
University of Cambridge

Department of Chemistry

Carbon nitride for solar H₂ production coupled to organic chemical

transformations

A dissertation submitted for the degree of Doctor of Philosophy

September 2018

Hatice Kasap

St Edmund's College

Declaration

The work presented in this thesis titled as 'Carbon nitride for solar H₂ production coupled to organic chemical transformations' is the result of my own work carried out between October 2014 and September 2018 in University of Cambridge and is not the outcome of any collaborations except as declared in Acknowledgements and specified in the text.

The reported results in this thesis have already been published in peerreviewed articles, as specified in the List of publications and stated at the beginning of each chapter. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University of similar institution except as declared in the Acknowledgements and specified in the text. The thesis does not exceed the 60,000 word limit.

> Hatice Kasap September 2018

Acknowledgements

I owe my gratitude to Prof. Erwin Reisner for giving me the opportunity to work in his group and for being highly motivating and encouraging supervisor during the course of my work and preparation of this thesis.

Many thanks to all the previous and current members of Reisner group for the great working atmosphere, laughter and support. I am very grateful for being part of the 'carbonaceous team', it was inspiring to work with you all and I am proud of what we achieved together. In particular, Dr. Demetra S. Achilleos is acknowledged for not only being very supportive and motivating scientist with great mentoring skills but also for being a really good friend.

I would like to thank all the colleagues form the small office, Will, Mark, Tim, Charlie, Katherine, Dave and Ben, it has been a pleasure working along with you. I would like to acknowledge Prof. Christine A. Caputo for her guidance and advice, without her my PhD would have taken a totally different direction. Xin thank you for useful scientific discussions and all the help with drawing artworks for my publications. Kasia it was great having you around and thanks for always being there, we have been through this together. All the members of the second-floor office, Arjun, Demetra, Ailun, and Souvik, it was great working with you. Ailun Huang is appreciated for being a highly motivated and hard-working part III student, it was a pleasure mentoring you. All of the other people I haven't mentioned, it was great knowing you all and wish you all the best.

Dr. Heather F. Greer from the Chemistry department is acknowledged for recording the SEM and TEM images. Ailun Huang is thanked for recording the BET measurements. During the course of my PhD I had number of multidisciplinary collaborations which resulted publications. Prof. Vincent W.-h. Lau from Prof. Bettina V. Lotsch from Max Planck Institute for Solid State Research, Germany is acknowledged for providing the carbon nitride used initially in this work. Dr. Robert Godin, Dr. Wenxing Yang and Chiara Jeay-Bizot from Prof. James Durrant group at Imperial College London are acknowledged for time-resolved spectroscopic measurements and analysis.

ii

The financial support from the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and OMV to carry out this work is greatly acknowledged. St Edmund's College is also acknowledged for financial support and guidance.

My friends are greatly acknowledged for always being there and believing in me throughout this journey. I would like to express my deepest gratitude to my partner Aziz Tokgoz for his endless support through the difficult times in the last four years. As we are coming to the end of this chapter of our lives, I am looking forward to many more memories we will collect together. I also owe special thanks to Hakan and Emine Tokgoz for their encouragement, love and support in every possible way. Finally, I would like to extend my thanks to my parents, Fatma and Ali Osman; and my brothers Ahmet and Hasan. I am very grateful for having such a family and I wouldn't be where I am today without their support and belief in me. This thesis is dedicated to my parents, brothers and partner for their endless support, encouragement and love.

List of publications

The peer-reviewed articles discussed in this thesis are listed below:

- <u>Kasap, H.</u>; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W.; Lotsch, B. V.; Durrant, J. R.; Reisner, E., 'Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system', *J. Am. Chem. Soc.*, **2016**, *138*, 9183–9192.
- *Lau, V. W.-h.; *Klose, D.; *<u>Kasap, H.</u>; Podjaski, F.; Pigne, M.-C.; Reisner, E.; Jeschke, G.; Lotsch, B. V., 'Dark photocatalysis: storage of solar energy in carbon nitride for time-delayed hydrogen production', *Angew. Chem. Int. Ed.*, **2017**, *56*, 510–514.
- <u>Kasap, H.</u>; Godin, R.; Jeay-Bizot, C.; Achilleos, D. S.; Fang, X.; Durrant, J. R.; Reisner, E., 'Interfacial engineering of a carbon nitride-graphene oxidemolecular Ni catalyst hybrid for enhanced photocatalytic activity', *ACS Catal.*, **2018**, *8*, 6914–6926.
- *<u>Kasap, H.</u>; *Achilleos, D. S.; Huang, A.; Reisner, E., 'Photoreforming of lignocellulose into H₂ using nano-engineered carbon nitride under benign conditions', *J. Am. Chem. Soc.*, **2018**, *140*, 11604–11607.

*equal contributions

The articles which are not included in this thesis are listed below:

- 1. Achilleos, D. S.; <u>Kasap, H.</u>; Reisner, E., 'Carbon dots from biomass waste for sustainable solar H₂ Generation', *submitted*.
- Yang, W.; Godin, R.; <u>Kasap, H.</u>; Moss, B.; Dong, Y.; Hillman, S. Y.; Ludmilla Steier, L.; Reiner, E.; Durrant, J. R., 'Electron accumulation induces efficiency bottleneck for hydrogen production in carbon nitride photocatalysts', *in preparation*.

Patent

A patent application on waste reformation using carbon based light harvesters under benign conditions has been filed (UK patent application number GB1808905.2), which lists Hatice Kasap, Demetra S. Achilleos and Erwin Reisner as inventors.

Abstract

Artificial photosynthesis utilises solar-light for clean fuel H₂ production and is emerging as a potential solution for renewable energy generation. Photocatalytic systems that combine a light harvester and catalysts in one-pot reactor are promising strategies towards this direction. Yet, most of the reported systems function by consuming excess amount of expensive sacrificial reagents, preventing commercial development.

In this thesis, carbon nitrides (CN_x) have been selected as non-toxic, stable and low-cost photocatalysts. CNx are first introduced as efficient light harvesters, to couple alcohol oxidation with proton reduction, in the presence of a Ni-based molecular catalyst. This system operated in a single compartment while the oxidation and reduction products were collected in the solution and gaseous phases, respectively, demonstrating a closed redox system. In the presence of an organic substrate and absence of a proton reduction catalyst, photoexcited CN_x was found to accumulate long-lived "trapped-electrons", which enables decoupling oxidation and reduction reactions temporarily and spatially. This allows solar H₂ generation in the dark, following light exposure, replication light and dark cycle of natural photosynthesis in an artificial set-up. The stability of the designed system was found to be limited by the Ni-based molecular catalyst, and the spectroscopic studies revealed electron transfer from CN_x to catalyst as the kinetic bottleneck. Graphene based conductive scaffolds were introduced to the CN_x-Ni system, to accelerate the rate of electron transfer from CN_x to the Ni catalyst. Time-resolved spectroscopic techniques revealed that introducing these conductive binders enabled better electronic communication between CN_x and Ni, resulting in significantly enhanced photocatalytic activity.

To improve the solar-light utilisation and the photocatalytic performance of bulk CN_x , a straightforward ultra-sonication approach was introduced. This pre-treatment was found to break aggregates of bulk CN_x , and the resulting activated CN_x had significantly improved activity. The activated CN_x showed record activities per gram of the material used, for H₂ evolution with a molecular Ni catalyst. The use of abundant waste sources instead of organic substrates was investigated in the presence of activated CN_x . The system demonstrated to photoreform purified and raw lignocellulose samples into H₂ in the presence of various H₂ evolution catalysts over a wide range of pH.

vii

Table of contents

	Declaration			
	Acknowledgements			
	List of publications			
	Pate	ent	vi	
	Abstract			
	Tab	le of contents	viii	
	Abb	reviations	xi	
Chap	oter	1	1	
Intro	duct	ion	1	
1.1	C	Dverview	1	
1.2	2 F	lydrogen	1	
1.3	s \	Vater electrolysis	2	
1.4	F	Photocatalytic water splitting	3	
1	.4.1	Natural photosynthesis	3	
1	.4.2	Artificial photosynthesis	5	
1	.4.3	Sacrificial reagents for solar-fuel H ₂ evolution	6	
1.5	5 F	Photosensitisers	8	
1	.5.1	Molecular dyes	9	
1	.5.2	Semiconductors	10	
1.6	5 H	H_2 evolution catalysts	16	
1	.6.1	Heterogeneous catalysts	17	
1	.6.2	Enzymes		
1	.6.3	Molecular catalysts	19	
1.7	, E	Strategies for sustainable H2 production	21	
1.8	s F	Project outline	24	
1.9) F	References		
Chap	oter	2	40	
Expe	rime	ental section	40	
2.1	Ν	Materials40		
2.2		Physical characterisation techniques		
2.3	6 F	Photocatalytic experiments	42	
2	2.3.1	Quantification and characterisation of products		

2.3.2		External photon to H ₂ quantum efficiency	43				
2.3.3		Treatment of analytical data	44				
2.4	Tim	e-resolved spectroscopic techniques	44				
2.5	Ref	erences	46				
Chapt	er 3		47				
Simult	aneou	us proton reduction and alcohol oxidation with carbon nitride and	а				
molecu	molecular Ni catalyst						
3.1	Intro	oduction	47				
3.2	Res	sults and discussion	49				
3.2	2.1	Synthesis and characterisation of carbon nitride	49				
3.2	2.2	Photocatalytic assembly and performance	51				
3.2	2.3	Analysis of individual components	55				
3.2	2.4	Photoactivity and stability limiting components	59				
3.3	Cor	nclusions	61				
3.4	Ref	erences	62				
Chapt	er 4		65				
Dark p	hotoc	catalysis with carbon nitride using trapped electrons for time-delayed so	lar				
fuel pr	oduct	ion	65				
4.1	Intro	oduction	65				
4.2	Res	sults and discussion	67				
4.2	2.1	Dark photocatalysis	67				
4.2	2.2	Mechanism	72				
4.2	2.3	Transient absorption spectroscopy	74				
4.3	Cor	nclusions	78				
4.4	Ref	erences	79				
Chapt	er 5		83				
Interfa	cial e	engineering of a carbon nitride-graphene oxide-molecular Ni cataly	yst				
hybrid	hybrid for enhanced photocatalytic activity						
5.1	5.1 Introduction						
5.2	Res	sults and discussion	86				
5.2.1		Preparation and characterisation of ^{NCN} CN _x hybrids	86				
5.2.2		Photocatalytic assembly and performance	88				
5.2.3		Light and dark cycles of ^{NCN} CN _x	92				

5.2	2.4 Time resolved spectroscopy	94
5.2	2.5 Decay kinetics of charged ^{NCN} CN _x	97
5.3	Conclusions	102
5.4	References	103
Chapte	er 6	110
Photor	eforming of lignocellulose into H ₂ using nano-engineered carbor	n nitride under
benign	conditions	110
6.1	Introduction	110
6.2	Results and discussion	112
6.2	2.1 Characterisation of ^{NCN} CN _x	112
6.2	2.2 Photocatalytic assembly and performance	114
6.2	2.3 Lignocellulosic substrates	118
6.3	Conclusions	124
6.4	References	125
Chapte	er 7	129
Conclu	isions	129
7.1	Summary	129
7.2	Future work	131
Appen	dix	134
A. Ap	pendix to chapter 3	134
A.1	Supplementary figures	134
A.2	Supplementary tables	139
В. Ар	pendix to chapter 4	146
B.1	Supplementary text	146
B.2	Supplementary figures	148
B.3	Supplementary tables	153
C. Ap	pendix to chapter 5	155
C.1	Supplementary figures	155
C.2	Supplementary tables	167
D. Ap	pendix to chapter 6	174
D.1	Supporting figures	174
D.2	Supporting tables	176
E. Re	printing permissions	

Abbreviations

AA	ascorbic acid
AM 1.5G	air mass 1.5 global
ATR	attenuated total reflectance
BET	Brunauer-Emmett-Teller
bpy	2,2'-bipyridine
СВ	conduction band
CDs	carbon dots
CN _x	carbon nitride
H ₂ NCN _x	amine-terminated carbon nitride
^{NCN} CN _x	cyanamide-functionalised carbon nitride
Cys	cysteine
DHA	dehydroascorbic acid
EA	electron acceptor
ED	electron donor
EDTA	ethylenediaminetetraacetic acid
EQE	external quantum efficiency
EPR	electron paramagnetic resonance
FNR	ferredoxin-NADP+ reductase
FT	fourier transform
GC	gas chromatography
GO	graphene oxide
НОМО	highest occupied molecular orbital
H ₂ ase	hydrogenase
IR	infrared
KIE	kinetic isotope effect
LUMO	lowest unoccupied molecular orbital
MS	mass spectrometry

_	
NaDC	sodium deoxycholate
NADP	nicotinamide adenine dinucleotide phosphate
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NHE	normal hydrogen electrode
NMR	nuclear magnetic resonance
OEC	oxygen evolving complex
PIAS	photoinduced absorption spectroscopy
PS	photosensitiser
PSI	photosystem I
PSII	photosystem II
QDs	quantum dots
RGO	reduced graphene oxide
RHE	reversible hydrogen electrode
SEM	scanning electron microscopy
TAS	transient absorption spectroscopy
TCSPC	time-correlated single photon counting
TEA	triethylamine
TEM	transmission electron microscopy
TEOA	triethanolamine
TOF	turnover frequency
TON	turnover number
tr-PL	time-resolved photoluminescence
UV–vis	UV-visible
VB	valence band
WRC	water reduction catalyst
WOC	water oxidation catalyst
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
4-MBA	4-methyl benzyl alcohol
4-MBAd	4-methyl benzaldehyde

Chapter 1

Introduction

1.1 Overview

The threatening shortage in global energy supply, increasing environmental concerns as well as economic factors greatly emphasise the need to find alternative clean, cheap and renewable energy sources, that could either replace or minimise the demand for fossil fuels.^{1,2} Today, more than 80% of total energy is produced from fossil fuel sources and it is predicted that at the current consumption rate, these sources will diminish in the next 50–100 years.^{1,2} The use of fossil fuel feedstocks has resulted in increased greenhouse gas emission, especially CO₂, which has been identified as the main driving force of global warming and climate change.³ It is also predicted that double by 2050, therefore there is a great need to develop low-cost technologies with large-scale applications to tackle this problem.^{1,4}

1.2 Hydrogen

H₂ has been identified as the most promising energy carrier candidate and potential transportation fuel to replace currently used non-renewable fossil derived fuels. H₂ is a clean energy source that possesses a very high combustion enthalpy (-286 kJ mol⁻¹) and can be used directly in fuel cells, producing H₂O as the only oxidation product.⁵ With the rapid development of fuel cell technologies, H₂ fuelled cars are now commercially available and they may play a crucial role in reducing CO₂ emission in the future.⁶ Globally, more than 50 million tonnes of H₂ are produced and used by

industry every year.⁷ The main use of H₂ is for NH₃ production, the key raw material used for fertilisers, while it is also being used as a common reactant in the chemical industry and in oil refining process to produce light carbon-based fuels.⁸

Although hydrogen is the most abundant element in the universe, the stocks in Earth are limited and thus needs to be produced in massive scales.⁷ Currently large scale H₂ production is carried out using the steam-gas reforming process, in which CH₄ obtained from fossil fuels is converted into H₂ (Equation 1.1).⁷ To obtain purified H₂ from *syngas* (CO and H₂ mixture), CO is subsequently converted into CO₂ and H₂ by water-gas shift reactions (Equation 1.2). This process produces large amounts of CO₂ as the side product, reaching on average 7 kg of CO₂ per kg of H₂ generated.⁹

$$CH_4 + H_2 O \stackrel{Ni_{Cat}, \Delta}{=} CO + 3H_2$$
(1.1)

$$CO + H_2 O \stackrel{Cu_{cat},\Delta}{\longrightarrow} CO_2 + H_2 \tag{1.2}$$

In order to meet the growing energy demands of the global society, a sustainable strategy needs to be developed to produce H_2 as energy carrier from renewable sources at low cost, while eliminating the formation of any undesired side products. The most promising way forward is to utilise water as the feedstock for clean H_2 generation. For this purpose, water splitting into its components H_2 and O_2 has attracted significant research focus.

1.3 Water electrolysis

Water splitting is a promising approach for sustainable H₂ generation from highly abundant water, yet it is a thermodynamically uphill reaction with an energy input demand of 237.2 kJ mol⁻¹.¹⁰⁻¹² In electrochemical terms, this corresponds to a minimum cell potential of 1.23 V, but in reality much higher cell voltages are required to overcome additional energy loses during water electrolysis.¹³ Electrolysis include water oxidation and proton reduction half-reactions occurring at the anode and cathode, respectively (Equations 1.3–1.5).

$$2H^+ + 2e^- \longrightarrow H_2 \qquad (E^\circ = 0 \lor vs. \mathsf{RHE}) \tag{1.3}$$

$$2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$$
 (E° = 1.23 V vs. RHE) (1.4)

$$2H_2 0 \longrightarrow 2H_2 + O_2$$
 (E° = -1.23 V vs. RHE) (1.5)

The intricate nature of the water oxidation reaction involves multiple electron and proton transfers that are believed to be the main obstacles in achieving efficient water splitting systems.¹⁴ In addition, to lower the cost of H₂ evolution via water splitting, the ultimate goal is to replace the external electrical energy input with a sustainable energy source. Amongst all the renewable energy sources, solar energy is the most feasible and attractive to replace the electrical input. This is because the sun delivers enough energy to Earth in an hour to cover the anthropogenic global energy consumption annually.⁴ Efficient utilisation of small portion of solar energy is the most promising strategy towards satisfying the energy needed by water splitting. Therefore, solar-light driven water splitting is one of the strategies towards sustainable solar-fuel H₂ production from water.

1.4 Photocatalytic water splitting

1.4.1 Natural photosynthesis

In nature, plants are perfectly functioning 'power stations' that are efficiently converting solar energy into chemical energy. Plants have evolved a complex architecture to utilise solar light to convert naturally abundant CO₂ and H₂O into carbohydrates and O₂ respectively, through a series of light and dark reactions cycles; *via* nature's major energy generation process, which is known as "natural photosynthesis".¹⁵ Natural photosynthesis is accomplished by a series of enzymes, which are energetically and kinetically orchestrated to harvest light, produce charge carriers and subsequently carry out physiological redox reactions.

In the photosynthetic Z-Scheme, solar light is absorbed by photosystem I and II (PSI and PSII), which contain multiple chlorophyll pigments to harvest light efficiently. Solar light irradiation of the reaction centre P680 found in PSII, leads to generation of photoexcited electrons and holes (Figure 1.1).¹⁶ The holes are used up to oxidise H₂O to O₂ at Mn₄Ca cluster, which is the oxygen evolving complex (OEC). The photoexcited electrons are delivered to PSI through several electron mediators,

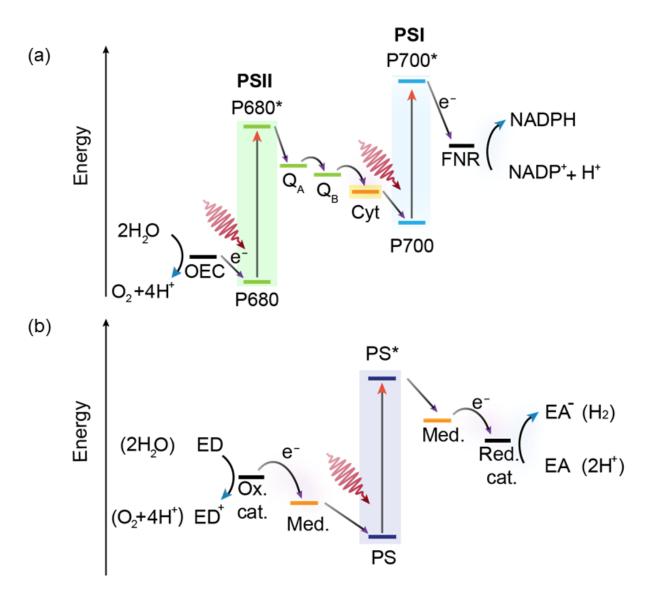


Figure 1.1. Schematic representation of (a) natural and (b) artificial photosyhthesis. Arrows represent the direction of electron flow. Abbreviations: OEC, oxygen evolving complex; PSII, photosystem II; Q_A, plastoquinone A; Q_B, plastoquinone B; Cyt, cytochrome $b_6 f$; PSI, photosystem I; FNR, ferredoxin-NADP⁺ reductase (FNR); NADP, nicotinamide adenine dinucleotide phosphate; ED, electron donor; Ox. cat., oxidation catalyst; Med., mediator; PS, photosensitiser, Red. cat., reduction catalyst, EA, electron acceptor.

plastoquinone A (Q_A), plastoquinone B (Q_B) and cytochrome b_6f (Cyt). In PSI, the second photoexcitation takes place at the reaction centre P700, in which the photogenerated electrons are used to reduce nicotinamide adenine dinucleotide phosphate, NADP⁺, to NADPH (biological hydrogen) by ferredoxin-NADP⁺ reductase (FNR). NADPH is then used as both proton and electron source in "dark" (light-independent) Calvin cycle to convert CO₂ into carbohydrates.¹⁵

Inspired by the efficiency of fundamental steps in natural photosynthesis, which are light harvesting, charge generation and delivery of the photogenerated charge carriers to catalytically active sites, great research efforts have been invested in developing artificial photosynthetic schemes for water splitting.¹⁷

1.4.2 Artificial photosynthesis

Artificial photosynthesis mimics the key functions of natural photosynthesis with the aim to develop inexpensive systems that can efficiently produce solar fuels using synthetic light harvesters and catalysts, while tackling the bottleneck solar-to-fuel efficiencies of natural photosynthesis (< 2%).¹⁷ The scope of artificial photosynthesis is not limited to H₂ production from water splitting, but many other reactions are also studied including solar-light-driven organic transformations,¹⁸ CO₂ reduction to CO and N₂ conversion to NH₃.^{19–21}

In order to replicate the multi-component array of natural photosynthesis at the synthetic level, three main components are essential; a photosensitiser (PS), a water oxidation catalyst (WOC) and a water reduction catalyst (WRC), (Figure 1.1). The efficient capture of solar-light by the PS is a crucial step in providing the required energy of minimum 1.23 eV to overcome the uphill nature of the water splitting reaction. Upon excitation with light, an electron in the LUMO or valence band (VB) of PS is excited to the HOMO or conduction band (CB) of the PS, forming an excited state (PS*) and the photogenerated holes on PS are quenched by a water oxidation catalyst (WOC) to form O₂, while the photogenerated electrons are transferred to WRC to generate H₂.^{10–12} It is an essential requirement for the charge transfer from the PS to the WOC and WRC to occur in faster timescales than the charge recombination in PS, while the charge transfer can directly happen *via* collusion of components or can be assisted with redox mediators.^{13,22,23}

There are a number of strategies in designing artificial photosynthesis schemes, which include photovoltaic electrolysis, photoelectrochemical cells and photocatalytic systems.²⁴ For the purpose of this thesis, photocatalytic systems will be studied in which the photosensitiser(s) and catalyst(s) are mixed in a single pot, eliminating the need for expensive wiring or conductive substrates.^{11,24,25} This approaches use all components dissolved in the medium used (homogeneous) or some insoluble parts may form a suspension (semi-heterogeneous). Hybrid systems are also common containing some soluble (homogenous) and some insoluble components (heterogeneous).

The first example of water splitting reaction was reported in 1972 using TiO₂ as the light harvester (see Section 1.5.2).²⁶ Water splitting is a promising approach to produce H₂ sustainably from the unlimited source of H₂O, while H₂O oxidation to O₂ is recognised as the kinetically demanding half-reaction, which involves four electron and proton transfers.²⁷ This process leads to production of explosive gas mixtures of O₂ and H₂, therefore multi compartment design is essential to separate these gasses. There is also the possibility of O₂ and H₂ back reaction to generate H₂O.²⁷ In addition, many WRCs are O₂ sensitive and O₂ has limited commercial applications.^{28–30}

To overcome the complex nature of water splitting reaction, it has often been studied as two half-reactions, oxidation or reduction half reaction in isolation, in the presence of sacrificial reagents.^{27,31} In these systems, sacrificial scavengers are used to minimise electron-hole recombination, where they act as charge traps by irreversibly reacting with the charge carriers, which are electrons and holes for oxidation and reduction half reactions, respectively. Despite the great interest in oxidative artificial photosynthetic schemes, this thesis focuses on reductive ones and exclusively on photocatalytic solar-fuel H₂ production.

1.4.3 Sacrificial reagents for solar-fuel H₂ evolution

It is difficult to couple catalysts and conditions required for a closed redox system, in which simultaneous oxidation and reduction reactions are carried out to selectively produce a single oxidation and a single reduction product with stoichiometric amounts in a single pot.²⁵ For that reason, sacrificial reagents have been extensively used to isolate and study H₂ evolution half-reaction in photocatalytic systems. Under these conditions, a sacrificial electron donor reagent is consumed constantly to produce H₂,

while the H₂ and O₂ back reaction to H₂O is suppressed, due to use of a sacrificial reagent. The unselective oxidation of donor reagents under sacrificial conditions produce destructive radicals and a cocktail of non-innocent oxidation products, which are usually not monitored or characterised, demonstrating an uncontrolled and unsustainable approach.¹¹

Various organic compounds including alcohols, amines and acids are being used as ED to produce H₂ photocatalytically under sacrificial conditions.³² Methanol (MeOH) is one of the most commonly used EDs, yet the consumption of MeOH for H₂ generation will only be sustainable if it is obtained from waste sources.²⁷ MeOH undergoes single electron oxidation reaction as it quenches the photogenerated hole on the PS forming a 'CH₂OH radical. This highly reactive radical can then undergo further oxidation to form HCHO through e⁻ injection to the CB of the PS, through a process known as current doubling effect, generating two CB electrons per hole.^{33,34} In the presence of a WRC, these e⁻ will be used for H₂ production, increasing overall the yield of H₂ formation. This mechanism is likely to occur in sacrificial H₂ production systems employing commonly used alcohol donors with hydrogen atoms at α -position with respect to OH group (ethanol, butanol).²⁷

It is challenging to find single-electron donors that do not produce destructive radical species after one-electron oxidation, while commonly used tertiary amine donors, triethylamine (TEA), triethanolamine (TEOA) and ethylenediaminetetraacetic acid (EDTA), also suffer from this.³¹ Upon single electron oxidation of these reagents, nitrogen centred cationic radicals are formed.^{35,36} Deprotonation of these radicals with another molecule of the ED generate strongly reducing carbon-based radicals, which will rapidly undergo second electron transfer to the PS. Therefore, it is not the starting material acting as the ED but the radical species generated, which contribute to the overall photocatalytic H₂ production.³⁶ These reactive radicals are also destructive for other components of the system, typically towards catalysts.³⁷

Ascorbic acid (AA) is another attractive ED as it is water soluble and it functions at slightly acidic and neutral pH in comparison to TEA and TEOA that work best under basic conditions.³¹ The oxidation product of AA, dehydroascorbic acid (DHA), is an EA and therefore AA/DHA couple represents a reversible EA/ED cycle. However, as the concentration of DHA increases in the reaction solution during solar-driven H₂

7

production, DHA starts to compete with the WRC to collect photoexcited electrons from the PS, terminating the proton reduction reaction.³⁸

Introduction of sacrificial reagents to study H₂ production half reaction brings along the problems of increased cost, formation of reactive intermediates and possible "short-cut" reactions that interfere with the fuel forming reaction. Therefore, the need remains to move away from non-innocent sacrificial reagents and to design alternative water splitting systems.

In order to overcome the limitations of sacrificial donors, an alternative approach is to design closed redox systems and couple proton reduction with selective organic oxidation reactions (useful organic transformations). The other possible approach is to use abundant, cheap and sustainable donors (waste) to drive solar-fuel H₂ production. This eliminates the need for any commercially available products to drive the oxidation half of the scheme (see Section 1.7).

The work in this thesis focuses on designing hybrid systems for these two alternative water splitting approaches in the presence of carbon-based light harvester and a variety of proton reduction catalysts. In the following sections, state-of-the-art photocatalytic systems with commonly used light harvesters, proton reduction catalysts and alternative approaches for sustainable H₂ evolution will be established.

1.5 Photosensitisers

Nature uses pigments to absorb a wide spectrum of light during natural photosynthesis while in artificial photosynthetic schemes, pigments are replaced with synthetic light harvesters. Fundamentally, a photosensitiser should absorb solar light efficiently, preferably visible-light ($\lambda > 400$ nm), and provide fast charge transfer to catalytic active sites, while suppressing competitive charge-hole recombination. The band gap and band positions of artificial light harvesters (molecular dyes and semiconductors) are critical in providing enough driving force for solar-light-driven reactions.^{32,39} Furthermore, photostability, low cost and low-toxicity are other desirable features of a photosensitiser.

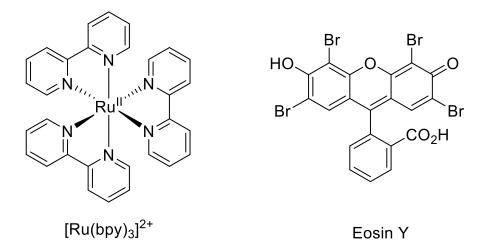


Figure 1.2. Structures of ruthenium tris-2,2'-bipryidine [Ru(bpy)₃]²⁺ and Eosin Y molecular dyes.

1.5.1 Molecular dyes

Molecular dyes are commonly used photosensitisers of photocatalytic systems and they are designed by mimicking naturally occurring light absorbing centres, such as chlorophylls. Most of the studied inorganic molecular dyes consist of precious metal centres (iridium, ruthenium and rhenium) and aromatic ligands.⁴⁰

Dyes such as [Ru(bpy)₃]²⁺ are amongst the most studied metal-based photosensitisers, especially for dye-sensitised solar cells⁴¹ with long-lived excited states, due to their metal to ligand charge transfer (MLCT) states (Figure 1.2).^{42,43} The bipyridine (bpy) backbone can be modified with different functional groups, allowing solubility in a wide range of solvents, as well as enabling covalent linkage or anchoring with different surfaces or catalysts.^{22,44,45} Despite the well-defined absorption band and high efficiencies as photosensitisers, these precious-metal-based dyes suffer from high cost and low molar absorption coefficient, limiting their large-scale application.^{46,47} In addition these dyes can generate highly reducing or oxidising intermediate species, reducing the stability of the system.^{46,47}

Metal-free organic dyes have also been used in the field of photocatalysis for H₂ evolution in conjunction with a variety of catalysts.^{48–51} Molecular dyes provide flexibility to engineer side chains and anchoring groups, allowing fine-tuning of their solubility, electrochemical properties and absorption profiles.^{22,52,53} In comparison to metal-based dyes, organic dyes such as xanthene-based Eosin Y, have high molar absorption coefficients and long-lived triplet excited states due to the heavy-atom

effect (Figure 1.2).^{52,54} Organic dyes are free of precious metals, making them alternatives to traditionally used expensive metal-based dyes, but they typically have low photostabilities.^{49,50,55}

1.5.2 Semiconductors

Semiconductors have the same principles of light absorption and charge separation as natural photosynthesis.⁵⁶ Unlike molecular dyes, semiconductors have broad absorption spectra and better photostability with a capacity to accumulate multiple charges.^{10,57} Since the ground-breaking water splitting report of Honda and Fujishima in 1972 using TiO₂, the potential of semiconductors to drive photocatalytic reactions took a great amount of research interest.²⁶ TiO₂ is a widely studied inexpensive and stable semiconductor with a band gap of 3.0–3.2 eV, absorbing light mainly in the UVregion of the solar spectrum (λ < 400 nm).^{58,59} Although the CB of TiO₂ (–0.29 V vs. NHE, pH 0) lies above the potential of proton reduction, the driving force it can provide is small.^{60,61} The VB of TiO₂ lies at a very positive potential, therefore the photogenerated holes are highly oxidising, producing reactive oxygen species (O₂⁻⁻, HO⁻), that can be destructive towards the components of the system.^{62,63}

Dye-sensitisation of TiO₂ with visible light absorbing dyes is a popular approach to increase visible light utilisation of TiO₂ nanoparticles as well as to extend the lifetime of the charge separated states.^{22,64} Visible-light irradiation excites the dye and the photogenerated electron of the dye is subsequently injected into TiO₂ CB, which acts as a reservoir for long-lived electrons (Figure 1.3).^{13,23,65} These electrons can then be transferred to a catalyst to carry out a reduction reaction, replicating the electron relay in natural photosynthesis.²² A commonly used dye for this purpose is phosphonated [Ru(bpy)₃]²⁺, **RuP**, that can immobilise to TiO₂ surface through the anchoring groups.^{23,66}

The **RuP** dye-sensitised TiO₂ has been used for solar-light-driven proton reduction in the presence of Co-based catalysts (Figure 1.3).^{65,67} More recently, precious metal-free light harvesters, including carbon nitride,⁶⁸ carbon dots,⁶⁹ and organic molecular dyes,⁵¹ have also been used as sensitisers for TiO₂ to drive photocatalytic H₂ evolution.

10

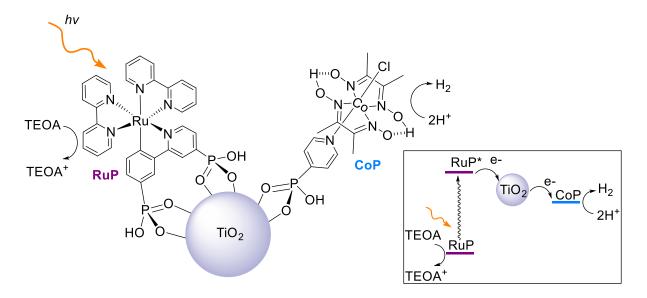


Figure 1.3. Schematic representation of a **RuP** sensitised TiO₂ hybrid system for sacrificial H₂ production in the presence of a Co catalyst.

Many other semiconductor materials have been utilised for photocatalytic applications (Figure 1.4).^{56,70} Band edges of CdS, CdSe and ZnS are well positioned for water splitting, while there is only enough driving force for reduction or oxidation half-reactions for the majority of other semiconductors. CdS is an example of visible light absorbing quantum dots (QDs), with tuneable size and band positions.^{71,72} CdS have been utilised in proton reduction as well as for CO₂ reduction systems due to its highly-reducing photogenerated electrons.^{73–76} The photogenerated electrons in ZnS are also highly reducing (-1.85 V *vs.* NHE, pH 7), while due to its wide band gap, it does not show visible light absorption.⁷⁷

Yet, these metal chalcogenides lack the photostability of TiO₂ nanoparticles due to sulphide auto-oxidation by the photogenerated holes in the semiconductor.^{11,78} The photo-oxidation consequently decomposes these metal chalcogenides, while introducing sulphite electron donors often supress this unwanted oxidation pathway.^{79,80} CdSe has a narrower band gap than CdS, therefore, it utilises visible light better, while still suffers from auto-oxidation.^{74,79} However, the fundamental drawback of CdS, CdSe and ZnSe QDs is their toxicity, which limits their use and large-scale application.⁸¹

BiVO₄ is a narrow band gap semiconductor (2.4 eV) with strong visible light absorption ($\lambda < 540$ nm) and photostability.⁸² It is commonly used in oxidation reactions including O₂ evolution and organic transformation due to highly oxidising VB holes.^{83,84}

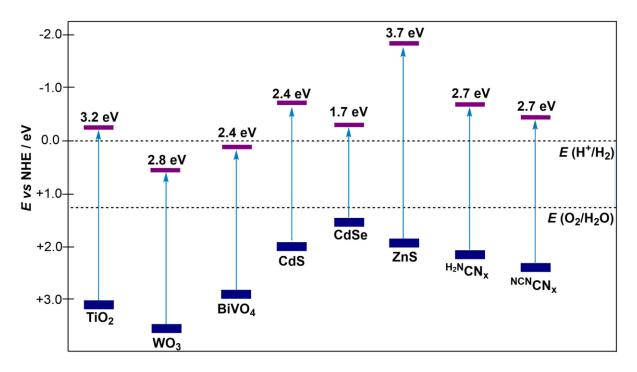


Figure 1.4. Band energy diagram for selected semiconductors showing VB (blue) and CB (purple) energies.^{56,70} Dashed lines indicate the potentials for proton reduction and water oxidation versus normal hydrogen electrode (NHE) at pH 0.

WO₃ is also a semiconductor frequently used for solar-light-driven oxidation reactions although it suffers from photocorrosion.⁸⁵ Both BiVO₄ and WO₃ are inactive towards H₂ evolution due to mismatch between their CB positions and proton reduction potential.¹¹

Carbonaceous materials, carbon dots (CDs) and carbon nitrides (CN_x), are emerging as the new-generation, low-cost, non-toxic and easy-to-synthesise light harvesters. In comparison to traditional semiconductors, these materials are metalfree and are very attractive for large-scale application.

CDs are 2–10 nm in size and contain a carbon-based core with a diverse degree of graphitisation, while the surface of the CDs is capped with oxidised groups (alcohols and carboxylic acids) making them soluble in aqueous media.^{86–88} CDs are highly fluorescent particles with strong light absorption in the UV region which tail into the near-visible region and have been heavily used for *in vivo* biological applications.^{89,90} CDs can be synthesised in multi-gram scale either by "bottom-up" or "top-down" approaches, through thermal decomposition of organic precursors (citric acid),⁹¹ or exfoliation of pre-ordered graphitic structures (graphene oxide), respectively.⁹² CDs have been shown to work for CO₂ reduction,⁹³ and H₂ evolution

under sacrificial conditions in the presence of enzymatic or molecular catalysts reaching up to specific activity of 7,950 μ mol H₂ (g CD)⁻¹ h⁻¹.^{94–97} While CDs benefit from high solubility and easy surface functionalisation, the recycling of dots after photocatalysis is difficult from a single pot containing all the components, which usually makes them single-use semiconductors. Furthermore, in depth characterisation of this new class of material is lacking and structural optimisation at molecular level is challenging.⁸⁸ For photocatalytic applications, graphitic CN_x is an attractive material with well-understood structural details and reusability (recyclability) due to its hydrophobic nature.

Carbon Nitride

Graphitic CN_x has been known for almost 200 years. It was first obtained as yellow residue by Berzelius in 1835 and named as "melon" by Liebig.^{98,99} CN_x can be easily synthesised by thermal condensation of low-cost nitrogen-rich commercially available precursors including cyanamide, dicyanamide, urea and melamine at high temperature (> 500 °C) at very low costs (< 0.1 \$ g⁻¹).^{100–102} CN_x possesses a 2D stacked structure with a nitrogen heteroatom-substituted graphite layer, formed from C and N sp² hybridisation. Two different building blocks have been suggested as the repeating unit in a single layer of CN_x, which are condensed *s*-triazine (C₆N₇, heptazine).¹⁰³ Theoretical calculations and experimental evidence demonstrated that C₆N₇ is energetically more stable and widely accepted as the building block in a single chain of CN_x structure.^{104–106} Individual polymeric chains of CN_x orient themselves in a way that every second chain is inverted, fitting like a lock and key to each other, resulting in strong π - π interactions between chains as well as strong hydrogen bonding between NH₂ groups and NH edge groups.¹⁰¹

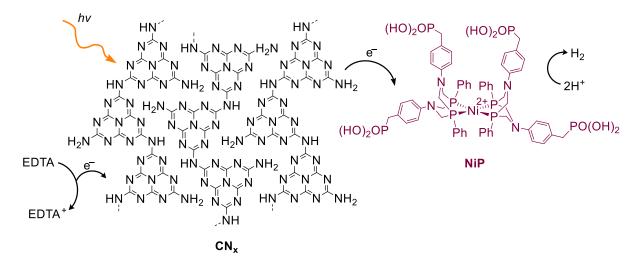
Polymeric CN_x is non-toxic and metal-free.¹⁰⁷ CN_x shows thermal stability (> 600 °C) and is insoluble in many conventionally used solvents (water, alcohol, THF, DMF), establishing chemical stability and application as a heterogeneous photocatalyst.^{106,108} Polymeric CN_x shows visible light response due to a moderate band gap separation of 2.7 eV (λ < 460 nm), while the band edge positions (Figure 1.4), CB (-1.3 V *vs.* NHE, pH 7) and VB (+1.4 V *vs.* NHE, pH 7), make its application feasible in both oxidative and reduction photocatalytic reactions.^{109–111}

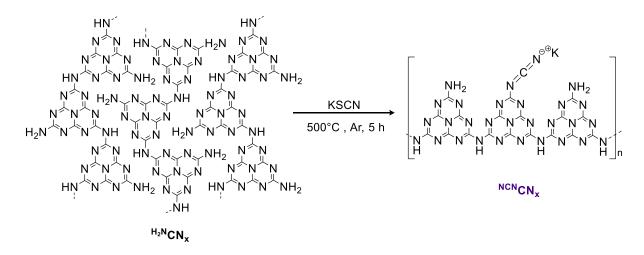
As a semiconductor, CN_x provides enough driving force for the water splitting reaction. In 2009, for the first time, Antonietti and his co-workers demonstrated photocatalytic H₂ and O₂ evolution under sacrificial conditions in the presence of CN_x .¹¹² This re-visit to the historical semiconductor CN_x , has attracted great research interest in order to utilise this sustainable material with huge potential in different photocatalytic applications.¹¹³

More recently, a solar-driven closed water splitting system has been demonstrated using CN_x by photodeposition of multiple co-catalysts on the surfaceactive sites of the material. Simultaneous H₂ and O₂ evolution was achieved in 2:1 ratio while the need for sacrificial reagents was eliminated.¹¹⁴ The quantum efficiency of the system was determined as 0.3% (λ = 405 nm) and there was a need for precious metal catalysts for the system to function. A photocatalytic system consisting of CN_x and CDs has also been reported for water splitting *via* stepwise two electron transfer reactions.¹¹⁵ First, CN_x absorbs visible light and converts H₂O to H₂O₂ and H₂, then the CDs disproportionate H₂O₂ into O₂ and H₂O. The CN_x-CD hybrid showed better visible light absorption than bare CN_x and a quantum efficiency of 16% (λ = 420 nm) was achieved.¹¹⁵

Photocatalytic reduction of CO₂ into hydrocarbon fuels over CN_x has also been reported under sacrificial conditions, by depositing CN_x with noble metal co-catalyst (Pt). Mixture of reduction products including CH₄, CH₃OH and HCHO were detected with low yields.¹¹⁶ Co-based molecular catalysts were also used in conjunction with CN_x for CO₂ reduction to CO, but the system was limited by the further application of CO. More recently, a hybrid system consisting of CN_x and a binuclear Ru(II) complex, demonstrated conversion of CO₂ into formate through a Z-scheme electron-transfer mechanism.¹¹⁷ The system showed around 98% selectivity towards formate formation, a common intermediate molecule for chemical industry.^{117,118}

Many examples of solar-light driven proton reduction under sacrificial conditions have also been reported with CN_x as the light harvester.^{119–121} In the presence of CN_x and an electron donor, EDTA, with a Ni-based molecular catalyst, **NiP** (Figure 1.5), a specific activity of 437.1 ± 43.7 µmol H₂ (g CN_x)⁻¹ h⁻¹ was reached.¹²² Under only visible light irradiation ($\lambda > 420$ nm), 36% of this initial activity towards photocatalytic H₂-evolution was maintained. This is due to limited visible light absorption ability of CN_x , leaving room for further improvements.¹²²




Figure 1.5. Schematic representation of photocatalytic H_2 production in the presence of CN_x , **NiP** and EDTA as the sacrificial electron donor.

The organic nature of CN_x material offers a variety of structural modification directions. Huge advances have been made in the CN_x field and materials reaching specific activities of 20,000 μ mol H₂ (g CN_x)⁻¹ h⁻¹ and 37,680 μ mol H₂ (g CN_x)⁻¹ h⁻¹ have been reported for H₂-evolution under sacrificial conditions with Pt as the co-catalyst.^{100,123}

a semiconductor, CNx have already been used for pollutant As degradation^{111,124,125} and organic transformations.^{126–128} The examples given represent a wide spectrum for photocatalytic applications of the polymeric CN_x. Yet, the performance of CN_x is mainly limited by the fast charge recombination, insufficient utilisation of visible light (λ > 460 nm) and small active surface area available for interfacial reactions in semi-heterogeneous systems.^{112,122,129} In order to overcome these limitations, different strategies have been developed, aiming to improve the photocatalytic activity of CN_x by tuning its structure, composition and properties. Some of the possible approaches are to use different precursors as the building blocks,^{130–} 132 morpohologies.^{133–136} engineer structures with different construct heterojunctioning,^{137–141} and to introduce metal or non-metal doping.^{142–144}

An alternative strategy is to modify surface termination groups and defect sites in CN_x structure that have been identified as vital reaction centres for photocatalysis.¹⁰⁸ Lotsch and co-workers designed a range of heptazine-based structures by altering the amine (–NH₂) end-groups found in the benchmark CN_x structure (from this point onwards, amine-terminated CN_x will be referred to as $^{H_2N}CN_x$). Amongst all tested, the

15

cyanamide surface-functionalised CN_x , $^{NCN}CN_x$, showed the best photocatalytic activity, which was prepared by thermal treatment of $^{H_2N}CN_x$ and KSCN (Figure 1.6).¹⁴⁵ Polymeric nature of the material was preserved after the KSCN treatment, while the surface terminating $-NH_2$ groups were replaced with -NCN moieties.¹⁴⁵

The H₂ production activity of ^{NCN}CN_x was tested in methanol solution with Pt as the co-catalyst. The system maintained its activity over 70 h and a H₂ production rate of 24.7 µmol h⁻¹ was reached, showing 12 times better activity than the benchmark H₂NCN_x.¹⁴⁵ The enhanced activity was attributed to longer-lived charge separated states due to built-in potential differences across chains, as well as the improved charge transfer from more exposed active sites of ^{NCN}CN_x to the co-catalyst.¹⁴⁵

Following the initiation of this project, ^{NCN}CN_x was only used for H₂-evolution under sacrificial conditions. In addition, carbon-based semiconductors were never used in the literature for alternative water splitting systems defined earlier: (1) simultaneous selective organic oxidation and proton reduction, (2) solar-driven waste conversion into H₂.

1.6 H₂ evolution catalysts

In order to generate a molecule of H₂, two protons and two photoexcited electrons are required. Light harvesters can only provide small driving force for this conversion and in the absence of a catalyst, the kinetics of this reaction will be very slow.

Inspired from natural photosynthesis, many WRCs have been designed and used in the artificial schemes to catalyse H₂-evolution reaction. WRCs are

fundamentally required to be photostable, inexpensive, selective towards proton reduction and function under mild conditions preferably in aqueous media. Roughly, these catalysts can be divided into three categories; heterogeneous catalysts, enzymes and molecular catalysts.

1.6.1 Heterogeneous catalysts

For the H₂-evolution reaction, platinum is the benchmark WRC, due to its optimum hydrogen adsorption energy allowing rapid proton reduction and H₂ desorption.^{146,147} It is usually deposited in the metal nanoparticle form on the surface of the light harvesters, including TiO₂ and H₂NCN_x,^{112,148} *via in situ* photoreduction of a Pt precursor, typically H₂PtCl₆. As a noble metal, Pt shows stability over a wide range of reaction conditions while suffering from high cost and low abundance.¹⁴⁹ Selectivity is another significant drawback of Pt, as under aerobic conditions, there will be competition between oxygen and proton reduction.¹⁵⁰ Therefore, a need remains to find precious metal-free catalysts that are inexpensive when designing sustainable systems for large-scale application.

As an alternative to Pt, first row transition metal salts (Ni, Fe and Co) can also undergo *in situ* photoreduction to form catalytically-active metal sites. In conjunction with CN_x, photodeposited Ni co-catalyst from NiCl₂ salt has been demonstrated to function as active site for H₂ evolution.¹⁵¹ CdS QDs have also been shown to work efficiently for proton reduction in the presence of Co co-catalysts using CoCl₂ and Co(NO₃)₂ as the catalytic precursors.⁷³ Yet, identification of heterogeneous nanoparticles that form upon degradation of metal salts is still challenging, as these species are not stable.¹⁵²

Recently metal dichalcogenide materials, such as MoS₂ have attracted great research interest as WRC.¹⁵³ Computational and experimental studies indicate that the exposed sulphur edge groups are catalytically active towards proton reduction while the basal phase is inactive.^{154,155} MoS₂ has been shown to work efficiently as a catalyst under homogenous and semi-heterogeneous conditions in the presence of a wide range of light harvesters, including Ru dyes,¹⁵⁶ H₂NCN_x,¹⁵⁷ TiO₂,¹⁵⁸ and CdS.^{159,160}

Therefore, metal salts can be utilised as precursors for WRCs in photocatalytic systems, providing an inexpensive and easy-to-assemble approach. Yet, the photo-

17

induced reduction of these precursors generally introduce a delay, induction period, prior to catalysis, while it remains difficult to define the catalytically active species.¹⁶¹

1.6.2 Enzymes

In nature, hydrogenase (H₂ase) enzymes reversibly catalyse the reduction of protons to H₂ with very high activities, reaching turn over frequencies (TOFs) up to 9,000 s⁻¹.¹⁶² These enzymes contain only earth-abundant metals iron and nickel in their active sites and function with minimum overpotential.^{56,163,164} Different types of H₂ases have been used in hybrid systems including **RuP** sensitised TiO₂,⁶⁶ CdS,^{165,166} H₂NCN_x,¹²² and H₂NCN_x sensitised TiO₂.⁶⁸ These semi-biological systems showed variety of activities, while in the presence of CdS QDs a TOF of 900 s⁻¹ was reached.¹⁶⁶

Despite the model systems reported using H₂ases as WRC in photocatalytic schemes, efficient utilisation of this biocatalyst is challenging. It is an expensive process to extract and purify H₂ases.¹⁶⁷ Most of these enzymes are highly oxygensensitive, requiring extreme care under anaerobic conditions when handling.¹⁶⁸ Despite the small size of catalytically-active sites, enzymes are very bulky in comparison to metal nanoparticles or small molecular catalysts.¹⁶⁸ In addition, H₂ases have a fragile framework and only function under certain reaction conditions and pH.¹⁶⁷ Therefore, utilisation of enzymes as WRC for real-life applications is challenging, but the structural information serves as a guide when designing synthetic catalysts.

H₂ases are categorised according to the metal centres found in their active sites.¹⁶⁷ [FeFe]-H₂ases and [NiFe]-H₂ases are the only ones active towards H₂-evolution (Figure 1.7).¹⁶⁹ As their characteristic features, there are sulphur bridges between bimetallic centres and CO and CN⁻ ligands.^{170–172} Active sites of H₂ases are bound to protein matrix that facilitates electron transfer to and from metal centres.¹⁶⁷ [NiFe]-H₂ases generally have better O₂-tolerance than [FeFe]-H₂ases but they are more biased towards H₂ oxidation than H⁺ reduction.¹⁷³ The arginine residue in the outer coordination sphere of [NiFe]-H₂ases is positioned above the Ni and Fe metal centres and the amine group facilitates proton transfer to active site.¹⁷⁴ [FeFe]-H₂ases with the bridgehead amine group, show the highest H₂ evolution rate.¹⁷⁵ The flexible pendant amine shuttles protons to the Fe centre and this unique feature is crucial for the high activity of the [FeFe]-H₂ases. All the structural information obtained from nature.

18

Figure 1.7. Structures of the active sites of [FeFe]-H₂ase and [NiFe]-H₂ase. The grey arrows indicate the metal coordinates sites for H₂. The outer coordination sphere with arginine residue is represented with an arc and an amine group, respectively, for [NiFe]-H₂ase. Abbreviations: [Fe₄S₄], iron-sulphur cluster; Cys, cysteine.

1.6.3 Molecular catalysts

Since the structures of H₂ases have been resolved, replicating active sites of this "hydrogen-processing" enzymes attracted great attention. Numerous iron complexes have been synthesised for proton reduction as molecular mimics of the [FeFe]-H₂ase active site.¹⁷⁵ Photocatalytic systems which incorporated these complexes (Figure 1.8) required large overpotentials (> 500 mV) and showed very low TOFs.^{176,177} On the other hand, due to the fragile framework of [NiFe]-H₂ase mimics, the activity observed usually arises form heterogeneous metal precursors deposited on the semiconductor formed upon degradation of the molecular catalysts.^{178,179} In addition, this bimetallicnature-inspired complexes require organic-aqueous reaction mixtures to function, while being highly O₂ intolerant.¹⁷⁶ These findings indicate that, simply replicating the catalytically active site from a macromolecule does not necessarily mean that all of the desired features are preserved. Therefore, significant research effort has been shifted towards designing simple molecules in which the key functional features of H₂ases are implemented for efficient proton transfer and reduction mechanism.

Bio-inspired cobalt complexes with diglyoxime ligand framework, known as cobaloximes, are amongst the most studied catalysts for H₂-evolution (Figure 1.8). These complexes, as molecular mimics of vitamin B₁₂, are easy to synthesise, functionalise and show high initial rates at low overpotentials.^{180,181} Cobaloxime complexes with phosphonated anchoring group demonstrated to work under aqueous

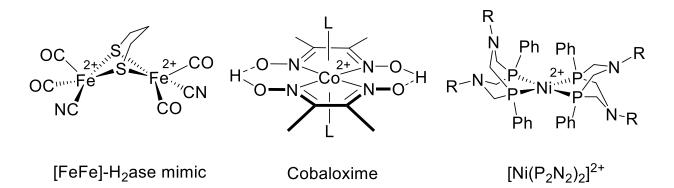


Figure 1.8. Schematic representations of the nature-inspired molecular catalysts. Abbreviations: L, ligand; R, alkyl or aryl groups.

conditions in the presence **RuP**-sensitised TiO₂ nanoparticles, reaching a TOF of 19 h^{-1} (Figure 1.3).⁶⁷ Cobaloxime complexes are amongst the few synthetic catalysts that have been reported to sustain H₂ production in the presence of O₂, an essential requirement for full water splitting.^{48,182} As a general drawback, these complexes have poor stability, due to equatorial ligands being prone to degradation and the axial ligands becoming labile during catalysis, therefore detaching from the metal core.^{183,184}

Different strategies have been considered to improve the stability of these complexes, such as equatorial ligand engineering and coordination to polymeric scaffolds, at the expense of rate or high overpotential requirements.^{185–187}

Another first-row transition metal which attracted great scientific interest in designing bio-inspired complexes is nickel. Dubois and co-workers developed a series of mononuclear Ni-bisdiphosphine based molecular catalysts with a general formula of $[Ni(P_2N_2)_2]^{2+}$ (Figure 1.8).^{188,189} Same as in nature, these catalysts are capable of reducing protons and oxidising H₂ (Figure 1.9), while functioning at low overpotentials (200 mV).^{188,189} Initially these complexes were used for electrocatalytic H₂ production, reaching up to TOF of 100,000 s⁻¹, competing with the activities of H₂ases.^{190,191} The H₂ production is initiated by reduction of the Ni-centre followed by protonation of an amine. The superior activity of this class of catalyst arises from the strategically positioned flexible amines, which deliver protons to reduced Ni centre, replicating the proton relay found in the active site of H₂ases.^{191,192} The Ni-centre then undergoes second reduction forming a nickel-hydride intermediate (Figure 1.9), followed by protonation. Consequently, H–H bond is formed, releasing H₂ and recovering catalyst.

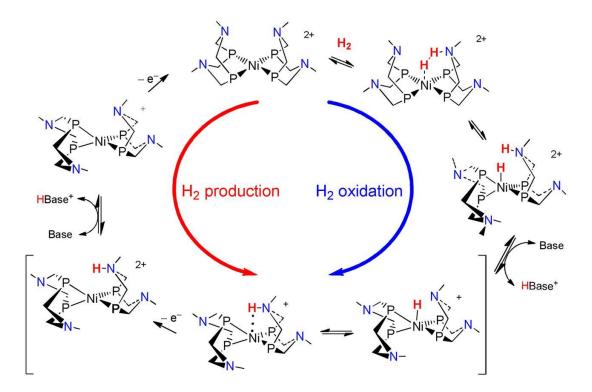


Figure 1.9. Mechanism for H⁺ reduction and H₂ oxidation by Dubois type molecular catalysts with a general formula of $[Ni(P_2N_2)_2]^{2+}$. Reprinted with permission from *J. Phy. Chem. C*, **2012**, *116*, 3171–3180. Copyright (2012) American Chemical Society.

Even though the initially designed complexes were active for H₂ production under electrocatalytic conditions, organic solvents and the addition of strong acids were essential.^{193,194}

Photocatalytic H₂ production under sacrificial conditions was first reported using the $[Ni(P_2N_2)_2]^{2+}$ catalyst in the presence of $[Ru(bpy)_3]^{2+}$ or Eosin Y.¹⁹⁴ The system functioned in the presence of H₂O/MeCN (1:1) solvent mixture and AA as the electron donor reaching a TOF up to 20 h⁻¹ with a turn over number (TON) of 450 after 24 h of irradiation.¹⁹⁴

More recently, $[Ni(P_2N_2)_2]^{2+}$ type catalysts which function under fully aqueous conditions have been synthesised by incorporating phosphonic acid groups on the ligand framework, NiP, (Figure 1.5).⁴⁵ Under homogenous conditions with RuP, NiP and AA as the sacrificial donor, a TOF of 406 h⁻¹ and TON of 700 after 2 h of irradiation were reached.⁴⁵ NiP has also been utilised in semi-heterogeneous photocatalytic systems as a proton reduction catalyst in the presence of H₂NCN_x (Figure 1.5),¹²² and dye-sensitised TiO₂.^{45,51} Homogenous systems using NiP as WRC in the presence of CDs have also been reported.^{94,95} In addition, the phosphonic acid moieties on NiP

act as anchors enabling immobilisation on metal oxide surfaces, expanding the use of **NiP** into photoelectrochemical cells for H₂-evolution.^{85,195,196}

The stability of the systems utilising **NiP** is usually limited due to photodegradation (UV irradiation) and decomposition of the catalyst with the radicals generated upon oxidation of sacrificial electron donors. These problems have been recently addressed by using CDs in the presence of clean donor system, which eliminates the formation of destructive radicals.^{37,197} **NiP** showed record-high activity, reaching a TON of 1,094 after 24 h of irradiation, while maintaining its activity over 5 days under visible light irradiation.³⁷

It is important to maintain an inert atmosphere for systems involving **NiP**, as it is intolerant towards O₂, the phosphine groups undergo irreversible oxidation, terminating its activity.^{182,198} Still, Dubois-type catalysts are the state-of-the-art molecular complexes for photocatalytic H₂-evolution systems.

1.7 Strategies for sustainable H₂ production

Despite the great research effort put forward for solar-fuel H₂ generation, the systems reported to date heavily rely on sacrificial reagents. Under these conditions, excess amounts of electron donors are constantly consumed for H₂ production. Additionally, the role of oxidation products formed upon consumption of these reagents is often unclear and underestimated. In order to design sustainable H₂ production systems, there is a need to move away from uncontrolled oxidation of sacrificial donors.

One methodology would be to replace electron donor oxidation half-reactions with industrially important organic transformations, aiming to form oxidation products with higher value than the starting substrates and to couple this with H₂ production.^{199–201} Photocatalytic systems for organic substrate oxidation under sacrificial conditions have been previously reported. In the presence of Ru-based oxidation catalyst, [Ru(bpy)₃]²⁺ or BiVO₄ as the light harvester and sacrificial electron acceptor [Co(NH₃)₅Cl]²⁺, oxidation of benzylic alcohols was achieved, with the highest conversion yield of 44%.^{83,202}

Organic substrate oxidation (substituted benzyl alcohol) in the presence of TiO₂ has also been reported using O₂ as the sacrificial electron acceptor.^{203–208} In the presence of dye-sensitised TiO₂ with an oxidant TEMPO, (2,2,6,6-tetramethyl-1-

piperidinyloxy), up to 100% conversion yield was achieved for 4-methoxy benzylalcohol after 15 h of irradiation.²⁰⁴ Despite the high conversion yields with TiO₂, these systems operated under high pressure of O₂ and organic solvents were used to enhance the solubility of O₂.^{203,204,207}

Without the need for an additional oxidation catalyst, $^{H_2N}CN_x$ has also been demonstrated to function as a photocatalyst for the oxidation of amines, alcohols, alkanes and hydrocarbons in the presence of O₂.^{108,127,209} After 2 h of irradiation full 4-methoxy benzylalcohol conversion to aldehyde was achieved, but same as TiO₂, the system functioned under high pressure of O₂ and in organic solvents.²⁰⁹

Nevertheless, a need remains to replace the sacrificial electron acceptors with a WRC as the final electron acceptor for H₂ production. This closed redox system would enable simultaneous solar-chemical and solar-fuel formation with stoichiometric amount of oxidation and reduction products. In addition, the products will be separated *in situ* as the oxidation product will stay in solution while H₂ will be collected in the headspace.

Subsequent to the start of this project, there was only one example of a photocatalytic system which coupled organic transformation and proton reduction in a single reactor. This homogeneous multicomponent system used Ru and Ir-based light harvesters, a Ru and Fe-based oxidation and reduction catalysts, repectively.²¹⁰ Although simultaneous styrene oxidation to benzaldehyde and H₂ production was detected, the yield of styrene conversion was less than 6%, and the mechanism behind this complex catalytic cycle was not clear.²¹⁰ These results indicate the importance of designing a simple system, preferably with minimum number of inexpensive components.

The second possible approach for sustainable solar-fuel H₂ production, is to use abundant, cheap and sustainable donors (waste).²¹¹ The ultimate goal is to replace all of the commercially available chemicals, when designing a system with large-scale application with waste materials. It is estimated that the United States has the capacity to produce one billion tons of dry biomass per year, enough to replace 30% of the country's current gasoline consumption annually.²¹² Utilisation of lignocellulose, the most abundant form of biomass, as the ED has the potential to produce clean and renewable H₂. Lignocellulose has a multi-component structure,

composed of cellulose, hemicellulose and lignin, which has evolved to prevent its degradation.^{213,214} Due to the complex nature of lignocellulose, it is kinetically challenging to oxidise at ambient conditions.

Photocatalytic reforming of biomass implements the basics of water splitting but instead of water oxidation, biomass oxidation quenches the photogenerated holes, while the electrons are used for H₂ evolution. Despite the uphill nature of water splitting, biomass reforming is almost an energy-neutral reaction.²¹¹ Only a handful of examples are available for direct photoreforming of unprocessed biomass, as the research heavily relied on processed biomass derivatives including glucose,²¹⁵ glycerol,²¹⁶ and 5-hydroxymethylfurfural.²¹⁷ This is due to the high insolubility of raw substrates, as well as the strong light scattering and absorbing nature of the biomass components.

The first examples of unprocessed biomass photoreforming used TiO₂ in the presence of Pt as the co-catalyst.^{218,219} The biomass substrates including turf, cherry wood, laver and algae were all successfully reformed under alkaline conditions (5 M KOH). The activities reported were low, 4–18 μ mol H₂ (g TiO₂)⁻¹ h⁻¹, while introducing oxidation catalyst (RuO₂) almost tripled the activity.^{218,219} Photoreforming under elevated temperature also showed to increase the rate of H₂ production with TiO₂.^{220,221}

More recently, raw biomass photoreforming at 25 °C with visible light absorbing CdS has been reported.²²² The system operated under strongly alkaline conditions (10 M KOH) to enhance the solubility of raw biomass samples and to improve the stability of the CdS QDs. In the presence of sawdust and wooden branch as the electron donors, activities of 750 μ mol H₂ (g CdS)⁻¹ h⁻¹ and 5,100 μ mol H₂ (g CdS)⁻¹ h⁻¹ were reached, respectively.²²²

High H₂ evolution rates were reached with a Co/CdS/CoO_x photocatalytic system without the need for any precious metals. Yet, the system operated under strongly basic conditions (pH~15) in the presence of a toxic Cd-based light harvester. Therefore, there is a great interest in developing photoreforming systems that function under aqueous conditions while eliminating expensive or toxic components.

1.8 Project outline

As detailed in the introduction, artificial photosynthesis represents a sustainable route for storing solar energy in chemical bonds to be used on demand. For photocatalytic applications, inexpensive, easy-to-synthesise, scalable and non-toxic materials are crucial as solar light harvesters. CN_x present a great number of advantages over other traditionally used light harvesters and their potential as photocatalysts for a wide spectrum of reactions had already been explored under sacrificial conditions. Prior to the start of this project, carbon nitride had not been used as a photocatalyst for closed redox systems carrying out two useful chemical transformations in a single reactor, simultaneous organic oxidation and proton reduction, eliminating the need for sacrificial reagents. In addition, there were not any raw biomass photoreforming studies using carbon-based light harvesters.

The aim of this work was to use carbon nitride as the light harvester for these two sustainable H₂-evolution strategies. In Chapter 2, the general procedures for preparing the materials and photocatalytic experiments are detailed. The experimental set-ups and physical characterisation techniques used throughout this work are explained. In addition, the methods to quantify and characterise the oxidation and reduction products are discussed. Spectroscopic methods to follow the charge transfer kinetics in the hybrid systems designed are also discussed.

The first goal objective was to design a photocatalytic system for simultaneous substrate oxidation and proton reduction in the presence of $^{NCN}CN_x$ and NiP under N_2 atmosphere (Chapter 3). This photocatalytic system demonstrates solar-fuel and solar-chemical synthesis under simulated solar light irradiation in a single pot. The product formation over time was monitored and the limiting factors behind this redox system were identified.

It was found that $^{NCN}CN_x$ was able to oxidise organic substrates even in the absence of NiP, by storing electrons in the heptazine framework. This unusual behaviour was further studied to develop a better understanding on these trapped electrons (Chapter 4). This ability enabled decoupling oxidation and reduction reactions in the light and dark cycles, overcoming the diurnal availability of sunlight. Therefore, replicating natural photosynthesis in a single pot artificial set-up. The mechanism behind the full redox system was investigated and transient absorption

spectroscopy was used to understand the photophysics behind this system. The kinetics of each charge transfer reactions were studied and the extraction of photoexcited electrons from $^{NCN}CN_x$ was found to be the slowest, rate limiting, step.

In Chapter 5, graphene oxide and reduced graphene oxide were introduced as conductive scaffolds to enhance the rate of electron extraction from ^{NCN}CN_x in a full closed redox system. Significant enhancement in photoactivity, up to 3-times, were observed in the presence of graphene oxide and reduced graphene oxide in comparison to bare ^{NCN}CN_x. For the first time, a wide range of optical spectroscopic techniques, namely time-resolved photoluminescence, transient absorption spectroscopy and photoinduced absorption spectroscopy, were used to understand the interaction in these heterojunctions while the kinetics behind the improved photocatalytic activities were investigated.

In Chapter 6, the activity of bulk ^{NCN}CN_x was enhanced by ultra-sonication, which enabled breaking aggregates of bulk ^{NCN}CN_x. The activated ^{NCN}CN_x showed the highest H₂ production rate in the field of carbon nitrides, reaching up to 39 mmol H₂ (^{NCN}CN_x)⁻¹ h⁻¹. This activated material was subsequently used for photoreforming purified lignocellulosic component and raw biomass samples over a wide range of pH (2–15) and in the presence of molecular and heterogenous H₂-evolution catalysts. This is the first report on utilising carbon-based light harvester for abundant waste biomass photoreforming.

Finally in Chapter 7, the work presented in this thesis is summarised and possible future directions are envisaged. In particular, the possibility of expanding the photoreforming into plastics and other types of waste is described. The use of waste metals as H₂-evolution catalysts and abundant waste sources as precursors for synthesis of photocatalysts are among the targets towards sustainable H₂ production. The main goal is to design a system that functions in large-scale without the need for any commercially purchased components.

1.9 References

- Matzenberger, J.; Kranzl, L.; Tromborg, E.; Junginger, M.; Daioglou, V.; Sheng Goh, C.; Keramidas, K. *Renew. Sustain. Energy Rev.* 2015, *43*, 926–941.
- (2) Guo, M.; Song, W.; Buhain, J. *Renew. Sustain. Energy Rev.* 2015, 42, 712–725.

- (3) Dhillon, R. S.; von Wuehlisch, G. *Biomass and Bioenergy* **2013**, *48*, 75–89.
- U.S. Energy Information Administration. *International Energy Outlook* 2015, 1– 154.
- (5) Bennoua, S.; Le Duigou, A.; Quéméré, M. M.; Dautremont, S. Int. J. Hydrogen Energy 2015, 40, 7231–7245.
- Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A. G. Int. J. Hydrogen Energy 2016, 41, 16509–16522.
- (7) Lubitz, W.; Tumas, W. Chem. Rev. 2007, 107, 3900–3903.
- (8) Winter, C.-J. Int. J. Hydrogen Energy **2009**, 34, S1–S52.
- (9) Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J. *J. Power Sources* 2007, *165*, 739–756.
- (10) Wen, F.; Li, C. A. N. Acc. Chem. Res. 2013, 46, 2355–2364.
- (11) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253–278.
- (12) Han, Z.; Eisenberg, R. Acc. Chem. Res. 2014, 47, 2537–2544.
- (13) Cowan, A. J.; Durrant, J. R. Chem. Soc. Rev. 2013, 42, 2281–2293.
- (14) Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; van de Krol, R. *Angew. Chem. Int. Ed.* **2013**, *5*2, 10426–10437.
- (15) Nelson, N.; Ben-Shem, A. Nat. Rev. Mol. Cell Biol. 2004, 5, 971–982.
- (16) Caffarri, S.; Tibiletti, T.; Jennings, R.; Santabarbara, S. Curr. Protein Pept. Sci.
 2014, 15, 296–331.
- (17) Barber, J. Chem. Soc. Rev. 2009, 38, 185–196.
- (18) Maciá-Agulló, J. A.; Corma, A.; Garcia, H. Chem. Eur. J. 2015, 21, 10940– 10959.
- (19) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Annu.
 Rev. Phys. Chem. 2012, 63, 541–569.
- Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W. *Science* 2016, *352*, 448–450.

- (21) Roth, L. E.; Nguyen, J. C.; Tezcan, F. A. J. Am. Chem. Soc. 2010, 132, 13672– 13674.
- (22) Willkomm, J.; Orchard, K. L.; Reynal, A.; Pastor, E.; Durrant, J. R.; Reisner, E. Chem. Soc. Rev. 2016, 45, 9–23.
- (23) Reynal, A.; Lakadamyali, F.; Gross, M. A.; Reisner, E.; Durrant, J. R. *Energy Environ. Sci.* 2013, 6, 3291–3300.
- (24) Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655–2661.
- (25) Teets, T. S.; Nocera, D. G. Chem. Commun. 2011, 47, 9268–9274.
- (26) Fujishima, A.; Honda, K. Nature **1972**, 238, 37–38.
- (27) Schneider, J.; Bahnemann, D. W. J. Phys. Chem. Lett. 2013, 4, 3479–3483.
- (28) Eckenhoff, W. T.; Eisenberg, R. Dalt. Trans. 2012, 41, 13004–13021.
- (29) Wakerley, D. W.; Reisner, E. Energy Environ. Sci. 2015, 8, 2283–2295.
- (30) Liu, J.; Zhang, Y.; Lu, L.; Wu, G.; Chen, W. Chem. Commun. 2012, 48, 8826– 8828.
- (31) Pellegrin, Y.; Odobel, F. Comptes Rendus Chim. 2017, 20, 283–295.
- (32) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503–6570.
- (33) Hykaway, N.; Sears, W. M.; Morisaki, H.; Morrison, S. R. J. Phys. Chem. 1986, 90, 6663–6667.
- (34) Ahmed, A. Y.; Kandiel, T. A.; Ivanova, I.; Bahnemann, D. Appl. Surf. Sci. 2014, 319, 44–49.
- (35) Chan, S. F.; Chou, M.; Creutz, C.; Matsubara, T.; Sutin, N. J. Am. Chem. Soc. 1981, 103, 369–379.
- (36) Probst, B.; Rodenberg, A.; Guttentag, M.; Hamm, P.; Alberto, R. *Inorg. Chem.* **2010**, *49*, 6453–6460.
- (37) Martindale, B. C. M.; Joliat, E.; Bachmann, C.; Alberto, R.; Reisner, E. Angew.
 Chem. Int. Ed. 2016, *55*, 9402–9406.
- (38) Guttentag, M.; Rodenberg, A.; Kopelent, R.; Probst, B.; Buchwalder, C.; Brandstätter, M.; Hamm, P.; Alberto, R. *Eur. J. Inorg. Chem.* 2012, 2012, 59–64.

- (39) Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900–1909.
- (40) Argazzi, R.; Murakami Iha, N. Y.; Zabri, H.; Odobel, F.; Bignozzi, C. A. Coord.
 Chem. Rev. 2004, 248, 1299–1316.
- (41) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595–6663.
- (42) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159–244.
- (43) Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583–5590.
- (44) Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Leibl, W.; Fontecave, M. Angew. Chem. Int. Ed. 2008, 47, 564–567.
- (45) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- (46) Du, P.; Knowles, K.; Eisenberg, R. J. Am. Chem. Soc 2008, 130, 12576–12577.
- (47) Chen, L.; Chen, G.; Leung, C. F.; Yiu, S. M.; Ko, C. C.; Anxolabéhère-Mallart,
 E.; Robert, M.; Lau, T. C. ACS Catal. 2015, 5, 356–364.
- (48) Lakadamyali, F.; Kato, M.; Muresan, N. M.; Reisner, E. Angew. Chem. Int. Ed.
 2012, 51, 9381–9384.
- (49) Yin, M.; Ma, S.; Wu, C.; Fan, Y. RSC Adv. 2015, 5, 1852–1858.
- (50) Han, Z.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. Angew. Chem. Int. Ed. 2012, 51, 1667–1670.
- (51) Warnan, J.; Willkomm, J.; Ng, J. N.; Godin, R.; Prantl, S.; Durrant, J. R.; Reisner,
 E. *Chem. Sci.* 2017, *8*, 3070–3079.
- (52) Sabatini, R. P.; Eckenhoff, W. T.; Orchard, A.; Liwosz, K. R.; Detty, M. R.;
 Watson, D. F.; McCamant, D. W.; Eisenberg, R. *J. Am. Chem. Soc.* 2014, *136*, 7740–7750.
- (53) Ooyama, Y.; Yamaguchi, N.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Chem. Commun. 2013, 49, 2548–2550.
- (54) Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.; Eisenberg, R. J. Am. Chem. Soc. 2009, 131, 9192–9194.
- (55) McCormick, T. M.; Calitree, B. D.; Orchard, A.; Kraut, N. D.; Bright, F. V.; Detty,

M. R.; Eisenberg, R. J. Am. Chem. Soc. 2010, 132, 15480–15483.

- (56) Tran, P. D.; Wong, L. H.; Barber, J.; Loo, J. S. C. *Energy Environ. Sci.* **2012**, *5*, 5902–5918.
- (57) Boschloo, G.; Fitzmaurice, D. J. Phys. Chem. B 1999, 103, 7860–7868.
- (58) Kavan, L.; Grätzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. J. Am. Chem.
 Soc. 1996, 118, 6716–6723.
- (59) Soc, C.; Berardi, S.; Drouet, S.; Franca, L.; Gimbert-surin, C.; Guttentag, M.;
 Richmond, C.; Stoll, T.; Llobet, A. *Chem. Soc. Rev.* 2014, 43, 7501–7519.
- (60) Kosmulski, M. Adv. Colloid Interface Sci. 2009, 152, 14–25.
- (61) Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543–556.
- (62) Xiao-e, L.; Green, A. N. M.; Haque, S. A.; Mills, A.; Durrant, J. R. J. Photochem.
 Photobiol. A 2004, 162, 253–259.
- (63) Tachikawa, T.; Majima, T. *Langmuir* **2009**, *25*, 7791–7802.
- (64) O'Regan, B.; Gratzel, M. *Nature* **1991**, 353, 737–740.
- (65) Lakadamyali, F.; Reynal, A.; Kato, M.; Durrant, J. R.; Reisner, E. Chem. Eur. J.
 2012, 18, 15464–15475.
- (66) Reisner, E.; Powell, D. J.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. *J. Am. Chem. Soc.* 2009, *131*, 18457–18466.
- (67) Lakadamyali, F.; Reisner, E. Chem. Commun. 2011, 47, 1695–1697.
- (68) Caputo, C. A.; Wang, L.; Beranek, R.; Reisner, E. Chem. Sci. 2015, 6, 5690– 5694.
- Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.;
 Zhang, T. *J. Mater. Chem. A* 2014, *2*, 3344.
- (70) Wang, M.; Han, K.; Zhang, S.; Sun, L. Coord. Chem. Rev. 2015, 287, 1–14.
- (71) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183–184.
- (72) Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A. B.;
 Swenson, N. K.; Lian, S.; Calzada, R.; Weiss, E. A. *Chem. Rev.* 2016, *116*, 12865–12919.

- (73) Chang, C. M.; Orchard, K. L.; Martindale, B. C. M.; Reisner, E. J. Mater. Chem.
 A 2016, 4, 2856–2862.
- (74) Holmes, M. A.; Townsend, T. K.; Osterloh, F. E. Chem. Commun. 2012, 48, 371–373.
- (75) Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. J. Am. Chem. Soc. 2017, 139, 7217–7223.
- (76) Zeng, P.; Zhang, Q.; Peng, T.; Zhang, X. *Phys. Chem. Chem. Phys.* 2011, 13, 21496–21502.
- (77) Kudo, A.; Sekizawa, M. Chem. Commun. 2000, 1371–1372.
- (78) Weide, P.; Schulz, K.; Kaluza, S.; Rohe, M.; Beranek, R.; Muhler, M. *Langmuir* 2016, *32*, 12641–12649.
- (79) Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011, 133, 9607– 9615.
- (80) Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467–1476.
- (81) Rani, A.; Kumar, A.; Lal, A.; Pant, M. Int. J. Environ. Health Res. 2014, 24, 378–399.
- (82) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624–4628.
- (83) Zhou, X.; Li, F.; Li, X.; Li, H.; Wang, Y.; Sun, L. Dalt. Trans. 2015, 44, 475–479.
- (84) Zhang, B.; Li, J.; Zhang, B.; Chong, R.; Li, R.; Yuan, B.; Lu, S.-M.; Li, C. J. Catal.
 2015, 332, 95–100.
- (85) Rosser, T.; Gross, M. A.; Lai, Y.-H.; Reisner, E. Chem. Sci. 2016, 18, 15464– 15475.
- (86) Baker, S. N.; Baker, G. A. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.
- (87) Cayuela, A.; Soriano, M. L.; Carrillo-Carrión, C.; Valcárcel, M. *Chem. Commun.* **2016**, *52*, 1311–1326.
- (88) Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Chem. Soc. Rev. 2017, 46, 6111–6123.
- (89) Yang, Shengtao; Cao, Li; Luo, Pengju G; Lu, Fushen; Wang, xin; Wang, Haifeng; Meziani, Mohammed J.; Liu, Yuanfang, Qi, Gang; Sun, Y. *J. Am.*

Chem. Soc. 2009, 131, 11308–11309.

- (90) Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P. *J. Am. Chem. Soc.* 2007, *129*, 11318–11319.
- (91) Guo, C. X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X. Chem. Commun. 2014, 50, 7318.
- (92) Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H. Adv. Mater. 2014, 26, 3297–3303.
- (93) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang,
 P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. *J. Am. Chem. Soc.* 2011, 133, 4754–4757.
- (94) Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. J. Am. Chem.
 Soc. 2015, 137, 6018–6025.
- (95) Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Angew. Chem. Int. Ed. 2017, 56, 6459–6463.
- (96) Yang, P.; Zhao, J.; Wang, J.; Cui, H.; Li, L.; Zhu, Z. ChemPhysChem 2015, 16, 3058–3063.
- (97) Hutton, G. A. M.; Reuillard, B.; Martindale, B. C. M.; Caputo, C. A.; Lockwood, C. W. J.; Butt, J. N.; Reisner, E. *J. Am. Chem. Soc.* **2016**, *138*, 16722–16730.
- (98) Gmelin, L. Ann. Pharm. 1835, 15, 252–264.
- (99) Liebig, J. Ann. Chem. Pharm. 1844, 50, 337–363.
- (100) Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang,
 J. Angew. Chem. Int. Ed. 2014, 53, 9240–9245.
- (101) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.;Carlsson, J. M. *J. Mater. Chem.* **2008**, *18*, 4893–4908.
- (102) Dai, Y.; Li, C.; Shen, Y.; Lim, T.; Xu, J.; Li, Y.; Niemantsverdriet, H.;
 Besenbacher, F.; Lock, N.; Su, R. *Nat. Commun.* **2018**, *9*, 1–7.
- (103) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. J. Am. Chem.
 Soc. 2003, 125, 10288–10300.
- (104) Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D.

New J. Chem. 2002, 26, 508–512.

- (105) Sehnert, J.; Baerwinkel, K.; Senker, J. J. Phys. Chem. B **2007**, 111, 10671– 10680.
- (106) Lotsch, B. V; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.;
 Schnick, W. Chem. Eur. J. 2007, 13, 4969–4980.
- (107) Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc.
 2013, 135, 18–21.
- (108) Wang, Y.; Wang, X.; Antonietti, M. Angew. Chem Int. Ed. 2012, 51, 68–89.
- (109) Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. *Adv. Mater.* **2014**, *26*, 805–809.
- (110) Yu, J. and S. C. J. Phys. Chem. Lett 2014, 5, 2101–2107.
- (111) Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Phys. Chem. Chem. Phys. 2012, 14, 1455–1462.
- (112) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.;
 Domen, K.; Antonietti, M. *Nat. Mater.* **2009**, *8*, 76–80.
- (113) Li, X. H.; Antonietti, M. Chem. Soc. Rev. 2013, 42, 6593-6604.
- (114) Zhang, G.; Lan, Z.-A.; Lin, L.; Lin, S.; Wang, X. Chem. Sci. 2016, 7, 3062–3066.
- (115) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.;Zhong, J.; Kang, Z. *Science* 2015, *347*, 970–974.
- (116) Yu, J.; Wang, K.; Xiao, W.; Cheng, B. *Phys. Chem. Chem. Phys.* **2014**, *16*, 11492–11501.
- (117) Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.;
 Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. *Angew. Chem. Int. Ed.* 2017, *56*, 4867–4871.
- (118) Enthaler, S.; Von Langermann, J.; Schmidt, T. *Energy Environ. Sci.* **2010**, *3*, 1207–1217.
- (119) Gong, Y.; Li, M.; Wang, Y. ChemSusChem 2015, 8, 931–946.
- (120) Zhang, G.; Lan, Z.-A.; Wang, X. Chem. Sci. 2017, 8, 5261–5274.
- (121) Li, X.; Masters, A. F.; Maschmeyer, T. Chem. Commun. 2017, 53, 7438–7446.

- (122) Caputo, C. A.; Gross, M. A.; Lau, V. W.-h; Cavazza, C.; Lotsch, B. V.; Reisner,
 E. Angew. Chem. Int. Ed. 2014, 53, 11538–11542.
- (123) Han, Q.; Cheng, Z.; Wang, B.; Zhang, H.; Qu, L. ACS Nano **2018**, *12*, 5221– 5227.
- (124) Ai, B.; Duan, X.; Sun, H.; Qiu, X.; Wang, S. Catal. Today 2015, 258, 668–675.
- (125) Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.;
 Sun, X. ACS Appl. Mater. Interfaces 2013, 5, 6815–6819.
- (126) Zhao, Y.; Shalom, M.; Antonietti, M. Appl. Catal. B Environ. 2017, 207, 311–315.
- (127) Su, F.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. *Angew. Chem. Int. Ed.* **2011**, *50*, 657–660.
- (128) Li, X.; Chen, J.; Wang, X.; Sun, J.; Antonietti, M. *J. Am. Chem. Soc.* **2011**, *133*, 8074–8077.
- (129) Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72–123.
- (130) Ishida, Y.; Chabanne, L.; Antonietti, M.; Shalom, M. *Langmuir* **2014**, *30*, 447–451.
- (131) Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.;
 Antonietti, M.; Wang, X. Angew. Chem. Int. Ed. 2010, 49, 441–444.
- (132) Zhang, M.; Wang, X. *Energy Environ. Sci.* **2014**, *7*, 1902–1906.
- (133) Zhang, N.; Yang, M.-Q.; Tang, Z.-R.; Xu, Y.-J. J. Catal. 2013, 303, 60–69.
- (134) Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. *J. Mater. Chem. A* **2014**, *2*, 18924–18928.
- (135) Yang, Z.; Zhang, Y.; Schnepp, Z. J. Mater. Chem. A 2015, 3, 14081–14092.
- (136) Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Adv. Mater. 2014, 26, 4121–4126.
- (137) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.;
 Chorkendorff, I. Angew. Chem. Int. Ed. 2013, 52, 3621–3625.
- (138) Xiang, Q.; Yu, J.; Jaroniec, M. J. Phys. Chem. C 2011, 115, 7355–7363.
- (139) Han, C.; Ge, L.; Chen, C.; Li, Y.; Xiao, X.; Zhang, Y.; Guo, L. *Appl. Catal. B Environ.* **2014**, *147*, 546–553.

- (140) Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2015, 137, 604–607.
- (141) Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W. K. ACS Appl. Mater. Interfaces **2013**, *5*, 11392–11401.
- (142) Gao, L.-F.; Wen, T.; Xu, J.-Y.; Zhai, X.-P.; Zhao, M.; Hu, G.-W.; Chen, P.; Wang,
 Q.; Zhang, H.-L. ACS Appl. Mater. Interfaces 2016, 8, 617–624.
- (143) Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. J. Am. Chem. Soc. 2010, 132, 6294–
 6295.
- (144) Wang, H.; Wang, B.; Bian, Y.; Dai, L. ACS Appl. Mater. Interfaces **2017**, 9, 21730–21737.
- (145) Lau, V. W.-h; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel,V.; Senker, J.; Blum, V.; Lotsch, B. V. *Nat. Commun.* 2016, *7*, 12165.
- (146) Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. *Nat. Mater.* **2006**, *5*, 909–913.
- (147) Conway, B. E.; Jerkiewicz, G. Electrochim. Acta 2000, 45, 4075–4083.
- (148) Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3, 3670–3678.
- (149) McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347–4357.
- (150) Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Fuel Cells 2001,
 1, 105–116.
- (151) Indra, A.; Menezes, P. W.; Kailasam, K.; Hollmann, D.; Schröder, M.; Thomas, A.; Brückner, A.; Driess, M. Chem. Commun. 2016, 52, 104–107.
- (152) Kaeffer, N.; Morozan, A.; Fize, J.; Martinez, E.; Guetaz, L.; Artero, V. ACS Catal.
 2016, 6, 3727–3737.
- (153) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. *J. Am. Chem. Soc.* **2011**, *133*, 7296–7299.
- (154) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch,
 S.; Chorkendorff, I.; Nørskov, J. K. *J. Am. Chem. Soc.* 2005, *127*, 5308–5309.
- (155) Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.;

Chorkendorff, I. Science 2007, 317, 100–102.

- (156) Zong, X.; Na, Y.; Wen, F.; Ma, G.; Yang, J.; Wang, D.; Ma, Y.; Wang, M.; Sun,
 L.; Li, C. Chem. Commun. 2009, 30, 4536–4538.
- (157) Gu, Q.; Sun, H.; Xie, Z.; Gao, Z.; Xue, C. Appl. Surf. Sci. 2017, 396, 1808–1815.
- (158) Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575–6578.
- (159) Zong, X.; Wu, G.; Yan, H.; Ma, G.; Shi, J.; Wen, F.; Wang, L.; Li, C. *J. Phys. Chem. C* **2010**, *114*, 1963–1968.
- (160) Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. J. Am. Chem. Soc.
 2008, 130, 7176–7177.
- (161) Artero, V.; Fontecave, M. Chem. Soc. Rev. 2013, 42, 2338–2356.
- (162) Cammack, R. Nature 1999, 397, 214–215.
- (163) Na, Y.; Wang, M.; Pan, J.; Zhang, P.; Åkermark, B.; Sun, L. *Inorg. Chem.* 2008, 47, 2805–2810.
- (164) Wang, F.; Wang, W.-G.; Wang, X.-J.; Wang, H.-Y.; Tung, C.-H.; Wu, L.-Z. *Angew. Chem. Int. Ed.* **2011**, *50*, 3193–3197.
- (165) Wilker, M. B.; Utterback, J. K.; Greene, S.; Brown, K. A.; Mulder, D. W.; King, P. W.; Dukovic, G. *J. Phys. Chem. C* 2018, *122*, 741–750.
- (166) Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. J. Am. Chem. Soc. 2012, 134, 5627–5636.
- (167) Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. *Chem. Rev.* 2014, *114*, 4081–4148.
- (168) Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J. *Chem. Soc. Rev.* **2013**, *4*2, 2388–2400.
- (169) Fontecilla-Camps, J. C.; Amara, P.; Cavazza, C.; Nicolet, Y.; Volbeda, A. *Nature* **2009**, *460*, 814–822.
- (170) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J.; Bagley, K. A. *Nature* **1997**, *385*, 126–126.
- (171) Peters, J. W. Science **1998**, 282, 1853–1858.
- (172) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C.

Structure **1999**, 7, 13–23.

- (173) Shafaat, H. S.; Rüdiger, O.; Ogata, H.; Lubitz, W. *Biochim. Biophys. Acta, Bioenerg.* **2013**, *1827*, 986–1002.
- (174) Evans, R. M.; Brooke, E. J.; Wehlin, S. A. M.; Nomerotskaia, E.; Sargent, F.;
 Carr, S. B.; Phillips, S. E. V.; Armstrong, F. A. *Nat. Chem. Biol.* 2016, *12*, 46–50.
- (175) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. *Nature* 2013, *499*, 66–69.
- (176) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100–108.
- (177) Wang, H. Y.; Wang, W. G.; Si, G.; Wang, F.; Tung, C. H.; Wu, L. Z. *Langmuir* 2010, 26, 9766–9771.
- (178) Wombwell, C.; Reisner, E. Dalt. Trans. 2014, 43, 4483–4493.
- (179) Wombwell, C.; Reisner, E. Chem. Eur. J. 2015, 21, 8096–8104.
- (180) Du, P.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012–6021.
- (181) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. A. Y. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995–2004.
- (182) Wakerley, D. W.; Gross, M. A.; Reisner, E. *Chem. Commun.* **2014**, *50*, 15995– 15998.
- (183) McCormick, T. M.; Han, Z.; Weinberg, D. J.; Brennessel, W. W.; Holland, P. L.;
 Eisenberg, R. *Inorg. Chem.* 2011, *50*, 10660–10666.
- (184) Jacques, P.; Artero, V.; Pécaut, J. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106*, 20627–20632.
- (185) Willkomm, J.; Muresan, N. M.; Reisner, E. Chem. Sci. 2015, 6, 2727–2736.
- (186) Joliat, E.; Schnidrig, S.; Probst, B.; Bachmann, C.; Spingler, B.; Baldridge, K. K.;Von Rohr, F.; Schilling, A.; Alberto, R. *Dalt. Trans.* **2016**, *45*, 1737–1745.
- (187) Reuillard, B.; Warnan, J.; Leung, J. J.; Wakerley, D. W.; Reisner, E. Angew. Chem. Int. Ed. 2016, 55, 3952–3957.
- (188) Wilson, A. D.; Newell, R. H.; Mcnevin, M. J.; Muckerman, J. T.; Dubois, M. R.;

Dubois, D. L. J. Am. Chem. Soc. 2006, 128, 358–366.

- (189) Wiese, S.; Kilgore, U. J.; Dubois, D. L.; Bullock, R. M. ACS Catal. **2012**, *2*, 720– 727.
- (190) Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Metaye, R.; Fihri, A.; Palacin, S.; Fontecave, M. *Science* **2009**, *326*, 1384–1387.
- (191) Helm, M. L.; Stewart, M. P.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Science2011, 333, 863–866.
- (192) Wang, M.; Chen, L.; Sun, L. Energy Environ. Sci. 2012, 5, 6763–6778.
- (193) Rakowski DuBois, M.; DuBois, D. L. Chem. Soc. Rev. 2009, 38, 62–72.
- (194) McLaughlin, M. P.; McCormick, T. M.; Eisenberg, R.; Holland, P. L. *Chem. Commun.* **2011**, *47*, 7989–7991.
- (195) Leung, J. J.; Warnan, J.; Nam, D. H.; Zhang, J. Z.; Willkomm, J.; Reisner, E. *Chem. Sci.* **2017**, *8*, 5172–5180.
- (196) Creissen, C. E.; Warnan, J.; Reisner, E. Chem. Sci. 2018, 9, 1439–1447.
- (197) Bachmann, C.; Probst, B.; Guttentag, M.; Alberto, R. *Chem. Commun.* **2014**, *50*, 6737.
- (198) Yang, J. Y.; Bullock, R. M.; Dougherty, W. G.; Kassel, W. S.; Twamley, B.;DuBois, D. L.; Rakowski DuBois, M. *Dalt. Trans.* **2010**, *39*, 3001.
- (199) Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W.-h; Lotsch,
 B. V.; Durrant, J. R.; Reisner, E. *J. Am. Chem. Soc.* **2016**, *138*, 9183–9192.
- (200) Maeda, K.; Higashi, M.; Lu, D.; Abe, R.; Domen, K. *J. Am. Chem. Soc.* **2010**, *132*, 5858–5868.
- (201) Sakimoto, K. K.; Zhang, S. J.; Yang, P. Nano Lett. 2016, 16, 5883–5887.
- (202) Kalita, D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. ChemCatChem2011, 3, 571–573.
- (203) Pan, X.; Zhang, N.; Fu, X.; Xu, Y.-J. Appl. Catal. A Gen. 2013, 453, 181–187.
- (204) Zhang, M.; Chen, C.; Ma, W.; Zhao, J. *Angew. Chem. Int. Ed.* **2008**, *47*, 9730– 9733.
- (205) Palmisano, G.; García-López, E.; Marcì, G.; Loddo, V.; Yurdakal, S.; Augugliaro,

V.; Palmisano, L. Chem. Commun. 2010, 46, 7074–7089.

- (206) Palmisano, G.; Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmisano, L. *Adv. Synth. Catal.* **2007**, *349*, 964–970.
- (207) Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. J. Catal. 2010, 274, 76–83.
- (208) Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagöz, O.; Augugliaro, V.; Palmisano,
 L.; Alagoz, O.; Augugliaro, V.; Palmisano, L. *Green Chem.* 2009, *11*, 510–516.
- (209) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X.
 J. Am. Chem. Soc. 2010, *132*, 16299–16301.
- (210) Singh, W. M.; Pegram, D.; Duan, H.; Kalita, D.; Simone, P.; Emmert, G. L.; Zhao,
 X. Angew. Chem. Int. Ed. 2012, 51, 1653–1656.
- (211) Kuehnel, M. F.; Reisner, E. Angew. Chem. Int. Ed. 2018, 57, 3290–3296.
- (212) Stokes, R. D.; Perlack, B. J. U.S. Dep. Energy 2011.
- (213) Hendriks, A. T. W. M.; Zeeman, G. Bioresour. Technol. 2009, 100, 10–18.
- (214) Isikgor, F. H.; Becer, C. R. Polym. Chem. 2015, 6, 4497-4559.
- (215) John, M. R. S.; Furgala, A. J.; Sammells, A. F. *J. Phys. Chem.* **1983**, *87*, 801– 805.
- (216) Daskalaki, V. M.; Kondarides, D. I. Catal. Today 2009, 144, 75-80.
- (217) Cha, H. G.; Choi, K. S. Nat. Chem. 2015, 7, 328-333.
- (218) Kawai, T.; Sakata, T. Chem. Lett. **1981**, 10, 81–84.
- (219) Sakata, T.; Kawai, T. Nouv. J. Chim. 1981, 5, 279–281.
- (220) Speltini, A.; Sturini, M.; Dondi, D.; Annovazzi, E.; Maraschi, F.; Caratto, V.; Profumo, A.; Buttafava, A. *Photochem. Photobiol. Sci.* **2014**, *13*, 1410–1419.
- (221) Caravaca, A.; Jones, W.; Hardacre, C.; Bowker, M. *Proc. R. Soc. A* **2016**, *472*, 20160054.
- (222) Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. *Nat. Energy* 2017, *2*, 17021.

Chapter 2

Experimental section

The author of this thesis carried out all of the work described in this section unless specified otherwise. Xin Fang synthesised graphene oxide and reduced graphene oxide. XPS measurements were recorded by Dr. Mitsuharu Konuma at Kratos Analytical, Manchester. BET measurements were performed by Ailun Huang at University of Cambridge. TEM and SEM images were recorded by Dr. Heather F. Greer at University of Cambridge. Time-resolved spectroscopic techniques were performed and analysed by Dr. Robert Godin and Chiara Jeay-Bizot at Imperial College London.

2.1 Materials

All of the reagents were purchased from commercial suppliers and used without further purification. The buffer solutions were prepared using analytical grade reagents and titrated to the desired pH with a pH meter (Mettler Toledo; SevenEasy).

Synthesis of NiP and CN_x. ^{H₂N}**CN**_x was prepared by heating melamine at 550 °C for 12 h under Ar atmosphere following a published procedure.¹ The yellow solid obtained was then thoroughly ground using a pestle and mortar prior to further analysis and applications. ^{NCN}CN_x was prepared from ground ^{H₂N}CN_x and KSCN (weight ratio of 1:2; dried overnight at 140 °C under vacuum) and heated at 400 °C for 1 h and then at 500 °C for 30 min under Ar as previously reported.² After cooling to room temperature the

residual KSCN was removed by washing with water and the product was dried under vacuum at 60 °C.²

Preparation of GO and RGO. A modified Hummer's method was used to synthesise graphene oxide (GO).³ In the preoxidation step, H_2SO_4 (20 mL) was slowly heated up to 80 °C followed by the addition of $K_2S_2O_8$ (4.2 g) and P_2O_5 (4.2 g) with vigorous stirring. Graphite powder (5 g, Alfa Aesar, 325 mesh) was then added to the solution and the temperature was kept at 80 °C for 4.5 h followed by cooling down to room temperature. The mixture was diluted with water and left overnight. The mixture was repeatedly washed with deionised water (1 L) and centrifuged at 10,000 rpm followed by drying under air overnight to obtain a pre-oxidised product graphite oxide.

For the second oxidation step, H₂SO₄ (58 mL) was kept at 0 °C followed by the slow addition of graphite oxide (2.5 g) with vigorous stirring. Then, KNO₃ (1.25 g) and KMnO₄ (8 g) were slowly added while the temperature was kept below 10 °C. The mixture was then heated up to 35 °C and stirred for 2 h. After that, the mixture was diluted with water (58 mL) and stirred for 2 h, followed by addition of water (350 mL) to obtain a dark solution. H₂O₂ (25 mL, 30%) was added dropwise to the solution and kept overnight for stratification. The supernatant was decanted, and the gel sediment was washed with water and centrifuged with HCl for 5 times to remove the metal oxides. Then, the product was washed multiple times with water to remove any water soluble impurities. Finally, the product was sonicated for 30 min and the resulting dark brown GO was dried at 50 °C for 24 h. The reduction of GO to reduced graphene oxide (RGO) was carried out by adding 5 mg GO powder into a *L*-ascorbic acid solution (50 mL, 1 mg mL⁻¹) and stirred vigorously for 48 h, following a published procedure.⁴

2.2 Physical characterisation techniques

UV–vis absorption spectroscopy was performed on a Varian Cary 50 UV–vis spectrophotometer using 1 cm pathway quartz cuvettes. Photoluminescence emission spectra of ^{NCN}CN_x samples were recorded on a FS5 spectrofluorometer (Edinburgh Instruments) equipped with an integrating sphere. The spectra were generated using a Fluoracle software supplied with the instrument. Samples of ^{NCN}CN_x were pressed onto an indium foil for X-ray photoelectron spectroscopy (XPS) and the spectra were collected on an Axis Ultra (Kratos Analytical, Manchester) XPS instrument with charge neutralisation. The spectra were processed using the software CasaXPS 2.3.16 and

referenced with the adventitious carbon 1s peak at 284.8 eV. Binding energies were compared with the NIST Standard Reference Database 30 unless otherwise specified.

Brunauer-Emmett-Teller (BET) measurements were performed on a 3Flex Surface Characterisation Analyser (Micromeritics) at -196 °C. Prior to measurements, the samples were degassed under vacuum for 6 h at 150 °C. The specific surface areas were calculated by fitting the data to the BET isotherm. The X-ray diffraction (XRD) patterns were recorded with a BV X'Pert PRO diffractor (PANalytical). Scanning electron microscopy (SEM) images were collected on a MIRA3 FEG-SEM (TESCAN), at an accelerating voltage of 5 kV. Transmission electron microscopy (TEM) images were acquired on a Tecnai G2 transmission electron microscope (FEI Company) performed at an accelerating voltage of 200 kV. Attenuated total reflectance-Fourier transform infrared (ATR-FT-IR) spectra were recorded on a Nicolet iS50 FTIR spectrometer (ThermoScientific) and analysed using the Omnic software.

2.3 Photocatalytic experiments

Photocatalytic experiments were carried out using borosilicate glass photoreactors (total volume 7.74 mL) in a water-jacketed reservoir kept at 25 °C. The suspensions were prepared by mixing ^{NCN}CN_x and NiP in aqueous potassium phosphate solution (KP_i) containing 4-methylbenzyl alcohol (4-MBA) in a reactor equipped with a stirrer bar (total solvent volume 3 mL). The container was then tightly sealed with a rubber septum and purged with N₂ containing 2% CH₄ as the internal gas chromatography (GC) standard. The vials were irradiated using a solar light simulator with a Xe lamp (100 mW cm⁻², 1 sun, Newport Oriel) whilst stirring. The solar light simulator was removed from all experiments using a water filter while additional UV cut-off filters and neutral density filters (UQG optics) were used when specified.

For the biomass photoreforming experiments, the photoreactors were prepared as described above, but 4-MBA was replaced by lignocellulosic substrates (100 mg) unless specified otherwise. In several experiments, **NiP** was substituted by Pt (precursor: H₂PtCl₆) or MoS₂ (precursor: H₈N₂MoS₄).

2.3.1 Quantification and characterisation of products

The amount of accumulated H₂ was quantified *via* periodic headspace gas injections (20 μ L) into a GC (Agilent 7890A) equipped with a 5 Å molecular sieve column. The temperature of the GC oven was maintained at 45 °C and N₂ was used as the carrier gas. The source of protons for H₂ production was identified by mass spectrometry (MS), through examining the composition of the headspace gases with mass/charge ratios between 1 and 5 amu after 24 h irradiation, by using KPi buffer prepared in H₂O and D₂O or by using labelled alcohol substrates, unless specified otherwise. MS was recorded using Hidden Analytical HPR-20 benchtop gas analysis system to a HAL 101 RC electron impact quadrupole mass spectrometer with a Faraday detector.

In order to analyse the oxidation products, 4-MBA and 4-methylbenzaldehyde (4-MBAd) were extracted following photocatalysis with CH₂Cl₂ and quantified by ¹H nuclear magnetic resonance (NMR) spectroscopy on a Bruker DPX 400 *s*pectrometer at 25 °C. The work-up procedure was confirmed to leave the ratio of starting material to product unaffected. Three vials containing different 4-MBA:4-MBAd (1:2, 1:1 and 2:1) ratios were prepared following the described procedure for the photocatalytic experiments (except the irradiation step). The initial 4-MBA to 4-MBAd ratios were preserved in the ¹H NMR after working up the solutions as described above.

2.3.2 External photon to H₂ quantum efficiency

The external quantum efficiency (EQE) was determined using simulated solar light simulator (LOT LSN 254) equipped with a monochromator (LOT MSH 300) to irradiate the samples at a single wavelength of $\lambda = 360 \pm 10$ nm and at a light intensity (*I*) of I = 4.05 mW cm⁻². EQE was calculated using the following equation:

EQE (%) =
$$\frac{2 \cdot n_{H_2} \cdot N_A \cdot h \cdot c}{t_{irr} \cdot \lambda \cdot I \cdot A} \cdot 100$$

where n_{H_2} is the moles of photogenerated H₂, N_A is Avogadro's constant, *h* is Planck's constant, *c* is the speed of light, t_{irr} is the time of irradiation, and *A* is the cross-sectional area of irradiation.

2.3.3 Treatment of analytical data

All measurements were performed as triplicates and the data is reported as mean value \pm standard deviation (σ). A minimum σ of 5% was assumed in all cases for photocatalytic experiments.⁵

2.4 Time-resolved spectroscopic techniques

For the time-resolved spectroscopic techniques the data was acquired either by using suspensions of carbon nitride or by preparing hydrogels of these powders to overcome the settling problems (see Chapter 5 for details).

Hydrogel Preparation. Sodium deoxycholate (NaDC) powder was diluted in water at 13.8 mg mL⁻¹ concentration.⁶ This stock solution was then used to disperse ^{NCN}CN_x or ^{H₂N}CN_x powders and KP_i buffer (1 M, pH 4.5) was added to prepare a final concentration of 0.1 M KP_i solution with a 1.67 mg mL⁻¹ of carbon nitride concentration. When 4-MBA was used in the experiments, it was previously added to the NaDC stock solution. The NaDC mixtures with carbon nitrides (^{NCN}CN_x or ^{H₂N}CN_x) were heated up to ~60 °C for 15 min, then KP_i was added to the hot solution followed by an additional 15 min heating. Afterwards, the mixture was left undisturbed and cooled down at room temperature to form the hydrogel.

Steady-state-spectroscopy. Steady-state spectra were acquired for $^{NCN}CN_x$ and $^{H_2N}CN_x$ suspensions in KP_i under Ar, in 1 mm path length cuvettes. A Shimadzu UV-2600 spectrometer equipped with an integrating sphere was used for recording UV–vis diffuse reflectance spectra. Fluorescence spectra were recorded using a Jobin Yvon FluoroLog fluorometer.

Time-correlated single photon counting (TCSPC). Both ^{NCN}CN_x and ^{H₂N}CN_x powders were dispersed in KP_i at (1.67 mg mL⁻¹) and purged with Ar before acquisition. The decay of emissive states was monitored by TCSPC (DeltaFlex, Horiba). Data was acquired on two timescales (up to 100 ns and up to 6.5 µs) to follow the decay over several orders of magnitude. Pulsed excitation of λ = 404 nm (10 kHz repetition rate) was generated by a laser diode and fluorescence was detected at λ = 490 nm (SPC-650 detector, Horiba). Excitation fluence was estimated to be ~20 pJ cm⁻².

Transient Absorption Spectroscopy (TAS). Microsecond to second transient absorption decays of ^{NCN}CN_x and ^{H₂NCN_x were acquired in a diffuse reflectance mode.⁷ As an excitation source, an Nd:YAG laser (OPOTEK Opolette 355 II, 7 ns pulse width) was used. 355 nm light was generated and transmitted to the sample through a light guide to photoexcite the ^{NCN}CN_x. Typical excitation power densities of 300 µJ cm⁻² or 460 µJ cm⁻² were used. As the changes of reflectance observed were low (< 1%), the transient signal was taken to be directly proportional to the concentration of excited state species.⁸}

The probe light source was a 100 W Bentham IL1 quartz halogen lamp. Long pass filters (Comar Instruments) and an IR filter (H₂O, 5 cm path length) were placed between the lamp and sample to minimise the short wavelength irradiation and heating of the sample. Diffuse reflectance from the sample was collected by a focal length lens and relayed to a monochromator (Oriel Cornerstone 130) to select the probe wavelength. An additional high pass filter was positioned in front of the monochromator to reduce laser scatter.

Time-resolved intensity data was collected with a Si photodiode (Hamamatsu S3071). Data at times faster than 1 ms was recorded by an oscilloscope (Tektronics DPO3012) after passing through an amplifier box (Costronics) while data slower than 1 ms was simultaneously recorded on a National Instrument DAQ card (NI USB-6251). Kinetic traces were typically obtained from the average of 32–64 laser pulses.

Samples were prepared by dispersing $^{NCN}CN_x$ or $^{H_2N}CN_x$ in KP_i at the concentrations of 1–5 mg mL⁻¹. NaDC hydrogel samples were also tested with or without GO or RGO as conductive scaffolds (Chapter 5). The dispersions were transferred to 2 mm path length cuvettes. The samples were stirred prior to the start of each kinetic acquisition and were measured under Ar. Data was collected and processed using a home-built software written in the LabVIEW environment.

Photoinduced absorption spectroscopy (PIAS). The photoinduced absorption spectra of ^{NCN}CN_x and ^{H₂N}CN_x hydrogel samples were recorded in second to minute timescale. The monitoring wavelength was chosen as $\lambda = 610$ and 800 nm for ^{NCN}CN_x and ^{H₂N}CN_x respectively in a diffuse reflectance mode. The samples prepared were irradiated with an LED at $\lambda = 365$ nm (0.5 mW cm⁻²) for 2 s followed by 58 s off for

 $^{NCN}CN_x$ and 5 s off for $^{H_2N}CN_x$, and a single acquisition per wavelength per sample was performed.

2.5 References

- Caputo, C. A.; Gross, M. A.; Lau, V. W.-h; Cavazza, C.; Lotsch, B. V.; Reisner,
 E. Angew. Chem. Int. Ed. 2014, 53, 11538–11542.
- Lau, V. W.-h; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel,
 V.; Senker, J.; Blum, V.; Lotsch, B. V. *Nat. Commun.* 2016, *7*, 12165.
- (3) Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Adv. Mater.
 2014, 26, 2868–2873.
- (4) Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. *Chem. Commun.* **2010**, *46*, 1112–1114.
- (5) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- Liang, W.; Guman-Sepulveda, J. R.; He, S.; Dogariu, A.; Fang, J. Y. *J. Mater.* Sci. Chem. Eng. 2015, 3, 6–15.
- (7) Wilkinson, F. J. Chem. Soc. Faraday Trans. 2 **1986**, 82, 2073–2081.
- (8) Kessler, R. W.; Krabichler, G.; Uhl, S.; Oelkrug, D.; Hagan, W. P.; Hyslop, J.;
 Wilkinson, F. Opt. Acta Int. J. Opt. 1983, 30, 1099–1111.

Chapter 3

Simultaneous proton reduction and alcohol oxidation with carbon nitride and a molecular Ni catalyst

The data presented in this chapter was published in a peer-reviewed article: J. Am. Chem. Soc., 2016, 138, 9183–9192. The author of this thesis carried all of the work unless specified otherwise. Dr. Benjamin C. M. Martindale and Prof. Christine A. Caputo are acknowledged for synthesising the NiP catalyst. Prof. Vincent Wing-hei Lau is greatly acknowledged for providing and characterising the carbon nitrides.

3.1 Introduction

Despite the large research efforts that have been put in designing water splitting systems, commercial application of such technology does not exist. Replacing the water oxidation half-reaction with valuable substrate oxidation reaction would bypass O₂ production and enable the synthesis of a high-value organic chemical, a so-called solar chemical, in addition to the solar fuel H₂ in a closed redox cycle.¹

A fundamental organic transformation is the selective oxidation of benzyl alcohols to carbonyl compounds both in the laboratory and at an industrial scale. Carbonyl derivatives such as aldehydes and ketones are widely used as precursors in the pharmaceutical and fragrance industries and for complex syntheses.^{2–4} Since many classical oxidation reactions are currently being carried out in organic solvents

at high pressure and temperature, while employing hazardous stoichiometric oxidants, such as MnO₄⁻ or CrO₃, there is a clear need for green synthetic routes.⁵

Simultaneous photo-reduction of aqueous protons and organic substrate photooxidation in a single compartment requires coupling between the light harvester and the catalysts, catalysing two redox reactions, and the accumulation of products without their interference in the opposite half-reaction. To simplify this demanding task, the two halves of the system are typically studied separately with a sacrificial reagent closing the catalytic cycle.

Solar-light driven H₂ production from water has been reported in the presence of sacrificial electron donors under homogenous and semi-heterogeneous colloidal systems with molecular, enzymatic and metallic catalysts.^{6–12} Photocatalytic oxidation of organic substrates containing alkene,^{13,14} amine,¹⁵ alcohol,^{16,17} and sulfide^{17,18} groups have also been reported in the presence of electron scavengers in fully homogeneous and hybrid systems (see Chapter 1 for details).

Only rare examples are available which couple substrate oxidation and H₂ production in a single reactor. Fully-homogenous systems and photoelectrochemical cells have been previously reported to carry out these two processes simultaneously.^{1,19,20} However, most of these reported systems were operated in organic solvents, employed multiple expensive and fragile noble-metal based dyes and catalysts, leading to complicated schemes with low efficiencies, and thereby limited practical applications.

Therefore, a need remained to find inexpensive and robust photosensitisers, which can couple proton reduction and substrate oxidation, while eliminating the need to consume non-innocent and unsustainable sacrificial reagents.^{21,22} Polymeric carbon nitrides are introduced as attractive light harvesters for photocatalytic applications (Chapter 1), and have been shown to work efficiently as photocatalysts for H₂ evolution,^{11,23–25} and oxidation of benzylic alcohols under sacrificial conditions.^{26,27}

Here for the first time, a closed redox system that photocatalysis the production of H₂ coupled to the selective oxidation of benzyl alcohols to aldehyde is reported in the presence of $^{NCN}CN_x$ and NiP. This hybrid system functions in a single pot under a purely aqueous solution, at room temperature and ambient pressure, in the absence of organic co-solvents and sacrificial reagents (Figure 3.1).

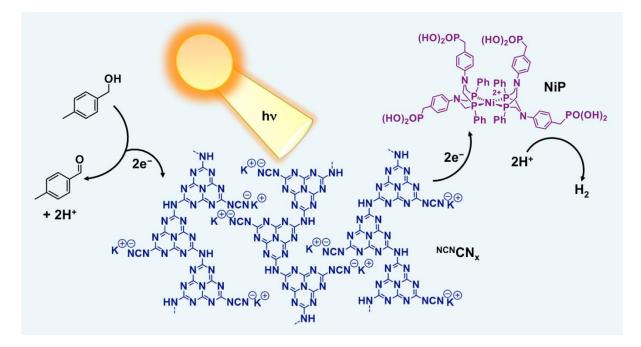


Figure 3.1. Schematic representation of a closed redox system for proton reduction and alcohol oxidation. Irradiation of $^{NCN}CN_x$, results in the formation of a photoexcited state in which the holes are quenched by alcohol for aldehyde formation and the photoexcited electrons are transferred from $^{NCN}CN_x$ to the molecular catalyst **NiP** (bromide counterions omitted for clarity) resulting in H₂ formation.

3.2 Results and discussion

3.2.1 Synthesis and characterisation of carbon nitride

Carbon-based, non-toxic and inexpensive carbon nitrides with long-term activity and stability were chosen as the photocatalysts for this full redox system.²³ H₂NCN_x was prepared by one-step thermal polymerisation of melamine.¹¹ NCNCN_x was synthesised in multi-gram scale by surface functionalisation of benchmark H₂NCN_x with KSCN at high temperature as described previously (See Experimental Section, Chapter 2, for details).^{28,29}

 $^{NCN}CN_x$ and $^{H_2N}CN_x$ were characterised to understand the differences in their structure and composition by attenuated total reflectance-Fourier transform infrared (ATR-FT-IR), diffuse reflectance UV–vis absorption spectroscopy, X-ray diffraction (XRD) and zeta potential measurements (Figure 3.2). IR spectra of both samples showed a characteristic heptazine core vibration at 804 cm⁻¹ and bridging secondary amine bending vibrations at 1311 and 1221 cm⁻¹, indicating polymeric nature of these

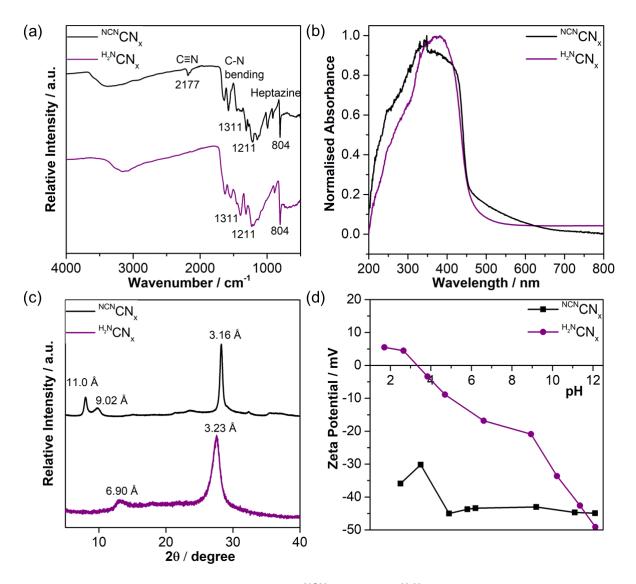


Figure 3.2. (a) ATR-FT-IR spectra of ^{NCN}CN_x and ^{H₂N}CN_x. The most significant stretches are indicated. (b) Normalised UV–vis absorption spectra of ^{NCN}CN_x and ^{H₂N}CN_x recorded in KP_i solution. (c) Powder X-ray diffraction patterns of ^{NCN}CN_x and ^{H₂N}CN_x. Inter and intra-layer spacing are specified. (d) Zeta potential measurements of ^{NCN}CN_x and ^{H₂N}CN_x and ^{H₂N}CN_x.

materials. X-ray photoelectron spectra (XPS) of ^{NCN}CN_x further supported the presence of the heptazine core by the appearance of sp² carbon (N-C-N), 288.4 eV, and nitrogen (C-N-C), 398.8 eV, signals (Figure A.1).³⁰ In addition, the polymeric structure was confirmed by the XPS signal at 401.1 eV, corresponding to the bridging secondary amine groups. IR spectra showed the cyanamide (C=N) stretch at 2177 cm⁻¹ only for ^{NCN}CN_x, consisting with the appearance of this group on the material after the surface functionalisation by KSCN.³¹ Both samples showed strong UV absorptions which tailed into the near-visible region. XRD of ^{NCN}CN_x showed denser packing than ^{H₂N}CN_x with an inter-layer spacing of 3.16 Å (28.26° 2 θ) and intra-layer periodicities of 9.02 Å (9.82° 2 θ) and 11.0 Å (8.03° 2 θ).^{32,33}

Zeta potential of $^{NCN}CN_x$ was determined as -44 eV across all pH where the material is stable (pH > 4), which was attributed to the anionic cyanamide group on the surface.²⁹ At pH values below 4, the material lost its yellow colour and turned white, indicating hydrolysis of surface cyanamide groups. On the other hand, $^{H_2N}CN_x$ showed pH dependent zeta potential.

3.2.2 Photocatalytic assembly and performance

The closed redox system for simultaneous alcohol oxidation and proton reduction in the presence of inexpensive and non-toxic light harvester ^{NCN}CN_x and Ni-based proton reduction catalyst is already shown (Figure 3.1). As the proton reduction catalyst, noble-metal free and hydrogenase-inspired molecular catalysts **NiP**, with a Ni-bis(diphosphine) catalytic core was selected for this sysem,^{34,35} and synthesised by following a published procedure.⁶ It was previously reported that under sacrificial conditions, H_2NCN_x and **NiP** efficiently produce H_2 .¹¹ For the purpose of this work, recently reported surface functionalised $NCNCN_x$ was selected, with an order of magnitude better H₂ production activity than the benchmark H_2NCN_x in the presence of Pt co-catalyst.²⁹

Photocatalytic systems were assembled by dispersing ^{NCN}CN_x, NiP and 4methylbenzyl alcohol (4-MBA) in an aqueous potassium phosphate solution (KP_i, 3 mL), in a photoreactor with a total volume of 7.74 mL. The photoreactor was sealed with a rubber septum, purged with N₂ (containing 2% CH₄) and subsequently irradiated using a solar light simulator equipped with an air mass 1.5 global (AM 1.5G) filter at 1

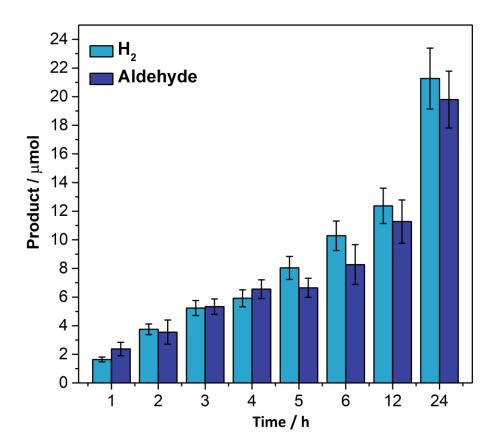


Figure 3.3. Time-dependent photocatalytic H₂ and aldehyde production with ^{NCN}CN_x (5 mg), **NiP** (50 nmol) and 4-MBA (30 μ mol) in KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G) at 25 °C.

sun intensity (100 mW cm⁻²) and 25 °C. The headspace H₂ gas was quantified in regular intervals by gas chromatography (GC), while 4-MBA and other possible oxidation products were analysed by ¹H NMR spectroscopy (see Experimental Section, Chapter 2, for details). The conversion yield was determined based on the percentage conversion of benzyl alcohol to oxidation products (Figure A.2).

The reaction conditions were optimised systematically for H₂ production activity per catalyst, expressed as **NiP**-based turnover frequency (TOF_{NiP}; mol H₂ (mol **NiP**)⁻¹ h⁻¹ determined after 1 h irradiation) and turnover number (TON_{NiP}; mol H₂ (mol **NiP**)⁻¹ determined after 24 h irradiation, unless specified otherwise), as well as the conversion yield and selectivity of alcohol oxidation to oxidation products after 24 h. The activity of **NiP** (TOF and TON) is limited by the availability of 4-MBA at high conversion yields, as there is not enough alcohol to quench the photoexcited holes on **NCNCN_x**, thus limiting electron delivery to **NiP**. The parameters of optimisation were the amount of **NiP**, the amount of 4-MBA and the pH of the solution (Table A.1).

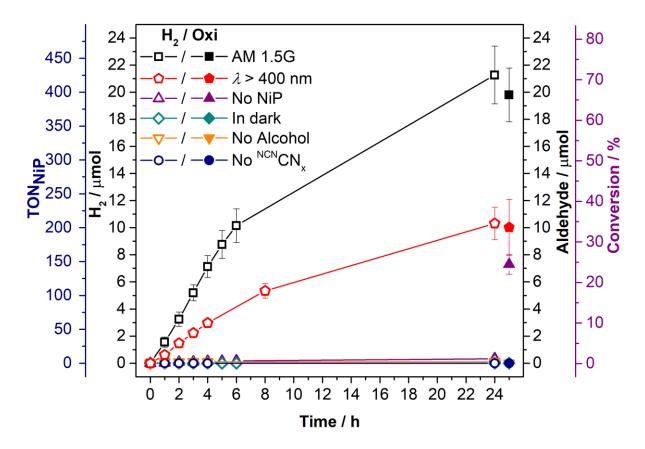


Figure 3.4. Photocatalytic H₂ and aldehyde production with ^{NCN}CN_x (5 mg), NiP (50 nmol), 4-MBA (30 µmol) in KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G) at 25 °C. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde formation under specified conditions. Control experiments in the presence of a UV-filter ($\lambda > 400$ nm) and in the absence of NiP, 4-MBA, ^{NCN}CN_x and in dark are also shown.

The optimised conditions for the ^{NCN}CN_x-NiP system consist of 5 mg of ^{NCN}CN_x suspended in 3 mL KP_i (0.02 M, pH 4.5) with 50 nmol of NiP and 30 µmol of 4-MBA under simulated solar light irradiation (Figure 3.3). There was a linear increase in both H₂ and aldehyde production for the first six hours of irradiation (Figure 3.3, Table A.2), whereupon the rate started to decrease over time due to stability of the molecular catalyst (see below for details, Figure 3.8). A TOF_{NiP} of 31.1 ± 3.1 h⁻¹ and an activity of 311 µmol (g ^{NCN}CN_x)⁻¹ h⁻¹ towards H₂ and aldehyde production were reached. After 24 h of full solar spectrum irradiation, TON_{NiP} of 425.4 ± 42.5 was achieved, while oxidation of 4-MBA afforded 4-methylbenzaldehyde (4-MBAd) selectively in 66.0 ± 6.6% yield without further oxidation to form the carboxylic acid. Thus, H₂ and 4-MBAd were photo-generated cleanly and in a 1:1 stoichiometry over time and reached 21.3 ± 2.1 µmol and 19.8 ± 2.0 µmol after 24 h, respectively (Figure 3.4).

Control experiments in the dark or in the absence of $^{NCN}CN_x$ did not yield H₂ or aldehyde (Figure 3.4, Table A.3). In the absence of NiP, only negligible amounts of H₂ were detected during irradiation, but selective 4-MBA oxidation to 4-MBAd was observed with a 24.3 ± 2.4% conversion, suggesting that 4-MBA oxidation may be the first step in the catalytic redox cycle (see Chapter 4 for details). In the absence of 4-MBA only a minimal amount of H₂ was detected.

The ^{NCN}CN_x–NiP photosystem was also studied under visible only irradiation (λ > 400 nm). A TOF_{NiP} of 12.3 ± 1.2 h⁻¹ and a TON_{NiP} of 206.3 ± 24.1 were observed, with 33.7 ± 6.5% 4-MBA conversion, corresponding to approximately 50% of the activity observed under full spectrum irradiation (Figure 3.4). The visible light response of the ^{NCN}CN_x–NiP system showed an improvement when compared to the previously reported sacrificial ^{H₂N}CN_x–NiP photosystem, where only 16% of the activity observed under full spectrum irradiation (¹¹

The activity of **NiP** in this closed redox cycle compares well with previously reported sacrificial H₂ production hybrid systems using colloidal light absorbers. H₂NCN_x-NiP in EDTA sacrificial electron donor solution at pH 4.5 resulted in a TOF_{NiP} of 109.3 ± 10.9 h⁻¹ and TON of 155. Sacrificial photo-H₂ generation was also reported with **NiP** and **RuP** dye-sensitised TiO₂ and showed TOF_{NiP} of 72 ± 5 h⁻¹ and TON of 278 ± 19.⁶ More recently, carbon dots were used as a photosensitiser in the presence of EDTA as the sacrificial donor with **NiP**, and a TOF_{NiP} of 41 h⁻¹ and TON of 64 mol H₂ (mol NiP)⁻¹ were reported.¹²

The activity of ^{NCN}CN_x for benzyl alcohol oxidation is also comparable with systems reported for substrate oxidation with a sacrificial electron acceptor. Photocatalytic 4-MBA oxidation in the presence of carbon nitride, under high pressure of O₂ resulted in 77% 4-MBAd formation with 99% selectivity, but the oxidation was carried out in a fluorinated organic solvent to promote O₂ solubility and at 100 °C.²⁶ Another system with carbon nitride and O₂ as the sacrificial acceptor reported 59% 4-MBA oxidation with 66% selectivity for 4-MBAd in water,²⁷ but required 100 °C and strongly acidic conditions (pH 0).²⁷ NCNCN_x provides a platform for selective benzyl alcohol oxidation whereas substrate oxidation reactions on metal oxides (TiO₂) are limited by low selectivity due to formation of highly reactive radicals in water.^{36–39} The NCNCN_x–NiP colloidal suspension system reported in here combines selective substrate oxidation and H₂ production in a single compartment, thereby eliminating the

need for a sacrificial reagent, remaining functional under fully aqueous solution, at room temperature and ambient pressure for up to 24 h.

3.2.3 Analysis of individual components

A series of benzyl alcohols with different para-substituents were studied to probe the effect of substrate structure on photocatalytic performance (Table A.3). Conversion yields observed did not show a direct correlation with respect to the electron-donating or withdrawing nature of the substituents. Only with the strongest electron-withdrawing substituent tested, $-CF_3$, a significant reduction in conversion yield to $6.1 \pm 2.0\%$ was observed. All of the benzyl alcohol derivatives underwent selective conversion to the aldehyde, except for the strongest electron donating group, ¹Bu, in which 64% selectivity for aldehyde formation was observed and further oxidation to 4-¹Bu benzoic acid also occurred. When 4-MBA (30 µmol) was replaced with methanol (30 µmol) under otherwise identical conditions (^{NCN}CN_x and NiP in KP_i), no oxidation products or H₂ were observed, in contrast to systems using excess amount of aliphatic alcohols as a sacrificial reagent for photocatalytic proton reduction.

Replacing the KP_i with acetate buffer (pH 4.5, 0.1 M) did not alter the photocatalytic rate of H₂ and aldehyde generation during the first few hours, indicating that the activity of the $^{NCN}CN_x$ -NiP system is not significantly buffer-dependent, although the photoactivity decayed faster in the acetate buffered system (Table A.4). Increasing the phosphate buffer concentration from 0.02 M to 0.1 M and 0.5 M led to an enhancement in initial activity from TOF_{NiP} = 31.1 ± 3.1 to 76.3 ± 7.6 and $111.4 \pm$ 11.1 h⁻¹ and 311 to 763 and 1,114 μ mol products (g ^{NCN}CN_x)⁻¹ h⁻¹, respectively. However, after 24 h, the system performances equalised with a TON_{NiP} of approximately 400 mol H₂ (mol NiP)⁻¹ and a 4-MBA-to-4-MBAd conversion yields between 60 to 83% for all the systems (Tables A.1 and A.4). Further experiments in 20 mM KP_i solution with 80 mM KCl or 80 mM K₂SO₄ showed a slight increase in the photocatalytic rate of H₂ production with TOF_{NiP} of 53.9 \pm 5.9 and TOF_{NiP} of 49.20 \pm 4.9, respectively (Table A.4). These results suggest that the enhanced photocatalytic activity is partially due to the ionic strength of the buffer used but also the significant increase in phosphate ion (a weak acid) concentration that acts potentially as a proton relay, improving the rate of proton transfer to the molecular catalyst.^{40,41}

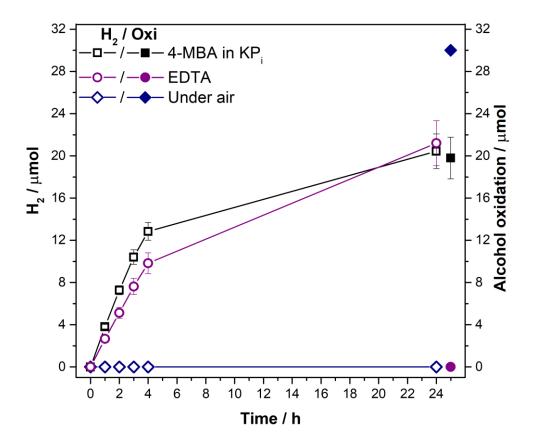


Figure 3.5. Photocatalytic H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and NiP (50 nmol) in an aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25°C). Sacrificial H₂ production with ^{NCN}CN_x (5 mg) and NiP (50 nmol) in EDTA (0.1 M, pH 4.5, 3 mL) without 4-MBA. Sacrificial alcohol oxidation with ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in an aqueous KP_i solution (0.02 M, pH 4.5, 3 mL) under air, as the sacrificial electron acceptor, in the absence of NiP. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and oxidation product formation under specified conditions.

The efficiencies of the individual half-reactions of the photocatalytic system were also examined separately in sacrificial schemes (Figure 3.5). Solar-light-driven H₂ production was tested with ^{NCN}CN_x (5 mg) and NiP (50 nmol) in EDTA as the electron donor solution at pH 4.5, in the absence of 4-MBA. A TOF_{NiP} of 53.2 ± 5.3 h⁻¹ and a TON_{NiP} of 424.18 ± 42.4 were reached in EDTA solution, similar to the 4-MBA system, suggesting that the ^{NCN}CN_x-NiP hybrid system is not limited by the electron donation ability of 4-MBA (Table A.4).

The ability of the system to carry out alcohol oxidation was investigated by replacing the molecular catalyst **NiP** with air (O₂) as an electron acceptor. Solar-light

driven alcohol oxidation with ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol), resulted in quantitative alcohol oxidation with 70% selectivity towards benzoic acid formation after 24 h, with respect to the products detected by ¹H NMR. This implies that the degree of oxidation of alcohols with this material can be tuned by varying the nature of the electron acceptor and demonstrates an advantage of using **NiP** over the sacrificial acceptor O₂. The ability of O₂ to act as an electron acceptor in this system also highlights a key advantage of substrate oxidation over full water splitting in one-pot systems, where the O₂ formed would compete with and inhibit proton reduction.

The photocatalytic activity of ^{NCN}CN_x–NiP was compared with conventional unfunctionalised carbon nitride, ^{H₂N}CN_x (Table A.5). The H₂ and aldehyde production activity of ^{NCN}CN_x–NiP was determined to be an order of magnitude greater than ^{H₂N}CN_x–NiP under the same experimental conditions. After 24 h of irradiation ^{H₂N}CN_x–NiP system produced only 2.49 ± 0.71 µmol H₂ and 1.44 ± 0.71 µmol 4-MBAd, indicating that surface functionalisation of the carbon nitride is vital for the enhanced photocatalytic activity.

The *in situ* photodeposition of H₂PtCl₆ to platinise ^{NCN}CN_x or H₂NCN_x was carried out following an optimised Pt loading procedure,²⁹ resulting in the formation of ^{NCN}CN_x-Pt and H₂NCN_x-Pt systems for photo-H₂ generation.²³ These systems were then studied for simultaneous alcohol oxidation and proton reduction (Figure 3.6) in the absence of NiP under otherwise identical conditions. ^{NCN}CN_x-Pt showed one third of the photocatalytic activity observed using ^{NCN}CN_x-NiP towards H₂ production during the initial 4 h of irradiation, whereas H₂NCN_x-Pt was not active for H₂ production at all. Both ^{NCN}CN_x-Pt and H₂NCN_x-Pt showed only approximately 5% 4-MBA oxidation to aldehyde after 4 h of irradiation. The initially low photocatalytic activity of Pt could be attributed to an induction period associated with the photodeposition of the active catalyst.²³ Even after 24 h irradiation, the overall photocatalytic activity of N^{CN}CN_x-NiP (H₂:4-MBAd = 21:20 µmol) was still better than with ^{NCN}CN_x-Pt (14:12 µmol), representing a clear advantage of the molecular Ni catalyst over noble-metal based nanoparticles in this system. A similar trend was previously reported with a sacrificial system containing carbon dots and NiP.¹²

A control experiment was carried out to confirm that Pt is only catalytically involved in proton reduction and does not interfere with the 4-MBAd formed as a result

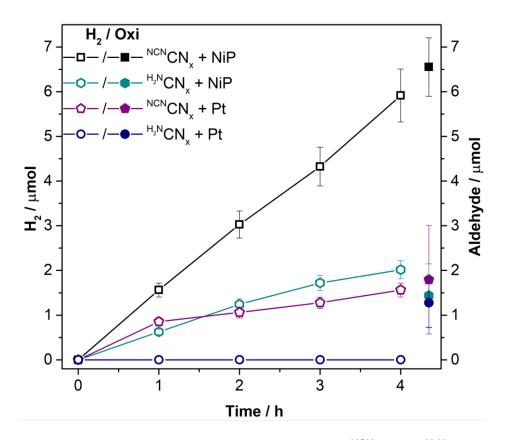


Figure 3.6. Photocatalytic H₂ and aldehyde production with ^{NCN}CN_x or ^{H₂N}CN_x (5 mg), in the presence of 4-MBA (30 μ mol) with **NiP** (50 nmol) or H₂PtCl₆ (10 μ L, 8 wt%) in KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G, 25 °C). The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde formation under specified conditions.

of 4-MBA oxidation. In sacrificial EDTA solution, ^{NCN}CN_x-Pt and 4-MBAd (30 µmol) were combined in the absence of NiP (Table A.5). After 24 hours of irradiation, 18% of the 4-MBAd was oxidised to carboxylic acid, whereas 4-MBA was not detected by ¹H NMR spectroscopy, indicating that Pt is not able to reduce 4-MBAd and is only catalytically active for the proton reduction half reaction.

This significant enhancement in the photocatalytic activity of ^{NCN}CN_x in comparison to benchmark H_2NCN_x has been previously attributed to the improved interaction and charge transfer *via* the cyanamide moieties of the ^{NCN}CN_x in the presence of Pt catalyst.²⁹ We demonstrate here that this enhanced activity with ^{NCN}CN_x is also the case when the Pt is replaced with the molecular **NiP** catalyst. In the later investigations it was discovered that the VB position of ^{NCN}CN_x is at 300 mV more positive potential than H_2NCN_x (2.2 and 1.9 V vs. NHE at pH 6), therefore the photogenerated holes are more oxidising towards the organic substrates.⁴²

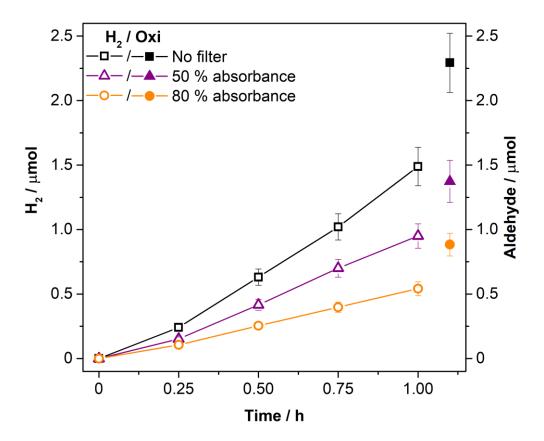


Figure 3.7. Photocatalytic H₂ and aldehyde production with ^{NCN}CN_x (5 mg), NiP (50 nmol), 4-MBA (30 μ mol) in KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G) at 25 °C, followed by the addition of neutral density filters that absorb 50% and 80% of the incident light. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde formation under specified conditions.

3.2.4 Photoactivity and stability limiting components

To gain better insights into the rate-limiting factors of the ^{NCN}CN_x–NiP hybrid system, the amounts of NiP, 4-MBA, and light intensity were varied. Doubling the amount of NiP from 50 to 100 nmol per 5 mg of ^{NCN}CN_x or the amount of 4-MBA from 30 to 60 µmol did not result in a significant change in photoactivity (Table A.1). However, reducing the light intensity by 50% and 80% with neutral density filters resulted respectively in 40% and 85% reductions in photocatalytic activity for H₂ and 4-MBAd production after 1 h of irradiation (Figure 3.7, Table A.6). The activity was therefore proportional and dependent on the light intensity, which is also consistent with the reduced photoactivity of ^{NCN}CN_x–NiP when filtering the UV light off the solar spectrum (see above).

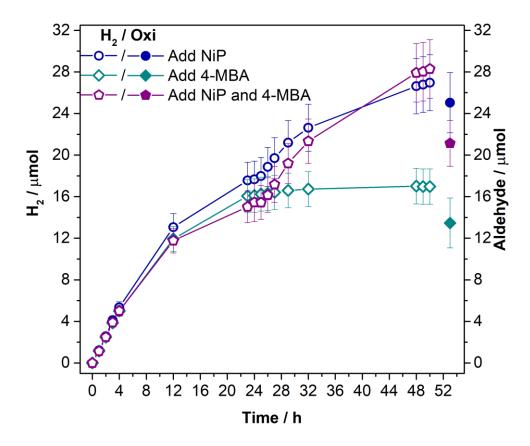


Figure 3.8. Long term photocatalytic H₂ and aldehyde production with ^{NCN}CN_x (5 mg), **NiP** (50 nmol), 4-MBA (30 µmol) in KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G) at 25 °C. After 25 h of irradiation, **NiP** (50 nmol), 4-MBA (30 µmol), and both **NiP** (50 nmol) and 4-MBA (30 µmol) were added to photoreactors to test the system re-activation over the next 25 h of irradiation.

It was important to investigate the photostability of the ^{NCN}CN_x and NiP to understand if they are limiting the long-term activity of the system. The stability-limiting component of the system was identified by re-activation experiments by injecting NiP, 4-MBA and both to a suspension of ^{NCN}CN_x–NiP after 25 h of irradiation (Figure 3.8, Table A.7).

Re-addition of 4-MBA (30 µmol) did not reactivate the system, whereas addition of fresh **NiP** (50 nmol) restored solar-H₂ production and enhanced the conversion yield for selective 4-MBA oxidation to 83.5 \pm 9.7%. Addition of both 4-MBA and **NiP** also recovered the activity while the selectivity towards aldehyde formation is preserved despite the longer irradiation period (50 h). This indicates that the lifetime of the system is limited by the degradation of **NiP** while ^{NCN}CN_x maintained its activity for at least 50 h (Figure 3.8).^{6,11,12} XPS and FTIR characterisation of the ^{NCN}CN_x before and after irradiation for 24 h in the presence and absence of **NiP** showed negligible differences (Figures A.3–A.5). Thus, ^{NCN}CN_x showed long term activity and stability for simultaneous alcohol oxidation and H₂ production. The XPS spectra also confirmed that **NiP** was not physically adsorbed on the ^{NCN}CN_x surface during the period of irradiation and acted as a homogenous catalyst in the solution.

The external quantum efficiency (EQE) of the system was determined using a solar light simulator equipped with a monochromator ($\lambda = 360 \pm 10$ nm, I = 4.43 mW cm⁻²). The highest EQE of 15.23 ± 0.16% was obtained with ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) in 3 mL of KP_i (0.1 M) buffer at pH 4.5 after an hour of irradiation. The EQE measured was significantly higher than the previously reported ^{H₂NCN_x-NiP hybrid system with an EQE of 0.37 ± 0.02%,¹¹ as well as the homogenous **RuP-NiP** system with an EQE of 9.7 ± 1.2%.⁶ The EQE can be further improved by enhancing the charge extraction from the photocatalysts and by facilitating efficient utilisation of these charge carriers by the catalysts (see Chapter 6 for details).}

3.3 Conclusions

A closed redox system for simultaneous photocatalytic alcohol oxidation and proton reduction is demonstrated utilising ^{NCN}CN_x and molecular Ni-based H₂-evolution catalyst. The hybrid system consists of earth abundant materials which functions in a purely aqueous solution and at room temperature in the absence of organic or sacrificial reagents. ^{NCN}CN_x-NiP system showed an activity of 763 µmol (g ^{NCN}CN_x)⁻¹ h⁻¹ toward H₂ and aldehyde production with a remarkable EQE of 15% (λ = 360 ± 10 nm). Under optimised conditions, a H₂ production rate (TOF_{NiP}) of 76.3 ± 7.6 h⁻¹, and a TON_{NiP} of 408.8 ± 40.9 were achieved, with a 4-MBA conversion yield of 83.0 ± 8.3% with quantitative selectivity for 4-MBAd.

This colloidal ^{NCN}CN_x–NiP system is straightforward to prepare and provides a novel platform to produce a valuable organic chemical and a H₂ fuel simultaneously, while the products are separated *in situ* in the solution and gaseous phase, respectively. The lifetime of the hybrid system was found to be limited by the stability of the molecular catalyst NiP, whereas ^{NCN}CN_x maintained its activity for at least 50 h of irradiation, providing a significant advantage over similar systems based on photodegrading molecular dyes.^{6,16,19} These results demonstrate that identification

and design of photostable molecular catalysts could enhance the long-term photocatalytic activity of the hybrid system. The reported system also provides a platform for broad range of other useful organic transformations and reduction reactions by altering the molecular catalysts used. Fully understanding the rate limiting steps and the mechanism behind this full redox system would enable improving the activity of systems utilising carbon nitride and to expand its use for other applications.

3.4 References

- Farràs, P.; Di Giovanni, C.; Clifford, J. N.; Palomares, E.; Llobet, A. Coord. Chem. Rev. 2015, 304–305, 202–208.
- (2) Brink, G. T.; Arends, I. W. C. E.; Sheldon, R. A. Science **2000**, 287, 1636–1639.
- Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Chem. Commun.
 2007, 3425–3437.
- Palmisano, G.; García-López, E.; Marcì, G.; Loddo, V.; Yurdakal, S.; Augugliaro,
 V.; Palmisano, L. *Chem. Commun.* **2010**, *46*, 7074–7089.
- (5) Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y.-M.; Nam, W. Nat. Chem. 2011, 3, 38–41.
- (6) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- (7) Lakadamyali, F.; Reisner, E. Chem. Commun. 2011, 47, 1695–1697.
- Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Science 2012, 338, 1321–1324.
- Wilker, M. B.; Shinopoulos, K. E.; Brown, K. A.; Mulder, D. W.; King, P. W.;
 Dukovic, G. *J. Am. Chem. Soc.* 2014, *136*, 4316–4324.
- (10) Lakadamyali, F.; Kato, M.; Muresan, N. M.; Reisner, E. Angew. Chem. Int. Ed.
 2012, 51, 9381–9384.
- (11) Caputo, C. A.; Gross, M. A.; Lau, V. W.-h; Cavazza, C.; Lotsch, B. V.; Reisner,
 E. Angew. Chem. Int. Ed. 2014, 53, 11538–11542.
- Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. J. Am. Chem. Soc. 2015, 137, 6018–6025.

- (13) Ding, Z.; Chen, X.; Antonietti, M.; Wang, X. ChemSusChem 2011, 4, 274–281.
- (14) Fukuzumi, S.; Mizuno, T.; Ojiri, T. Chem. Eur. J. 2012, 18, 15794–15804.
- (15) Su, F.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Angew. Chem. Int. Ed. 2011, 50, 657–660.
- (16) Kalita, D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. ChemCatChem
 2011, 3, 571–573.
- (17) Zhou, X.; Li, F.; Li, X.; Li, H.; Wang, Y.; Sun, L. Dalt. Trans. 2015, 44, 475–479.
- (18) Zhang, B.; Li, J.; Zhang, B.; Chong, R.; Li, R.; Yuan, B.; Lu, S.-M.; Li, C. J. Catal.
 2015, 332, 95–100.
- (19) Singh, W. M.; Pegram, D.; Duan, H.; Kalita, D.; Simone, P.; Emmert, G. L.; Zhao,
 X. Angew. Chem. Int. Ed. 2012, 51, 1653–1656.
- (20) Song, W.; Vannucci, A. K.; Farnum, B. H.; Lapides, A. M.; Brennaman, M. K.; Kalanyan, B.; Alibabaei, L.; Concepcion, J. J.; Losego, M. D.; Parsons, G. N.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 9773–9779.
- (21) Harriman, A. Eur. J. Inorg. Chem. 2014, 573–580.
- (22) Schneider, J.; Bahnemann, D. W. J. Phys. Chem. Lett. 2013, 4, 3479–3483.
- (23) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.;
 Domen, K.; Antonietti, M. *Nat. Mater.* **2009**, *8*, 76–80.
- (24) Cao, S.-W.; Liu, X.-F.; Yuan, Y.-P.; Zhang, Z.-Y.; Fang, J.; Loo, S. C. J.; Barber, J.; Sum, T. C.; Xue, C. *Phys. Chem. Chem. Phys.* 2013, *15*, 18363–18366.
- (25) Song, X.-W.; Wen, H.-M.; Ma, C.-B.; Cui, H.-H.; Chen, H.; Chen, C.-N. *RSC Adv.* **2014**, *4*, 18853–18861.
- (26) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X.
 J. Am. Chem. Soc. 2010, *132*, 16299–16301.
- (27) Long, B.; Ding, Z.; Wang, X. ChemSusChem 2013, 6, 2074–2078.
- (28) Sattler, A.; Schnick, W. Eur. J. Inorg. Chem. 2009, 7, 4972–4981.
- (29) Lau, V. W.-h; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel,
 V.; Senker, J.; Blum, V.; Lotsch, B. V. *Nat. Commun.* 2016, *7*, 12165.
- (30) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.;

Carlsson, J. M. J. Mater. Chem. 2008, 18, 4893–4908.

- (31) Irran, E.; Jürgens, B.; Schnick, W. Solid State Sci. 2002, 4, 1305–1311.
- (32) Lotsch, B. V; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.;
 Schnick, W. Chem. Eur. J. 2007, 13, 4969–4980.
- (33) Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Chem. Mater. 2015, 27, 2612–2618.
- (34) Helm, M. L.; Stewart, M. P.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Science
 2011, 333, 863–866.
- (35) Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.; Stewart, M. P.; DuBois, M. R.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, D. L. *J. Am. Chem. Soc.* 2011, 133, 5861–5872.
- (36) Palmisano, G.; Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmisano, L. *Adv. Synth. Catal.* **2007**, *349*, 964–970.
- (37) Yurdakal, S.; Palmisano, G.; Loddo, V.; Augugliaro, V.; Palmisano, L. J. Am. Chem. Soc. 2008, 130, 1568–1569.
- (38) Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagöz, O.; Augugliaro, V.; Palmisano,
 L.; Alagoz, O.; Augugliaro, V.; Palmisano, L. *Green Chem.* 2009, *11*, 510–516.
- (39) Yurdakal, S.; Augugliaro, V. RSC Adv. 2012, 2, 8375–8380.
- (40) Shinagawa, T.; Takanabe, K. J. Phys. Chem. C 2015, 119, 20453–20458.
- (41) Liu, G.; Wang, T.; Zhang, H.; Meng, X.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 13561–13565.
- (42) Meyer, A. U.; Lau, V. W.-h; König, B.; Lotsch, B. V. *European J. Org. Chem.* **2017**, 2017, 2179–2185.

Chapter 4

Dark photocatalysis with carbon nitride using trapped electrons for time-delayed solar fuel production

The data presented in this chapter was published in peer-reviewed articles: J. Am. Chem. Soc., 2016, 138, 9183–9192; Angew. Chem. Int. Ed. 2016, 55, 510–514; ACS Catal. 2018, 8, 6914–6926. The author of this thesis carried all of the work presented unless specified otherwise. Transient absorption spectroscopy measurements were performed and analysed by Dr. Robert Godin. Prof. Vincent Wing-hei Lau synthesised the carbon nitride.

4.1 Introduction

Natural photosynthesis serves as a model system for efficient utilisation of solar energy in chemical bonds. It demonstrates a full redox system, consisting of light-dependent and light-independent ("dark") half cycles, carrying out water oxidation and carbon dioxide reduction respectively.¹ The dark cycle functions independent of the primary light source and without a need for continuous energy supply.

Designing artificial systems with an aim to replicate the perfectly functioning complex mechanism behind natural photosynthesis is taking a great amount of research interest. Mimicking natural photosynthesis would imply generating long-lived and highly reducing "trapped" electrons in the photocatalyst during irradiation, to be used subsequently on demand, and reproducing the ability to decouple lightdependent and light-independent reactions, enabling catalysis in the dark. Despite intensive research, artificial photosynthetic schemes designed up to date are not commercially viable to capture and store solar energy as chemical fuels. The storage and release of solar energy as well as the diurnal availability of sunlight are the main limitations behind these systems, leaving room for improvement.

Colloidal TiO₂ nanoparticles have been previously reported to trap electrons (forming Ti³⁺) on the surface of the particles and in the conduction band after photoexcitation, in the presence of sacrificial electron donor without an electron acceptor.² These trapped electrons give rise to a broad absorption band (λ_{max} = 650 nm) and can be subsequently released, to drive various reactions, including reduction of commonly used oxidants such as O₂ and H₂O₂.^{3,4} These long-lived electrons in TiO₂ have also been demonstrated to reduce toxic metal contaminants.⁴ However, TiO₂ particles can only utilise the high energy UV portion of the solar spectrum in photocatalytic applications.

A number of photoelectrochemical cells have also been demonstrated to decouple O_2 and H_2 evolution reactions by using molecular redox mediators or electron-coupled-proton buffers.^{5–8} These approaches overcome the main limitations of pressure increase and gas separation in conventional photoelectrochemical cells, by decoupling the time and space for O_2 and H_2 evolution. Nevertheless, the multicomponent set-up and the complicated cell design increase the manufacturing cost significantly.⁹

Herein we investigate the ^{NCN}CN_x–NiP system, introduced in Chapter 3, for the ability to decouple the oxidation and reduction half reactions of a redox scheme in light and dark cycles through the utilisation of long-lived "trapped" electrons (Figure 4.1). This artificial scheme replicates natural photosynthesis, using carbon nitride that functions as the light harvester and electron relay, without the need for multiple component and complex assembly in nature.¹ This bio-inspired system is straightforward to assemble and only consists of earth-abundant components. The mechanism and the rate-limiting steps of the ^{NCN}CN_x–NiP hybrid are also investigated using transient absorption spectroscopy (TAS), aiming to improve the understanding behind this system.

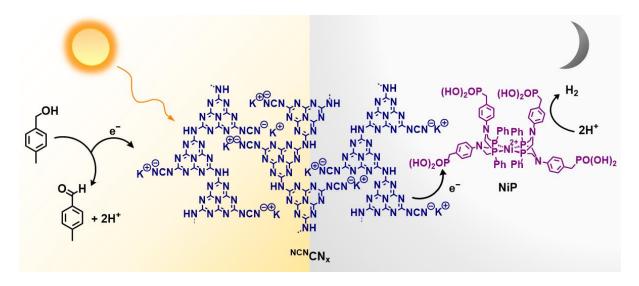


Figure 4.1. Schematic representation of a $^{NCN}CN_x$ -NiP colloidal system for decoupled oxidation and reduction reactions in the light and dark phase respectively.

4.2 Results and discussion

4.2.1 Dark photocatalysis

The colloidal suspensions of ^{NCN}CN_x and **NiP** were prepared as described in Chapter 3. An unexpected behaviour was observed during the control experiments that ^{NCN}CN_x oxidised 4-MBA under N₂ without the need for an electron acceptor **NiP** (Figure 4.2a). This result implied that ^{NCN}CN_x can accumulate photoexcited charge carriers in its structure while carrying out catalysis.¹⁰ The other important observation was the instantaneous colour change of colloidal suspension prepared with ^{NCN}CN_x, **NiP** and 4-MBA upon irradiation. The colour of the solution changed immediately when exposed to a light source from pale yellow to intense blue and this colour persisted during 24 h of continuous irradiation (Figure 4.2b).

Initially this colour change was studied by replacing **NiP** with a sacrificial electron acceptor, ammonium persulfate or air (O_2), in which the colour of the suspension remained yellow during irradiation in the presence of 4-MBA. On the other hand, when 4-MBA was substituted with sacrificial electron donor EDTA in the absence of **NiP**, the colour of the solution remained blue under inert N₂ atmosphere. The observed colour change was therefore attributed to photogenerated electrons in the photosensitiser.

Figure 4.2. (a) Bar chart representing photocatalytic H₂ and aldehyde formation in the presence of ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) with and without **NiP** in KP_i (0.02 M, pH 4.5, 3 mL) after 24 h of 1 sun irradiation (AM 1.5G) at 25 °C. (b) Suspension of ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in an aqueous KP_i solution (0.02 M, pH 4.5) before irradiation (pale yellow) and after irradiation (blue).

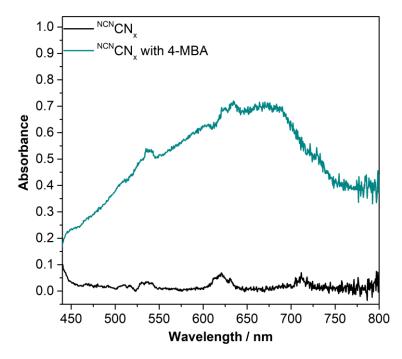


Figure 4.3. UV–vis absorption spectra of colloidal suspensions of $^{NCN}CN_x$ (5 mg) and 4-MBA (30 µmol) in KP_i (3 mL) were generated by comparing samples before and after irradiation under 1 sun for 30 min (AM 1.5G, 25 °C).

In order to characterise the colour change upon irradiation of the ^{NCN}CN_x, UV– vis absorption spectra were recorded for ^{NCN}CN_x (5 mg) in KP_i (3 mL, 0.02 M, pH 4.5) with and without 4-MBA (30 µmol) after 30 min of simulated solar light irradiation (AM 1.5G). As the heterogeneous ^{NCN}CN_x particles scatter the incident light and settle during the period of measurement, spectrofluorometer (Edinburgh Instruments FS5) equipped with an integrating sphere was used for measuring UV–vis spectra. Synchronous scans ($\lambda_{ex} = \lambda_{em}$) were run for samples and the absorption spectra were generated by comparing samples before and after irradiation using the Fluoracle software supplied with the FS5 instrument.

The suspension prepared with 4-MBA turned intense blue immediately upon irradiation and consequently a broad absorption peak at $\lambda = 650$ nm was obtained (Figure 4.3), a direct spectroscopic observation of the trapped electrons in the ^{NCN}CN_x. In the absence of 4-MBA no colour change was observed, indicating that 4-MBA reductively quenches the photoexcited state of the ^{NCN}CN_x.

The next step was to test if the electrons stored in ^{NCN}CN_x can be extracted and monitored spectroscopically. **NiP** (50 nmol) was added to a blue suspension using an airtight syringe under N₂ and the peak at $\lambda = 650$ nm was monitored every 15 min for 1 h, while the suspension was stirred in the dark (Figure 4.4). A significant decay in the absorption peak was observed in the first 15 min ($\tau_{1/2} = 10$ min), indicating the transfer of the trapped electrons from ^{NCN}CN_x to NiP. After 30 min, the broad peak at $\lambda = 650$ nm disappeared. The photoexcited electrons were thus collected by NiP and the colour of the suspension turned back to yellow again. In a control experiment, a **NiP**-free KP₁ solution was added to another ^{NCN}CN_x suspension irradiated for 30 min and the solution remained blue with no significant change in the absorption spectra. Therefore, these ultra-long-lived "trapped electrons" can be stored in the dark for prolonged periods of time (> 30 min) in the heptazine framework of ^{NCN}CN_x and transferred to **NiP** when available.¹¹

To demonstrate quantitative H₂ evolution in the dark phase, two photoreactors were prepared using ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in KP_i in the absence NiP and were irradiated under simulated solar light (AM 1.5G) for 4 h (Figure 4.5). Then, both systems were moved to dark and NiP (50 nmol) was added to only one of the photoreactors and the H₂ production was monitored for both (Table B.1). The same effect was observed, the photoreactor kept in the dark without NiP did not show any

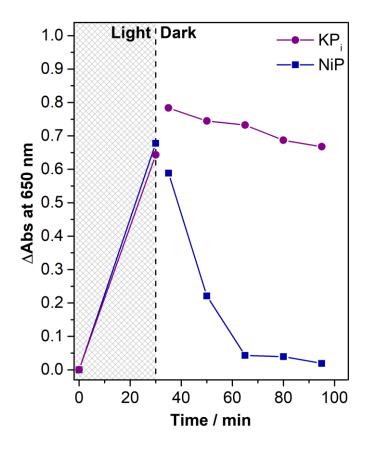


Figure 4.4. Spectrophotometry of the appearance (during irradiation) and disappearance (upon addition of **NiP**) of photoexcited electrons in ^{NCN}CN_x at λ = 650 nm. Two photoreactors were prepared with ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in KP_i (0.02 M, pH 4.5, 3 mL) and irradiated (AM 1.5G) for 30 min, followed by the addition of **NiP** (50 nmol, 400 µL) or KP_i (400 µL) using an air tight syringe.

H₂ production in the 20 h dark phase, whereas the vial containing **NiP** showed a substantially increased H₂ production. The amount of aldehyde produced after 24 h was the same for both of the systems (independent of the **NiP**) indicating that alcohol oxidation ceased as soon as the vials were removed from light. These results agree with efficient alcohol oxidation by ^{NCN}CN_x, using the photogenerated holes, even in the absence of an electron acceptor (Figure 4.2a).

Thus, $^{NCN}CN_x$ can be charged during the light phase by 4-MBA oxidation and the electrons can be released in the absence of light to carry out proton reduction to H₂, which enables the temporary decoupling of the oxidative and reductive half reactions.⁵ This system directly replicates natural photosynthesis in a single reactor with light and dark cycles of reactions occurring at different times.

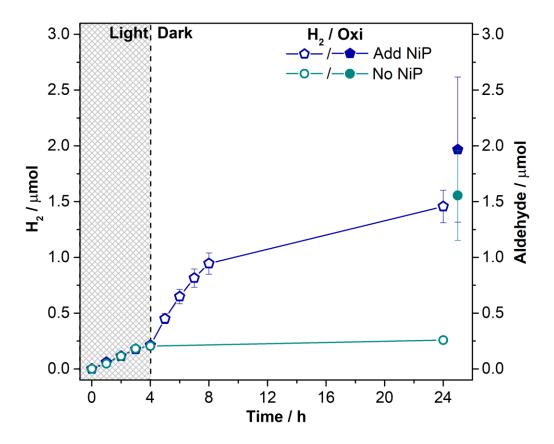


Figure 4.5. Photoreactors were prepared with ^{NCN}CN_x (5 mg) and 4-MBA (30 μ mol) in the absence of **NiP** in an aqueous KP_i (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G, 25 °C). Both of the photoreactors were taken into the dark after 4 h of irradiation, while **NiP** (50 nmol) was added to one of them using an air tight syringe. The pair of hollow and filled symbols of the same shape and colour corresponds to the specified reaction conditions.

Further studies were carried out on characterising the nature of these ultralong-lived "trapped electrons" in $^{NCN}CN_x$ using electron paramagnetic resonance (EPR) spectroscopy and computational calculations.¹² The results revealed that electrons are stored as heptazine-based radicals with partially neutral and anionic cyanamide side groups. Under fully inert atmosphere the material was found to preserve this charged state for up to 6 months.

The amount of H₂ produced in the dark cycle provides an indirect measure on the total number of heptazine based radicals generated during the irradiation of the material.¹² After 4 h of irradiation, $1.5 \pm 0.1 \mu$ mol of H₂ was generated from ^{NCN}CN_x in the dark. Assuming that trapped electrons are quantitatively converted into H₂, and this is the only reaction pathway for the radicals, it is estimated that $3.0 \pm 0.2 \mu$ mol of

radicals are accumulated in ^{NCN}CN_x. For the purpose of this experiment 5 mg of ^{NCN}CN_x was used which corresponds to 20 µmol of heptazine units with a molecular weight of 249 g mol⁻¹. Therefore, approximately a 1:10 ratio of radical to heptazine units were preserved in the charged state of ^{NCN}CN_x.

4.2.2 Mechanism

Developing a better understanding on the mechanism behind this closed redox system for simultaneous alcohol oxidation and proton reduction is of great interest, as this would enable the determination of rate-limiting steps and the range of organic substrates that can be oxidised under the utilised conditions (Figure 4.1). It is well known that proton reduction by **NiP** occurs *via* successive multiple electron and proton transfers.^{13–15} For the alcohol oxidation half of the scheme, many mechanistic studies have been reported on organic substrate oxidation with colloidal light harvesters such as CN_x,^{16–18} TiO₂,^{19–21} and BiVO₄ ^{22,23} under O₂ atmosphere. However, there are only few reports on high-yielding alcohol photo-oxidation under N₂, which precludes the formation and potential involvement of reactive oxygen species.^{24–26}

To identify the source of protons for H₂ production, KP_i buffer was prepared in H₂O and D₂O (Figure 4.6a, Table B.2). The headspace gas produced was monitored by GC and characterised by mass spectrometry (MS), through examining the composition of the gases with mass/charge ratios between 1 and 5 amu over the irradiation period (Figure 4.6a, inset). Over the course of 4 h, linear gas production at a comparable rate was observed regardless of using H₂O or D₂O as solvent. In the presence of D₂O, the peak corresponding for D₂ grew selectively over time with negligible amounts of H₂ and HD being detected. This indicated that aqueous protons were selectively delivered to **NiP** for H₂ formation. The rate of H₂ gas production was not affected by D₂O substitution, demonstrating that O–H/D bond breaking is not the rate-determining step for proton reduction.²⁷

The kinetic isotope effect (KIE) of an isotopically labelled 4-MBA substrate was then studied by using α -D₂ benzyl alcohol (BA). The substitution with D₂-BA did not influence the rate of proton reduction, while MS analysis confirmed that the headspace gas was H₂ (Figure 4.6b), demonstrating that aliphatic protons from BA were not used for proton reduction. Independent of BA labelling, around 6 µmol of aldehyde was produced after 4 h of irradiation, showing that the rate of proton abstraction from BA

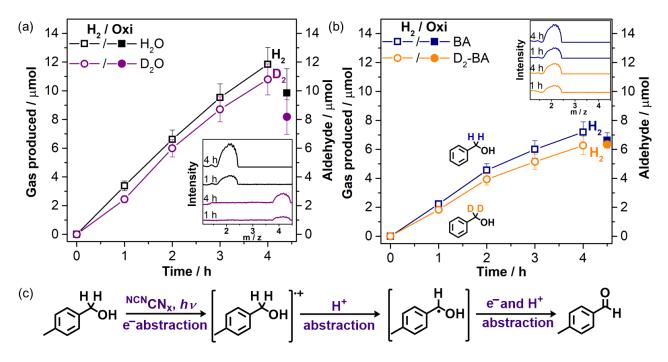


Figure 4.6. (a) Photocatalytic H₂ and aldehyde production with ^{NCN}CN_x (5 mg), NiP (50 nmol), 4-MBA (30 µmol) in KP_i (0.1 M, pH 4.5, 3 mL) prepared in H₂O or D₂O under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C). Inset: MS monitoring the headspace gas produced overtime in suspension prepared with H₂O and D₂O. (b) Photocatalytic H₂ production with ^{NCN}CN_x (5 mg), NiP (50 nmol) and BA or D₂-BA (30 µmol) in KP_i (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C) Inset: MS monitoring the headspace gas produced overtime in the presence of BA and D₂-BA. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde production, respectively. Amount of aldehyde formed is detected after 4 h of irradiation. (c) Proposed mechanism for alcohol oxidation with ^{NCN}CN_x, NiP and 4-MBA in KP_i under inert (N₂) atmosphere.

was not limiting the oxidation process. The first step of oxidation is presumably the hole transfer from photoexcited $^{NCN}CN_x$ to the substrate (Figure 4.6c).^{28,29}

Alcohol oxidation was further investigated under a N₂ or air atmosphere without **NiP** (Table B.2). After 4 h of irradiation, selective production of 2 and 14 µmol of 4-MBAd was detected under N₂ and air atmospheres, respectively (for comparison, 10 µmol 4-MBAd are detected in the presence of **NiP** and N₂). These results indicated that the presence of a strong electron acceptor such as O₂ assisted faster extraction of photogenerated electrons from ^{NCN}CN_x, quickly regenerating the ground-state of the photocatalyst and increasing the turnover frequency for alcohol oxidation.^{19,21}

The possibility of hydroxyl radical (HO[•]) formation was explored by using the hydroxyl radical scavenger benzene-1,4-dicarboxylic acid (terephthalic acid, THA).³⁰ Hydroxylation of THA by HO[•] yields a highly fluorescent THA-OH, with an emission at 426 nm when excited with 315 nm light.³⁰ NCNCN_x suspensions irradiated in the presence of THA for one hour showed an insignificant amount (< 0.02 µmol) of THA-OH formation (Figure B.1), indicating that this is a minor reaction pathway for the oxidation reaction. This is supported by the mismatch between the valence band position of NCNCN_x (approximately 1.4 V vs. NHE at pH 7), and the redox potential of HO⁻ to hydroxyl radicals (E° (HO[•]/HO⁻) = 2.4 V vs. NHE at pH 7).^{18,31} Photocatalytic substrate oxidation under O₂ atmosphere is believed to occur through superoxide radical formation, O₂^{•-}, but this possibility can be excluded in the reported system as the experiments were carried out under N₂.¹⁸

Our mechanistic studies therefore support that presumably a direct hole transfer occurs first from photoexcited ^{NCN}CN_x to 4-MBA, followed by slow electron transfer from ^{NCN}CN_x to NiP to reduce aqueous protons to H₂ (Figure 4.6c).^{32,33} Consumption of the photogenerated charge carriers is ultimately essential to promote the production of H₂ and aldehyde in 1:1 stoichiometry and close the photo-redox cycle, but the oxidative and reductive half-reactions can be temporarily, and in principle, spatially decoupled.²⁵

4.2.3 Transient absorption spectroscopy

To gain a better understanding on the kinetics behind electron transfer in this closed redox system, TAS measurements were carried out. As detailed below, TAS investigations confirmed that electron transfer from photoexcited ^{NCN}CN_x to NiP is the rate-limiting step for the photocatalytic system (Figure 4.7). Titration experiments carried out by increasing the NiP concentration did not quench the excited state of the photosensitiser, ^{NCN}CN_x*, eliminating the possibility for an oxidative quenching mechanism (Figures B.2 and B.3).

Photoexcitation of $^{NCN}CN_x$ produced a photoinduced absorption signal in the range of 550–1000 nm (Figure B.4), which matches that observed upon irradiation of $^{NCN}CN_x$ with 4-MBA (Figure 4.3). This spectral feature did not show any evolution over the decay time nor was the shape sensitive to additives, suggesting a single excited state species absorbing over this spectral range. Kinetics were probed at 750 nm with

Reductive Quenching

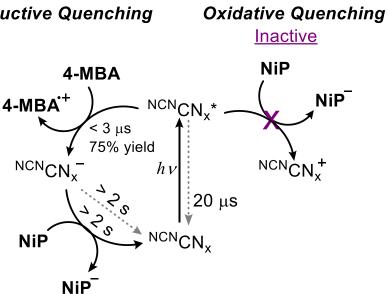


Figure 4.7. Summary of mechanism and kinetic rates from TAS measurements with suspensions prepared with ^{NCN}CN_x (1–5 mg mL⁻¹), NiP (up to 24 μ M) and 4-MBA (10 mM) in an aqueous KPi solution (0.02 M, pH 4.5, 25 °C). Representative lifetimes, calculated using 3 µs as the initial time, are indicated near reaction arrows. Recombination reactions are indicated by dashed grey arrows.

an aim to reduce the influence of the strong photoluminescence at wavelengths near 550 nm. The intrinsic decay of $^{NCN}CN_x$ (Figure B.5) yielded a representative lifetime $(\tau_{\frac{1}{2}})$ of 21.6 µs, which was the time during which 50% of the initial (at 3 µs) excited state population has decayed by half.

The tens of microsecond timescale of the decay was guite comparable to those found in metal oxide photocatalysts such as hematite³⁴ and TiO₂.³⁵ Furthermore, the same type of dispersive power law decay dynamics are found in the carbon nitrides studied as for the metal oxides, and has been attributed to bimolecular (i.e. electronhole) recombination. The exponent of the power law was significantly smaller than unity (~0.35), indicating that charge trapping/detrapping may play a considerable role in excited state dynamics of ^{NCN}CN_x, as also indicated by slow timescale of this recombination process.

We next performed 4-MBA titration experiments to elucidate the kinetics of 4-MBA oxidation. As the concentration of 4-MBA increased, a long-lived component of the decay became dominant (Figure B.6), which is assigned to long-lived electrons formed after hole scavenging by 4-MBA. For 10 mM 4-MBA, these long-lived electrons account for about 75% of the initial amplitude (Figure 4.8). Assuming a bimolecular dynamic quenching process, analysis of the concentration-dependent yield and rate of formation of the long-lived electrons (see Appendix for details) provided a reaction rate constant of 1.43 x 10⁷ M⁻¹ s⁻¹ (Figure B.7 and B.8). The analysis also informed us of a slow background reaction rate k_0 of 8200 s⁻¹, which we tentatively attribute to hole scavenging by small amounts of impurities or H₂O, and explains the non-zero absorption seen in the millisecond regime in the absence of 4-MBA. However, the shape of the decay is more indicative of quenching occurring on timescales faster than the instrument response of 3 µs, perhaps by static quenching. Specifically, the decrease in amplitude seen before 1 ms in the presence of 10 mM 4-MBA showed a $\tau_{\frac{1}{2}}$ of roughly 20 µs, that is, indistinguishable fast phase $\tau_{\frac{1}{2}}$ was observed with or without 4-MBA. The yield of long-lived electrons plateaued for higher concentration of 4-MBA, a possible indication that deeply trapped electrons which decay with microsecond dynamics are unable to participate in the charge transfer reaction.³⁶ The NCNCN_x/4-MBA reaction thus appears to take place faster than the ~20 μ s relaxation kinetics of ^{NCN}CN_x. Comparing to a previously reported photocatalytic system using AA as the sacrificial electron donor, the $NCNCN_x/4-MBA$ reaction timescale is faster than reduction of an oxidised Ru(III) dye (RuP-TiO₂/AA) and maybe comparable to the reduction of the excited state of the Ru dye (RuP/AA).³⁷

The same TAS spectral feature is seen with and without the addition of 4-MBA while the oxidation of 4-MBA consumes holes, which confirms the assignment of the blue-coloured solution deriving from photogenerated electrons in the ^{NCN}CN_x (Figure B.4). The same observation was also made with MeOH as hole scavenger (Figure B.4). An analogous increase of the photogenerated electron lifetime in TiO₂ has been observed upon the addition of MeOH as a hole scavenger.³⁸ Therefore, we may directly monitor the population of electrons in the ^{NCN}CN_x. This further implies that the formation of separated charge carriers in ^{NCN}CN_x occurs within 3 µs.

We attempted to quantify the rate of electron transfer reaction from ^{NCN}CN_x to **NiP** but the timescale of this reaction was too long for direct observation by TAS. Both in the absence or presence of 4-MBA, addition of **NiP** did not affect the relaxation kinetics of ^{NCN}CN_x (Figures B.2 and B.3). The upper time limit of our measurements was ~2 s due to settling of the heterogeneous ^{NCN}CN_x dispersion (see Chapter 5 for details). We thus conclude that the lifetime of long-lived electrons in ^{NCN}CN_x is longer

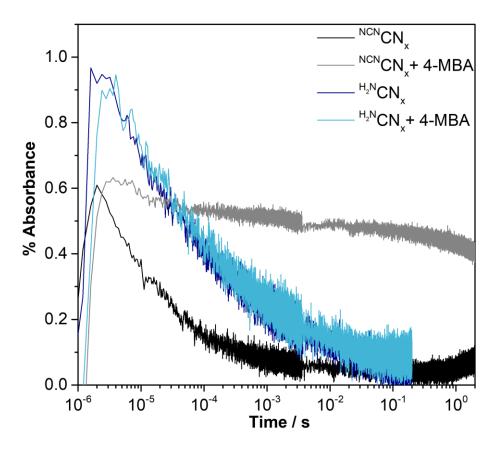


Figure 4.8. Transient decays probed at $\lambda = 750$ nm of ^{NCN}CN_x (1.2 mg mL⁻¹) and H₂NCN_x (1.2 mg mL⁻¹) suspensions in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) following $\lambda = 355$ nm excitation. Traces obtained following the addition of 10 mM 4-MBA are also shown.

than 2 s, which is consistent with the persistent blue colour observed upon irradiation of NCNCN_x/4-MBA (see above). Similarly, the reaction lifetime for NCNCN_x electron transfer to **NiP** is also longer than 2 s, in line with disappearance of the blue colour that takes place over 30 min upon **NiP** addition (Figure 4.4). Taking into account the **NiP** concentration, the upper bound of the bimolecular rate constant is thus set to 2 x 10^5 M⁻¹ s⁻¹.

The time taken for the electron transfer from $^{NCN}CN_x$ to NiP and for $^{NCN}CN_x$ charge recombination is presented as more than 2 s (Figure 4.7), as this is the longest timescale (upper limit) that TAS set-up can record, due to settling nature of the $^{NCN}CN_x$ suspensions. Nevertheless, it should be noted that the electron transfer to NiP is more favourable pathway, with faster kinetics, as H₂ is detected as the main reduction product in the photocatalytic experiments in longer than 2 s timescale (hours).

We have compared the TAS results of $^{NCN}CN_x$ and the unfunctionalised $^{H_2N}CN_x$ to gain insights in the significant differences in efficiency. Surprisingly, for the studied timescale, we observed slower decay kinetics ($\tau_{\frac{1}{2}} = 60.2 \ \mu s$) for H_2NCN_x dispersions compared to the catalytically more efficient $^{NCN}CN_x$ (Figure 4.8 and B.9). Instead of increasing the lifetime of reactive charges, the increased efficiency of cyanamidefunctionalised carbon nitride seems to stem from higher hole transfer reactivity towards oxidation reaction. In particular, we have observed no changes in the decay kinetics of H_2NCN_x upon the addition of 4-MBA, supporting an inefficient alcohol oxidation step, which was also observed in our bulk photocatalytic experiments. It is plausible that oxidation of 4-MBA by $^{NCN}CN_x$ is aided by more favourable hydrogen bonding interactions between the anionic cyanamide moieties on the surface of the material and the benzyl alcohol. This pre-association increases effectiveness of static quenching and/or effectively increases the basicity of the carbon nitride and the driving force for reaction.³⁹ These observations highlight the necessary consideration of both charge photogeneration and separation as well as complex electron-proton transfer processes in photocatalyst reactivity.

Considering all of the collected experimental evidence, a stepwise mechanism is proposed for the closed redox system of ^{NCN}CN_x–NiP. Initially, irradiation of ^{NCN}CN_x results in light absorption and charge separation. The photogenerated holes in the material is first reductively quenched by the 4-MBA for selective alcohol oxidation. The photo-excited electrons accumulated in the ^{NCN}CN_x are then transferred to the NiP, which carries out reduction of aqueous protons. The rate of photogenerated electron transfer from ^{NCN}CN_x to NiP is slower than the rate of reductive quenching, giving rise to an intense blue colour.

4.3 Conclusions

The ^{NCN}CN_x–NiP redox system demonstrated to decouple oxidation and reduction reactions in a single pot without a need for any additional mediator. During irradiation ^{NCN}CN_x accumulates ultra-long-lived 'trapped electrons', and effectively transfers these charge carriers to the catalyst, **NiP**, in the dark-phase, to generate solar fuel H₂, directly mimicking natural photosynthesis. This approach enables developing systems and devices that are not limited by the diurnal availability of sunlight by temporarily and spatially decoupling light absorption from fuel generation.

Mechanistic investigations on ^{NCN}CN_x–NiP revealed that photogenerated electrons are used by NiP for proton reduction, with selective use of H⁺ from the solution (KP_i), while the photogenerated holes are consumed by 4-MBA for oxidation. ^{NCN}CN_x behaves as an electron reservoir for long-lived and reductive electrons, whereas the rate of electron extraction from ^{NCN}CN_x is the overall rate-limiting step.

TAS results showed that photogenerated holes on $^{NCN}CN_x$ are quenched by 4-MBA in time scales faster than 3 µs whereas electron transfer from $^{NCN}CN_x$ to NiP occurs in longer than 2 s. This observation confirms that the rate of electron transfer from $^{NCN}CN_x$ to NiP is overall the slowest electron transfer process in the complete redox system. In addition TAS results showed that cyanamide groups on the surface of the material play a vital role in providing enhanced catalytic activity towards selective substrate oxidation, which outperforms possible charge recombination reactions in the presence of 4-MBA. The main reason for the enhanced catalytic activity towards organic substrates, in comparison to the benchmark $^{H_2N}CN_x$.

These results demonstrate that the efficiency of $^{NCN}CN_x-NiP$ redox system is limited by the rate of electron extraction from $^{NCN}CN_x$. Introduction of conductive scaffolds or pre-treatment techniques to speed up this process would overcome this limitation. This work highlights the importance of studying each component individually to develop better understanding on the charge generation and separation kinetics in multi component systems, by bringing photocatalytic experiments together with spectroscopic techniques.

4.4 References

- (1) Nelson, N.; Ben-Shem, A. Nat. Rev. Mol. Cell Biol. 2004, 5, 971–982.
- Bahnemann, D.; Henglein, A.; Lilie, J.; Spanhel, L. J. Phys. Chem. 1984, 88, 709–711.
- (3) O'Regan, B.; Grätzel, M.; Fitzmaurice, D. Chem. Phys. Lett. 1991, 183, 89–93.
- Mohamed, H. H.; Mendive, C. B.; Dillert, R.; Bahnemann, D. W. J. Phys. Chem. A 2011, 115, 2139–2147.
- (5) Symes, M. D.; Cronin, L. *Nat. Chem.* **2013**, *5*, 403–409.

- Bloor, L. G.; Solarska, R.; Bienkowski, K.; Kulesza, P. J.; Augustynski, J.;
 Symes, M. D.; Cronin, L. *J. Am. Chem. Soc.* **2016**, *138*, 6707–6710.
- (7) Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Science 2014, 345, 1326– 1330.
- (8) Kirkaldy, N.; Chisholm, G.; Chen, J. J.; Cronin, L. Chem. Sci. 2018, 9, 1621–
 1626.
- (9) You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639–13646.
- (10) Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W.-h; Lotsch,
 B. V.; Durrant, J. R.; Reisner, E. *J. Am. Chem. Soc.* **2016**, *138*, 9183–9192.
- (11) Rosser, T.; Gross, M. A.; Lai, Y.-H.; Reisner, E. Chem. Sci. 2016, 18, 15464– 15475.
- (12) Lau, V. W.-h; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M.-C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Angew. Chem. Int. Ed. 2017, 56, 510–514.
- Wilson, A. D.; Shoemaker, R. K.; Miedaner, A.; Muckerman, J. T.; DuBois, D.
 L.; DuBois, M. R. *Proc. Natl. Acad. Sci. U.S.A.* 2007, *104*, 6951–6956.
- (14) Small, Y. A.; DuBois, D. L.; Fujita, E.; Muckerman, J. T. *Energy Environ. Sci.* **2011**, *4*, 3008–3020.
- (15) Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.; Stewart, M. P.; DuBois, M. R.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, D. L. *J. Am. Chem. Soc.* 2011, 133, 5861–5872.
- (16) Su, F.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Angew. Chem. Int. Ed. 2011, 50, 657–660.
- (17) Long, B.; Ding, Z.; Wang, X. ChemSusChem 2013, 6, 2074–2078.
- (18) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X.
 J. Am. Chem. Soc. 2010, *132*, 16299–16301.
- (19) Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. J. Catal. 2010, 274, 76–83.
- (20) Shi, T.; Chang, W.; Zhang, H.; Ji, H.; Ma, W.; Chen, C.; Zhao, J. *Environ. Sci. Technol.* 2015, *49*, 3024–3031.

- (21) Zhao, L.; Zhang, B.; Xiao, X.; Gu, F. L.; Zhang, R.-Q. J. Mol. Catal. A Chem.
 2016, 420, 82–87.
- (22) Yuan, B.; Chong, R.; Zhang, B.; Li, J.; Liu, Y.; Li, C. Chem. Commun. 2014, 50, 15593–15596.
- (23) Zhang, B.; Li, J.; Zhang, B.; Chong, R.; Li, R.; Yuan, B.; Lu, S.-M.; Li, C. J. Catal.
 2015, 332, 95–100.
- (24) Ahmed, A. Y.; Kandiel, T. A.; Ivanova, I.; Bahnemann, D. Appl. Surf. Sci. 2014, 319, 44–49.
- (25) Wang, F.; Jiang, Y.; Gautam, A.; Li, Y.; Amal, R. ACS Catal. 2014, 4, 1451– 1457.
- (26) Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-B.; Chen, B.; Ramamurthy,
 V.; Tung, C.-H.; Wu, L.-Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 3020–3024.
- (27) Westheimer, F. H. Chem. Rev. 1961, 61, 265–273.
- (28) Roecker, L.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 746-754.
- (29) Morimoto, Y.; Park, J.; Suenobu, T.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Inorg. Chem. 2012, 51, 10025–10036.
- (30) Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z. Nanoscale 2013, 5, 3289–3297.
- (31) Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.;
 Antonietti, M.; Wang, X. *Angew. Chem. Int. Ed.* **2010**, *49*, 441–444.
- (32) Megerle, U.; Wenninger, M.; Kutta, R.-J.; Lechner, R.; König, B.; Dick, B.;
 Riedle, E. *Phys. Chem. Chem. Phys.* 2011, *13*, 8869–8880.
- (33) Kasap, H.; Godin, R.; Jeay-Bizot, C.; Achilleos, D. S.; Fang, X.; Durrant, J. R.; Reisner, E. ACS Catal. 2018, 8, 6914–6926.
- (34) Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula,
 K.; Gratzel, M.; Klug, D. R.; Durrant, J. R. *Proc. Natl. Acad. Sci. U.S.A.* 2012, 109, 15640–15645.
- (35) Cowan, A. J.; Tang, J.; Leng, W.; Durrant, J. R.; Klug, D. R. J. Phys. Chem. C 2010, 114, 4208–4214.

- (36) Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.;
 Maeda, K. J. Am. Chem. Soc. 2016, 138, 5159–5170.
- (37) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- (38) Xiao-e, L.; Green, A. N. M.; Haque, S. A.; Mills, A.; Durrant, J. R. *J. Photochem. Photobiol. A* **2004**, *162*, 253–259.
- (39) Waidmann, C. R.; Miller, A. J. M.; Ng, C.-W. A.; Scheuermann, M. L.; Porter, T. R.; Tronic, T. A.; Mayer, J. M. *Energy Environ. Sci.* 2012, *5*, 7771–7780.

Chapter 5

Interfacial engineering of a carbon nitride-graphene oxide-molecular Ni catalyst hybrid for enhanced photocatalytic activity

The data presented in this chapter was published in a peer-reviewed article: ACS Catal. 2018, 8, 6914–6926. The author of this thesis carried all of the work presented unless specified otherwise. Time resolved spectroscopy measurements were carried out and analysed by Dr. Robert Godin and Chiara Jeay-Bizot. TEM images were recorded by Dr. Heather F. Greer.

5.1 Introduction

Solar-driven water splitting with semiconductor particles is a promising strategy to produce clean and renewable fuels.¹ Traditionally used light harvesters, TiO₂ and ZnO, usually suffer from large band gaps (3.2–3.4 eV),^{2,3} requiring dye sensitisation to utilise visible light.^{4–6} Semiconductors such as CdSe, CdS and ZnSe have narrower band gaps and can partially absorb visible light, but they are toxic and suffer from photocorrosion, which limits their practical applications.^{7–10} High performance photocatalytic systems based on efficient, economic, and benign photo-absorbers are therefore much needed to accelerate the translation from prototype to products.

Polymeric CN_x has gained increasing popularity as an ideal alternative to traditional photocatalysts. CN_x has a composition based upon "earth-abundant" elements and has suitable band positions straddling the redox potentials of water splitting, and is highly stable under irradiation.^{11–14} CN_x materials have been demonstrated to promote solar driven organic substrate oxidation,¹⁵ pollutant degradation,^{16,17} H₂ production,^{18–20} and water splitting.^{14,21,22} Yet its photocatalytic performance is typically limited by the fast recombination of photogenerated hole–electron pairs. To overcome this limitation many strategies have been proposed such as non-metal doping,^{23–25} noble metal doping,^{26–28} and nanoengineering of CN_x.^{29,30} An alternative strategy is to design a system in which photogenerated holes or electrons are consumed faster than charge recombination reactions by accelerating charge transfer to the catalytic sites.

In Chapter 3 and 4, we developed a ^{NCN}CN_x–NiP photocatalytic system to simultaneously produce aldehyde and hydrogen from alcohol oxidation and proton reduction, respectively.³¹ This closed photocatalytic redox system showed enhanced photoactivity compared to unfunctionalised (amino-terminated) carbon nitride, ^{H₂NCN_x, due to the superior hole transfer ability of ^{NCN}CN_x to 4-MBA. However, transient spectroscopy analysis revealed that the rate-limiting step of this photocatalytic systems lies in the electron transfer from the excited ^{NCN}CN_x to NiP molecules.³¹}

Interfacial engineering of semiconductors with charge separation layers can increase the lifetime of charge carriers and improve photocatalytic activity.³² Graphene is well known for its high specific surface area ($\sim 2,600 \text{ m}^2 \text{ g}^{-1}$), high electron mobility (~200,000 cm² V⁻¹ s⁻¹), and good chemical and electrochemical stability.³²⁻³⁶ Graphene oxide (GO) is usually synthesised through a chemical oxidation method using low-cost graphite as the precursor.^{37–39} In order to balance the conductivity and hydrophilicity of GO, it is typical to convert it into reduced graphene oxide (RGO).^{40,41} Graphene materials have been widely used as mediators to facilitate interfacial electron transfer in various systems including H₂ production,⁴²⁻⁴⁴ CO₂ reduction,⁴⁵⁻⁴⁸ selective organic transformations, 53-56 and pollutant splitting,^{40,49–52} water degradation.^{57–60} This behaviour was attributed to the superior electron accepting and transferring capabilities of the GO derivatives, resulting in reduced charge recombination reactions and prolonged lifetimes for the photogenerated charge carriers in the semiconductors.^{32,35,61} GO derivatives have also been used as efficient

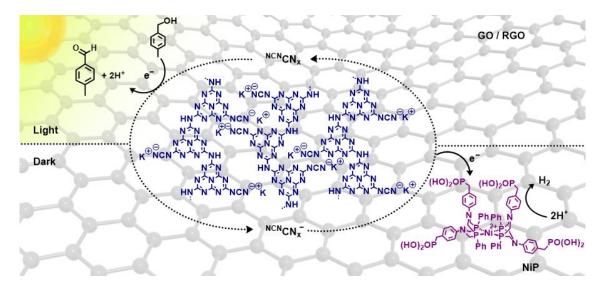


Figure 5.1. Schematic representation of the photocatalytic ^{NCN}CN_x–GO–NiP system. Irradiation of ^{NCN}CN_x results in the formation of photoexcited state, which is quenched by 4-MBA and results in the formation of trapped electrons in ^{NCN}CN_x. These 'ultralong lived' electrons can then be transferred to **NiP** for proton reduction in the dark phase. The electronic communication between ^{NCN}CN_x and **NiP** is enhanced by GO/RGO.

hole-extraction layers,^{62–65} as well as an electron-extraction layers in heterojunction solar cells, due to their tuneable work function as well as thin film formation ability.^{66–68}

In this chapter, we introduce GO and RGO to interface with ^{NCN}CN_x and NiP to facilitate electron transfer and to enhance the photocatalytic activity.³¹ We shed light on the improved performance of the ^{NCN}CN_x–NiP photo-redox system in the presence of GO and RGO (Figure 5.1). The charge transfer between ^{NCN}CN_x, GO/RGO and NiP are investigated. The ^{NCN}CN_x–GO–NiP and ^{NCN}CN_x–RGO–NiP hybrid systems are studied using optical spectroscopy techniques, namely time-resolved photoluminescence (tr-PL), TAS and photoinduced absorption spectroscopy (PIAS), to understand the key kinetics and photophysical properties leading to improved photocatalytic performance.

5.2 Results and discussion

5.2.1 Preparation and characterisation of ^{NCN}CN_x hybrids

^{NCN}CN_x-GO/RGO hybrids were prepared by mixing ^{NCN}CN_x (5 mg) and GO/RGO in aqueous solution (0.2 mg mL⁻¹) for 16 h prior to experiments. ^{NCN}CN_x-GO_x/RGO_x of different compositions were prepared [x denotes the content of GO and RGO in weight percentages loading in reference to ^{NCN}CN_x; which ranges between 0.063 wt% (3.1 µg) and 50.00 wt% (2.5 mg)]. The samples were allowed to dry under air, prior to characterisation by FT-IR spectroscopy, and the data of the hybrid were compared to bare ^{NCN}CN_x and GO (Figure 5.2). The FT-IR spectrum of bare ^{NCN}CN_x showed the characteristic heptazine core IR vibration at 803 cm⁻¹ and bridging secondary amine –C–N bending vibrations at 1307 and 1211 cm⁻¹, supporting the polymeric nature of the material. The appearance of the (C≡N) stretch at 2181 cm⁻¹ confirmed the presence of cyanamide groups on the surface of the material. The spectra recorded in the presence of either GO or RGO showed negligible differences compared to the spectrum of bare ^{NCN}CN_x (Figure 5.2a).^{20,69}

The XRD pattern of the ^{NCN}CN_x–GO hybrid showed the characteristic bands observed for pure ^{NCN}CN_x, indicating that the crystalline structure of the material is preserved after the physical mixing with GO (Figure 5.2b).^{20,69} More specifically, the hybrid showed the characteristic ^{NCN}CN_x peak at 28.2° 2 θ , which corresponds to an interlayer spacing of 3.16 Å (002). In addition, the hybrid preserved the same (100) inplane periodicity with pure ^{NCN}CN_x, as indicated by two bands at 9.83° 2 θ (9.00 Å) and 8.04° 2 θ (11.00 Å). The characteristic GO band at 10.9° 2 θ (8.12 Å), due to (001) interlayer spacing, is less prominent in the XRD pattern of the hybrid due its low content.^{20,70}

The UV–vis absorption profile of the ^{NCN}CN_x–GO hybrid resembled the characteristic features of bare ^{NCN}CN_x, λ_{abs} < 450 nm, (Figure 5.2c). Photoluminescence (PL) studies were carried out to investigate changes in the charge separation efficiency of ^{NCN}CN_x in the presence GO and RGO (Figure 5.2d). In contrast to the literature reports,^{34,35} we observed that introducing GO/RGO does not quench the emissive states in ^{NCN}CN_x. This observation indicates that GO/RGO does not affect the rate of charge recombination under visible light irradiation, in timescales less than

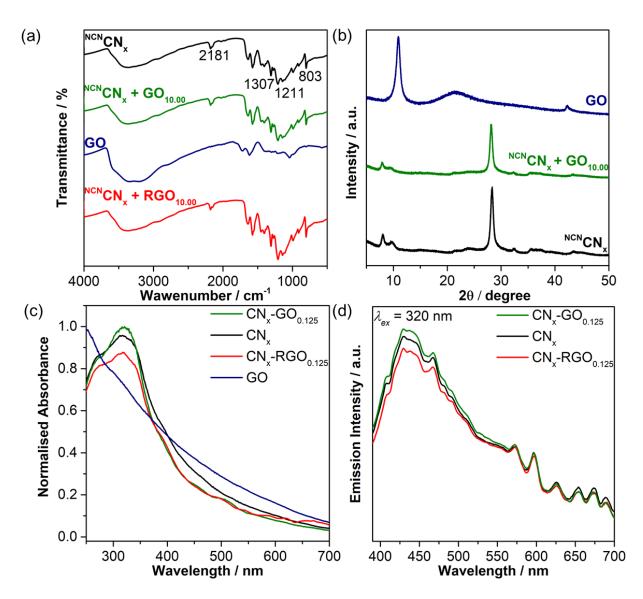


Figure 5.2. (a) ATR-FT-IR spectra, (b) XRD patterns of bare ^{NCN}CN_x and GO and that of ^{NCN}CN_x-GO and ^{NCN}CN_x-RGO hybrids at 10.0 wt% GO/RGO loading. Characterisations were also performed at 0.125 wt%, but this loading was too low to observe any significant differences. Therefore, only data with 10 wt% loading is presented. (c) UV–vis absorption profile of ^{NCN}CN_x (0.5 mg), GO, ^{NCN}CN_x-GO and ^{NCN}CN_x-RGO hybrid in the presence of 0.125 wt% loading in an aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) recorded at 25 °C. (b) Photoluminescence measurements of ^{NCN}CN_x (0.5 mg), ^{NCN}CN_x-GO and ^{NCN}CN_x-RGO hybrids at 0.125 wt% loading, recorded in an aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) with λ_{ex} = 320 nm.

0.1 s (see below for more details).^{43,70} Transmission electron microscopy (TEM) images of ^{NCN}CN_x–GO hybrids at different GO loadings showed that GO sheets act as a scaffold to host the approximately 50 nm sized ^{NCN}CN_x particles (Figure C.1).

5.2.2 Photocatalytic assembly and performance

NiP was synthesised and characterised as previously described.^{71 H₂NCN_x and ^{NCN}CN_x were prepared by a slight modification to a published procedure, in which ^{H₂NCN_x polymerisation from melamine was carried out at 550 °C for 4 h under air.^{19–21 NCN}CN_x (5 mg) was added to an aqueous suspension of GO/RGO (0.2 mg mL⁻¹) in a photoreactor and stirred for 16 h prior to the experiments. This was followed by the addition of an aqueous solution of **NiP** and EDTA or KP_i with 4-MBA (30 µmol). The final suspension contained 3 mL of EDTA (0.1 M, pH 4.5) or KP_i (0.1 M, pH 4.5). The photoreactors were sealed, purged with N₂ (containing 2% CH₄ as internal gas GC standard) and irradiated at 25 °C using a solar light simulator equipped with an AM 1.5G filter, at 1 sun intensity (100 mW cm⁻²). The headspace H₂ gas was quantified periodically by GC, while oxidation products of 4-MBA were characterised in solution by ¹H NMR spectroscopy.}}

The parameters of the system (solvent, amount of GO, size of GO, amount of $^{NCN}CN_x$) were systematically varied and optimised for H₂ production per catalyst, expressed as **NiP** turnover frequency (TOF_{NiP}, mol H₂ (mol NiP)⁻¹ h⁻¹) and turnover number (TON_{NiP}, mol H₂ (mol NiP)⁻¹) determined after 1 h and 4 h of irradiation respectively, as well as the conversion yield of alcohol after 4 h (Tables C.1–C.6).

The initial experiments were performed using EDTA (0.1 M) as a sacrificial electron donor (Figure 5.3a). Simulated solar light irradiation resulted in linear H₂ production during the first 4 h and a significant enhancement in photocatalytic activity was detected particularly in the presence of low GO loadings, < 0.50 wt% (25 µg), (Figure C.2a). In the absence of GO, a TOF_{NiP} of 38 ± 1 h⁻¹ was achieved, whereas the presence of GO_{0.125} resulted in TOF_{NiP} of 116 ± 3 h⁻¹. After 4 h of irradiation, three times higher H₂ production activity (17 ± 1 µmol, and TON_{NiP}, 348 ± 11) was recorded with GO_{0.125} compared to that of bare ^{NCN}CN_x. ^{NCN}CN_x-RGO_{0.125} displayed a comparable catalytic activity (TOF_{NiP} of 102 ± 1 h⁻¹ and TON_{NiP} of 322 ± 6), potentially indicating *in situ* photoreduction of GO.⁴⁰

It was previously reported that GO can itself act as a p- or n-type semiconductor, depending on the degree of its surface oxidation,⁷² as well as a photocatalyst for H₂ production.^{73,74} Control experiments in the absence of ^{NCN}CN_x with GO/RGO–**NiP** only under simulated solar light and blue filtered ($\lambda > 495$ nm) irradiation did not generate H₂, ruling out these possibilities (Table C.1). Increasing GO loadings above 0.50 wt% (25 µg) caused a substantial decrease in the activity (Figure C.2a). This observation may be due to increased light scattering by GO, reducing the amount of light that can be absorbed by ^{NCN}CN_x.⁴³

The enhanced photocatalytic performance of ^{NCN}CN_x in the presence of GO/RGO encouraged us to replace excess EDTA by a closed redox system with stoichiometric and selective alcohol oxidation coupled to proton reduction (Figure 5.3b and C.2b). In the presence of 4-MBA (30 µmol) with ^{NCN}CN_x and GO_{0.125}, a specific activity of 1,159 ± 29 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ towards H₂ and aldehyde production, TOF_{NiP} of 116 ± 3 h⁻¹ and TON_{NiP} of 367 ± 20 were achieved, whereas bare ^{NCN}CN_x showed a lower specific activity of 676 ± 27 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹, TOF_{NiP} of 68 ± 3 h⁻¹ and TON_{NiP} of 237 ± 20. Consistent with results recorded in EDTA solution, replacing GO_{0.125} by RGO_{0.125} in the presence of 4-MBA yielded similar activity with respect to the photocatalyst at 1,216 ± 55 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ and to the catalyst with a TOF_{NiP} of 122 ± 5 h⁻¹.

The reaction rate for alcohol oxidation almost doubled in the presence of GO or RGO, reaching 17 µmol of selective 4-MBAd formation with a conversion yield of 57%. Bare ^{NCN}CN_x produced 10 µmol 4-MBAd under the same conditions, corresponding to a 32% conversion. After 4 h of irradiation in the presence of GO/RGO approximately 18 µmol of H₂ and aldehyde were formed, corresponding to a 50% enhancement in photocatalytic activity in comparison to bare ^{NCN}CN_x.

Control experiments with ^{NCN}CN_x-GO-NiP in the absence of ^{NCN}CN_x or NiP with 4-MBA in KP_i buffer did not generate H₂ (Figure 5.3b). Aldehyde (4-MBAd) was also produced in the latter experiment due to 'solar charging' of the ^{NCN}CN_x in the absence of catalyst (Table C.7 and discussion below).³¹

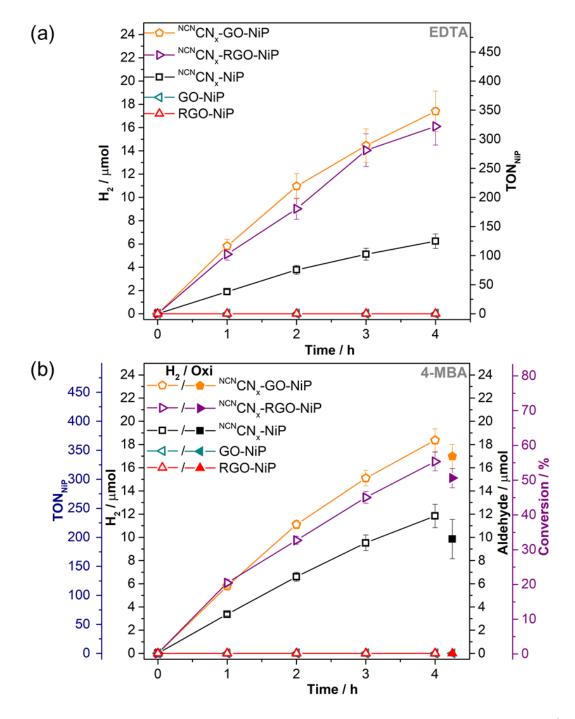
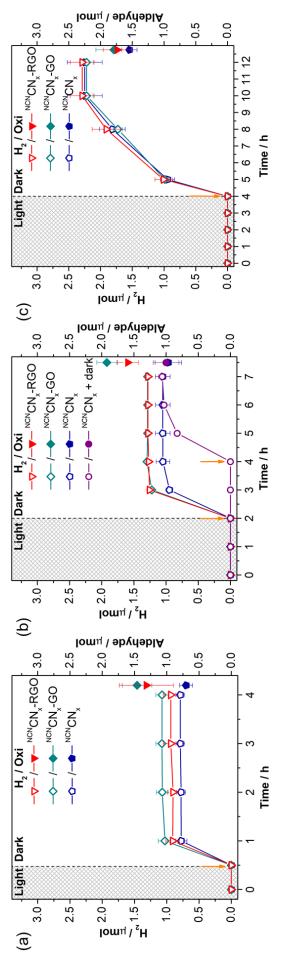


Figure 5.3. Photocatalytic H₂ production under simulated solar light irradiation (100 mW cm⁻², AM 1.5G, 25 °C) with 5 mg of ^{NCN}CN_x, ^{NCN}CN_x–GO and ^{NCN}CN_x–RGO (0.125 wt% loading of GO or RGO, 6.3 µg) in the presence of NiP (50 nmol) in (a) aqueous EDTA solution (0.1 M, pH 4.5, 3 mL), and (b) in aqueous KP_i solution (0.1 M, pH 4.5, 3 mL), and (b) in aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) under N₂. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde production, respectively. The amount of aldehyde was quantified after 4 h of irradiation. Control experiments in the absence of ^{NCN}CN_x and in the presence of RGO are also presented.

The catalytic turnover rates and numbers of **NiP** are in broad agreement with previously reported H₂ production systems using colloidal light absorbers under sacrificial conditions. Solar light driven H₂ generation with **NiP** was first reported in the presence of phosphonated ruthenium tris(2,2'-bipyridine) (**RuP**) dye sensitised TiO₂ in AA (pH 4.5), which showed a TOF_{NiP} of 72 ± 5 h⁻¹.⁷¹ A hybrid system containing H₂NCN_x and **NiP** in EDTA (pH 4.5) reported a TOF_{NiP} of 109 ± 11 h⁻¹.¹⁹ Sacrificial photo-H₂ generation was also demonstrated using an amorphous and N-doped carbon-dots as light harvester with **NiP** in EDTA (pH 6), reaching TOF_{NiP} of 41 h⁻¹ and TOF_{NiP} of 143 h⁻¹ respectively.^{75,76}

Tuning the amount of ^{NCN}CN_x at high GO loadings resulted in excellent specific activity (Figure C.3). The highest specific activity of 4,655 \pm 448 µmol H₂ (g ^{NCN}CN_x)⁻¹ h^{-1} was achieved with 0.5 mg of **NCNCN**_x in the presence of 50 wt% GO loading (0.25) mg) and 50 nmol NiP. The H₂ production rate is amongst the highest reported in the literature with respect to the mass of carbon nitride and the highest for selective organic oxidation coupled to fuel generation.77-81 Previously reported semiconductorgraphene heterojunction systems have been studied with a sacrificial electron donor and noble metal proton reduction catalysts.⁸² For CN_x systems, only an eosin Y sensitised CN_x-GO composite with a Pt catalyst in a sacrificial donor TEOA solution shows comparable activity to the system developed in this work (3,820 µmol H₂ (g $(CN_x)^{-1} h^{-1})$.⁸³ The high activity of our $(NCN_x - GO - NiP)$ hybrid is even comparable to a toxic CdS/graphene composite with Pt, which reaches up to 6,000 μ mol H₂ (g CdS)⁻¹ h^{-1} .^{84,85} **NCNCN_x-GO-NiP** therefore demonstrates benchmark photoactivity for a precious metal free, single photo-absorber system. In addition, the system does not rely on excess sacrificial electron donors and converts organic substrates cleanly into value-added products in high yield.

Different sizes of GO sheets, < $1-5 \mu m$, were also studied to improve the understanding of the interaction between ^{NCN}CN_x and GO, but only marginal variations in photocatalytic performance were observed (Table C.4).


The photocatalytic behaviour of amine terminated H_2NCN_x was also studied in EDTA and KP_i containing 4-MBA (Table C.5 and C.6). As for $NCNCN_x$, introduction of GO and RGO enhanced the photocatalytic activity by at least 50%, demonstrating the more general ability of GO and RGO to improve the performance for carbon nitride photocatalysts.

5.2.3 Light and dark cycles of ^{NCN}CN_x

We have previously established that light exposure of a yellow suspension of ^{NCN}CN_x in the presence of an organic substrate results in the formation of blue ^{NCN}CN_x (Chapter 4).³¹ This blue state is associated with ultra-long lived "trapped electrons" accumulated in ^{NCN}CN_x with lifetimes on the order of hours. Addition of a catalyst such as **NiP** can release these low potential electrons in the dark phase to produce H₂. This unique behaviour therefore allows decoupling of oxidative and reductive half-reactions temporarily, making it possible to generate a solar fuel in the dark.^{31,86} Thus, the electron storage capacity of ^{NCN}CN_x–GO (5 mg) hybrid suspensions in an aqueous KP_i solution with 4-MBA (30 µmol) without **NiP** was studied. The anaerobic suspensions were irradiated for 30 min, 2 and 4 h and then moved into the dark (Figure 5.4). The H₂ evolution performance was monitored after injecting **NiP** (50 nmol in KP_i solution) to the pre-irradiated, blue suspensions using an airtight syringe (Table C.7).

Independently of the length of charging interval, discharging rates of approximately 0.40 mmol e⁻ (g ^{NCN}CN_x)⁻¹ h⁻¹ were observed, based on 1 µmol of H₂ being produced from 2 µmol of radicals, per 5 mg of ^{NCN}CN_x after one hour of NiP injection in the dark. Short-term irradiation resulted in a rapid discharge upon injection of NiP, whereas 4 h light-exposure required a longer time to consume the larger number of trapped electrons. The total amount of trapped electrons and the corresponding dark H₂ evolution saturated after 4 h irradiation, while irradiating the samples for 12 h did not increase the number of accumulated charges.

The amount of H₂ detected provides an indirect measure on the total number of heptazine based radicals generated during irradiation of the material (Table C.8).⁸⁶ After 30 min of irradiation, $0.8 \pm 0.1 \mu$ mol of H₂ was generated with bare ^{NCN}CN_x, whereas ^{NCN}CN_x–GO or ^{NCN}CN_x–RGO hybrids produced 1.1 ± 0.1 and $0.9 \pm 0.1 \mu$ mol, respectively (Figure 5.4a). Assuming that the trapped electrons are quantitatively converted into H₂, we can estimate that 2.1 ± 0.2 and $1.9 \pm 0.2 \mu$ mol of radicals are accumulated in the ^{NCN}CN_x–GO and ^{NCN}CN_x–RGO hybrids, respectively (1.6 ± 0.1 µmol for bare ^{NCN}CN_x). This corresponds to approximately a 1:10 ratio of radical to heptazine units in ^{NCN}CN_x.

GO or RGO, 6.3 µg) in aqueous KPi solution (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) without NiP under N2. The samples were irradiated for (a) 30 min, (b) 2 h and (c) 4 h under 1 sun simulated solar light irradiation (100 mW cm⁻², AM 1.5G) at 25 °C. The suspensions were then moved into the dark and an anaerobic NiP solution (50 nmol in KPⁱ solution) was injected. The pair of hollow and filled symbols of the same shape and colour corresponds to H2 and 4-MBAd production, respectively. The amount of aldehyde formed is detected after 4 h, 7 h and 12 h in (a), (b) and (c), respectively. The orange arrows indicate the point of NiP injection; a Figure 5.4. Photocatalytic suspensions were prepared with 5 mg of ^{NCN}CN_x, ^{NCN}CN_x-GO and ^{NCN}CN_x-RGO (0.125 wt% loading of control experiment with the vial kept in dark for 2 h before injection of **NiP** is shown in (b). After 4 h of irradiation a saturation concentration of trapped electrons was reached and approximately 2.25 μ mol H₂ was detected, which corresponds to 4.50 ± 0.37 μ mol of radicals (Figure 5.4c) or roughly a 1:5 ratio of radicals to heptazine units.

5.2.4 Time resolved spectroscopy

Previously reported TAS measurements indicated that 4-MBA quenches the photogenerated holes on ^{NCN}CN_x on timescale faster than 3 μ s, while the extraction of the photoexcited electrons by **NiP** takes longer than 2 s (Chapter 4).³¹ In agreement with the mechanistic studies, the photo-system was determined to be limited by hole transfer to 4-MBA and the accumulation of the low potential electrons in the ^{NCN}CN_x on the short timescale (< 3 μ s), whereas on the longer timescale (> 1 s) it is limited by the rate of electron extraction from 'electron-saturated' ^{NCN}CN_x (Figure 5.1). Acceleration of the rate of electron extraction from ^{NCN}CN_x and reduce charge recombination losses. In turn, this will allow an overall higher conversion of 4-MBA and higher yield of electron transfer to **NiP**. We investigate here whether this is the case when the graphene based conductive scaffolds GO and RGO are introduced in the photocatalytic system.⁸⁷

We studied the improved photocatalytic activity of ^{NCN}CN_x in the presence of GO and RGO first using tr-PL, namely the time correlated single photon counting (TCSPC) to record the fast PL decay process. For the TCSPC experiments, samples were excited at λ_{ex} = 404 nm and decay of the emissive states were monitored at λ_{em} = 490 nm under Ar atmosphere. Both bare ^{NCN}CN_x and ^{NCN}CN_x–GO/RGO hybrids showed similar decay profiles in the absence and presence of 4-MBA (Figure 5.5 and C.4). These results indicate that the interface between ^{NCN}CN_x and GO/RGO does not improve the charge separation of the monitored emissive states on the nanosecond timescale. This is a surprising observation in comparison to previously reported semiconductor-graphene hybrid/composite systems, where quenching of PL is a characteristic behaviour, due to faster charge separation of the emissive exciton is the emissive excitonic states.^{34,35}

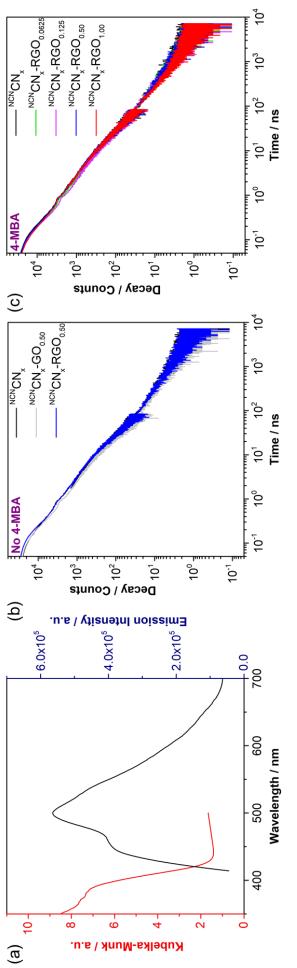


Figure 5.5. (a) Absorption spectra (red) and emission spectra (black) of ^{NCN}CN_x at the concentration of 1.67 mg mL⁻¹ dispersed in KP₁ solution (0.1 M, pH 4.5) with λ_{ex} = 404 nm, under Ar atmosphere. (b) tr-PL of ^{NCN}CN_x at the concentration of 1.67 mg mL⁻¹ dispersed in KPi solution (0.1 M, pH 4.5) with GO and RGO loadings in the absence and (c) presence of 4-MBA (0.01 M), under Ar atmosphere, with $\lambda_{ex} = 404$ nm and $\lambda_{em} = 490$ nm at 25 °C.

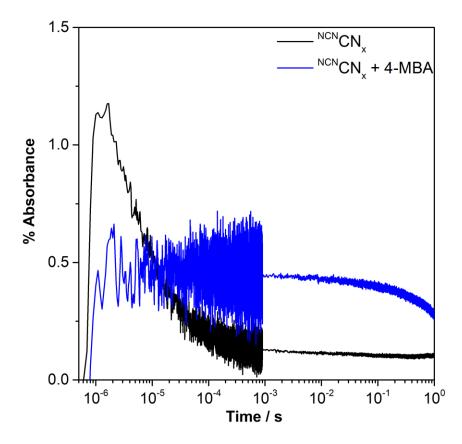


Figure 5.6. Typical μ s-TAS decay kinetics of ^{NCN}CN_x at the concentration of 1.67 mg mL⁻¹ dispersed in KP_i solution (0.1 M, pH 4.5) with and without 4-MBA (0.01 M) under Ar atmosphere monitored at λ = 610 nm under λ = 355 nm pulsed excitation at 25 °C.

TAS were subsequently performed to follow the charge transfer reactions in $^{NCN}CN_x$ and GO/RGO hybrids on microsecond–second timescales. In contrast to tr-PL, TAS measurements monitor both emissive and non-emissive states generated in the material after photoexcitation. Photoexcitation ($\lambda_{ex} = 355$ nm) of $^{NCN}CN_x$ produced a broad photoinduced absorption signal in the 470–1000 nm range (Figure C.5a). Similar to behaviour observed in metal oxides, the decay of the signal in $^{NCN}CN_x$ follows a power law and is attributed to bimolecular electron-hole recombination (Figure C.5b). The exponent of the power law is smaller than unity (~0.43), suggesting that a trapping/detrapping process plays a significant role in excited state dynamics of $^{NCN}CN_x$, consistent with relatively slow time scale for the recombination process.^{88,89}

Typical μ s-TAS decays for ^{NCN}CN_x suspension with and without 4-MBA under Ar were also recorded (Figure 5.6) at λ_{ex} = 355 nm pulsed laser excitation with monitoring at 610 nm. In the absence of 4-MBA a decreasing decay is observed in the absorption profile until it remains nearly constant with a low amplitude at 1 ms after the light impulse. In the presence of 4-MBA a constant absorbance is reached from 1 μ s with no decay over time (note that data > 100 ms is affected by ^{NCN}CN_x settling, see below). In line with previous observations in Chapter 4, this persistent signal is assigned to long-lived trapped electrons in ^{NCN}CN_x.^{31,86}

To gain knowledge on how the interface between ^{NCN}CN_x and GO or RGO are affecting the photophysics of NCNCN_x on the microsecond-second timescale, TAS decays were recorded both in the absence and presence of 4-MBA with bare ^{NCN}CN_x and hybrid systems containing various GO/RGO loadings (Figure 5.7). The results show that charge recombination took place faster than 1 ms in the absence of 4-MBA, with similar decay profiles with or without GO/RGO (Figure 5.7a). In the presence of 4-MBA (Figure 5.7b), a constant absorbance is reached within the time resolution of the setup and indicated that the photogenerated holes are guenched faster than 1 µs. In all the cases, the transient absorption traces recorded for bare ^{NCN}CN_x and GO or RGO hybrid systems showed no significant differences. In addition to the comparable signal amplitudes, we also note that the decay kinetics are unaffected by the presence of GO or RGO, inconsistent with charge separation across the CN_x/GO interface. The results support our interpretation of the PL and tr-PL data, ruling out the possibility of GO and RGO influencing the charge carrier dynamics of $^{NCN}CN_x$ by enhancing the separation of photogenerated charges on shorter than a second timescale.^{43,90,91} In line with this observation, TAS experiments conducted for ${}^{H_2N}CN_x$ also showed no difference between bare $H_2^{N}CN_x$ and GO/RGO hybrids (Figure C.6). The slightly lower signal amplitude for bare $H_2^{N}CN_x$ in the absence of 4-MBA or NiP (Figure C.6a) is attributed to experimental fluctuations and is in line with the differences up to 20% observed in repeated measurements. Importantly, no changes in the decay kinetics were observed.

5.2.5 Decay kinetics of charged ^{NCN}CN_x

We next sought to investigate the electron transfer taking place from ^{NCN}CN_x to NiP, which is a vital step for H₂ production. This electron transfer has been shown to take place on a timescale longer than few seconds (Chapter 4).³¹ During the measurements, ^{NCN}CN_x particles were settling in the cuvette, eliminating the possibility to follow any process longer than 0.1 s and preventing an accurate measure of the electron transfer process. To overcome this settling issue of ^{NCN}CN_x, the powder was

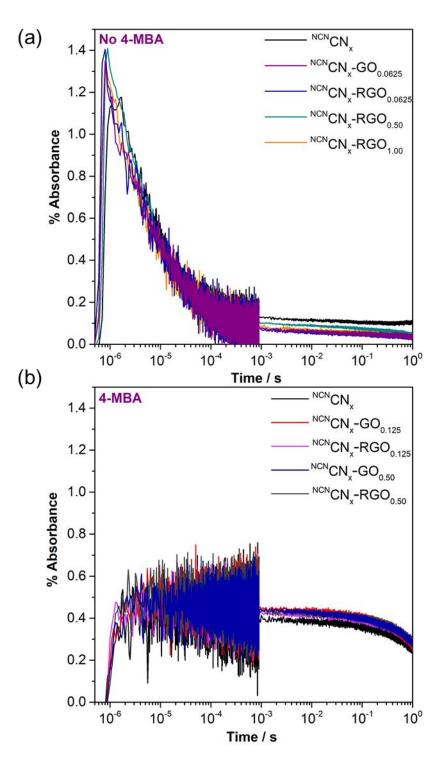


Figure 5.7. μ s-TAS decay kinetics of (a) ^{NCN}CN_x at the concentration of 1.67 mg mL⁻¹ dispersed in KP_i solution (0.1 M, pH 4.5) with various GO and RGO loadings in the absence and (b) presence of 4-MBA (0.01 M), monitoring at λ = 610 nm under λ = 355 nm pulsed excitation.

suspended in a non-intrusive matrix of a sodium deoxycholate (NaDC) hydrogel.⁹² This matrix prevented the fast settling of ^{NCN}CN_x, and the µs-TAS decay kinetics of aqueous ^{NCN}CN_x or ^{H₂N}CN_x suspensions and hydrogels were compared. The initial signal decay on the µs timescale was unchanged by the NaDC matrix (Figures C.7) indicating that the CN_x photophysics were not disrupted. The hydrogel matrix did successfully eliminate the artefacts caused by settling on timescales > 100 ms (Figure C.7), particularly evident in the case of ^{H₂N}CN_x.

PIAS of hydrogel samples were then used to record the long-lived excited states and to monitor the electron transfer kinetics from ^{NCN}CN_x on the second to minute timescale. The samples were irradiated with a UV LED (365 nm, 0.5 mW cm⁻²) pulse for 2 s, as opposed to the nanosecond laser pulse used in TAS experiments. The change in absorbance was monitored at λ = 610 nm during the LED excitation and 58 s following excitation. Similarly as for the TAS experiments, the signal detected is due to absorption from the photogenerated electrons, and the amplitude depends on the quantum yield of photogenerated electron, the recombination lifetime and the intensity of the excitation in steady-state conditions.⁹³

PIAS traces were recorded for bare ^{NCN}CN_x and hybrid systems with GO or RGO in the presence of different **NiP** concentrations (Figure C.8). Similar traces were recorded for the different samples in the absence of **NiP**, pointing to insignificant changes in the ^{NCN}CN_x photophysics when junctions with GO or RGO are introduced. In all cases, as the **NiP** concentration was increased, the absorbance signal was quenched faster, as expected, increasing the concentration of electron accepting molecules increases the rate of electron extraction. Interestingly, much faster absorption decays were observed by increasing the **NiP** concentration both in the presence of GO and RGO, as compared to bare ^{NCN}CN_x. This trend was observed clearly when the normalised traces of ^{NCN}CN_x and GO/RGO hybrids at a single **NiP** concentration are plotted together (Figure 5.8a and Figure C.9). The data set of Figure 5.8a is also shown before normalisation for comparison (Figure C.10). The PIAS amplitude of all three types of samples after switching off the LED pulse for 10 s is also given (Figure 5.8b), again showing the stronger effect of the addition of **NiP** for the GO and RGO hybrids.

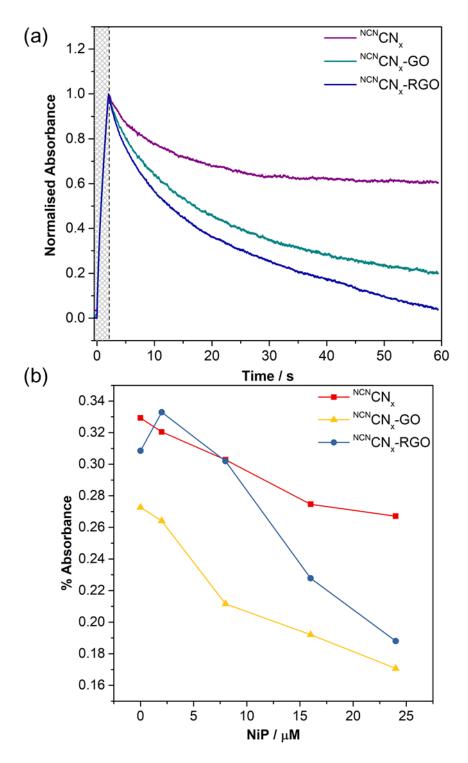


Figure 5.8. Comparison of PIAS of ^{NCN}CN_x, ^{NCN}CN_x–GO/RGO samples (0.125 wt% loading of GO or RGO, 6.3 µg) in NaDC (13.8 mg mL⁻¹) hydrogel monitored at $\lambda = 610$ nm with LED excitation at $\lambda = 365$ nm (0.5 mW cm⁻²), in KP_i solution (0.1 M, pH 4.5) with 4-MBA (0.01 M) under Ar (a) with **NiP** (24 µM) over 60 s and (b) at different **NiP** concentrations (10 seconds after switching off the light).

All of the PIAS data clearly showed that abstraction of the photoexcited electrons from ^{NCN}CN_x is faster in the presence of GO and RGO. This qualitatively demonstrated that the interface between ^{NCN}CN_x and GO or RGO enhanced the rate of electron extraction and delivery from ^{NCN}CN_x to NiP on the second timescale. A quantitative description of the kinetics is prevented by the settling nature of the heterogeneous system, which is unfortunately not completely removed when using 13.8 mg mL⁻¹ NaDC to form the hydrogel matrix. We also note that addition of NiP and release of Ni²⁺ ions may impact the viscoelastic properties of the hydrogels,^{94,95} although this does not affect the comparison of the decay kinetics of different samples at the same NiP concentration. Stiffer matrices could be prepared at higher NaDC concentrations to completely remove particle settling over the minute timescale, yet complete removal of oxygen from the system was then the issue, which had a strong impact on the observed kinetics due to electron extraction. This led to intractable variations between experiments and was not pursued further.

PIAS for bare ^{H₂N}CN_x and hybrids with GO/RGO were also conducted (Figure C.11) and they all showed similar PIAS traces when considering both the amplitude and kinetics, even in the presence of **NiP**. While we expect to monitor only the unreactive trapped charges in the case of amino-terminated, ^{H₂N}CN_x,⁹⁶ the lack of changes in the presence of GO and RGO supports our conclusion that the junction formed generally does not significantly impact the photophysics of CN_x.

Centrifugation experiments were subsequently conducted to better understand the interaction between GO and the **NiP** catalyst (Figure 5.9). First, the UV–visible absorption profile of **NiP** (50 nmol in 3 mL) was recorded alone in aqueous solution. Then, the **NiP** solution was stirred with different amounts of GO, specifically 0.05 mg and 0.5 mg. The resulting suspensions were then centrifuged (10,000 rpm, 10 min) and the UV–vis spectrum of **NiP** remaining in the supernatant was recorded. A significant reduction in the **NiP** absorption peaks was observed as the GO loading was increased, which can be attributed to the H-bonding interactions between the –OH groups of GO or RGO and the phosphonate groups of the **NiP** catalyst.⁹⁷ This indicates that GO acts as a scaffold to bring **NiP** in close proximity to ^{NCN}CN_x and the greater affinity for the ^{NCN}CN_x–GO interface enhances the rate of electron transfer from ^{NCN}CN_x to **NiP**. It was not possible to fully sediment ^{NCN}CN_x and RGO particles in analogous experiments, preventing us to clearly observe the absorption profile of **NiP**.

101

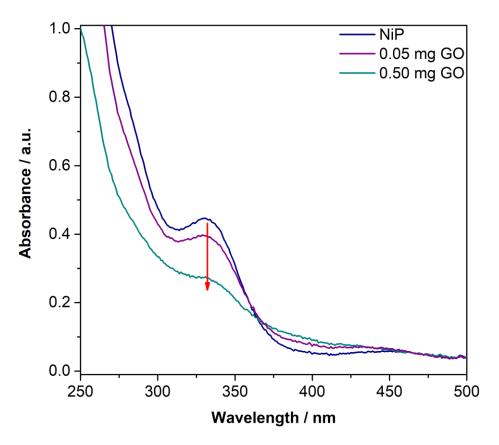


Figure 5.9. UV–visible absorption spectra of **NiP** (40 nmol) in KP_i solution (0.1 M, 3 mL), before and after the addition different amounts of GO (0.05–0.5 mg). GO was separated by centrifugation before recording the electronic absorption spectra of **NiP** in the supernatant. Similar experiments were also attempted with bare $^{NCN}CN_x$ and RGO, but these were hampered by their strong scattering.

Together, these observations highlight once more the importance of brining time resolved spectroscopic techniques and photocatalytic experiments together to develop a better understanding on multi-component hybrid systems.

5.3 Conclusions

The enhanced activity of the closed photo-redox system ^{NCN}CN_x–NiP is investigated upon integration with GO and RGO. Introducing GO/RGO enabled 3-times and 1.5times enhancement in the presence of EDTA and 4-MBA, respectively. Systematic and precise tuning of the GO loading was found to be essential to reach the best photocatalytic performance due to the highly scattering nature of GO. A maximum specific activity of 4,655 ± 448 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ and a TOF_{NiP} of 116 ± 3 h⁻¹ was reached through system optimisation under 1 sun irradiation. To the best of our knowledge, this is the highest activity reported in CN_x -GO/RGO heterojunction systems and top performance of "closed" CN_x photocatalytic system for selective and stoichiometric alcohol oxidation and proton reduction. The catalytic activity of **NiP** is in line with previously reported colloidal systems. After 4 h of irradiation in the presence of GO, 18 ± 1 µmol of H₂ and 17 ± 1 µmol of 4-MBAd were obtained, corresponding to 57 ± 3% of selective 4-MBA conversion.

The properties of the closed cycle were probed by optical spectroscopic techniques (PL, tr-PL, TAS, PIAS) to gain a better understanding on the charge transfer dynamics between ^{NCN}CN_x and GO or RGO and NiP. In contrast to previous reports, our results revealed that introducing GO or RGO does not have a significant impact on charge separation or recombination on a timescale shorten than 0.1 s. The charge transfer reactions of the ultra-long lived electrons in ^{NCN}CN_x were probed by PIAS on timescales longer than 0.1 s. In the presence of GO and RGO, increasing NiP concentration resulted in faster quenching of the signal associated with the trapped electron in ^{NCN}CN_x when compared with bare ^{NCN}CN_x. This effect indicates that GO and RGO improve the rate of electron extraction from ^{NCN}CN_x. We show that NiP can interact with GO, which acts as a conductive binder and improves the affinity between NiP and ^{NCN}CN_x. Therefore, the enhancement in activity upon addition of GO/RGO to ^{NCN}CN_x and NiP is not a simple electronic effect but GO and RGO act as carbon scaffolds to efficiently bring the components in close proximity, without adversely affecting the charge transport dynamics.

5.4 References

- Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Chem. Rev. 2016, 116, 7159–7329.
- Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2007, 111, 1035–1041.
- Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. J. Am. Chem. Soc. 2011, 133, 5660– 5663.
- (4) Chen, X.; Burda, C. J. Am. Chem. Soc. **2008**, *130*, 5018–5019.
- (5) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891–2959.
- (6) Warnan, J.; Willkomm, J.; Ng, J. N.; Godin, R.; Prantl, S.; Durrant, J. R.; Reisner,

E. Chem. Sci. 2017, 8, 3070–3079.

- (7) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253–278.
- Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. *Nat. Energy* 2017, *2*, 17021.
- Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Science 2012, 338, 1321–1324.
- (10) Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.;
 Reisner, E. *Chem. Sci.* **2018**, *9*, 2501–2509.
- (11) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150–2176.
- (12) Vilela, F.; Zhang, K.; Antonietti, M. *Energy Environ. Sci.* **2012**, *5*, 7819–7832.
- (13) Gong, Y.; Li, M.; Wang, Y. ChemSusChem 2015, 8, 931–946.
- (14) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.;
 Domen, K.; Antonietti, M. *Nat. Mater.* **2009**, *8*, 76–80.
- (15) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X.
 J. Am. Chem. Soc. 2010, *132*, 16299–16301.
- (16) Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Phys. Chem. Chem. Phys. 2012, 14, 1455–1462.
- Qiu, P.; Chen, H.; Xu, C.; Zhou, N.; Jiang, F.; Wang, X.; Fu, Y. J. Mater. Chem.
 A 2015, 3, 24237–24244.
- (18) Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. J. Phys. Chem. C 2009, 113, 4940–4947.
- (19) Caputo, C. A.; Gross, M. A.; Lau, V. W.-h.; Cavazza, C.; Lotsch, B. V.; Reisner,
 E. Angew. Chem. Int. Ed. 2014, 53, 11538–11542.
- (20) Lau, V. W.-h; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel,
 V.; Senker, J.; Blum, V.; Lotsch, B. V. *Nat. Commun.* 2016, 7, 12165.
- (21) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.;
 Zhong, J.; Kang, Z. Science 2015, 347, 970–974.
- (22) Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. J. Am. Chem. Soc. 2017, 139, 13234–13242.

- (23) Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. J. Am. Chem. Soc. 2010, 132, 6294–6295.
- (24) Wang, Y.; Li, H.; Yao, J.; Wang, X.; Antonietti, M. Chem. Sci. 2011, 2, 446–450.
- (25) Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. Chem. Commun. 2012, 48, 12017–12019.
- (26) Ding, Z.; Chen, X.; Antonietti, M.; Wang, X. ChemSusChem 2011, 4, 274–281.
- (27) Gao, L.-F.; Wen, T.; Xu, J.-Y.; Zhai, X.-P.; Zhao, M.; Hu, G.-W.; Chen, P.; Wang,
 Q.; Zhang, H.-L. ACS Appl. Mater. Interfaces 2016, 8, 617–624.
- (28) Li, Z.; Kong, C.; Lu, G. J. Phys. Chem. C 2016, 120, 56–63.
- (29) Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.;
 Ajayan, P. M. Adv. Mater. 2013, 25, 2452–2456.
- (30) Zhan, Y.; Liu, Z.; Liu, Q.; Huang, D.; Wei, Y.; Hu, Y.; Lian, X.; Hu, C. New J. Chem. 2017, 41, 3930–3938.
- (31) Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W.-h; Lotsch,
 B. V.; Durrant, J. R.; Reisner, E. *J. Am. Chem. Soc.* **2016**, *138*, 9183–9192.
- (32) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132–145.
- (33) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183–191.
- (34) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782–796.
- (35) Yang, M.-Q.; Xu, Y.-J. Phys. Chem. Chem. Phys. 2013, 15, 19102–19118.
- (36) Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S.
 V; Grigorieva, I. V; Firsov, A. A. *Science* 2004, *306*, 666–669.
- (37) Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. J. Am. Chem. Soc. 2010, 132, 17667–17669.
- (38) Luo, J.; Kim, J.; Huang, J. Acc. Chem. Res. 2013, 46, 2225–2234.
- (39) Sun, Y.; Wu, Q.; Shi, G. Energy Environ. Sci. 2011, 4, 1113–1132.
- (40) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607–2612.
- (41) Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.; Amal, R. J. Am. Chem. Soc. 2011,

133, 11054–11057.

- (42) Xiang, Q.; Yu, J.; Jaroniec, M. *Nanoscale* **2011**, *3*, 3670–3678.
- (43) Xiang, Q.; Yu, J.; Jaroniec, M. J. Phys. Chem. C 2011, 115, 7355–7363.
- (44) Min, S.; Lu, G. J. Phys. Chem. C 2011, 115, 13938–13945.
- (45) Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z. Adv. Funct. Mater. 2013, 23, 1743–1749.
- (46) Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A **2014**, *2*, 3407–3416.
- (47) Shown, I.; Hsu, H.-C.; Chang, Y.-C.; Lin, C.-H.; Roy, P. K.; Ganguly, A.; Wang, C.-H.; Chang, J.-K.; Wu, C.-I.; Chen, L.-C.; Chen, K.-H. *Nano Lett.* 2014, *14*, 6097–6103.
- (48) Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su,
 C.-Y. *J. Am. Chem. Soc.* 2017, *139*, 5660–5663.
- (49) Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2015, 137, 604–607.
- Pan, Z.; Hisatomi, T.; Wang, Q.; Chen, S.; Iwase, A.; Nakabayashi, M.; Shibata, N.; Takata, T.; Katayama, M.; Minegishi, T.; Kudo, A.; Domen, K. *Adv. Funct. Mater.* 2016, *26*, 7011–7019.
- (51) Mateo, D.; Esteve-Adell, I.; Albero, J.; Royo, J. F. S.; Primo, A.; Garcia, H. Nat. Commun. 2016, 7, 11819.
- (52) Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2016, 138, 10260–10264.
- (53) Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2011, 5, 7426–7435.
- (54) Zhang, N.; Yang, M.-Q.; Tang, Z.-R.; Xu, Y.-J. J. Catal. 2013, 303, 60–69.
- (55) Liu, S.; Chen, Z.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. J. Phys. Chem. C 2013, 117, 8251–8261.
- (56) Zhang, N.; Zhang, Y.; Pan, X.; Yang, M.-Q.; Xu, Y.-J. J. Phys. Chem. C 2012, 116, 18023–18031.
- (57) Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. ACS Nano 2010, 4, 380–386.
- (58) Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2010, 4, 7303–7314.

- (59) Xiang, Q.; Lang, D.; Shen, T.; Liu, F. Appl. Catal. B Environ. 2015, 162, 196–203.
- (60) Lou, J.; Liu, Y.; Wang, Z.; Zhao, D.; Song, C.; Wu, J.; Dasgupta, N.; Zhang, W.;
 Zhang, D.; Tao, P.; Shang, W.; Deng, T. ACS Appl. Mater. Interfaces 2016, 8, 14628–14636.
- (61) Xiang, Q.; Cheng, B.; Yu, J. Angew. Chem. Int. Ed. 2015, 54, 11350–11366.
- (62) Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Adv. Mater. 2008, 20, 3924–3930.
- (63) Li, S.-S.; Tu, K.-H.; Lin, C.-C.; Chen, C.-W.; Chhowalla, M. ACS Nano 2010, 4, 3169–3174.
- (64) Liu, J.; Durstock, M.; Dai, L. Energy Environ. Sci. 2014, 7, 1297–1306.
- (65) Lee, D.-Y.; Na, S.-I.; Kim, S.-S. *Nanoscale* **2016**, *8*, 1513–1522.
- (66) Liu, Q.; Liu, Z.; Zhang, X.; Yang, L.; Zhang, N.; Pan, G.; Yin, S.; Chen, Y.; Wei, J. Adv. Funct. Mater. 2009, 19, 894–904.
- (67) Yu, D.; Park, K.; Durstock, M.; Dai, L. J. Phys. Chem. Lett. 2011, 2, 1113–1118.
- (68) Wang, D. H.; Kim, J. K.; Seo, J. H.; Park, I.; Hong, B. H.; Park, J. H.; Heeger, A. J. Angew. Chem. Int. Ed. 2013, 52, 2874–2880.
- (69) Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, R. New J. Chem.
 2005, 29, 693–699.
- (70) Liao, G.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. J. Mater. Chem. 2012, 22, 2721–
 2726.
- (71) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- (72) Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H. Adv. Mater. 2014, 26, 3297–3303.
- (73) Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H. Adv. Funct. Mater.
 2010, 20, 2255–2262.
- (74) Yeh, T.-F.; Chan, F.-F.; Hsieh, C.-T.; Teng, H. J. Phys. Chem. C 2011, 115, 22587–22597.
- (75) Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. J. Am. Chem.

Soc. 2015, 137, 6018–6025.

- (76) Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.;
 Durrant, J. R.; Reisner, E. *Angew. Chem. Int. Ed.* 2017, *56*, 6459–6463.
- (77) Li, K.; Xie, X.; Zhang, W.-D. ChemCatChem 2016, 8, 2128–2135.
- (78) Wang, H.; Wang, B.; Bian, Y.; Dai, L. ACS Appl. Mater. Interfaces 2017, 9, 21730–21737.
- (79) Qin, J.; Huo, J.; Zhang, P.; Zeng, J.; Wang, T.; Zeng, H. Nanoscale 2016, 8, 2249–2259.
- (80) Song, L.; Li, T.; Zhang, S. J. Phys. Chem. C 2017, 121, 293–299.
- (81) Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53, 9240–9245.
- (82) Li, X.; Shen, R.; Ma, S.; Chen, X.; Xie, J. Appl. Surf. Sci. 2018, 430, 53–107.
- (83) Wang, P.; Guan, Z.; Li, Q.; Yang, J. J. Mater. Sci. 2018, 53, 774–786.
- (84) Zeng, P.; Zhang, Q.; Peng, T.; Zhang, X. Phys. Chem. Chem. Phys. 2011, 13, 21496–21502.
- (85) Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. R. J. Am. Chem.
 Soc. 2011, 133, 10878–10884.
- (86) Lau, V. W.-h; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M.-C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Angew. Chem. Int. Ed. 2017, 56, 510–514.
- (87) Kongkanand, A.; Kamat, P. V. ACS Nano 2007, 1, 13–21.
- (88) Nelson, J. Phys. Rev. B 2003, 67, 155209.
- (89) Barzykin, A. V; Tachiya, M. J. Phys. Chem. A 2002, 106, 4356–4363.
- (90) Lightcap, I. V.; Kamat, P. V. J. Am. Chem. Soc. 2012, 134, 7109–7116.
- (91) Rahman, M. Z.; Zhang, J.; Tang, Y.; Davey, K.; Qiao, S.-Z. *Mater. Chem. Front.* **2017**, *1*, 562–571.
- (92) Liang, W.; Guman-Sepulveda, J. R.; He, S.; Dogariu, A.; Fang, J. Y. J. Mater.
 Sci. Chem. Eng. 2015, 3, 6–15.
- (93) Boschloo, G.; Hagfeldt, A. Inorganica Chim. Acta 2008, 361, 729–734.

- (94) Chakrabarty, A.; Maitra, U.; Das, A. D. J. Mater. Chem. 2012, 22, 18268–18278.
- (95) Zhang, J.; Wang, H.; Li, X.; Song, S.; Song, A.; Hao, J. J. Phys. Chem. B 2016, 120, 6812–6818.
- (96) Godin, R.; Wang, Y.; Zwijnenburg, M. A.; Tang, J.; Durrant, J. R. J. Am. Chem. Soc. 2017, 139, 5216–5224.
- (97) Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.;
 Li, C. *J. Am. Chem. Soc.* **2018**, *140*, 3250–3256.

Chapter 6

Photoreforming of lignocellulose into H₂ using nano-engineered carbon nitride under benign conditions

The data presented in this chapter was published in a peer-reviewed article: J. Am. Chem. Soc., 2018, doi: 10.1021/jacs.8b07853. The author of this thesis carried all of the work presented unless specified otherwise. Dr. Demetra S. Achilleos and the author conceived the research. Ailun Huang shared the photocatalytic experiments with the author and recorded the BET measurements. Dr. Demetra S. Achilleos has helped with characterisation of samples. TEM and SEM images were recorded by Dr. Heather F. Greer.

6.1 Introduction

Direct utilisation of biomass has the potential to provide sustainable and scalable H₂ fuel production.¹ Lignocellulose is the most abundant form of biomass and, being an agricultural waste product, its use does not compete with food production. The complex and energy-rich structure of lignocellulose is composed of cellulose, hemicellulose and lignin,^{1,2} which have evolved to prevent degradation and are therefore kinetically challenging to utilise under ambient conditions.³ Gasification at high-temperature (> 750 °C) is the most common method for H₂ production from lignocellulose, but is energy-intensive and produces side products such as the fuel-

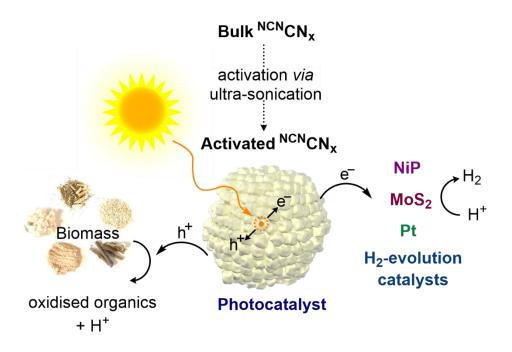


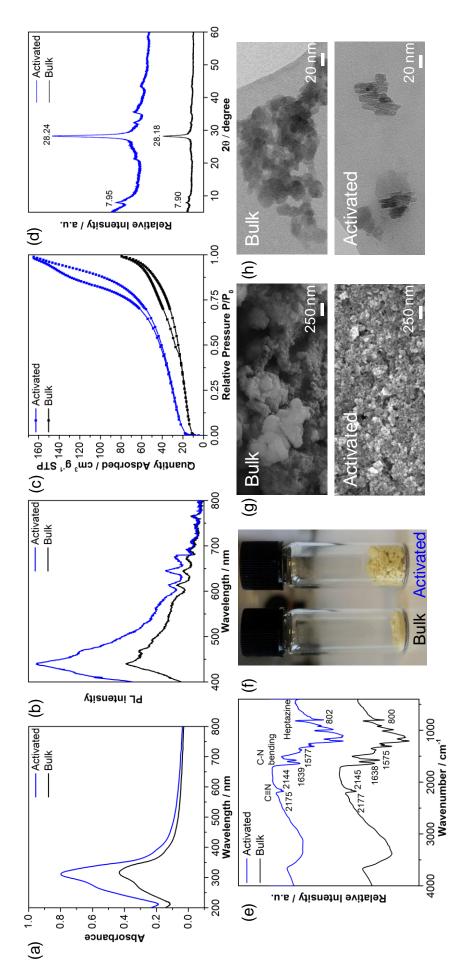
Figure 6.1. Schematic representation of H_2 generation through photoreforming of lignocellulose with ^{NCN}CN_x and H_2 production catalysts.

cell inhibitor carbon monoxide.⁴ Enzymatic hydrolysis is another process for biomass utilisation, but this multi-step conversion suffers from low overall yields.^{3,5} Thus, there is substantial interest in developing novel approaches for the valorisation of lignocellulose.^{6–11}

Photoreforming of unprocessed biomass to H₂ has emerged as a more affordable and clean alternative to traditional techniques.^{12,13} Photoreforming requires a photocatalyst that generates holes to oxidise the lignocellulose and electrons to drive proton reduction upon photoexcitation.¹² This process is traditionally carried out using UV–light harvesting TiO₂ modified with noble-metal catalysts such as RuO₂ and Pt.^{14–} ¹⁶ Visible-light absorbing CdS quantum dots were recently reported for biomass photoreforming, but the system required toxic Cd and strongly alkaline conditions (10 M KOH).¹⁷ There is therefore a great need to identify a photoreforming process that utilises an inexpensive, non-toxic and visible-light absorbing photocatalyst, capable of operating under benign aqueous conditions.

Polymeric CN_x is a metal-free and inexpensive carbonaceous photocatalyst.^{18–} ²⁰ The well-positioned band edges of CN_x give enough driving force for many photocatalytic reactions including proton reduction,^{20–22} CO₂ reduction,^{23,24} organic transformations,^{25,26} redox catalysis^{25,27} and water splitting.^{28,29} Herein, we report a

111


straightforward approach to enhance the photocatalytic activity of bulk cyanamidefunctionalised carbon nitride ($^{NCN}CN_x$) by ultra-sonication. The activated $^{NCN}CN_x$ is subsequently used to photoreform lignocellulosic biomass and generate H₂, in the presence of a molecular Ni-bis(diphosphine) catalyst, **NiP**, and heterogeneous Pt or MoS₂ in aqueous media over a range of pH values (2–15), (Figure 6.1).

6.2 Results and discussion

6.2.1 Characterisation of ^{NCN}CN_x

Bulk ^{NCN}CN_x was prepared and characterised as previously reported (see Chapter 5).^{22,30} Activated ^{NCN}CN_x was obtained by ultra-sonicating an aqueous suspension of bulk ^{NCN}CN_x (5 mg mL⁻¹) in KP_i solution using a sonication probe (Fisher, Sonic Dismembrator) for 10 min at 40 °C (Figure 6.2). UV–vis spectroscopy of the bulk and ultra-sonicated ^{NCN}CN_x revealed strong UV absorption, which tails into the visible region ($\lambda_{abs} < 450$ nm). A significant increase in absorbance was observed upon ultra-sonication of ^{NCN}CN_x, which may be due to disruption of aggregated ^{NCN}CN_x and subsequently reduced light scattering and enhanced light absorption.³¹ Photoluminescence studies ($\lambda_{ex} = 360$ nm) also revealed an increased emission intensity for the ultra-sonicated ^{NCN}CN_x, possibly suggesting a higher density of photoexcited states.

Brunauer-Emmett-Teller (BET) measurements indicated a 60% increase in the surface area after ultra-sonication (97.4 \pm 0.6 m² g⁻¹),³² while a smaller aggregate size following ultra-sonication was confirmed by TEM and scanning electron microscopy (SEM). The digital photography of ^{NCN}CN_x samples before and after ultra-sonication also showed significant increase in the volume of the dried sample after ultra-sonication, supporting increased surface area and possibly easier access to catalytically active sites of activated ^{NCN}CN_x. Nearly identical XRD patterns and FT-IR spectra were observed, indicating that the characteristic functional group features of bulk ^{NCN}CN_x, cyanamide surface functionality and the polymeric nature of the material, were preserved after ultra-sonication (Figure 6.2).^{22,33}

Photoluminescence spectra with λ_{ex} = 360 nm. (c) BET surface area measurement, activated (97.4 ± 0.6 m² g⁻¹) and bulk (59.5 ± 0.5 m^2 g⁻¹). (d) XRD with inter-layer (28° 2 θ) and intra-layer (7.9° 2 θ) periodicities. (e) ATR-FT-IR with -C=N (2175 and 2144 cm⁻¹) and heptazine core (802 cm⁻¹) vibrations. (f) Photograph comparing the volume of 20 mg bulk and activated ^{NCN}CN_x. (g) SEM and (h) Figure 6.2. Characterisation of bulk and activated ^{NCN}CN_x. (a) UV–vis recorded in KP_i buffer at 8.3 µg mL⁻¹ concentration. (b) TEM images.

6.2.2 Photocatalytic assembly and performance

A photocatalytic screening assay was carried out by dispersing ^{NCN}CN_x in KP_i (pH 4.5) solution containing a DuBois-type Ni-proton reduction catalyst, NiP,³⁴ with 4-MBA (30 µmol).²⁵ 4-MBA was selected as the electron donor as it may be considered as an easily oxidised model cellulose substrate. The samples were irradiated under a N₂ atmosphere with simulated solar light (100 mW cm⁻², AM 1.5G, 25 °C). The reaction conditions were optimised systematically with respect to ^{NCN}CN_x-based H₂ production activity (specific activity; µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹), NiP-based activity represented by Ni-based turnover frequency (TOF_{NiP}; mol H₂ (mol NiP)⁻¹ h⁻¹) and turnover number (TON_{NiP}; mol H₂ (mol NiP)⁻¹), and overall proton reduction and alcohol oxidation rates (Tables D.1-D.7).

Initially the conditions for ultra-sonication were optimised for the highest H₂ production rate by systematically varying the parameters including time, temperature, solvent and the concentration of ^{NCN}CN_x (Figure 6.3). Photocatalytic activity increased approximately by 5-times after 10 mins of ultra-sonication in KP_i (Figure 6.3a). During 10 mins of sonication, temperature of the solvent went up to 40 °C. Control experiments showed that highest H₂ production rate was reached at 40 °C, while standard sonication bath found to be inefficient in enhancing the activity (Figure 6.3b).

A range of solvents have been reported to ultra-sonicate carbon nitride,^{35,36} while the photocatalytic performance of ^{NCN}CN_x after sonicating in different solvents including KP_i, isopropanol (ⁱPrOH), methanol (MeOH) and water, showed negligible difference (Figure 6.3c). Photocatalytic experiments carried out by dispersing different concentration of ^{NCN}CN_x in KP_i showed almost identical H₂ production rates (Figure 6.3d). Therefore, the optimised conditions were to ultra-sonicate bulk ^{NCN}CN_x (5 mg mL⁻¹) for 10 min in KP_i (0.1 M, pH 4.5) at 40 °C, to activate prior to experiments.

The results of photoreforming 4-MBA using 0.5 mg bulk and activated ^{NCN}CN_x with 300 nmol of **NiP** are shown in Figure 6.4. After 1 h of irradiation, activated ^{NCN}CN_x displayed more than three times the photocatalytic activity of bulk ^{NCN}CN_x, reaching 17.2 ± 0.6 µmol H₂ h⁻¹, TOF_{NiP} of 57.5 ± 2.1 h⁻¹ and a specific activity of 34,480 ± 1240 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹. Quantitative and selective oxidation of 4-MBA into 4-MBAd was observed in less than 6 h of simulated solar light irradiation.

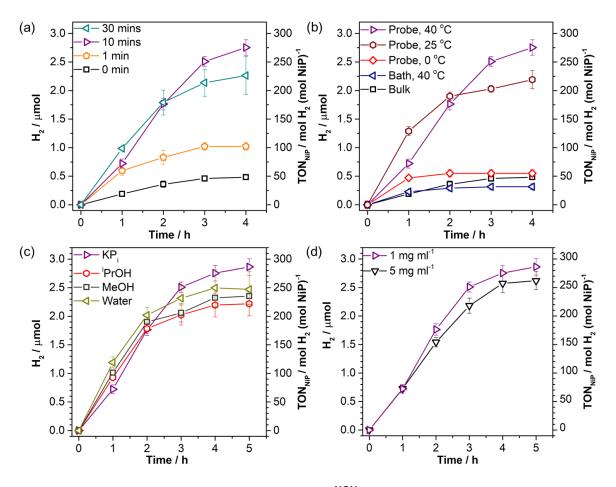


Figure 6.3. Photocatalytic H₂ production with ^{NCN}CN_x (0.5 mg), NiP (10 nmol) and 4-MBA (30 µmol) under 1 sun irradiation (AM 1.5G) at 25 °C. (a) ^{NCN}CN_x dispersed in KP_i and sonicated for different times. (b) Comparing photocatalytic activity by ultrasonicating bulk ^{NCN}CN_x in KP_i using ultra-sonication probe or standard sonication bath at different temperature. (c) Comparing the activity by sonicating ^{NCN}CN_x in different solvents. (d) Photocatalytic performance using different concentrations of ^{NCN}CN_x for sonication in KP_i.

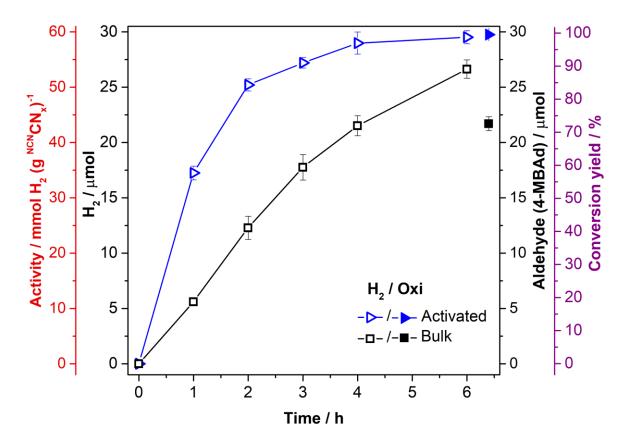


Figure 6.4. Photocatalytic H₂ and 4-MBAd formation using activated and bulk ^{NCN}CN_x (0.5 mg) with **NiP** (300 nmol) in KP_i solution (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) under simulated solar irradiation (100 mW cm⁻², AM 1.5G, 25 °C). The pair of hollow and filled symbols of the same shape and colour correspond to H₂ and aldehyde production, respectively.

The linear H₂ production starts to plateau after 3 h of irradiation as the conversion yield around 80% is reached, reducing the 4-MBA concentration, and the system becomes limited by the availability of the substrate (Figure 6.4). Control experiments in the absence of ^{NCN}CN_x, NiP, 4-MBA or light did not produce H₂ for the activated ^{NCN}CN_x and NiP system (Table D.6). A specific activity of 39,310 ± 1970 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ was reached with 0.5 mg activated ^{NCN}CN_x and 400 nmol of NiP (Figure D.1). This is to the best of our knowledge a benchmark H₂ evolution rate for a CN_x photocatalyst.^{37,38} To date, the highest H₂-evolution rate reported was with ureaderived H₂NCN_x in the presence of Pt co-catalyst in TEOA as the sacrificial electron donor, reaching up to 20,000 µmol H₂ g⁻¹ h⁻¹.³⁷ Very recently defect engineered H₂NCN_x, with nitrogen vacancies and enhanced light absorption, reported to have H₂ production rate of 37,680 µmol H₂ g⁻¹ h⁻¹ in TEOA with Pt.³⁸

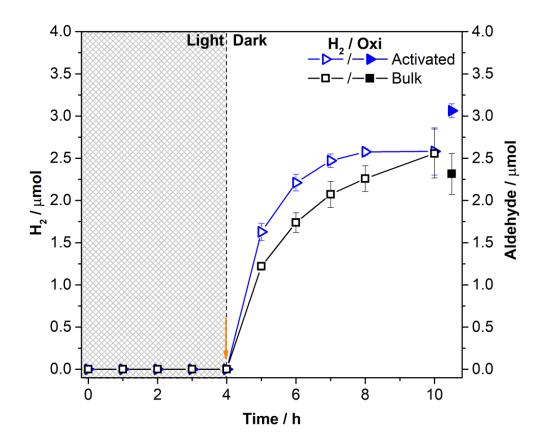


Figure 6.5. Photoreactors were prepared using bulk and activated ^{NCN}CN_x (5 mg) in the presence of 4-MBA (30 µmol) in an aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) without **NiP** and irradiated for 4h under simulated solar light irradiation (100 mW cm⁻², AM 1.5G, 25 °C). The suspensions were then moved into dark and **NiP** (100 nmol) was injected. The H₂ production in dark phase was monitored for the next 6 h. The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde production, respectively, under the specified reaction conditions.

We have previously showed that ^{NCN}CN_x can photo-charge and accumulate ultra-long-lived trapped electrons in the presence of 4-MBA under N₂ atmosphere.^{25,39} The density of accumulated charges remained approximately the same for bulk and activated ^{NCN}CN_x, but activated ^{NCN}CN_x showed a faster discharging behaviour (Figure 6.5 and Table D.7). This observation suggests that ultra-sonication enables the cocatalyst to more easily access catalytically active sites, due to the higher surface area of the material as confirmed by the characterisation data, and thus improves the charge transfer dynamics between 4-MBA, ^{NCN}CN_x and **NiP** in the designed system.

The EQE of the ^{NCN}CN_x-NiP photosystems was determined using simulated solar light at a single wavelength (λ = 360 ± 10 nm, *I* = 4.05 mW cm⁻²). The EQE of

the activated and bulk systems were determined to be $22 \pm 1\%$ and $13 \pm 1\%$, respectively. This suggests a 60% improvement in the photocatalytic performance of the ^{NCN}CN_x after ultra-sonication, which matches with the increase in the surface area of the material as determined by BET (see characterisation). These results are suggesting that more charge carriers are generated and utilised efficiently with the activated ^{NCN}CN_x. The EQE determined is significantly higher than previously reported unfunctionalised benchmark amino-terminated ^{H₂N}CN_x and **NiP** with an EQE of 0.37 ± 0.02%.²¹

6.2.3 Lignocellulosic substrates

The model substrate 4-MBA was subsequently replaced with purified lignocellulose components. α -Cellulose was initially selected as the most abundant form of wood-derived biomass while being the most unreactive form of cellulose.⁴⁰ The photoreactors were prepared as described above, with α -cellulose replacing 4-MBA as the electron donor. The reaction conditions were optimised for the overall amount of H₂ being produced by varying the amount of α -cellulose, activated ^{NCN}CN_x and NiP loadings (Table D.8).

The system containing 0.5 mg ^{NCN}CN_x and 50 nmol NiP gave a specific activity of 1,690 ± 100 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ and TOF_{NiP} of 17.0 ± 1.1 h⁻¹. The highest overall H₂ production yield of 2.62 ± 0.09 µmol H₂ was observed with 5 mg activated ^{NCN}CN_x and 50 nmol NiP in purely aqueous KP_i (pH 4.5) after 4 h of irradiation under 1 sun (Figure 6.6), while bulk ^{NCN}CN_x produced only 1.91 ± 0.07 µmol H₂. Under UVfiltered simulated solar light irradiation ($\lambda > 400$ nm), activated ^{NCN}CN_x produced 1.10 ± 0.03 µmol of H₂, indicating efficient utilisation of visible light (Table D.8).

The importance of surface-functionalisation for α -cellulose photoreforming was highlighted by the insignificant photocatalytic activity of benchmark, amine-terminated bulk $^{H_2N}CN_x$ (only 0.13 ± 0.04 µmol H₂), while ultra-sonication had a negligible effect on the activity of this material (Figure 6.6).²⁵ This significant difference in the activity of $^{NCN}CN_x$ has been previously attributed to the superior oxidising ability, due to more positively positioned valence band position (+2.2 V *vs.* NHE at pH 6; band gap of 2.7 eV),⁴¹ as well as the improved hole transfer to the electron donor *via* the cyanamide moieties on the surface of the material through the built-in potential differences, across the polymer chains.^{25,30,42}

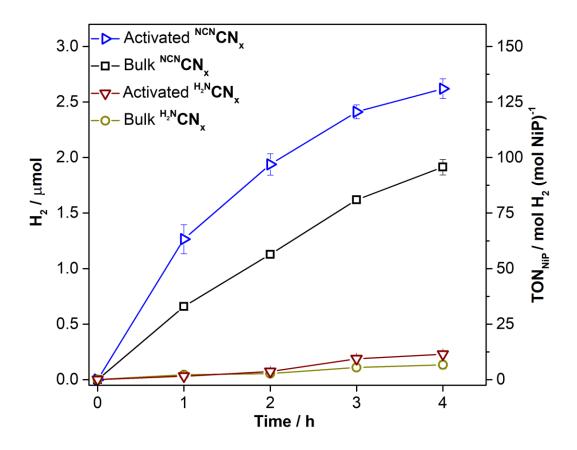


Figure 6.6. Photocatalytic H₂ production in the presence of bulk and activated $^{H_2N}CN_x$, bulk and activated $^{NCN}CN_x$ (5 mg), **NiP** (50 nmol) with α -cellulose (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C).

Photocatalytic biomass reformation into H₂ was then expanded to the other components of lignocellulose, xylan and lignin as well as the most common units found in their structures (Figure 6.7, Table D.9). As the substrate size is reduced, solubility improves in pH 4.5 KP_i, resulting in significantly enhanced photoactivity. After 24 h of irradiation, up to 32.1 ± 4.8 µmol of H₂ was produced from glucose, corresponding to specific activity of 1,120 ± 80 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ and TOF_{NiP} of 112 ± 8 h⁻¹. In the presence of xylose and galactose monosaccharides, 19.9 ± 2.3 and 28.0 ± 2.5 µmol of H₂ were produced respectively after 24 h of irradiation. Photoreforming of polymeric xylan generated 4.92 ± 0.17 µmol of H₂. Despite the strong light absorbing nature and robustness of lignin, 0.20 ± 0.03 µmol H₂ production was achieved, with TOF_{NiP} of 4.0 ± 0.7 h⁻¹ and a specific activity of 40.8 ± 6.8 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹. The results demonstrate that the system is capable of photoreforming biomass under mildly acidic aqueous conditions but is still limited by substrate availability to quench the photogenerated holes in ^{NCN}CN_x.

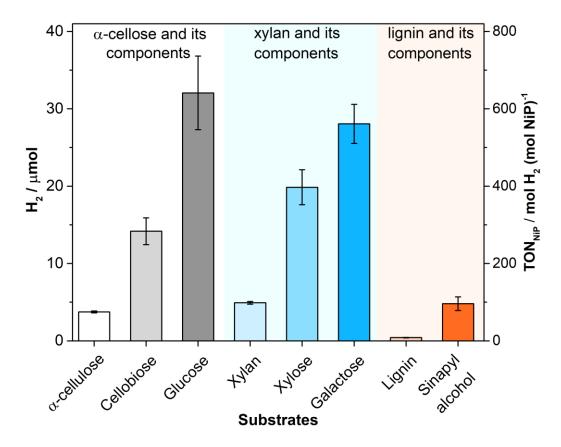


Figure 6.7. Photocatalytic H₂ production using activated ^{NCN}CN_x (5 mg) and NiP (50 nmol) with purified lignocellulose components (100 mg) in KP_i solution (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation for 24 h (100 mW cm⁻², AM 1.5G, 25 °C). For lignin and sinapyl alcohol experiments 0.5 mg and 10 mg of substrates were used respectively.

These promising results encouraged us to replace the purified lignocellulosic components with raw and unprocessed 'real-world' biomass samples (Figure D.2, Table D.10). Photo-reformed H₂ was detected for a range of samples (including paper and cardboard despite difficulties with stirring) and sawdust produced $3.89 \pm 0.34 \mu$ mol of H₂ with TOF_{NiP} of 20.2 ± 0.4 h⁻¹ and a specific activity of 202.0 ± 3.8 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹, in the presence of ^{NCN}CN_x in aqueous KP_i solution.

The long-term performance of the designed system was investigated by comparing the activity of **NiP** with benchmark proton reduction co-catalysts, Pt and MoS₂ (Figure 6.8, Table D.11) in the presence of α -cellulose.^{22,43} **NiP** showed a superior initial rate, but the fragile molecular framework degrades after 24 h,⁴⁴ whereupon 3.7 ± 0.1 µmol of H₂ have been produced with ^{NCN}CN_x–NiP. Substituting molecular catalyst **NiP** with heterogenous Pt and MoS₂ catalysts *via in situ* photodeposition of metallic precursors, H₂PtCl₆²⁴ or H₈N₂MoS₄⁶¹ respectively, showed

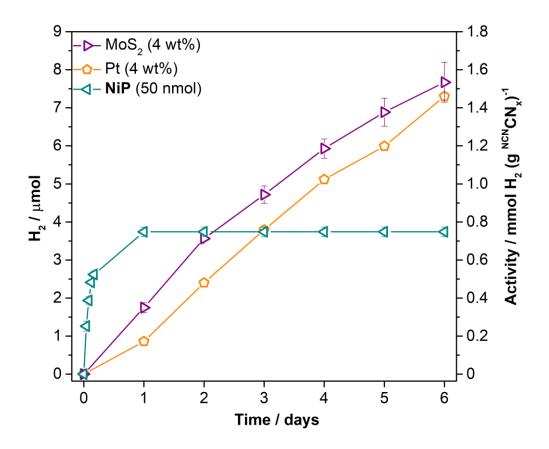


Figure 6.8. Photocatalytic H₂ production with activated ^{NCN}CN_x (5 mg), α -cellulose (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G) in the presence of different catalysts; **NiP** (50 nmol), H₂PtCl₆ (4 wt%) or H₈N₂MoS₄ (4 wt%).

relatively slow initial H₂-evolution kinetics. Yet, both the $^{NCN}CN_x-MoS_2$ and the $^{NCN}CN_x-Pt$ photosystems displayed enhanced stability and outperformed the $^{NCN}CN_x-NiP$ system over long term due to their robustness, while photocatalytic systems with Pt were still active after twelve days.

Mass spectrometry of the photocatalytic samples prepared in H₂O and D₂O, showed selective growth of H₂ and D₂ peaks respectively, confirming that H₂ production originates from the protons in the KP_i solution (Figure D.3, Table D.12). The oxidation products of α -cellulose after photocatalysis were characterised using ¹³C-NMR spectroscopy with uniformly ¹³C-labelled cellulose. Photoreforming of ¹³C-labelled cellulose was carried out over activated ^{NCN}CN_x (5 mg) and Pt (4 wt%) in pH 4.5 KP_i solution prepared in D₂O over six days of irradiation. The suspension was then filtered to remove insoluble parts of cellulose and the reaction solution was analysed.

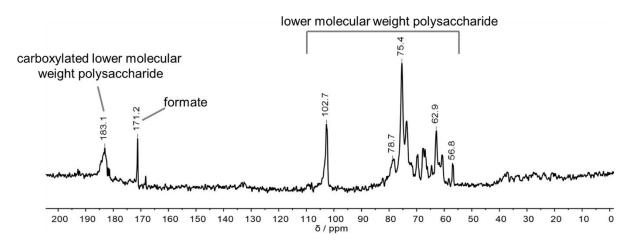


Figure 6.9. ¹³C NMR of spectroscopy of uniformly labelled ¹³C- α -cellulose (10 mg) after 6 days of irradiation in KP_i (pH 4.5) prepared in D₂O with ^{NCN}CN_x (5 mg) and H₂PtCl₆ (4 wt%).^{17,45}

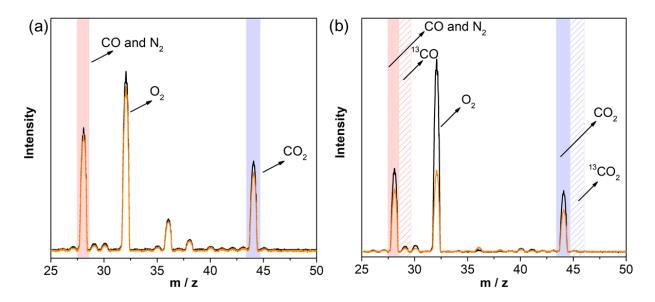


Figure 6.10. Mass spectra of headspace gas recorded after 6 days of solar light irradiation of activated ^{NCN}CN_x (5 mg) and H₂PtCl₆ (4 wt%) in the presence of (a) α -cellulose (100 mg) and (b) ¹³C-labelled α -cellulose (100 mg) in KP_i (pH 4.5). Black and orange traces indicate the background and the headspace gases measured respectively.

¹³C-NMR of the resulting solution showed the formation of formate (δ = 171 ppm) and carboxylate end groups (δ = 183 ppm) of lower molecular weight polysaccharides (δ = 50–110 ppm), as the products of the photoreforming process (Figure 6.9).^{17,45} Other gaseous oxidation products in the headspace were monitored by GC and mass spectrometry after 6 days of irradiation (Figure 6.10, Table D.13).

Negligible amounts of CO and CO₂ were measured (Figure 6.10), which is in agreement with the insignificant quantities of carbonate detected by ¹³C-NMR. Lignocellulose oxidation traditionally occurs *via* the formation of hydroxyl radicals (HO[•]), but photogenerated holes in ^{NCN}CN_x are not oxidising enough to produce HO[•] (Chapter 4).^{25,30} Therefore the oxidation is likely to occur directly *via* hole transfer due to strong interaction between the lignocellulosic substrates and ^{NCN}CN_x.^{17,25,30}

The versatility of photoreforming system under various conditions was investigated by suspending α -cellulose in 1, 5, 10 M KOH (~pH 14–15), KP_i solution (pH 4.5, pH 7) or H₂SO₄ (pH 2) and stirring for 24 h at 25 °C prior to the addition of H₂PtCl₆ (4 wt%) and activated ^{NCN}CN_x (Figure 6.11, Table D.14). After six days of irradiation under 10 M KOH conditions, 39.5 ± 1.1 µmol of H₂ was produced, which is twice the H₂ production yield observed in 5 M KOH. 1 M KOH, H₂SO₄ and pH 7 KP_i solution all resulted in H₂ production activities comparable to that of a pH 4.5 KP_i solution. These results are consistent with the fact that cellulose is easier to solubilise under alkaline conditions, as it is hydrolysed towards lower molecular weight polysaccharides with higher solubilities.^{46,47} This was further supported by the higher H₂ evolution rates of pure biomass components in 10 M KOH, which showed activity up to 12 days in the presence of ^{NCN}CN_x and Pt (Figure D.4, Table D.15).

The conversion yield was then determined with different α -cellulose loadings in the presence of ^{NCN}CN_x and Pt under simulated solar light irradiation. Conversion yield of 22% is reached after six days of irradiation in 10 M KOH solution (Table D.16).⁴⁸ This calculation is based on the assumption that maximum 12 equivalent of H₂ can be produced per anhydroglucose unit in α -cellulose structure.⁴⁸ The conversion yield reached is more than twice the yield reported previously with CdS/CdO_x quantum dots under similar conditions (9.7%).¹⁷

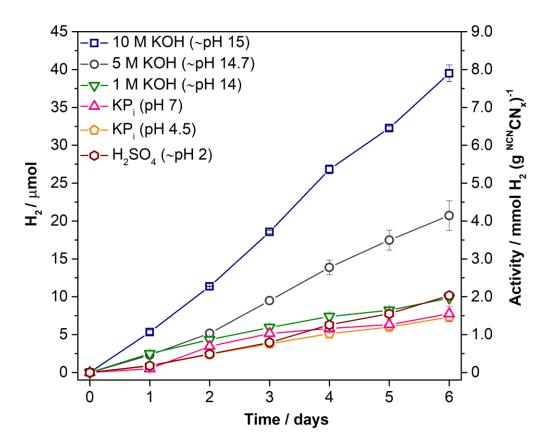


Figure 6.11. Photocatalytic H₂ production using activated ^{NCN}CN_x (5 mg) with H₂PtCl₆ (4 wt%) and α -cellulose (100 mg) in different media; 1, 5, 10 M KOH (pH 14-15), H₂SO₄ (pH 2) or KP_i (pH 4.5 and pH 7) under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C).

6.3 Conclusions

In summary, we report a straightforward ultra-sonication approach to break down the aggregates of ^{NCN}CN_x, which results in enhanced photocatalytic performance. The activated ^{NCN}CN_x reaches a benchmark specific activity of 39,310 ± 1970 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ for the photoreforming of 4-MBA. Both purified lignocellulosic components and raw biomass substrates are photoreformed to H₂ in the presence of activated ^{NCN}CN_x and NiP in KP_i (pH 4.5) at 25 °C. This is the first example of a precious metal-free, Cd-free and visible light-promoted photocatalytic system for photoreforming of biomass under benign conditions.

Activated ^{NCN}CN_x is also demonstrated to be highly versatile, as it operates with molecular and heterogeneous co-catalysts as well as under different reaction media. MoS_2 functions at the same rate as Pt under slightly acidic conditions for a least 6

days. Systems in the presence of Pt, over a wide range of pH values (2–15), show activity beyond twelve days. Alkaline conditions exhibit the best photocatalytic performance and a conversion yield of α -cellulose to H₂ beyond 22%. The utilisation of a carbon-based photocatalyst for photoreforming of biomass therefore offers a new perspective for clean solar fuel H₂ production from abundant waste sources.

6.4 References

- (1) Isikgor, F. H.; Becer, C. R. *Polym. Chem.* **2015**, *6*, 4497–4559.
- (2) Hendriks, A. T. W. M.; Zeeman, G. *Bioresour. Technol.* **2009**, *100*, 10–18.
- Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Science 2007, 315, 804–807.
- Sikarwar, V. S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M. Z.; Shah,
 N.; Anthony, E. J.; Fennell, P. S. *Energy Environ. Sci.* 2016, 9, 2939–2977.
- (5) Himeshima, N.; Amao, Y. *Green Chem.* **2005**, *7*, 742–746.
- (6) Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. *Energy Environ. Sci.* 2015, *8*, 2985–2990.
- (7) Albert, J.; Jess, A.; Kern, C.; Pöhlmann, F.; Glowienka, K.; Wasserscheid, P. ACS Sustain. Chem. Eng. 2016, 4, 5078–5086.
- (8) Zhang, P.; Guo, Y.-J.; Chen, J.; Zhao, Y.-R.; Chang, J.; Junge, H.; Beller, M.; Li,
 Y. *Nat. Catal.* **2018**, *1*, 332–338.
- (9) Grande, P. M.; Viell, J.; Theyssen, N.; Marquardt, W.; Domínguez de María, P.; Leitner, W. *Green Chem.* 2015, *17*, 3533–3539.
- (10) Zinoviev, S.; Müller-Langer, F.; Das, P.; Bertero, N.; Fornasiero, P.; Kaltschmitt, M.; Centi, G.; Miertus, S. *ChemSusChem* **2010**, *3*, 1106–1133.
- (11) Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P. *Energy Environ. Sci.* 2012, 5, 7956–7962.
- (12) Puga, A. V. Coord. Chem. Rev. 2016, 315, 1–66.
- (13) Kuehnel, M. F.; Reisner, E. Angew. Chem. Int. Ed. 2018, 57, 3290–3296.
- (14) Kawai, T.; Sakata, T. *Nature* **1980**, *286*, 474–476.

- (15) Speltini, A.; Sturini, M.; Dondi, D.; Annovazzi, E.; Maraschi, F.; Caratto, V.;
 Profumo, A.; Buttafava, A. *Photochem. Photobiol. Sci.* 2014, 13, 1410–1419.
- (16) Caravaca, A.; Jones, W.; Hardacre, C.; Bowker, M. *Proc. R. Soc. A* 2016, 472, 20160054.
- (17) Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner,
 E. *Nat. Energy* 2017, 2, 17021.
- (18) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150–2176.
- (19) Antonietti, M.; Oschatz, M. Adv. Mater. 2018, 30, 1706836.
- (20) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.;
 Domen, K.; Antonietti, M. *Nat. Mater.* 2009, *8*, 76–80.
- (21) Caputo, C. A.; Gross, M. A.; Lau, V. W.-h; Cavazza, C.; Lotsch, B. V.; Reisner,
 E. Angew. Chem. Int. Ed. 2014, 53, 11538–11542.
- (22) Lau, V. W.-h; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel,
 V.; Senker, J.; Blum, V.; Lotsch, B. V. *Nat. Commun.* **2016**, *7*, 12165.
- (23) Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. *Angew. Chem. Int. Ed.* 2017, *56*, 4867–4871.
- (24) Cometto, C.; Kuriki, R.; Chen, L.; Maeda, K.; Lau, T.-C.; Ishitani, O.; Robert, M.
 J. Am. Chem. Soc. **2018**, *140*, 7437–7440.
- (25) Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W.-h; Lotsch,
 B. V.; Durrant, J. R.; Reisner, E. *J. Am. Chem. Soc.* **2016**, *138*, 9183–9192.
- (26) Zhao, Y.; Shalom, M.; Antonietti, M. Appl. Catal. B Environ. 2017, 207, 311–315.
- (27) Yang, P.; Wang, R.; Zhou, M.; Wang, X. Angew. Chem. Int. Ed. 2018, 57, 8674– 8677.
- (28) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.;
 Zhong, J.; Kang, Z. Science 2015, 347, 970–974.
- (29) Zhang, G.; Lan, Z.-A.; Lin, L.; Lin, S.; Wang, X. Chem. Sci. 2016, 7, 3062–3066.
- (30) Kasap, H.; Godin, R.; Jeay-Bizot, C.; Achilleos, D. S.; Fang, X.; Durrant, J. R.; Reisner, E. ACS Catal. 2018, 8, 6914–6926.

- (31) Wu, M.; Yan, J.-M.; Zhang, X.-W.; Zhao, M.; Jiang, Q. J. Mater. Chem. A 2015, 3, 15710–15714.
- (32) Lau, V. W.-h; Yu, V. W.-z; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J. K.; Feldmann, J.; Blum, V.; Lotsch, B. V. Adv. Energy Mater. 2017, 7, 1602251.
- (33) Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, R. *New J. Chem.* **2005**, *29*, 693–699.
- (34) Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E. J. Am. Chem. Soc. 2014, 136, 356–366.
- (35) Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.;
 Ajayan, P. M. *Adv. Mater.* 2013, 25, 2452–2456.
- (36) Hong, J.; Yin, S.; Pan, Y.; Han, J.; Zhou, T.; Xu, R. *Nanoscale* 2014, 6, 14984– 14990.
- (37) Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53, 9240–9245.
- (38) Han, Q.; Cheng, Z.; Wang, B.; Zhang, H.; Qu, L. ACS Nano 2018, 12, 5221–
 5227.
- (39) Lau, V. W.-h; Klose, D.; Kasap, H.; Podjaski, F.; Pignié, M.-C.; Reisner, E.; Jeschke, G.; Lotsch, B. V. Angew. Chem. Int. Ed. 2017, 56, 510–514.
- (40) Sun, Y.; Cheng, J. *Bioresour. Technol.* **2002**, 83, 1–11.
- (41) Meyer, A. U.; Lau, V. W.-h; König, B.; Lotsch, B. V. European J. Org. Chem.
 2017, 2179–2185.
- (42) Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Angew. Chem. Int. Ed. 2018, 57, 8729–8733.
- (43) Gu, Q.; Sun, H.; Xie, Z.; Gao, Z.; Xue, C. Appl. Surf. Sci. 2017, 396, 1808–1815.
- (44) Martindale, B. C. M.; Joliat, E.; Bachmann, C.; Alberto, R.; Reisner, E. Angew. Chem. Int. Ed. 2016, 55, 9402–9406.
- (45) Ramos, M. L.; Caldeira, M. M.; Gil, V. M. S. Carbohydr. Res. 1997, 304, 97–109.
- (46) Budtova, T.; Navard, P. Cellulose 2016, 23, 5–55.

- (47) Medronho, B.; Romano, A.; Miguel, M. G.; Stigsson, L.; Lindman, B. *Cellulose* 2012, *19*, 581–587.
- (48) Zhang, G.; Ni, C.; Huang, X.; Welgamage, A.; Lawton, L. A.; Robertson, P. K. J.;
 Irvine, J. T. S. *Chem. Commun.* **2016**, *52*, 1673–1676.

Chapter 7

Conclusions

7.1 Summary

The main goal of this thesis was to use carbon nitride as a photocatalyst to develop straight-forward-to-assemble hybrid systems for solar light driven H₂ evolution while eliminating the need for expensive and non-innocent sacrificial reagents.

First, a full redox system was prepared with the use of ^{NCN}CN_x, in which controlled 4-MBA oxidation and H₂ evolution was achieved in the presence of Ni-based molecular catalyst, **NiP**. The system demonstrated 1:1 stoichiometric amount solar fuel (H₂) and solar chemical (4-MBAd) formation over 24 h of simulated solar light irradiation, under purely aqueous conditions. The designed system eliminated the need for complex product isolation stage, due to *in situ* separation of H₂ and 4-MBAd in the gas and solution phases, respectively. The ^{NCN}CN_x–NiP system showed an activity of 763 µmol (g ^{NCN}CN_x)⁻¹ h⁻¹ toward H₂ and 4-MBAd production and a **NiP**-based TOF of 76 h⁻¹. After 24 h of irradiation, a 4-MBA conversion yield of 83% towards quantitative and selective 4-MBAd formation was reached. This was the first colloidal system which coupled solar H₂ generation with value-added organic substrate oxidation in a single pot.

Further spectroscopic studies demonstrated that photoexcited $^{NCN}CN_x$ in the presence of an organic substrate could accumulate ultralong-lived "trapped electrons", with lifespan extending from hours to days. This charged state of $^{NCN}CN_x$ allowed

spatially and temporarily decoupling light and dark cycles of the full redox system, which replicates natural photosynthesis in an artificial set-up and makes it possible to produce H₂ in the dark, independent of the light. Mechanistic studies on this full photoredox system revealed that direct hole transfer from ^{NCN}CN_x to 4-MBA is the first step followed by electron transfer from ^{NCN}CN_x to NiP, for H₂ evolution, while selectively reducing the aqueous protons originated from the buffer solution. TAS studies showed that photogenerated holes in ^{NCN}CN_x are quenched by 4-MBA in shorter than 3 µs, while the extraction of photoexcited electrons from ^{NCN}CN_x to NiP demonstrated to have the slowest kinetics amongst all the electron transfer reactions in the full redox system; being the overall rate limiting step.

Having established a better understanding of the mechanism behind this full redox system, the focus shifted towards tackling this limitation. Enhanced photocatalytic activity for simultaneous alcohol oxidation and proton reduction was observed when GO or RGO were employed as an interlayer between $^{NCN}CN_x$ and NiP. Introduction of these conductive scaffolds (GO or RGO) enhanced the photocatalytic activity by three times, reaching a specific activity of 4,655 μ mol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ for H₂ and 4-MBAd formation with a **NiP**-based TOF of 116 h⁻¹. The presence of GO and RGO did not alter the number of "trapped electrons" generated or stored in NCNCN_x. Time resolved spectroscopy revealed that GO and RGO did not have a significant effect on the charge recombination and separation kinetics of ^{NCN}CN_x-NiP hybrid system in nano-microsecond timescale. However, PIAS demonstrated that on timescales longer than 0.1 s, "trapped electrons" in NCNCNx were quenched faster in the presence of GO/RGO, showing accelerated electron transfer between $^{NCN}CN_x$ and NiP. The absorption profile of NiP in the presence of different GO loadings revealed that GO acts as a conductive interfacial "binder" between **NiP** and ^{NCN}CN_x. Therefore, overall the enhancement in activity did not primarily arise from changes in the photophysics of the ^{NCN}CN_x, but rather from GO/RGO enabling better electronic communication between ^{NCN}CN_x and NiP.

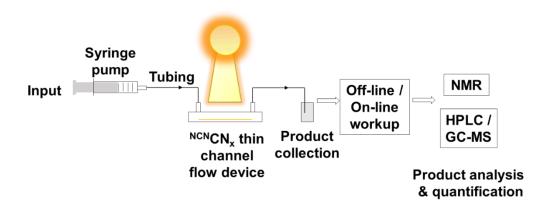
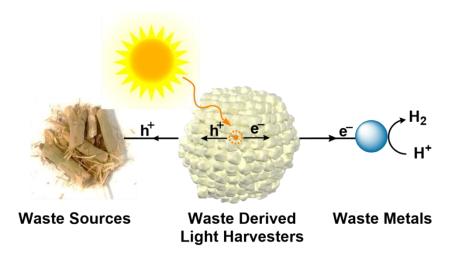
All the systems demonstrated to this point showed a full redox system employing 4-MBA for controlled oxidation while carrying out H₂ production. Yet, the ultimate goal was always to minimise the number of "shop bought" chemicals when designing a sustainable system with large-scale application. For this purpose, a

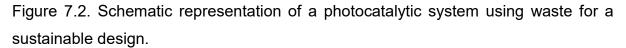
straight forward ultrasonication approach was introduced to enhance the activity of bulk ^{NCN}CN_x. The activated ^{NCN}CN_x showed significantly improved photocatalytic activity than the bulk ^{NCN}CN_x, reaching a benchmark specific activity of a 39,310 µmol H₂ (g ^{NCN}CN_x)⁻¹ h⁻¹ in the presence of **NiP**, toward H₂ and 4-MBAd formation. The system demonstrated quantitative and selective oxidation of 4-MBA into 4-MBAd in less than 6 h of irradiation. The improved activity was attributed to better utilisation of light by the activated ^{NCN}CN_x due to increased surface area, making active sites of ^{NCN}CN_x more accessible. The activated ^{NCN}CN_x was subsequently used to photoreform purified and raw lignocellulose biomass samples to generate H₂, with various cocatalysts including **NiP**, Pt and MoS₂. The system operated in aqueous media over a broad range of pH values (2–15) at room-temperature. The best performances were achieved under alkaline conditions with conversion yields reaching up to 22%. This was the first biomass photoreforming system reported using a carbon-based photocatalyst, which operates in aqueous solution without the need for any precious metal or toxic components.

7.2 Future work

The systems reported in this thesis show great potential to extend the use of carbon nitride as a photocatalyst in a wide range of applications. With the approaches introduced during the course of this work, very high specific activities were reached with respect to ^{NCN}CN_x towards H₂ generation and organic substrate oxidation. The direction forward from this point would be to use low cost ^{NCN}CN_x as a photocatalyst to drive a variety of organic transformations (including oxidation, reduction and more complex new bond formation reactions) and to replace the traditionally used expensive and short-lived Ru and Ir-based catalysts in the field of light-driven catalysis.

The other approach would be to use highly active and heterogenous $^{NCN}CN_x$ in a reactor and design a flow device. The aim of such a device would be to use it as a rapid screening tool for solar chemicals and solar fuels production. We are in the progress of designing such devices based on information from computational models, which could serve as prototypes. This work is currently in progress and preliminary results have been obtained with Mark Bajada (Figure 7.1).


Figure 7.1. Representation of a flow device using $^{NCN}CN_x$ as the photocatalyst.

As determined by the kinetic studies, the slowest step in the ^{NCN}CN_x hybrid systems is the rate of electron transfer from ^{NCN}CN_x to NiP. In addition, NiP has a fragile structure which limits the lifetime of the reported systems. Therefore, finding alternative catalysts with better stability and faster electron collection ability will speed up this process while minimising the losses due to inefficient charge separation. The main goal would still be to replace NiP with metal salts or waste metals and eliminate the need for purchasing precursors and/or long synthetic procedures to prepare catalysts, in order to develop economically sustainable and practically appealing systems.

The possibility of expanding the photoreforming into plastics and other types of wastes is also of great interest. Plastic photoreformation under alkaline (pH~15) conditions has been very recently demonstrated using CdS dots. Initial screening experiments showed that food waste as well as plastics including polyethylene terephthalate, polyurethane and polystyrene can be photoreformed under aqueous condition in the presence of ^{NCN}CN_x. Currently we are working on screening a wide range of abundant waste sources to develop a library of chemicals which can be utilised in a similar way. In the meantime, the aim is to develop a bench-scale reactor to demonstrate H₂ generation in larger scale with Taylor Uekert, to show the potential of our systems for real-world applications.

It has been shown that ultra-sonication that breaks the aggregates of bulk $^{NCN}CN_x$ enhances the photocatalytic activity significantly. Therefore, one direction we are working towards is to synthesise carbon nitride dots, with particle sizes less than

10 nm. This will bring together high photocatalytic activity and charging/discharging ability of $^{NCN}CN_x$ with good water dispersibility and enhanced photoluminescence and photoconductivity of the carbon dots. Two different approaches will be taken for the preparation of carbon nitride dots. For the bottom-up approach, dots will be prepared from carbon and nitrogen containing precursors followed by a post treatment for surface functionalisation. For the top-down approach bulk $^{NCN}CN_x$ will be synthesised followed by its chemical/thermal treatment to convert it into dots.

Ideally, any system designed from this point onward should aim to replace "synthetic" laboratory prepared components, which are heavily used in the field of photocatalysis, with waste and available abundant sources. This includes using abundant waste sources as precursors for synthesising light harvesters and as economical sacrificial electron donors, whereas metal waste can serve as co-catalysts for fuel production (Figure 7.2). Above all, any future work should be planned around the fundamental principles of large-scale applicability and sustainability.

Appendix

A. Appendix to chapter 3

A.1 Supplementary figures

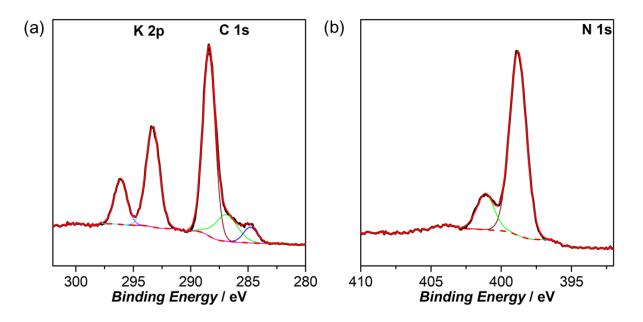


Figure A.1. XPS of ^{NCN}CN_x in the regions of (a) K_{2p} and C_{1s} and (b) N_{1s} . The heptazine core was identified by the presence of sp² carbon, 288.4 eV, and nitrogen, 398.8 eV, signals. The polymeric nature of the material was confirmed by the appearance of the signal at 401.1 eV, corresponding for the bridging secondary amine groups.

Figure A.2. ¹H NMR spectra of (a) 4-MBA, (b) 4-MBAd, (c) a representative residue extracted after 24 h of irradiation in CDCl₃.

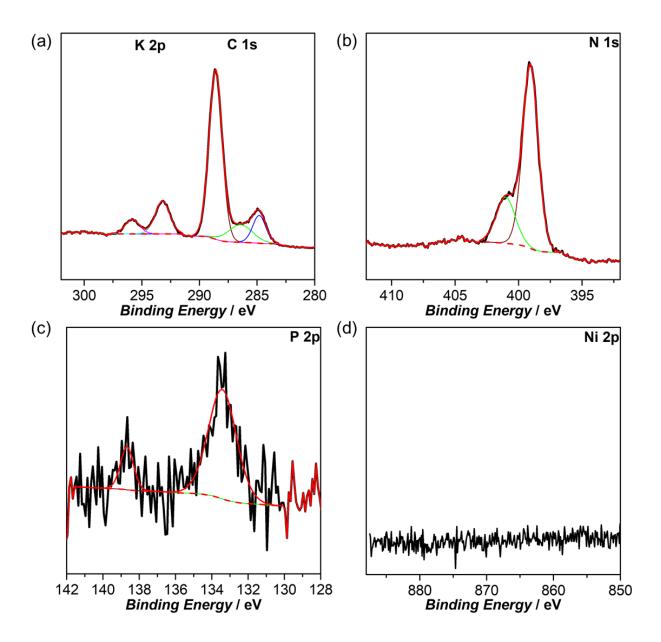


Figure A.3. Characterisation of ^{NCN}CN_x after 24 h of irradiation, in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and **NiP** (50 nmol) in KP_i (0.02 M, pH 4.5, 3 mL) solution (1 sun irradiation, AM 1.5G, 25°C), with XPS in the regions of (a) K_{2p} and C_{1s}, (b) N_{1s}, (c) P_{2p} and (d) Ni_{2p}. The K_{2p} and C_{1s} as well as N_{1s} spectrum are in good correlation with XPS results obtained from ^{NCN}CN_x prior to photocatalysis. In the Ni_{2p} spectrum, there is no signal, indicating that most probably there is not any **NiP** catalyst physically adsorbed on the material surface after 24 h of irradiation. The peaks in P_{2p} spectrum are likely to be due to KP_i used during photocatalysis.

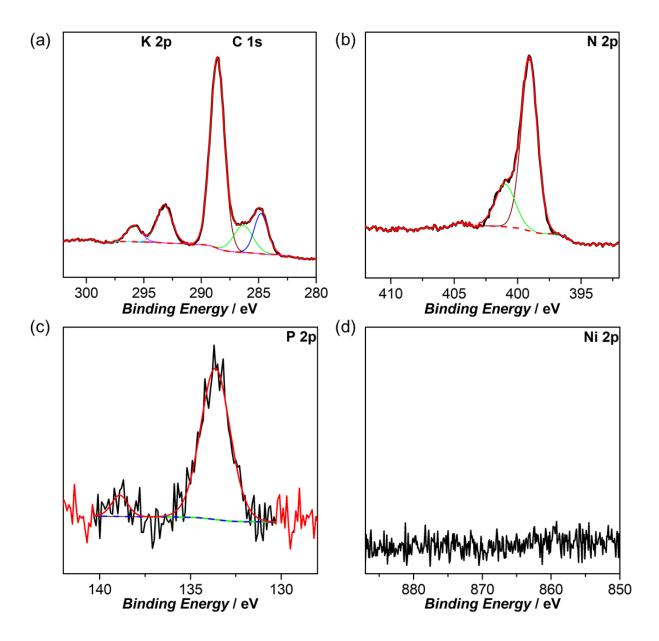


Figure A.4. Characterisation of ^{NCN}CN_x 24 h of irradiation, in the presence of ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in KP_i (0.02 M, pH 4.5, 3 mL) solution (1 sun irradiation, AM 1.5G, 25°C), with XPS in the regions of a) K_{2p} and C_{1s}, b) N_{1s}, c) P_{2p} and d) Ni_{2p}. The K_{2p} and C_{1s} as well as N_{1s} spectrum are in good correlation with XPS results obtained from the pure ^{NCN}CN_x prior to photocatalysis. The peaks in P_{2p} spectrum are likely to be due to KP_i used during photocatalysis. As predicted, no peak in Ni_{2p} spectrum was detected as the photocatalysis was performed in the absence of NiP.

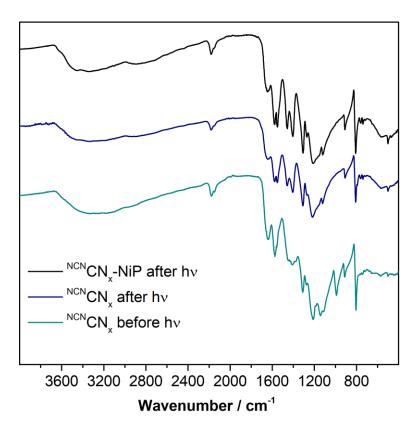


Figure A.5. Comparing FT-IR spectrum of $^{NCN}CN_x$ (5 mg) before and after irradiation (1 sun, AM 1.5G, 25°C) for 24 h in the presence of 4-MBA (30 µmol) in KP_i (0.02 M, pH 4.5, 3mL) with and without **NiP** (50 nmol).

A.2 Supplementary tables

Table A.1. Solar light driven simultaneous H₂ and aldehyde production with NiP and ^{NCN}CN_x. Experiments were performed using ^{NCN}CN_x (5 mg) in KPi at pH 4.5 (0.02 M) containing 4-MBA and NiP as a hydrogen evolution catalyst under simulated solar light irradiation (100 mW cm⁻², AM 1.5G, 25 °C). All the experiments showed 100% selectivity towards aldehyde formation and no carboxylic acid was detected.

Entry	NiP / nmol	Alcohol / µmol	Hď	Aldehyde ± σ / µmol (after 24 h)	Alcohol Conversion ± σ / (%)	H ₂ ± σ / μmol (after 24 h)	TON (24 h) ± σ / mol H ₂ NiP ⁻¹	Activity/ µmol H₂ (g CNx) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
pH dep	pH dependence								
1	50	30	3	14.63 ± 2.35	48.77 ± 7.83	13.13 ± 1.31	262.63 ± 26.26	293.36 ± 29.34	29.34 ± 2.93
2	50	30	4.5	19.80 ± 19.8	66.0 ± 6.60	21.27 ± 2.13	425.38 ± 42.54	311.18 ± 31.12	31.12 ± 3.11
ო	50	30	9	16.25 ± 1.62	54.16 ± 5.42	14.80 ± 1.48	296.02 ± 29.60	232.70 ± 23.27	23.27 ± 2.33
[Alcoh	[Alcohol] dependence	lence							
4	50	15	4.5	11.93 ± 1.19	79.51 ± 7.95	13.46 ± 1.35	269.17 ± 26.92	266.89 ± 26.69	26.69 ± 2.67
2	50	30	4.5	19.80 ± 1.98	66.0 ± 6.60	21.27 ± 2.13	425.38 ± 42.54	311.18 ± 31.12	31.12 ± 3.11
9	50	60	4.5	16.54 ± 1.71	27.57 ± 2.86	15.46 ± 1.55	309.13 ± 30.91	240.59 ± 24.06	24.06 ± 2.41
[NiP] a	[NiP] dependence	a							
7	10	30	4.5	8.60 ± 0.86	28.67 ± 2.87	2.48 ± 0.46	247.72 ± 46.10	86.83 ± 9.70	43.42 ± 4.85
8	25	30	4.5	11.10 ± 2.46	37.00 ± 8.19	5.22 ± 1.21	208.95 ± 48.37	158.51 ± 15.85	31.70 ± 3.17
6	50	30	4.5	19.80 ± 1.98	66.0 ± 6.60	21.27 ± 2.13	425.38 ± 42.54	311.18 ± 31.12 31.12 ± 3.11	31.12 ± 3.11
10	100	30	4.5	24.60 ± 2.95	82.00 ± 9.85	24.97 ± 2.50	249.72 ± 24.97	409.80 ± 40.98	20.49 ± 2.05

Table A.2. Time dependent solar light driven H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and NiP (50 nmol) in KPi (0.02 M, pH 4.5, 3 mL) with 1 sun irradiation (AM 1.5G) in water-jacketed rack at 25 °C. All the experiments showed 100% selectivity towards aldehyde formation and no carboxylic acid was detected.

	Time / h	Aldehyde ± σ /	Alcohol Conversion ± σ / (%)	$H_2 \pm \sigma /$	TON $\pm \sigma$ /
		lomu		lomu	mol H ₂ NiP ⁻¹
11	.	2.37 ± 0.47	7.90 ± 1.56	1.64 ± 0.16	32.88 ± 3.23
12	2	3.55 ± 0.84	11.84 ± 2.79	3.74 ± 0.37	74.83 ± 7.48
13	3	5.33 ± 0.53	17.78 ± 1.78	5.23 ± 0.52	104.59 ± 10.46
14	4	6.55 ± 0.66	21.84 ± 2.18	5.92 ± 0.59	118.30 ± 11.83
15	5	6.65 ± 0.66	22.16 ± 2.22	8.04 ± 0.80	160.72 ± 16.07
16	9	8.27 ± 1.39	27.57 ± 4.64	10.28 ± 1.03	205.66 ± 20.57
17	12	11.47 ± 1.51	38.57 ± 4.64	12.37 ± 1.24	247.40 ± 24.74
18	24	19.80 ± 1.98	66.0 ± 6.60	21.27 ± 2.13	425.38 ± 42.54

M, pH 4	1.5, 3 mL) u	Inder visible	e-light-only (,	λ > 400 nm) irradi	ation. Control	experiments wer	e also performed.	M, pH 4.5, 3 mL) under visible-light-only (<i>A</i> > 400 nm) irradiation. Control experiments were also performed in the absence of ^{NCN} CN _x , NiP,	^{NCN} CN _x , NiP,
4-MBA	and in dark	C Different	oara substitu	ited benzyl alcohc	I (BA) derivativ	/es (30 µmol) we	re tested in the p	4-MBA and in dark. Different para substituted benzyl alcohol (BA) derivatives (30 µmol) were tested in the presence ^{NCN} CN _x (5 mg) and NiP	mg) and NiP
(50 nmc	ol) in KP _i (0	.02 M, pH	4.5, 3 mL) u	(50 nmol) in KPi (0.02 M, pH 4.5, 3 mL) under 1 sun irradia	tion (AM 1.5G)). All the experin	nents showed 10(iation (AM 1.5G). All the experiments showed 100% selectivity towards aldehyde	rds aldehyde
formatic	on and no c	arboxylic a:	ıcid was det∈	formation and no carboxylic acid was detected unless specified otherwise.	ified otherwise				
Entry	NiP / nmol	Alcohol	Alcohol / µmol	Aldehyde ± σ / µmol (after 24 h)	Alcohol Conversion (%)	H₂ ± σ / μmol (after 24 h)	TON (24 h) ± σ / mol H₂ NiP⁻¹	Activity/ µmol H ₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h⁻¹ (after 1h)
Visible	؛ Light only	Irradiation	Visible Light only Irradiation (A > 400 nm)						
19	50	4-MBA	30	10.02 ± 2.08	33.67 ± 6.50	10.31 ± 1.20	206.25 ± 24.07	122.93 ± 12.29	12.29 ± 1.23
Contro	Control Experiments	nts							
20	0	4-MBA	30	7.30 ± 0.73	24.33 ± 2.43	0.33 ± 0.03	I	3.37 ± 3.37	I
21	50	0	Ι	-	I	0.11 ± 0.02	2.10 ± 0.30	16.04 ± 3.05	1.60 ± 0.31
22	50, No ^{NCN} CN _x	4-MBA	30	0	0	0	0	1	1
23	50, dark	4-MBA	30	0	0	0	0	0	0
Alcohc	Alcohol Dependence	nce							
24	50	BA	30	13.70 ± 2.70	45.67 ± 9.02	21.47 ± 2.15	429.55 ± 42.96	289.62 ± 39.48	28.96 ± 3.95
25	50	4- OMeBA	30	13.73 ± 1.37	45.78 ± 4.58	9.84 ± 0.98	196.70 ± 19.67	233.33 ± 23.33	23.33 ± 2.33
26	50	4-CIBA	30	13.4 ± 2.11	44.67 ± 7.02	14.06 ± 2.98	281.23 ± 59.60	254.09 ± 25.41	25.41 ± 2.51
27	50	4-CF ₃ BA	30	1.83 ± 0.61	6.09 ± 2.03	5.15 ± 0.55	103.09 ± 11.04	96.6 ± 9.96	9.96 ± 1.00
28	50	4- ^t BuBA	30	7.84 ± 1.41	$40.83 \pm 9.00^*$	9.90 ± 0.99	198.07 ± 19.80	823.24 ± 82.32	82.32 ± 8.23
29	50	MeOH	30	0	0	0	0	0	0

Table A.3. Photocatalytic H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and NIP (50 nmol) in KP_i (0.02

*These experiments resulted in 41% alcohol oxidation with 64% selectivity towards 4-tert-Butylbenzaldehyde and 36% to 4-tert

butylbenzoic acid formation.

Table	A.4. So	lar light driven	H ₂ and ald	ehyde producti	on in the prese	nce of ^{NCN} CN _x (5	mg), 4-MBA (30 µr	Table A.4. Solar light driven H ₂ and aldehyde production in the presence of ^{NCN} CN _x (5 mg), 4-MBA (30 µmol) and NiP (50 nmol) in aqueous	ol) in aqueous	
sodiur	n acetai	te buffer, and I	KPi (pH 4.5,	, 3 mL) at differ	rent concentrati	ions under 1 sun	rradiation (AM 1.5	sodium acetate buffer, and KP _i (pH 4.5, 3 mL) at different concentrations under 1 sun irradiation (AM 1.5G). Sacrificial conditions were also	ons were also	
tested	in EDT	⁻ A (0.1 M, pH ⁴	4.5, 3 mL) v	vithout 4-MBA	and in KP _i (0.0	2 M, pH 4.5, 3 m	-) under air withou	tested in EDTA (0.1 M, pH 4.5, 3 mL) without 4-MBA and in KPi (0.02 M, pH 4.5, 3 mL) under air without NiP. All the experiments showed	nents showed	
100%	selectiv	ity towards ald	Jehyde form	nation and no c	carboxylic acid	was detected unle	100% selectivity towards aldehyde formation and no carboxylic acid was detected unless specified otherwise.	wise.		
Entry	NiP /	Entry NiP / Solution [Solution] Aldehyde $\pm \sigma$	[Solution]	Aldehyde ± σ	Alcohol	H ₂ ± σ / μmol	TON (24 h) ± σ /	Alcohol $H_2 \pm \sigma / \mu mol$ TON (24 h) $\pm \sigma / Activity / \mu mol H_2 (g TOF \pm \sigma / h^{-1})$	TOF $\pm \sigma / h^{-1}$	

Entry	NiP / nmol	Solution	[Solution]	Aldehyde ± σ / μmol (after 24 h)	Alcohol Conversion ± σ / (%)	H ₂ ± σ / μmol (after 24 h)	TON (24 h) ± σ / mol H ₂ NiP ⁻¹	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
Solutic	on dep	Solution dependence							
30	50	CH ₃ COONa	0.1 M	12.03 ± 1.20	40.11 ± 4.01	9.69 ± 0.97	193.74 ± 19.37	360.02 ± 36.00	36.00 ± 3.60
31	50	KP _i	0.1 M	24.90 ± 2.49	83.0 ± 8.30	20.44 ± 2.04	408.76 ± 40.88	762.70 ± 76.27	76.27 ± 7.63
32	50	KP	0.5 M	18.13 ± 1.81	60.44 ± 6.04	18.62 ± 1.86	372.39 ± 37.24	1114.21 ± 111.42	111.42 ± 11.14
33	50	KP _i + KCl	0.02 M + 0.08 M	20.27 ± 3.77	67.56 ± 12.58	23.34 ± 2.33	466.78 ± 46.68	539.28 ± 59.12	53.93 ± 5.91
34	50	KP _i + K ₂ SO ₄	0.02 M + 0.08 M	20.00 ± 2.00	66.67 ± 6.67	20.97 ± 2.10	419.45 ± 41.95	492.04 ± 49.20	49.20 ± 4.92
Sacrifi	cial Co	Sacrificial Conditions							
35	50	EDTA	0.1 M	I	I	21.21 ± 2.12	424.18 ± 42.42	532.32 ± 53.22	52.23 ± 5.23
36	0	KP _i , under air	I	6.04 ± 2.09	100 [†]	1	1	1	I
37	0, dark	KP _i , under air	I	0	0	I	1	I	I
Thood		rimonte roculto.	70007 vi r		vion with 700/ c	coloctivity, towards	1 mothy henzoic	tThree events reactions in 1000/ clocked second with 700/ calendary in the data 1 methyl hear of 200/ 1 methyl hear clocked	

These experiments resulted in 100% alcohol conversion with 70% selectivity towards 4-methyl benzoic acid, 20% 4-methyl benzaldehyde

and 10% to further oxidation products (benzene-1, 4-dicarbaldehyde and 4-formylbenzoic acid) formation.

4.5, 3 mL) solution with 4-MBAd, NCNCNx (5 mg) and H2PtCl6 was also tested. All the experiments showed 100% selectivity towards aldehyde 4-MBA (30 μmol) and H₂PtCl₆ (10 μL, 8 wt%) in KP_i (0.02 M, pH 4.5, 3 mL) were also carried out. A control experiment in EDTA (0.1 M, pH Table A.5. Photocatalytic H₂ and aldehyde production with ^{H₂N}CNx (5 mg), 4-MBA (30 µmol) and NiP (50 nmol) in KPi (0.02 M, pH 4.5, 3 mL) were conducted under 1 sun irradiation (AM 1.5G, 25 °C). Photocatalytic experiments in the presence of NCNx (5 mg) or H2NCNx (5 mg), formation and no carboxylic acid was detected unless specified otherwise.

Entry	Entry Catalyst	Š	Substrate	Solution	Solution Aldehyde ± ơ / µmol (after 24 h)	Substrate Conversion ± σ / (%)	H₂ ± σ / μmol (after 24 h)	TON (24 h) ± σ / mol H ₂ NiP ⁻¹	Activity/ µmol H₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
Irradiá	Irradiate for 4 h									
38	NiP	^{H₂N} CN _x	H ₂ NCN _x 4-MBA	KP _.	1.44 ± 0.71	4.80 ± 2.36	2.02 ± 0.20	40.31 ± 4.03	125.05 ± 12.50	12.50 ± 1.25
39	Pt#	^{H₂N} CN _x	^{H2N} CN _x 4-MBA	KP	1.28 ± 0.55	4.26 ± 1.85	0	0	0	0
40	Pt#	NCNCN	^{NCN} CN _x 4-MBA	KP	1.79 ± 1.21	5.98 ± 4.05	1.56 ± 0.16	0.80 ± 0.08	170.68 ± 18.97	0.44 ± 0.05
Irradia	Irradiate for 24 h	ľ								
41	NiP	^{H₂N} CN _x	4-MBA	KP _.	1.44 ± 0.71	4.80 ± 2.36	2.49 ± 0.71	49.79 ± 14.18	117.30 ± 11.73	11.73 ± 1 17
42	Pt#	NCNCNx	^{NCN} CN _x 4-MBA	KP _i	11.99 ± 2.29	41.1 ± 7.85 [‡]	14.22 ± 1.42	7.29 ± 0.73	138.43 ± 13.08	0.35 ± 0.03
43	Pt#	NCNCNX	^{NCN} CN _x 4-MBAd	EDTA	5.42 ± 0.54	18.07 ± 1.81**	3.50 ± 0.44	1.79 ± 0.23	9.46 ± 4.88	0.02 ± 0.01
#The	se experii	ments w	ere conduc	ted in the	#These experiments were conducted in the presence of 10 p	uL of 8 wt% aqu	eous solution c	of H2PtCl6 correst	0 µL of 8 wt% aqueous solution of H2PtCle corresponding for 8 wt% Pt loading.	: loading.

[‡]These experiments resulted in 41% alcohol oxidation with 97:3% selectivity towards 4-MBAd and 4-methylbenzoic acid formation

respectively.

**These experiments resulted in 18% 4-methylbenzoic acid formation.

Table A.6. Photocatalytic H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and NIP (50 nmol) in KPⁱ (0.02 M, pH 4.5, 3 mL) with the addition of neutral density filters (50% and 80% absorbance of the incident light) were conducted. All the experiments showed 100% selectivity towards aldehyde formation and no carboxylic acid was detected.

Entry	Aldehyde ± σ / μmol (after 1 h)	Alcohol Conversion ± σ / (%)	Selectivity ± σ / (%)	H ₂ ± σ / μmol (after 1 h)	Activity/ µmol H₂ (g CNx) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
No ne	No neutral density filter					
44	44 2.29 ± 0.23	7.64 ± 0.76	100	1.49 ± 0.15	297.73 ± 18.29	29.77 ± 1.83
50% n	50% neutral density filter					
45	45 1.37 ± 0.16	4.27 ± 0.43	100	0.95 ± 0.10	190.01 ± 12.35	19.00 ± 1.90
80% n	80% neutral density filter					
46	46 0.88 ± 0.09	2.94 ± 0.29	100	0.54 ± 0.05	108.30 ± 1.87	10.83 ± 1.08

Table A.7. Long-term photocatalytic H₂ and Aldehyde production in the presence of ^{NCN}CN_x (5 mg), 4-MBA (30 µmol) and NiP (50 nmol) in simulator for monitoring over 25 more h (Total irradiation time of 50 h). All the experiments showed 100% selectivity towards aldehyde and both NiP (50 nmol) and 4-MBA (30 µmol) were added to photoreactors to test the system re-activation, and placed back into solar light KPi (0.02 M, pH 4.5, 3 mL) under 1 sun irradiation (AM 1.5G, 25 °C). After 25 h of irradiation, fresh NiP (50 nmol), fresh 4-MBA (30 µmol), formation and no carboxylic acid was detected.

Entry	NiP /	Alcohol/	Alcohol/ Aldehyde ± σ / μmol	Alcohol	$H_2 \pm \sigma / \mu mol$	Activity / µmol H ₂ (g	TOF $\pm \sigma / h^{-1}$
	lomu	lomu		Conversion ± σ / (%)		CN _x) ⁻¹ h ⁻¹ (after 1h)	(after 1h)
Re-ac	tivation by	Re-activation by NiP addition	u.				
47	50+50	30	25.04 ± 2.90	83.47 ± 9.66	26.96 ± 2.70	244.59 ± 24.46	24.46 ± 2.45
Re-ac	tivation by	Re-activation by 4-MBA addition	lition				
48	50	30+30	$30+30$ 13.47 ± 2.40	22.44 ± 3.99	16.97 ± 1.70	230.21 ± 12.92	23.02 ± 2.30
Re-ac	tivation by	NiP and 4-1	Re-activation by NiP and 4-MBA addition				
49	50+50	30+30	50+50 30+30 21.13 ± 2.21	35.21 ± 3.68	28.29 ± 2.83	227.86 ± 6.45	22.79 ± 2.28

B. Appendix to chapter 4

B.1 Supplementary text

Analysis of transient absorption spectroscopy data

Decays could be fit to a power law of the form $y = y_0 + |t - t_0|^{-b}$ (Figure B.5). t_0 represents the time offset between the trigger signal and the arrival of the excitation pulse to the sample, while y_0 is the absorbance offset at infinite times. The parameter b was about 0.35 and t_0 was typically 1 x 10⁻⁷ s. No trends with respect to the concentration of 4-MBA or **NiP** were observed.

In order to quantify the concentration of long-lived species, we used the amplitude at 3 μ s to estimate the initial population of excited species, and the amplitude at 100 ms for the population of long-lived species. The yield of the long-lived species was then calculated as:

$$\Phi_{long-lived} = \frac{A_{t=100ms}}{A_{t=3\mu s}} \tag{B.1}$$

The calculated yields are shown in Figure B.7. As mentioned in Chapter 4, the amplitude at 3 μ s will underestimate the excited state species concentration immediately after the excitation pulse. As a result, the yields calculated from equation B.1 are overestimated. Without data spanning femtoseconds to nanoseconds under similar excitation conditions, we are not able to quantify the total photogenerated excited species population. Despite the issues identified, the data clearly indicated

that 4-MBA affect the transient absorption signal in the microsecond timescale, while reaction with **NiP** occurs on timescales longer than 2 s.

Assuming dynamic quenching, we can estimate the bimolecular rate constant of hole transfer from $^{NCN}CN_x^*$ to 4-MBA (k_{rxn}) by first writing the expression for the yield for competitive kinetics:

$$\Phi_{long-lived} = \frac{k_{form}}{k_{1/2} + k_{form}}$$

$$(B.2)$$
where $k_{form} = k_0 + k_{rxn}[4 - MBA]$

 $k_{1/2}$ is the inverse of the characteristic lifetime ($\tau_{1/2}$) of the decay of ^{NCN}CN_x without scavengers. We then rearrange equation B.2 to calculate the rate of formation (k_{form}):

$$k_{form} = -\frac{\Phi_{long-lived}k_{1/2}}{\Phi_{long-lived} - 1}$$
(B.3)

Finally, a linear fit of the plot k_{form} vs. [4-MBA] yields k_{rxn} as the slope.

B.2 Supplementary figures

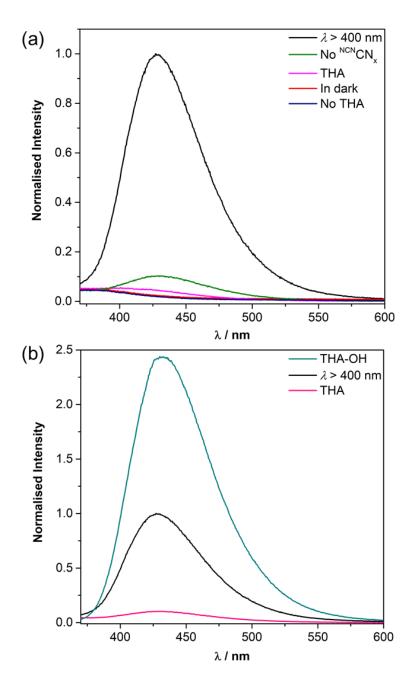


Figure B.1. (a) PL spectra recorded with spectrofluorometer equipped with an integrating sphere for ^{NCN}CN_x (5 mg) and terephthalic acid, THA (30 µmol) in KP_i solution (0.1 M, pH 4.5, 3 mL) after 1 h of irradiation ($\lambda > 400$ nm). The sample was centrifuged, and the emission spectrum was recorded for the supernatant with $\lambda_{ex} = 315$ nm and $\lambda_{em} = 360-600$ nm. Control experiments in the absence of THA, light, ^{NCN}CN_x and only THA are also shown. (b) PL spectra recorded for THA and 2-hydroxyterephthalic acid, THA-OH (0.05 µmol), as reference are also shown. Black trace in both plots corresponds to same conditions. Formation of < 0.02 µmol of THA-OH was detected.

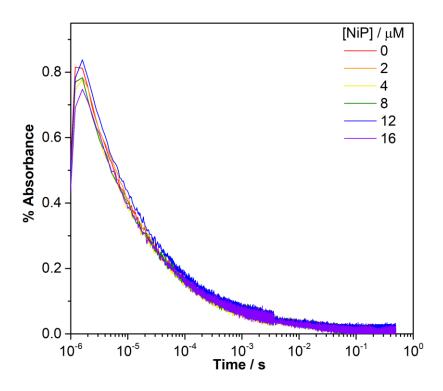


Figure B.2. Transient decays probed at λ = 750 nm of ^{NCN}CN_x (5 mg mL⁻¹) suspension in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) with varying concentrations of **NiP** following λ = 355 nm excitation.

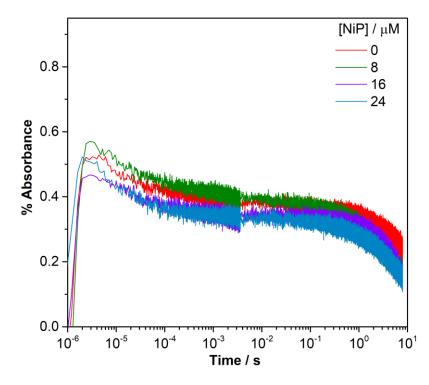


Figure B.3. Transient decays probed at $\lambda = 750$ nm of ^{NCN}CN_x (1.2 mg mL⁻¹) suspension in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) in the presence 4-MBA (10 mM) with varying concentrations of **NiP** following $\lambda = 355$ nm excitation. Note that changes in the absorbance past ~2 s are caused by settling of the heterogeneous dispersion.

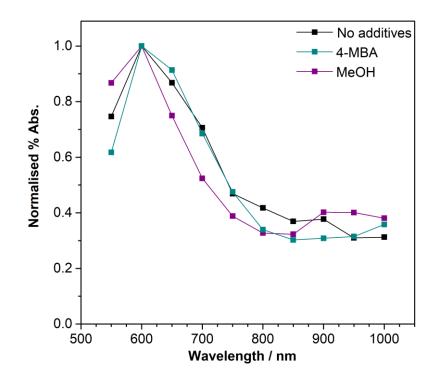


Figure B.4. Normalised transient absorption spectra of ^{NCN}CN_x (1.2 or 5 mg mL⁻¹) suspension in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C, black line), spectra in the presence of 4-MBA (10 mM) and in a MeOH solution (20% by volume) following λ = 355 nm excitation are also shown. Spectra were taken at 100 µs delay time.

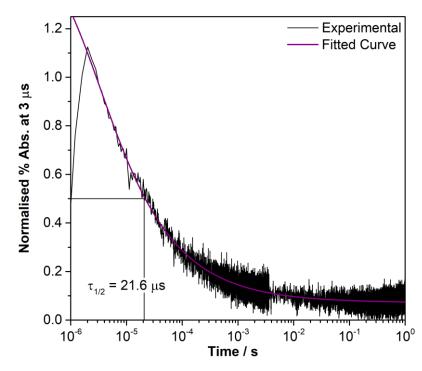


Figure B.5. Normalised transient decay of ^{NCN}CN_x (1.2 mg mL⁻¹) suspension in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) probed at λ = 750 nm following λ = 355 nm excitation. A power law fit (purple line) is overlaid to the experimental data (black line).

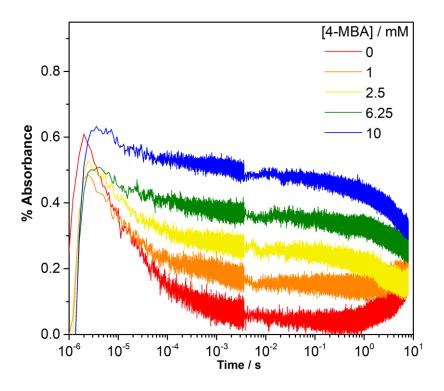


Figure B.6. Transient decays probed at $\lambda = 750$ nm of ^{NCN}CN_x (1.2 mg mL⁻¹) suspension in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) in the presence of varying concentrations of 4-MBA following $\lambda = 355$ nm excitation. Note that changes in absorbance past ~2 s are caused by settling of the heterogeneous dispersion.

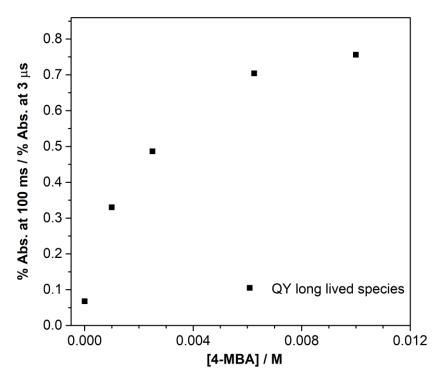


Figure B.7. Yield of formation of the long-lived electron species versus 4-MBA concentration.

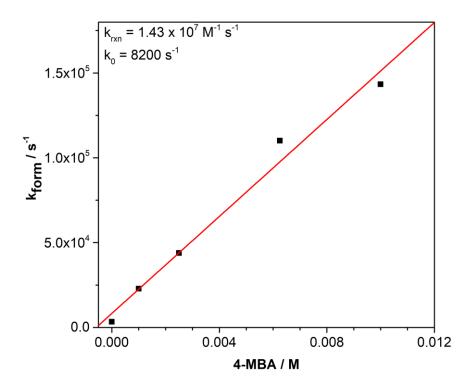


Figure B.8. Rate of formation of the long-lived electron species versus 4-MBA concentration. The rate constant of the reaction between $^{NCN}CN_x$ and 4-MBA is obtained from the slope of the linear fit, whereas the background rate is taken from the intercept.

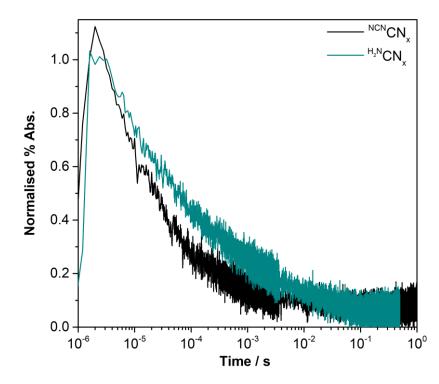
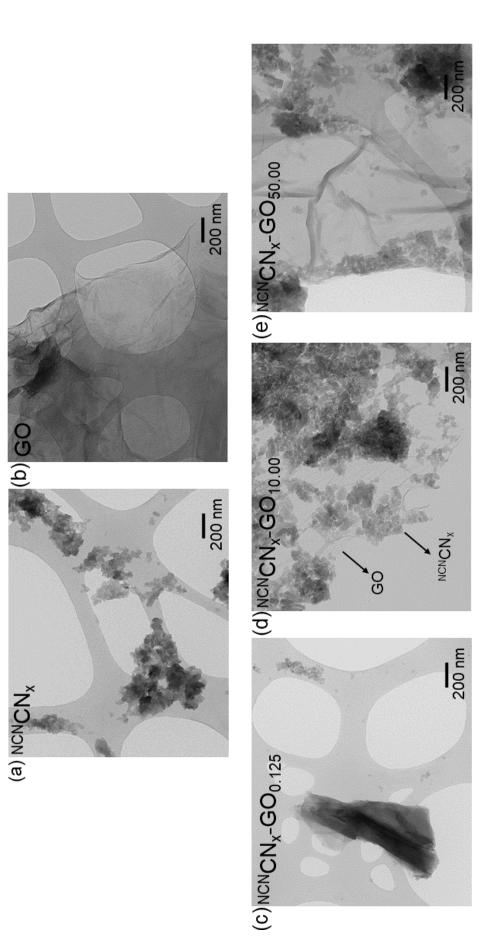


Figure B.9. Normalised (at 3 µs) transient decays probed at λ = 750 nm of ^{NCN}CN_x (1.2 mg mL⁻¹) and ^{H₂N}CN_x (1.2 mg mL⁻¹) suspensions in aqueous KP_i solution (0.02 M, pH 4.5, 25 °C) following λ = 355 nm excitation.

B.3 Supplementary tables

Table B.1. Two photoreactors were prepared with ^{NCN}CN_x (5 mg) and 4-MBA (30 µmol) in the absence of NiP in an aqueous KPⁱ solution (0.02 M, pH 4.5, 3 mL) and irradiated for 4 h under 1 sun (AM 1.5G, 25°C). The vials were then taken into the dark, NiP (50 nmol) was added to one of them and the H₂ production was monitored for both of the vials over the next 20 h.


Entry	Entry NiP / nmol	Aldehyde ± σ / μmol	Alcohol Conversion ± σ / (%)	H ₂ ±σ/ μmol	TON (24 h) $\pm \sigma$ / mol H ₂ NiP ⁻¹	Activity/ µmol H₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
Irradia	te for 4h	Irradiate for 4h and move to dark					
1	0	1.56 ± 0.40	5.18 ± 1.34	0.26 ± 0.03		9.34 ± 0.09	I
Irradia	ite for 4h,	Irradiate for 4h, move to dark and add NiP	I add NiP				
2	50	1.97 ± 0.65	6.50 ± 2.17	1.46 ± 0.15	1.46 ± 0.15 24.89 ± 2.49	11.71 ± 1.17	1.17 ± 0.12
			-				

BA (30 µmol) and NiP (50 nmol). The samples were irradiated under 1 sun (AM 1.5G, 100 mW cm⁻², 25 °C). Total solvent volume was 3 Table B.2. Solar light driven alcohol oxidation and proton reduction in the presence of ^{NCN}CN^x and NiP for mechanistic interpretation. Experiments were performed using ^{NCN}CN_x (5 mg) in aqueous KPⁱ solution (0.1 M, pH 4.5) containing 4-MBA (30 µmol), or benzyl alcohol, mL with a headspace volume of 4.74 mL.

Entry	Conditions	Gas detected	Aldehyde ± σ / μmol (after 4 h)	Alcohol Conversion ±	$H_2/D_2 \pm \sigma / \mu mol$	TON (4 h) ± σ / mol	Activity/ µmol H ₂ (g CN _x) ⁻¹ h ⁻¹ (after	TOF ± σ / h⁻¹ (after 1h)
				Q / (%)	(atter 4 n)		1n)	
Solven	Solvent Screening							
ę	H_2O , 4-MBA	H_2	9.85 ± 1.69	32.83 ± 5.64	11.85 ± 1.00	236.92 ± 20.09	675.92 ± 27.10	67.59 ± 2.71
4	D_2O , 4-MBA	D_2	8.18 ± 1.21	27.27 ± 4.03	10.80 ± 0.03	215.92 ± 0.56	489.78 ± 23.17	48.98 ± 2.32
Substra	Substrate Screening							
5	BA	H_2	6.63 ± 0.51	22.11 ± 1.71	7.19 ± 0.37	143.83 ± 7.46	445.71 ± 9.70	44.57 ± 0.97
6	D_2 -BA	H_2	6.33 ± 0.25	21.11 ± 0.84	6.26 ± 0.26	125.21 ± 5.25	366.38 ± 19.70	36.64 ± 1.97
Electro	Electron Acceptors							
7	N_2 , NiP	H_2	9.85 ± 1.69	32.83 ± 5.64	11.85 ± 1.00	236.92 ± 20.09	675.92 ± 27.10	67.59 ± 2.71
8	N_2 , No NiP	H_2	1.89 ± 1.04	6.29 ± 3.46	0	0	0	0
6	Air, No NiP	H_2	13.78 ± 1.15	45.94 ± 3.84	0	0	0	0
*All the	experiments sl	howed 100	% selectivity towa	rds aldehyde for	mation and no ca	*All the experiments showed 100% selectivity towards aldehyde formation and no carboxylic acid was detected.	detected.	

C. Appendix to chapter 5

C.1 Supplementary figures

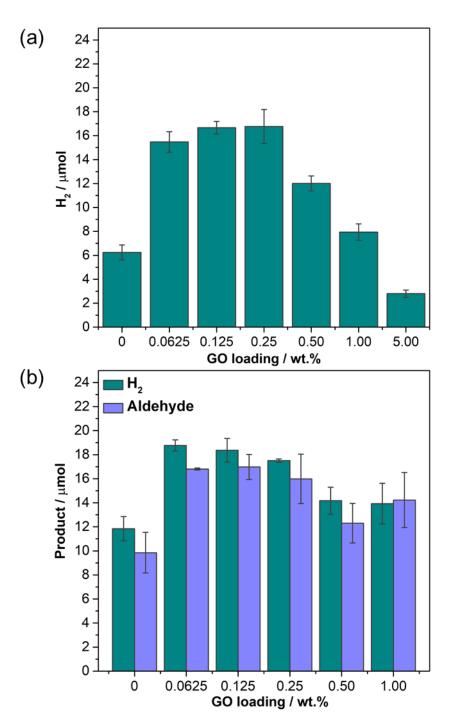


Figure C.2. Photocatalytic H₂ production in the presence of ^{NCN}CN_x (5 mg) with different GO loadings and **NiP** (50 nmol) in (a) aqueous EDTA solution (0.1 M, pH 4.5, 3 mL), and in (b) KP_i solution (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 μ mol), under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C) for 4 h.

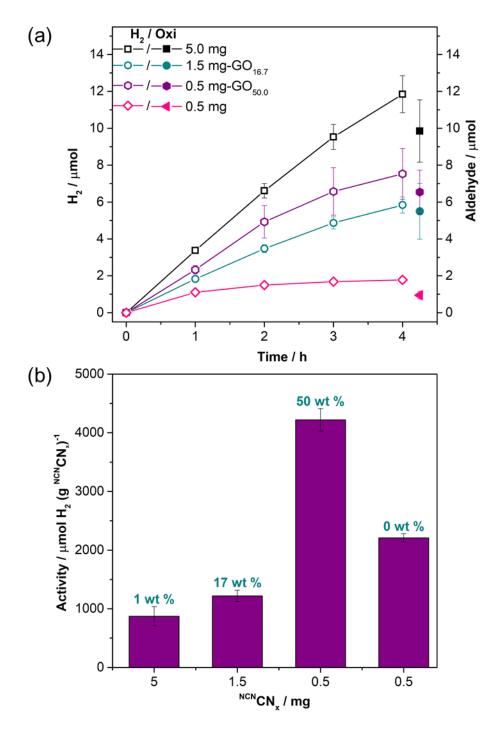


Figure C.3. (a) Photocatalytic H₂ production and 4-MBA oxidation in the presence of different amounts of ^{NCN}CN_x and GO loadings, 4-MBA (30 µmol) and NiP (50 nmol) in an aqueous KP_i solution (0.1 M, pH 4.5, 3 mL) under 1 sun irradiation (100 mW cm⁻², AM 1.5G, 25 °C). The pair of hollow and filled symbols of the same shape and colour corresponds to H₂ and aldehyde production, respectively. Amount of aldehyde formed is detected after 4 h of irradiation. (b) Bar chart comparing specific activity of ^{NCN}CN_x after 1 h of irradiation.

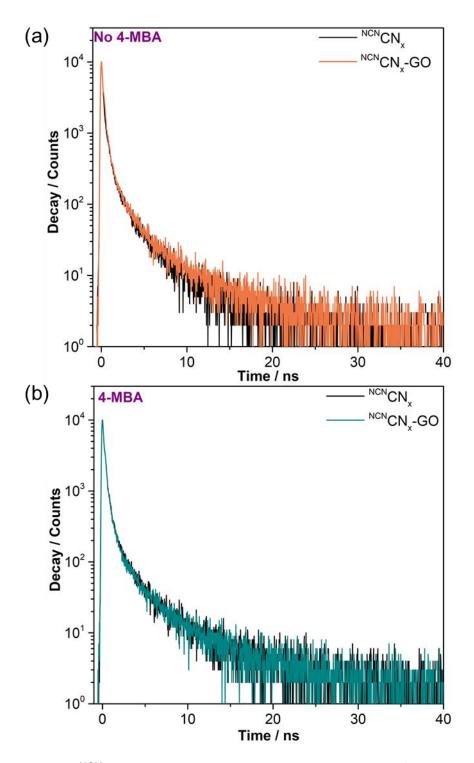


Figure C.4. tr-PL of ^{NCN}CN_x at the concentration of 1.67 mg mL⁻¹ dispersed in KP_i solution (0.1 M, pH 4.5) with 50 wt% GO loading in the (a) absence and (b) presence of 4-MBA (0.01 M), under Ar atmosphere, with λ_{ex} = 404 nm and λ_{em} = 490 nm at 25 °C.

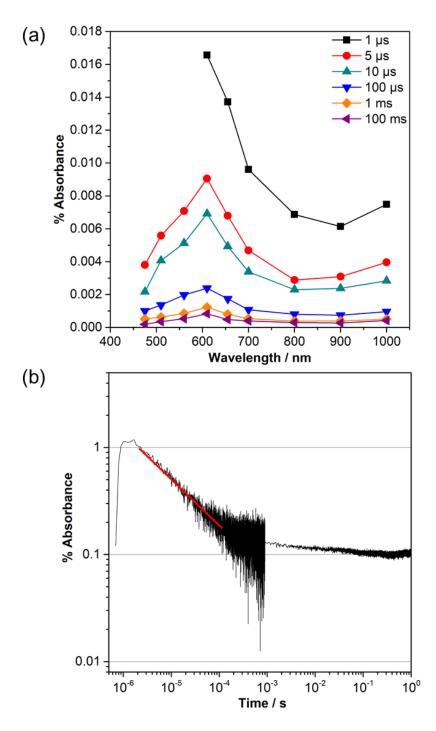
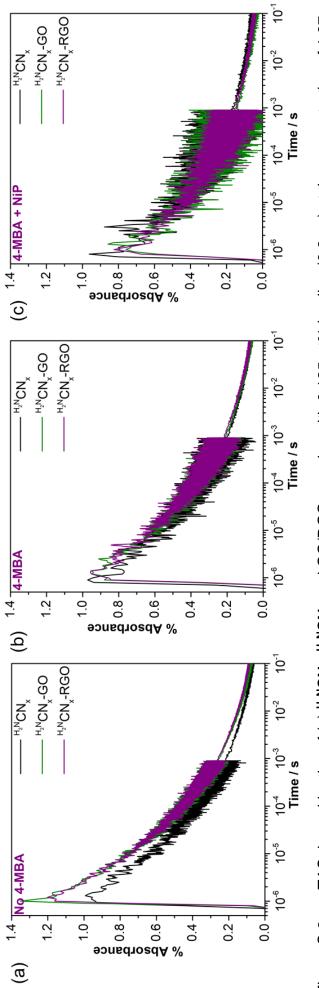



Figure C.5. (a) μ s-TAS spectra from 470 nm to 1000 nm at several time delays after photoexcitation of **NCNCN**_x at the concentration of 1.67 mg mL⁻¹ dispersed in KP_i solution (0.1 M, pH 4.5). (b) Typical μ s-TAS decay of 1.67 mg mL⁻¹ **NCNCN**_x dispersed KP_i solution (0.1 M, pH 4.5) monitored at $\lambda = 610$ nm under $\lambda = 355$ nm pulsed excitation at 25 °C. The power law fitting is overlaid in red and is of the form $y = y_0 +$ $|t - t_0|^{-b}$. t_0 represents the time offset between the trigger signal and the arrival of the excitation pulse to the sample, typically t₀ = 1x10⁻⁷ s. y₀ is the absorbance offset at infinite times and the b value is 0.43.

mg mL⁻¹ dispersed in KPi solution (0.1 M, pH 4.5) monitored at $\lambda = 800$ nm under $\lambda = 355$ nm pulsed excitation, (a) without 4-MBA, (b) with Figure C.6. µs-TAS decay kinetics of (a) ^{H₂N}CN_x, ^{H₂N}CN_x and GO/RGO samples with 0.125 wt% loading (6.3 µg) at the concentration of 1.67 4-MBA (0.01 M) and (c) with 4-MBA (0.01 M) and NIP (50 nmol) in KPi solution at 25 °C.

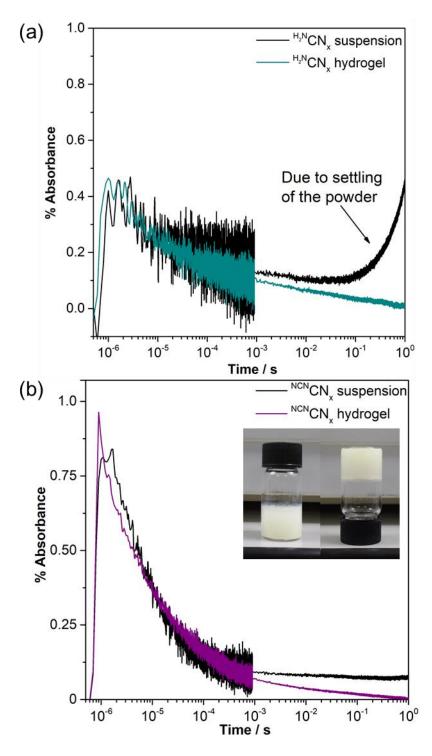


Figure C.7. μ s-TAS decay kinetics monitored at the concentration of 1.67 mg mL⁻¹ for a) ^{H₂N}**CN**_x and b) ^{NCN}**CN**_x suspensions, and in NaDC (13.8 mg mL⁻¹) hydrogel, in KP_i solution (0.1 M, pH 4.5) under Ar, monitored at λ = 1000 nm (^{H₂N</sub>**CN**_x) or 610 nm (^{NCN}**CN**_x) with laser pulse excitation at λ = 355 nm at 25 °C. (b) Inset: Photograph of hydrogel (50 mg mL⁻¹) prepared from NaDC and ^{NCN}**CN**_x powder.}

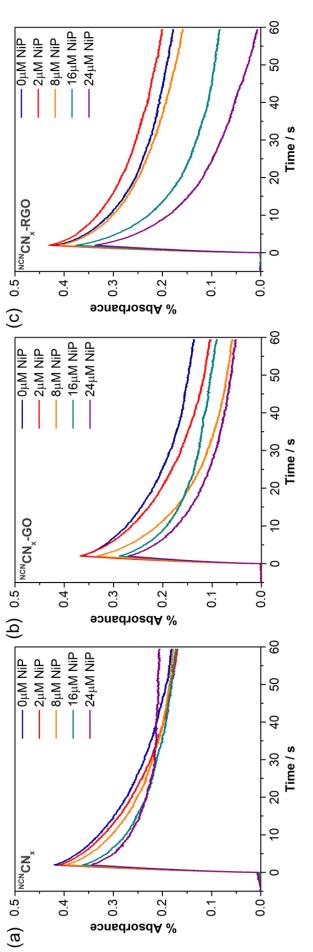
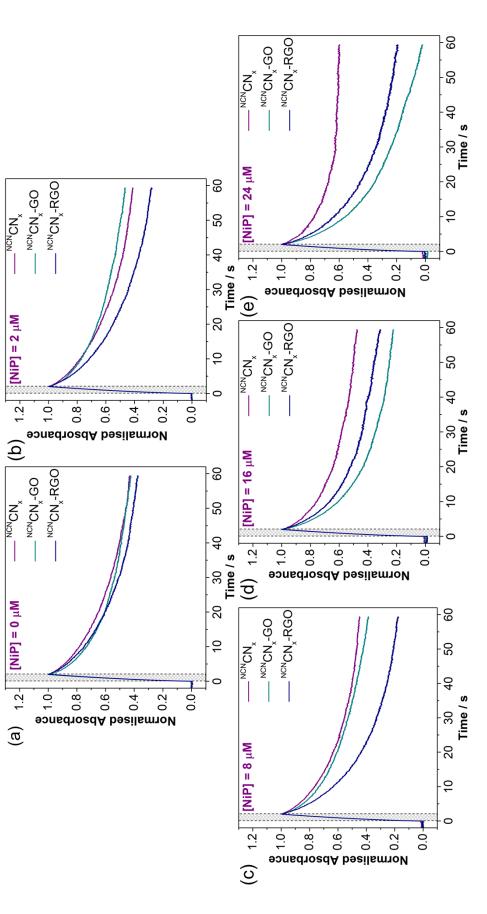
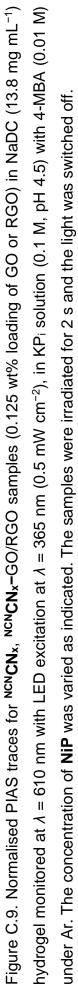




Figure C.8. PIAS of (a) ^{NCN}CN_x, (b) ^{NCN}CN_x-GO, (c) ^{NCN}CN_x-RGO samples with 0.125 wt% GO and RGO loading (6.3 µg) in NaDC (13.8 M) and different concentrations of NiP, under Ar at 25 °C. The samples were only irradiated for 2 s and the absorbance was monitored mg mL⁻¹) hydrogel monitored at 610 nm with LED excitation at λ = 365 nm (0.5 mW cm⁻²), in KP_i solution (0.1 M, pH 4.5) with 4-MBA (0.01 during irradiation and for the next 58 s.

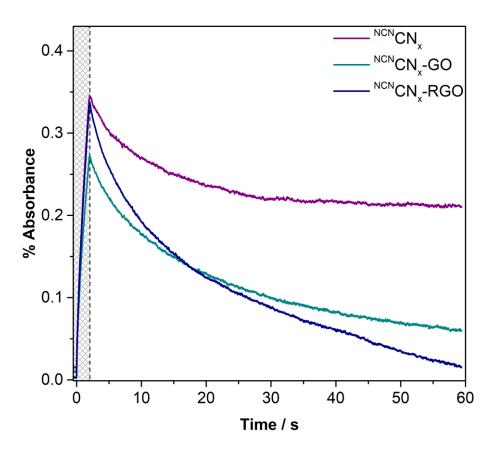
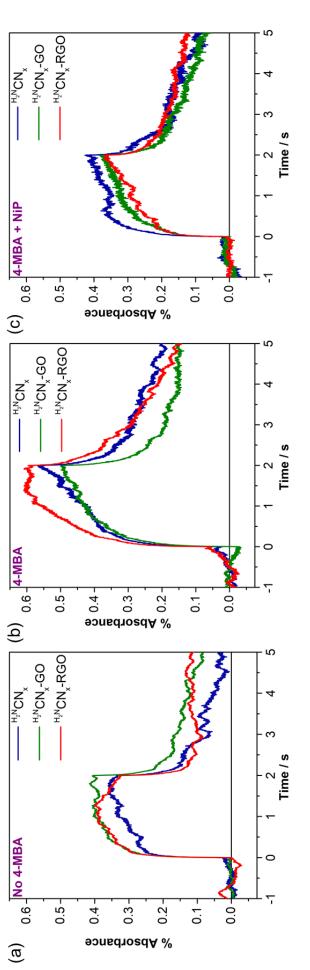



Figure C.10. PIAS of ^{NCN}CN_x, ^{NCN}CN_x–GO and ^{NCN}CN_x–RGO samples with 0.125 wt% loading (6.3 µg) in NaDC (13.8 mg mL⁻¹) hydrogel monitored at 610 nm with LED excitation at λ = 365 nm (0.5 mW cm⁻²), in KP_i solution (0.1 M, pH 4.5) with 4-MBA (0.01 M) and **NiP** (24 µM), under Ar at 25 °C. The samples were only irradiated for 2 s and the absorbance was monitored during irradiation and for the next 58 s.

with 4-MBA and (c) with 4-MBA (0.01 M) and NiP (50 nmol) monitored at 800 nm at LED excitation of λ = 365 nm (0.5 mW cm⁻²), under Ar Figure C.11. PIAS of H2NCNx and GO/RGO hybrid samples with 0.125 wt% loading (6.3 µg) recorded in KPi solution (a) without 4-MBA (b) at 25 °C. The samples were only irradiated for 2 s and the absorbance was monitored during irradiation and for the next 5 s.

C.2 Supplementary tables

Table C.1. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production in the presence of ^{NCN}CN_x (5 mg) and NiP (50 nmol) in EDTA (0.1 M, pH 4.5) solution with different GO loadings. Control experiments in the absence of GO, NCNCNx and in the presence of reduced RGO were also conducted. Total solvent volume was 3 mL with a headspace volume of 4.74 mL.

Entry	GO loading /	$H_2 \pm \sigma / \mu mol$	TON (4 h) $\pm \sigma$ / mol	Activity / µmol H ₂ (g	TOF $\pm \sigma / h^{-1}$
	Wt%	(atter 4 h)		CN _x) ⁻¹ h ⁻¹ (atter 1h)	(atter 1h)
GO loading	ing		-		
1	0	6.24 ± 0.62	124.86 ± 0.28	378.17 ± 8.22	37.82 ± 0.82
2	0.0625	16.16 ± 0.90	323.24 ± 17.90	1032.29 ± 81.50	103.23 ± 8.15
e	0.125	17.40 ± 0.55	348.00 ± 10.96	1162.54 ± 29.06	116.25 ± 2.91
4	0.25	17.51 ± 1.49	350.27 ± 29.71	1056.02 ± 142.38	105.60 ± 14.24
5	0.50	12.54 ± 0.65	250.81 ± 13.07	776.97 ± 69.38	77.70 ± 6.94
6	1.00	8.30 ± 0.71	165.93 ± 14.30	549.24 ± 35.60	54.92 ± 3.56
7	5.00	2.92 ± 0.32	58.4 ± 6.35	251.05 ± 27.14	25.10 ± 2.71
Control I	Control Experiments				
8	GO, 0.125	0	0	0	0
	A > 495 nm				
6	GO, 0.125	0	0	0	0
	(No ^{NCN} CN _x)				
10	RGO, 0.125 ^[a]	16.11 ± 0.28	322.20 ± 5.66	1023.97 ± 11.37	102.40 ± 1.14
11	RGO, 0.125	0	0	0	0
	(No ^{NCN} CN _x)				

^[a] GO replaced by RGO.

(lomu	in KPi solution (nmol) in KPi solution (0.1 M, pH 4.5) containing 4-MBA	taining 4-MBA (30	umol) with differ	ent GO loadings. Co	(30 µmol) with different GO loadings. Control experiments in the absence of GO,	e absence of GO,
NCNCN	Ix and in the pres	sence of RGO were	elso conducted. T	otal solvent volur	me was 3 mL with a	^{NCN} CN× and in the presence of RGO were also conducted. Total solvent volume was 3 mL with a headspace volume of 4.74 mL.	74 mL.
Entry	GO loading / wt%	Aldehyde ± σ / µmol (after 4 h)	Alcohol Conversion ± σ / (%)	H₂ ± σ / μmol (after 4 h)	TON (4 h) ± σ / mol H ₂ NiP ⁻¹	Activity / µmol H₂ (g CN _x)⁻¹h⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
GO si	GO screening						
12	0	9.85 ± 1.69	32.83 ± 5.64	11.85 ± 1.00	236.92 ± 20.09	675.92 ± 27.10	67.59 ± 2.71
13	0.0625	16.81 ± 0.09	56.04 ± 0.29	18.77 ± 0.46	375.31 ± 9.27	1191.80 ± 30.60	119.18 ± 3.06
14	0.125	16.98 ± 1.05	56.60 ± 3.48	18.37 ± 0.99	367.40 ± 19.74	1158.82 ± 29.21	115.88 ± 2.92
15	0.25	15.99 ± 2.05	53.29 ± 6.84	17.51 ± 0.14	350.21 ± 2.71	1073.18 ± 14.43	107.32 ± 1.44
16	0.50	12.30 ± 1.64	41.01 ± 5.47	14.17 ± 1.13	283.43 ± 22.54	895.77 ± 54.16	89.58 ± 5.42
17	1.00	14.23 ± 2.29	47.43 ± 7.64	13.93 ± 1.69	278.63 ± 33.81	874.14 ± 162.81	87.41 ± 16.28
18	5.00	4.83 ± 0.07	16.1 ± 0.24	3.33 ± 0.73	66.70 ± 14.64	294.57 ± 45.30	29.46 ± 4.53
Contr	Control Experiments						
19	GO, 0.125	0	0	0	0	0	0
	λ > 495 nm						
20	GO, 0.125 (No ^{NCN} CN _x)	0	0	0	0	0	0
21	RGO, 0.125 ^[a]	15.11 ± 0.84	50.38 ± 2.79	16.53 ± 0.81	330.69 ± 16.17	1216.13 ± 54.60	121.61 ± 5.46
22	RGO, 0.125 (No ^{NCN} CN _x)	0	0	0	0	0	0
()							

Table C.2. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg) and NIP (50

^[a] GO replaced by RGO.

168

Table C.3. Solar light driven (AM 1.5G, 100 mW cm ⁻² , 25 °C) H ₂ and aldehyde production in the presence of different amount of ^{NCN} CN _x
loadings and NiP (50 nmol) in KPi (0.1 M, pH 4.5) containing 4-MBA (30 µmol) with different GO loadings. Total solvent volume was 3 mL
with a headspace volume of 4.74 mL.

oading / wt%	/ wt% h) wt%	: σ / Alconol ir 4 Conversion ± σ / (%)	H ₂ ± σ / μmol (after 4 h)	1 ON (4 h) ± σ / mol H ₂ NiP ⁻¹	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h⁻¹ (after 1h)
0.95	0.95 ± 0.19	3.17 ± 0.64	1.78 ± 0.14	35.65 ± 2.84	2208.72 ± 71.24	22.09 ± 0.71
50.00 6.54 ± 1.19	1.19) 21.80 ± 3.96	7.53 ± 1.38	150.53 ± 27.51	4654.93 ± 448.37	46.55 ± 4.48
$16.70 5.50 \pm 1.51$	1.51	18.33 ± 5.03	5.84 ± 0.44	116.76 ± 8.81	1219.96 ± 97.99	36.60 ± 2.94

Table C.4. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ and aldehyde production in the presence of ^{NCN}CN_x (5 mg) loadings and NIP (50 nmol) in KPi (0.1 M, pH 4.5) containing 4-MBA (30 µmol) in the presence of 0.125 wt% GO loading (6.3 µg) with different sizes of GO. Total solvent volume was 3 mL with a headspace volume of 4.74 mL.

Entry	GO size / µm	Aldehyde ± ơ / µmol (after 4 h)	Aldehyde ± σ / Alcohol µmol (after 4 h) Conversion ± σ / (%)	H₂ ± σ / μmol (after 4 h)	TON (4 h) ± σ / mol H ₂ NiP ⁻¹	Activity / µmol H₂ (g CN _x)⁻¹h⁻¹ (after 1h)	TOF ± σ / h⁻¹ (after 1h)
GO si:	GO size screening	ning					
26	< 1	15.92 ± 1.04	53.06 ± 3.47	19.94 ± 1.06	398.79 ± 21.17	1238.23 ± 70.27	123.82 ± 7.03
27	< 2	14.73 ± 0.75	49.10 ± 2.51	20.11 ± 0.91	402.21 ± 18.21	1770.20 ± 18.79	177.02 ± 1.88
28	2-5	16.98 ± 1.05	56.60 ± 3.48	18.37 ± 0.99	367.40 ± 19.74	1158.82 ± 29.21	115.88 ± 2.92

Table C.5. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production in the presence of H₂NCN_x (5 mg) and NiP (50 nmol) in EDTA (0.1 M, pH 4.5) with different GO loadings. Control experiments in the absence of GO, ^{H₂N}CN_x and in the presence of RGO were also conducted. Total solvent volume was 3 mL with a headspace volume of 4.74 mL.

wt%wt%(after 4 h)GO loading 29 0290 2.05 ± 0.09 300.125 2.58 ± 0.22 311.00 3.03 ± 0.44 325.00 2.46 ± 0.21 33GO, 1.00 0 34RGO, 1.00 0 35RGO, 1.00 0	umol TON (4 h) ± σ /	Activity / µmol H ₂ (g CN _x) ⁻¹ h ⁻¹	TOF $\pm \sigma / h^{-1}$
D loading 0 0 0 1.00 0.125 5.00 5.00 mtrol Experiments GO, 1.00 RGO, 1.00 RGO, 1.00 RGO, 1.00 RGO, 1.00	h) mol H ₂ NiP ⁻¹	(after 1h)	(after 1h)
0 0.125 1.00 5.00 60, 1.00 (No ^{NCN} CN _x) RGO, 1.00 ^[a] RGO, 1.00			_
0.125 1.00 5.00 6.0, 1.00 (No ^{NCN} CN _X) RGO, 1.00 ^[a] RGO, 1.00	40.92 ± 1.75	82.34 ± 14.21	8.23 ± 1.42
1.00 5.00 60, 1.00 (No ^{NCN} CN _X) RGO, 1.00 ^[a] RGO, 1.00	51.68 ± 4.37	135.16 ± 29.38	13.52 ± 2.94
5.00 Introl Experiments GO, 1.00 (No ^{NCN} CN _x) RGO, 1.00 ^[a] RGO, 1.00	60.68 ± 8.87	210.07 ± 34.43	21.01 ± 3.44
ntrol Experiments GO, 1.00 (No ^{NCN} CN _x) RGO, 1.00 ^[a] RGO, 1.00	49.21 ± 4.12	111.51 ± 3.02	11.15 ± 0.30
GO, 1.00 (No ^{NCN} CN _x) RGO, 1.00 ^[a] RGO, 1.00			
(No ^{NCN} CN _X) RGO, 1.00 ^[a] RGO, 1.00	0	0	0
RGO, 1.00 ^[a] RGO, 1.00			
	104.36 ± 14.24	373.65 ± 61.41	37.36 ± 6.14
	0	0	0
(No NCNCNx)			

al GO replaced by RGO.

Table C.6. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ and aldehyde production in the presence of ^{H₂NCN_x</sub> (5 mg) and NiP (50} nmol) in KPi (0.1 M, pH 4.5) containing 4-MBA (30 µmol) with different GO loadings. Control experiments in the absence of GO, H2NCNx and in the presence of RGO were also conducted. Total solvent volume was 3 mL with a headspace volume of 4.74 mL.

Entry	GO loading / wt%	Aldehyde ± σ / µmol (after 4 h)	Alcohol Conversion ± σ / (%)	H ₂ ± σ / μmol (after 4 h)	TON (4 h) ± σ / mol H₂ NiP⁻¹	Activity / µmol H₂ (g CN _x)⁻¹h⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
GO sci	GO screening						
36	0	1.17 ± 0.32	3.89 ± 1.06	1.43 ± 0.10	28.53 ± 2.07	116.90 ± 3.81	11.69 ± 0.38
37	0.125	2.55 ± 0.41	8.50 ± 1.38	3.08 ± 0.39	61.50 ± 7.82	282.52 ± 23.97	28.25 ± 2.40
38	0.50	1.72 ± 0.20	5.74 ± 0.66	2.22 ± 0.27	44.43 ± 5.39	282.57 ± 21.00	28.26 ± 2.10
39	1.00	1.29 ± 0.29	4.29 ± 0.97	1.09 ± 0.05	21.57 ± 1.02	96.25 ± 10.88	9.62 ± 1.09
Contro	Control Experiments						
40	GO, 1.00 (No ^{NCN} CN _x)	0	0	0	0	0	0
41	RGO, 1.00 ^[a]	2.04 ± 1.10	6.80 ± 3.68	2.76 ± 0.68	55.18 ± 13.50	305.62 ± 64.29	30.56 ± 6.43
42	RGO, 1.00 (No ^{NCN} CN _x)	0	0	0	0	0	0
		<i></i>					

^[a] GO replaced by RGO.

for 30 min, 2 h and 4 h. The vials were then moved into dark, NiP (50 nmol in KPi solution) was injected and the amount of H2 and aldehyde GO/RGO (0.125 wt%; 6.3 µg) hybrids in the presence of 4-MBA (30 µmol) in an aqueous KPi solution (0.1 M, pH 4.5) without NiP. Total Table C.7. Charging and discharging experiments were executed with a photoreactor containing NCNCNx (5 mg) and NCNCNx (5 mg) solvent volume was 3 mL with a headspace volume of 4.74 mL. The samples were irradiated under 1 sun (AM 1.5G, 100 mW cm⁻², 25 °C) production was monitored.

Entry	GO loading / wt%	Aldehyde ± σ / μmol (after 4 h)	Alcohol Conversion ± σ / (%)	H ₂ ± σ / μmol (after 4 h)	TON (4 h) ± σ / mol H₂ NiP⁻¹	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹ (after 1h)	TOF ± σ / h ⁻¹ (after 1h)
30 mii	30 mins irradiation						
43	0	0.70 ± 0.10	2.34 ± 0.35	0.79 ± 0.07	15.79 ± 1.37	155.28 ± 17.56	15.53 ± 1.76
44	0.125	1.46 ± 0.23	4.87 ± 0.76	1.07 ± 0.09	21.48 ± 1.88	205.65 ± 20.64	20.56 ± 2.06
45	RGO, 0.125 ^[a]	1.32 ± 0.42	4.39 ± 1.40	0.94 ± 0.12	18.76 ± 2.32	181.60 ± 21.65	18.16 ± 2.16
2 h irr	2 h irradiation						-
46	0	0.97 ± 0.21	3.22 ± 0.68	1.05 ± 0.11	21.03 ± 2.27	189.50 ± 10.35	18.95 ± 1.03
47	0, 2h in dark	1.00 ± 0.20	3.33 ± 0.67	1.06 ± 0.06	21.17 ± 1.16	165.50 ± 3.70	16.55 ± 0.37
48	0.125	1.92 ± 0.16	6.40 ± 0.52	1.29 ± 0.03	25.74 ± 0.52	244.57 ± 4.21	24.46 ± 0.42
49	RGO, 0.125 ^[a]	1.60 ± 0.16	5.32 ± 0.54	1.28 ± 0.03	25.63 ± 0.64	251.44 ± 4.04	25.14 ± 0.40
4 h irr	4 h irradiation						
50	0	1.55 ± 0.12	5.15 ± 0.40	2.25 ± 0.27	44.97 ± 5.48	189.15 ± 22.18	18.91 ± 2.22
51	0.125	1.79 ± 0.28	5.97 ± 0.94	2.22 ± 0.10	44.39 ± 2.07	197.51 ± 3.88	19.75 ± 0.39
52	RGO, 0.125 ^[a]	1.74 ± 0.22	5.79 ± 0.73	2.29 ± 0.19	45.78 ± 3.73	201.74 ± 27.08	20.17 ± 2.71
12 h ii	12 h irradiation						
53	0	1.89 ± 0.24	5.93 ± 0.66	2.19 ± 0.19	43.75 ± 3.94	229.02 ± 24.00	20.17 ± 2.71

^[a] GO replaced by RGO.

NCNCNx-GO/RGO (same order as in Table S7). The calculations were based on the assumptions that 2 trapped radicals are used to produce Table C.8. Calculation of the number of radicals per heptazine unit generated during charging and discharging experiments of NCNCNx and one molecule of H₂ and no other decay pathway is available for the radicals.¹⁸ Each vial contained 5 mg of ^{NCN}CN_x with a repeating heptazine unit of 249 g mol⁻¹, which corresponded to 20 µmol of NCN-heptazine units.

Entry	GO loading / wt%	$H_2 \pm \sigma / \mu mol$	Calculated radicals /	Charge accumulated
30 mins irradiation	iation			
54	0	0.79 ± 0.07	1.58 ± 0.14	7.9
55	0.125	1.07 ± 0.10	2.14 ± 0.20	10.7
56	RGO, 0.125 ^[a]	0.94 ± 0.12	1.88 ± 0.24	9.4
2 h irradiation				
57	0	1.05 ± 0.11	2.10 ± 0.22	10.5
58	0, 2 h in dark	1.06 ± 0.06	2.12 ± 0.12	10.6
59	0.125	1.29 ± 0.03	2.58 ± 0.06	12.9
60	RGO, 0.125 ^[a]	1.28 ± 0.03	2.56 ± 0.06	12.8
4 h irradiation	-			
61	0	2.25 ± 0.27	4.50 ± 0.54	22.5
62	0.125	2.22 ± 0.10	4.44 ± 0.20	22.2
63	RGO, 0.125 ^[a]	2.29 ± 0.19	4.58 ± 0.38	22.9
[a] GO renlace	HV RGO ^[b] Radic	als calculated fror	^[a] GO replaced by RGO ^[b] Radicals calculated from generated H ₂ in dark phase	ese

Radicals calculated from generated Π_2 in dark phase. GO replaced by RGO.

D. Appendix to chapter 6

D.1 Supporting figures

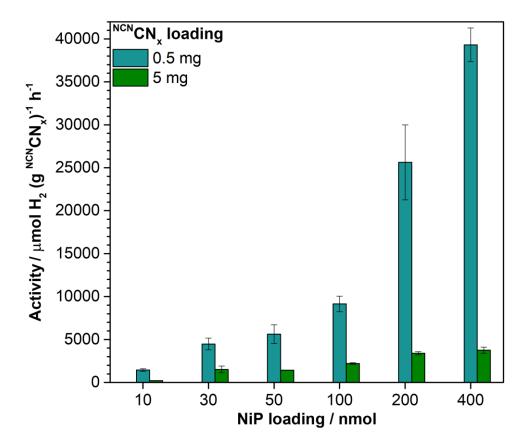


Figure D.1. Monitoring the specific H₂ production activities with activated ^{NCN}CN_x (0.5 or 5 mg) at different **NiP** loadings in KP_i solution (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) under simulated solar light irradiation (100 mW cm⁻², AM 1.5G, 25 °C).

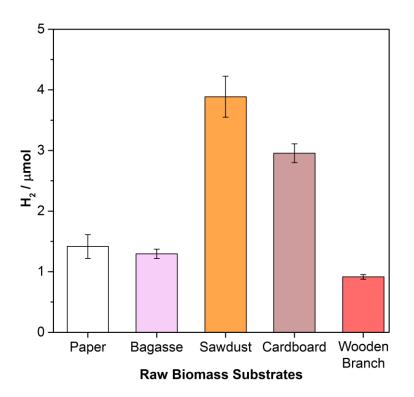


Figure D.2. Photocatalytic H₂ production using activated ^{NCN}CN_x (5 mg) and NiP (50 nmol) with raw biomass substrates (100 mg) in KP_i solution (0.1 M, pH 4.5, 3 mL) under simulated solar light irradiation for 24 h (100 mW cm⁻², AM 1.5G, 25 °C).

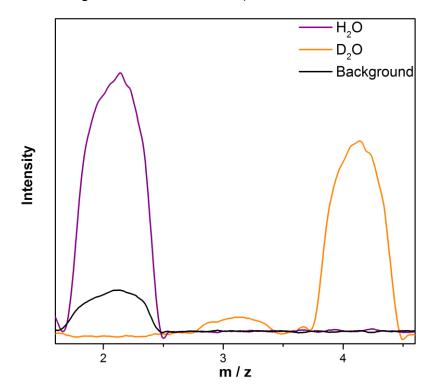


Figure D.3. Mass spectra of headspace gas recorded after 24 h of simulated solar light irradiation (AM 1.5G, 100 mW cm⁻², 25 °C) with activated ^{NCN}CN_x (5 mg) and H₂PtCl₆ (4 wt%) in the presence of α -cellulose (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL) solution prepared in H₂O or D₂O.

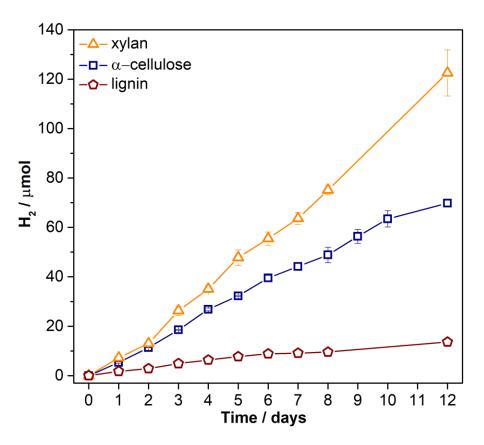


Figure D.4. Photocatalytic H₂ production using activated ^{NCN}CN_x (5 mg) with H₂PtCl₆ (4 wt%) and lignocellulose components (cellulose, xylan, lignin with 100, 50, 0.5 mg loading respectively) in KOH solution (10 M, pH 15, 3 mL) under simulated solar light irradiation (100 mW cm⁻², AM 1.5G, 25 °C) for 12 days. Cellulose, xylan and lignin samples were suspended in 10 M KOH and stirred for 24 h at 25 °C prior to injection of ^{NCN}CN_x and H₂PtCl₆.

D.2 Supporting tables

Table ncn CN ; photor	D.1. Simulate k (0.5 mg) an eactor with a	Table D.1. Simulated solar light driven (AM Norw CN x (0.5 mg) and NiP (10 nmol) in KP _i (photoreactor with a total volume of 7.74 mL	lriven (AM 1.56 ol) in KPi (0.1 ∣ of 7.74 mL.	3, 100 mW M, pH 4.5,	cm ⁻² , 25 3 mL) ơ	5 °C) H ₂ ontainin	produc g 4-MB	tion with bulk and 1, 10 a A (30 μmol). The susper	Table D.1. Simulated solar light driven (AM 1.5G, 100 mW cm ⁻² , 25 °C) H₂ production with bulk and 1, 10 and 30 min ultra-sonicated ^{NCN} CN _x (0.5 mg) and NiP (10 nmol) in KP _i (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 μmol). The suspension was assembled in a photoreactor with a total volume of <i>7.7</i> 4 mL.
Entry	Sonication time / min	TON cat / mol H ₂ (mol cat) ⁻¹ (4 h)	± σ / mol H ₂ (mol cat) ⁻¹	H ₂ / µmol (4 h)	±σ/ μmol	TOF / h ⁻¹	μ/ h/	Activity / µmol H₂ (g CNx) ⁻¹ h ⁻¹	$\pm \sigma /$ µmol H ₂ (g CN _x) ⁻¹ h ⁻¹
-	0	48.3	3.5	0.48	0.04	18.9	4.0	379	29
2	-	102	7	1.02	0.07	59.7	8.6	1190	170
e	×10	275	14	2.75	0.14	91.1	13.4	1820	270
4	30	74.8	7.4	0.75	0.07	42.6	7.1	852	142
Entry	ry Sonication Solvent	on TON cat / t mol H ₂ (mol cat) ⁻¹ (6 h)	Entry Sonication TON cat / $\pm \sigma$ / mol H ₂ Solvent mol H ₂ (mol cat) ⁻¹ (mol cat) ⁻¹ (6 h)	$H_2 H_2 / $	±σ/ μmol	TOF / h ⁻¹	μ 1-√	Activity / µmol H2 (g CNx) ⁻¹ h ⁻¹	±σ/ μmol H2 (g CNx) ⁻¹ h ⁻¹
5	ⁱ PrOH	222	21	2.22	0.21	92.7	2.6	1850	50
9	MeOH	235	14	2.35	0.14	101	4	2030	20
7	H ₂ O	247	31	2.47	0.31	119	10	2380	190
œ	KP	286	14	2.86	0.14	91.1	13.4	1820	270
6	*KP _.	262	16	2.62	0.16	72.7	5.2	1450	100
*Soni	cation concer	ntration of 5 n	*Sonication concentration of 5 mg mL ⁻¹ . KP _i and 5		-1 conc€	entration) were (mg mL ⁻¹ concentration were chosen as the optimised condition.	condition.

Table D.3. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with activated ^{NCN}CN_x (0.5 mg) at 0 °C, 25 °C, 40 °C and NiP (10 nmol) in KPi (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol). Control experiment for 10 min sonication of NCN using standard sonication bath at 40 °C is also shown.

Entry	Entry Sonication	TON cat /		H ₂ / µmol	±σ/	TOF / $\pm \sigma$ /	±σ/	Activity /	±α/
			(mol cat) ⁻¹	(4 h) µmol	lomu	۔ ۲	L L	µmol H2 (g CN _x) ⁻¹ h ⁻¹	µmol H₂ (g CN _x) ⁻¹ h ⁻¹
10	0	55.0	6.3		0.06		2.4 938	938	48
11	25	219	16	2.19	0.16 129	129	8	2580	160
12	40	275	14	2.75	0.14	91.1	13.4	13.4 1820	270
13	¥40	31.5	5.0	0.31	0.05 22.8	22.8	2.5	455	49
*Cooto#	¥Ctenderd conjection heth	504b							

*Standard sonication bath.

Table D.4. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with bulk and activated ^{NCN}CN_x (0.5 mg) and NIP (10 nmol) in KPi, (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) or in EDTA (0.1 M, pH 4.5, 3 mL) solution.

Entry Solvent	ent ^{NCN} CN _x	TON cat / mol H ₂ (mol cat) ⁻¹ (4 h)	± σ / mol H ₂ (mol cat) ⁻¹	H ₂ / µmol (4 h)	±σ/	±σ/ TOF/ ±σ/ μmol h ⁻¹ h ⁻¹	±σ/ h ⁻¹	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹	±σ/ μmol H2 (g CN _x) ⁻¹ h ⁻¹
KP	Bulk	48.3	3.5	0.48	0.04	18.9	4.0	379	29
КР		275	14	2.75	2.75 0.14 91.1 13.4 1820	91.1	13.4	1820	270
EDTA	ш	56.4	10.8	0.56	0.11	22.8	2.2	456	43
EDTA	A Activated 173	173	0	1.73	0.02	70.2	4.2	1400	80

Table D.5. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with activated ^{NCNX} and NiP at various loadings in KP₁ (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol).

Ī							
± σ / μmol H ₂ (g CN _x) ⁻¹ h ⁻¹	100	410	160	620	1090	006	4370
Activity / µmol H₂ (g CNx) ⁻¹ h ⁻¹	3960	4140	1440	4360	5620	9140	25630
±α/ h-1	0.17	0.4	8.0	10.3	10.9	4.5	10.9
TOF / ±σ/ h ⁻¹ h ⁻¹	3.20	41.4	72.2	72.7	56.2	45.7	64.1
±σ/ μmol	0.02	0.24	0.14	0.89	1.90	1.7	2.7
H ₂ / µmol (6 h)	2.03	2.36	2.86	5.62	9.23	19.5	28.1
± σ / mol H ₂ (mol cat) ⁻¹	0.2	24	14	31	45	17	13
TON cat / mol H ₂ (mol cat) ⁻¹ (6 h)	20.3	236	286	206	193	195	140
CN _x / mg	0.1	0.1	0.5	0.5	0.5	0.5	0.5
NiP / nmol	100	10	10	30	50	100	200
Entry	18	19	20	21	22	23	24

Table D.6. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) simultaneous H₂ and 4-MBA oxidation to 4-MBAd with activated ^{NCN}CN_x and NiP at various loadings in KPi (0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol). Control experiments were also performed without NiP, ^{NCN}CN_x and in dark.

±σ/ %	0.6	0.2	1.6	3.5	4.7	3.7	3.1	0.2	0.00	0.00	81	0.00	,			0.00	
4-MBA Conversion / % (6 h)	99.2	99.5	18.3	32.5	56.8	80.8	97.1	99.5	0.00	0.00	383	0.00				0.00	
±α/	0.2	0.1	0.5	1.0	1.4	1.1	0.9	0.1	00.00	0.00	0.24	00.00				0.00	
4-MBAd / µmol (6 h)	29.8	29.9	5.5	9.7	17.0	24.2	29.1	29.8	0.00	0.00	1.15	0.00				0.00	
±σ / μmol H₂ (g CN _x) ⁻¹ h ⁻¹	1240	1970	25	67	380	20	100	190	0.33	0.16	0.23	I	0.00			0.00	
Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹	34480	39310	211	595	1520	1420	2220	3410	3.08	2.39	3.93	ı	0.00			0.00	
±σ/ h-1	2.1	0.3	12	17	19	2	5	4.8	0.10	0.05	0.07	0.00	0.00			0.00 0.00	
TOF / h ⁻¹	57.5	49.1	106	149	254	142	111	85.2	0.92	0.72	1.18	0.00	0.00			0.00	
±σ/ μmol	0.6	0.1	0.19	1.2	0.6	0.9	2.0	1.1	0.00	0.00	81	0.00	0.00			0.00	
H ₂ / µmol (6 h)	29.5	31.7	2.09	12.5	21.0	25.6	30.0	31.7	0.00	0.00	383	0.00	0.00			0.00	
± σ / mol H ₂ (mol cat) ⁻¹	2.0	0.3	19	62	20	18	20	6	0.00	0.00	0.24	0.00	0.00			0.00	
TON cat / mol H ₂ (mol cat) ⁻¹ (6 h)	98.4	79.2	209	625	701	512	300	158	0.00	0.00	1.15	0.00	0.00			0.00	
CN _x / mg	0.5	0.5	5	5	5	5	5	5	0.5	0.5	0.5	0	5			5	
NiP / nmol	300	400	10	20	30	50	100	200	0	FeCl ₃	NiCl ₂	50	50,	No 4-	MBA	50, doul	dark
Entry	25	26	27	28	29	30	31	32	33	34	35	36	37			38	

180

(0.1 M, pH 4.5, 3 mL) containing 4-MBA (30 µmol) in the absence of NiP. The samples were irradiated under 1 sun (100 mW cm⁻², Table D.7. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) dark H₂ production with bulk and activated ^{NCN}CN_x (5 mg) in KPⁱ solution AM 1.5G, 25 °C) for 30 min, 2 h or 4 h then moved to the dark and NiP (in KPi solution) was injected under anaerobic conditions.

Entry	NCNCN	TON cat / mol H ₂ (mol cat) ⁻¹	± σ / mol H ₂ (mol cat) ⁻¹	H ₂ / µmol	±σ/ μmol	TOF / h ⁻¹	+ α / h -1	Activity/ µmol H ₂ (g CN _x) ⁻¹ h ⁻¹	± σ / μmol H ₂ (g CN _x) ⁻¹ h ⁻¹	4-MBAd / µmol	±σ/	4-MBA Conversion/ %	±α/ %
0.5 h i	rradiation, m	0.5 h irradiation, move to dark and inject 50 nmol NiP	and inject 50	nmol N	Ŀ,								
39	Activated	24.1	1.4	1.20	0.07	22.5	1.3	225	13	0.86	0.24	2.87	0.81
40	Bulk	16.3	0.6	0.81	0.03	15.6	0.6	156	9	0.70	0.03	2.32	0.10
2 h irr	adiation, mo	2 h irradiation, move to dark and inject 50 nmol NiP	d inject 50 ni	nol NiP									
41	Activated	36.8	5.1	1.84	0.25	24.3	1.7	243	17	1.97	0.22	6.56	0.73
42	Bulk	34.2	0.7	1.71	0.03	19.5	1.2	195	12	1.60	0.16	5.33	0.53
4 h irr	adiation, mo	4 h irradiation, move to dark and inject 50 nmol NiP	d inject 50 ni	nol NiP									
43	Activated	54.0	4.1	2.70	0.20	26.9	0.9	269	6	3.24	0.71	10.81	2.37
44	Bulk	48.2	5.1	2.41	0.26	20.0	1.2	200	12	2.14	0.41	7.13	1.36
4 h irr	adiation, mo	4 h irradiation, move to dark and inject 100 nmol NiP	d inject 100 r	imol Ni	٩								
45	Activated	25.8	2.8	2.58	0.28	16.3	1.0	326	20	3.06	0.08	10.21	0.28
46	Bulk	25.6	2.9	2.56	0.29	12.2	0.5	244	10	2.32	0.24	7.72	0.80
	-												

181

different concentrations in KPi (0.1 M, pH 4.5, 3 mL) containing α-cellulose. A control experiment in the presence of visible light only Table D.8. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with bulk H₂NCN_x, bulk and activated ^{NCNCN_x} and NiP at irradiation ($\lambda > 400$ nm) was also performed.

Entry	Substrate loading / mg	CN _x type	CN _x loading / mg	NiP / nmol H ₂ / µmol (4 h)	H ₂ / µmol (4 h)	±σ/	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹	± σ / μmol H ₂ (g CN _x) ⁻¹ h ⁻¹
AM 1.	AM 1.5G filter							
47	20	NCNCN×	5	20	0.67	00.0	58.4	2.2
48	100	NCNCN _×	5	20	0.77	0.02	54.5	2.6
49	150	NCNCN _x	5	20	0.58	0.04	41.3	7.3
50	100	NCNCN _×	5	50	2.62	0.09	253	26
51	100	NCNCN _x	0.5	50	1.43	0.02	1690	100
52	100	Bulk ^{NCN} CN _x	5	50	1.91	0.07	132	4
53	100	Bulk H2NCNx	5	50	0.13	0.04	8.81	3.89
Visibl	Visible light only irradiation ($\lambda > 400 \text{ nm}$)	liation (λ > 400	(<i>uu</i> (
54	100	NCNCNX	5	50	1.10	0.03	48.6	4.3

Table D.9. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production using activated ^{NCN}CN_x (5 mg) and NIP (50 nmol) in the presence of lignocellulosic substrates (100 mg) in KPi (0.1 M, pH 4.5, 3 mL).

Entry	Substrate type	H ₂ / µmol (4 h)	±σ/ μmol	Activity / umol H ₂ (a CN _x) ⁻¹ h ⁻¹	±σ/ umol H₂ (α CN _x) ⁻¹ h ⁻¹	H ₂ / µmol (24 h)	±σ/ umol
		~	-	2			-
55	no substrate	0	0	0	0	0	0
56	α-cellulose	2.62	0.09	253	26	3.74	0.12
57	xylan	3.89	0.23	137	6	4.92	0.17
58	lignin	0	0	0	0	0	0
59	*lignin	0.20	0.03	40.8	6.8	0.42	0.03
60	cellobiose	8.03	0.68	511	54	14.2	1.7
61	glucose	13.9	0.3	1120	80	32.1	4.8
62	xylose	8.30	0.81	553	54	19.9	2.3
63	galactose	13.2	0.7	762	11	28.0	2.5
64	conifeyl alcohol	0	0	0	0	0	0
65	sinapyl alcohol	0	0	0	0	0	0
66	[‡] sinapyl alcohol	3.29	0.42	157	10	4.81	0.89
*0 £ mc	*0 5 mg lignin was used						

*0.5 mg lignin was used.

^{‡10} mg of sinapyl alcohol was used.

Table D.10. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production using activated ^{NCN}CN_x (5 mg) and NIP (50 nmol) in the presence of raw biomass substrates (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL).

Entry	Substrate type	H ₂ / µmol (4 h)	±σ/	Activity / µmol H₂ (g CN _x) ⁻¹ h ⁻¹	± σ / μmol H₂ (g CN _x) ⁻¹ h ⁻¹	H ₂ / µmol (24 h)	∓α/
67	sawdust	2.36	0.43	202	3.8	3.89	0.34
68	paper	0.85	0.04	42.7	2.0	1.42	0.20
69	cardboard	0.94	0.05	46.9	2.5	2.95	0.16
20	bagasse	0.70	0.08	34.8	3.8	1.30	0.08
11	wooden branch 0.71	0.71	0.01	35.7	0.3	0.91	0.04

Table D.11. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with activated ^{NCN}CN_x (5 mg) and NiP (50 nmol), H₂PtCl₆ (4 wt%) or H₈N₂MoS₄ (4 wt%) in the presence of α -cellulose (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL).

Entry	Catalyst	Activity /	±σ/	Time	H ₂ /	±σ/
,	oataiyot	μ mol H ₂ (g CN _x) ⁻¹ day ⁻¹	µmol H ₂ (g CN _x) ⁻¹ day ⁻¹	/ day	µmol	µmol
				-	(24 h)	
		- 10			a = 1	
72	NiP	748	24	1	3.74	0.12
				2	3.74	0.12
				3	3.74	0.12
				4	3.74	0.12
				5	3.74	0.12
				6	3.74	0.12
73	Pt	172	23	1	0.86	0.11
			·	2	2.40	0.12
				3	3.79	0.23
				4	5.12	0.12
				5	5.99	0.05
				6	7.30	0.15
				7	11.7	2.3
				8	12.8	2.4
				9	14.0	2.6
				10	15.7	3.3
				12	16.7	3.7
					L	
74	MoS ₂	356	6	1	1.75	0.13
				2	3.56	0.06
				3	4.72	0.23
				4	5.93	0.25
				5	6.88	0.37
				6	7.67	0.52

Table D.12. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production with activated ^{NCN}CN_x (5 mg) and H₂PtCl₆ (4 wt%) in the presence of α -cellulose (100 mg) in KP_i (0.1 M, pH 4.5, 3 mL) solution prepared in H₂O or D₂O.

Entry	Solvent	H ₂ or D ₂ / μmol (24 h)	± σ / μmol	k _H / k _D	k_H / k_D error
75	H ₂ O	0.86	0.11	1.48	0.00
76	D_2O	0.58	0.05	1.40	0.22

Table D.13. Monitoring the CO production after solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production using activated ^{NCN}CN_x (5 mg) with H₂PtCl₆ (4 wt%) and α -cellulose (100 mg) in 10 M KOH, pH 2 H₂SO₄, pH 4.5 and pH 7 KP_i solution (0.1 M, pH 4.5, 3 mL). All the samples were suspended in specified solutions and stirred for 24 h at 25 °C prior to injection of ^{NCN}CN_x and H₂PtCl₆.

Entry	Conditions	Time / day	CO / µmol	±σ/ µmol
77	H ₂ SO ₄ , pH 2	1	0.00	0.00
		6	0.0120	0.0072
78	KP _i , pH 4.5	1	0.00	0.00
		6	0.0123	0.0049
79	KP _i , pH 7	1	0.00	0.00
		6	0.0280	0.0072
80	10 M KOH, pH 15	1	0.00	0.00
		6	0.00	0.00

Table D.14. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production using activated $^{NCN}CN_x$ (5 mg) with H₂PtCl₆ (4 wt%) and α -cellulose (100 mg) in 1, 5, 10 M KOH, pH 2 H₂SO₄, pH 4.5 and pH 7 KP_i solution (0.1 M, pH 4.5, 3 mL). All the samples were suspended in specified solution and stirred for 24 h at 25 °C prior to injection of $^{NCN}CN_x$ and H₂PtCl₆.

Entry	Solvent	Activity /	± σ /	Time	H ₂ /	±σ/
	and pH	µmol H ₂ (g CN _x) ⁻¹ day ⁻¹	µmol H ₂ (g CN _x) ⁻¹ day ⁻¹	/day	µmol	µmol
81	H ₂ SO ₄ , 2	178	5	1	0.89	0.03
		I	1	2	2.44	0.03
				3	3.97	0.06
				4	6.29	0.09
				5	7.76	0.35
				6	10.2	0.4
82	KP _i , 4.5	172	23	1	0.86	0.11
	1	I		2	2.40	0.12
				3	3.79	0.23
				4	5.12	0.12
				5	5.99	0.05
				6	7.30	0.15
83	KP _i , 7	98.5	2.7	1	0.49	0.01
				2	3.45	0.28
				3	5.16	0.19
				4	5.82	0.51
				5	6.31	0.67
				6	7.75	1.02
84	1 M KOH	497	32	1	2.49	0.16
				2	4.33	0.05
				3	5.94	0.09
				4	7.40	0.40
				5	8.22	0.47
				6	9.82	0.23
85	5 M KOH	458	24	1	2.29	0.12
				2	5.17	0.30
				3	9.48	0.41
				4	13.9	1.0
				5	17.5	1.3
		1	1	6	20.7	2.0
86	10 M KOH	1070	50	1	5.33	0.26
				2	11.4	0.03
				3	18.5	0.2
				4	26.8	0.6
				5	32.3	0.3
				6	39.5	1.1

Table D.15. Solar light driven (AM 1.5G, 100 mW cm⁻², 25 °C) H₂ production using activated ^{NCN}CN_x (5 mg) with H₂PtCl₆ (4 wt%) and cellulose (100 mg), xylan (50 mg) or lignin (0.5 mg) in 10 M KOH. All the samples were suspended in 10 M KOH and stirred for 24 h at 25 °C prior to injection of ^{NCN}CN_x and H₂PtCl₆.

Entry	Substrate	Activity / µmol H₂ (g CN _x) ^{−1} day ^{−1}	± σ / μmol H ₂ (g CN _x) ⁻¹ day ⁻¹	Time /day	H₂ / µmol	±σ/ µmol
87	α-cellulose	1070	50	1	5.33	0.26
				2	11.4	0.0
				3	18.5	0.2
				4	26.8	0.6
				5	32.3	0.3
				6	39.5	1.1
				7	40.6	1.3
				8	48.9	3.1
				9	56.4	2.8
				10	63.5	3.3
				12	69.8	1.4
						1
88	xylan	1450	30	1	7.24	0.17
				2	13.0	0.3
				3	26.3	1.8
				4	35.1	1.4
				5	47.8	3.1
				6	55.5	2.7
				7	63.6	2.4
				8	75.1	1.8
				12	123	9
	l'ana in	050		4	4 75	0.00
89	lignin	350	11	1	1.75	0.06
				2	2.86	0.20
				3	4.87	0.37
				4 5	6.36 7.70	0.43
				5 6	7.70 8.85	0.63 0.74
				б 7	8.85 9.11	0.74
				8	9.11	0.76
				o 12	9.56	1.3
				12	13.0	1.5

Table D.16. Photoreactors were prepared using activated ^{NCN}CN_x (5 mg) with H₂PtCl₆ (4 wt%) and α -cellulose (1.65, 1,18 or 0.81 mg) in 10 M KOH. All the samples were suspended in 10 M KOH and stirred for 24 h at 25 °C prior to injection of ^{NCN}CN_x and H₂PtCl₆. Percentage conversion yields were calculated after irradiating (AM 1.5G, 100 mW cm⁻², 25 °C) the samples for 6 days.

Entry	α-Cellulose / mg	Anhydroglucose monomers ^[a] / µmol	Theoretical maximum H ₂ ^[b] / µmol	H ₂ / µmol	Conversion /%
90	1.65	10.2	122.2	14.4	11.8
91	1.18	7.28	87.3	11.3	13.0
92	0.81	5	60	13.2	22.0

^[a] Moles of anhydroglucose monomer units were calculated by dividing the total amount of α -cellulose used with the molecular mass of an anhydroglucose repeating unit (162.14 g mol⁻¹). ^[b] The theoretical maximum H₂ was calculated based on the assumption that maximum 12 equivalent of H₂ can be produced per anhydroglucose unit in α -cellulose structure.⁵

E. Reprinting permissions

ACS Publications Title: Most Trusted. Most Cited. Most Read.

Title:	Interfacial Engineering of a Carbon Nitride-Graphene Oxide-Molecular Ni Catalyst Hybrid for Enhanced Photocatalytic Activity
Author:	Hatice Kasap, Robert Godin, Chiara Jeay-Bizot, et al
Publication:	ACS Catalysis
Publisher:	American Chemical Society
Date:	Aug 1, 2018
Copyright © 20	18, American Chemical Society

If you're a copyright.com user, you can login to
user, you can login to
aber, you can regin co
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to <u>learn more?</u>

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com

 Title:
 Photoreforming of Lignocellulose into H2 Using Nanoengineered Carbon Nitride under Benign Conditions

 Author:
 Hatice Kasap, Demetra S. Achilleos, Ailun Huang, et al

 Publication:
 Journal of the American Chemical Society

 Publisher:
 American Chemical Society

 Date:
 Sep 1, 2018

 Copyright © 2018, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

Copyright © 2018 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

ACS Publications Title: Most Trusted. Most Cited. Most Read.

Theoretical Analysis of the Sequential Proton-Coupled Electron Transfer Mechanisms for H2 Oxidation and Production Pathways Catalyzed by Nickel Molecular Electrocatalysts Author: Laura E. Fernandez, Samantha Horvath, Sharon Hammes-Schiffer Publication: The Journal of Physical Chemistry C Publisher: American Chemical Society Date: Feb 1, 2012 Copyright © 2012, American Chemical Society

LOGIN If you're a copyright.com user, you can login to RightsLink using your copyright.com credentials. Already a RightsLink user or want to learn more?

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- · If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional
 uses are granted (such as derivative works or other editions). For any other uses, please
 submit a new request.

If credit is given to another source for the material you requested, permission must be obtained from that source.

Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>