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Abstract

Connections between individuals facilitate the exchange of goods, resources and in-

formation and create benefits. These connections may be exploited by adversaries to

spread their attacks as well. What is the optimal way to design and defend networks in

the face of attacks?

We develop a model with a Designer and an Adversary. The Designer moves first and

chooses a network and an allocation of defense resources across nodes. The Adversary

then allocates attack resources on nodes and determines how successful attacks should

navigate the network.

Our main result is that, in a wide variety of circumstances, a star network with

all defense resources allocated to the central hub node is optimal for the Designer.

The Adversary targets undefended peripheral nodes; upon capture of these nodes the

resources mount a concerted attack on the center.
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1 Introduction

Connections between individuals, cities, countries and computers facilitate the exchange of

goods, resources and information and generate value. However, these connections may serve

as a conduit for the spread of damaging attacks. The Internet reflects this tension clearly.

Connectivity facilitates communication but is also used by hackers and ‘botnet’ herders to

spread viruses and worms which compromise user privacy and jeopardize the functioning of

the entire system.1 As energy, communication, travel, consumer interaction increasingly adopt

digital networks, cybersecurity has emerged as a major priority of national governments.2 At

the heart of these developments is the question of how to design and defend large scale networks

that are robust to attacks.

In their influential paper on computer security, Staniford, Paxson and Weaver (2002)

identify stealth worms and viruses as the main threats to security in large scale computer

networks. Using data from actual attacks, they argue that adversaries scan the network to

explore its topology and the vulnerabilities of nodes, prior to attack. In the first instance,

the objective is to deploy a worm on selected hosts in the network. Deployed worms then

exploit communication between nodes to progressively take control of neighboring hosts in

the network. The likelihood of take over and spread in a network depends on the topology

of connections and on vulnerabilities of individual hosts. These considerations motivate the

following theoretical model.

We develop a model with a Designer and an Adversary. The Designer moves first and

chooses a network and an allocation of defense resource. The Adversary then allocates attack

resources on nodes and determines how successful attacks should navigate the network. Three

ingredients of the model are key to the analysis: the value of the network, the contest between

defense and attack resources, and the spread of attack through the network.

We assume that the value of a network is increasing and convex in the number of intercon-

1In 2009, roughly 10 million computers were infected with malware designed to steal online credentials.
The annual damages caused by malware is of the order of 9.3 billion Euros in Europe, while in the US the
annual costs of identity theft are estimated at 2.8 billion USD (Moore, Clayton and Anderson (2009)). One
indicator of the economic magnitude of the problem is the valuation of security firms: Intel bought McAfee
in 2010, for 7.68 billion USD (bbc.co.uk; 19 August 2010).

2For instance, in the United States, the Department of Homeland Security (DHS) is responsible for cy-
bersecurity. Its mission statement reads,“Our daily life, economic vitality, and national security depend on
a stable, safe, and resilient cyberspace. We rely on this vast array of networks to communicate and travel,
power our homes, run our economy, and provide government services. DHS plays a key role in securing the
federal government’s civilian cyber networks and helping to secure the broader cyber ecosystem.”
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nected nodes.3 We model the conflict between defense and attack resources on a network node

as a Tullock contest.4 The contest defines the probability of win for Designer and Adversary

as a function of their respective resource allocation. The resources of the loser are eliminated,

and a share of the winners resources may also be dissipated. In case the Adversary wins a

contest on a node, he can relocate surviving attack resources to other defended nodes. The

redeployed attack resources engage in contests with surviving defense resources. The dynam-

ics of conflict continue as long as there remain both defense and attack resources. The initial

network design and the conflict dynamics yield a probability distribution on surviving nodes.

The Designer and Adversary are engaged in a zero sum game; so, given a defended network,

we consider the minimum payoffs for the Designer, across all possible attack strategies. An

optimal defended network maximizes these (minimum) payoffs.

Our main result is that, in a wide variety of circumstances, a star network with all defense

resources allocated to the central hub node – the CP-star – is optimal for the Designer. The

Adversary targets undefended peripheral nodes; upon capture of these nodes the resources

mount a concerted attack on the center. We develop the argument in two parts: first, we

establish that the result holds for the class of connected networks.5 In the second step,

we consider all networks and develop conditions on the network value function under which

optimal networks are connected.

The intuition for the first step is as follows. The dynamics of conflict and contagion on

the CP-star network yield extremal outcomes: either (almost) all nodes survive and remain

connected or all nodes are eliminated. Consider next a network with two equally defended

hub nodes and an equal number of other nodes linked to either hub. Faced with this defended

network, the Adversary can allocate resources to peripheral nodes in line with the defense

resources allocated to the corresponding hub node. The dynamics of conflict and contagion can

generate extremal outcomes (as in the CP-star) but they also generate intermediate outcomes

in which one hub is eliminated but the other hub (and its peripheral nodes) survives. Our

analysis establishes that the expected number of surviving nodes is equal in the two scenarios,

3This is consistent with Metcalfe’s Law (network value is proportional to the square of nodes) and Reed’s
Law (network value is exponentially increasing in nodes). For a discussion of alternative models of network
values,, see Gueye and Marbukh (2012). Our assumption is also in line with the large theoretical literature on
network externalities (Katz and Shapiro, 1985; Farrel and Saloner, 1986) and network economics (Bala and
Goyal 2000a).

4Here we build on the rich literature on rent seeking and conflict, see Tullock (1980) and Hirshleifer (1995).
5Two nodes are connected if there is a path between them. A component is a maximal set of nodes that

are connected. A network is connected if it contains only one component. Formal definitions are provided in
Section 2.
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but the two hub defended network yields a smoother distribution. More formally, the CP-

star yields a mean preserving distribution on surviving nodes of the distribution obtained

in the two defended hubs network. Since the network value function is convex in number

of interconnected nodes, it follows that a CP-star generates greater expected payoffs for the

Designer. Our proof of Theorems 1 and 2 shows that this idea can be generalized to cover all

connected defended networks.

In the second step, we allow for networks with multiple components. So we study a

situation where defense allocation, number of components and the architecture of individual

components are all decision variables for the Designer. Theorem 4 characterizes network value

functions for which optimal defended networks are connected. It says that, roughly speaking,

if network value grows exponentially in the number of nodes then the CP-star is optimal,

but if value grows at a slower rate (as in a polynomial function) then networks with multiple

components may be optimal.

The optimality of CP-star is consistent with the practice of traffic monitoring at key nodes

by security personnel, in the context of computer networks (Anderson, 2010). Financial

contagion and liquidity freezes have been a major concern in the study of financial markets

(Allen and Gale (2000)). The attractiveness of CP-star has also been highlighted in the

context of financial networks. The complexity of bilateral deals among financial institutions

makes it difficult for institutions to assess counter party risk. Haldane (2010) argues that a

Centralized Counter Party Clearing House (CCP) would act as a resilient hub. The existence

of such a hub would mitigate the uncertainty concerning the counter party. More generally,

empirical work has highlighted the salience of hub-spoke structures (see e.g., Goyal, 2007;

Newman, 2010) in a wide variety of contexts. Our results highlight the attractiveness of such

an architecture from the point of view of defense.

Our framework of network design, defense and attack provides a useful way to think about a

number of questions relating to networks that face threats. Section 4 shows that by varying our

assumptions on network value functions, number of players, and the timing of moves we trace

out an ensemble of models that can accommodate questions in economic epidemiology, terrorist

networks, modern warfare, and criminal activity, in addition to Cybersecurity and financial

networks. The exploratory analysis there suggests ways in which arguments developed in

the proofs of Theorems 1-4 can be applied in other games and yields new insights that are

consistent with empirical and applied work.

Our paper contributes to two rich strands of theoretical research in economics: the theory
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of networks and the theory of conflict.6 The research on networks is concerned with the

formation, structure and functioning of social and economic networks; for surveys of this work,

see Goyal (2007), Jackson (2008), and Vega-Redondo (2007). To the best of our knowledge this

is the first paper to study design and defense of networks that face an intelligent Adversary.7

In Baccara and Bar-Isaac (2008) information links between criminals facilitate cooperative

play, but the detection of one criminal leads to the detection and punishment of connected

others. This creates a trade-off between connections and vulnerability and suggests a similarity

with the present paper. However, the models differ along a number of dimensions as they are

motivated by very different applications. We highlight three differences. One, in our model

the gains from large scale connectivity are key; by contrast, in their model the size of the

network plays no essential role in defining network value.8 Two, we study conflict between

defense and attack; by contrast, there are no defense resources in their paper. Three, the

Designer moves first in our model; the Adversary moves first in their model. Four, the nature

of links is different. We assume undirected links, they assume directed links. A CP-star in

our model and a hierarchy in their model are therefore very different objects. These these

differences are substantive and together lead to different analysis and insights.

The theory of contests studies allocation of resources in situations of conflict; for overviews

of this work, see Baye (1998), Konrad (2009), Sandler and Hartley (2007) and Garfinkel and

Skaperdas (2012). There is also an extensive literature which studies conflict between two

players across multiple battle fields with fixed budgets; Colonel Blotto games are a prominent

example of such games (Hart, 2008; Bier, Oliveros and Samuelson, 2006; Powell 2008; and

Roberson, 2006). The interest here is in understanding the equilibrium allocation of resources

as conflict functions and budgets vary. Our paper extends this body of work along two

dimensions: one, we locate individual battles within a network of interconnections and allow

for successful resources to be moved from one battle to neighboring battles, and two, we study

6There is also a literature on network security spread across disciplines such as computer science, statistical
physics, engineering and operations research (see Nagaraja and Anderson 2007; Newman 2010; Smith 2008).
The strategic analysis of network design and defense in the face of an intelligent Adversary appears to be
novel, in the context of these liteartures.

7Bala and Goyal (2000b) study network formation with exogenous probability of link failure. Hong (2008)
studies the strategic complementarities between linking and protection. For a recent study of optimal network
design in the face of random attacks, see Cabrales, Gottardi and Vega-Redondo (2011).

8For instance, in their model a network consisting of binary cells yields the same value as a connected
network organized in a hierarchy with 2 agents at the the top. Section 4 analyzes a model in which the
Adversary moves first. This is in line with the order of moves in Baccara and Bar-Isaac (2008). The discussion
there clarifies the implications of difference in network value formulation.
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the design of optimal interconnections across the ‘battlefields’.9

The rest of the paper is organized as follows. Section 2 presents our model and elaborates

on the computer security application to illustrate the appropriateness of our assumptions.

Section 3 studies optimal defended networks. Section 4 discusses open research questions.

Section 5 concludes. The appendix contains proofs of some of the results.

2 Model and application

We study a zero-sum game between a Designer and an Adversary. The Designer has a col-

lection of nodes and a given quantity of defense resources, while the Adversary has a given

quantity of attack resources. The Designer moves first and chooses links between the nodes

and allocates resources across the nodes to protect the network. The network and defense

choices of the Designer are observed by the Adversary, who then chooses an attack strategy.

The initial network design and the subsequent conflict together define a probability distri-

bution on surviving networks. We next set out the notation and the concepts to formally

describe this game. Then we elaborate on the computer security application and relate the

assumptions of the model to features of the application.

2.1 The Designer-Adversary game

The Designer: The Designer, D, has a collection of nodes N = {1, ..., n}, where n ≥ 2;

for expositional simplicity, assume that n is an even number. D chooses links between the

nodes and allocates d ∈ N resource units across the nodes to protect the network. Let

d = (d1, d2, ..., dn) denote this allocation, where di ∈ N and
∑

i∈N di ≤ d.10

A link between two nodes i and j is represented by gij: we set gij = 1 if there is a link

between i and j, and gij = 0 otherwise. Links are undirected, i.e. gij = gji. The nodes and

the links together define a network g.

There is a path between two nodes i and j in network g if there exists a sequence of nodes

i1,.., ik such that i1 = i, ik = j and gi1i2 = ... = gik−1ik = 1. Two nodes are said to be connected

9For a recent survey on conflict in fixed networks with no movement of resources, see Kovenock and
Roberson (2012).

10In an earlier version of the paper, Goyal and Vigier (2010), the model and main results were established in
a setting with continuous defense and attack resources; continuous defense and attack necessitate additional
assumptions on the contest function and on the spread of attack resources. We felt these assumptions obscure
the general arguments underlying our main results. So we work with integer valued defense and attack.

5



if there exists a path between them. A component of the network g is a maximally connected

subset of nodes. C(g) is the set of components of g. We let |Ck| indicate the cardinality (or

size) of a component Ck ∈ C(g). A maximum component of g is a component with maximum

cardinality in C(g). A network with a single component is said to be connected.11 A network

g′ on N ′ is a sub-network of g if and only if N ′ ⊂ N , and g′ij = 1 implies gij = 1. We let G(g)

denote the set of sub-networks of g.

Following Myerson (1977), we assume that the value of a network is the sum of the value

of the different components. We will assume, for simplicity, that the value from a component

depends only on its size.12 Let the twice continuously differentiable function f : N → R+

specify a value to component sizes. If f is decreasing, or increasing and concave, then a

network with no links maximizes value. Our interest is in the tension between the pressure

to connect nodes to create value and the threat of contagion of attack via connections; so, in

the benchmark model, we assume increasing and convex returns to size of component.

Assumption A.1: The value of network g is given by

Π(g) =
∑

Ck∈C(g)

f(|Ck|). (1)

where f(0) = 0, f ′ > 0, and f ′′ > 0.

Increasing and convex network value functions arise naturally in the large literature on

network externalities (see e.g., Katz and Shapiro (1985); Farrell and Saloner (1986)). In that

literature, the value to a consumer from buying a product is related to the number of other

consumers who buy the same product, i.e., belong to the same network. In its simplest form

this gives rise to the quadratic form, f(n) = n2. Such a function also arises in the well known

connections model in the literature on network economics (see e.g., Goyal (1993); Bala and

Goyal (2000a); and Jackson and Wolinsky (1996)). The appendix derives this payoff from an

example on communication networks.

11The complete network, gc, has gij = 1, for all pairs (i, j). The empty network, ge, has gij = 0 for all pairs
(i, j). A core-periphery network has two types of nodes, N1 and N2. Nodes in N1 constitute the periphery
and have a single link each and this link is with a node in N2; nodes in N2 constitute the core and are fully
linked with each other and with a subset of nodes in N1. When the core contains a single node, we have a
star network. For a general introduction to network terminology, see Goyal (2007).

12A natural way to enrich the model would be to suppose that value is increasing in ‘proximity’ of nodes to
each other. Our results on the optimality of CP-star extend to this setting.

6



Given a network with defense (g, d) we let K denote the subset of protected nodes and O

the subset of unprotected nodes, so that

K = {i ∈ N : di > 0} ; O = N −K (2)

Let Oi denote the subset of nodes in O which can be reached from node i through a path

such that each node on that path lies in O, so that:

Oi = {j ∈ O : gij = 1 or ∃{j1, ..., jm} ⊆ O s.t. gij1 ...gjmj = 1} (3)

Similarly, let Ki denote the subset of nodes in K which can be reached from node i through

a path such that each node on that path lies in O, so that:

Ki = {j ∈ K : gij = 1 or ∃{j1, ..., jm} ⊆ O s.t. gij1 ...gjmj = 1} (4)

Adversary: The Adversary A has a ∈ N attack resources. He observes the defended network

(g, d) and makes two strategic choices: one, he allocates resources across the n nodes. We

let a = (a1, a2, .., an) denote this allocation where ai ∈ N, and
∑

i∈N ai ≤ a. Here ai ∈ N
indicates resource units allocated to node i ∈ N at the outset of the attack. Two, he chooses

a matrix ∆ specifying for each node i ∈ N a ‘pecking order’ for the spread of successful attack

resources located at node i (a detailed description of the way in which attacks spread through

the network is provided at the end of this section). In particular, if |Ki| = k′ then for all

s ∈ {1, ..., k′} we can find is ∈ Ki such that δiis = s, while δij = 0 if j ∈ N −Ki.

Attack and defense resources allocated on a given node engage in conflict over control of

the node. We model this conflict on a node as a contest. Suppose D allocates di and A
allocates ai to node i. If ai + di > 0 then, following Tullock (1980), we set the the probability

of successful attack to be

aγi
aγi + dγi

(5)

where γ > 0. If ai, di = 0, then the probability of successful attack is 0. Skaperdas (1996)

provides axiomatic foundations for this contest function. The parameter γ is referred to as the

technology of conflict in the literature on conflict (Hirshleifer (1995)). Observe that raising

γ tends to favor the side with most resources. In particular, an all pay auction – where the
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side with most resources wins the contest for sure – is a special case of our model. Observe

also that the contest function is homogenous of degree 0 in resources. Our proofs exploit this

property of the contest function.

We assume that success of attack is independent across contested nodes. This assumption

is made for expositional simplicity. Positive correlations across contests on different nodes

would complicate the expressions but would not alter the results on the optimality of CP-

star.

We turn next to the dynamics of the spread of attack. Time is discrete t = 0, 1, 2, ... The

rules of the dynamics specify how resources move across nodes and engage in conflict.

Note first that, at date t = 0, D chooses defended network (g, d) and A chooses at-

tack resource allocation and pecking order of subsequent movement of resources (a,∆). The

Designer’s resources are stationary: they remain on the nodes to which they are initially

allocated.13

At time t=0: For all i ∈ O, if ai > 0 then A (i) captures i, (ii) captures Oi, and (iii)

reallocates ai attack resources to j ∈ K given by δij = 1.14

Let (g1, d1) denote the residual network (of non-captured nodes and links between them)

and defense allocation, and a1 the allocation of attack resources at the end of period 0.15

At time t=1: Contests take place simultaneously at all i such that a1
i > 0.

1. If attack succeeds at i then A (i) captures i, (ii) captures O1
i , (iii) eliminates all d1

i

defense resources. In addition (iv) fraction α of all a1
i attack resources are dissipated.

If αa1
i ∈ R − N, then eliminate the integer part only.16 Finally, if at the end of period

1 there remains any node from the set Ki then A relocates the remaining (1 − α)a1
i

13The asymmetry between Designer and Adversary is consistent with applications such as computer net-
works: security software is installed on computers while worms and viruses can attack individual computers
and upon capture of a computer then may travel to other connected computers.
Our results do not hinge on the specifics of how attack resources are replicated: so, for instance, our results
carry over in a model where successful attack resources multiply and spread to all defended neighbors (or
neighbors of neighbors) instantly.

14So all attack resources at node i are moved to a single node j and they are moved at the same time.
Splitting of the attack resources can be accommodated within our analysis in a straightforward way. The
latter assumption - about simultaneous movement of resource – is exploited in our proofs: Tullock contests
create an incentive for the Adversary to use attack resources in sequence rather than all at once. This alters
the payoffs in different networks and is likely to modify the trade-offs with regard to design of networks. A
general treatment of robust network defense and design with sequential moves of winning resources remains
an open problem.

15We also define by a similar extension N1, O1, K1, as well as O1
i and K1

i for all i ∈ N1.
16This is to guarantee integer resources at all stages of the attack.
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attack resources to node j given by δij = min{δis : s ∈ Ki

⋂
N2}. If Ki

⋂
N2 = ∅ then

eliminate remaining attack resources on i.17

2. If defense succeeds at i then (i) eliminate a1
i attack resources, (ii) eliminate αd1

i defense

resources (if αd1
i ∈ R− N, then eliminate the integer part only).

Let (g2, d2) denote the residual network and defense resources, and a2 the allocation of

attack resources at the end of period 1. If a2 = 0 then terminate the process. Otherwise,

move to period 2.

For t>1 the process now iterates following the rules laid out as in period t = 1.

Given a defended network (g, d) and attack strategy (a,∆), the dynamics of conflict de-

scribed above yield a probability distribution on the set of sub-networks of g. Let P(g′|g, d, a,∆)

denote the probability that the sub-network g′ is the residual network after all conflicts have

ended. We let Πe(g, d, a,∆) denote the expected value to the Designer given defended network

(g, d) and attack strategy (a,∆), so that:

Πe(g, d, a,∆) =
∑

g′∈G(g)

P(g′|g, d, a,∆)Π(g′). (6)

Figures 1 and 2 illustrate the nature of dynamics and the expected value of defended

networks. In Figure 1, n = 12, a = d = 4. The Designer allocates all 4 units to the central

node, while the Adversary allocates 1 unit each to four undefended peripheral nodes. These

attack units capture the 4 peripheral nodes and then attack the central node. The contest at

the central node involves 4 units of attack and 4 units of defense. Under the contest function

specification (5), there is an equal probability of Designer and Adversary winning. In case

the Designer wins the contest, the attack resources are eliminated. The process ends with

8 surviving nodes that are connected. So the payoff to the Designer is f(8). In case the

Adversary wins, the central node is captured, the defense resources at the central node are

eliminated, and the attack resources then capture the remaining 7 peripheral nodes instantly.

The payoff to the Designer is f(0). So the expected payoff to the Designer from this defended

network (under this attack strategy) is f(8)/2.

17Different specifications are here possible that would not alter our main results. However, this particular
specification seems to fit best the application we have in mind.
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Figure 1: Attack and defense in star network: n = 12, a = d = 4.
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Prob. 1/2 
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f(1) 
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Figure 2: Attack and defense in complete network: n = 4, a = d = 1.

Figure 2 illustrates the dynamics in the complete network, with n = 4 and a = d = 1.

Suppose that D allocates his resource to node 1, while A allocates his resource to node 2.

Then at time t = 0, node 2 is captured and attack also spreads and captures O2 = {3, 4}
(indicated by light dashed arrows). At time 1, attack resource target the single defended node

1 (indicated by heavy dashed arrows). As defense and attack resources are equal, given the

contest function (5), the conflict on node 1 leads to capture and survival with equal probability.

In case of survival the payoff to the Designer is f(1), and in case of capture the payoff to the

Designer is 0.

Our aim is to characterize optimal network design and defense for the Designer. Recall,

Designer and Adversary are engaged in a zero sum game. Let Π
e
(g, d) denote the minimum

expected value given defended network (g, d):

Π
e
(g, d) = min

a,∆
Πe(g, d, a,∆) (7)

We may now define optimal defended networks:

Definition 1 A defended network (g, d) is optimal if Π
e
(g, d) ≥ Π

e
(g′, d′) for all defended
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networks (g′, d′).

Let ε > 0. A defended network (g, d) is ε-optimal if Π
e
(g, d) ≥ (1 − ε)Π

e
(g′, d′) for all

defended networks (g′, d′).

2.2 Application: computer network security

We discuss security in Peer-to-Peer (P2P) networks. This is an overlay computer network built

on top of the physical computer network topology (other examples include the World Wide

Web and e-mail networks). The most popular use of such networks is file sharing; examples

include BitTorrent, Kazaa or eMule. The returns from joining the network are increasing in

the number of users (as more users means more resources). This is in line with our assumption

(A.1), the total social value of a component is increasing and convex in its size.

Online criminals, such as hackers and ‘botnet’ herders take the topology and security of a

P2P network as given when they attack hosts taking part in the network. These adversaries

generally prepare their attack, after scanning the network to assess its topology and security;

in their well known paper, Staniford, Paxson and Weaver (2002) elaborate on the different

mechanisms available for such scanning and highlight the growing efficacy of scanning. This

is in line with our assumption that the Adversary is aware of the topology and the defense

allocations, prior to choosing the attack. Adversary knowledge of the network and vulnera-

bilities of nodes is assumed in the computer science and electrical engineering literature; see

e.g., Saia et al (2002) and Suto et al. (2012). A theoretical reason for this assumption is that

sometimes the interest is in understanding the behavior of the system in the worst possible

case; assuming complete knowledge of the network enables the most effective attack. So a

network that survives such an attack is especially attractive.

One of the most dangerous threats to P2P networks are forms of self propagating malicious

software called contagious (or stealth) worms. Worms are typically deployed by an external

attack with viruses or other forms of malware; their objective is to deploy a worm on selected

hosts in the network. The likelihood of successful infection of a host is lower the more so-

phisticated is the security installation and specialized personnel assigned to it. This feature

of security is intuitive and is reflected in our contest function formulation (5).

Deployed worms propagate through the network by progressively taking control of neigh-

boring hosts in the network. This is done by exploiting the communication mechanisms within

the network. The worm attaches itself to packages of data sent between connected hosts and

infects the neighbors of the hosts that are already infected; see Staniford, Paxson and Weaver
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(2002) for a detailed discussion of worm contagion through exploitation of neighbors. The

probability that the worm succeeds in infecting neighboring computers varies with the level

of security installations on those computers. This transmission of a worm via communication

links and subsequent conflict between the virus and the security installed on neighboring hosts

is consistent with our rules on dynamics.

3 Optimal defended networks

The Designer has two instruments at his disposal to sustain network value: strategic de-

ployment of defense resources and creation of links. In particular, the Designer chooses the

number and architecture of components and the allocation of defense resources across these

components. This optimization problem is complicated and for expositional simplicity it is

convenient to proceed in steps. We start by solving the problem of optimal architecture and

defense at the level of a single component. This problem is of independent interest in situations

where attacks are rare. The convexity of the network value function implies that the network

is connected: defense resources are then primarily used to maximize operational capability in

the rare event of attack.18

We then consider the pure problem of number of components, in the absence of any defense

resources. Finally, we combine the insights and present a result on optimal defended network

where defense allocation, architecture of individual components and the number of components

are all decision variables for the Designer.

We shall assume that a > 0: the case of a = 0 is uninteresting as any connected network

is then optimal. If g is a star network and all defense resources are allocated to the central

node we will refer to the resulting defended network as a CP-star, and denote it by (gs, ds).

3.1 Connected networks

Discrete optimization problems are marked by divisibility issues. We circumvent these diffi-

culties by assuming throughout that a
d
∈ N and n > a + 1. Given defended network (g, d)

we will say that attack (a,∆) mimics defense if and only if for each defended node is in

K = {i1, ..., ik} one resource unit is allocated to exactly a
d
dis distinct nodes in Ois , and all

a
d
dis attack resources thereafter mount a concerted attack on node is.

18We thank the editor for this suggestion.

13



Definition 2 Given defended network (g, d), we say that (a,∆) mimics defense if and only if

there exists a set of a distinct nodes, {j1, ..., ja}, such that:

1. {j1, ..., ja
d
di1
} ∈ Oi1, {ja

d
di1+1, ..., ja

d
di1+a

d
di2
} ∈ Oi2, ..., {ja

d
dik−1

+1, ..., ja
d
dik−1

+a
d
dik
} ∈ Oik

2. δjsi1 = 1, ∀s s.t. s ≤ a
d
d1, δjsi2 = 1, ∀s s.t. a

d
d1 + 1 ≤ s ≤ a

d
d1 + a

d
d2, ..., δjsik = 1, ∀s

s.t. a
d
dk−1 + 1 ≤ s ≤ a

d
dk−1 + a

d
dk

Figure 1 provides a simple example of an attack strategy that mimics defense: there is one

defended node, and the two requirements are satisfied so long as n > a + 1. Consider next

a slightly more complicated example of 2 hubs and suppose that a = d = 4. Suppose the

Designer allocates 2 units of defense to each hub. Figure 3 illustrates an attack that mimics

defense. The Adversary allocates 1 unit of resource to two peripheral nodes connected to each

hub. These 2 units then move to attack their respective hubs. So the attack resources engage

in contests on two hubs; the resource proportions are exactly in line with the proportion of

the aggregate resources of a versus d.

We must also consider the possibility that, for some defended networks, the set of attacks

which mimic defense may be empty. This happens if and only if (g, d) satisfies property P.

Property P: A defended network satisfies property P if we can find a subset of defended

nodes, {i1, i2, ..., ik′} ⊂ K, such that:

∣∣ k′⋃
s=1

Ois

∣∣ < a

d

k′∑
s=1

dis (8)

A simple example of a defended network which satisfies property P is the complete network

in which every node is protected by 1 unit of defense. Another example of a defended network

that satisfies property P is the following: fix n = 12 and a = d = 4, the network has two hubs,

with the first hub being linked to 9 peripheral nodes and the second hub being linked to one

peripheral node. If Designer allocates 2 units to each hub, then there is no attack that can

mimic defense in this defended network.

Our first result shows that, in the class of connected networks, an optimal defended network

is either the CP-star or satisfies property P.
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Theorem 1 Assume that (A.1) holds, a, d > 0, a
d
∈ N and n > a + 1. Within the class of

connected networks, either (i) a defended network satisfying property P is optimal, or (ii) the

CP-star is uniquely optimal.

Proof: Given a CP-star the optimal attack consists in allocating 1 resource unit to a unpro-

tected nodes, thereafter targeting the center, so that:

Π
e
(gs, ds) =

dγ

dγ + aγ
f(n− a) (9)

Here we apply the rules of the dynamic: capture of undefended nodes and spread of attack

resources on these nodes precedes conflict on nodes with positive defense and attack resources.

So it is strictly better for the Adversary to allocate all its resources to peripheral nodes.

Let (g, d) 6= (gs, ds) denote an arbitrary (connected) defended network which does not

satisfy property P. We will show that there exists an attack (a,∆) such that Πe(g, d, a,∆) <
dγ

dγ+aγ
f(n− a). Define K = {i1, ..., ik} to be the subset of protected nodes in (g, d).

Case 1: k = 1

Note that since (g, d) 6= (gs, ds) we can find two nodes in O with a link between them. By

allocating one resource unit to one of these nodes we can then find an attack (a,∆) such that

Πe(g, d, a,∆) ≤ dγ

dγ+aγ
f(n− a− 1).

Case 2: k > 1

Construct the sequence of sets
(
Nis

)
1≤s≤k recursively as follows:

Ni1 = Oi1 , Ni2 = Oi2 −Ni1 , ... , Nik = Oik −
k−1⋃
s=1

Nis

Let nis = |Nis|, s = 1, ..., k. Note that by connectedness of g,
⋃k
s=1Nis = O.

Suppose first that nis ≥ a
d
dis , ∀s, and attack mimics defense in such a way that one resource

unit is allocated to exactly a
d
dis nodes in Nis , each of these resource units thereafter spreading

to node is. Let Πe denote the resulting expected network value.

Observe that, since Nis ⊂ Ois , a necessary condition for nodes in Nis to survive the attack

is that is itself survives the attack. So the distribution of the total number of surviving nodes

is first order stochastically dominated by that of (ni1 + 1−ai1)I1 + ..+ (nik + 1−aik)Ik, where

{I1, .., Ik} denotes a set of independent Bernoulli random variables such that P (Is = 1) =

15



dγ

dγ+aγ
, ∀s ∈ {1, .., k}. Now since f is increasing and convex this implies that:

Πe ≤ E[f
( k∑
s=1

(nis + 1− ais)It
)
] (10)

But by Lemma 1 (in the appendix):

E[f
( k∑
s=1

(nis + 1− ais)Is
)
] < E[f

(
(
k∑
s=1

nis + 1− ais)I1

)
] = E[f

(
(n− a)I1

)
] (11)

Hence:

Πe <
dγ

dγ + aγ
f(n− a) (12)

Finally, since (g, d) does not satisfy property P, we can always find a sequence of a nodes

such that the first a
d
di1 of these nodes belong to Oi1 , the next a

d
di2 of these nodes belong to

Oi2 , and so on up to k. So, by relabeling appropriately, the previous steps can be repeated in

the case where nis <
a
d
dis for some s.

�

In the proof, the arguments focus on networks which violate property P. First, we show

that in a CP-star network the expected payoff of the Designer is given by (9). The second

step constitutes the heart of the proof: any defended network which does not satisfy property

P has defended nodes surrounded by sufficient number of unprotected nodes. This opens the

way to attacks which mimic defense. But attacks which mimic defense have a remarkable

property: the probability distribution on surviving nodes induced in the CP-star is a mean

preserving spread of the (best possible) distribution on surviving nodes induced by a mimic

defense. Since f is convex, the expected network value achieved under the mimic defense is

less than that achieved with a CP-star.

We illustrate this point with the help of Figure 3. In this Figure, n = 12, a = d = 4.

The network has a core-periphery structure in which two hubs are linked to each other and

to 5 other peripheral nodes each. The Designer allocates 2 resource units to each hub and

the Adversary employs a mimic attack strategy: he allocates 2 resources to peripheral nodes

connected to one hub and 2 resource units to peripheral nodes connected to the other hub. In

the first instance, the Adversary captures 4 peripheral nodes. The resources then target their

respective hub nodes. This is illustrated in the network on the left.
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There are four possible outcomes of the two contests on the hubs: either both hubs survive,

both hubs are captured or one hub survives and the other is captured. Given the equal

resources engaged in contests, it follows that the first two outcomes each arise with probability

1/4. The two outcomes define terminal states of the dynamics, represented at the top and

the bottom end of the Figure. There is a probability 1/2 that one of the hubs survives and

the other is captured. This is represented in the middle network of the Figure. Moreover, the

captured hub triggers the capture of the peripheral nodes while attack resources then target

the surviving hub. This leads to a second contest at the surviving hub. With probability 1/2

the hub survives the attack, and with probability 1/2 it is captured. In case of capture the

attack resources then instantly also capture the remaining 3 peripheral nodes. This dynamic

process yields probability density Pm on surviving nodes: with probability 1/2 all nodes

are captured, with probability 1/4 eight nodes survive and with probability 1/4 four nodes

survive. Observe that the probability distribution is first order stochastically dominated by

the distribution P′: with probability 1/4 all nodes are captured, with probability 1/2 eight

nodes survive and with probability 1/4 four nodes survive.

Finally, an inspection of Figure 1 reveals that the probability density Ps of surviving

nodes is as follows: with probability 1/2 all nodes are captured, with probability 1/2 all nodes

survive. It is easy to verify that Ps is a mean preserving spread of P′. Since f is convex, the

expected payoff to the Designer from the CP-star is higher than the expected payoff from the

core-periphery network with 2 hubs.

Theorem 1 tells us that optimal defended networks either satisfy property P or must be

the CP-star network. We now explore the circumstances under which property P may be

attractive for the Designer. Consider a setting where n = 3, f(n) = n2, and a = d = 2. The

CP-star network yields the Designer an expected payoff of 1/2. By contrast, the complete

network with two protected nodes yields at least 1. So the complete network dominates the

CP-star. Observe that the complete network satisfies property P. This raises the question:

how attractive are defended networks with property P, more generally?

The key to the problem is the number of nodes, n: to see this note that, in this example,

the expected payoff of the Designer under the complete network is bounded above by 4 (for

all n), while the minimum expected payoff from the CP-star is given by 1/2(n − 2)2. So for

n ≥ 5, the CP-star dominates the complete network. Our next result, Theorem 2, shows that

this is a more general point: for large n, the CP-star dominates all defended networks which

satisfy property P.
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Figure 3: Mimic attack in core-periphery network: n = 12, a = d = 4.
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To formally state and prove the result, we proceed by assuming that f(n−1)
f(n)

converges as

n→∞. Define

` = lim
n→∞

f(n− 1)

f(n)
(13)

In the communication networks example, f(n) = n2, and the limit ` = 1. By contrast, for

the function f(n) = 2n, the limit ` = 1/2.

Theorem 2 Assume that (A.1) holds, a, d > 0, a
d
∈ N and n > a+ 1. Let ε > 0 and consider

connected networks. There exists n0 such that, for all n > n0:

1. If ` < 1 the CP-star is uniquely optimal.

2. If ` = 1 the CP-star is ε-optimal.

There are two parts to the result. The first part pertains to the case where ` < 1. Consider

a defended network which satisfies property P: suppose there are k defended nodes. If k = 1

and the network is not a star, then it is easy to see that the Adversary can eliminate strictly

more than a nodes before mounting an attack on the single protected node. Thus expected

payoff to the Designer is strictly lower than in the CP-star. If k > 1, then there is at least

one defended node i such that Oi ≥ (n − k)/k. For large n, (n − k)/k > a. Consider the

attack strategy in which A allocates all resources to Oi. Then the probability that node i

survives attack is dγi /(d
γ
i +aγ) and in this event the payoff to Designer is f(n−a). In case the

attack succeeds the maximum payoff to the Designer is bounded above by f(n− (n−k)/k). If

` < 1, this last term becomes very small, as n grows. So in the event that the attack succeeds,

the Designer earns very little. On the other hand, the probability of survival dγi /(d
γ
i + aγ) is

smaller than the probability of survival in the CP-star, dγ/(dγ +aγ), since di < d. So it is this

latter effect that prevails, as n gets large.

The second part pertains to the case where ` = 1. In this case, for any ε > 0, f(n− a) ≥
(1−ε)f(n) for large enough n. Consider a direct attack strategy which targets the k protected

nodes in proportion to the defense resources allocated to them. Lemma 1 and Theorem 1 tell

us that Πe ≤ dγ/(dγ + aγ)f(n). Putting together these inequalities yields us the inequality

(1− ε)Πe ≤ dγ/(dγ + aγ)f(n− a): so the CP-star is ε-optimal.

Theorem 2 is a powerful result: in the class of connected networks, the CP-star is optimal,

when n is large. In particular, it holds for all payoff functions which satisfy (A.1): so the

result does not depend on the curvature of f . The result holds for all γ in the Tullock contest

function: so the conclusion is robust with respect to the technology of conflict. It holds for all
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resource configurations between the Designer and the Adversary which respect the property

a/d ∈ N. Finally, the result holds for all values of α, the parameter of resource dissipation.19

In an influential paper, Albert, Jeong and Barabasi (2000) have argued that hub-spoke

architectures are robust to random attacks but vulnerable to strategic attacks since the Adver-

sary can significantly reduce a hub-spoke network’s functionality by removing only a few hub

nodes. Our result, on the other hand, highlights the attractiveness of hub-spoke architectures

when attacks can spread in networks and there are limited defense resources.

Theorems 1 and 2 complete our analysis of optimal defended networks within the class of

connected networks. We now turn to the study of networks with multiple components.

3.2 Number of components

When the Designer has 0 defense, the only way to sustain network value is to separate the nodes

into distinct components. Any component which is attacked will be completely captured,

irrespective of its architecture. This allows us to focus on the pure problem of number of

components in optimal networks. The following result provides a characterization of the

optimal number of components.

Theorem 3 Assume that (A.1) holds, a > 0 and d = 0. (i) If a < n/2 then the optimal

network contains at least a + 1 maximal components and at most one component which is

smaller; the Adversary targets at most one node in each component. (ii) If n/2 ≤ a < n− 1,

then the empty network is the optimal network; the Adversary eliminates a nodes. (iii) If

a ≥ n then every network is optimal as the Adversary eliminates all n nodes.

The proof is given in the appendix. If a ≥ n then the Adversary can always eliminate all

nodes, irrespective of the structure of the network. So, it follows that the Designer earns a

payoff of 0 irrespective of the network. Similarly, if a ≥ n/2 then the Adversary can always

eliminate any component with two nodes or more. So the interesting case really is when

a < n/2.

Observe that there must be at least a+ 1 components: else the payoff is 0. And a network

with a + 1 components on the other hand, guarantees D strictly positive payoff. Next, we

19We note that the Designer is assumed to be risk-neutral in our model. If the Designer is significantly
risk-averse then this may make his objective function concave, in spite of convex network value function. In
that case, optimal networks will be empty.
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show that there are at least a + 1 maximum components. If there are a or fewer maximum

components then all of them will be eliminated. However, the Designer can do strictly better

by simply taking one node i out of a maximum component, say, C1. As part of his best

response the Adversary must eliminate C1 less i. But then D does strictly better by this

deviation. We then show that at most, one component has size strictly smaller than the

maximum size. If there were two such components, then the Designer could take one node

from the smaller to the larger of the two components. As this new larger component still

remains (weakly) smaller than the maximum component, the Adversary will not attack it. It

now follows from the convexity of f that payoffs to D are strictly increased by this move.

In case a < n/2, Theorem 3 sets lower bounds on the number of components; the precise

number of components depend on the convexity of the payoffs function. To develop this idea

further, we work with a class of network value functions f(n) = nβ, where β > 1. We interpret

β as a measure of the convexity of the network value function. Define x(a, β) = βa
β−1

.

Proposition 1 Assume that (A.1) holds and suppose f(n) = nβ for β > 1. If x(a, β) ∈
{a+ 1, .., n} and divides n, then the unique equilibrium network consists of x(a, β) equal size

components.

The proof is provided in the appendix. Observe that x(a, β) is increasing in Adversary

budget, a, and falling in the parameter of convexity, β.20

Figure 4 illustrates the comparative statics for Adversary budget and the convexity of the

network value function. We take n = 24. First, consider the effects of budgets: here we

suppose that β = 2. The optimal number of components increases from 4 to 8, as we increase

the Adversary budget from 2 to 4. Second, consider the effects of convexity: here we suppose

the budget to be a = 2, the optimal number of components falls from 4 to 3 as we raise the

convexity from β = 2 to β = 3.

The analysis so far shows that, within the class of connected networks, the optimal network

is either a CP-star or satisfies property P. Moreover, if n is large, then the CP-star is optimal

or almost optimal. When D has no defense resources, his choice of optimal networks revolves

around the number of components. Optimal networks contain equal sized components whose

20These findings on the relation between adversary budgets, on the one hand, and network size and success
of the network, on the other hand, echo discussions in the popular press with regard to terrorist networks. For
instance, the editor of Newsweek magazine, Mr. Zakaria (2008) wrote, “ ...... the world’s governments have
effectively put them on the run ... the Jihadists have had to scatter, work in small local cells... Terrorists
have not been able to hit big, symbolic targets.... So they blow up bombs in cafes, marketplaces, and subway
stations” (Zakaria (2008, p. 3)).
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Figure 4: Optimal networks: f(m) = (m)α, n = 24, β=2,3 and a = 2, 4
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number is falling in the convexity of the value function and increasing in the Adversary’s

budget. We now combine these insights and study optimal defended networks in a setting

where defense allocation, architecture of individual components and the number of components

are all decision variables for the Designer.

3.3 The general optimization problem of Designer

A remarkable feature of Theorems 1 and 2 is that they make no assumptions on the extent

of f ’s convexity. However, Proposition 1 shows that the curvature of f will affect the number

of components. It is, after all, the convexity of f which creates the tension between the

pressure to connect nodes to create value and the threat of spread of attack via connections.

Insufficient gains from connecting nodes will naturally induce optimal networks with multiple

components. Similarly, a sufficient amount of convexity will restrict optimal networks to the

set of connected networks. Our next proposition builds on these remarks to characterize

network value functions for which optimal defended networks will be connected.

Theorem 4 Assume that (A.1) holds, a, d > 0, a
d
∈ N, n > a+ 1, and let ε > 0.

1. If ` < 1 there exists n0 such that, for all n > n0, the CP-star is ε-optimal among all

defended networks.

2. If ` = 1 then optimal defended networks may contain multiple components.

Proof. For the first part, it follows from Theorem 2 that, for large n, we only need to compare

the performance of the CP-star with that of unconnected defended networks.

Consider therefore defended network (g, d), with g unconnected. Let C denote the largest

component in g, nC = |C|, and dC the total amount of resources allocated to nodes in C.

Note in particular that dC ≤ d, while nC < n.

Suppose first nC ≤ n
2
. As in Theorem 2, choose `′ < 1 and n′0 such that f(m) <

(`′)n−mf(n), ∀n ≥ m ≥ n′0. For n > 2n0 and irrespective of attack the network value is

then bounded above by 2(`′)
n
2 f(n). Now, again as in Theorem 2 choose `′′ > 0 and n′′0 such

that f(n − a) > (l′′)af(n), ∀n ≥ n′′0. Then for n large enough and irrespective of attack the

network value is bounded above by 2(`′)
n
2 (`′′)−af(n − a). A comparison with (9) establishes

that the CP-star dominates (g, d), for large enough n.
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Assume henceforth nC > n
2
. By Theorem 2 we can find an attack on g with resulting

expected network value Πe such that

Πe ≤ dγC
dγC + aγ

f(nC − a) + f(n− nC) (14)

But for n ≥ n′0 + nC we have f(n− nC) ≤ (`′)nCf(n). Since `′ < 1 and nC >
n
2

we obtain

Πe <
dγC

dγC + aγ
f(nC − a) + (`′)

n
2 f(n) (15)

Using the fact that f(n) < (`′′)−af(n− a) for n ≥ n′′0 we then have, for n large enough:

Πe <
dγC

dγC + aγ
f(nC − a) + (`′)

n
2 (`′′)−af(n− a) (16)

Finally, nC < n,

Πe <

(
dγC

dγC + aγ
+ (`′)

n
2 (`′′)−a

)
f(n− a) (17)

The first bracketed term in (17) is at most dγ

dγ+aγ
, since dC ≤ d, while the second term

tends to 0 as n becomes large. This completes the proof of the first part of the proposition.

For the second part, suppose f(n) = n2, d = 1, a = 2. In the class of connected networks,

Theorem 2 tells us that CP-star is optimal. In the CP-star network, the expected payoff is:

Π
e
(gs, ds) =

1

1 + 2γ
(n− 2)2 (18)

Now let (g, d) denote a defended network consisting of two components of equal size;

suppose one component is a star with defended central node. We then have

Π
e
(g, d) =

1

2
(
n

2
− 1)2 (19)

If n ≥ 4, then Π
e
(g, d) > Π

e
(gs, ds), for all γ > 5.

�

Observe that ` < 1 implies that network value grows exponentially in the number of

nodes: so the loss in value from splitting the network into multiple components can be made

very large, by suitably raising n. This is most easily seen in the case when the maximum

component comprises less than one half of the nodes. In that case the expected payoffs to the
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Designer are bounded above by 2(x)
n
2 (y)−af(n − a), where y < ` < x < 1. Recall that the

expected payoffs from the CP-star network are given by (9). For large n, a comparison of the

expressions yields the desired result. Observe that if ` < 1 then for large enough n, optimal

defended networks are connected for all γ > 0 and for all a, d > 0 satisfying a/d ∈ N. By

contrast, when ` = 1, network value is reflected in polynomial functions and optimal networks

may consist of multiple components. Moreover, our construction in the proof of Theorem 4

suggests that the number of components in a optimal defended network will generally depend

on the resources of Designer and Adversary and the technology of conflict (parameterized by

γ). In a situation where attack resources exceed defense resources (a > d), an increase in γ

makes the defense in a CP-star less effective and therefore renders the alternative of separation

of nodes into distinct components more attractive.

4 Discussion

Our framework of network design, defense and attack provides a useful way to think about

a number of questions relating to networks that face threats. In particular, variations on

network value functions, number of players, and the timing of moves enable us to trace out

an ensemble of models that can accommodate a wide range of other applications. A complete

analysis of these alternative models is outside the scope of the present paper; the exploratory

analysis undertaken here suggests that arguments developed in the proofs of Theorems 1-4

can be applied to other games and also serves to bring out new insights that are consistent

with empirical and applied work.

4.1 Decentralized linking and defense

In the benchmark model there is one Designer and one Adversary. In large scale computer

networks, there are typically many players who can choose links and security.21 Similarly,

in social contexts, the spread of diseases depend on interaction and vaccination choices of

individuals (Geoffard and Philipson (1997), Kremer (1996), Pongou and Serrano (2009)).

And in financial networks, banks make choices on linkages with other banks and also choose

investments and level of reserves (Allen and Gale (2000)).

There are two natural variants within the decentralized decision making context. The first

scenario involves a single Designer who chooses links but many players/nodes that choose

21For a discussion of issues in the theory of decentralized information networks, see van Zandt (1999).
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security. This may correspond to the case where a central authority chooses an infrastructure

while individual nodes choose defense or security levels. Individual security choices will gener-

ally create externalities on others (as in models of vaccination and epidemics). So the problem

is to design a network in which the negative effects of these externalities are mitigated. The

second scenario involves many players choosing links as well as security; here coordination

problems arise in addition to the externalities present in the first scenario.

Our results, Theorems 1-4, are useful for the study of the decentralized problem as they

may be interpreted as the first best (or the planner) solution. They alow us to ask questions

such as what is the the price of decentralization of links and of security (i.e., the difference

between the social welfare attained in the first best and the expected welfare attained in the

decentralized equilibrium).

4.2 Richer network value models

In the benchmark model, network value is strictly increasing and convex in number of nodes

in a component. It is clear that, in our framework, a network value function that is concave

would render the problem of optimal network design uninteresting. But there is a range

of possible alternatives between concave and convex network value functions. In particular,

in some settings the marginal value of connections is initially increasing but then dissipates

sharply. The aim of the example below is to draw out an implication of such network value

functions for the structure of our argument in Theorems 1-2.

Suppose that n = 12, a = d = 2, and the network value function is as follows:

f(n) =

n2 for 0 < n ≤ 6

36 + 0.2(n− 6) for 6 < n ≤ 12.
(20)

For expositional simplicity, we also assume that α = 1.

The expected payoff from a two hub core-periphery network depends on the attack strategy

of the Adversary. It may be checked that the Adversary prefers to attack periphery nodes

attached to distinct hub nodes. So the probability distribution of the surviving nodes under

CP-star is: probability 1/2 of 10 surviving nodes, and probability 1/2 for 0 surviving nodes.

The probability distribution of surviving nodes under the two hubs network is: probability

1/4 of 10 surviving nodes, probability 1/2 for 5 surviving nodes and probability 1/4 for 0
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surviving nodes. The former is a mean preserving spread of the latter.

The expected payoff from the CP-star is given by

1

2
f(10) =

1

2
(36 + 0.8) = 18.4. (21)

The expected payoffs to the Designer under two hubs network are given by:

1

4
f(10) +

1

2
f(5) = 21.7. (22)

Thus the two hub network dominates the CP-star. The move from the CP-star network

to the two hub defended network creates the following trade-off: the probability of 10 nodes

surviving goes down from 1/2 to 1/4, but the probability of 5 nodes surviving goes up from

0 to 1/2. As the network value function is eventually linear, most of the potential network

value is attained with the few initial nodes. So the increase in probability of 5 hubs surviving

is more attractive for the Designer. This example illustrates the role of convex network value

function in the analysis of Section 3. If a significant part of the network value is attainable

with a subset of the resources then multi-hub networks may be optimal.

An implicit assumption in the benchmark model is that there are no congestion effects; so

traffic flows equally well through a single hub as through multiple hubs. In actual practice,

both in computer networks as well as other infrastructure networks, it is likely that congestion

effects are important. Large congestion costs will create a pressure toward multiple paths and

the creation of multiple hubs. A general analysis of optimal networks in the presence of

significant congestion costs remains an open problem for future research.

4.3 Alternative timing of moves

In the benchmark model, we studied a sequential move game in which the Designer moves

first, followed by the Adversary. In this section we show that by varying the order of moves,

we can accommodate a variety of new applications.

Adversary moves first, followed by Designer: In some settings the Adversary is con-

strained to commit itself to a policy which is publicly observable. This may be due to political,

legal or organizational reasons; a prominent instance is public policy with regard to crime.

The state and the police may have to commit themselves to a course of action in advance.22

22See Baccara and Bar-Isaac (2008) for a detailed discussion of the reasons for such commitment.
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So suppose the Adversary moves first and chooses to allocate his budget a ∈ N across

N nodes. The Designer observes this allocation and then chooses a network. To fix ideas

suppose that ` = 1. The Designer can then isolate all the nodes which are being attacked and

constitute a component with the remaining nodes. A maximum of a nodes can be targeted:

so the minimal payoff of the Designer is f(n − a). As ` = 1, it follows that for any ε > 0,

there is a n̄, such that f(n′ − a) ≥ (1 − ε)f(n), for all n′ ≥ n̄. In other words, the Designer

can ensure himself an expected payoff which is arbitrarily close to what he could attain in the

absence of any Adversary.

This timing of moves allows us to relate our paper to Baccara and Bar-Isaac (2008) more

closely. In their paper, attack resources are continuous variables and they suppose that ai ∈
[0, 1]. Fix a = 1 and suppose that f(n) = n2. Consider the case of symmetric allocation

ai = 1/n. The payoff from a connected network is then simply the probability that it is not

successfully attacked, which is (1− 1/n)nf(n). It is possible to verify that as n gets large, the

connected network dominates networks with multiple equal components. On the other hand,

Baccara and Bar-Isaac (2008) show that, for small ai, a network with binary cells is optimal.

Clearly, in our setting a collection of binary cells is very unattractive.

This discussion abstracts from defense allocation: a more complicated design would involve

protecting a subset of the attacked nodes and possibly linking these nodes. But this is a second

order problem, given the high payoffs already attained.

The Simultaneous Game: In some contexts it may be possible to conceal the network

structure and defense allocations: leading examples are terrorist networks or civil and political

protest movements. In addition to the government, the Adversary often includes intelligence

agencies and secret services. These organizations (as their name suggests) are allowed (by law)

to keep their actions covert. These considerations motivate a game in which the Designer and

Adversary make all choices simultaneously.23

Our analysis shows that the Designer and the Adversary will seek to exploit simultaneity:

both of them will mix their choices in a bid to gain strategic advantage. Moreover, this

23A referee has drawn our attention to a paper by Gueye and Marbukh (2012) in which players move
simultaneously; we note that this paper appeared after the first preprint of our paper which dates from 2010
(see Goyal and Vigier, 2010). Gueye and Marbukh (2012) study a game in which the Designer picks a spanning
tree from a network while an Adversary picks a link to delete. The aim of the Adversary is to maximize the
loss to the Designer. They show the existence of mixed strategy equilibrium and their analysis highlights the
role of link between-ness in understanding strategic behavior. The simultaneous game being considered in
this section shares the same order of moves but there are crucial differences between the papers: we study
optimal network defense and design and contagion plays a key role in our model. By contrast, in their work
the Designer chooses only the spanning tree from a given network and there is no threat of contagion.
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opportunity for disguising the network will enable the Designer to earn higher payoffs as

compared to the benchmark sequential model analyzed in Section 3. Our finding with regard

to mixing by the Adversary echoes recent research on the practical value of mixed strategies as

highlighted in the recent work of Tambe (2011) with the Los Angeles Police Department. On

the other hand, our finding on the mixing by the Designer suggests that flexible networks are

attractive for criminal and terrorist organizations. This is consistent with the prominent role of

flexible networks – that permit quick reconfiguration of connections – in modern insurgencies

(Arquilla and Ronfeldt, (1996, 2001)).

A mixed strategy of the Designer is a probability distribution, σ, on the set of networks

and defense allocations. The mixed strategy of the Adversary, ρ, is a probability distribution

on the set of attack allocations.24 The expected payoffs to D from strategy σ when A chooses

ρ are:

∑
(g,d)∈supp σ;a∈supp ρ

σ(g, d)ρ(a)
∑

g′∈G(g)

P (g′|a, d, g)

 ∑
Ck∈C(g′)

f(|Ck(g′)|)

 (23)

Consider a network with large n and two hubs who are each linked to (n − 2)/2 nodes.

Suppose for simplicity that a = d = 2 and that Designer allocates 1 resource unit to each hub.

Suppose the Adversary targets one peripheral node each attached to different hubs. Then

the probability distribution of surviving nodes is P̄ : probability 1/2 for 0 surviving nodes,

probability 1/4 for (n− 2) surviving nodes and probability 1/4 for (n/2− 1) surviving nodes.

Figure 3 illustrates the dynamics and this distribution. Next suppose that the Adversary

targets 2 peripheral nodes attached to the same hub node. Then the probability distribution

of surviving nodes is given by P̃ : probability 4/9 for 0 surviving nodes probability 3/9 for

(n− 2) surviving nodes and probability 2/9 for n/2− 1) surviving nodes. Figure 5 illustrates

this distribution.

It is easy to verify that P̃ first order stochastically dominates P̄ . Since network value f

is increasing, it follows that D favors the latter attack strategy. The Designer can enforce

his favored distribution by mixing across the allocation of peripheral nodes to hubs. In the

face of this mixing, the Adversary is indifferent between mixing and not mixing his attack

allocation. This advantage of the Designer in the simultaneous game has a general implication:

in equilibrium he must earn (weakly) more in the simultaneous game as compared to the

24We abstract from the issue of routing of winning attacks by the Adversary here; for simplicity we assume
that winner’s resource captures neighboring undefended nodes but does not travel to other defended nodes.
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Figure 5: Mimic attack in core-periphery network: n = 12, a = d = 4.
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benchmark sequential game analyzed in Section 3. This is because, given a CP-star, it is

optimal for the Adversary to target a peripheral nodes. This means that there is a strategy

which ensures the Designer expected payoffs (9) in the simultaneous game.

Consider next the case of 0 defense. The Designer chooses a network and the Adversary

allocates a units of resources. Networks with equal size components provide a useful analytical

benchmark. Suppose the Adversary allocates one unit of resource to a nodes chosen uniformly

at random from the set of nodes. The probability that a component of size m survives is:(
n−m
a

)/(
n

a

)
=

(n−m)!

(n)!

(n− a)!

(n−m− a)!
(24)

The total payoffs of the Designer from a network with all components having equal size s

is then:
n

s

(n− s)!
(n)!

(n− a)!

(n− s− a)!
f(s) (25)

For n large this becomes, approximately:

n

s
n−s(n− a)sf(s) =

n

s
f(s)(1− a

n
)s (26)

Abstracting from integer constraints, the optimal size, s∗, solves the following equation:

s∗
[
f ′(s∗) + f(s∗) ln(1− a

n
)
]
− f(s∗) = 0. (27)

For this to be a maximum, the second order condition must be satisfied: f ′′(s)+sf ′(s) ln(1−
a/n) + f(s) ln(1− a/n) < 0. So there exists an equilibrium in which the Designer randomizes

uniformly over all networks with equal size components s∗, while the attacker allocates one

unit of resource to a nodes chosen uniformly at random.25

We conclude by noting that the expected payoffs to the Designer must be strictly larger in

the simultaneous game as compared to the sequential game. Suppose the Designer chooses the

size and number of components as in the sequential game but randomizes the allocation of the

nodes to components. Then from the above construction we know that it is optimal for the

Adversary to attack a nodes at random. But this mixing creates a positive probability that

25Observe that:
ds∗

da
=

s∗f(s∗)n−1(1− a/n)−1

f ′′(s∗) + s∗f ′(s∗) ln(1− a/n) + f(s∗) ln(1− a/n)
(28)

The numerator is positive while the denominator is negative (from the second order condition). So a growth
in Adversary budget leads to a fall in component size.
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two or more nodes are attacked in the same component. This is an entirely wasteful outcome

for the Adversary and implies that the Designer has a feasible strategy which ensures strictly

higher expected payoffs (than in the sequential game). This must also be true in equilibrium

then.

We have brought out some interesting implications of simultaneity in moves and related

them to applications. These observations should help in developing a characterization of

optimal defended networks, a problem which we leave for future research.

Design followed by conflict: In some applications, the network is a physical object, e.g.,

transport or telecommunication infrastructure. Such a network takes time to build, is not easy

to modify in the short run and is very visible. The resources of Designer and the Adversary

may represent personnel or equipment. These considerations motivate a model in which the

Designer sets up a network; this network is observed by the Adversary and the two players

then simultaneously choose the allocation of resources on this network.

Our analysis proceeds by way of an example about core-periphery networks: it shows

that the Adversary and Designer have an incentive to mimic their resource allocations. This

mimic behavior allows us then to exploit the mean preserving spread arguments developed

in Theorem 1 and 2 to demonstrate that the star is optimal. This result illustrates how the

techniques we develop there are of more general interest.

Define a k-regular core-periphery network as a core-periphery network in which there are k

core nodes and each core node is connected to (n−k)/k peripheral nodes. Figure 6 illustrates

core-periphery networks with n = 12.

Proposition 2 Assume that (A.1) holds. Let a, d > 0, a/d ∈ N and α = 1. Suppose ` = 1.

Then for large enough n, the star is optimal in the class of regular core-periphery networks.

The proof is presented in the appendix. In the star network, given that ` = 1 and n is

large, there is a (Nash) equilibrium in which D allocates all resources to the central node and

the Adversary allocates all resources to peripheral nodes. The key step in the proof shows

that in case of multiple hubs, it is optimal for D to allocate equal resources to each hub and

for the Adversary to adopt a mimic strategy. The optimality of the mimic strategy lies in the

nature of the conflict technology: it exhibits decreasing returns. The best response to equal

allocations by the opponent is a mimic allocation. Given this equilibrium it then follows from

arguments in Theorem 1-2 that the probability distribution of surviving nodes in the star is a
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Figure 6: Regular core-periphery networks: n = 12.
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mean preserving spread of the distribution obtained under a multiple core-periphery network.

The result then follows from the assumption that f is convex.

This result suggests that the star with protected center is an attractive configuration for

the Designer in settings beyond the benchmark model; a general characterization of optimal

networks and defense remains an open problem.

5 Conclusion

Connections between individuals facilitate the exchange of goods, resources and information

and create benefits. These connections may serve as a conduit for the spread of attacks and

negative shocks as well. This paper asks: What is the optimal way to design and defend

networks in the face of attacks?

We developed a model with a Designer and an Adversary. The Designer moves first and

chooses a network and an allocation of defense resource. The Adversary then allocates attack

resources on nodes and determines how successful attacks should navigate the network.

Our main result is that, in a wide variety of circumstances, a star network with all defense

resources allocated to the central hub node is optimal for the Designer. The Adversary targets

undefended peripheral nodes; upon capture of these nodes the resources mount a concerted

attack on the center.

Our framework of network design, defense and attack offers a useful way to think about a

number of questions relating to inter-connected social and economic systems that face threats.

The baseline model was motivated by the application of computer security. We have outlined

how, by varying the payoff function, the number of players, and the timing of their moves,

we trace out an ensemble of models that can address questions in economic epidemiology,

the organization of terrorist networks, financial networks, modern warfare, transport and

telecommunications infrastructure, and criminal activity. We argued that our methods of

analysis and our results are useful in the study of these other models.

6 Appendix

Example 1 Communication networks (Goyal (1993); Bala and Goyal (2000a))

Suppose every individual has one piece of information with value 1, to everyone. A link

between X and Y allows X to access Y’s information as well as information which Y may
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have accessed via his links with others. In a network g, X has access to all others in his

component Ck; his payoff is |Ck|. As there are |Ck| nodes in the component, the total payoff

in component Ck is |Ck|2. The aggregate social payoff in a network is the sum of the payoffs

from the different components: ∑
Ck∈C(g)

|Ck|2. (29)

The payoffs given in (29) satisfy (A.1 ). 4

Lemma 1 Let {I1, .., Ik}, k ≥ 2, denote a set of i.i.d. Bernoulli random variables with mean

in (0, 1). A realization of 1 for Ii yields a value ni. If f : R→ R is convex then

E[f
( k∑
t=1

ntIt
)
] < E[f

(
(
k∑
t=1

nt)I1

)
] (30)

Proof. Note first that it is enough to show that (n1 + ..+ nk)I1 is a mean-preserving spread

of n1I1 + ..+ nkIk (see e.g. Rothschild and Stiglitz (1970)).

Let δ = P(Ii = 1).

Suppose, without loss generality, that n1 ≤ .. ≤ nk. We prove the result by induction on

k.

Suppose k = 2. Let F and G denote the cumulative distribution functions of (n1 + n2)I1

and n1I1 + n2I2, respectively. Define 1− δ = α. Then

F (x) =

{
α if 0 ≤ x < n

1 if x = n
(31)

and

G(x) =


α2 if 0 ≤ x < n1

α if n1 ≤ x < n2

1− δ2 if n2 ≤ x < n

1 if x = n

(32)

So, using Theorem 1 in Rothschild and Stiglitz (1970), (n1 + n2)I1 is a mean-preserving

spread (MPS) of n1I1 + n2I2 if and only if

α− α2 = 1− δ2 − α (33)
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or, substituting for δ

α− α2 = 2α− α2 − α (34)

So the result holds for k = 2. Next, suppose the result holds up to k ≥ 2. We want to

show that it also holds for k + 1.

Observe that that if Y is a MPS of X then, for any random variable Q independent of X

and Y , Y +Q is a MPS of X +Q.

But then setting X = n1I1 +n2I2 + ...+nkIk, Y = (n1 +n2...+nk)I1, Q = nk+1Ik+1, using

the result for k = 2 and the induction step, it follows that (n1 + n2 + ..+ nk+1)I1 is a MPS of

n1I1 + n2I2 + n3I3..+ nk+1Ik+1.

�

Proof of Theorem2: By Theorem 1: Π
e
(gs, ds) > Π

e
(g, d) for any defended network not

satisfying property P. So we are only left to compare the performance of the CP-star with

that of a network satisfying property P.

Case 1: l < 1

We will show that for any (connected) defended network (g, d) satisfying property P and

for n large enough: Π
e
(g, d) < dγ

dγ+aγ
f(n− a).

Let ε′ > 0 such that `′ = `+ ε′ < 1. We can find n′0 such that f(n−1)
f(n)

< `′, ∀n ≥ n′0. Then

by induction f(m) < (`′)n−mf(n), ∀n ≥ m ≥ n′0.

Consider next a (connected) defended network (g, d) satisfying property P. Let i ∈ K such

that |Oi| ≥ n−k
k

. Since k ≥ 2, note that di < d. Suppose all attack resources are allocated

in Oi, thereafter spreading to node i. Let Πe denote the resulting expected network value.

We have Πe ≤ dγi
dγi +aγ

f(n − a) + Γ, where Γ ≤ f(n − n−k
k

) = f(1 + k−1
k
n). Note from the

remark above that for n large enough f(1 + k−1
k
n) < (`′)

n
k
−1f(n). Thus, for n large enough,

Γ < (`′)
n
k
−1f(n) and, finally:

Πe <
dγi

dγi + aγ
f(n− a) + (`′)

n
k
−1f(n) (35)

Now let ε′′ > 0 such that `′′ = l − ε′′ > 0. We can find n′′0 such that f(n−1)
f(n)

> `′′, ∀n ≥ n′′0.

Then by induction f(n− a) > (`′′)af(n), ∀n ≥ n′′0 + a. For n large enough (35) now yields

Πe <

(
dγi

dγi + aγ
+ (`′)

n
k
−1(`′′)−a

)
f(n− a) (36)

The first bracketed term in (36) is less than dγ

dγ+aγ
, since di < d, while the second term
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tends to 0 as n becomes large. We thus obtain Πe < dγ

dγ+aγ
f(n− a) for n large enough.

Case 2: l = 1

Let (g, d) denote a defended network satisfying property P. Notice first that we can find n0

such that f(n− a) ≥ (1− ε)f(n) for all n > n0. Consider attack such that ai = a
d
di, ∀i ∈ K.

Observe that the assumption a ≥ d and a/d ∈ N ensure that such a strategy is feasible. Let

Πe denote the resulting expected network value. It follows from the proof of Theorem 1 that

Πe < dγ

dγ+aγ
f(n). So for n > n0: dγ

dγ+aγ
f(n − a) ≥ (1 − ε) dγ

dγ+aγ
f(n) > (1 − ε)Πe. But this

implies dγ

dγ+aγ
f(n− a) > (1− ε)Πe

(g, d).

�

Proof of Theorem 3: If a ≥ n then the Adversary can always eliminate all nodes, irrespective

of the structure of the network. So, it follows that the Designer earns a payoffs of 0 irrespective

of the network. Hence, any network can be sustained in equilibrium. Now let us take up the

case of a ≤ n− 1.

First, we note that there must be at least a+ 1 components: if the number of components

is fewer than a+ 1, then A can set ai = 1 for one node in each component and thereby ensure

that D earns zero payoff. A network with a + 1 components on the other hand, guarantees

D strictly positive payoff as at least one component survives any attack of A with some

probability.

Second, we show that there are at least a + 1 maximum components. Suppose this is not

the case and let component C1 denote a maximum component. As part of his response, A
must eliminate C1. Next, form a new network g′ from g in which C ′1 is obtained from C1

by isolating a single node, leaving the rest of the network unchanged. In g′, either C ′1 is

maximal, or at most a− 1 components have size strictly greater than it. Hence, without loss

of generality, we may assume that C ′1 is eliminated as part of the best response by A . But

then D does strictly better with g′ as compared to g, since by doing so she saves the node

which has been isolated. This contradicts the hypothesis that g is optimal.

Third, we show that, at most, one component has size strictly smaller than the maximum

size s. Suppose we can find two such components. D can then take a node from the smaller of

the two components and place it in the larger component. The larger component still remains

(weakly) smaller than the maximal components, and it now follows from the convexity of fn(.)

that payoffs to D are strictly increased by this move.

Fourth, at most one node is attacked in a component. Observe there are always more

components than Adversary budget. So each component is assigned at most one unit of

attack resource. If A attacks two nodes, there is positive probability of a state in which both
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nodes are eliminated and a corresponding state in which neither is eliminated: this is wasteful

as elimination of one node is sufficient to remove the entire component.

Finally, observe that if a ≥ n/2 then A can always eliminate every component with 2 or

more nodes. Hence, the empty network is the unique equilibrium outcome. �

Proof of Proposition 1: Consider a network g consisting of equal size components, and let

m denote this size. Using arguments from Theorem 3 we find

Π
e
(g) = f(m)(

n

m
− a). (37)

By simple algebra, (37) is maximized at m = n(β−1)
aβ

.

Next, consider a network g′ with all but one component having maximum size m′, and one

component of size s, 0 < s < m′. Let b = n−s
m′

denote the number of maximum components in

g′. It follows from optimality of Adversary strategy that

Π
e
(g′) = f(m′)(b− a) + f(s). (38)

Observe then that by convexity of f

Π
e
(g′) < f(m′)(b− a) +

s

m′
f(m′). (39)

Substituting for b and simplifying, we then obtain

Π
e
(g′) < f(m′)(

n

m′
− a). (40)

So, by the first step, a network with βa
β−1

equal size components dominates any network

in which one component has less than maximum size. By Theorem 3, it then follows that a

network with βa
β−1

equal size components is in fact optimal.

�

Proof of Proposition 2: We note that in the CP-star network, it is an equilibrium for for

the Designer to allocate d to the central node and Adversary allocates a to a peripheral nodes.

This follows from standard considerations, as in Theorem 1.

Fix number of hubs to k = 2. Then there is an equilibrium (in the set of pure strategies) in

which Designer allocates d/2 to each core-node and Adversary allocates a nodes to peripheral

nodes, an equal number corresponding to each hub. Label the core nodes 1 and 2.
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Suppose the Adversary does choose the mimic strategy. Consider a defense allocation

d1 = d/2 + x, d2 = d/2− x. We show that it is optimal for the Designer to set x = 0.

Given that ` = 1, it is optimal to allocate No resource to the peripheral nodes. Next,

consider allocations on the two core nodes. Observe that there are four states of the world:

both core nodes are defended, both are attacked successfully, and two states corresponding

to the case where only one of them is attacked successfully. The payoff to the Designer from

this strategy is given by:

f(
n

2
− 1)

[
2da

(d+ 2x+ a)(d− 2x+ a)

]
+ f(n− 2)

d2 − 4x2

(d+ 2x+ a)(d− 2x+ a)
(41)

Differentiating with respect to x, we get:

f(
n

2
−1)

[
−8x

(d+ 2x+ a)2(d− 2x+ a)2

]
+f(n−2)

[
(−8x)((d+ 2x+ a)(d− 2x+ a)− (d2 − 4x2))

(d+ 2x+ a)2(d− 2x+ a)2

]
.

(42)

Simplifying, we get[
−8x

(d+ 2x+ a)2(d− 2x+ a)2

] [
−f(

n

2
− 1) + f(n− 2)(a2 + 2ad)

]
. (43)

This expression in negative if

f(n− 2)

f(n/2− 1)
>

1

a2 + 2ad
. (44)

So the Designer allocates resources equally to the two core nodes if this inequality is

satisfied. This inequality is satisfied for all functions f(.) which satisfy (A.1 ).

Now consider optimality of the Adversary’s strategy in the face of an equal split of defense

resources d/2 between the two hub nodes. The payoff to an attack strategy a/2 + x, a/2− x
is given by:

f(
n

2
− 1)

[
2da

(d+ 2x+ a)(d− 2x+ a)

]
+ f(n− 2)

d2

(d+ 2x+ a)(d− 2x+ a)
. (45)

It is easily checked that the denominator is falling in x. So it follows that the Designer’s

payoff is increasing in x and is minimized at x = 0. This completes the argument for the case

of 2 core nodes.

This argument can be generalized to cover k ≥ 2 nodes: fix equal allocations for the
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protected nodes for the Designer and Adversary some allocation of k− 2 nodes. Now use the

k = 2 arguments to show show that the Adversary gains by equalizing the allocations on the

remaining two nodes. Then repeat the exercise for the Designer.

�
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