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Abstract

After thirty years of researching, the photometric stereo
technique for 3D shape recovery still does not provide reli-
able results if it is not constrained into very well-controlled
scenarios. In fact, dealing with realistic materials and light-
ings yields a non-linear bidirectional reflectance distribu-
tion function which is primarily difficult to parametrize and
then arduous to solve. With the aim to let the photomet-
ric stereo approach face more realistic assumptions, in this
work we firstly introduce a unified irradiance equation de-
scribing both diffuse and specular reflection components
in a general lighting setting. After that, we define a new
equation we call unifying due to its basic features modeling
the photometric stereo problem for heterogeneous materi-
als. It is provided by making the ratio of irradiance equa-
tions holding both diffuse and specular reflections as well as
non-linear light propagation features simultaneously. Per-
forming a wide range of experiments, we show that this new
approach overcomes state-of-the-art since it leads to a sys-
tem of unifying equations which can be solved in a very ro-
bust manner using an efficient variational approach.

1. Introduction
Extracting 3D shape information from the amount of

light reflected by a static object is a task as difficult as the
spreading of light from the source and the material of the
object are modeled realistically.

Initial studies aiming at solving the Photometric Stereo
(PS) problem [37] extended the Shape from Shading (SfS)
problem [10] by adding supplementary information from
additional images, making the PS problem easier to solve
than SfS. On the other hand, several important simplifica-
tions were done at that time, among which: orthographic
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viewing geometry, uniform light directions and intensities,
diffuse reflectance, absence of shadows and discontinuities.

Although those assumptions allowed to prove well-
posedness of the PS problem, they constrained this tech-
nique to be employed only for very controlled setups.

Contribution In this work, we propose a method able to
perform PS in much less controlled setups, by simultane-
ously handling several nonlinear physical effects in order
to make it as close as possible to real-world scenarios. We
move beyond the simplifications above, by proposing:
• a single lobe irradiance equation for both diffuse and

specular reflections as well as general lightings and
perspective viewing geometry;
• a unifying formulation for the PS problem based on

partial differential irradiance equation ratios;
• a L1 norm-based variational method computing di-

rectly the depth and the shininess parameter, being ro-
bust to shadows and allowing depth discontinuities.

Figure 1. Overview of our approach. On the left, we show 2 out of
the 10 images used in this experiment, for a medium-scale scene
where shapes having diffuse or specular reflections are present. On
the right, we show the reconstructed scene.



To the best of our knowledge, this approach overcomes
state-of-the-art since it represents the first purely data-
driven approach dealing with heterogeneous surfaces. An
overview of the capability of our approach is presented in
Figures 1 and 2.

Figure 2. Results of our algorithm on two real-world objects with
different reflectance properties, presented in Figure 1. Robustness
to non-directional lightings, perspective effects, shadows and non-
Lambertian reflectance is enforced.

1.1. Related works

After spending more than thirty years of research, the
scientific community did not get to a definitive solution for
the PS problem in a very general framework. However, sev-
eral attempts have been made in order to relax the original
assumptions (consisting in orthographic viewing geometry,
uniform light propagation and Lambertian reflection, [37])
dealing with realistic irradiance equations.

Camera modeling Perspective viewing geometry for
photometric 3D-reconstruction has been introduced by
Bruckstein [3] and later developed by Prados and Faugeras
[29]. Recently, Papadhimitri and Favaro [26] presented a
new perspective parametrization to solve the PS problem
without knowledge of the light directions, i.e. Uncalibrated
PS (UPS).

Such important feature allowed PS to be exploited for
important applications as shape recovery from endoscopic
images [25, 6]. In this particular case the anisotropic spread
of light cannot be considered negligible due to the proximity
of the light source to the inspected surface.

Lightings Starting from initial works dealing with uni-
form light direction assumption, lighting has been relaxed
into considering nearby point light sources spreading light
radially. Initially this idea has been proposed by Iwahori et
al. [14] and Clark [5] later. More recently, Migita et al. [21]
presented an optimization method for shape recovery while

moving a point light source. Papadhimitri and Favaro [27]
used the near field lighting for the UPS problem.

However, all those works modeling anisotropic light
propagation by adopting point light source parametrization,
assumed diffuse reflection which limits the applicability of
the PS technique.

Reflectance Shape recovery from specular shading still
remains a challenging goal since very common materials
provide specular highlights that prevent reasonable recon-
structions from the PS technique.

Regarding shading models for specular highlights, sev-
eral dedicated irradiance equations have been presented so
far. Firstly, Torrance and Sparrow [34] presented a physical
model based on radiometry principles. Later, Phong [28]
showed an empirical model which basically extended the
cosine law making it depend also from the viewer direction.
The Blinn-Phong shading model [1] extended further the
previous one by eliminating some limitation in the analyti-
cal formulation maintaining a reliable effectiveness [24].

Outliers Regarding robustness to outliers, most recent
works proposed sparsity-enhancing estimators. For in-
stance, the images can be a priori processed according to a
low-rank constraint, as suggested by Wu et al. [38]. Such an
approach was recently improved by Wang et al. [35], who
proposed to deal with the non-convex nature of the problem
through a proximal strategy. Ikehata et al. [13] introduced
robust estimators derived from the l1 norm to recover the
normals. Eventually, points where the normal cannot be
defined, because of the presence of edges or depth discon-
tinuities, can be handled by robust normal field integration
methods such as those presented in [7, 30].

Image Ratios New PS models based on non-linear PDEs
have attracted increasing interest in the last few years [4,
18, 20, 31]. Most of these approaches considered image ra-
tios in order to yield photometric invariant equations [9, 15],
and modeled the irradiance equations via PDEs. Mecca et
al. [18, 20] used specific irradiance equations for diffuse
surfaces, proving uniqueness of solution by characteristic
strip expansion. Chandraker et al. [4] considered more gen-
eral irradiance equations with unknown light sources, and
computed the photometric invariants describing the surface
through its isocontours.

Image ratios results more suitable for the PS problem due
to the fact that photometric invariant equations are indepen-
dent on several factors, among which the albedo [36].

This paper is organized by presenting the single lobe irra-
diance equation in Section 2. The mathematical derivation
of the new unifying equation for the PS problem is provided
in Section 3. The variational approach solving the PS prob-
lem with the new differential formulation is shown in Sec-
tion 4, yielding the results shown in Section 5.



2. Image formation model
With the aim to formulate a mathematical model as gen-

eral as possible, we have to deal with two important features
of the image formation model, which are the modeling of
the pinhole camera and that of the reflectance.

2.1. Camera model

We start by considering the projection of the tridimen-
sional surface Σ into the image plane introduced by Papad-
himitri and Favaro in [26]. This allows to easily extend the
perspective viewing projection to the orthographic one just
by making the focal length tend to infinity. The 3D real
world coordinates (ξ, η, ζ) ∈ Σ are projected into the image
plane Ω = Ω ∪ ∂Ω according to the following parametriza-
tion

(ξ(x, y), η(x, y), ζ(x, y))=

(
x
f+z(x, y)

f
, y
f+z(x, y)

f
, z(x, y)

)
(1)

where z is the depth. This yields the direction of the outgo-
ing normal to the surface given by

n(x, y)=

(
∇z(x, y),−f+z(x, y)

f
− (x,y)·∇z(x, y)

f

)
(2)

where the derivatives of z are considered in the image co-
ordinates, that is ∇z(x, y) =

(
∂z
∂x (x, y), ∂z∂y (x, y)

)
. Let us

denote the normalized vector as follows

n(x, y) =
n(x, y)

|n(x, y)|
(3)

extending the same notation to the rest of the paper, consid-
ering · as unit vector.

2.2. Single lobe reflectance model

Coherently with having images as input data including
diffuse and specular reflections, we consider single lobe ir-
radiance equation for both reflections. Since diffuse and
specular components separation may not always be a reli-
able procedure to accurately recover shapes done by hetero-
geneous materials [11, 16, 33], we consider a single irradi-
ance equation that simultaneously parametrizes diffuse and
specular reflections, by extending the Blinn-Phong shading
model [1] as follows

Ii(x,y)=ρ(x,y)ai(x,y,z)
(
n(x,y,z)·hi(li,v)

) 1
c(x,y) . (4)

Here ρ and ai are positive scalar functions representing, re-
spectively, the albedo and the attenuation of light, while
c(x, y) > 0 describes more general reflectance properties.
Eventually, the vector function hi = (h1

i , h
2
i , h

3
i ) combines

information about the view direction v = v(x, y, z) and
the ith light source li = li(x, y, z). With the aim to unify

diffuse and specular components parametrized by a unique
irradiance equation we choose hi to be as follows

hi(x, y, z) = li(x, y, z)+min

{
1,
|1− c(x, y)|

ε

}
v(x, y, z),

(5)
where ε is a fixed parameter describing the transition be-
tween matte and glossy material, allowing the continuous
transition state between diffuse and specular component. In
the next part we provide an intuitive and effective interpre-
tation of the vector hi by showing the dependency on the
shininess parameter c(x, y). Let us remark that this new re-
flectance model generalizes many previous models used in
PS, as described hereafter.

2.3. Dealing with well-known settings

Besides being independent from the camera projection
model, thanks to the parametrization (2), (4) can be used
to deal with surfaces made by heterogeneous materials de-
pending on c(x, y):

Diffuse reflectance by having c = 1 (i.e. hi = li) , we
obtain the purely Lambertian shading model;

Specular reflectance setting 0 < c ≤ 1−ε (i.e. hi = li+
v) leads to purely specular Blinn-Phong type reflectance,
where the size of the specular lobe depends on the value
of c;

Intermediate state is well parametrized taking 1 − ε <
c < 1 (ε = 0.01 for all our experiments). This provides a
transition phase between diffuse and specular components.

Beyond the previous well-known settings, challenging
spatially-varying reflectances can be modelled by using
the piecewise constant space dependency of c over the im-
age domain. This allows us to take into account the very
difficult problem of dealing with heterogeneous materials.
In fact, the presented algorithm is capable to approximate
both z and c.

Moreover, by manipulating the definitions of ai and li,
this new model yields several well-known light configura-
tions.
Uniform lighting When ai ≡ φi and li is independent
from the coordinates (x, y, z), it corresponds to the direc-
tional lighting model, φi being a scalar parameter represent-
ing the intrinsic intensity of the source;
Point light source When li(x, y, z) = (ξi, ηi, ζi) −
(ξ(x, y), η(x, y), ζ(x, y)), one obtains the point light source
model, for a source at position (ξi, ηi, ζi);
Light attenuation In order to deal with more realistic
physical effects, we can also consider inverse-of-squared
distance light attenuation

adi(x, y, z) =
1

|li(x, y, z)|2
(6)



and an anisotropic angular factor that, without loss of gen-
erality, we choose as

aai(x, y, z) = (li(x,y,z) · pi)µ (7)

taking inspiration from [20], where pi is the principal light-
ing direction of the source, i.e. its orientation. This atten-
uation term holds for most of commercial LEDs [23] and
it is usually calibrated by manufacturers, under the form of
luminous intensity diagrams. Isotropic sources, which are
valid approximations for small angles, are obtained by set-
ting µ = 0, while stronger anisotropy effects can be sim-
ulated by increasing the value of µ [19]. Considering both
attenuation factors, we get

ai(x, y, z) =
φiaai(x, y, z)

|li(x, y, z)|2
. (8)

Despite the apparent variety of the configurations han-
dled by (4), we will show in the following that the 3D-
reconstruction problem can be reformulated by the same
simple quasilinear PDE, handling the general viewing ge-
ometry, reflectance and lighting models previously de-
scribed.

3. The unifying equation
As already shown in [20], the ratios of irradiance equa-

tions as (4) seen as partial differential irradiance equations
simplifies the PS problem since it becomes independent by
photometric invariant (albedo) and irrational nonlinearities
(normalization of the normal vector). We now extend this
theory to the more realistic case studied in this paper.

3.1. Partial differential irradiance equation ratios

With the aim to extend such methodology to the more
general and realistic irradiance equations (4), we divide
those coming from the ith and jth light source, leading to
the following equation

Equation for Ij︷ ︸︸ ︷
(Ii)

c

(ai)
c
hi · n

=
ρc

|n|︸ ︷︷ ︸
Equation for Ii

=
(Ij)

c

(aj)
c
hj · n

(9)

with the same dependencies as above, that we neglect from
now on whenever the reader does not necessary needs them.
Denoting the vector field

bij=
(

(ajIi)
c
(
h

1

j −
x

f
h

3

j

)
− (aiIj)

c
(
h

1

i −
x

f
h

3

i

)
,

(ajIi)
c
(
h

2

j −
y

f
h

3

j

)
− (aiIj)

c
(
h

2

i −
y

f
h

3

i

))
(10)

and the scalar function

sij =
f + z

f

(
(ajIi)

c
h

3

j − (aiIj)
c
h

3

i

)
(11)

by considering the first and the last part of the chain of
equalities (9), we obtain the following quasilinear PDE

bij(x, y, z) · ∇z(x, y) = sij(x, y, z) (12)

that we will call as unifying equation for the PS problem.
It elegantly describes the interaction between two irradiance
scenarios depicted in Ii and Ij , whatever the models for the
camera projection, the surface reflectance and the type of
lighting.

By stacking the
(
N
2

)
vector fields bij , such that (i, j) ∈

{1 . . . N}2 and i < j, into a matrix field B : Ω→ R2×(N
2 ),

and the
(
N
2

)
scalar fields sij into a vector field s : Ω →

R(N
2 ), our new mathematical formulation of the PS problem

with N images reads as the following system of unifying
equations

B>∇z = s. (13)

3.2. Advantages over previous work
Merging PS data We remark that most of the previous
works proposing robust approaches to the PS problem as
[13, 22, 31, 35, 38] derived the mathematical formulation
by considering each irradiance equation independently from
the others. Since our model is derived by coupling irradi-
ance equations considering their ratios, the unifying equa-
tion exploits the single view acquisition simplifying the
complexity of the problem due to heterogeneous materials.

Robustness An important advantage directly follows
from this coupling. It is based on the number of unifying
equations when solving PS withN > 2. In our formulation,
the number of equations to be solved does not increase lin-
early with the number of images since N images yield

(
N
2

)
unifying equations. Clearly these equations tend to be re-
dundant, providing a natural framework for robust recovery
of the shape. Hence, robust estimators enforcing sparsity of
the residual [13] are well adapted.

Missing data If, for some pixel (x, y), no information is
available in any of the images Ii(x, y), i ∈ {1 . . . N}, due
for instance to a null albedo (no light reflected at all), the
corresponding set of unifying equations (13) is not informa-
tive, since it reads as 0 = 0. Thus, there may be points on
the surface that are left undetermined. Denoting by Ωmissing
the set of such points (which is easily computed a priori by
thresholding the values of

∑N
i=1 I

i), we can deal with this
issue by modifying the definition of B and s according to

B =

1 0
0 1
0 0

 over Ωmissing (14)

s =0 over Ωmissing (15)

which will enforce ∇z = 0 over this subset Ωmissing. This
can be seen as a built-in hole filling of the non-informative



areas to ensure some smoothness and prevent artifacts. This
can be very useful when dealing with very specular ob-
jects, since in such case the information is concentrated in
small areas: performing such self-filling will smoothly en-
sure continuity between the areas where shape reconstruc-
tion is possible. Hence, it becomes possible to reconstruct
specular surfaces with few images, while several hundreds
are used in state-of-the art approaches [12].

4. Variational resolution
In order to enhance robustness to noise (inherent to the

acquisition process) and outliers (such as shadows, or non-
differentiable elements of the surface), we consider L1

optimization, following the recent sparsity-enhancing ap-
proaches described in [13, 31]. Adapting such framework to
the context of quasilinear system of PDEs (13), we consider
the following optimization problem

min
z

∥∥B(z)>∇z − s(z)
∥∥
L1(Ω)

, (16)

where L1(Ω) is the traditional space of functions whose ab-
solute value is Lebesgue integrable.

We emphasize that this variational problem is con-
ceptually very different from the state-of-the-art sparsity-
enhancing technique [13], where l1 optimization is con-
sidered locally, in order to approximate the normal to the
surface at each pixel. In fact, our formulation considers
the global minimum over the image domain, having as un-
known the depth, as for instance in [31]. Proceeding so,
integrability of normals is not an issue, since piecewise-
smooth surfaces are recovered directly, without relying on
a posteriori use of dedicated solvers, which are either fast
but not robust to discontinuities [32], or robust to disconti-
nuities but slow [7, 30].

4.1. Orthographic camera and directional lightings

In the specific case of orthographic camera and direc-
tional lightings, neither B nor s depend on z. Hence, the
functional to minimize is not coercive since it depends only
on ∇z, and not on z. Yet, the knowledge of z in just one
point suffices to make it coercive. Alternatively, any least-
squares prior z0 on the solution can be introduced, turning
the initial problem (16) into its zero-order Tikhonov regu-
larized version

min
z

∥∥∥B>∇z − s
∥∥∥
L1(Ω)

+ λ ‖z − z0‖2L2(Ω) (17)

with λ > 0 very small in order not to bias the results (we
systematically used λ = 10−9). In our experiments, z0 is
a uniform function, which basically fixes the mean value of
z, and hence the mean distance from the object to the cam-
era. Dealing with the (functional)L1 norm requires a totally
different machinery from [13], since it involves the partial

derivatives of z. In this view, it is convenient to rewrite (17)
under its ADMM form [2]:{

min
z,g
‖g‖L1(Ω) + λ ‖z − z0‖2L2(Ω)

s.t. g = B>∇z − s
. (18)

Introducing the auxiliary variables g and u, this new prob-
lem can be solved using the alternating direction scheme:

gk+1=argmin
g
‖g‖L1(Ω)+α

∥∥∥g−(B>∇zk−s−uk)∥∥∥2

L2(Ω)
(19)

zk+1=argmin
z

λ

α
‖z−z0‖L2(Ω)+

∥∥∥B>∇z−(gk+1+s+uk
)∥∥∥2

L2(Ω)

(20)

uk+1 = uk + gk+1 −B>∇zk+1 + s (21)

starting from (z0,g0,u0) = (z0,B
>∇z0 − s,0). This

scheme can be proven to converge from almost any de-
scent parameter α, whose choice only affects the conver-
gence rate. Eq. (19) can be solved pointwise by shrink-
age, and (20) by Gauss-Seidel iterations. Let us remark that
no boundary condition is required using this approach [8],
while state-of-the-art differential methods for PS require the
depth to be known on the boundary [4].

4.2. Perspective viewing and lighting geometry

In the case of perspective camera and/or point light
sources, the fields B = B(z) and s = s(z) depend explic-
itly on the unknown z. To handle this issue, we consider the
semi-implicit scheme

zk+1=argmin
z

∥∥B(zk)>∇z−s(zk)
∥∥
L1(Ω)

+λ
∥∥z−zk∥∥2

L2(Ω)
(22)

starting from an initial solution z0 = z0. Convergence to-
wards a local minimum is guaranteed, and we experimen-
tally observed that it was reached in only a few iterations.

4.3. Approximating the shininess parameter c

Since the unifying irradiance equation allows a simulta-
neous parametrization of diffuse and specular reflectance,
the approximation of the shininess coefficient c is an im-
portant achievement for the material understanding of the
depicted scene. In fact, the shininess parameter can be de-
termined within the process, by enforcing sparsity residuals
on the ratio equations (9). A typical iterative scheme writes
as:

zk+1=argmin
z

∥∥B(zk,ck)>∇z− s(zk,ck)
∥∥
L1(Ω)

ck+1=argmin
c

∥∥∥(Iiaj(zk)
Ijai(zk)

)c
−hi(z

k,ck)·n(zk)

hj(zk,ck)·n(zk)

∥∥∥
L1(Ω)

(23)

where the z update can be obtained as described earlier.
Taking the logarithm of both members of the second resid-



ual, the c update is given by

ck+1=median
{
log ((Iiaj)/(Ijai)) / log

((
hi · n

)
/(hj · n)

)}
.

(24)
As challenging proof of concept, we demonstrate the work-
ing principle of our method on synthetic data from the
MERL dataset [17] as well as real image scenarios.

5. Experiments

With the aim of showing a fair comparison of our method
with the state of the art algorithms, we firstly consider the
simplified version of our model leading to the orthographic
scenario explained in Section 4.1. Afterwards, more realis-
tic results considering the perspective viewing and lighting
geometry will be shown.

5.1. Robustness to realistic outliers

To quantitatively evaluate the robustness of our method,
we performed tests on synthetic data, considering first the
same setup as in [13]. That restricts our model by con-
sidering orthographic projection, directional lightings and
known reflectance (c = 1) with outliers consisting in self-
shadows and small additive specular spots generated ac-
cording to the bichromatic Blinn-Phong model (Figure 3).

Figure 3. Synthetic images used for quantitative evaluation, gener-
ated according to the dichromatic Blinn-Phong reflectance model,
with self-shadowing effects. Taking c = 1, both shadows and
highlights are outliers to the model (4), and hence useful to evalu-
ate the robustness of our method to real-world outliers.

To create the data, we used the seven real-world sets of
normals provided in the Harvard’s dataset1, that we inte-
grated into a depth map using our solver (setting B = I),
before recomputing the normals using finite differences.
The shading images were calculated under 8 different di-
rectional lightings and overlapped with the hestain.png
built-in image from Matlab, considered as albedo.

Quantitative comparisons of our results with traditional
least-squares [37] and state-of-the-art l1 normal recovery
[13] can be found in Table 1. Specular highlights are in this
case considered as outliers: reflectance models composed

1http://vision.seas.harvard.edu/qsfs/Data.html

of two lobes can hence be handled using the proposed one-
lobe model, which captures the dominant lobe, the other one
being trated as outlier.

Cat Frog Hippo Lizard
n z t n z t n z t n z t

ME std ME std ME std ME std ME std ME std ME std ME std
[37] 7.7 4.6 19 15 30 6.6 4.0 14 12 37 8.3 5.5 23 15 31 7.6 4.8 13 9.2 32
[13] 6.7 5.3 17 13 305 5.7 4.3 12 11 390 7.2 6.0 21 14 545 7.0 5.8 12 8.6 311
Ours 6.0 5.7 13 10 590 4.6 5.1 9.1 8.8 724 6.9 6.5 20 11 554 6.9 5.9 12 8.5 284

Pig Scholar Turtle
n z t n z t n z t

ME std ME std ME std ME std ME std ME std
[37] 7.1 4.5 13 12 39 6.8 4.2 21 11 97 7.4 5.0 9.3 8.8 33
[13] 6.3 5.0 12 11 417 5.7 4.5 18 10 1039 6.6 5.5 8.5 8.7 352
Ours 5.8 5.6 10 9.2 769 5.1 4.8 13 7.4 1865 6.5 6.2 7.6 8.0 526

Table 1. Robustness to outliers, for least-squares [37] and l1 es-
timation of the normals [13], and the proposed L1 estimation of
the depth, regarding the synthetic data presented in Figure 3. We
show the error on the normals orientations n in degrees, the abso-
lute error on the depth z in pixels, and the CPU time t in seconds
(CPU times were evaluated considering Matlab codes executed on
a i7 at 3.4 GHz). Considering the depth, rather than the normals,
improves the results because it includes an implicit smoothing.

5.2. Handling arbitrary reflectances

Here, we question the ability of the proposed BRDF
model (4) to handle real-world reflectances (Figures 4 and
5). To this purpose, we recovered the shape of a piece
of sphere rendered according to the BRDFs of the MERL
database [17]. First, we applied the proposed variational
scheme using N = 56 images while imposing c = 1: some
partly retro-reflective materials (pickled-oak-256) are
handled since this effect can be considered as outlier. Yet,
since many materials in this database are mostly specular, it
is not realistic to assume that specularities are outliers to a
diffuse model, hence the slopes are over-estimated in most
cases (alum-bronze). On the other hand, when simul-
taneously estimating the shape and the reflectance as dis-
cussed in Section 4.3, most materials of the database are
reasonably recovered. Notable exceptions include very dark
materials (black-obsidian) or highly retro-reflective
materials (polyethylene).

We also used this dataset to perform experiments on the
required number of input images. Figure 4 shows that reli-
able 3D-reconstruction results of highly specular materials
are obtained from as few as twenty images. This has to be
compared with the hundreds of images used in state-of-the-
art [12]: reducing so much the required number of inputs
is made possible by increasing quadratically the number of
equations due to image ratios, and by using robust varia-
tional recovery.

5.3. Qualitative evaluation on real-world datasets

We eventually performed tests on a real-world dataset
representing the current limits of PS having several objects
of different materials, inducing depth discontinuities and
shadows.

http://vision.seas.harvard.edu/qsfs/Data.html
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N = 56, c = 1

N = 56, autom. c

N = 23, autom. c

N = 16, autom. c
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Figure 4. RMSE on the depth, as a function of the BRDF. Most of specular materials are correctly handled with a dozen of images and
automatic reflectance estimation.

pickled-oak-260 pvc alum-bronze two-layer-silver black-obsidian polyethylene

# 1 #2 #10 #24 #83 #97

Figure 5. 3D-Reconstruction results for several materials from the MERL database, sorted according to their ranking in Figure 4. Bottom
row shows the ground-truth surface and reflectance, middle row shows the shape recovered while estimating automatically c using (23).
Top row shows the results with c = 1.

The dataset we used is presented in Figure 1. It con-
sists of a scene with several objects placed approximately
at 50cm of a calibrated pinhole camera (f ≈ 32mm), lit
successively by 10 calibrated LEDs located approximately
at 30cm from the scene. Besides the effects of perspective
camera and non-directional lightings, the originality of this
scene is the presence of numerous objects, while PS is usu-
ally applied to one single object. The difficulties induced
are the presence of objects with various reflectances (es-
pecially the tea box, which is metallic), the stronger shad-
owing effects, the presence of depth discontinuities and the
missing data (the legs of the Haddock character are black).
To deal with the piecewise constantly varying reflectance,
we manually segmented the objects. Then, we applied the
alternating scheme (23) to each object individually, provid-
ing us with an initial 3D-reconstruction (cf. figure 5) as well
as with an initial guess for the c values. Then, as shown in
Figure 1, we reconstructed the full scene. Depth disconti-
nuities are successfully recovered together with c ≈ 1 to the

bust (plaster), c ≈ 0.05 to the tea box (metal), c ≈ 0.4 to
the Haddock character (plastic), c ≈ 0.35 to both Buddha
dolls, and c ≈ 1 to the rest of the scene.

While Figure 2 shows the results obtained with the full
scene pictured by 1M pixels images, Figure 1 presents the
reconstructions of single objects. It is worth noticing the
quality of the reconstruction of the specular tea box and the
recovery of the discontinuities for the full scene. Eventu-
ally, these results are compared in Figures 6 and 7 to sev-
eral existing methods for Lambertian PS. Namely the clas-
sical PS approach proposed by Woodham [37], the robust
approach from [13] and a recent work on PS with point-
wise sources [27]. Figure 6 demonstrates the advantage
of global L1-based recovery over local sparsity-enhancing
techniques [13], and the importance of modelling appropri-
ately the lighting and the viewing. Besides these important
considerations, Figure 7 shows that our approach even pro-
vides satisfactory 3D-reconstructions of specular objects.



[37] [13] [27] Ours

Figure 6. Results of several PS algorithms on the bust dataset (plaster). With the classical approach [37] that assumes uniform lighting
and orthographic viewing, artifacts due to shadows are visible. By locally enforcing robustness as proposed in [13], these artifacts are still
visible. The global formulation of our approach provides better results, while also correcting the distortion due to pointwise lighting and
perspective viewing, as also assumed by [27].

[37] [13] [27] Ours

Figure 7. Results of several PS algorithms on the teabox dataset (metal). Our approach provides a more reliable 3D-reconstruction of this
purely specular object, compared to other methods based on the Lambertian assumption.

6. Conclusion and perspectives
In this work we introduced a unifying irradiance equa-

tion describing both diffuse and specular reflection com-
ponents in the most general lighting setting. We derived
a new formulation based on coupling those irradiance equa-
tions by considering their ratios. The resulting mathemati-
cal model consists in a set of quasi-linear PDEs having sev-
eral advantages with respect to the usual tools aimed at solv-
ing the PS problem. In fact, instead of considering specular
highlights as outliers, we exploit geometric information of
the shape by modeling specular reflectance with a Blinn-
Phong extension of the cosine law for diffuse reflection.
Furthermore, besides being independent from the albedo,

the number of unifying equations does not increase linearly
with respect to the available images. Indeed, instead of N
(irradiance) equations, robustness is guaranteed by having
a quadratic set of

(
N
2

)
(unifying) equations. The numerical

tool we used for solving such system of quasi-linear PDEs
is based on a variational approach performing L1 minimiza-
tion. On the other hand, researching on speeding up our
algorithm is foreseen in order to make the computation as
close as possible to real-time 3D shape providers.

We remark that this work makes very challenging goals
closer to be achieved. For instance, our approach could be
extended so as to estimate parameters related to the material
of the surface, lightings (uncalibrated PS), etc.
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