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A Mathematical models and assumptions

As described in the Main Text, early warning signals (EWS) are measures that rest
upon modelling assumptions. To clarify the most relevant assumptions, which are tested
in the present study, we recall how EWS are theoretically derived.

When consistent with a mean-field approximation, the dynamics of COVID-19
infectiousness is well described by SIR-like models [1,2]. To illustrate how early warning
signals can be subsequently derived, we here recall the process described in [3]. SIR
models describe disease processes in homogeneous populations of susceptible individuals
(X), which can get infectious (Y ) and eventually removed (Z) by death or recovery. In
the deterministic SIR, transitions among states are governed by the infection rate β and
the removal rate γ, which lumps recovery and death rate. Empirical values for
COVID-19 can be traced in the abundant literature, e.g. [4]. In addition, systems are
often open with influx rate µ′ and outflux rate µ′′ of people. However, many travelling
restrictions were in place during the year 2020 (see ACAPS website
(https://bit.ly/3nFFqUS) for a dataset of government measures.). Hence, we can
assume that such fluxes are small and balanced: µ′ = µ′′ = µ. Along with that, we
model an influx rate of new cases η that can trigger subsequent disease outbreaks.
Finally, intervention measures introduce a probability p that some susceptible
individuals are isolated and protected, either physically (e.g. through
non-pharmaceutical interventions limiting social interaction or through changes in
people’s behaviour) or by vaccination [5]. The model reads:

Ẋ = µ(1− p)− βXY − (η + µ)X

Ẏ = βXY + ηX − (γ + µ)Y

Ż = µp+ γY − µZ .

(A)

It is assumed that the population size N is constant, that is X + Y + Z = 1 since
variables are normalized. In this case, the control parameter R is given by [3]:

R =
β

γ + µ
(1− p) (B)
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and reaches its critical value 1 for p∗ = 1− (γ + µ)/β, at which the dynamics undergo a
transcritical bifurcation on the (Y, p) bifurcation diagram [3]. We remark that we
consider here an example from literature: R might change in time after being driven by
other evolving parameters such as one that tunes the contact rate β [2]. Without
protection and extra fluxes, the basic reproduction number for COVID-19 was
estimated at the beginning of the pandemic in the range 2 < R < 4 (cf., e.g., [6]).

If p(t) changes slowly over time, we can mathematically express the SIR model A
approaching the transition as a slow-fast system:{

Eq. A

ṗ = εf(X,Y, p)
(C)

where 0 < ε� 1 and f is a function that describes its change. A limit case is ε→ 0.
This condition is necessary to interpret the dynamical shift as a slow crossing through a
bifurcation point, and to compute its associated summary statistics [7]. Often [3, 8], the
function f is assumed to be a constant f = p̃. This way, the protection probability is, at
first approximation, a linear function of time:

p = p0 + p̃t , (D)

and R as well, following Eq. B. If p̃ > 0, then R gets reduced and, if it was above 1, the
bifurcation is crossed from above towards elimination. If p̃ < 0, R increases and, if it
was below 1, the bifurcation is crossed from below, towards a new emergence. Only the
second case can be investigated with COVID-19 data, as most countries implemented
suppression measures very rapidly [9] and thus Eq. C is usually not satisfied in the first
case.

When the transition is approached from below, and if there are few cases, stochastic
fluctuations are not negligible. Hence, we need to consider the transitions described by
a stochastic master equation. Reducing the stochastic master equation to Eq. C and a
Fokker-Plank equation for the fluctuations was already performed in [3, 10]. Hence, we
briefly recall them to illustrate the assumptions underlying the behavior of early
warning signals prior to the transition.

First, note that system A, along with condition Ṅ = 0, can be reduced to its first
two equations. Hence, we just need to consider the transitions in and out X and Y .
Second, for each small time step dt, the quasi-steady state p is constant.

Transitions in and out states are described as random jump processes. Such states
are (X,Y ), (X − 1, Y ), (X,Y + 1) and so on. Using α = (X,Y ) to describe the “basic”
state, ᾱ is any other state and P (X,Y, t) = Prob(X(t), Y (t) = (x, y)) is the probability
that the state vector is equal to some pair of non negative integer numbers (x, y).
Finally, Ti(α, ᾱ) is the transition probability between states, and is a function of
transition rates. The subscript i denotes all possible jumps in and out of the states.
Examples of Ti(α, ᾱ) are found in [3, 11], depending on the system of interest.
Consequently, the master equation for the stochastic process is:

dP (α, t)

dt
=
∑
α6=ᾱ

Ti(α|ᾱ)P (ᾱ, t)−
∑
α 6=ᾱ

Ti(ᾱ|α)P (α, t) (E)

In general, Eq. E is nonlinear. To have analytical results about its average behavior
and the fluctuations around it, the van Kampen expansion can be used [12] to
approximate the discrete random variables with continuous random variables. This
depends on having large N , which holds in our case when we consider the population of
medium to big countries. To leading order, the expansion of Eq. E is equivalent to Eq.
C. To quantify the fluctuations at next-to-leading order, the obtained Fokker-Plank
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Fig A. Theoretical EWS for epidemic re-emergence. Left: the lag-1 autocorrelation increases before the transition if the
approach of R to 1 is slow (slow-fast assumption satisfied, red); otherwise it increases after the transition (bifurcation delay, blue).
Right: the variance increases before the transition (dashed grey line) if the approach of R to 1 is slow (slow-fast assumption satisfied,
red; the inset magnifies the effect). Otherwise, it increases after the transition (bifurcation delay, blue). The plots are derived from the
analytical results of [3] and reproduce its Fig 9, d—e. On the x-axis: values for the recruitment rate [d−1] of new infectious that could
trigger a re-emergence.

equation is equivalent to the following system of stochastic differential equations [10]:

dσ

dt
= b11σ(t) + b12ζ(t) + Γ1(t)

dζ

dt
= b21σ(t) + b22ζ(t) + Γ2(t)

(F)

where Γj are white noise processes and the elements of the matrix B = {bkl} are
functions of transition rates. Eq. F connects the stochastic description of the epidemic
with SIR-like models like Eq. A would with a noise term.

Eq. F can be analysed by its Fourier transform. By considering the fluctuations
around the infectious state, we can derive the power spectrum and, through integration,
the variance, the autocorrelation and other statistical moments. Their specific values
depend on the eigenvalues of matrix B and of the covariance matrices of Γj . The
evolution of variance and autocorrelation next to the transition, as obtained in [3], is
shown in Fig A for a slow and a fast approach to R(t) = 1. The trend of these summary
statistical indicators on the fluctuations, prior to the transition, constitutes the set of
signals that could detect the transition itself; for instance, the increase in variance, often
measured in terms of Kendall’s τ . The Kendall’s τ score is a non-parametric measure of
ranks correlation, which is usually used to identify increasing trends [13,14]. Such
increasing trends are known in the literature as early warning signals (EWS) [15].

Finally, let us recall the general theory of EWS on bifurcations. Any system
approaching a transcritical bifurcation is, in its vicinity, topologically equivalent to a
transcritical normal form [16,17]. This is a minimal model that retains the systems’
behavior and resilience properties in the vicinity of a bifurcation. Models can be
transformed to a normal form after an appropriate change of variables [18]. The normal
form associated to a transcritical bifurcation has the form:

θ̇ = qθ − θ2 (G)

where q is the bifurcation parameter and θ the variable of interest (Y from eq. A, in
this specific case). This form represents a system whose extinction state and positive
steady state coalesce and exchange stability when q reaches its critical value. If there
are statistical fluctuations ξ, we can write their evolution as a linearization around the
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Fig B. Examples of discarded time series, following some of the criteria explained in “Methods and Mathematical
Theory” of Main Text. Among others, France and Belgium had active cases curves that differ from the typical bell-shaped
SEIR-like behavior. This is related to reporting of recovered and dead patients. On the other hand, Finland is an example of
sawtooth evolution, due to recovered cases being reported with different frequencies than daily cases. Data from [25].

equilibrium θ̃, thus resulting in a Langevin equation [7, 19]:

dξ = −∂f
∂θ

∣∣
θ̃
ξ +

√
σ2g2(θ̃)dW (H)

where dW is a Wiener process, σ2 models the noise level and g is the diffusion
coefficient of the associated Fokker-Planck equation. With a linear |∂f/∂θ|θ̃| = k, Eq.
H is an Ornstein–Uhlenbeck process with known statistical moments [20]. Hence, we
can complement the theoretical results described above with those from the theory of
statistical indicators of normal forms, e.g. [7, 19,21]. Important remarks are that: a)
multiplicative noise can modify the indicators trend, e.g. by making it decrease; b)
EWS are expected to work best in the vicinity of the transition; c) there can be
bifurcation delays associated to out-of-equilibrium phenomena, i.e. changes of the
system state (and of its indicators) that lag behind the bifurcation of the limit case.

B Data collection and curation

Among all the countries that registered a re-emergence of COVID-19 epidemic between
April and September 2020, we first selected those for which meaningful prevalence data
could be directly obtained from official sources or reconstructed with Eq. 4 from Main
Text. Examples of discarded data series are reported in Fig B. We recall the underlying
hypothesis of this study: that dynamical early warning signals are expected to work
when the investigated system can be described by a proper dynamical model. Hence, we
did not consider time series for which active cases do not display the typical SEIR-like
behavior like that described in [2, 22–24] (mostly due to data management and
reporting), or for which recovered cases are reported with different frequencies, resulting
in sawtooth curves for active cases. In the later case, the detrended fluctuations would
be associated to reporting standards and would not be representative of dynamical
fluctuations associated to EWS. Other selecting criteria to increase the quality of the
dataset are discussed in “Methods and Mathematical Theory” of the Main Text.

Information about the specific restrictions in place was not directly used as we
concentrated on their lumped effect captured by R(t). Nonetheless, it is possible to
verify on the ACAPS database
(https://www.acaps.org/covid19-government-measures-dataset) that all
considered countries issued a lockdown of varying intensity and additional measures, to
push R(t) below 1 after the first wave. ACAPS is an independent, non-profit
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information provider helping humanitarian actors to respond more effectively to
disasters. The ACAPS analysis team has aggregated and classified interventions from
different sources (media, governments and international organizations), for all countries
and in time.

Curves of active cases for all countries considered in Main Text, their smoothing and
the associated R(t) are displayed in Fig C. The smoothed curves serve as basis for the
detrending, the analysis of the noise distribution of each country and the subsequent
investigation of early warning signals, as explained in Main Text. Specific information
about population, surface and testing strategy of the considered countries is also
reported in Tab. A.

Country Population Area [km2] Avg. daily tests/1000 inh. Share positive tests
State of Victoria (AUT) 6.681 227.444 1.8 <0.1%
Austria 8.917 83,879 0.6 [0.1; 0.6]%
Denmark 5.831 42,933 2.0 [0.1; 1]%
Israel 9.217 22,145 1.9 [0.3; 2]%
Japan 125.8 377,975 0.1 [1; 3.9]%
Korea, South 51.78 100,210 0.15 [0.3; 0.7]%
Luxembourg 0.632 2,586 10 [0.1; 0.4]%
Nepal 29.14 147,516 0.2 [0.3; 4.7]%
Singapore 5.686 728.6 5.1 [1.7; 3.7]%
Veneto (ITA) 4.906 18,345 0.7 [0.4; 2.7]%

Table A. Additional information about the selected countries: population (in millions inhabitants), area (in km2), average
number of daily tests per 1000 inhabitants, performed during the considered period (March - August 2020) and share of positive tests (in
the same considered period, in percentage range from min to max values). The last two indicators derive from [26], to which we refer for
the full time evolution. As mentioned in the Main Text, Luxembourg stands out for its higher number of tests performed per inhabitant.

C Estimating R(t) with Bayesian inference using
MCMC

Following standard methodologies [27,28], we reconstruct the day-by-day evolution of
the reproduction number R(t) by fitting a Poisson transmission model with Markov
Chain Monte Carlo (MCMC) methods.

When modelling “arrivals” of discrete-state stochastic processes (cf. section S1),
Poisson processes are widely employed. For instance, they effectively modeled the
transmission of Ebola [29] and Influenza [30]. Given an average rate of λ new cases per
day, the probability of seeing k new cases is distributed according to the Poisson
distribution:

p(k|λ) =
λke−λ

k!
. (I)

In turn, λ depends on R as [31]:

λ = kt−1e
γ(R−1) (J)

for all time points. γ is the reciprocal of the serial interval, which is around 4 days for
COVID-19 [32,33]. To account for such uncertainty, we treat γ as a random sample
from a Gaussian distribution centered in 4 days with an assumed standard deviation of
0.2. Hence, the probability of observing a time series x = {xt} for each t between t0 and
T discretised by a small step δ is given by:
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Fig C. Curves of active cases for the considered countries, along with their associated R(t) (median values and 50%
credible intervals). The vertical dashed line identifies the day marked for the transition an reported in Table 1 of Main Text.
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p(x|R) =

T−δ∏
t=t0

p(kt+δ|λt) (K)

Before t0, no case was reported. Following Bayes’ rule, the posterior distribution of
R, for each time point, is given by (up to a normalization constant):

p(R|x) ∝ p(x|R)q(R), (L)

where q(R) is a prior distribution. For each time point after t0 + 1, the prior equals the
preceding posterior. We follow the implementation of the Rt-live web service
(https://github.com/rtcovidlive/covid-model) to generate thousands of MCMC
samples with the Metropolis Hastings algorithm, starting with a Gaussian prior N (R, σ).
We assumed σ = 0.15. From the posterior distribution, we also estimated the probability
that R(t) is greater than 1, which was in turn used to define the “ground truth” date of
regime transition for the epidemic trend (see also “Methods and Mathematical Theory”
of Main Text for further discussion). Fig C shows the results of the Bayesian R(t)
estimation (median values and 50% credible intervals) for the considered countries.

D Determining the rate of approach for R(t)→ 1

As explained in the Main Text, we are interested in evaluating how rapidly the
transition point is approached, for each country. To do so, the simplest linear trend

y = a+ b · x, (M)

corresponding to Eq. 6 in Main Text, is assumed and fitted to R(t) time series,
obtained as described above and reported in Fig C. The estimated regression coefficient
is informative about the rate of approach of R(t)→ 1.

The fitting was performed with scipy.optimize routine, considering as uncertainty
the 50% credible interval from the distribution of R(t). The goodness of fit was
evaluated with the reduced χ2 score. Results are displayed in Fig D. The χ2

red < 1
guarantees the goodness of the linear fit, which allows to extrapolate the regression
coefficient as a measure of the rate of R(t)→ 1. The values of b± σb are then reported
in Fig 1C of Main Text.

E Evolution of indicators for all countries

In this section, we show and discuss the evolution of the considered early warning
indicators for all countries, including those that are not shown in Fig 4 of Main Text.

Let us first consider EWS obtained from Gaussian filter detrending. In Fig E we
observe the evolution of the indicators, either globally (Ea) or locally, just prior to the
bifurcation (Eb for the variance, the most robust one as discussed in Main Text). We
can observe the patterns discussed in the Main Text, associated to the different
countries belonging to the test set Y or not (N ). Within Y , the variance increases prior
to the transition and gives very few spurious signals before, whereas other indicators can
be more misleading when the transition still did not happen. Overall, predicted trends
of EWS prior to the bifurcation are associated to satisfied theoretical assumptions such
as gradual approach of R(t)→ 1 and white noise (cf. Fig 1 in Main Text and discussion
thereafter). Not satisfying these requirements might disrupt the expected increasing
trend and results in misleading signals, see in Fig E the countries listed in N . Hence, if
a system is not known or there is difficulty in determining the type of data, incorrect
conclusions could be drawn when interpreting the time series trend. Fig 5 and Table 2
of Main Text quantify the performance of EWS for all countries.
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Fig D. Estimate of transition rate to R critical value. Fitting R(t) evolution (blue line; dashed lines are ±50% CI)
with a linear trend prior to the transition estimates the rate of approach to the threshold value 1. The fit begins around the
minimum of R(t) (excluding small fluctuations) until when the median value crosses 1 (horizontal line). The best fit curve is
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Fig E. Evolution of the considered indicators for all countries. Figs (a) report their global evolution, from the end
of the first wave to the second. Figs (b) focus on the behavior of the variance close to the transition (local behavior). As
discussed in the Main Text, we report the values of indicators after a moving window of size 14 days, associated to the
rightmost data point to avoid “looking into the future”. The vertical dashed line marks the transition point.
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F ARIMA detrending and corresponding global
EWS

As explained in the Main Text, on top of moving average smoothing and Gaussian
kernel filtering, we tested the ARIMA detrending method. ARIMA (Auto Regressive
Integrated Moving Average) is an automatic method to identify the leading trends of a
time series [34], depending on three terms (p, q, d) that need to be adjusted for each
data set. Initially, the d term is identified by checking for stationarity in the data.
Then, the other terms are automatically identified with the python function pmdarima
for ARIMA estimation. Table B summarises the selected ARIMA as well as their
residuals mean and standard deviation, for each country.

Country ARIMA parameters Residuals mean Residuals std
State of Victoria (Australia) (0,2,1) -2.51 197.9
Austria (1,2,0) 2.58 121.5
Denmark (0,2,1) 3.17 86.97
Israel (3,2,2) 34.21 823.5
Japan (1,2,2) -0.279 349.12
Korea, South (3,1,3) 6.462 141.14
Luxembourg (2,1,3) 0.340 30.90
Nepal (1,2,0) 0.248 241.66
Singapore (1,2,0) -0.070 152.47
Veneto (Italy) (0,2,1) 0.133 70.048

Table B. ARIMA model parameter combinations over prevalence data, residuals mean
and standard deviation, for each country.

G Further investigation on AUC values

Table 2 of Main Text reports AUC values close to 0 for variance and CV for the N test
set, in particular after ARIMA detrending. This would correspond to good detection
performance for decreasing trends of such indicators, which would contradict the
theoretical results. We have carried out a further investigation to address this oddity. In
Fig F we an observe that a decreasing variance is indeed observed close to the transition
of N countries. Zooming out, we nonetheless observe that this corresponds to one of the
following situations: a continuation of a decreasing trend after the first wave or
fluctuations is a rather stable trend, eventually followed by a delayed increase after the
transition. We hypothesise that these features are again associated with the rapid
re-emergence and the noise distribution. On the one hand, the indicator had little time
to settle to stable trends and then increase again; on the other hand, there could be
some bifurcation delay playing a role. Hence, we suggest that this is a spurious effect.
These observations calls for caution when interpreting the AUC values related to
decreasing trends and reminds of the importance to compare the results with theoretical
predictions.

H Analysis on incidence data

As mentioned in the Main Text, we complement the analysis on prevalence data with
that on incidence data (daily new cases). The latter avoids potential bias induced by
the estimation of recovered patients, but might be more sensitive to systematic
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Fig F. Investigation of variance for countries in N . For each country, the top panel reports the prevalence data, the
middle one is for the full time series of variance, while the bottom one zooms in the vicinity of the transition. Note that ISR
and JPN were zoomed to better see the variance trends; when it’s not visible anymore, the variance reached higher values
that those encompassed in the y-axis scale.

fluctuations associated with testing routines. Hence, the two analysis can be regarded
as representative of real-world monitoring capacities.

The analysis is performed in the same way as the one described in Main Text; the
indicators and methodologies are also consistent. Therefore, we refer to the Main Text
(Methods and figures corresponding to the ones presented here) for methodological
explanations.

In accordance with preliminary studies that investigated incidence data for
re-emergence of infectious diseases [11, 35], the results here obtained are similar to what
observed for prevalence data. However, there is a number of differences worth stressing.
In the remaining of this section, we will highlight both similarities and differences.

To begin with, the distribution of fluctuations around the average trend is different
than what observed in Fig 1 of the Main Text. In the case of incidence data, the
deviation from Gaussian noise distribution is more pronounced (see Fig Gb), which
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Fig G. Analysis of the dynamical characteristics of the countries included in the
data set, for incidence data. a) An example of an epidemiological curve of daily new cases
from Luxembourg. The dashed line indicates the transition, measured by R > 1. b) Measures
of the distribution of data fluctuations. Skewness µ indicates the symmetry of the distribution,
whereas excess of kurtosis γ − 3 indicates the relevance of its peak with respect to the tails.
Large deviations from µ = 0 (dashed line) and γ = 3 are associated with non-normal
distributions. c) The regression coefficient of R(t) and its associated uncertainty.

reflects the larger fluctuations usually associated with testing protocols like reduced
weekend testing (an example is shown in Fig GA). Interpreting the subsequent results
as consequences linked to the noise distribution is therefore more challenging. In
addition, we observe (Fig GB) that Japan and South Korea have different skewness and
excess of kurtosis than what reported in Fig1 of Main Text. Therefore, as the rate of
approach to R(t) = 1 is conserved (Fig GC), we follow the initial criterion of placing
one country in the test set Y and one in N , but we swap them: Japan is placed in Y
and South Korea in N . We do this for consistency with the previous analysis, but we
also verified that the following results are little sensitive to this choice.

Next, we verify that the detrending methods provide consistent results to those
observed in the Main Text. Moving average and Gaussian filtering are similar to one
another (Fig H); in this case, the ARIMA is notably better correlated with the other two
methods, possibly due to the short-term fluctuations being mostly driven by systematic
testing routines (compare the smoother trend in Fig 1A with the weekly oscillating
pattern in Fig GA) that are smoothed by all filtering procedures. In addition, the local
behavior of the variance shows an increasing trend, as expected from preliminary
theoretical studies (Fig I); differently from the case with prevalence data, both the
eyeball visualization and the Kendall’s τ are very similar between ARIMA and Gaussian
filtering results. We recall that we first perform this study on Luxembourg, as the Large
Scale Testing scheme [36] in place suggests that it is the mostly controlled setting.
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Fig H. Analysis of the residuals from the detrending methods (one case study from
Luxembourg shown). a) The detrended fluctuations time series. b) Correlation between
residuals obtained from Gaussian or moving average filtering. c) Correlation between residuals
obtained from Gaussian or ARIMA filtering.

The qualitative global behavior of statistical indicators for EWS is also similar to
what observed in the case of prevalence data (Fig K). For the same countries used in
Fig 4 of Main Text, we observe an increase of the variance prior to the transition and
potentially spurious fluctuations of the AC(1) and CV, likely associated to moving
window effects and fluctuations of the raw data. In contrast, the skewness seems to
follow a more pronounced increasing trend. Likewise for the Main Text, these eyeball
observations are subsequently quantified with ROC and AUC analysis.

From the quantitative analysis about sensitivity and specificity of the indicators in
detecting the transition, we observe overall similar results to those reported in the Main
Text: the AC(1) and CV are worse than a random classifier even for countries in Y,
whereas the variance provides more robust results (Fig J and Table C). However, we
observe a number of interesting differences over both ARIMA and Gaussian filtering
results. To begin with, variance and CV on the N set are less associated with
decreasing trends close to the transition but are closer to the performance of random
classifiers. This might suggest that, as discussed in the Main Text, the result on
prevalence data was likely spurious and related to the decreasing of the first wave. As
daily new cases do not have a time delay due to recovered cases, such effect is indeed
less marked. The second, more striking difference regards the skewness. As shown in
Fig J, and quantified in Table C, the skewness is particularly good in detecting the
transition to disease emergence on the test set Y. This observation differs from what
anticipated in [11] but is more in line to what was suggested in [37]. Since there are only
few studies connecting observed EWS to noise distribution (like the one observed in
Fig G), we cannot make a conclusive interpretation of this fact. Nonetheless, we
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Fig I. Analysis of the variance in the Luxembourg setting. Its increase is evident
prior to the transition (dashed vertical line). τ , which quantifies the overall increasing trend, is
little sensitive to the sliding window size, as displayed by the three curves and by τ values
reported in the text. The variance is computed over the residuals from Gaussian filtering and
ARIMA detrending. The increasing trend during the considered time window is quantified by
the associated τ values.

speculate that the detection performance might be linked to the sensitivity of the
skewness to the noise distribution (as already introduced in [37]): potentially, the
correct combination of fluctuations and approach to the R(t) = 1 might have yielded
the observed result. Here, we limit ourselves to reporting the observation, demanding
further analytical and computational studies to investigate the issue. In any case, the
skewnees is again no better than a random classifier on the N set.

Gaussian det. ARIMA det.
Indicator over Y over N over Y over N
Variance 0.6718 0.4681 0.7334 0.2561
AC(1) 0.5234 0.3132 0.2624 0.6021
CV 0.3370 0.2019 0.4380 0.1813
Skewness 0.7826 0.5005 0.6805 0.4991

Table C. AUC scores for different indicators, over Y and N datasets, after Gaussian or
ARIMA detrending methods.

Overall, this complementing analysis on incidence data provides additional insights
and questions, to be further compared with theoretical studies. Nonetheless, it
contributes in stressing one of the main points of the main study: as the considered
indicators rely on a number of assumptions, we are justified in using them when such
assumption are satisfied, which is not always the case in real-world settings. Otherwise,
the EWS sensitivity to such assumptions might yield spurious signals and hinder our
capability to extend them in uncertain contexts.
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Fig J. ROC curves for each considered indicator, with sensitivity and specificity calculated on each timepoint for all countries
in Y. Each point corresponds to a test value for τ , to define if the detection if positive. The diagonal line corresponds to the ROC of a
random classifier. Curves above it imply better performance. Left: Computed on Gaussian filtered data. Right: Computed on ARIMA
detrended data.

Country ARIMA parameters Residuals mean Residuals std
State of Victoria (Australia) (2,1,0) 0.39 52.82
Austria (1,1,4) 5.43 93.63
Denmark (3,1,0) 3.17 46.87
Israel (0,1,1) 0.41 349.6
Japan (7,1,5) 3.58 110.0
Korea, South (0,1,1) 0.501 58.96
Luxembourg (2,1,5) 0.319 25.92
Nepal (0,1,1) -0.099 91.999
Singapore (1,1,1) 0.46 121.61
Veneto (Italy) (5,1,3) 1.25 50.66

Table D. ARIMA model parameter combinations over incidence data, residuals
mean and standard deviation, for each country.
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Fig K. Evolution of EWS far from the transition point. Four example countries are shown: Luxembourg and Austria, with
controlled features; State of Victoria (Australia), with small deviations from controlled features; and Israel that does not satisfy
theoretical conditions. Considered EWS are the most common ones (variance, lag-1 autocorrelation, coefficient of variation, skewness).
In addition, to mark the approach to the transition, P(R(t) > 1) from the Bayesian estimation (see Main Text) is displayed. The
vertical line reports the transition date. Left column: detrending method employed: Gaussian filtering. Right column: detrending
method employed: ARIMA.
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