal mol−1. (b) Similarly for x =−7 kcal mol−1. (c) Similarly for the heuristic: x = (1.5− nbp) kcal mol

−1, where
nbp is the number of base pairs in the structure. Data for further values of x are shown in the electronic supplementary material ( figure S5). Tildes are used in the
notation to distinguish estimates (~NðG � xÞ) from the reference values (N(G≤ x)). We find a high correlation between the two methods on a log–log scale and this is
quantified by the coefficient of determination (r2) shown above the plot. Data for 5000 structures of sequence length L = 35 are computed, but structures with N(G≤
x) = 0 are not included. The black line indicates a perfect correspondence (x = y). Panels (a) and (b) are adapted from [6].
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whereas the low-energy adaptation of the approach by Jörg
et al. [11] calculates a free energy value for each sequence in
a large sequence sample, which contains of the order of
approximately 105 sequences [17]. The computational speed
of our new method is sufficiently high that we can estimate
the mfe set sizes for a full list of all 1.3 × 107 valid secondary
structures of length L = 35 (data in electronic supplementary
material, section S3.3).

To evaluate how accurate these fast predictions are, we
will test the accuracy of the mfe set sizes computed with
our method against reference data from the NNSE by Jörg
et al. [11]. Since existing sample-free approaches are also com-
putationally efficient, we will not only test the accuracy of our
method, but also compare its accuracy to existing sample-free
methods. In our analysis, we include both methods that pre-
dict neutral set sizes and methods that only distinguish
structures with high Nmfe from structures with low Nmfe,
without predicting the absolute value of mfe set sizes. In
order to compare such a range of methods with different
objectives, we will focus on how well each method is able
to distinguish structures with various Nmfe values and thus
our comparison is based on correlations between predicted
and reference values of mfe set sizes, rather than on absolute
Nmfe values. This analysis is performed for the following
existing sample-free approaches: the contiguity statistic by
Cowperthwaite et al. [7], the two-versatility model by Manru-
bia and colleagues [14,18] and a simple structural indicator,
the number of stacks, as suggested by Dingle et al. [8]. The
two-versatility model was built for neutral component
sizes, but García-Martín et al. [14] argue that it can be applied
to neutral sets for sequences of length L > 16. Additional
reasons why this is unlikely to matter for our results are
discussed in §5.3.
2.3.1. Broad structure sample
First, all four methods are tested on a broad sample of 5000
L = 35 structures (figure 5), which is constructed as described
in §5.4. Data from the established NNSE method by Jörg et al.
[11] are used as a reference. We find that our method per-
forms best (r2 = 0.68 for our method, followed by the
structural indicator identified by Dingle et al. [8] with
r2 = 0.38).

As discussed above, we cannot compare, how accurately
the different methods perform in predicting the correct absol-
ute values of neutral set sizes because two out of the three
existing methods only estimate relative neutral set sizes and
for the third method, we fitted the parameters on the data
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figure is adapted from [6].
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itself and not on a separate training set. However, it is still
useful to quantify the accuracy of our new method in absol-
ute terms: we find that the RMSD of the log10 ~Nmfe values
(as defined in [17]) is ≈1.2. This is consistent with what we
observe in figure 5: our method captures the trend and the
slope of the reference values, but there is some scatter
around this trend and additionally the log10 ~Nmfe values are
systematically predicted a little too low, as before for the
low-energy set sizes in §2.2. This can be remedied by
adding a simple constant offset to the predicted log10 ~Nmfe

values. We fit such an offset in the electronic supplementary
material (section S3.5.1) and this improves the RMSD to ≈1.0.

2.3.2. Structure samples with specific structural characteristics
So far, we have tested our new method on a broad sample of
foldable structures of length L = 35. Next, we will analyse
how the mfe set size depends on structural features (such
as numbers of stacks and base pairs) and whether the
sample-free prediction methods from above capture these
trends. To evaluate the role of structural features systemati-
cally, we need to account for the possibility that they are
correlated: for example the number of stacks is correlated
with the number of base pairs (Pearson correlation coefficient
of 0.53 in the sample of structures in figure 5) because each
stack consists of two or more adjacent base pairs. Therefore
we will analyse groups of highly similar structures, which
differ only in as few features as possible to minimize
confounding factors (figure 6).

First, the number of base pairs was varied, while the
number of stacks was kept constant (figure 6, rows
A and B). In addition to keeping the number of stacks con-
stant, we fixed the type and length of as many other
structural elements as possible—other than the number of
base pairs in a specific stack, only the exterior loops were per-
mitted to vary in length. We find that the number of base
pairs is linked to mfe set sizes with a variation of about
two orders of magnitude, but this influence is not monotonic.
For example in figure 6A1, the neutral set size increases with
the number of base pairs for small numbers of base pairs, but
decreases for high numbers of base pairs, with a maximum
mfe set size Nmfe at around four base pairs. The same quali-
tative behaviour is observed in figure 6B1, but with a
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Nmfe. The structure samples in all parts of the plot are derived by filtering the list of all valid structures, as described in §5.4: in rows A and B, all structures which
meet the description are included; in row C, a balanced sample was chosen with between 120 and 125 structures per number of stacks; and in row D, 500 structures
were chosen from all structures which satisfy the requirement. To reduce overlap of integer x-values, Gaussian variation was added, but this variation was limited to
±0.4 to ensure all x-values can be read off correctly. Tildes are used in the notation to distinguish sample-free estimates from the reference values from the sample-
based NNSE. This figure is adapted from [6].
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maximum at around six base pairs. This non-monotonic
behaviour is only predicted by our method.

Next, the number of base pairs was kept constant to study
variations in the number of stacks (figure 6, row C). We find
that a higher number of stacks is linked to lower neutral set
sizes, in agreement with [8]. The neutral set size differences
observed here are greater than those associated with base
pair differences: while structures with one stack have a
median mfe set size of ≈4 × 1016, structures with four stacks
only have a median mfe set size of ≈5 × 1011. It is notable
that neutral set size differences of this magnitude are found
in this sample, where all structures have the same number
of base pairs and thus the same number of compatible
sequences (according to equation (2.1)). The negative corre-
lation is predicted correctly by our method and the
contiguity statistic.

Despite the strong link between the number of stacks and
mfe set sizes, there is still a range of Nmfe values for structures
with a constant number of base pairs and stacks in figure
6C1. This indicates that loop types and lengths also play a
role and thus our next example focuses on loop length differ-
ences within a group of structures which consist of a hairpin
loop, an interior loop and constant numbers of base pairs and
stacks. We find that there is a weak anti-correlation between
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Nmfe and the combined length of the two unpaired regions in
the interior loop (figure 6D1). Our method is the only method
to predict this weak trend. Again, there is a high variance
around the trend, indicating that the details of the other
loop regions also play a role.

To sum up, our new free-energy-based method predicts
trends across a variety of structure samples. This is confirmed
when we plot the sample-free predictions in columns 2–4
against the reference prediction in column 1 (plots shown
in the electronic supplementary material, figure S10): for
each of the structural samples, our method has the highest
correlation with the reference data. It is important to note
that the trends observed in this section are not directly built
into our method—they emerge from our approximation of
the energetics of folding. An additional point to take away
from this section is that mfe set sizes can depend on a
number of structural characteristics and not all relationships
are monotonic. Moreover, the data in figure 6 emphasize
that the accuracy of different methods depends on the struc-
tural sample of interest. Thus, it is important to test new
methods on several test sets of structures. Therefore, the com-
parison between our new method and existing sample-free
methods is repeated for different sequence lengths and struc-
ture samples in the electronic supplementary material
(section S3.5): in particular, biological fRNA data constitute
a typical application for neutral set size calculations (e.g.
[7,8,11,13]) and so we use a dataset of fRNA sequences,
which was compiled by Weiß & Ahnert [17] and is based
on the fRNA database [32].
3. Discussion
3.1. Structural features and neutral set size
We found the number of stacks to be the structural character-
istic that is the strongest single indicator of neutral set size, in
agreement with Dingle et al. [8]. Our thermodynamic treat-
ment reveals why this might be the case. Firstly, a higher
number of stacks means that the structure has a high
number of short loop regions between stacks, which tends to
be energetically less favourable than arranging the same
number of unpaired sites in a small number of long loops
(data in the electronic supplementary material, section S3.2).
This argument agrees with work on proteins [33], where ener-
getically unfavourable features were shown to have a large
impact on neutral set sizes. Secondly, base pairs most effec-
tively stabilize a structure if they are arranged in long stacks,
where a higher number of stacking interactions are formed
for the same number of base pairs since stacking interactions
are only formed between directly adjacent base pairs.

In addition, our analysis of the non-monotonic relation-
ship between the number of base pairs and neutral set sizes
agrees with Fontana’s [28] description of a trade-off between
compatible sequences and energetics. For the number of base
pairs, we find the following trade-off: on the one hand, a
higher number of base pairs means that the number of com-
patible sequences is lower (as seen from equation (2.1)); on
the other hand, a higher number of base pairs can provide
stabilizing free energy contributions and enable a higher frac-
tion of compatible sequences to fold into the required
structure with low energy. Our work allows us to model
this non-monotonic relationship quantitatively.
3.2. Choosing a genotype–phenotype map definition
Since the minimum-free-energy criterion is not always
unique [22] and suboptimal structures are often close in
free energy to the minimum-free-energy structure [21], sev-
eral low-energy structures per sequence can be relevant
functionally [23] and in evolutionary processes [24,25]. There-
fore, realistic models of the RNA GP map should not restrict
themselves to the mfe structure for each sequence, but more
complex many-to-many models should be used, which
include several low-energy structures for each sequence.
Computing the low-energy set size instead of the mfe set
size is a key step towards understanding such a many-to-
many treatment and therefore the low-energy set size is
interesting in its own right.

As soon as we move beyond the mfe set size, we have a
free parameter that determines where the line between the
relevant low-energy structures and the remaining higher-
energy structures is drawn. In our analysis, this is the free
energy cut-off x and this parameter needs to be chosen
depending on the context: if a given molecule is able to per-
form its function even when it is merely one of many low-
energy structures, then the low-energy set size with a lenient
cut-off x would be appropriate. If, however, a structure needs
to be the mfe structure or have a certain Boltzmann frequency
in order to function correctly, then the mfe set size or other
models would be appropriate.

One key finding from our analysis is that the choices
made in selecting a GP map model and setting the cut-off x
have a much smaller impact than might be expected: we
found that mfe set sizes and low-energy set sizes with differ-
ent values of x are correlated, in agreement with previous
work on different low-energy set size definitions (electronic
supplementary material of [13,20]). Therefore qualitative
results, for example which structures have the largest neutral
sets, do not depend strongly on the exact definition of the GP
map, but instead hold for both the mfe map and the low-
energy map for a range of x. However, some quantitative
differences exist: for example, the phenotypic bias, i.e. the
difference in neutral set size between frequent and rare struc-
tures [9], differs for different definitions of the low-energy set
size (as seen from the different gradients in figure 2).

3.3. Correlations and prediction of absolute Nmfe values
In this paper, we followed Cowperthwaite et al. [7] and eval-
uated the quality of our predictions using correlations rather
than absolute values. This is sufficient for most applications:
for example, research on proteins often relies on contact map
traces and contact densities [34–36] as a proxy for neutral set
size, even though this does not give absolute neutral set size
values.

However, if absolute values were important, figure 5
suggests that even a single constant offset parameter b
could improve the agreement between the predicted
log10 ~Nmfe data and the reference log10Nmfe data. In general,
the best choice of the parameter b would be likely to
depend on the sequence length L, similar to the correction
parameter in a recent sample-based method, the site-
scanning method [17] and the parameters in a recent
sample-free method, the two-versatility model [14]. We intro-
duce such an offset parameter b in the electronic
supplementary material (section S3.5.1), and find that a
good choice is b≈ 0.05 × L− 0.6. When testing this offset on
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sequence lengths that were not used to fit b, we find that it
improves the accuracy of the predicted log10 ~Nmfe values:
with the correction, the neutral set sizes of structures of L =
100 can be predicted to within ≈1.5 orders of magnitude (≈
1.0 order of magnitude for L = 35 and L = 50, ≈1.2 orders of
magnitude for L = 70 and ≈1.5 orders of magnitude for L =
100). For L.� 50, this accuracy is close to that of a recent
sample-based method [17], but our free-energy-based
method is about three orders of magnitude faster, as shown
in figure 4.

More sophisticated fits might further improve the
agreement between the predicted log10 ~Nmfe data and the
reference log10 Nmfe data. However, for us to confidently fit
more sophisticated models for sequence lengths longer than
L = 35, we would need a better reference dataset of structures
and their neutral set sizes: currently, we rely on a dataset of
functional RNA sequences (originally from the fRNA database
[32], but here the compiled data from [17] are used). These
data are shown in the electronic supplementary material (sec-
tion S3.5). The advantage of the dataset is that fRNA structures
are a likely application of our new model. The disadvantage,
however, is that fRNA structures make up a biased dataset
since they have been found to be predominantly structures
with large neutral set sizes [7,8,11]. For this paper, we have
generated a broader dataset for intermediate-length sequences
of length L = 35 as well as datasets with specific conditions (for
example, a constant number of stacks) and relied on this data-
set throughout our analysis. However, even this dataset may
be biased due to its reliance on inverse folding heuristics (as
discussed in §5.4) and our approach is only feasible for short
sequence lengths since it relies on a full list of valid structures.
Future work should design methods to obtain such datasets,
both broad samples and samples with specific characteristics,
for longer sequences, for example by building on methods in
[37]. These would be useful for benchmarking neutral set
size prediction methods, but also as null models, against
which the neutral set size or robustness of functional RNA
structures could be compared.

3.4. Designability
One caveat of our method is that, like other sample-free
approaches, our method is not suitable for filtering out unde-
signable structures, i.e. structures which are not the mfe
structure for a single sequence. Whether a given structure is
undesignable is itself a complex theoretical problem [38].
However, in practice, this should not matter when applying
this algorithm to biological fRNA structures, for which it is
already known that they are ‘designable’.
4. Conclusion
In this paper, we focused on two neutral set size definitions:
firstly the mfe set size Nmfe (i.e. the number of sequences for
which the structure is the mfe structure) and secondly the
low-energy set size N(G≤ x) (i.e. the number of sequences
which fold into a structure with low energy, but not necess-
arily as the mfe structure). We found that low-energy set
sizes vary over several orders of magnitude, just like mfe
set sizes, and that the logarithms of low-energy set sizes
and mfe set sizes are correlated. The gradient of this corre-
lation and the number of outliers was found to depend on
the choice of low-energy cut-off, x.
We then used this link between mfe set sizes and low-
energy set sizes to estimate mfe set sizes: we studied the
free energy model of RNA secondary structure folding with
a number of approximations and computed how many
sequences would meet the low-energy criterion G≤ x for a
given structure. This enabled us to make mfe set size and
low-energy set size predictions analytically, without the com-
putationally expensive step of running structure predictions
on large sequence samples. We compared our predictions,
as well as those of previous sample-free determinants of
neutral set size [7,8,14,18], to reference data from a computa-
tionally expensive, but accurate sample-based method by
Jörg et al. [11]. Our new method outperformed existing
sample-free approaches. A Python implementation of this
method is available (https://github.com/noramartin/free_
energy_based_neutral_set_size_prediction).

These results are based on computational structure
predictions from the ViennaRNA package [1] and its under-
lying free energy model [2,15,16]. However, our work
would have value beyond the current free energy parameter
set because our focus on the free energy model itself means
that free energy parameters could easily be updated in our
method if improved parameter values were released. One
interesting direction for future research could be to extend
this method to structures with some tertiary contacts, for
example, pseudoknots for which free-energy-based folding
methods also exist [39].

An additional caveat is that, like previous sample-free
methods [7,8,14,18], ourmethodsimplyassumesthat input struc-
tures have non-empty neutral sets. Whether this assumption
holds for a particular structure has to be tested using existing
methods for inverse folding, such as those described in [1,40,41].

Future research should apply our fast neutral set size esti-
mates to biological data, such as the huge number of fRNA
structures available in the RNAcentral [42] database. This
could follow similar ideas as in protein research, where the
discovery of a simple structural determinant of neutral set
size [19] has led to a range of research on neutral set sizes
of biological sequences and structures [34–36]. Since the
mutational robustness of a structure is correlated with the
logarithm of its neutral set size [10,11], the new method
will allow us to compare not only the neutral set size, but
also the robustness of structures in biological databases.
The computational speed-up achieved through this method
compared to sample-based methods will be especially
useful to improve the accuracy of null models, for example
when comparing the neutral set sizes of fRNA structures to
the neutral set size distribution of a whole class of structures,
whether these are structures formed by sequences of compar-
able composition (as in [7]) or whether the full neutral set size
distribution of all structures is required (as in [8]).

Moreover, future work could investigate the low-energy
sets in more detail: in the low-energy map, each sequence
can correspond to several structures and therefore belong to
several low-energy sets (the neutral set of each of the struc-
tures). Finding out whether certain neutral sets share larger
overlaps than others would be important for evolutionary
processes for which some structures have a selective
advantage and others are deleterious.

An additional question for further research is how neutral
set sizes in the many-to-one map are related to those in the
corresponding many-to-many map in other models: for
example the Polyomino model for protein quaternary

https://github.com/noramartin/free_energy_based_neutral_set_size_prediction
https://github.com/noramartin/free_energy_based_neutral_set_size_prediction
https://github.com/noramartin/free_energy_based_neutral_set_size_prediction
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structure can be treated either in a many-to-one [43] or
in a many-to-many [44] framework, depending on how
non-deterministic cases are handled.
 lsocietypublishing.org/journal/rsif
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5. Methods
5.1. Structure predictions
Structure predictions and inverse foldingwere performedwith the
Python bindings of the ViennaRNA package [1,15,16,21,45] (ver-
sion 2.4.14). Default parameters were used except for the
parameter for isolated base pairs: theywere not permitted because
they cannot form stabilizing stacks in the Turner [2] model and are
thus thermodynamically not very stable [26]. However, data for
structure predictions with isolated base pairs are included in the
electronic supplementary material (section S3.6). Secondary struc-
ture illustrations were created using the forna tool [46].

The choice of sequence length is always a compromise
between shorter sequence lengths, for which structure predic-
tions are faster, and longer sequence lengths, for which a
greater range of structures can fold [47]. Here we use sequences
of length L = 35, which is long enough for a complex range of
structural possibilities to exist, as seen in [26]. Data for alternative
sequence lengths are presented in the electronic supplementary
material (section S3).

5.2. Reference method for Nmfe and N(G≤ x)
predictions

To test our newmethod and analyse neutral set sizes, we rely on an
established prediction method: the neutral network size estimator
(referred to in [17] asNNSE) formfe set sizes by Jörg et al. [11]. This
program is accurate [8] and two existing prediction methods were
calibrated against data from the NNSE, either directly [17] or to
Nmfe distributions (in [14], based on NNSE calculations from [8]).
We changed the setting for isolated base pairs, so that sequences
are folded without isolated base pairs.

For N(G≤ x) predictions, we wrote a custom adaptation of
the NNSE algorithm and tested this method against sequence-
sampling (electronic supplementary material, section S6). The
following adaptations were made compared to the original
NNSE algorithm:

1. Inverse folding: at the start of the algorithm, a sequence s
is required which meets the low-energy criterion GA≤ x
for structure A. For a strict free-energy criterion (such as
GA≤−5 kcal mol−1), not every sequence s with mfe structure
A will satisfy this criterion and therefore ViennaRNA’s
inverse folding program cannot be used. We thus start with
the following three educated guesses: firstly, we use a
sequence with GC base pairs at all paired positions and base
A at all loop positions; secondly, we run ViennaRNA’s [1]
inverse folding program; and finally, we use the initialization
step of the INFO-RNA program [40]. If one of these sequences
fulfils the low-energy criterion, it is used as a start sequence.
If not, we choose the lowest-energy sequence out of the three
options and perform a random walk in sequence space with
up to 5000 point mutations and base pair swaps to decrease
G, thus using a similar approach to the local optimization
in ViennaRNA’s inverse folding [45]. This inverse folding
method is likely to be biased, just like inverse folding
methods for the mfe criterion are known to be biased [48],
but the NNSE method is not sensitive to bias in the inverse
folding method [11]. However, there is no guarantee that
our heuristic will converge, even if a solution exists. This is
also the case for inverse folding methods for the mfe
framework [41].
2. Distance metric: the algorithm requires that each sequence can
be sorted into one of several nested sets, depending on how
similar its folded structure is to the structure of interest A
[11]. In our case, the GP map is many-to-many and so
we use a slightly different distance metric, which only
depends on the free energy of the structure of interest: d =
max(GA− x, 0 kcal mol−1). This distance d is zero if the low-
energy criterion GA≤ x is satisfied for the given sequence s.
We bin the distance to obtain 11 nested sets: d = 0 kcal mol−
1, d≤ 1 kcal mol−1, d≤ 2 kcal mol−1,… , d≤ 9 kcal mol−1 and
one set with no upper limit.

For both versions of the NNSE, the following parameters were
used: three measurements, 2000 initialization steps and 2000
measurement steps (i.e. the default values except for the
number of measurements, for which lower values save compu-
tational costs while maintaining high accuracy [8]). For
sequence lengths L > 40 used in the electronic supplementary
material (sections S3.5 and S3.6), the number of measurements
is set to two. If no convergence is reached, we repeat the analysis
with a tenfold greater number of measurement steps.

5.3. Implementing existing sample-free methods
The contiguity statistic by Cowperthwaite et al. [7] was
implemented following the schematics in [7,49]. We assume
that multi-loops are treated like exterior loops in the calculation
of ‘stem-loop lengths’.

For the two-versatility model by Manrubia and colleagues
[14,18], two parameters are needed: the versatility at paired
and unpaired sites. A fit is used for the dataset in figure 5.
Asymptotic values from [14] are used in figure 6. The two-
versatility model was technically developed to compute neutral
component sizes (referred to as ‘abundances’), but the authors
argue that for sufficiently long sequences of L > 16 (i.e. the
lengths considered in this paper), the distinction between neutral
components and neutral sets becomes irrelevant and thus they fit
their model against neutral set size data [14]. Weiß & Ahnert [17]
have disagreed with this view and argued that to convert from
neutral component sizes to neutral set sizes, a factor of 2nbp is
required, where nbp is the number of base pairs in a given
structure.

It is easy to show that neither the correction factor nor the
chosen versatility parameters affect the results if the agreement
between the predictions and the log10 Nmfe data are evaluated
using r2 coefficients, as is the case in this paper: the versatility
model from [18] gives log10 ~Nmfe ¼ a� nbp þ b, where a and b
are constants that merely depend on the versatility parameters,
the sequence length and whether the correction factor for neutral
components is applied. Thus, on a logarithmic scale, changing
the model parameters simply amounts to a linear transformation
of the predicted mfe set sizes and this would not affect the
computed r2 values.
5.4. Structure sample
A valid secondary structure has a matching closing bracket for
each opening bracket, hairpin loops have a minimum length of
three bases and there are no pseudo-knots [1]. Applying these
requirements allows us to generate all >1.3 × 107 valid structures
of length L = 35, following our previous work [50]: essentially, we
start with a list of starting symbols (either a dot or an opening
bracket) and extend these recursively. At each step, we append
each of the three dot–bracket symbols (dot, opening bracket
and closing bracket), unless adding a certain symbol would
make it impossible to turn the string into a valid structure of
length L = 35 (for example, by opening more brackets than
could be closed, closing more brackets than have been opened,
creating a hairpin loop below the minimum length, etc.).
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The total number of valid structures is too high to include all
structures in this analysis and thus we work with samples of
structures: we shuffle the list of all structures and choose the
first n structures. We only consider structures for which a
sequence can be found after 10 iterations of the inverse folding
program RNAinverse [45] since we are not interested in struc-
tures which may not have a single sequence folding into them
as their mfe structure (‘undesignable’ structures [37]). This
method was used to generate the structure sample of 5000 struc-
tures of length L = 35, which is used in figures 2–5. Structure
samples with special characteristics (e.g. figure 6) can be gener-
ated from the full list of structures in the same way—the list of
full structures is simply filtered for structures with the required
characteristics and then this filtered list constitutes the starting
point for the structure sample.

It is important to note that this samplemay not be an unbiased
sample of all foldable structures: some structures are falsely dis-
carded as undesignable and thus excluded from the sample, just
because the RNAinverse program fails to converge. Here we
used 10 iterations of the RNAinverse program as a trade-off
between computational feasibility and accuracy: for a sample of
100 valid secondary structures, we found that inverse folding
was successful after the first run for only 19 structures, but by
the tenth run, 41 structures had a successful inverse folding. The
number of successful inverse folding runs gradually increased
further to 63 after the thousandth run, but in the trade-off between
computational feasibility and performance, we chose 10 rep-
etitions. It is important to note that 10 repetitions are already
much better than a single repetition since the number of structures
with successful inverse folding had doubled in that interval in our
example. However, despite this, there are some structures that are
falsely discarded as non-folding and it is likely that out of all
designable structures, there are some structures for which RNAin-
verse is particularly unlikely to converge, presumably structures
with low neutral set sizes. These structures would be under-rep-
resented in our final sample. To investigate the impact of this
potential issue, we generated a smaller sample of 100 structures,
where we did not discard structures after 10 attempts, but ran
RNAinverseup to 100 times—ourmethod still outperforms exist-
ing methods on this sample, albeit with a lower r2 than before
(electronic supplementary material, figure S12). In addition, we
workedwith structures of sequence length L = 13, where it feasible
to fold all sequences without relying on inverse folding at all, and
found the same (electronic supplementary material, figure S15).
Finally, we note that since most structures have lower Nmfe

values than random sequences [8], a small bias towards falsely
discarding some of these structures is likely to still leave some
low-Nmfe structures in the sample.

For sequence lengths of L > 40 (in figure 4 and the electronic
supplementarymaterial, sections S2.4, S3.5 and S3.6), it is not feas-
ible to generate a full list of valid secondary structures and
therefore we use a different method: our structure samples rely
on non-coding RNA sequences compiled by Weiß & Ahnert [17],
based on the fRNA database [32]. We simply take the predicted
mfe structures for these sequences (unlike in [17], we compute
these without isolated base pairs) as our structure sample.

5.5. Structural characteristics for the free-energy-based
calculations

In this section, we describe how we calculate the quantities Gloop,
nbp, nstack and neos, which will be used in our free-energy-based
neutral set size estimation in the next section (§5.6). The approxi-
mations to the Turner [2] free energy model made in this and the
following section are only used in our free-energy-based N(G≤
x) estimates, but not in the reference data, which relies on
sample-based methods using the ViennaRNA [1] implemen-
tation of the Turner [2] free energy model.
5.5.1. Loop free energy calculation
To estimate N(G≤ x), our first step is to compute the free energy
contribution of all loop regions of a structure, Gloop. Dangling
end and terminal mismatch contributions are not included in
our loop free energy calculation, since these are considered in a
later step. In the Turner [2] free energy model, loop free energy
terms depend on both sequence and structure. For the feasibility
of our subsequent calculations, we need a single Gloop value per
structure and therefore do not consider sequence-dependent
terms. This is likely to be a good approximation for most
sequences because most sequence-dependent terms only apply
in special cases (for example, internal loops where both unpaired
regions consist of a single G base [15]). We test in the electronic
supplementary material (section S3.1) whether these approxi-
mations mean that our predictions become less accurate for
structures with a higher number of bulges, internal loops and
multi-loops and find that, while the total loop length has a
minor systematic bias, the number of loop regions does not
play a role for the accuracy of our method.

With these assumptions, Gloop is simply the sum of all
initiation free energies and the asymmetry contributions for
internal loops. Both of these terms depend on the loop types
and lengths and can be computed for a given structure following
[2,15,16]. We round all free energy contributions to 0.1 kcal mol−1.

5.5.2. Number of stacking terms
The dominant stabilizing free energy contribution in RNA is the
stacking of base pairs (bps). Coaxial stacks are not included in the
default settings of ViennaRNA [51] and thus not considered here.
Thus, stacking terms can be found only between two contiguous
base pairs and across a length-one bulge [2,15]. Thus, the number
of stacking terms nstack can be read off from the structure—note
that this usually differs from the number of base pairs nbp since
the Turner [2] free energy model does not include free energy
terms for base pairs themselves, but instead the free energy
terms in paired regions depend on the stacking interactions
between base pairs.

5.5.3. Number of dangling ends and terminal mismatches
Dangling ends and terminal mismatches also provide free energy
terms in the Turner [2] model, which are mostly stabilizing [2].
The default settings of ViennaRNA apply a heuristic to these
terms: the program does not test if a loop site is counted twice
for the dangling ends of two helices [52]. Thus we also choose
a simplified treatment: we treat dangling ends and terminal mis-
matches as one single type of term, which we will call end-of-
stack term, and count the number of end-of-stack-terms, neos,
as follows:

— one end-of-stack-term per stack end with an adjacent hairpin
loop of length four or more,

— one end-of-stack-term per stack end with an adjacent internal
loop with at least two loop sites on each strand and at least
three sites in the longer strand, and

— one end-of-stack-term for each stack end with an adjacent
multi-loop or exterior loop.

These criteria approximately follow the treatment of dangling
ends and terminal mismatches in the Turner [2] free energy
model.

5.6. Free-energy-based N(G≤ x) estimates
Once the loop free energy Gloop is computed (as described in
§5.5.1), we estimate how many sequences meet the free energy
criterion G≤ x. These sequences need to offset the positive loop
free energy Gloop with stabilizing contributions from stacking
terms and, to a smaller extent, end-of-stack terms. In our
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simplified treatment, we assume that the sequence-dependent
energy is provided primarily by stacking terms since stacking
free energies can have higher absolute values. Thus, we
assume as a first approximation that each end-of-stack term
simply contributes at least a = 0.5 kcal mol−1, independent of
the sequence (this is a good assumption for terminal mismatches,
where 99% of values in the corresponding parameter table in [2]
are at least as stabilizing as a; for dangling ends, less stabilizing
values are more common, but a is still of the typical order of
magnitude of a dangling end contribution in [2]). Thus, we can
write the low-energy criterion as

Gseq-dependent � x� ðGloop � a� neosÞ ð5:1Þ
and

Gseq-dependent � Gmax: ð5:2Þ
Here the terms on the right have no sequence dependence and
thus we will summarize these as Gmax = x− (Gloop− a × neos).
This Gmax is usually negative. The terms on the left are the
sequence-dependent contributions for stacking and end-of-stack
terms. These sequence-dependent contributions are the reason
why only some of all compatible sequences satisfy the low-
energy criterion in equation (5.2). To estimate the number of
such sequences, we will use a versatility approach. Before we
go through this calculation, we will give some background on
versatility approaches from [14,17,18,53].
5.6.1. Review of versatility framework
The basic idea behind the versatility approach and related
approaches in [14,17,18,53] is that we can estimate neutral set
sizes, or neutral component sizes (depending on the chosen
model), by focusing on each sequence position individually:
for example, if a given structure A is only likely to be the mfe
structure if there is a U at sequence position 1, either a C or G
at sequence position 2 and any letter at position 3, then we can
calculate how many sequences satisfy these requirements: 1/4
letters are permitted at position 1 and 2/4 at position 2 and
4/4 at position 3, so, in total, out of the 43 sequences of length
L = 3, the number sequences fulfilling all three requirements is

1
4
� 2
4
� 4
4
� 43 ¼ 8: ð5:3Þ

This would be an estimate of the neutral set size of A and
constitutes the core idea behind the versatility calculations in
[14,17,18]: the sequence constraints on each site are quantified
and then multiplied to obtain the total number of sequences
[14,17,18]. Previous work differs in how exactly these constraints
are quantified and whether there are additional correction factors
in the calculation (like [17]) and in this paper we build on the
definitions in [14]: here, the constraintness of each site is quanti-
fied by a quantity called versatility, which varies continuously in
a fixed range. If the versatility for site i is at its maximum, this
means that the sequence s is equally likely to fold into structure
A, regardless of the letter at site i, and therefore there are no con-
straints on site i [14], like site 3 in the example from equation
(5.3). If the versatility for site i is at its minimum, this means
that a sequence s can only fold into structure A if a specific
letter is found at site i and so site i is fully constrained [14],
like site 1 in our example. In between these extremes, like site 2
in our case, García-Martinín et al. [14] give a simple equation
for how the versatility can be computed from the distribution
of letters found at site i in the sequences folding into structure
A, but since we are not working with sequence samples in this
paper, this formula is not used.

In this paper, we make two adjustments to the method by
García-Martín et al. [14]: we treat each base pair not as two sep-
arate sites, but instead as a single unit with an alphabet size of six
(i.e. all allowed pairs: AU, UA, GC, CG, GU, UG) to simplify our
calculations. Then a minimum-versatility paired site would be a
site where a GC pair specifically is required for the structure to
fold correctly (and even switching the order to give a CG pair
is not permitted), whereas a maximum-versatility paired site
would be a site where any valid base pair is sufficient. Consider-
ing a base pair as a single unit will also ensure that one key
reason for the division of neutral sets into neutral components,
as shown in [54], no longer exists and that we can therefore
apply a versatility framework without worrying about the
distinction between neutral components and neutral sets.

In order to avoid confusion when dealing with different
alphabet sizes for paired and unpaired sites, we normalize all
versatilities by dividing by the corresponding alphabet
sizes (so versatilities are between zero and one). In addition,
we assume that there are no constraints on loop sites except at
the end of stacks since we have already accounted for loop free
energies. With these adjustments, the equation for neutral set
sizes from [14], which we introduced conceptually in equation
(5.3), becomes

~NAðG � xÞ ¼ Nc � vneoseos � vnbpbp : ð5:4Þ

Here Nc is the number of compatible sequences as defined in
equation (2.1), veos the versatility of end-of-stack sites, neos the
number of end-of-stack sites, vbp the versatility of base pairs
and nbp the number of base pairs. In our calculations, all these
quantities depend on the structure A and its free-energy terms.
Nc is included here, but not in the original equation in [14] due
to the different normalization of versatility values.
5.6.2. Application of versatility treatment
To estimate the number of sequences for which equation (5.2) is
satisfied, we make the following argument: the free energy con-
tribution of sequence-dependent terms Gseq-dependent is primarily
due to stacking terms and these tend to be most stabilizing if the
relevant base pairs are GC base pairs, as seen in the parameter
table in [2]. In the language of sequence constraints, as reviewed
in §5.6.1, this argument can be rephrased as follows: if a stacking
term is required to be highly stabilizing, the sequence at the rel-
evant sites is constrained to GC/CG base pairs and these
constraints mean that the versatility at these sites is low. We
therefore use free-energy arguments to estimate the versatilities
of the paired sites in a given structure and then use these versa-
tilities to compute neutral set sizes, following equation (5.4).
Then we apply the same concept to the end-of-stack sites. Our
approach differs from the sample-based versatility models in
[14,17], in that we do not derive the sequence constraints from
large or even exhaustive sequence samples. Our calculations
also differ from existing sample-free versatility approaches
[14,55], which assume that the versatility of paired sites is a
single constant value that applies to all structures. Our model,
like sample-based approaches, accounts for the fact that different
structures may have different sequence constraints at paired sites,
but unlike sample-based approaches, these values are estimated
directly from free-energy considerations for a specific structure
and not inferred from a large sequence sample. In the following,
we will discuss how we will use free-energy calculations to esti-
mate the versatilities of paired sites and end-of-stack sites for a
given structure.
5.6.3. Versatility of paired sites
Since stacking free energies can have higher absolute values than
end-of-stack terms in the Turner [2] model, we will assume that
stacking terms are the primary sequence-dependent free energy
terms. Then the free energy which individual stacking free
energy contribution has to provide is Gstacking =Gmax/nstack.
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Each stacking free energy contribution depends on the iden-
tity of two adjacent base pairs, as seen in the parameter table in
[2]. These interdependencies between base pairs make exact cal-
culations infeasible. However, to a first approximation we argue
that the sequence in stacks is highly constrained if each stacking
term has to contribute a high amount of stacking free energy,
Gstacking, as discussed above. We then make a simplifying
assumption: we assume that the free energy contribution per
stacking term is linearly related to the versatility in stacks. This
linear relationship is modelled as a linear interpolation between
Gstacking =−3.0 kcal mol−1 for GC/CG-only stacks (with a base
pair versatility of vbp = 2/6) and Gstacking =−0.5 kcal mol−1

for stacks with no sequence constraints (with a versatility of
vbp = 1). These values are all approximations to the full parameter
table [2]: for example, only two values out of 36 parameters in
the stacking free energy table are >−0.5 kcal mol−1 and thus
this was chosen as an approximate upper limit.

The computed versatility values are only used for the low-
energy calculation in equation (5.4) in this paper, but in the elec-
tronic supplementary material (section S4) the predicted base
pair versatilities themselves are tested against base pair versatili-
ties calculated from sequence samples in the low-energy map
and good agreement is found.

5.6.4. Versatility of end-of-stack sites
If the structure can be fully stabilized by the stacking interactions dis-
cussed above, we neglect the sequence dependence of end-of-stack
terms (i.e. we assume that sites by the end of stacks can be occupied
by any nucleotide and thus veos = 1). However, if even themost stabi-
lizing stacking terms with Gstacking≈−3.0 kcal mol−1 are insufficient
to satisfy equation (5.2), we perform an approximate calculation of
additional free energy that could be provided if the sequence at
end-of-stack terms is chosen carefully to stabilize the structure.

If the stacks are GC-only, we assume each end-of-stack term
contributes an additional sequence-independent a = 0.2 kcal
mol−1 since dangling ends and terminal mismatches are more
stabilizing at the end of GC stacks, as seen in the parameter
tables in [2]. If this is insufficient for the free energy criterion
G≤ x, additional constraints on end-of-stack terms are applied:
we assume that each end-of-stack term can contribute up to an
extra 0.9 kcal mol−1 in free energy if they are fully constrained
(so that the maximum free energy contribution of end-of-stack
terms is 1.6 kcal mol−1, corresponding to the most stabilizing
terminal mismatch free energy in the Turner model [2]). Again,
we use a linear interpolation between fully constrained sites
(−0.9 kcal mol−1 and veos = 1/4 ) and fully versatile sites (0.0 kcal
mol−1 and veos = 1).

If equation (5.2) cannot be fulfilled even after the most stabi-
lizing choice for stacking and end-of-stack sites have been made,
we assume that both stacking and end-of-stack sites have the
smallest possible versatility values (vbp = 2/6 and veos = 1/4)
and that N(G≤ x) is 0.1 times the value calculated from these ver-
satilities, in order to account for additional sequence-dependent
terms that are not considered in our approximate free energy cal-
culations. Thus, we always assume that the input structure is
designable (i.e. Nmfe > 0).

Data accessibility. The data behind this analysis and a Python implemen-
tation of the new method can be found at https://github.com/
noramartin/free_energy_based_neutral_set_size_prediction.

The data are provided in the electronic supplementarymaterial [56].
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