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The transition to a secure low-carbon system is raising a set of uncertainties when planning the path to a reliable decarbonised
supply. The electricity sector is committing large investments in the transmission and distribution sector upon 2050 in order to
ensure grid resilience. The cost and limited flexibility of traditional approaches to 11 kV network reinforcement threaten to
constrain the uptake of low-carbon technologies. This paper investigates the suitability and cost-effectiveness of smart grid
techniques along with traditional reinforcements for the 11 kV electricity distribution network, in order to analyse expected
investments up to 2050 under different DECC demand scenarios. The evaluation of asset planning is based on an area of study
in Milton Keynes (East Midlands, United Kingdom), being composed of six 11 kV primaries. To undertake this, the analysis
used a revolutionary new model tool for electricity distribution network planning, called scenario investment model (SIM).
Comprehensive comparisons of short- and long-term evolutionary investment planning strategies are presented. The work helps
electricity network operators to visualise and design operational planning investments providing bottom-up decision support.

1. Introduction

Distribution networks are a key enabler for a low-carbon
future. In the UK, distribution network operators (DNOs)
are entering a period of significant changes due to UK energy
targets up to 2050 [1]. By 2020, it is expected that 15% of
its total demand will be from renewable energy sources
with a 20% reduction in greenhouse gas emissions and,
moreover, 80% reduction in greenhouse gas emissions by
2050. The challenges presented by the transition to a
low-carbon economy will directly impact the electricity
distribution network.

As for an increasing connection of distributed generators
and electrification of heat and transport, new approaches to
design, construct, and operate networks will be required
[2]. A more active management of local distribution

networks, interconnections, storage, or flexibility services
are some of the strategic propositions that will maximise
the full potential of the digital network revolution. In that
sense, the UK National Infrastructure Commission, the UK
regulator, OFGEM, and the Department of Business, Energy
and Industrial Strategy (BEIS) are contributing to the smart,
flexible energy system debate [3].

In 2010, OFGEM introduced RIIO, namely, setting
revenue using incentives to deliver innovation and outputs
[4]. This new performance-based pricing framework sought
to make network operators more consumer-centric encour-
aging longer-term thinking, greater innovation, and more
efficient delivery.

The RIIO framework has been applied to both gas
and electricity transmission and distribution networks. The
current price control (called “RIIO-1”) is the first generation
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(2015–2023) of controls under this new framework. As we
look forward towards the discussion of defining the price
control for RIIO-2 (2023–2031), we have to take account of
the dramatic changes and the increased complexity that are
underway in the energy sector, as well as the experience
and lessons learned, from RIIO-ED1 by DNOs.

In response to these challenges, DNOs are evaluating
the performance of novel intervention techniques along
with traditional reinforcements for future network planning
[5–7]. Furthermore, the deployment of these novel tech-
niques is expected to improve the quality of service [8].
The rising number of stakeholders in the electricity value
chain increases the complexity for asset planning. Besides
the number of decision makers, the energy sector is facing
a data revolution, and therefore, utilities of the future must
include in their planning capabilities the implementation of
information and communication technologies (ICTs).

Most network modelling tools, such as IPSA Power,
ETAP, or DINIS [9–11], perform power flow analysis and
look after overloads and stress points of the network. Their
approach can be considered static, in the sense that they
evaluate an instantaneous view of the network at a certain
given time. However, dynamic modelling like the ones imple-
mented within the SIM [12] extends those static approaches
making a series of evaluation runs, adjusting future network
states (configuration of the network) to previous fixed states
where the grid needed an intervention across its topology.

The novel techniques under study in this research
are classified as engineering techniques: automatic load
transfer (ALT), dynamic asset rating (DAR) for cables and
transformers, meshed networks, and energy storage, and
commercial techniques: distributed generation (DG) and
demand side management (DSM). Traditional reinforce-
ments (TRAD) are modelled as follows: transformer replace-
ment or addition; cable or overhead line (OHL) replacement;
transfer load to adjacent feeder; and installation of new feeder
[13]. In addition, the assets considered to be fixed during
this assessment are the cables and transformers of the
local 11 kV network.

This study is populated with the data from the FALCON
(Flexible Approaches to Low Carbon Optimised Networks)
project trials, using a section of Western Power Distribution
(WPD) in Milton Keynes area, composed of six 11 kV pri-
maries. In contrast with the parametric top-down represen-
tation embedded in the transform model [14], the SIM
aims at creating long-term strategic investment plans. This
study will deliver insights and scalability of these novel
interventions for asset planning of the UK distribution
power networks.

There are a number of previous notable projects that
address the uncertainty around the integration of low carbon
and low-carbon technologies into the distribution grid
[15–18]. The smart distribution network operation for max-
imising the integration of renewable generation project [19]
performs the optimisation of network operation modes and
reinforcement planning in the presence of renewable genera-
tion. The OFGEM smart grid forum work stream 3, which
later became the EA technology transform model [14], is
a parametric representation of the electricity distribution

network that aimed at creating long-term strategic invest-
ment plans [20]. It is important to note that there are certain
limitations in transform that are characteristic to all paramet-
ric models. The operating characteristics of devices and their
relationship to other technologies require extensive calibra-
tion to produce a qualified answer. To some extent, the
limitations of transform were addressed by smart grid forum
work stream 7 [21], which took four of transform’s paramet-
ric representations of typical distribution networks and
converted them into nodal network models. Other examples
include the energy system catapult energy path model, which
targets local energy systems [22], and the Comillas University
reference network model (RNM) [23], which is a large-
scale distribution network planning tools that can create
optimal networks.

Despite the differences in their respective approaches, the
aforementioned models and software tools share some com-
mon limitations [24]. They have limited ability to capture
emerging behaviour arising from the simultaneous applica-
tion of multiple low-carbon and smart technologies to the
electricity distribution network. Likewise, it is complex to
add new technologies into the mix, due to either the lack of
automatic application of smart techniques or, as in the case
with transform, the parametric approach which needs infor-
mation about the way different technologies compete with
each other, which is difficult to obtain. And finally, no deci-
sion support for a particular piece of distribution network
can be provided because of either lack of automation or the
parametric nature of the model. The following sections
introduce and describe the smart techniques and the novel
technoeconomic approach for performing dynamic network
modelling in distribution networks and analysis in the
presence of multiple smart grid techniques. It uses nodal
network modelling to capture the emerging behaviour and
create localised network development plans.

2. Overview of Techniques

2.1. Technique 1: Dynamic Asset Rating. The heating effect of
current passing through a metal restricts the capacity of all
transformers, overhead conductors, and cables on a distribu-
tion network represented in Figure 1. This restriction is based
on the maximum temperature on a critical component
within the asset. Therefore, each asset will have a finite
current-carrying capacity rating based on assumed values of
external conditions which affect thermal buildup, i.e., wind
speed, ambient temperature, soil, and humidity. As the assets
in general do not have temperature monitoring, the assumed
values of the external conditions used in these calculations
have as a basis a statistically low level of the risk of the asset
exceeding its critical temperature. By more accurately mon-
itoring metrological conditions and modelling asset ratings
in real time, the capacity of the asset can be increased while
keeping the risk of exceeding the critical temperature to a
minimum. Further models and algorithms will be developed
as part of this second implementation to cater for the
increased information available.

In addition, many assets have a thermal capacity, such
that it takes time for the asset to raise its temperature
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(i.e., an increase in the current passing through the asset will
not cause a step change in the temperature of the asset). Such
assets typically have short-term current ratings which are sig-
nificantly greater than their continuous current rating. These
short-term ratings are based on specific current-carrying
curves. By being able to forecast the actual current-carrying
curves, the asset ratings can be further refined such that an
even greater short-term current can be supported. Trans-
formers and underground cables have significant thermal
capacity that can utilise this method whereas overhead line
circuits do not have significant thermal capacity.

2.2. Technique 2: Automated Load Transfer. Consumers of
electricity on the network use energy at different rates at

different times of the day, and by actively managing the
network connectivity, the loads across connected feeders
can be evenly balanced. Rather than the position of normal
switching open points being determined for average network
conditions, the positions can be changed automatically by
the network management system to a more optimum loca-
tion based on a number of factors such as security, voltage
drop, capacity utilisation, and load forecasts as displayed
in Figure 2.

2.3. Technique 3: Meshed Networks. This technique repre-
sents the process by which circuit breakers on the network
are switched in order to feed loads from multiple locations.
This approach fundamentally allows the load on each feeder
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in a meshed circuit to deviate according to the routine varia-
tions in the connected load, without the need for pre-existing
analysis and changes to switch states.

However, simply closing normal open points (NOPs)
exposes more connected customers to supply interrup-
tion following a network fault. Therefore, any planned
closure of open points for long-term operation is routinely
accompanied by the installation of along-the-feeder fault
sensing and interruption equipment (protection relays
and circuit breakers). The installation of along-the-feeder
protection devices restores and potentially reduces the
probability of customer interruption under fault conditions
with mesh operations.

The aim of trialing this technique was to operate the
designated 11 kV networks with parallel feeding arrange-
ments, protective device-driven autosectioning zones, while
exploring: potential impacts, both benefits and trade-offs,
that could be derived from parallel feeder configurations;
and potential impact, both benefits and constraints of opera-
tion with autosectioning zones balanced against time/effort
and cost.

2.4. Technique 4: Storage. Energy demand in an 11 kV feeder
tends to occur in peaks and troughs throughout a 24-hour
cycle. The current supplying capacity of a feeder is limited
to the current-carrying capability of the smallest cable or

conductor in the circuit, and these usually decrease in
cross-sectional area size further away from the primary they
are located. This is acceptable when the load is spread evenly
across a circuit, but when the load occurs unevenly, then the
utilisation factor of the assets will also be uneven. By intro-
ducing energy storage devices on the network (Figure 3), they
can feed out onto the system at peak demands and recharge
during times of low demand, thus deferring the need to
replace existing assets.

2.5. Technique 5: Distributed Generation Control. A number
of industrial and commercial customers have their own
on-site generation, and this number is likely to increase with
the transition to a low-carbon economy. In some cases, this
may be uncontrollable renewable generation (wind or solar)
but the majority is in the form of either standby generators
or controllable plants such as biomass, refuse incinerators,
or combined heat and power (CHP) plants. If customers with
controllable distributed generation can be incentivised to
accept instruction from a DNO to increase or decrease
generation, this can be used to reduce or increase site
demand and/or provide or remove supply from the grid as
a means of rectifying network problems.

2.6. Technique 6: Demand Side Management. Similar to
distributed generation, DSM involves putting in place

Communication network

RTU

Substation

PowerOn fusion

Demand
forecast

Energy
storage

controller

Energy
storage

unitLV
 fe

ed
er

s
to

 cu
sto

m
er

s

Substation

Energy
storage

unitLV
 fe

ed
er

s
to

 cu
sto

m
er

s

Data/control connection
Distribution network connection

Vo
lta

ge
/c

ur
re

nt
m

ea
su

re
m

en
ts

Energy
storage

unit
controller

Operation mode-
local control

Communication network

RTU

Al
ar

m
s/

in
di

ca
tio

ns

PowerOn fusion

Operation mode-
remote control

Figure 3: Storage trial representation.

4 Complexity



commercial agreements between the DNO and industrial
and commercial customers who have the ability to control
appreciable amounts of load in a relatively short period of
time. We expect demand side response to be in two forms
using the representation in Figure 4:

(i) To reduce the impact of predicted peak loads

(ii) To respond to an unplanned event, such as a fault

Demand side response actions can be used by the DNO
to enable a change in behaviour by a customer site in
response to an explicit signal triggering a preagreed action.
The action should be the interruption of a customer’s
internal electricity-consuming processes, either to avoid or,
more likely, to defer these to a later time. Its metrics:
capacity/delta reduction, duration/frequency, and OPEX,
are detailed in [13].

3. Methodology

To undertake the analysis of the aforementioned techniques,
a revolutionary new software tool for electricity distribution
network planning, called the scenario investment model
(SIM), is used. Results from evaluations using the SIM are
obtained through a series of experiments that modelled the
network evolution under different demand scenarios, pre-
sented in Table 1, at short- (2015–2023) and long-term
lookahead (2015–2050) to assist decision-makers in future
power network planning.

Currently, electricity distribution networks have been
planned with typically linear load growths of up to 1% per
annum. The expected increase in low-carbon technologies
will have a significant effect on the electricity demands on
the network which may have significant rapid sporadic
increases in the electricity demand on the 11 kV networks

[25]. In addition, the daily electricity load shapes may be also
altered significantly. The networks will need to be upgraded,
and systems are being able to evolve and cope with new
demand profiles.

There had been identified two main streams of work to
consider the use of the innovative techniques, namely, strate-
gic and tactical planning and Design, Build, and Operation.
The strategic and tactical planning stream will consider the
network planning roles while the design and operation
stream will consider design, build, and operation roles. In
Figure 5, the smart grid planning framework diagram pre-
sents the key elements of each stream which are displayed
with their main interactions.

In order to leverage the capability of existing network
analysis tools which are already extensively used by elec-
tricity network operators, the SIM is separated into two
main packages: a network modelling tool which primarily
performs the technical assessment of the application of
the techniques and the SIM harness which manages the
overall process and perform the economic assessment and
reporting functions.

Demand data modelling has been based on a bottom-up
approach. The methods used provide an estimate of demand
for each half-hour at each secondary substation for 18
different season-day types [12].
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Table 1: Demand scenarios.
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The research objective is settled to prove the suitability of
the six novel smart interventions presented in Section 2
and, along with the traditional reinforcements, provide an
evolutionary planning insight for future power networks.
To undertake this study, specific experiments were selected
for a certain power trial network under different demand
scenarios and evaluation periods, assessing smart tech-
niques along with traditional reinforcements. The approach
involved running a set of experiments using the SIM for the
six 11 kV primaries in the FALCON trial area.

3.1. SIM Support Algorithms. The essence of the SIM
approach is its ability to take a network configuration and
corresponding load profiles in a particular year (termed as
initial network state), perform power flow and reliability
analysis, and create derivative network states in a process
known as “network state expansion.” The expansion happens
either by transitioning to the following year for network
states without any failures or by applying intervention

techniques to resolve network issues. With each new net-
work state created, the SIM, therefore, is faced with a
decision as to which network state from the execution
history to expand next. The expansion can be guided by
simple depth first or breadth first algorithms, which are
implemented in the SIM for verification purposes. The
depth-first algorithm always selects the newest, i.e., the
most recently created network state that is not fully
expanded for expansion, while the breadth-first algorithm
always selects the oldest network state. However, those
simple heuristics are inadequate for any practical use
beyond simple test cases due to the size of the search
space obtained by permuting all possible interventions
over a number of years. To perform intelligent exploration
of the search space, the SIM uses a heuristic approach that
is based on an A∗ algorithm [26, 27].

The baseline A∗ algorithm aims at finding the least-cost
path through the search space. As A∗ traverses the search
space, it builds a tree of partial paths. The leaf nodes of this
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tree (failed network states) are stored in a priority queue that
is ordered using a cost function:

f x = g x + h x , 1

where h x is a heuristic estimate of the path cost to
reach the goal and g x is the distance travelled from
the initial node.

The SIM selects network states from the priority queue to
apply intervention techniques, one application at a time.
Deployment of a technique produces a new network state,
for which a power flow analysis is performed in intact and
all n − 1 (contingency) network operation modes. If all
the failures are resolved, a reliability analysis comprising
customer minutes lost (CML), customer interruptions (CI),
losses, and fault level studies is performed. A new network
state is subsequently created in the next year of evaluation,
or if it is already the last year of evaluation, the costs
of interventions are calculated and the network state
together with all its expansion history is saved to the
result store as a new result. The evaluation is terminated

(Figure 6) when criteria such as the number of results,
number of network state evaluations, or run time are
reached. As noted, previously, A∗ uses a combination of
distance travelled so far and a heuristic estimate of the
distance to reach the endpoint.

In SIM case, this corresponds to g x being the total
expenditures (TOTEX) incurred so far and h x being a
heuristic estimate of TOTEX to reach the end year of
the experiment. TOTEX, also referred to as the total
expenditure, comprises implementation costs (CAPEX)
that occur only once when an intervention is applied to
the network, operation costs (OPEX) that refer to an
ongoing expense of operating an asset or a scheme along
with asset life degradation, and metric costs that include
incentive payments for losses, fault levels, and network
reliability. Referring to (2), the g x for a network state
xi in year i is defined as

g xi = ci + oi + 〠
j−1

j=1
cj + oj +mj , 2
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where ci is CAPEX in the current year; oi is OPEX in the
current year; and cj, oj, and mj are CAPEX, OPEX, and
metrics costs, respectively, of the ancestor network state
with no issues in year j. The heuristic estimate h x of
the cost to reach the end year is given by

h xi = cREMi +mi + 〠
n

k=i+1
ck + ok +mk , 3

where cREMi is the average remaining CAPEX in the cur-
rent year i; mi is the average metric cost in this year; ck,
ok, and mk are the average CAPEX, OPEX, and metric
costs, respectively, of the descendant network state in year
k with no issues; and n is the end year of evaluation. Pre-
seeded to a constant value, c0, the average CAPEX is
updated each time a network state is expanded in a partic-
ular year; thus, the estimated costs of fixing all issues in a
particular year progressively approach true average. Setting
c0 to a value greater than 0 speeds up the expansion pro-
cess; i.e., all interventions that cost less than c0 will result
in new network states that are at the top of the priority
queue. The business rationale is that DNOs are not that
interested in optimizing interventions costing less than a
certain threshold. The learned averages are propagated
back to network states in the priority queue, thus updating
their estimated effort and leading to the reordering of the
queue, unlike the average CAPEX, average OPEX, and
metrics costs which are assumed to be 0 for years with
no network states. The average OPEX value for a year is
obtained using

o = jToc jT j
−1, 4

where j is a column vector of ones and oc is an OPEX
vector of compliant network states in that year. Likewise,
the average metric cost is obtained according to

m = jTmc jT j
−1, 5

where j is a column vector of ones and mc is a vector of
the metric costs of compliant network states in that year.

3.2. Conceptualising Bottom-Up Evolutionary Planning.
Model-driven engineering (MDE) uses analysis, construction,
and development of frameworks to formulate metamodels.
Those models are usually characterised using domain-
specific modelling approaches [28], containing appropriate
detail abstraction of particular domain through a specific
metamodel. The use of metamodels requires therefore inputs
from domain experts which can be used to generate aggre-
gated or disaggregated models. Top-down and bottom-up
are the conceptual definition of aggregated and disaggregated
models [29]. These two modelling paradigms are frequently
used to epitomise domain interactions among the operation
of the energy system, the econometrics related, and the
technical performance indicators [30].

From a bottom-up modelling approach [31, 32], the
top-down perspective is a simplistic characterisation of
how electrical power networks combine locational events
and individual asset performance with high-level objectives
like improving the CML of a certain congested area [33, 34].
From an engineering point of view, both are still valid
since outputs and strategic forecast are produced in both.
How those outcomes are calculated, validated, and trans-
formed to strategy is presented in Figure 7 (top-down)
and Figure 8 (bottom-up).
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Figure 7: Top-down conceptualisation of evolutionary power networks planning.
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The ability of bottom-up to capture discrete locational
impacts of technologies on the system and their disaggre-
gated costs is triggering the following subsections. Trade-off
methodologies are needed for planning evolutionary power
systems where observing disaggregated result strategic fore-
casts are to be produced. These methodologies need to be
interactive in the sense that starting from an initial state
and after a testing or learning phase, the network is able to
accommodate techniques that have improved the system,
providing an exploratory set of solutions that can be
expanded or discarded as the model evolves through time.

3.3. Experiment Characterisation. To illustrate the processing
of the methodology adopted, we consider a typical network
scenario tree created by the tool that consists of failed (red)
and compliant (green) network states in different years of
evaluation. The SIM starts with a single network state in
the first year of evaluation. Every year, the network is
evaluated for compliance in intact and n − 1 contingency
operation modes. If failures are detected, the SIM applies
intervention techniques described in Section 2 to create net-
work patches that resolve the failures. Each application of an
intervention technique creates a new network state. The tool
has to resolve all issues in the network before transitioning
into the next year. DNO planners usually run power flow
studies with a single fixed load pattern. In contrast, the SIM
checks each network state for compliance under 18 charac-
teristic day load scenarios each comprising of 48 half-hour
settlement periods. All studies are performed under intact
and n − 1 contingency network operation modes. The SIM

calculates patch costs using cost drivers returned by the net-
work modelling tool. The cost driver describes a network
intervention and consists of two parts, namely, the patch
key and the scaling. The patch key identifies the nature of
the modification of the network performed (removal or addi-
tion of an asset and the type of the asset). Scaling data is rel-
evant only to patches that can be installed in multiples of one,
such as cable upgrades and additional transformer installa-
tion. Scaling data structure provides a list of multipliers to
the base cost data available in the SIM database. In case of
cable upgrade or replacement, it enables the SIM to correctly
estimate full installation costs from per unit of length values.
Finally, for postprocessing analysis, the SIM also returns a list
of failures by asset. It was identified by DNO planners as
indispensable features to help validate the system and corre-
late the expansion trees to the actual assets on the network
diagram. The failure detail table contains asset ID and
description alongside information about the number of fail-
ures in intact and n − 1 operating modes as well as absolute
and per unit thermal and voltage failure magnitude.

3.4. Case Characterisation. Two set of experiments were
performed for this study, one for comparing short-term
evaluation period for RIIO-ED1 (2015–2023) where the
RIIO-ED1 investment planning has been stylised and a
longer planning period for RIIO-ED1 to RIIO-ED4, from
2015 up to 2047. The other set aimed at evaluating differ-
ent DECC demand scenarios. Experiments evaluated two
demand scenarios: DECC2 and DECC4. DECC4 represents,
as displayed in Table 1, the slow-progression scenario, and
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Figure 8: Bottom-up conceptualisation of evolutionary power networks planning.
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DECC2 is with DECC3 the most challenging scenario in
terms of electrification and low-carbon technology integra-
tion. The procedure to run the experiments in the SIM is
shown in Figure 6. The inputs to be sent to the SIM are
detailed in Figure 5, the selected network, techniques, evalu-
ation period, demand scenario, and cost model, whereas the
outputs of the SIM we obtain are techniques used, failures
solved, assets fixed, and electrical performance indicators.
The SIM address mentioned outputs for long-term plan-
ning reinforcements, to optimise investment asset planning
resolving network constraints. The performance criteria eval-
uated were capital expenditures (CAPEX), operating expen-
ditures (OPEX), utilisation of assets, CMLs, CIs, and losses.
These parameter values are delivered by the SIM after each
simulation. In order to look for the optimal solution among
the feasible solution pathways, the SIM allows a granularity
study of each network state.

4. Results

This section presents the assessment of the six smart grid
interventions along with traditional reinforcements in the
trial area, compounded by six 11 kV primaries in Milton
Keynes, UK, for two different evaluation periods, DECC2
and DECC4. Subsection 4.1 introduces the results for the
2015–2023 period as short-term planning, and Subsection
4.2 presents the results for a long-term evaluation period,
2015–2047.

4.1. Short-Term Planning. This section presents the assess-
ment of the six smart grid interventions along with tradi-
tional reinforcements in the trial area, compounded by six
11 kV primaries in Milton Keynes, UK, for two different
demand scenarios, DECC2 and DECC4.

4.1.1. DECC4, 2015–2023. Figure 9 shows the trends of
CAPEX and OPEX. Note that in the year 2015, there is a
CAPEX’s peak due to the application of more techniques
and OPEX increments over time from 2017 to 2023.

Despite the investment, the increase is compensated by
a benefit in the electricity distribution network, with a
reduction in CML and CI as shown in Figure 10.

The summary of the proportion of installations required
during this evaluation period and by capital expenditures per
technique is presented in Table 2 for both DECC scenarios.

The average yearly price of each technique implemented
to fix a network state is key for future decision-making
considerations.

Figure 11 displays the average price of each technique
disaggregated by CAPEX and OPEX.

Performance indicators are key parameters for future
decision-making within electricity distribution planning as
quantifiers due to their influence on the quality of service.

Therefore, as shown in Figure 12, the only smart tech-
nique used in combination with traditional reinforcements
in this scenario and evaluation period that slightly influence
slightly CML and CI is meshed networks.

4.1.2. DECC2, 2015–2023. Figure 13 plots the trend of
CAPEX and OPEX over the evaluation period. It is important

to highlight that there is a CAPEX peak in 2015, due to an
increase of techniques applied in this period.

This CAPEX increment produces a benefit in terms of
CML and CI, as observed in Figure 14.

The distribution of techniques applied and capital expen-
ditures per technique are shown in Table 2. The average price
of each technique implementation in this demand scenario
for this evaluation period is shown in Figure 15.

As displayed in Figure 12 for DECC4’s simulation, the
only smart grid technique that improves the quality of service
is the meshed network. In Figure 16, the contribution of
smart techniques on CML and CI for DECC2 demand
evaluation is captured.

4.1.3. Comparison between DECC2 and DECC4 for 2015–
2023. The results presented may facilitate improvements
in electricity distribution network operations and planning
resulting in better-informed decision-making when upgrad-
ing current electricity distribution networks. The assess-
ment of the six smart grid techniques discovered that
only three of them were selected as part of optimal
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solutions for DECC4 and DECC2, as described in Table 2.
These three techniques applied are DAR for cables and
transformers and meshed networks.

Comparing the cost trends of the two assessed scenarios,
it is notable that in both demand scenarios, DECC4 and

DECC2, the CAPEX peak occurs in 2015 (Figures 9 and
13), reflecting the more difficult nature of network states
to be feasible in a demanding scenario, whereas DECC2
shows a higher improvement of CI and CML performance
indicators as can be seen in Figures 10 and 14.

Table 2: Number of interventions and CAPEX involved; DECC4 and DECC2, 2015–2023.

Technique
DECC4 DECC2

Proportion of interventions (%) CAPEX (%) Proportion of interventions (%) CAPEX (%)

DAR-cable 15% 2% 14% 2%

DAR-transformer 7% 1% 5% 1%

ALT 0% 0% 0% 0%

Mesh 3% 1% 4% 1%

Batteries 0% 0% 0% 0%

DSM 0% 0% 0% 0%

DG 0% 0% 0% 0%

TRAD-transformer 8% 3% 7% 2%

TRAD-cable 60% 89% 65% 91%

TRAD-transfer load 6% 2% 4% 1%

TRAD-new feeder 1% 2% 1% 2%

DAR - cable DAR -
transformer

Meshed
networks

TRAD -
transformer

TRAD - cable

CAPEX
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Figure 11: Average cost disaggregation per technique; DECC4, 2015–2023.

Figure 12: Average CML and CI improvement per technique; DECC4, 2015–2023.
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The techniques applied are the key consideration to be
assessed. It is necessary to analyse the number of interven-
tions applied by type, the effect of these techniques in the
electric grid solving failures and fixing assets. Figures 11
and 15 show average prices of techniques used in each
demand scenario. Smart techniques have a lower TOTEX
than traditional reinforcements. These novel techniques
above are not frequently able to fix failures and therefore
produce feasible network states. In terms of CML and CI,
the only technique able to moderately contribute to their
improvement is meshed networks as shown in Figures 12
and 16. Results attribute the majority of fixes to traditional
reinforcements with a comparatively smaller number of
failures being solved by smart techniques (Table 2). The
results obtained in terms of traditional reinforcement share
for 2015–2023 show a 60% proportion of intervention for
DECC4 and a 65% proportion of intervention for DECC2,
which is close to the 59% forecasted by the transform model
for this evaluation period.

For DECC4, the three mentioned techniques along with
traditional cable and transformer replacement are applied
(Table 2), whereas for DECC2, two of them are applied,
DAR for cables and meshed networks (Table 2). Comparing
the cost trends of the two assessed scenarios, it is notable that
in DECC4, the CAPEX peak occurs in 2015 (Figure 7),
whereas in DECC2, besides the peak in 2015, there is also
one in 2019 (Figure 11), reflecting the more difficult nature
of network states to be feasible in a demanding scenario.
However, DECC2 shows a higher improvement of electrical
performance indicators as can be seen in Figure 12.

In addition, traditional cable replacement, DAR for
cables, and meshed networks are able to fix the cable, whereas
traditional transformer replacement and DAR for trans-
formers are able to fix transformer issues (Figure 16). The
results obtained in terms of traditional reinforcement share
for 2015–2023 show a 60% proportion of intervention for

DECC4 and a 65% proportion of intervention for DECC2,
which is close to the 59% forecasted by the transform model
for this evaluation period.

4.2. Long-Term Planning. This section evaluates two experi-
ments, namely, characterising the DECC2 and DECC4 sce-
narios for 2015–2047 evaluation period. For each demand
scenario, expected investments disaggregating CAPEX and
OPEX are presented, the evolution of electrical performance
indicators and the number of techniques applied.

4.2.1. DECC4, 2015–2047. In this experiment, the most
significant results to analyse the suitability of each technique
are presented.

Figure 17 shows the trend of CAPEX and OPEX from
2015 to 2047.

There are CAPEX peaks in the year 2018 and during the
beginning of RIIO-ED2 in the years 2025 to 2026, due to the
application of more techniques to fulfill low-carbon targets.

Figure 18 indicates that upgrades on the network are
directly related to technical performance indicators, CML
and CI.

In Table 3, the techniques applied and their contribution
to CAPEX during the evaluation period from 2015 to 2047 by
a demand scenario are shown.

4.2.2. DECC2, 2015–2047. Within this experiment, the most
relevant results to analyse the evolutionary network states
are presented.

In Figure 19, the trend of CAPEX and OPEX from 2015
to 2047 is shown. There is a significant increase of CAPEX
in the years 2024 to 2026 at the beginning of RIIO-ED2,
due to the necessary implementation of new techniques to
reach low-carbon targets. The evolution of CML and CI is
presented in Figure 20, linking larger investment years when
major reductions are found. The contribution of each solution
technique is presented in Table 3.

4.2.3. Comparison between DECC2 and DECC4 for 2015–
2047. Figure 21 presents a multidimensional parallel coor-
dinate representation of the feasible network state’s
combinations that produced a 2015–2047 investment path-
way for the evaluated area. It bundles economic indicators,
i.e., CAPEX and OPEX, with technical performance indica-
tors providing valuable insights on the number of traditional
reinforcements utilised to heal falling network states. Results
are also clustered by the two demand scenarios assessed
during the experiments.

Solutions of DECC2 (represented in orange and green)
and DECC4 (in black and blue) are clustered by the per-
centage of traditional reinforcements utilised as well as
the utilisation factor.

Solutions in green and in black represent those where
smart grids were more used, whereas orange and blue repre-
sent the cheapest (CAPEX and OPEX), less utilised, and the
worst responding to the decrease of CML, CI, and losses,
and the ones using more traditional reinforcement to fix
network states.

Besides the fact that DECC2 smart solutions are between
16% and 28% more expensive than DECC4 traditional
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Figure 13: CAPEX and OPEX; DECC2, 2015–2023.
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reinforcement solutions (green solutions versus blue solu-
tions in Figure 21), DECC2 traditional solutions are in the
range of costs of smart solutions of DECC4 (orange and
black solutions in Figure 21). It can also be concluded that
investment pathways using less smart techniques provide a

cheaper response to technical performance evaluators such
as utilisation, CML, CI, and losses.

4.3. Summary. Experiment evaluation runs from the
2015–2047 period present lower investment rates for the
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Figure 14: CML and CI; DECC2, 2015–2023.
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Figure 15: Average cost disaggregation per technique; DECC2, 2015–2023.

Figure 16: Average CML and CI improvement per technique; DECC2, 2015–2023.
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2015–2023 period than if the evaluation is just performed
with a 2015–2023 time frame. This occurs as a result of the
challenging low-carbon targets up to 2047 and a myopic
planning with short-term lookahead. For an evaluation
period four times larger, the CAPEX and TOTEX increased
just 18% compared to 2015–2023, concluding that between
£5.2M and £6.8M, the evaluation area regardless of the
time horizon for the investment or the demand scenario
considered is required.

Furthermore, it can be inferred comparing Tables 2 and 3
that for less smart interventions, the short-term planning
is used compared to the long-term horizon planning.
DAR-cable and DAR-transformer experienced a significant
implementation variation between the two evaluation
periods for both demand scenarios, as well as CAPEX allo-
cated in cable upgrades falling from 89–91% (2015–2023)
to 29–66% in the long term 2015–2047 run. Both technical
performance evaluators, CML and CI, respond to their
respective CAPEX curve shape. Due to a more incentivised
smart grid technique during RIIO-ED2 and ED3, the per-
centages of smart techniques implemented varied notably.
For DECC4 in 2023’s outlook, the share of techniques is

25% for smart grid interventions whereas for 2050’s out-
look, the share is increased up to 58%. In the same way
for DECC2 in 2023’s outlook, the share of smart interven-
tions is 23% whereas in 2050’s outlook, the share increases
up to 69%.

Feasible solutions characterising the solution space
(Figure 21) differ in the degree of investment required and
technical performance evaluators. Each of the solution path
represented in the multidimensional solution space in
Figure 21 represents the intersection of that dimension with
each axis. Parallel coordinates [35] are low complexity
working for any N-dimension. In the case of Figure 21,
it has 8 dimensions, treating every variable uniformly.
Each intersection of one solution path with each axis is
the value of that solution for that axis. As for axis DECC2
and DECC4, it represents the feasible solutions for each
demand scenario. Making a query by the percentage of
traditional reinforcement used in that solution, we have the
partition between orange and green for DECC2 and blue
and black, being the first solutions that use more traditional
reinforcement compared with the ones that use more smart
techniques represented in green (DECC2) and black
(DECC4). From Figure 21, we can argue that solutions that
use more smart techniques (green and blacks) are more
expensive in terms of CAPEX and OPEX than their peers
(orange and blues) when compared by a demand scenario.
It can also be stated that solutions with a higher use of tradi-
tional reinforcements are the ones that decrease the most,
CML, CI, and losses.

Disaggregating results by network state of the six 11 kV
primaries and by the feeder, if necessary for further granular
debugging, can discern locational capacity. Under both
demand scenarios, Secklow Gate was seen to be the one with
greater capacity, being necessary to apply fewer techniques
over the evaluation period, 2015–2047. On the other hand,
Newport Pagnell exceeds the capacity as soon as 2015,
requiring a high number of network state evaluation to be
fixed that happens for each subsequent year; hence, the large
number of network states is presented in Table 4.
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Figure 17: CAPEX and OPEX; DECC4, 2015–2047.

CI

20
15

20
17

20
19

20
21

20
23

20
25

20
27

20
29

20
31

20
33

20
35

20
37

20
39

20
41

20
43

20
45

20
47

CML

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p.
u.

Figure 18: CML and CI; DECC4, 2015–2047.
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5. Conclusions

Power flow analysis using a nodal network model is essential
when determining the benefits of trailed smart interventions

because the interactions and implications are highly specific
to a particular location and scenario.

This suggests that while the bottom-up approach is
onerous in terms of data handling and manipulation, this is
worthwhile for strategic planning and policy evaluation.
Comparing both investment strategies, investment strategy
adjustments will be necessary in future regulation periods
if an over-invested network behaves as displayed in the
short-term section of this study.

Traditional reinforcement will continue to be the main
method by which network issues are mostly resolved,
followed by dynamic asset rating and meshed networks.

The assessment of the six novel smart interventions in the
FALCON 11kV primary test area in Milton Keynes has
proved the suitability of three techniques able to fix failures,
improving the quality of service, and their readiness to be
deployed in the near future. These techniques are DAR for
cables and transformers and meshed networks. Meshed
networks have been repeatedly selected as a feasible tech-
nique because using it will reduce CML, CI, and power losses,

Table 3: Number of interventions and CAPEX involved; DECC4 and DECC2, 2015–2047.

Technique
DECC4 DECC2

Proportion of interventions (%) CAPEX (%) Proportion of interventions (%) CAPEX (%)

DAR-cable 18% 5% 31% 6%

DAR-transformer 32% 16% 32% 6%

ALT 0% 0% 0% 0%

Mesh 8% 3% 6% 3%

Batteries 0% 0% 0% 0%

DSM 0% 0% 0% 0%

DG 0% 0% 0% 0%

TRAD-transformer 25% 44% 9% 16%

TRAD-cable 15% 29% 20% 66%

TRAD-transfer load 1% 1% 1% 1%

TRAD-new feeder 1% 2% 1% 2%
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Figure 19: CAPEX and OPEX; DECC2, 2015–2047.
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improving the quality of service and the efficiency, while
being a cost-effective solution.

The initial capacity at primary substations differed
significantly, and this affected the number and complexity
of interventions required by the SIM. Due to the load
scenarios showing significant peak load increases, DAR was
often a temporary measure that would delay but not remove
the eventual need for traditional reinforcement.

Implementing DAR for cables and transformers, the
monitoring of assets when their peak capacity is increased
was analysed. On the other hand, it was observed that
traditional reinforcements still play a key role in keeping
the electricity distribution networks free of constraints.
TRAD techniques such as transformer and cable replace-
ments are able to fix the majority of failures and will be
essential also in the future.

The comparison between traditional reinforcements and
novel smart techniques has provided a new knowledge about
the suitability of each technique to be applied, in terms
of costs, electrical performance, failures fixed, and asset
replaced. Cable replacement is the most costly technique;
however, its use is unavoidable in a number of cases. Further-
more, the applicability of each technique regarding costs
involved, improvements on power quality and efficiency,

and failures solved lead to new questions to be analysed, such
as the lack of these techniques to provide flexible capacity
within the trailed area.

To sum up, this study has performed a comparative
analysis of novel smart intervention techniques, providing
insights for future investments in electricity distribution
planning. Further work can focus on scaling up the analysis
to include a larger section of the network or a constrained
area to evaluate national applicability of the current findings.
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Table 4: Summary of network states and results for demand scenario; DECC4 and DECC2.

Primary 11 kV substation Feeders Year Techniques
Results
DECC4

NS
DECC4

Results
DECC2

NS
DECC2

Fox Milne 13 2047 Smart and traditional 54 276 47 259

Newport Pagnell 9 2047 Smart and traditional 48 317 31 318

Secklow Gate 9 2047 Smart and traditional 27 29 15 16

Bletchley 19 2047 Smart and traditional 32 40 21 48

Marlborough Street 11 2047 Smart and traditional 31 52 19 37

Childs Way 17 2047 Smart and traditional 67 398 54 181
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