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1.  Introduction 

 
The electricity market reform introduced in Colombia in 1994 established a new 

structure of the sector and new conditions for private participation and competi- 
tion. The reform was mainly motivated by an energy crisis suffered in 1992-1993 
that caused major blackouts  as a consequence of extreme droughts. This situation 
revealed the inefficiency and inability of the state-owned industry to satisfy an in- 
creasing demand and to deal with weather events. The regulatory reform adapted 
a version of the UK model with the creation of a pool where prices are settled in 
a bidding process.  The Electric Law of 1994 created the regulatory commission 
Comisión Reguladora de Enerǵıa y Gas (CREG) and split the traditional vertically 
integrated and monopolistic system into the activities of generation, transmission, 
distribution and retailing. As a consequence, the seven major public holdings in 
charge of multiple activities from generation to distribution previous to the reform 
were divested into eleven companies performing only one of these activities and 
two companies involved in both generation and distribution. Although generation 
and distribution were allowed to be performed by the same company, limits to the 
amount of electricity that the distributor could buy from its own generation firm 
were set and separate managerial and accounting  procedures were required. 

However, privatization and competition have been slow processes in Colombia. 
After the reform only two of the new companies were fully privatized and, although 
in the following years several companies were open to private capital, in most of 
the cases private investors are minority shareholders and firms remain under the 
control of municipalities and regional governments. Certainly, privatization and 
competition  have been identified as pending  issues in Colombia in previous studies 
analyzing the effects of the first years of the reform  (see Pombo and Taborda, 2006; 
Larsen et al., 2004). 

Nevertheless,  these processes have accelerated  in recent years. From 2010 to 
2012, the number of generating and retailing firms has increased by 23% and 32%, 
respectively, and most of the companies involved in these activities are classified 
as private-owned. In distribution,  companies with a majority of public capital 
account for 62% of total firms and serve 51% of the total users. Currently there 
are 54 generation, 33 distribution and 85 retailing companies.  Of the generation 
firms, 12 are also involved in distribution and 15 combine generation exclusively 
with retailing activities.1 

In general, the effects of the reform have been positive in terms of the ability 
of the electricity sector to overcome extreme weather conditions and to satisfy the 
increasing demand. Since the reform, Colombia has not experienced blackouts 

 
 

1 Information provided by the national supervisory agency of public services Superintendencia 
de Servicios Públicos Domiciliarios (SSPD) in 2013. 
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in spite of some severe droughts that have affected the region during the 1997- 
1998 and 2009-2010 periods, and that have seriously affected neighbor countries. 
Moreover, Colombia  has become an electricity exporter to Ecuador and Venezuela 
and it is currently planning to export electricity to other Central American and 
Caribbean countries.2 

On the other hand, the effects of the reform in terms of energy losses and service 
quality have not been successful until recent years. During the first ten years of 
the reform, energy  losses and electricity interruptions did not present reductions 
and were even higher than previous to the reform. Colombia also exhibited very 
bad performance in these aspects when compared to other countries in the region 
(see  Larsen et al., 2004; Dyner et al., 2006).  Only from 2008, can important 
reductions in energy  losses be observed. In terms of the length of interruptions, 
although it is possible to identify some improvements  since 2005, it is only until 
2011 that significative reductions are evident. In both cases, these improvements 
are consequence of changes in the regulation, as is discussed further below. 

Meeting the quality requirements  and satisfying the increases  in electricity 
consumption and users has required distribution  companies to make important 
investments. In fact, capital and operational expenses have  increased  by more 
than 30% during the period 1998 - 2012. This suggests the need to study the 
effects of the reform and the latest regulations on efficiency. Concerning this issue, 
some few previous studies have quoted the effects on efficiency of the reform in 
Colombia and no major gains have been identified. Pombo and Taborda (2006) use 
Data Envelopment Analysis (DEA) to perform an analysis of technical efficiency 
of Colombian distribution firms during the period from 1985 to 2001. The authors 
find no major changes  during the period and highlight  that  the most efficient 
firms previous to the reform continue to be in the best-practice frontier but firms 
which were inefficient  have not been able to change this condition and present 
even lower efficiency scores. A similar result was found by Melo and Espinosa 
(2005), who measure the technical efficiency of Colombian distributors from 1999 
to 2003 using Stochastic Frontier Analysis (SFA). The authors find out that public 
companies perform better than those privately owned but that  there have not 
been major changes in technical efficiency in the immediate years after the reform. 
This Colombian evidence contrasts with the effects of the electricity reforms on 
performance in other South American countries (see Mota, 2003; Pollitt,  2004, 
2008; Pérez-Reyes and Tovar, 2009, for the cases of Brazil, Chile, Argentina and 
Peru, respectively.) 

Findings from these studies may suggest the presence of high adjustment costs 
in the Colombian distribution sector that imply inefficiency to be highly persistent 

 
 

2 In 2011, Colombia exported 1.740 GWh. Information from the Ministry of Mines and Energy. 
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in time. In this context, it is costly for firms to move towards optimal conditions 
and they may find it optimal to remain inefficient in the short-run. These stud- 
ies have also evidenced the existence of important differences among firms with 
different characteristics in terms of their performance. 

Therefore, this work has two main aims: first, to identify the presence of adjust- 
ment costs in the distribution sector after the reform and distinguish heterogeneity 
in the technology and the inefficiency among Colombian distributors; second, to 
estimate measures of efficiency that consider costs and quality of service in the 
Colombian electricity sector and their evolution from the first years after the re- 
form into the following fifteen years. In particular, we focus on the last five years, 
when most of the changes in terms of quality, demand and costs have occurred. 

For these purposes  we propose  a dynamic heterogeneous SFA  model, which 
extends other dynamic specifications in the frontier efficiency literature.  In par- 
ticular, we extend the dynamic model introduced by Tsionas (2006) in order to 
allow for heterogeneous persistence and unobserved technological  heterogeneity. 
This allow us to identify differences in the adjustment costs faced by firms and to 
distinguish inefficiency properly from unobserved firm characteristics. Inference of 
the model is performed using the Bayesian approach and the effects of the proposed 
specification on efficiency estimations are evaluated. 

The paper is divided into six sections including this introduction. In the second 
section, we describe the main characteristics of the Colombian electricity distribu- 
tion sector after the reform. In the third section, we review previous literature on 
dynamic SFA models and heterogeneity in the electricity sector, and we present 
the proposed model, the estimation procedure and the model specification. In the 
fourth section, we describe the data and the empirical model. In the fifth section, 
we analyze the estimation results. Finally, we present some conclusions. 

 
 
2.  Colombian electricity  distribution  sector 

 
The activity of electricity distribution in Colombia is defined by CREG as the 

transportation of electricity from the national transmission system, which operates 
at voltages  above 220 Kv,  to the final user.  There are four different  levels of 
tension operated by the distributor.  That is, from level 1, which involves tension 
levels below 1 Kv, to level 4 with tension levels between 57.5 Kv and 115 Kv. 
CREG establishes the pricing formula for distributors for each of the tension levels 
considering demand, investments, and administration, operation and maintenance 
costs. The length of the price review is five years and the first pricing period was 
1998-2002.3 

 
 

3 CREG resolution 031 of 1997. 
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Figure 1: Average CHL and EL ratio per firm 
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Besides prices, service quality and energy  losses have also been under regula- 
tion. In 1998 CREG established maximum values for both duration and number of 
interruptions by tension level, as well as compensations  to users when companies 
exceeded these maximums.4   However, small and slow improvements motivated 
CREG to modify this scheme  in 2008. The new regulation introduced quality 
incentives in the pricing formula and compensations for the most affected users.5 

Under this model, an index of service discontinuity is calculated quarterly and 
three ranges of values for this index are set: if distribution companies exceed an 
acceptable range their pricing formula is revised down; if they perform better than 
the acceptable values their formula is revised up; and if their discontinuity index is 
within the acceptable range their formula does not change. The implementation of 
this mechanism has been postponed and only from 2011 have all companies had to 
report this index. The effects of this last regulatory scheme are still uncertain. In 
the literature, some studies have found this direct mechanism of incentive regula- 
tion to have negative effects on quality of service (see Ter-Martirosyan and Kwoka, 
2010). However, the most important reductions in the length of interruptions have 
occurred since then. This can be observed in Figure 1, where the evolution in cus- 
tomer hours lost (CHL) and energy losses (EL) from 1998 to 2012 is presented for 
the sample of distribution companies described in Section 4. 

Regarding  energy losses, new regulations were also set by CREG in 2008 by 
establishing a program for reducing losses and setting upper limits for the per- 

 
 

4 CREG resolution 070 of 1998. 
5 CREG resolution 097 of 2008. 
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Figure 2: Average number of customers and electricity consumption per firm 
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centage of losses recognized  by users via tariff.6   The effects of this regulation also 
seem to be positive (see Figure 1). 

During the period 1998-2012, the electricity consumption and the number of 
connected  users have also presented important increases (27% and 51%, respec- 
tively).  Figure 2 presents this evolution for the same firms above. We can ob- 
serve  that,  after a period characterized by economic  recession and low growth 
rates (1999-2003), consumption and customers exhibit an upward trend with high 
growth in the most recent years. 

Satisfying the demand and meeting the quality requirements have had effects 
on the costs of distribution firms. Figure 3 presents the evolution of capital and 
operational expenses in real US dollars of 2012 for the same companies  in the 
figures above. We observe important increases, mainly in operational expenses, 
from 2007, when relatively higher capital expenses were made.  The overall increase 
in real total expenses from 1998 to 2012 was 31%. 

Higher distribution costs have had an impact on the tariff for the final user. 
Figure 4 plots the evolution of the tariff per kWh by decomposing it into each of 
their components. Although almost all the components of the tariff have increased 
in real terms, the proportion of the distribution component has raised from 33% 
to 40% during the period, with a particular increase in 2011 and 2012. 

 
 

6 CREG resolutions  199 and 121 of 2007. 
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Figure 3: Average operational and capital expenses per firm 
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Figure 4: Evolution of tariff per kWh in Colombia in real terms of 2012 
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Regarding tariffs, it is important to remark that CREG establishes their value 
only for regulated users. After the reform, customers were separated into regulated 
and non-regulated  users, which are differentiated in terms of their power demand 
and consumption. Since 2000, CREG has defined  regulated  users as those with 
power demands under 0.1 MW and monthly consumption below 55 MWh.7  Non- 
regulated users are allowed to negotiate prices with retailing companies. 

 
 

7 CREG Resolution 131 of 1998. 
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3.  Methodology 

 
Frontier efficiency models have become a very useful tool to study the impact 

of the deregulation   processes carried out in many countries from the 1990s and 
to analyze the performance of the participants in the different stages from gen- 
eration to retailing.  In particular, SFA, first introduced in Aigner et al. (1977) 
and Meeusen and van den Broeck (1977) has the advantage of allowing inferences 
on the parameters and considering idiosyncratic errors, in contrast to the most 
common non-parametric methods  such as DEA. It also allows dealing easier with 
panel data structures and to model the evolution of efficiency over time.  Two 
different approaches have been used in the literature for this purpose.  The most 
common approach estimates the temporal pattern of the variation in inefficiency 
by using deterministic specifications of time. Here we find the proposals by Kumb- 
hakar (1990), Battese and Coelli (1992), Lee and Schmidt (1992), and Cornwell 
et al. (1990). These models have the problem of imposing arbitrary restrictions 
on the short-run efficiency and they are not able to model firm-level dynamic be- 
haviour.  A second approach  proposed by Ahn et al. (2000) and Tsionas (2006) 
directly incorporates the dynamic behaviour of the inefficiency by specifying an 
autoregressive structure that recognizes inefficiency  persistence over time. In par- 
ticular, Tsionas (2006) argues that adjustment costs prevent firms from making 
instant adjustments towards optimal conditions and causes inefficiency persistence. 
Rigidities derived from the nature of some inputs, regulation, transaction costs, 
information failures and other adjustment costs may cause firms to find it optimal 
to remain partly inefficient in the short-run. 

 
3.1. Heterogeneity in the electricity sector 

Accounting for both observed and unobserved heterogeneity in stochastic fron- 
tier models is still a concern since efficiency estimations  are sensitive to the mod- 
eling of sources of heterogeneity. In the case of observed heterogeneity,  previous 
applications to the electricity distribution sector have studied the effects of includ- 
ing different types of covariates in the frontier, in the inefficiency or both. Hattori 
(2002) found out that heterogeneity  sources related to the load factor, customer 
density and consumption density affect both, the shape of the frontier and the 
level of technical efficiency. Goto and Tsutsui (2008) found only customer density 
to have impacts on the technical efficiency of US electricity distribution firms in 
a model that also includes consumption density, time and a deregulation index in 
the inefficiency distribution. In a recent study, Growitsch et al. (2012) considered 
weather factors and found them to be influential on costs but having limited effects 
in the efficiency estimations. 

However, Growitsch et al. (2012) achieved more sensitivity in the efficiency 
estimations when unobserved heterogeneity  is included by using a True Random 
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Effects (TRE) model as proposed by Greene (2005). Other recent studies in elec- 
tricity  distribution have also been found to be relevant to considering this latent 
source of heterogeneity in SFA models. Kopsakangas-Savolainen and Svento (2011) 
perform a good analysis of the effect of observed and unobserved heterogeneity and 
warn of the high changes produced  in rankings of cost efficiency under different 
models. 

In the context of dynamic inefficiency models, Emvalomatis et al. (2011) studied 
the effect of including technological  unobserved heterogeneity  in an application 
to power generation plants in the US. Their findings reveal high persistence of 
inefficiency over time but also biases in the efficiency estimations when unobserved 
factors are not considered.  However, it is also possible to think of heterogeneity 
regarding the persistence parameters.  This would be related to possible differences 
in the adjustment costs among firms. The only studies considering this issue have 
been applications  to the banking sector, where this type of heterogeneity  has been 
found to be relevant (see Huang  and Chen, 2009; Galán et al., 2013a).8 

 
3.2. A Dynamic Heterogeneous Model 

We  propose a dynamic stochastic frontier model that accounts for both ob- 
served and unobserved heterogeneity  sources. This is mainly an extension of the 
model introduced by Tsionas (2006) that combines it with other recent proposals 
in the literature of dynamic SFA models. In particular, the proposed specifica- 
tion accounts for observed firm characteristics in the inefficiency  dynamics,  as in 
Tsionas (2006), but also captures two  additional sources of unobserved hetero- 
geneity: the first one is related to differences in the adjustment costs among firms, 
and we model it through a heterogeneous persistence parameter  as in Galán et al. 
(2013a); the second one is related to unobserved  sources of technological hetero- 
geneity and we model it in a similar way to the dynamic model in Emvalomatis 
(2012). The general model is given by the following equations: 

 
 

yit  = αi + xitβ + vit − uit, vit  ∼ N (0, σ2) (1) 
log uit  = ω + zitγ + ρi  log ui,t  1 + ξ , ξ  ∼ N (0, σ2), t = 2...T (2) 

 
log ui1  = 

ω + zitγ 
1 − ρi 

+ ξi1, ξi1  ∼ N 
( σ2 \ 

0, ξ 
1 − ρ2

 

 
, t = 1. (3) 

 

Equation (1) represents the stochastic frontier, where in the case of a produc- 
 
 

8 Huang and Chen (2009) include firm specific persistence parameters in the context of models 
with forward-looking rational expectations while Galán et al. (2013a) include them in relation 
to the theory of adjustment costs. 
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tion function yit  is the output for firm i at time t, αi  is the firm specific parameter 
intended to capture unobserved technological  heterogeneity,  xit  is a row vector 
of the input quantities, β is a vector of parameters, vit  is the idiosyncratic error 
assumed to follow a normal distribution,  and uit   is the inefficiency component. 
The dynamic specification for the inefficiency is represented by (2), where  ω is a 
constant term, zit  is a row vector of firm specific heterogeneity variables, γ is a 
vector of parameters, ρi  is the heterogeneous persistence parameter  capturing, for 
every firm, the proportion of inefficiency that is transmitted from one period to 
the next, and ξit  is a white noise process with constant variance σ2, which may 
capture unobserved random shocks in the dynamic component.  Finally, equation 
(3) represents the specification of the inefficiency in the first period and is intended 
to initialize a stationary dynamic process. 

Stationarity is imposed by requiring the persistence parameters to satisfy |ρi| < 
1. This is important in order to avoid possible divergence of log uit  to positive or 
negative infinity,  which would lead to efficiencies equal to zero or to one. These 
results are not desirable since in the first case they would mean that completely 
inefficient firms remain in the market, and in the second  case that firms may be 
fully efficient, contradicting the adjustment cost theory behind the formulation. In 
general, if a firm has a value of ρi  close to 1 it would suggest that this firm presents 
high adjustment costs, which translates into a high proportion of inefficiency being 
transmitted from one period to the next. On the other hand, if this value is close 
to 0, a low proportion of inefficiency is persistent in time, implying that the firm 
may move quicker towards more optimal conditions. 

The general model in (2) and (3) allows to evaluate different specifications by 
imposing restrictions over some parameters.  If αi  = α is assumed, then unobserved 
technological heterogeneity is not accounted for. If ρi  = ρ is imposed, homogeneous 
persistence is assumed for all companies in the sector. If ρ = 0 the model reduces 
to a static model where the inefficiency follows a log-normal distribution with firm 
specific mean. Finally, if no inefficiency covariates are observed, then γ = 0 would 
be assumed. 

 
3.3. Bayesian inference 

Inference of the model in (1) till (3) is carried out using the Bayesian approach. 
Bayesian inference of stochastic frontier models was introduced  by van den Broeck 
et al. (1994) and allows incorporating formally parameter uncertainty and obtain- 
ing posterior distributions of inefficiencies for every observation. 

In general, we assume non-informative but proper prior distributions for all the 
parameters. For the parameter capturing unobserved heterogeneity in the frontier 
we define a hierarchical structure where αi  ∼ N (α, λ−1) and the hyperparameter 
α ∼ N (0, λ−1).  Priors for the precision parameters λ are set to 0.1 and 0.001 for 
the firm specific parameters and the hyperparameter, respectively. For parameters 
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in β we assume a normal prior distribution β ∼ N (0, Λ−1) where Λβ  is a precision 
diagonal matrix with priors set to 0.001 for all parameters. The variance of the 
idiosyncratic error component is assumed to follow an inverse gamma distribution 

v  ∼ I G(a, b) with priors set to 0.01 and 100 for the shape and scale parameters. 
The inefficiency component as defined  in (2) follows a log-normal distribution 

2 2 
where uit|ui,t−1, ω, zit, γ, ρi, σξ ∼ LN (ω + zitγ + ρi  log ui,t−1, σξ ) for t = 2...T . For 
t = 1, the inefficiency is distributed ui1|ω, zi1, γ, ρi, σ2 ∼ LN 

( 
ω+zi1 γ , σξ   

,
. ξ 1−ρi 1−ρ2 

Regarding the parameters in the inefficiency, the distribution for the common 
constant term is ω ∼ N (µω , λ−1) with priors set to −1.5 and 1 for the mean and 
precision parameters, respectively. The distribution for the parameters of observed 
heterogeneity is: γ ∼ N (0, Λ−1) where Λ−1  is a diagonal matrix of precisions with 

γ  γ 
priors set to 0.1 for every precision parameter. For the persistence parameters, 
we impose |ρi| < 1 to assure stationarity and we define a hierarchical structure 
with ρi   = 2ki  − 1, where ki   ∼ β(k, 1 − k).  The hyperparameter is distributed 
k  ∼ β(r, s) with  priors set to 0.5 for shape  parameters. The variance of the 
inefficiency component is assumed to follow an inverse gamma distribution where 

ξ  ∼ I G(n, d) with priors set to 10 and 100 for the shape and scale parameters, 
respectively.9 

Sensitivity analysis is performed on priors in the inefficiency component.  Dif- 
ferent  values are used for prior parameters in the distributions of ω,  k and σ2 

and posterior results are found to converge to approximately the same values.10 

We  also found posterior results to be robust to the use of a truncated normal 
distribution for parameters ρi  and ρ. 

The specification proposed accounts for firm specific effects in the frontier and 
the inefficiency persistence. However, firms in the sector share a common long-run 
dynamic component ω, common elasticities  for the covariates given by γ, and are 
linked through common parameters ρ and α that are present in the hierarchical 
structures defined. 

As introduced by Koop et al. (1995), Markov Chain Monte Carlo (MCMC) 
methods and, in particular, the Gibbs Sampling algorithm with data augmenta- 
tion can be used. We carry out the implementation of the proposed model using the 
WinBUGS package  (see Griffin and Steel, 2007, for a general procedure in appli- 
cations to SFA). For all the estimated  models we use 5,000 iterations for posterior 
inference. The MCMC algorithm involves 50,000 iterations with 10,000 discarded 
in a burn-in phase and a thinning equal to 8 is used to remove autocorrelations. 

 
 

9 This is the same prior used by Tsionas (2006) and Galán et al. (2013a). 
10 The priors used centre the efficiency prior distributions at 0.8. 
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3.3.1. Comparison criteria 

Using the MCMC output, we compare the different models derived from (1) 
till  (3) using a robust version of the Deviance Information Criterion (DIC) and a 
criterion for predictive performance, which is the Log Predictive Score (LPS).11 

DI C is a within-sample measure of fit introduced by Spiegelhalter et al. (2002) 
and defined as: DI C = 2D(θ) − D(θ̄)  with D(θ)  = −2 log f (y|θ),  where D(θ) 
defines the deviance of a model with parameters  θ and data y. The version of this 
criterion used here is the DI C3, as developed  in Richardson (2002) and Celeux 
et al. (2006), and its formulation is the following: 

 

DI C3 = −4Eθ [log f (y|θ)|y] + 2 log /'-f (y).  (4) 

This alternative uses an estimator of the density f (y|θ) instead of the posterior 
mean θ̄  and has been found to be more stable  in models with  random effects, 
mixtures and with data augmentation  (see Li et al., 2012). 

We also implement a criterion for evaluating out-of-sample behaviour of the 
models, which is LPS. This criterion was first introduced by Good (1952) and is 
intended to examine model performance by comparing its predictive distribution 
with out-of-sample observations. For this purpose the sample is split into a training 
and a prediction set. Our prediction set consists of observations corresponding to 
the last two observed years of every firm in the sample, and the training set contains 
all the rest. The formula is the following: 

 

1 
LP S = − k 

k   
 

 
i=1 

 

log f (yi,ti |previous data), (5) 

where yi,ti   represents the observations in the predictive set for the k firms in the 
sample and ti represents the penultimate time point with observed data for firm i. 

 
3.4. Stochastic input distance function 

Given that electricity distributors do not have control over electricity consump- 
tion and the number of users, which are their natural outputs, it is only possible 
to use input-oriented models for measuring technical efficiency. In this context, we 
assume that distribution firms use an N × 1 vector of inputs x = (x1, x2, . . . , xN )t

 
to provide an M × 1 vector of outputs q = (q1, q2, . . . , qM )t.  Thus, we define an 
input set as follows: 

 
Lg (q) = x : x and technology  g can produce q, (6) 

 
 

11 Applications of both criteria  to Bayesian SFA  models can be found in Griffin  and Steel 
(2004); Ferreira and Steel (2007); Galán et al. (2013b). 
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where the technology  g satisfies the axioms of closeness, boundedness,  strong dis- 
posability and convexity as described by Färe and Primont (1995). This technology 
can be represented by an input distance function, which is defined as: 

 

DI (x, q, g) = sup{λ : x/λ ∈ Lg (q) ≥ 1},  (7) 
λ 

where λ denotes the maximum amount by which an input vector can be radially 
contracted while the output vector remains constant. We assume that every dis- 
tribution  firm employs the best available technology in each period.  Thus, the 
Debreu-Farrell input-oriented measure of technical efficiency (T E) for firm i in 
period t is: 

T E(xit, qit, t) ≡ 1/DI (xit, qit, t).  (8) 
The input distance function has the following features: it is homogeneous of de- 

gree one, a non-decreasing concave function of inputs, and a non-increasing quasi- 
concave function of outputs (see Färe and Primont, 1995). Linear homogeneity 
implies that it is possible to normalize all the inputs in the distance function by 
an arbitrarily chosen input xNit : 

1/xNit   = DI (xit/xNit , qit, t) exp(−uit), (9) 

where uit  ≡ ln DI (xit/xNit , qit, t) ≥ 0. Then, a firm is technically efficient if and 
only if uit  = 0 or similarly, T E(xit, qit, t) = 1. 

Regarding the technology  representation,  we use a translog functional form to 
parameterize the distance function.  So, we define vit   ≡ ln DI (xit/xNit , qit, t) − 
T L(xit/xNit , qit, t), where T L(.) is the translog function. In this case, (9) becomes: 

yit  = T L(xit/xNit , qit, t) + vit − uit, (10) 

where yit   ≡ − ln xNit .  If any outputs or normalized inputs are stochastic then 
vit  is stochastic and (10) becomes a standard translog stochastic frontier model. 
For estimation purposes, the random noise term vit  is assumed to follow a normal 
distribution and the inefficiency component uit  is assumed to follow a nonnegative 
distribution.  Using the results for individual inefficiencies, TE in each period is 
calculated as: 

T Eit = exp(−uit). (11) 
 

 
4.  Data  and empirical model 

 
Information on expenses, consumption,  users, network length and quality in- 

dicators was collected for a sample of 21 electricity distribution firms during the 
period 1998 - 2012. The main data sources are CREG, SSPD and annual reports of 
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the companies. Firms in the sample distributed 81% of the total consumed KwH in 
Colombia during the period and share 98% of total customers in the country. The 
data set is an unbalanced panel with a total of 246 observations.  Table 1 presents 
a summary of statistics of the main variables. Monetary values are expressed in 
thousands of US dollars in real terms of 2012 after deflating by the consumer price 
index. 

 

Table 1: Summary statistics 
 

Variable Mean SD Minimum Maximum 
Residential consumption (M W h) 785,665 1,118,006 13,499 4,687,938 
Non-residential consumption (M W h) 729,120 1,138,132 9,069 5,637,621 
Residential customers (#) 405,457 491,828 34,365 2,247,024 
Non-residential customers (#) 40,672 57,430 2,935 294,734 
Network length (K m) 16,587 15,673 232 70,795 
Customer hours lost (hours) 89.12 101.94 6.20 580.89 
Energy losses (%) 16.25 7.45 4.02 38.57 
Consumption density (kW h/user) 2,836 1,120 436 6,642 
Customer density (users/K m) 43.41 45.42 9.85 194.42 
Total Expenses (thousands USD) 239,034 363,063 1,395 1,768,163 

 
From these variables two outputs and three inputs are selected for the specifi- 

cation of the input distance function. Consumption and number of customers are 
the standard outputs in electricity distribution; however, they are usually highly 
correlated (0.95 in our sample) and one of them should be chosen to avoid collinear- 
ity problems. In our case, we select the number of users divided into residential 
(y1) and non residential  users (y2).  Inputs are total expenses (x1), energy  losses 
(x2) and customer hours lost (x3).  Total expenses is the sum of operational and 
capital expenses.  The former include administrative, operative and maintenance 
expenditures and the latter corresponds to the value of new investments in network 
cables, lines, ducts, tunnels and other machinery, plant and equipment. Consid- 
ering overall total expenses is desirable for benchmarking electricity utilities (see 
Giannakis et al., 2005). Moreover, since we also account  for quality measures, 
including total expenses recognizes that distribution firms adopt different strate- 
gies mixing capital and operating investment inputs in order to improve quality 
of service (see Jamasb et al., 2012). We also include energy  losses and the length 
of interruptions as inputs where reductions are desirable. This approach has been 
used before in applications to the electricity sector using SFA models with distance 
functions (see Growitsch et al., 2009; von Hirschhausen et al., 2006; Tovar et al., 
2011). Giannakis et al. (2005) and Yu et al. (2009) have also found these variables 
to be relevant in performing electric utilities benchmarking analysis explicitly in- 
cluding quality of service. Energy losses is the percentage of energy lost due to 
technical reasons and customer hours lost is the duration of service interruptions 
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measured in hours per customer. We also include the network length measured in 
kilometers (km) as a characteristic of the output which is not directly under the 
control of firms. 

Finally, we consider two inefficiency heterogeneity variables. These are con- 
sumption density (z1) and customer density (z2). Consumption density is measured 
as the number of K wH consumed per customer and customer density is measured 
as the number of users per kilometer. Both variables are expected to affect the 
inefficiency negatively in the sense that firms serving areas with low customer and 
consumption density may face a higher input-output relationship and more man- 
agerial difficulties in providing optimal service quality and resources allocation. 
Previous studies have also modeled these variables in the inefficiency distribution. 
Hattori (2002) and Goto and Tsutsui (2008) found these density characteristics to 
be relevant technical inefficiency drivers in the US and to produce changes in the 
results when they are omitted from the inefficiency distribution.  Growitsch et al. 
(2009) found similar effects for eight European countries when including customer 
density in the mean of a truncated normal distributed inefficiency. In the case 
of Colombia, Melo and Espinosa (2005) have tested the inclusion of both density 
variables in the frontier and the inefficiency and have concluded about relevant 
effects of these variables  as inefficiency  drivers. 

We use a translog representation of the technology for the input distance func- 
tion derived in (10). The estimated model with the dynamic specification presented 
in (1) till  (3) is the following: 

 
 

2 2 
( 

xrit 
, 

− ln x1it   =  αi + 
  

m=1  βm ln ymit  + βm+1  ln kmit + 
  

r=1 δr ln  
x1it 

+ 1     2  2 1     2  2 ( 
xrit 

, 
ln 
( 

xsit 
, 

 

2 m=1 n=1  βmn ln ymit  ln ynit  + 2 r=1 s=1 δrs ln  
x1it 

 
x1it 

 2 
m=1 

+ 
  2 

r=1 ηmr ln ymit  ln 
( 

xrit 
, 

( 
xrit 

, 
x1it 

1 
t +  1 κ2 2  2 

m=1 φmt ln y  mit 

r=1 ϕr t ln  
x1it 

− uit + vit 

log uit  = ω + 
  2

 γpzpit + ρi  log ui,t −1 + ξit ; ξit ∼ N (0, σ2); t = 2...T 
 

log ui1  = ω+
L:

 2 
p=1 γp zpi1 

( 
+ ξi1; ξi1  ∼ N 2 

0, ξ 
, 

; t = 1. 1−ρi 1−ρ2  
(12) 

Total expenses are used  as a numeraire to accomplish linear homogeneity in 
inputs and cross-effects symmetry is imposed by requiring βmn  = βnm and δrs  = δsr . 

 
5.  Estimation  Results 

 

We estimate four different models derived from (12). The first three models do 
not account for unobserved technological heterogeneity, that is, αi  = 0. In addi- 
tion, model (S) restricts ρi  = 0, so the model becomes static and the inefficiency 
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ID function 
α 

 
-13.4149 

 
1.2091 

 
-12.6924 

 
0.7935 

 
-11.4653 

 
0.6624 

 
-11.4045 

 
0.5543 

β1 (ln y1 ) -0.1902 0.1215 -0.0379 0.0257 -0.0346 0.0219 -0.1082 0.0266 
β2 (ln y2 ) -0.0968 0.0991 -0.1200 0.0806 -0.0712 0.0530 -0.0463 0.0248 
β3 (ln x2 ) 0.0115 0.0087 0.0244 0.0135 0.0060 0.0050 0.0149 0.0134 
β4 (ln x3 ) 0.0116 0.0088 0.0485 0.0168 0.0232 0.0197 0.0075 0.0056 
β5 (ln km) -0.3494 0.0739 -0.3265 0.1074 -0.1265 0.0491 -0.1413 0.0625 
β6 (t) -0.1724 0.1217 -0.0932 0.1336 -0.0616 0.0808 -0.0730 0.0684 
β7 (t2 ) 0.0032 0.0010 0.0046 0.0012 0.0049 0.0006 0.0050 0.0005 
φ1 (1/2 ln y2 ) 1 -1.0098 0.3705 -1.3391 0.5202 1.6021 0.7925 1.5440 0.6968 
φ2 (ln y1 ln y2 ) 0.4733 0.3262 0.8353 0.5289 -1.4377 0.6969 -1.3677 0.6227 
φ3 (1/2 ln y2 ) 2 0.1132 0.3291 -0.2584 0.5504 1.2588 0.6821 1.2503 0.6303 
φ4 (1/2 ln x2 ) 2 0.0868 0.0463 0.0470 0.0450 0.0105 0.0362 0.0005 0.0346 
φ5 (ln x2 ln x3 ) -0.0951 0.0224 -0.0652 0.0321 -0.0160 0.0147 -0.0037 0.0147 
φ6 (1/2 ln x2 ) 3 0.0302 0.0174 0.0209 0.0194 0.0164 0.0112 0.0138 0.0124 
δ1 (ln y1 ln x2 ) -0.2636 0.1341 -0.2488 0.1303 0.2395 0.1451 0.1911 0.1275 
δ2 (ln y2 ln x2 ) 0.4149 0.0977 0.3551 0.1001 -0.2212 0.1136 -0.1622 0.0967 
δ3 (ln y1 ln x3 ) 0.0175 0.0822 -0.0168 0.0767 -0.0375 0.0563 0.0140 0.0554 
δ4 (ln y2 ln x3 ) -0.2235 0.0728 -0.1163 0.0623 0.0371 0.0542 0.0035 0.0525 
κ1 (t ln y1 ) 0.0252 0.0211 0.0353 0.0238 0.0192 0.0157 0.0175 0.0141 
κ2 (t ln y2 ) -0.0238 0.0196 -0.0233 0.0211 -0.0142 0.0138 -0.0150 0.0126 
κ3 (t ln x2 ) -0.0063 0.0075 0.0032 0.0074 0.0020 0.0047 0.0004 0.0041 
κ4 (t ln x3 ) 0.0064 0.0040 0.0045 0.0040 0.0022 0.0025 0.0025 0.0022 

ω -1.4049 0.8467 0.0205 0.0050 0.0017 0.0002 0.0028 0.0002 
ρ   0.8366 0.0846 0.6532 0.0850 0.6507 0.0868 
γ1 (ln z1 ) -0.3443 0.1008 -0.0424 0.0081 -0.0317 0.0024 -0.0314 0.0168 
γ2 (ln z2 ) -0.4407 0.0838 -0.1277 0.0394 -0.1258 0.0553 -0.1009 0.0452 
σv 0.1653 0.0315 0.1314 0.0194 0.0943 0.0017 0.0977 0.0018 
σE 0.1610 0.0517 0.0613 0.0023 0.0406 0.0038 0.0347 0.0029 
Mean eff. 0.5173 0.5841 0.6478 0.6373 
SD eff. 0.1205 0.1551 0.2600 0.2420 
DI C3 -119.12 -253.28 -339.49 -349.86 
LP S 35.79 21.06 9.74 6.53 

 

 
 
term follows a log-normal distribution with observed heterogeneity in its location 
parameter. The second model (D) restricts ρi  = ρ, which implies a dynamic model 
with fixed persistence parameter. The third model (DPH) allows heterogeneous 
persistence through ρi.  Finally, the fourth model (DPUH) is the complete model 
in (12), which is dynamic and allows for heterogeneous persistence and unobserved 
heterogeneity. Results of the estimations are presented in Table 2. 

 
Table 2: Posterior mean and standard deviation of parameter distributions 

 

Parameters Model  S Model  D Model  DPH Model  DPUH 
 αi  = α, ρi  = 0 αi  = α, ρi  = ρ αi  = α, ρi  /= ρ αi  /= α, ρi  /= 

 Parameter  Mean  SD  Mean  SD  Mean  SD  Mean  SD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inefficiency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We  observe  that  the more flexible is the model in terms  of accounting for 



17  

 
 
dynamic effects and heterogeneity, the better the values obtained for DI C3  and 
LP S. Lower values for these criteria suggest better fit and predictive performance. 
Moreover, high inefficiency  persistence is estimated by the dynamic models sug- 
gesting the presence of important adjustment costs in the Colombian distribution 
sector. Model D estimates around 84% of the inefficiency being transmitted from 
one period to the next, which is very similar to the average firm specific persistence 
estimated under models DPH and DPUH.12 It can be also seen that not only is the 
average technical efficiency in the whole sector higher in the more flexible models, 
but also its dispersion. This may suggest that introducing dynamic effects and un- 
observed heterogeneity  sources distinguishes the presence of adjustment costs and 
heterogeneity from technical inefficiency and also differentiates  firms depending on 
their specific characteristics.  These effects can also be observed in Figure 5, where 
the evolution of efficiency over time under the four models is plotted. We can also 
observe that the dynamic models accounting  for persistence heterogeneity  (DPH 
and DPUH) identify larger improvements in TE during the period. 

 
Figure 5: Evolution of posterior mean TE under different models 
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In order to understand better the effects of the different specifications on the 
efficiency estimates, we analyze the results at firm level and their evolution over 
time by comparing the models derived from (12) from the most to the least re- 
strictive.  In Figure 6, we compare the posterior efficiency distribution for a firm 
with median values for customer and consumption density in 2012 under static 
and dynamic formulations. We observe that introducing dynamic effects alter not 

 
 

12 Recently, Poudineh et al. (2014) found also very high inefficiency persistence in an application 
of a dynamic model to Norwegian electricity utilities. 
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only the location of the distribution, by estimating higher values for technical ef- 
ficiency, but also that the dispersion is lower, which allows more certainty on the 
individual efficiency estimations. 

 
Figure 6: Posterior efficiency distribution for a representative firm in 2012 
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These differences in the posterior distributions also affect the estimation of 
the evolution of technical efficiency over time.  Figure 7 presents the posterior 
mean efficiency estimations  during the period for two  firms, Electrificadora del 
Quindio (EDEQ) and Empresas Públicas de Medelĺın (EPM). We observe that for 
EDEQ, the dynamic specification estimates gains in technical efficiency that are 
not identified under the static model. This may suggest that the improvements 
made by this firm during the period are more important in relative terms given 
the presence of high adjustment costs in the sector. In the case of EPM, results 
imply that, given the adjustment costs faced by all firms in the sector, this firm 
did not improve enough to identify efficiency gains.These findings are important 
from the point of view of the regulator because they suggest that firms could not 
explain poor performance on the basis of modelled adjustment costs. 

The dynamic  model analyzed assumes that all distribution firms face the same 
adjustment costs in terms of being able to adjust the same proportion of ineffi- 
ciency from one period to the next. However, firms with different characteristics 
may present  different  adjustment  costs, so  Model DPH allows for firm specific 
persistence parameters.  Figure A.1 in the appendix exhibits the 95% probability 
intervals for the persistence estimations of every firm. Important differences in the 
individual posterior estimations of persistence are found, ranging from 0.31 to 0.99. 
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Figure 7: Evolution of posterior mean efficiencies for EDEQ and EPM 
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This suggests large heterogeneity in the adjustment costs of electricity distribu- 
tors that could be related to certain characteristics of these firms and the incentive 
regulation that they have faced, as is discussed further below. These findings illus- 
trate the importance of accounting for firm specific persistence parameters, which 
have implications for the efficiency estimations and their evolution over time as is 
observed in Figure 5. 

Finally, the full model in (12) is estimated accounting not only for heteroge- 
neous persistence but also for unobserved technological  heterogeneity. Although 
the evolution of efficiency is similar to that estimated under Model DPH (see Fig- 
ure 5), Model DPUH identifies unobserved firm effects that distinguish them in 
terms of the estimated efficiency. Figure 8 compares the posterior efficiency dis- 
tributions for a low and a high efficient firm under models DPH and DPUH.13 We 
observe that their posterior distributions move and shrink, implying a reduction 
in the uncertainty  of the individual estimations. It is also important  to notice 
that estimations of firm specific persistence parameters do not present important 
changes compared to those obtained in Model DPH. 

Focusing on our preferred model (DPUH), we can identify some links between 
differences in adjustment costs and firm characteristics.  We plot in Figure 9 the 
average posterior distributions of the persistence parameter by groups of firms. 
In general, we observe  that  firms with  a higher proportion of rural and small 

 
 

13 The selected firms are Central Hidroeléctrica de Caldas (CHC) and Empresa Distribuidora 
del Paćıfico (DISPAC). 
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Figure 8: Posterior efficiency distributions for CHC and DISPAC 
 
 

14 
DPH 

  DPUH 
12 

12 
DPH 

  DPUH 
 
10 

 
10 

8 
 

8 
 

6 
 

6 
 

4 
4 

 
2 

2 

 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
CHC 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

DISPAC 

 
 
 
 
customers present lower adjustment costs than those which are mainly urban and 
serve larger customers.  In contrast, by type of ownership and number of customers, 
no major differences can be observed between firms in terms of inefficiency per- 
sistence.  This would imply that rural firms and those with small customers have 
been able to adapt more easily towards optimal performance. 

 
Figure 9: Average posterior distribution of ρi  by groups of firms 
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Differences between groups of Colombian utilities are also observed in the effi- 
ciency estimations and their evolution over time. Figure 10 exhibits the change in 
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the average technical efficiency during the period by groups of firms. We observe 
that private distributors in Colombia are more efficient than public firms; how- 
ever, both types of firms have presented increases in technical efficiency during the 
period. Something similar is observed in terms of the number of customers: large 
firms are more efficient than small companies but the efficiency gains are not very 
different between the two groups. Finally, firms operating mainly in rural markets 
and serving small customers are found to present large increases in technical effi- 
ciency while those in urban locations and serving large users have barely presented 
changes.  These firms are also those exhibiting lower inefficiency  persistence and 
higher scope for improvement. This has allowed rural companies and firms with 
more small customers to catch up with their counterparts in terms of efficiency. 

 
Figure 10: Change in the average posterior mean efficiency by groups of firms 
during the period 
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Results on inefficiency persistence may also help the regulator to identify those 
firms where more attention is required. Figure 11 plots the posterior mean ineffi- 
ciency persistence for every firm against their average posterior  TE in the period 
2010-2012.  We observe not only that most of the firms present very high ineffi- 
ciency persistence, but also that some of them are highly inefficient. This would 
imply that, in the absence of different incentives, these firms could become stuck 
at high inefficiency levels. In Table A.1 these results are presented for each firm 
along with other firm characteristics. 
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Figure 11: Inefficiency persistence and technical efficiency by firm 
 
 

1 

 
0.9 

 
0.8 

 
0.7 

 
0.6 

 
0.5 

 
0.4        Average inefficiency persistence 

  Average technical efficiency 
 

0.4 0.5 0.6 0.7 0.8 0.9 1 
Technical efficiency 

 

 
 

In general, efficiency in the Colombian distribution sector has been found to 
exhibit improvements. However, efficiency gains can only be clearly identified 
in the last five  years.  As previously described,  this period coincides with  the 
main reductions in the length of interruptions and energy losses, and the highest 
rates of increase in the number of customers. Although very preliminary, these 
results may favour the recent incentive regulation policies for improving quality of 
service and reducing energy losses. Nevertheless, the last five years have also been 
characterized by important increases in the electricity tariff for regulated  users. 
As presented in Section 2 not only the tariff per kWh has presented important 
increases during the period, but also the proportion derived from distribution costs 
has increased relative to the other tariff components. This implies that Colombian 
users are now receiving a better service but that  they are paying the costs of 
these improvements  via higher tariffs.  These results suggest that incorporating 
willingness to pay into the efficiency analysis of the Colombian distribution sector 
would be of interest. Certainly, in a recent study Yu et al. (2009) have found the 
social cost of outages to be considerably  higher than the utilities’ incentives in an 
efficiency analysis of UK distributors. 

Finally, our findings may be helpful for the Colombian regulator and the Min- 
istry of Mines and Energy, which have been recently working on the composition of 
groups of distribution firms that would share the same prices.14 These groups have 
been formed following geographical criteria. However, our results suggest that the 
design of these groups should mainly consider the inefficiency persistence level of 

 
 

14 CREG resolution 058 of 2008 and Ministry of Mines and Energy resolutions: 182306 of 2009, 
181347 of 2010, 180686 of 2011 and 180574 of 2012. 
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each firm and their characteristics in terms of customer density and consumption 
density. 

 
 
6.  Conclusions 

 
The electricity reform in Colombia introduced the separation of activities in 

the electricity sector and set the conditions for privatization  and competition. 
In general, the reform has had positive  effects on the ability  of the sector to 
overcome extreme weather conditions and meet demand requirements. However, 
for distribution companies, competition and privatization have been slow processes 
and the users did not benefit from improvements in service quality for the first 
ten years after the reform.  In fact, previous studies measuring  consequences of 
the reform on efficiency have not found evidence of improvements, although large 
differences in efficiency have been found among firms. 

This may indicate the presence of high adjustment costs in the sector in Colom- 
bia and important  heterogeneity factors among distributors.  We  include these 
conditions in a stochastic frontier model that accounts for dynamic effects and 
unobserved heterogeneity.  Our findings suggest high inefficiency persistence in the 
sector that could be related to adjustment costs and inadequate incentive regula- 
tion.  However, important differences are found among firms. In particular, firms 
operating mainly in rural markets and serving small customers present lower ad- 
justment costs than firms with the opposite characteristics.  This condition has al- 
lowed these firms to catch up urban firms and firms serving large users, which have 
exhibited higher technical efficiency during the whole period. In fact, customer 
density and consumption density are found to be important inefficiency drivers in 
the sector and unobserved heterogeneity  sources to be relevant in distinguishing 
heterogeneity from inefficiency and identifying differences among firms. 

In particular, firms exhibiting high inefficiency  persistence and low technical 
efficiency should draw the attention of the regulator because they could be stuck 
at high inefficiency levels. Overall, our findings may be helpful for the regulator 
and the Ministry of Mines and Energy in Colombia in their current composition of 
pricing groups. Although, a geographical criterion has been followed,  our results 
suggest that inefficiency  persistence, customer density and consumption density 
should  be considered as the main criteria when identifying groups of distribution 
firms for regulatory purposes. 

The evolution of efficiency in the sector is found to be very stable and no 
major changes can be identified until 2008. Since then, gains in technical effi- 
ciency are observed, suggesting that net benefits  have been derived from recent 
incentive regulations introduced for reducing length of interruptions and energy 
losses. However, the tariff paid by users also evidenced high growth during the last 
five years and the proportion of the tariff assigned to the distribution component 
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showed important increases from 2010. This suggests that incorporating customer 
willingness to pay into the efficiency analysis of Colombian utilities would be an 
interesting area for future research. 
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Appendix 

 
 
Figure A.1: 95% probability intervals for firm specific persistence parameters under 
Model DPH 
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Note:  See Table A.1 for the list of firms and acronyms 
 
 
 
Table A.1: Posterior mean estimations of TE and persistence under model DPUH, 
customer density and consumption density by firm 

 

Firm Average TE Inefficiency Cust.  Dens. Cons. Dens. 

 1998-2012 persistence (users/km) (kWh/user) 
Central Hidroeléctrica de Caldas  S.A.  E.S.P.  (CHC) 0.5520 0.9713 31199 341 
Centrales Eléctricas de Nariño S.A.  E.S.P.  (CEDENAR) 0.3045 0.9651 23072 474 
Centrales Eléctricas del Norte de Santander S.A.  E.S.P.  (CENSA) 0.6118 0.9872 13996 94 
CODENSA S.A.  E.S.P.  (CODENSA) 0.9894 0.9981 47207 830 
Compañ́ıa de Electricidad de Tuluá S.A.  E.S.P.  (CETSA) 0.9892 0.9996 47355 2116 
Compañ́ıa Energética del Tolima S.A E.S.P  (ENERTOLIMA) 0.4667 0.3120 13205 77 
Electrificadora de Santander S.A.  E.S.P.  (ESSA) 0.4624 0.4096 33639 152 
Electrificadora del Caquetá S.A.  E.S.P.  (ELECTROCAQUETA) 0.4977 0.6700 20120 209 
Electrificadora del Caribe  S.A.  E.S.P.  (ELECTRICARIBE) 0.4506 0.6960 40553 336 
Electrificadora del Huila S.A.  E.S.P.  (ELECTROHUILA) 0.4720 0.3862 16663 94 
Electrificadora del Meta  S.A.  E.S.P.  (EMSA) 0.5033 0.8584 39699 261 
Empresa  de Enerǵıa de Arauca E.S.P  (ENELAR) 0.4260 0.7571 21334 981 
Empresa  de Enerǵıa de Boyacá S.A.  E.S.P.  (EBSA) 0.9960 0.9999 21356 237 
Empresa  de Enerǵıa de Casanare  S.A.  E.S.P.  (ENERCA) 0.3677 0.9615 13352 110 
Empresa  de Enerǵıa de Cundinamarca S.A.  ESP (EEC) 0.4760 0.5221 42579 153 
Empresa  de Enerǵıa de Pereira  S.A.  E.S.P.  (EEP) 0.4913 0.6509 21193 299 
Empresa  de Enerǵıa del Quind́ıo S.A.E.S.P. (EDEQ) 0.6487 0.9930 33337 452 
Empresa  de Enerǵıa del Paćıfico S.A.  E.S.P.  (EPSA) 0.7303 0.9959 50925 269 
Empresa  Distribuidora del Paćıfico S.A.  E.S.P  (DISPAC) 0.4233 0.8853 22464 475 
Empresas  Municipales de Cali  E.I.C.E E.S.P  (EMCALI) 0.7328 0.9895 61707 2331 
Empresas  Públicas de Medelĺın E.S.P.  (EPM) 0.9015 0.9988 82735 389 
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