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Abstract: Despite their crucial role in health and disease, our knowledge of immune cells within
human tissues remains limited. Here, we surveyed the immune compartment of 16 tissues from
12 adult donors by single-cell RNA sequencing and VDIJ sequencing generating a dataset of
360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed
CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this
approach, combined with detailed curation, we determined the tissue distribution of finely
phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and
clonal architecture of T and B cells. Our multi-tissue approach lays the foundation for identifying
highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated

expression analysis and antigen receptor sequencing.

One Sentence Summary: We provide an immune cell atlas of human innate and adaptive
immune cells across lymphoid, mucosal, and exocrine sites revealing tissue-specific
compositions and features, and introduce CellTypist, a machine learning tool for rapid and

precise cell type annotation.



Main Text:

The immune system is a dynamic and integrated network made up of many different cell types
distributed across the body that act together to maintain tissue homeostasis and mediate
protective immunity. In recent years, a growing appreciation of immune ontogeny and diversity
across tissues has emerged. For example, we have gained insights into how macrophages derived
in embryogenesis contribute to the unique adaptation of tissue-resident myeloid cells, such as
Langerhans cells in the skin, microglia in the brain and Kupffer cells in the liver (/-3). Other
populations, such as innate lymphoid cells (ILCs), including natural killer (NK) cells and non-
conventional (NKT, MAIT and y5) T cells, have circulating counterparts but are highly enriched
at barrier/mucosal sites where they mediate tissue defense and repair (4). In addition, following
resolution of an immune response, antigen-specific, long-lived tissue-resident memory T cells
(TRMs) persist in diverse sites, where they provide optimal protection against secondary

infections (reviewed in (5-7)).

Studies in mice have revealed the central role of tissue immune responses in protective immunity,
anti-tumor immunity, and tissue repair; however, human studies have largely focussed on
peripheral blood as the most accessible site. Given that circulating immune cells comprise only
a subset of the entire immune cell landscape, understanding human immunity requires a
comprehensive assessment of the properties and features of immune cells within and across
tissues. Recent progress in the analysis of tissue immune cells have implemented organ-focused
approaches (8—12), while use of tissues obtained from organ donors allows for analysis of
immune cells across multiple sites across an individual (/3—19). We previously reported single-
cell RNA sequencing (scRNA-seq) analysis of T cells in three tissues from two donors (20),
identifying tissue-specific signatures. However, despite the effort to assemble murine (27) and
human (22, 23) multi-tissue atlases, large-scale cross-tissue scRNA-seq studies that investigate

tissue-specific features of innate and adaptive immune compartments have not been reported.

Furthermore, a fundamental challenge of increasingly large single cell transcriptomics data sets
is cell type annotation, including identifying rare cell subsets and distinguishing novel
discoveries from previously described cell populations. Currently available automated annotation
workflows leverage organ-focussed studies and lack a comprehensive catalogue of all cell types
found across tissues. Therefore, a single unified approach is required in order to provide an in-

depth dissection of immune cell type and immune state heterogeneity across tissues.



To address these needs, we comprehensively profiled immune cell populations isolated from a
wide range of donor-matched tissues from 12 deceased individuals, generating nearly 360,000
single cell transcriptomes. To systematically annotate multi-tissue immune cells we developed
CellTypist, a machine learning framework for cell type prediction initially trained on data from
studies across 20 human tissues (see Supplementary Text) and then updated and extended by

integrating immune cells from our dataset.

Results
CellTypist: a pan-tissue immune database and a tool for automated cell type annotation

To systematically assess immune cell type heterogeneity across human tissues, we performed
scRNA-seq on 16 different tissues from 12 deceased organ donors (Fig. 1, A and B, and table
S1). The tissues studied included primary (bone marrow) and secondary (spleen, lung-draining
and mesenteric lymph nodes) lymphoid organs, mucosal tissues (gut and lung), as well as blood
and liver. When available, we also included additional donor-matched samples from tissues such
as thymus, skeletal muscle and omentum. Immune cells were isolated from tissues as detailed in
the Methods. After stringent quality control, we obtained a total of 357,211 high quality cells, of
which 329,762 belonged to the immune compartment (fig. S1, A and B).

Robust cell type annotation remains a major challenge in single-cell transcriptomics. To
computationally predict cellular heterogeneity in our dataset, we developed CellTypist (24), a
cell type database, that in its current form is focused on immune cells, that provides a directly
interpretable pipeline for the automatic annotation of scRNA-seq data (Fig. 1C). One of the
unique and valuable aspects of CellTypist is that its training set encompasses a wide range of
immune cell types across tissues. This is of critical importance given that immune compartments
are shared across tissues, warranting accurate and automated cell annotation in an organ-agnostic
manner. In brief, to develop CellTypist we integrated cells from 20 different tissues from 19
reference datasets (fig. S2) where we had deeply curated and harmonised cell types at two
knowledge-driven levels of hierarchies (figs. S3 to S8). This was followed by a machine learning
framework to train these cells using logistic regression with stochastic gradient descent learning
(see methods). Performance of the derived models, as measured by the precision, recall and
global Fl-score, reached ~0.9 for cell type classification at both the high- and low-hierarchy
levels (Fig. 1C and fig. S9, A and B). Notably, representation of a given cell type in the training



data was a major determinant of its prediction accuracy (fig. S9C), implying higher model
performance can be achieved by incorporating additional datasets. Moreover, CellTypist
prediction was robust to differences between training and query datasets including gene

expression sparseness (fig. S10) and batch effects (fig. S11).

First we applied CellTypist’s high-hierarchy (i.e. low-resolution, 32 cell types) classifier to our
cross-tissue dataset (Fig. 1D), and found 15 major cell populations (fig. S1C). At this level of
resolution, clear compositional patterns emerged in lymphoid versus non-lymphoid tissues, and
within the lymphoid tissues between spleen versus lymph nodes, and appeared not to be driven
by differences in dissociation protocols (fig. S12). As the training datasets of CellTypist
contained hematopoietic tissues with definitive annotations for progenitor populations, the
classifier was able to resolve several progenitors including hematopoietic stem cells and
multipotent progenitors (HSC/MPP), promyelocytes, early megakaryocytes, pre-B and pro-B
cells. Furthermore, CellTypist clearly resolved monocytes and macrophages, which often form a
transcriptomic continuum in scRNA-seq datasets due to their functional plasticity. Thus
CellTypist was successfully able to identify major groups of cell populations with different

abundances in our dataset (fig. S1C).

To automatically annotate fine-grained immune sub-populations, we next applied the low-
hierarchy (high-resolution, 91 cell types and subtypes) classifier, which was able to classify cells
into 43 specific subtypes including subsets of T cells, B cells, ILCs, and mononuclear phagocytes
(Fig. 1E). This revealed a high degree of heterogeneity within the T cell compartment, not only
distinguishing between af3 and v T cells, but also between CD4+ and CD8+ T cell subtypes and
their more detailed effector and functional phenotypes. Specifically, the CD4+ T cell cluster was
classified into helper, regulatory and cytotoxic subsets, and the CD8+ T cell clusters contained
unconventional T cell subpopulations such as MAIT cells. In the B cell compartment, a clear
distinction was observed between naive and memory B cells. Moreover, CellTypist revealed
three distinct subsets of dendritic cells (DC) - DC1, DC2 and migratory DCs (migDCs) (25, 26),
again highlighting the granularity CellTypist can achieve. This fine-grained dissection of each
compartment also allowed for the cross-validation and consolidation of cell types by examining
the expression of marker genes derived from CellTypist models in cells from our dataset (fig.

S1D).

In summary, we generated an in-depth map of immune cell populations across human tissues,

and developed a framework for automated annotation of immune cell types and subtypes.



CellTypist produced fine-grained annotations on our multi-tissue and multi-lineage dataset, and
its performance, as assessed on multiple metrics, was comparable or better relative to other label-
transfer methods with minimal computational cost (figs. S13 and S14). This approach allowed
us to refine the description of many cell subtypes such as the progenitors and dendritic cell
compartments at full transcriptomic breadth, resolving 43 cell states in total across our dataset.
This automated annotation forms the basis for further cross-tissue comparisons of cell

compartments in the sections below.

Tissue-restricted features of mononuclear phagocytes

Mononuclear phagocytes, including monocytes, macrophages and dendritic cells, are critical for
immune surveillance and tissue homeostasis. Automatic annotation by CellTypist identified eight
populations in this compartment (fig. SISA). To explore macrophage heterogeneity further, we
built on CellTypist’s annotation by performing additional manual curation, which revealed
further heterogeneity within the macrophages (Fig. 2A and fig. S15B). The identities of these
cells were supported by expression of well-established marker genes (Fig. 2B), and by markers
independently identified from CellTypist models (fig. S15C). Moreover, existence of these cell
types was cross-validated, and thus consolidated, in the training datasets of CellTypist (fig.
S15D), as well as in myeloid cells from two additional studies of the human intestinal tract (27)

(fig. S15E) and lung (28) (fig. S15F).

Among macrophages, lung-resident cells constituted the majority, and were classified into two
major clusters: (i) alveolar macrophages expressing GPNMB and TREM?2, markers that have
been related to alveolar macrophages (29) and disease-associated macrophages (30),
respectively; and (ii) intermediate macrophages with unique expression of 7NIP3 (Fig. 2, B to
D). TNIP3 (TNFAIP3-interacting protein 3) binds to A20, encoded by TNFAIP3, and inhibits
TNF, IL-1 and LPS-induced NF-kB activation (37). Its expression in lung macrophages may be
related to underlying pathology as it was primarily detected in one donor (A29), a multitrauma
donor with significant lung contusions. Notably, this population also expressed the monocyte-
recruiting chemokine CCL2 (Fig. 2B), providing a means of replenishing the lung macrophage

pool.

Other macrophage subsets in our data also showed a high degree of tissue restriction (Fig. 2D).
Erythrophagocytic macrophages, including red pulp macrophages and Kupffer cells, mainly
populated the spleen and liver, as expected, and shared high expression of CD5L, SCL40A1 and
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the transcription factor SP/C (32). Notably, a number of macrophages from lymph nodes
clustered together with erythrophagocytic macrophages, pointing to the presence of a small
number of iron-recycling macrophages in lymph nodes (Fig. 2D). Another macrophage
population specifically present in the gut expressed CD209 (encoding DC-SIGN) and IGF1,
markers that have been previously reported in mature intestinal macrophages and M2-like
macrophages, respectively (33, 34). Lastly, monocytes were clearly grouped in two major
subgroups, classical and non-classical monocytes, which differed in the expression of CDI/4,

FCGR34 and CX3CRI1 as well as in their tissue distribution (Fig. 2, A to D).

Among dendritic cells, DC1 expressed XCRI and CLEC9A, consistent with their identity as
conventional DCs (DC1), specialised for cross-presentation of antigens (Fig. 2B). Conventional
DC2s expressed CDIC and CLEC10A, and migDCs were CCR7+ LAMP3+. CCR7 is upregulated
in tissue DCs following TLR or FcyR ligation (35, 36), enabling migration towards CCL19/21-
expressing lymphatic endothelium and stromal cells in the T cell zone of lymph nodes (37, 38).
Consistent with this, we observed a marked enrichment of CCR7+ migDCs in lung-draining and
mesenteric lymph nodes (Fig. 2D). Interestingly, migDCs showed upregulation of A/RE,
PDLIM4 and EBI3 in lymph nodes (Fig. 2E). Extra-thymic expression of the autoimmune
regulator AIRE has been reported in humans (39, 40), however, its functional role in secondary
lymphoid organs remains poorly understood and is a matter of intense research (4/—43). We
validated the presence of migDCs in lung-draining lymph nodes by immunofluorescence (fig.
S16A) and AIRE expression by single-molecule FISH (smFISH) (Fig. 2F). In addition, another
subpopulation of migDCs found in lung and lung-draining lymph nodes upregulated CRLF?2
(encoding TLSPR), chemokines (CCL22, CCL17), CSF2RA and GPR157 (Fig. 2E). TLSPR is
involved in the induction of Th2 responses in asthma (44). Expression of these genes in lung
DCs was also observed in published scRNA-seq datasets (435, 46) (fig. S16, B and C). These
observations suggest that dendritic cell activation coincides with the acquisition of tissue-specific

markers that differ depending on the local microenvironment.

Overall, our analysis of the myeloid compartment has revealed shared and tissue-restricted
features of mononuclear phagocytes, including alveolar macrophages in the lung, iron-recycling

macrophages mostly localized in the spleen, and subtypes of migratory dendritic cells.



B cell subsets and immunoglobulin repertoires across tissues

B cells comprise progenitors in the bone marrow, developmental states in lymphoid tissues and
terminally differentiated memory and plasma cell states in lymphoid and non-lymphoid tissues.
They play a central role in humoral immunity via the production of antibodies tailored to specific
body sites. We first annotated the B cells using CellTypist and obtained six populations (fig.
S17A). Manual curation revealed further heterogeneity in memory B cells and plasma cells,
identifying 11 cell types in total (Fig. 3A and fig. S17B). As with the myeloid compartment, we
cross-checked and verified these cell types in CellTypist training datasets (fig. S17, C and D)
and in two independent immune datasets from gut (27) and lung (28) (fig. S17, E and F).

Naive B cells expressed TCLIA4 and were primarily found in lymphoid tissues (Fig. 3, B to D).
In addition, we identified two populations of germinal center B cells, expressing 4/CDA and
BCL6, that differed in their proliferative states (marked by MKI67). Of note, we did not find
differential expression of dark zone and light zone marker genes in these two populations,
probably reflecting limited germinal center activity in our adult donors. Moreover, these germinal
center populations were present in lymph nodes and diverse gut regions (Fig. 3, C and D),
presumably representing Peyer’s patches. Within memory B cells, which were characterized by
expression of the B-cell lineage markers (MS441, CD19) and TNFRSF13B, we found a
transcriptomically distinct cluster positive for ITGAX, TBX21 and FCRL2, encoding CDl11c, T-
bet and the Fc receptor-like protein 2, respectively (Fig. 3B). CD11c+T-bet+ B cells, also known
as age-associated B cells (ABCs), have been reported in autoimmunity and aging (47-49), and
likely correspond to this /TGAX+ memory B cell population. Notably, unlike conventional
memory B cells, they showed relatively low expression of CR2 (encoding CD21) and CD27 (Fig.
3B). Interestingly, this subset was mainly present in the liver and bone marrow, while in
secondary lymphoid organs, it was primarily found in the spleen (confirmed by flow cytometry
and immunofluorescence (Fig. 3, C and D, and fig. S18). This data deepens our understanding

of the phenotype of this non-classical subtype of memory B cells, and their tissue distribution.

We uncovered two populations of plasmablasts and plasma cells marked by expression of CD38,
XBP1 and SDC1. Whereas the former expressed MKI67 and were found in the spleen, liver, bone
marrow and blood, the latter expressed the integrin alpha-8-encoding gene /7GAS and the
adhesion molecule CERCAM and were enriched in the jejunum and liver (Fig. 3, B to D).
ITGAS8+ plasma cells have recently been reported in the context of an analysis of bone marrow

plasma cells (50), and are likely a long-lived plasma cell population that is quiescent and tissue-



resident. Here we expand their tissue distribution to the liver and gut, and describe their specific

clonal distribution pattern below.

B cells have an additional source of variability due to VDJ recombination, somatic hypermutation
and class-switching, which can relate to cell phenotype. Therefore, we performed targeted
enrichment and sequencing of B-cell receptor (BCR) transcripts to assess isotypes,
hypermutation levels and clonal architecture of the B cell populations identified above. This
analysis revealed an isotype and subclass usage pattern that related to cellular phenotype (fig.
S19A). As expected, naive B cells mainly showed a subclass preference for IgM and IgD.
Interestingly, while evidence of class switching to IgA1l and IgG1 was seen within memory B
cells (including ABCs), plasmablasts and plasma cells also showed class switching to IgA2 and

IgG2.

To determine to what extent this isotype subclass bias correlated with the tissue of origin, we
assessed each cell state independently (requiring a minimum cell count of 50). Memory B cells
showed a bias towards IgA1l in the mesenteric lymph nodes, and towards IgA?2 in the ileum,
where Peyer’s patches are found (Fig. 3E). In the plasma cell compartment, we found an even
more striking preference for IgA2 in the gut region (specifically in the jejunum lamina propria),
consistent with the known dominance of this isotype at mucosal surfaces (Fig. 3E). Of note,
plasma cells in the bone marrow, liver and spleen were composed of over 20% IgG2 subclass.
With more limited numbers, we report isotype distributions across tissues for other B cell
populations (fig. S19, B and C). ABCs were dominated by IgM in both the spleen and lung-

draining lymph nodes, consistent with previous reports (57).

Somatic hypermutation (SHM) levels were, as expected, lowest in naive B cells and highest in
plasma cells (fig. S19D). Between isotypes and subclasses, SHM did not differ significantly.
Nonetheless, there was a tendency towards higher mutation rates in the distal classes 1gG2, IgG4
and IgA2, which are downstream from the IgH locus and can thus accumulate more mutations
during sequential switching (52) (Fig. 3F). We also explored the occurrence of sequential class
switching events in our data by assessing the isotype frequency among expanded clonotypes (>10

cells). Mixed isotype clones were rare in our data (fig. S19E).

Next, we evaluated the distribution of expanded clones across tissues and cell types, and found
three major groups of clones - present in only two tissues, three to four tissues or five or more
tissues, respectively (Fig. 3G), similar to previously reported patterns of B cell clonal tissue

distribution (53). While the clones restricted to two tissues, typically between the spleen and the



liver or bone marrow, were enriched in plasma cells, those distributed across more than five
tissues, including lymph nodes, were over-represented in memory B cells. Together, these
findings suggest that tissue-restricted clones may represent long-term immunological memory
maintained by long-lived plasma cells resident in the bone marrow and spleen as well as liver in

our data.

Overall, we characterized nine cell states in the B cell compartment, and gained insights from in-
depth characterisation of both naive and memory B cell as well as plasma cell subsets. We
identified distinct clonal distribution patterns for the more tissue-restricted long-lived quiescent

plasma cells versus the broad tissue distribution of classical memory B cell clones.

scRNA-seq analysis of T cells and innate lymphocytes reveals lineage and tissue-specific

subsets

For annotation of the T cell/innate lymphocyte compartment, CellTypist identified 18 cell types
(fig. S20A). After manual inspection, these clusters were further divided into additional subtypes
(e.g. for cytotoxic T cells) (Fig. 4A and fig. S20B). As described above for the myeloid and B
cell compartments, identities of the derived cell types were cross-validated in the immune
compartment of the CellTypist training datasets (fig. S20, C and D) and the two independent
studies of gut (27) and lung (28) (fig. S20, E and F).

Naive/central memory CD4+ T cells were transcriptionally close to naive CD8+ T cells as
defined by high expression of CCR7 and SELL and were mainly found in lymphoid sites (Fig.
4B). Other CD4+ T cells identified included follicular helper T cells (Tth) expressing CXCRS,
regulatory T cells (Tregs) expressing FOXP3 and CTLA4, effector memory CD4+ T cells, and
tissue-resident memory Th1 and Th17 cells expressing CCRY, ITGAE and ITGAI found largely
in intestinal sites (jejunum and ileum) and lungs (Fig. 4, B to D). Within the memory CD8+ T
compartment, we found three major subsets: Trm_gut CDS8 (resident memory T cells, Trm),
Tem/emra_CDS (effector memory, Tem; effector memory re-expressing CD45RA, Temra) and
Trm/em_CD8. These subsets were characterized by differential expression of the chemokine
receptors CCRY and CX3CRI and the activation marker CRTAM (Fig. 4B). The Trm_gut CDS8
population (CCR9+) expressed the tissue-residency markers ITGAE and ITGAI, encoding
CD103 and CD49a respectively and localized to intestinal sites (Fig. 4B). By contrast, the
Tem/Temra CDS8 population expressing CX3CRI was found in blood-rich sites (blood, bone

marrow, lung, and liver) and was excluded from lymph nodes and gut (Fig. 4, C and D),
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consistent with previous flow cytometry analysis of Temra cells (54), and results showing
CX3CR1+CD8+ T cells as blood-confined and absent from thoracic duct lymph (55). The
Trm/em_CD8 population expressed high levels of CRTAM, a gene previously shown to be
expressed by Trm (56) and was found in spleen, bone marrow, and to a lesser extent in lymph
nodes and lungs. This may be a resident population more prevalent in lymphoid sites (/6). We
validated and mapped the Trm/em_ CD8 population using smFISH in the liver (Fig. 4E) and
lung-draining lymph nodes (Fig. 4F). Furthermore, we validated all three memory CD8+ T cell
populations at the protein level by flow cytometry of cells purified from human spleen (fig. S21).
Although we could validate CRTAM at the RNA level by smFISH, the protein could not be
detected without stimulation, suggesting that CRTAM is subject to post-translational regulation
upon T-cell receptor (TCR) activation. These three distinct populations represent different states
of tissue adaptation and maturation between effector memory and tissue-resident T cell memory

states.

We also detected invariant T cell subsets such as MAIT cells, characterised by expression of
TRAVI-2 and SLC4A10, and two populations of vy T cells: Trm_Tgd and Tgd CRTAM+. The
CCR9+ Trm_Tgd population populated the gut and expressed the tissue-residency markers
ITGAE and ITGAI, whereas the Tgd CRTAM+ population overexpressed CRTAM, IKZF2
(encoding HELIOS) and the integrin molecule /TGAD (encoding CD11d) and was found
primarily in the spleen, bone marrow and liver (Fig. 4, B to D, and fig. S22, A and B). We
validated the latter population by quantitative PCR (qPCR) of flow sorted CD3+TCRyd+ and
CD3+TCRap+ cells from cryopreserved spleen samples from three donors (fig. S22C, D). As a
small fraction of af T cells, marked by low expression of CD52 and CD127, were also noted to
express ITGAD, the CD3+TCRaf population was split into CD52-CD127- and CD52+CD127+
subpopulations. In keeping with our scRNA-seq data, /TGAD expression was high in
CD3+TCRyd and CD52-CD127-CD3+TCRap, providing additional evidence for the specific

expression of this integrin alpha subunit in this subpopulation of yd T cells.

Lastly, NK cells in our data were represented by two clusters with high expression of either
FCGR3A4 (encoding CD16) or NCAM1 (encoding CD56). We also defined an ILC3 population
within a small cluster mixed with NK cells, via expression of markers including PCDH?9 (Fig. 4,
A and B). Analyses of the tissue distribution of these populations revealed that, whereas the
majority of CD4+ T and ILC3 cells were located in the lymph nodes and to some extent in the
spleen, cytotoxic T and NK cells were more abundant in the bone marrow, spleen and non-

lymphoid tissues (Fig. 4, C and D).
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TCR repertoire analysis shows clonal expansion and distribution patterns within and

across tissues

To understand T cell-mediated protection in more depth, we analysed T cell clonal distribution
in a subset of the data within different tissues of a single individual and across different
individuals. Chain pairing analysis showed that cells from the T cell clusters mostly contained a
single pair of chains (50-60%), with orphan (5-20%) and extra (5-10%) chains present in small
fractions of cells (fig. S23A). Notably, the frequency of extra a chains (extra VJ) was higher than
that of B chains (extra VDJ), potentially due to more stringent and multi-layered allelic exclusion
mechanisms at the TCRp locus compared to TCRa (57). As expected, the NK and ILC clusters
held no productive TCR chains. Within the yd T cell clusters, only a small proportion had a
productive TCR chain, which may result from cytotoxic T cells co-clustering with yd T cells. We
also carried out yd TCR sequencing in selected spleen, bone marrow and liver samples. The vy
TCR sequencing data was subjected to a customized analysis pipeline that we developed and
optimised based on cellranger followed by contig re-annotation with dandelion (see Materials
and Methods), facilitating the full recovery of yo chains in our data. This analysis confirmed that
the majority of productive Y6 TCR chains originated from the /7TGAD-expressing yo T cells (fig.
S23B), supporting the robust identification of this population. The Trm_Tgd population could
not be confirmed by y3 TCR sequencing due to the lack of sample availability.

We next examined V(D)J gene usage in relation to T cell identity. In the MAIT population, we
detected significant enrichment of TRAVI-2, as expected (fig. S23C). Selecting only the TRAV I-
2+ cells (MALIT cluster and other clusters) revealed a notable tissue-specific distribution of TRAJ
segments with TRAJ33 in spleen and liver, TRAJ12 in liver and TRAJ29/TRAJ36 in jejunum (fig.
S23D). This suggests that there may be different antigens for MAIT cells in the spleen, liver and
gut corresponding to the different metabolomes in these tissues. In addition, full analysis of the
TCR repertoire of the MAIT cells revealed previously unappreciated diversity of V segment
usage in the beta chain (fig. S23D).

We then defined clonally related cells on the basis of identical CDR3 nucleotide sequences to
investigate their TCR repertoires. Using this approach, we found that clonally expanded cells
were primarily from the resident memory T cell compartment, including the Th1/Th17
populations mentioned above (Fig. 4G and fig. S23E). As expected, these clonotypes were
restricted to single individuals and within an individual they were distributed across tissues and

subsets (Fig. 4H and fig. S23, F to H). We found a small number of isolated CD4+ T cell clones
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that shared Tregs and effector T cell phenotypes, possibly due to low levels of plasticity or due
to (trans)differentiation from the same naive precursor cell in the periphery (fig. S23H). Focusing
on the most expanded clonotypes (>20 cells), the majority were widespread across five or more
tissues, supporting the systemic nature of tissue-resident immune memory (Fig. 4G). Moreover,
we found that several clonotypes present across tissues consisted of a mixture of cells from the
Tem/emra_CDS8 and Trm/em_CDS8 populations (fig. S23H), suggesting that a single naive CD8+
T cell precursor can give rise to diverse cytotoxic T cell states, which harbour immune memory
across multiple non-lymphoid tissues, emphasizing the plasticity of phenotype and location

within a clone.

In summary, we have described 18 T/innate cell states in our data by integrating CellTypist
logistic regression models, manual curation and V(D)J sequencing. This has yielded insights into
the MAIT cell compartment and its antigen receptor repertoire distribution that differed between
spleen, liver and gut. For the cytotoxic T cell memory compartment there was broad sharing of
clones across gut regions for Trm_gut CD8, and mixed Tem/emra CDS8 and Trm/em_CDS8 T

cell clonotypes with broad tissue distributions.

A cross-tissue updatable reference of immune cell types and states

After focusing on individual immune compartments, we next took a combined approach in order
to better understand the immune landscape of selected tissues. As shown in Fig. 5A, each tissue
has its own immune neighborhood, for example, while spleen and lymph nodes are rich in B
cells, composition of their myeloid compartment varies. In particular, a large population of
erythrophagocytic macrophages, known as red pulp macrophages, are evident in the spleen (in
keeping with their role in red blood cell turnover), whereas lymph nodes are rich in dendritic
cells. As expected, bone marrow uniquely contains progenitor populations. Furthermore lung and
liver contain significant numbers of monocytes, including CX3CRI+ nonclassical monocytes
whereas these cells are absent from the jejunum, perhaps reflecting different degrees of
vascularization. In contrast, the jejunum has an abundance of resident memory T cells (CD8+ T

cells and Th1/Th17) as well as plasma cells.

Our long-term vision for CellTypist is to provide a reference atlas with deeply curated cell types
publicly available to the community. Therefore, via a semi-automatic process, we fed the
identities of the 41 immune cell types identified in our dataset (including both shared and novel

cell type labels) back into CellTypist, demonstrating how CellTypist can be updated and
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improved over time. Combined with the initial 91 cell types and states included in the reference

datasets, CellTypist now comprises a total of 101 annotated cell types (Fig. SB).

Discussion

Here, we present a multi-tissue study of immune cells across the human body within diverse
organ donors. By sampling multiple organs from the same individuals, which allows for robust
control of age, sex, medical history, drug exposure and sampling backgrounds, we reveal tissue-

specific expression patterns across the myeloid and lymphoid compartments.

We also introduce CellTypist, a publicly available and updatable framework for automated
immune cell type annotation that, in addition to identifying major cell types, is able to perform
fine-grained cell subtype annotation - normally a time-consuming process that requires expert
knowledge. We developed CellTypist by integrating and curating data obtained from 19 studies
performed across a range of tissues, with in-depth immune cell analysis comprising 91
harmonized cell type labels. However, as demonstrated here, for example in the yo T cell
compartment, manual curation following automated annotation still has a role to play in revealing
specific cell subtypes that may be absent from the database/training set. To reduce the need for
this, in the longer term, the CellTypist models will be periodically updated and extended to

include further immune and non-immune sub-populations as more data become available.

Within the myeloid compartment, macrophages showed the most prominent features of tissue
specificity. Erythrophagocytic macrophages in the liver and spleen shared features related to
iron-recycling (58) with macrophages in other locations, such as the mesenteric lymph nodes,
suggesting that macrophages participate in iron metabolism across a range of tissues. In addition,
we characterized subsets of migratory dendritic cells (CCR7+) revealing specific expression of
CRLF2, CSF2RA and GPR157 in the lung and lung-draining lymph nodes, and expression of
AIRE in the mesenteric and lung-draining lymph nodes. These migratory dendritic cell states are
interesting targets for future in depth functional characterisation in the context of allergy, asthma

and other related pathologies (59, 60).

In the lymphoid compartment, we combined single-cell transcriptome and VDJ analysis, which
allowed the phenotype of adaptive immune cells to be dissected using complementary layers of
single cell genomics data. Of note, we detected a subset of memory B cells expressing I7GAX

(CD11c) and TBX21 (T-bet) that resemble ABCs previously reported to be expanded in ageing
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(48), following malaria vaccination (6/) and in systemic lupus erythematosus (SLE) patients
(62). In our data, these B cells did not show clonal expansion and at least 50% showed IgM
subclass, suggesting that they may be present at low levels in healthy tissues and expand upon
challenge as well as ageing. BCR analysis revealed isotype usage biased towards IgA2 in gut
plasma cells, which may be related to structural differences (63) or higher resistance to microbial

degradation as compared to IgA1 (64).

In the T cell compartment, our results provided insights into the heterogeneity of T cell subtypes
and their tissue adaptations. Notably, we identified subsets of CD4+ Trm based on functional
capacity for IFN-y or IL-17 production that were mostly localized to intestinal sites, analogous
to mouse CD4+ Trm generated from IL-17-producing effector T cells in the gut (65). We also
identified different subsets of CD8+ Trm including a gut-adapted subset expressing CCRY, which
mediates homing to intestinal sites via binding to CCL25 (66) and another Trm-like subset more
targeted to lymphoid sites. TCR clone sharing between memory subtypes of CD8+ T cells
suggests their origin from a common precursor, or their differentiation or conversion during
migration or maintenance, such as conversion of effector memory T cells (Tem) to resident
memory T cells (Trm) (56). We also identified distinct subsets of y6 T cells based on tissue-
specific gene expression patterns, showing distinct integrin gene expression and tissue

distributions.

In summary, using this dataset of nearly 360,000 single cell transcriptomes (of which ~330,000
were immune cells) from donor-matched tissues from 12 deceased individuals, we have shown
how a combination of CellTypist-based automated annotation, expert-driven cluster analysis and
antigen receptor sequencing can synergize to dissect specific and functionally relevant aspects
of immune cells across the human body. We have revealed previously unrecognized features of
tissue-specific immunity in the myeloid and lymphoid compartments, and have provided a
comprehensive framework for future cross-tissue cell type analysis. Further investigation of
human tissue-resident immunity is needed to determine the effect of important covariates such
as underlying critical illness, donor age and gender as well as considering the immune cell
activation status, to gain a defining picture of how human biology influences immune functions.
Our deeply characterised cross-tissue immune cell dataset has implications for the engineering
of cells for therapeutic purposes and addressing cells to intended tissue locations, and for
understanding tissue-specific features of infection as well as distinct modes of vaccine delivery

to tissues.

15



References:

10.

D.-M. Popescu, R. A. Botting, E. Stephenson, K. Green, S. Webb, L. Jardine, E. F.
Calderbank, K. Polanski, I. Goh, M. Efremova, M. Acres, D. Maunder, P. Vegh, Y.
Gitton, J.-E. Park, R. Vento-Tormo, Z. Miao, D. Dixon, R. Rowell, D. McDonald,
J. Fletcher, E. Poyner, G. Reynolds, M. Mather, C. Moldovan, L. Mamanova, F.
Greig, M. D. Young, K. B. Meyer, S. Lisgo, J. Bacardit, A. Fuller, B. Millar, B.
Innes, S. Lindsay, M. J. T. Stubbington, M. S. Kowalczyk, B. Li, O. Ashenberg,
M. Tabaka, D. Dionne, T. L. Tickle, M. Slyper, O. Rozenblatt-Rosen, A. Filby, P.
Carey, A.-C. Villani, A. Roy, A. Regev, A. Chédotal, I. Roberts, B. Gottgens, S.
Behjati, E. Laurenti, S. A. Teichmann, M. Haniffa, Decoding human fetal liver
haematopoiesis. Nature. 574, 365-371 (2019).

L. C. Davies, S. J. Jenkins, J. E. Allen, P. R. Taylor, Tissue-resident macrophages.
Nat. Immunol. 14, 986-995 (2013).

E. Gomez Perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni, L. Crozet, H.
Garner, C. Trouillet, M. F. de Bruijn, F. Geissmann, H.-R. Rodewald, Tissue-
resident macrophages originate from yolk-sac-derived erythro-myeloid
progenitors. Nature. 518, 547-551 (2015).

X. Fan, A. Y. Rudensky, Hallmarks of Tissue-Resident Lymphocytes. Cell. 164,
1198-1211 (2016).

D. J. Topham, E. C. Reilly, Tissue-Resident Memory CD8+ T Cells: From
Phenotype to Function. Front. Immunol. 9, 515 (2018).

D. Masopust, A. G. Soerens, Tissue-Resident T Cells and Other Resident
Leukocytes. Annu. Rev. Immunol. 37, 521-546 (2019).

P. A. Szabo, M. Miron, D. L. Farber, Location, location, location: Tissue resident
memory T cells in mice and humans. Sci Immunol. 4 (2019),
doi:10.1126/sciimmunol.aas9673.

N. Aizarani, A. Saviano, Sagar, L. Mailly, S. Durand, J. S. Herman, P. Pessaux, T.
F. Baumert, D. Griin, A human liver cell atlas reveals heterogeneity and epithelial
progenitors. Nature. 572, 199-204 (2019).

J. Zhao, S. Zhang, Y. Liu, X. He, M. Qu, G. Xu, H. Wang, M. Huang, J. Pan, Z.
Liu, Z. Li, L. Liu, Z. Zhang, Single-cell RNA sequencing reveals the heterogeneity
of liver-resident immune cells in human. Cell Discov. 6, 22 (2020).

J.-E. Park, R. A. Botting, C. Dominguez Conde, D.-M. Popescu, M. Lavaert, D. J.
Kunz, I. Goh, E. Stephenson, R. Ragazzini, E. Tuck, A. Wilbrey-Clark, K. Roberts,
V. R. Kedlian, J. R. Ferdinand, X. He, S. Webb, D. Maunder, N. Vandamme, K. T.
Mahbubani, K. Polanski, L. Mamanova, L. Bolt, D. Crossland, F. de Rita, A.
Fuller, A. Filby, G. Reynolds, D. Dixon, K. Saeb-Parsy, S. Lisgo, D. Henderson,

16



11.

12.

13.

14.

15.

16.

17.

18.

R. Vento-Tormo, O. A. Bayraktar, R. A. Barker, K. B. Meyer, Y. Saeys, P.
Bonfanti, S. Behjati, M. R. Clatworthy, T. Taghon, M. Haniffa, S. A. Teichmann,
A cell atlas of human thymic development defines T cell repertoire formation.
Science. 367 (2020), doi:10.1126/science.aay3224.

K. R. James, T. Gomes, R. Elmentaite, N. Kumar, E. L. Gulliver, H. W. King, M.
D. Stares, B. R. Bareham, J. R. Ferdinand, V. N. Petrova, K. Polanski, S. C.
Forster, L. B. Jarvis, O. Suchanek, S. Howlett, L. K. James, J. L. Jones, K. B.
Meyer, M. R. Clatworthy, K. Saeb-Parsy, T. D. Lawley, S. A. Teichmann, Distinct
microbial and immune niches of the human colon. Nat. Immunol. 21, 343-353
(2020).

B. J. Stewart, J. R. Ferdinand, M. D. Young, T. J. Mitchell, K. W. Loudon, A. M.
Riding, N. Richoz, G. L. Frazer, J. U. L. Staniforth, F. A. Vieira Braga, R. A.
Botting, D.-M. Popescu, R. Vento-Tormo, E. Stephenson, A. Cagan, S. J. Farndon,
K. Polanski, M. Efremova, K. Green, M. Del Castillo Velasco-Herrera, C. Guzzo,
G. Collord, L. Mamanova, T. Aho, J. N. Armitage, A. C. P. Riddick, I. Mushtaq, S.
Farrell, D. Rampling, J. Nicholson, A. Filby, J. Burge, S. Lisgo, S. Lindsay, M.
Bajenoff, A. Y. Warren, G. D. Stewart, N. Sebire, N. Coleman, M. Haniffa, S. A.
Teichmann, S. Behjati, M. R. Clatworthy, Spatiotemporal immune zonation of the
human kidney. Science. 365, 1461-1466 (2019).

M. T. Wong, D. E. H. Ong, F. S. H. Lim, K. W. W. Teng, N. McGovern, S.
Narayanan, W. Q. Ho, D. Cerny, H. K. K. Tan, R. Anicete, B. K. Tan, T. K. H.
Lim, C. Y. Chan, P. C. Cheow, S. Y. Lee, A. Takano, E.-H. Tan, J. K. C. Tam, E.
Y. Tan, J. K. Y. Chan, K. Fink, A. Bertoletti, F. Ginhoux, M. A. Curotto de
Lafaille, E. W. Newell, A High-Dimensional Atlas of Human T Cell Diversity
Reveals Tissue-Specific Trafficking and Cytokine Signatures. Immunity. 45, 442—
456 (2016).

P. Dogra, C. Rancan, W. Ma, M. Toth, T. Senda, D. J. Carpenter, M. Kubota, R.
Matsumoto, P. Thapa, P. A. Szabo, M. M. Li Poon, J. Li, J. Arakawa-Hoyt, Y.
Shen, L. Fong, L. L. Lanier, D. L. Farber, Tissue Determinants of Human NK Cell
Development, Function, and Residence. Cell. 180, 749-763.e13 (2020).

N. A. Yudanin, F. Schmitz, A.-L. Flamar, J. J. C. Thome, E. Tait Wojno, J. B.
Moeller, M. Schirmer, 1. J. Latorre, R. J. Xavier, D. L. Farber, L. A. Monticelli, D.
Artis, Spatial and Temporal Mapping of Human Innate Lymphoid Cells Reveals
Elements of Tissue Specificity. Immunity. 50, 505-519.e4 (2019).

B. V. Kumar, T. J. Connors, D. L. Farber, Human T Cell Development,
Localization, and Function throughout Life. Immunity. 48, 202-213 (2018).

D. L. Farber, Tissues, not blood, are where immune cells function. Nature. 593,
506-509 (2021).

S. P. Weisberg, B. B. Ural, D. L. Farber, Tissue-specific immunity for a changing

17



19.

20.

21.

22.

23.

24.

25.

26.

27.

world. Cell. 184, 1517-1529 (2021).

M. M. L. Poon, D. L. Farber, The Whole Body as the System in Systems
Immunology. iScience. 23, 101509 (2020).

P. A. Szabo, H. M. Levitin, M. Miron, M. E. Snyder, T. Senda, J. Yuan, Y. L.
Cheng, E. C. Bush, P. Dogra, P. Thapa, D. L. Farber, P. A. Sims, Single-cell
transcriptomics of human T cells reveals tissue and activation signatures in health
and disease. Nat. Commun. 10, 4706 (2019).

Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ
collection and processing, Library preparation and sequencing, Computational data
analysis, Cell type annotation, Writing group, Supplemental text writing group,
Principal investigators, Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature. 562, 367-372 (2018).

S. He, L.-H. Wang, Y. Liu, Y.-Q. Li, H.-T. Chen, J.-H. Xu, W. Peng, G.-W. Lin,
P.-P. Wei, B. Li, X. Xia, D. Wang, J.-X. Bei, X. He, Z. Guo, Single-cell

transcriptome profiling of an adult human cell atlas of 15 major organs, ,
doi:10.1101/2020.03.18.996975.

X. Han, Z. Zhou, L. Fei, H. Sun, R. Wang, Y. Chen, H. Chen, J. Wang, H. Tang,
W. Ge, Y. Zhou, F. Ye, M. Jiang, J. Wu, Y. Xiao, X. Jia, T. Zhang, X. Ma, Q.
Zhang, X. Bai, S. Lai, C. Yu, L. Zhu, R. Lin, Y. Gao, M. Wang, Y. Wu, J. Zhang,
R. Zhan, S. Zhu, H. Hu, C. Wang, M. Chen, H. Huang, T. Liang, J. Chen, W.
Wang, D. Zhang, G. Guo, Construction of a human cell landscape at single-cell
level. Nature. 581, 303—-309 (2020).

C. Xu, Prete, Teichlab/celltypist: celltypist 0.1.6 (2021;
https://zenodo.org/record/5736560).

C. C. Brown, H. Gudjonson, Y. Pritykin, D. Deep, V.-P. Lavallée, A. Mendoza, R.
Fromme, L. Mazutis, C. Ariyan, C. Leslie, D. Pe’er, A. Y. Rudensky,
Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell.
179, 846-863.€24 (2019).

A.-C. Villani, R. Satija, G. Reynolds, S. Sarkizova, K. Shekhar, J. Fletcher, M.
Griesbeck, A. Butler, S. Zheng, S. Lazo, L. Jardine, D. Dixon, E. Stephenson, E.
Nilsson, I. Grundberg, D. McDonald, A. Filby, W. Li, P. L. De Jager, O.
Rozenblatt-Rosen, A. A. Lane, M. Haniffa, A. Regev, N. Hacohen, Single-cell
RNA-seq reveals new types of human blood dendritic cells, monocytes, and
progenitors. Science. 356 (2017), doi:10.1126/science.aah4573.

R. Elmentaite, N. Kumasaka, K. Roberts, A. Fleming, E. Dann, H. W. King, V.
Kleshchevnikov, M. Dabrowska, S. Pritchard, L. Bolt, S. F. Vieira, L. Mamanova,
N. Huang, F. Perrone, I. Goh Kai’En, S. N. Lisgo, M. Katan, S. Leonard, T. R. W.
Oliver, C. E. Hook, K. Nayak, L. S. Campos, C. Dominguez Conde, E.

18



28.

29.

30.

31.

32.

33.

34.

35.

Stephenson, J. Engelbert, R. A. Botting, K. Polanski, S. van Dongen, M. Patel, M.
D. Morgan, J. C. Marioni, O. A. Bayraktar, K. B. Meyer, X. He, R. A. Barker, H.
H. Uhlig, K. T. Mahbubani, K. Saeb-Parsy, M. Zilbauer, M. R. Clatworthy, M.
Haniffa, K. R. James, S. A. Teichmann, Cells of the human intestinal tract mapped
across space and time. Nature. 597, 250-255 (2021).

E. Madissoon, A. J. Oliver, V. Kleshchevnikov, A. Wilbrey-Clark, K. Polanski, A.
E. R. Orsi, L. Mamanova, L. Bolt, J. P. Pett, N. Huang, R. Elmentaite, N. Richoz,
P. He, M. Dabrowska, E. Tuck, E. Prigmore, A. Knights, A. Oszlanczi, A. Hunter,
S. Pritchard, S. F. Vieira, M. Patel, K. Mahbubani, N. Georgakopoulos, M.
Clatworthy, O. Stegle, O. A. Bayraktar, K. Saeb-Parsy, N. Kumasaka, S. A.
Teichmann, K. B. Meyer, A spatial multi-omics atlas of the human lung reveals a
novel immune cell survival niche. bioRxiv (2021), p. 2021.11.26.470108.

E. Evren, E. Ringqvist, K. P. Tripathi, N. Sleiers, I. C. Rives, A. Alisjahbana, Y.
Gao, D. Sarhan, T. Halle, C. Sorini, R. Lepzien, N. Marquardt, J. Michaélsson, A.
Smed-Sorensen, J. Botling, M. C. I. Karlsson, E. J. Villablanca, T. Willinger,
Distinct developmental pathways from blood monocytes generate human lung
macrophage diversity. Immunity. 54, 259-275.e7 (2021).

A. Deczkowska, A. Weiner, I. Amit, The Physiology, Pathology, and Potential
Therapeutic Applications of the TREM2 Signaling Pathway. Cell. 181, 1207-1217
(2020).

A. Martens, G. van Loo, A20 at the Crossroads of Cell Death, Inflammation, and
Autoimmunity. Cold Spring Harb. Perspect. Biol. 12 (2020),
doi:10.1101/cshperspect.a036418.

M. Haldar, M. Kohyama, A. Y.-L. So, W. K¢, X. Wu, C. G. Brisefio, A. T.
Satpathy, N. M. Kretzer, H. Arase, N. S. Rajasekaran, L. Wang, T. Egawa, K.
Igarashi, D. Baltimore, T. L. Murphy, K. M. Murphy, Heme-mediated SPI-C
induction promotes monocyte differentiation into iron-recycling macrophages.
Cell. 156, 1223-1234 (2014).

A. Buyjko, N. Atlasy, O. J. B. Landsverk, L. Richter, S. Yaqub, R. Horneland, O.
@yen, E. M. Aandahl, L. Aabakken, H. G. Stunnenberg, E. S. Baekkevold, F. L.
Jahnsen, Transcriptional and functional profiling defines human small intestinal
macrophage subsets. J. Exp. Med. 215, 441-458 (2018).

O. Spadaro, C. D. Camell, L. Bosurgi, K. Y. Nguyen, Y.-H. Youm, C. V. Rothlin,
V. D. Dixit, IGF1 Shapes Macrophage Activation in Response to
Immunometabolic Challenge. Cell Rep. 19, 225-234 (2017).

F. Sallusto, P. Schaerli, P. Loetscher, C. Schaniel, D. Lenig, C. R. Mackay, S. Qin,
A. Lanzavecchia, Rapid and coordinated switch in chemokine receptor expression
during dendritic cell maturation. Eur. J. Immunol. 28, 2760-2769 (1998).

19



36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

M. R. Clatworthy, C. E. P. Aronin, R. J. Mathews, N. Y. Morgan, K. G. C. Smith,
R. N. Germain, Immune complexes stimulate CCR7-dependent dendritic cell
migration to lymph nodes. Nat. Med. 20, 14581463 (2014).

G. J. Randolph, V. Angeli, M. A. Swartz, Dendritic-cell trafficking to lymph nodes
through lymphatic vessels. Nat. Rev. Immunol. 5, 617-628 (2005).

J. G. Cyster, Chemokines and the homing of dendritic cells to the T cell areas of
lymphoid organs. J. Exp. Med. 189 (1999), pp. 447—450.

J. R. Fergusson, M. D. Morgan, M. Bruchard, L. Huitema, B. A. Heesters, V. van
Unen, J. P. van Hamburg, N. N. van der Wel, D. Picavet, F. Koning, S. W. Tas, M.
S. Anderson, J. C. Marioni, G. A. Holldnder, H. Spits, Maturing Human CD127+
CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted
Antigens. Front. Immunol. 9, 2902 (2018).

P. L. Poliani, K. Kisand, V. Marrella, M. Ravanini, L. D. Notarangelo, A. Villa, P.
Peterson, F. Facchetti, Human peripheral lymphoid tissues contain autoimmune
regulator-expressing dendritic cells. Am. J. Pathol. 176, 1104-1112 (2010).

J. Wang, C. A. Lareau, J. L. Bautista, A. R. Gupta, K. Sandor, J. Germino, Y. Yin,
M. P. Arvedson, G. C. Reeder, N. T. Cramer, F. Xie, V. Ntranos, A. T. Satpathy,
M. S. Anderson, J. M. Gardner, Single-cell multiomics defines tolerogenic
extrathymic Aire-expressing populations with unique homology to thymic
epithelium. Sci Immunol. 6, eabl5053 (2021).

J. M. Gardner, J. J. Devoss, R. S. Friedman, D. J. Wong, Y. X. Tan, X. Zhou, K. P.
Johannes, M. A. Su, H. Y. Chang, M. F. Krummel, M. S. Anderson, Deletional
tolerance mediated by extrathymic Aire-expressing cells. Science. 321, 843—-847
(2008).

J. M. Gardner, T. C. Metzger, E. J. McMahon, B. B. Au-Yeung, A. K. Krawisz, W.
Lu, J. D. Price, K. P. Johannes, A. T. Satpathy, K. M. Murphy, K. V. Tarbell, A.
Weiss, M. S. Anderson, Extrathymic Aire-Expressing Cells Are a Distinct Bone
Marrow-Derived Population that Induce Functional Inactivation of CD4+ T Cells.
Immunity. 39, 560-572 (2013).

B. N. Lambrecht, H. Hammad, Biology of lung dendritic cells at the origin of
asthma. Immunity. 31, 412—-424 (2009).

F. A. Vieira Braga, G. Kar, M. Berg, O. A. Carpaij, K. Polanski, L. M. Simon, S.
Brouwer, T. Gomes, L. Hesse, J. Jiang, E. S. Fasouli, M. Efremova, R. Vento-
Tormo, C. Talavera-Lopez, M. R. Jonker, K. Affleck, S. Palit, P. M. Strzelecka, H.
V. Firth, K. T. Mahbubani, A. Cvejic, K. B. Meyer, K. Saeb-Parsy, M. Luinge, C.-
A. Brandsma, W. Timens, [. Angelidis, M. Strunz, G. H. Koppelman, A. J. van
Oosterhout, H. B. Schiller, F. J. Theis, M. van den Berge, M. C. Nawijn, S. A.
Teichmann, A cellular census of human lungs identifies novel cell states in health

20



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

and in asthma. Nat. Med. 25, 1153—-1163 (2019).

W. Sungnak, N. Huang, C. Bécavin, M. Berg, R. Queen, M. Litvinukova, C.
Talavera-Lopez, H. Maatz, D. Reichart, F. Sampaziotis, K. B. Worlock, M.
Yoshida, J. L. Barnes, HCA Lung Biological Network, SARS-CoV-2 entry factors
are highly expressed in nasal epithelial cells together with innate immune genes.
Nat. Med. 26, 681-687 (2020).

M.-L. Golinski, M. Demeules, C. Derambure, G. Riou, M. Maho-Vaillant, O.
Boyer, P. Joly, S. Calbo, CD11c+ B Cells Are Mainly Memory Cells, Precursors of
Antibody Secreting Cells in Healthy Donors. Front. Immunol. 11, 32 (2020).

E. Blanco, M. Pérez-Andrés, S. Arriba-Méndez, T. Contreras-Sanfeliciano, 1.
Criado, O. Pelak, A. Serra-Caetano, A. Romero, N. Puig, A. Remesal, J. T.
Canizales, E. Lopez-Granados, T. Kalina, A. E. Sousa, M. van Zelm, M. van der
Burg, J. J. M. van Dongen, A. Orfao, Age-associated distribution of normal B-cell
and plasma cell subsets in peripheral blood. Journal of Allergy and Clinical
Immunology. 141 (2018), pp. 2208-2219.¢16.

C. Wei, J. Anolik, A. Cappione, B. Zheng, A. Pugh-Bernard, J. Brooks, E.-H. Lee,
E. C. B. Milner, I. Sanz, A new population of cells lacking expression of CD27
represents a notable component of the B cell memory compartment in systemic
lupus erythematosus. J. Immunol. 178, 6624—6633 (2007).

A. Kassambara, T. Réme, M. Jourdan, T. Fest, D. Hose, K. Tarte, B. Klein,
GenomicScape: An Easy-to-Use Web Tool for Gene Expression Data Analysis.
Application to Investigate the Molecular Events in the Differentiation of B Cells
into Plasma Cells. PLOS Computational Biology. 11 (2015), p. e1004077.

M. P. Cancro, Age-Associated B Cells. Annu. Rev. Immunol. 38, 315-340 (2020).

K. Kitaura, H. Yamashita, H. Ayabe, T. Shini, T. Matsutani, R. Suzuki, Different
Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New
Next-Generation Sequencing-Based Antibody Repertoire Analysis. Front.
Immunol. 8, 389 (2017).

W. Meng, B. Zhang, G. W. Schwartz, A. M. Rosenfeld, D. Ren, J. J. C. Thome, D.
J. Carpenter, N. Matsuoka, H. Lerner, A. L. Friedman, T. Granot, D. L. Farber, M.
J. Shlomchik, U. Hershberg, E. T. Luning Prak, An atlas of B-cell clonal
distribution in the human body. Nat. Biotechnol. 35, 879—884 (2017).

J. J. C. Thome, N. Yudanin, Y. Ohmura, M. Kubota, B. Grinshpun, T.
Sathaliyawala, T. Kato, H. Lerner, Y. Shen, D. L. Farber, Spatial map of human T
cell compartmentalization and maintenance over decades of life. Cell. 159, 814—
828 (2014).

M. Buggert, L. A. Vella, S. Nguyen, V. H. Wu, Z. Chen, T. Sekine, A. Perez-Potti,

21



56.

57.

58.

59.

60.

61.

62.

63.

C. R. Maldini, S. Manne, S. Darko, A. Ransier, L. Kuri-Cervantes, A. S. Japp, [. B.
Brody, M. A. Ivarsson, J.-B. Gorin, O. Rivera-Ballesteros, L. Hertwig, J. P. Antel,
M. E. Johnson, A. Okoye, L. Picker, G. Vahedi, E. Sparrelid, S. Llewellyn-Lacey,
E. Gostick, J. K. Sandberg, N. Bjorkstrom, A. Bar-Or, Y. Dori, A. Naji, D. H.
Canaday, T. M. Laufer, A. D. Wells, D. A. Price, 1. Frank, D. C. Douek, E. J.
Wherry, M. G. Itkin, M. R. Betts, The Identity of Human Tissue-Emigrant CD8+ T
Cells. Cell. 183, 1946-1961.e15 (2020).

B. V. Kumar, W. Ma, M. Miron, T. Granot, R. S. Guyer, D. J. Carpenter, T. Senda,
X. Sun, S.-H. Ho, H. Lerner, A. L. Friedman, Y. Shen, D. L. Farber, Human
Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and
Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep. 20, 2921-2934
(2017).

N. J. Schuldt, B. A. Binstadt, Dual TCR T Cells: Identity Crisis or Multitaskers? J.
Immunol. 202, 637-644 (2019).

M. P. Soares, I. Hamza, Macrophages and Iron Metabolism. Immunity. 44, 492—
504 (2016).

T. Ito, Y.-H. Wang, O. Duramad, T. Hori, G. J. Delespesse, N. Watanabe, F. X.-F.
Qin, Z. Yao, W. Cao, Y.-J. Liu, TSLP-activated dendritic cells induce an
inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med.
202, 1213-1223 (2005).

V. Soumelis, P. A. Reche, H. Kanzler, W. Yuan, G. Edward, B. Homey, M. Gilliet,
S. Ho, S. Antonenko, A. Lauerma, K. Smith, D. Gorman, S. Zurawski, J. Abrams,
S. Menon, T. McClanahan, R. de Waal-Malefyt Rd, F. Bazan, R. A. Kastelein, Y.-
J. Liu, Human epithelial cells trigger dendritic cell mediated allergic inflammation
by producing TSLP. Nat. Immunol. 3, 673—-680 (2002).

H. J. Sutton, R. Aye, A. H. Idris, R. Vistein, E. Nduati, O. Kai, J. Mwacharo, X. Li,
X. Gao, T. D. Andrews, M. Koutsakos, T. H. O. Nguyen, M. Nekrasov, P.
Milburn, A. Eltahla, A. A. Berry, N. Kc, S. Chakravarty, B. K. L. Sim, A. K.
Wheatley, S. J. Kent, S. L. Hoffman, K. E. Lyke, P. Bejon, F. Luciani, K.
Kedzierska, R. A. Seder, F. M. Ndungu, I. A. Cockburn, Atypical B cells are part
of an alternative lineage of B cells that participates in responses to vaccination and
infection in humans. Cell Rep. 34, 108684 (2021).

D. Nehar-Belaid, S. Hong, R. Marches, G. Chen, M. Bolisetty, J. Baisch, L.
Walters, M. Punaro, R. J. Rossi, C.-H. Chung, R. P. Huynh, P. Singh, W. F. Flynn,
J.-A. Tabanor-Gayle, N. Kuchipudi, A. Mejias, M. A. Collet, A. L. Lucido, K.
Palucka, P. Robson, S. Lakshminarayanan, O. Ramilo, T. Wright, V. Pascual, J. F.
Banchereau, Mapping systemic lupus erythematosus heterogeneity at the single-
cell level. Nat. Immunol. 21, 1094—1106 (2020).

A. Bonner, A. Almogren, P. B. Furtado, M. A. Kerr, S. J. Perkins, The nonplanar

22



64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

secretory IgA2 and near planar secretory IgA1 solution structures rationalize their
different mucosal immune responses. J. Biol. Chem. 284, 5077-5087 (2009).

M. Kilian, J. Reinholdt, H. Lomholt, K. Poulsen, E. V. Frandsen, Biological
significance of IgA1 proteases in bacterial colonization and pathogenesis: critical
evaluation of experimental evidence. APMIS. 104, 321-338 (1996).

Y. Zhao, C. Kilian, J.-E. Turner, L. Bosurgi, K. Roedl, P. Bartsch, A.-C. Gnirck, F.
Cortesi, C. Schultheif3, M. Hellmig, L. U. B. Enk, F. Hausmann, A. Borchers, M.
N. Wong, H.-J. Paust, F. Siracusa, N. Scheibel, M. Herrmann, E. Rosati, P. Bacher,
D. Kylies, D. Jarczak, M. Liitgehetmann, S. Pfefferle, S. Steurer, J. S. Zur-Wiesch,
V. G. Puelles, J.-P. Sperhake, M. M. Addo, A. W. Lohse, M. Binder, S. Huber, T.
B. Huber, S. Kluge, S. Bonn, U. Panzer, N. Gagliani, C. F. Krebs, Clonal
expansion and activation of tissue-resident memory-like Th17 cells expressing
GM-CSF in the lungs of severe COVID-19 patients. Sci Immunol. 6 (2021),
doi:10.1126/sciimmunol.abf6692.

E. J. Kunkel, J. J. Campbell, G. Haraldsen, J. Pan, J. Boisvert, A. I. Roberts, E. C.
Ebert, M. A. Vierra, S. B. Goodman, M. C. Genovese, A. J. Wardlaw, H. B.
Greenberg, C. M. Parker, E. C. Butcher, D. P. Andrew, W. W. Agace, Lymphocyte
CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK)
expression distinguish the small intestinal immune compartment: Epithelial
expression of tissue-specific chemokines as an organizing principle in regional
immunity. J. Exp. Med. 192, 761-768 (2000).

N. J. Bernstein, N. L. Fong, . Lam, M. A. Roy, D. G. Hendrickson, D. R. Kelley,
Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep
Learning. Cell Syst. 11, 95-101.e5 (2020).

S. L. Wolock, R. Lopez, A. M. Klein, Scrublet: Computational Identification of
Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 8, 281-291.e9 (2019).

F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

K. Polanski, M. D. Young, Z. Miao, K. B. Meyer, S. A. Teichmann, J.-E. Park,
BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics. 36,
964-965 (2020).

R. Lopez, J. Regier, M. B. Cole, M. 1. Jordan, N. Yosef, Deep generative modeling
for single-cell transcriptomics. Nat. Methods. 15, 1053—1058 (2018).

M. Biittner, Z. Miao, F. A. Wolf, S. A. Teichmann, F. J. Theis, A test metric for
assessing single-cell RN A-seq batch correction. Nat. Methods. 16, 43—49 (2019).

G. Sturm, T. Szabo, G. Fotakis, M. Haider, D. Rieder, Z. Trajanoski, F. Finotello,
Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing

23



data. Bioinformatics. 36, 4817—4818 (2020).

74. C. Dominguez Conde, Teichlab/TissuelmmuneCellAtlas: (2022;
https://zenodo.org/record/6334988).

24



Materials and methods

Tissue acquisition, processing and single-cell sequencing

Tissue was obtained from deceased organ donors via the Cambridge Biorepository for
Translational Medicine (CBTM, https://www.cbtm.group.cam.ac.uk/), REC 15/EE/0152.
Detailed sample locations taken can be found in Fig. 1 and protocols are described in detail in
Supplementary Materials. Additional tissue samples were from Columbia University and were
obtained from deceased organ donors at the time of organ acquisition for clinical transplantation

through an approved protocol and material transfer agreement with LiveOnNY.

Six donors were processed with a uniform protocol at Cambridge university where solid tissues
were cut into small pieces, then homogenised with enzymatic digestion for 2x 15 minute
heating/mixing steps at 37°C. The remaining six donors were subjected to a tissue adapted
protocol with the aim of improving immune cell recovery, and this protocol was harmonised as

closely as possible between the two collection sites.

For scRNA-seq experiments, single cells were loaded onto the channels of a Chromium chip
(10x Genomics). cDNA synthesis, amplification, and sequencing libraries were generated using
either the Single Cell 5’ Reagent (vl and v2) (Cambridge University) or 3’ Reagent (v3)
(Columbia University) Kit. TCRaf3, BCR and TCRyd paired VDI libraries were prepared from
samples made with the 5’ Reagent kit. All libraries were sequenced on either a HiSeq 4000 or

NovaSeq 6000 instrument.

scRNA-seq and scVDJ-seq data analysis

scRNA-seq data was aligned and quantified using the cellranger software (version 6.1.1, 10x
Genomics Inc.). Cells from hashtagged samples were demultiplexed using Hashsolo (67). Cells
with fewer than 1,000 UMI counts and 600 detected genes were excluded. Doublets were
detected using Scrublet (68). Downstream analysis from data normalization to graph-based
clustering were performed using Scanpy (version 1.6.0) (69), with details described in
Supplementary Materials. Data integration was done using BBKNN (70) and scVI (71), and the
results were compared using kBET (72).

scTCR-seq and scBCR-seq data were aligned and quantified using the cellranger-vdj software

(version 2.1.1 and 4.0, respectively). For TCRyd we implemented a customized pipeline

(https://sc-dandelion.readthedocs.io/en/latest/notebooks/gamma_delta.html) due to cellranger
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being tuned towards alpha/beta TCR chains. scTCR-seq analysis including productive TCR chain

pairing and clonotype detection was performed using the scirpy package (73).

CellTypist

Details of CellTypist, including cross-data cell type label harmonization and automated cell
annotation, can be found in Supplementary Text. Briefly, immune cells from 20 tissues of 19
studies were collected and harmonised into consistent labels. These cells were split into equal-
sized mini-batches, and these batches were sequentially trained by the 12-regularized logistic
regression using stochastic gradient descent learning. Feature selection was performed to choose
the top 300 genes from each cell type, and the union of these genes were supplied as the input

for a second round of training.

Single molecule FISH, flow cytometry, gPCR and Immunofluorescence

For single molecule FISH, samples were run using the RNAscope 2.5 LS fluorescent multiplex
assay (automated). Slides were imaged on the Perkin Elmer Opera Phenix High-Content
Screening System, in confocal mode with 1 um z-step size, using 20X (NA 0.16, 0.299 um/pixel)
and 40X (NA 1.1, 0.149 um/pixel) water-immersion objectives.

For flow cytometry, mononuclear cells (MNCs) were either stained ex vivo or post activation
with PMA+I for two hours. Cells were stained with the live/dead marker Zombie Aqua for 10
minutes at room temperature, and then washed with PBS+0.5%FCS, with the CDS8 and B cell

panels of antibodies.

qPCR was performed in three spleen samples. Cells were stained with the live/dead marker
Zombie Aqua for 10 minutes at room temperature, and then washed with PBS+0.5%FCS,
followed by staining with the antibodies at 4°C for 45 minutes. Cell sorting was performed on a

BD Fusion 4 laser sorter and RNA was extracted using a Zymo Research RNA micro kit.

For immunofluorescence, samples were fixed in 1% paraformaldehyde for 24 hours followed by
8 hours in 30% sucrose in PBS, and were stained for 2h at RT with the appropriate antibodies,
washed three times in PBS and mounted in Fluoromount-G® (Southern Biotech). Images were

acquired using a TCS SP8 (Leica, Milton Keynes, UK) confocal microscope.
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Figures and figure legends

Fig. 1. Automated annotation of immune cells across human tissues using CellTypist. (A)
Schematic showing sample collections of human lymphoid and non-lymphoid tissues and their
assigned tissue name acronyms. (B) Schematic of single-cell transcriptome profiling and paired
sequencing of a3 TCR, yd TCR and BCR variable regions. (C) Workflow of CellTypist including
data collection, processing, model training and cell type prediction (upper panel). Performance
curves showing the F1 score at each iteration of training with mini-batch stochastic gradient
descent for high- and low-hierarchy CellTypist models, respectively (lower panel). The black
curve represents the median F1 score averaged across the individual F1 scores of all predicted
cell types. (D) UMAP visualization of the immune cell compartment colored by tissues. Note
jejunum samples in (A) were further split into epithelial (JEJEPI) and lamina propria fractions

(JEJLP). (E) As in (D), but colored by predicted cell types using CellTypist.

Fig. 2. Myeloid compartment across tissues. (A) UMAP visualization of the cell populations in
the myeloid compartment. (B) Dot plot for expression of marker genes of the identified myeloid
populations. Color represents maximum-normalized mean expression of cells expressing marker
genes, and size represents the percentage of cells expressing these genes. (C) UMAP
visualization of the tissue distribution in the myeloid compartment. (D) Heatmap showing the
distribution of each myeloid cell population across different tissues. Cell numbers are normalized
within each tissue and later calculated as proportions across tissues. Only tissues containing more
than 50 myeloid cells in at least two donors were included. Asterisks mark significant enrichment
in a given tissue relative to the remaining tissues (poisson regression stratified by donors, p <
0.05 after Benjamini-Hochberg (BH) correction). (E) Violin plot for genes differentially
expressed in migratory dendritic cells across tissues. Color represents maximum-normalized
mean expression of cells expressing marker genes. (F) smFISH visualisation of ITGAX, CCR7
and AIRE transcripts, validating the AIRE+ migratory dendritic cells in lung-draining lymph

nodes.

Fig. 3. B cell compartment across tissues. (A) UMAP visualization of the cell populations in the

B cell compartment. (B) Dot plot for expression of marker genes of the identified B cell
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populations. Color represents maximum-normalized mean expression of cells expressing marker
genes, and size represents the percentage of cells expressing these genes. (C) UMAP
visualization of the tissue distribution in the B cell compartment. (D) Heatmap showing the
distribution of each B cell population across different tissues. Cell numbers are normalised within
each tissue and later calculated as proportions across tissues. Only tissues containing more than
50 B cells in at least two donors were included. Asterisks mark significant enrichment in a given
tissue relative to the remaining tissues (poisson regression stratified by donors, p < 0.05 after
Benjamini-Hochberg (BH) correction). (E) Stacked bar plots showing the isotype distribution
per tissue within memory B cells and the plasma cells. (F) Violin plot of the hypermutation
frequency on the IgH chain across isotypes. Significant difference among IgG4, 1gG2 and 1gG1,
as well as between IgA2 and IgA1 is marked by asterisks (wilcoxon rank sum test, p < 0.05). (G)
Scatterpie plot showing the tissue distribution and B cell subsets of expanded clonotypes (>10

cells). Each vertical line represents one clonotype.

Fig. 4. Tissue compartmentalization and site-specific adaptations of T cells and innate lymphoid
cells (ILCs). (A) UMAP visualization of T cells and ILCs across human tissues colored by cell
types. (B) Dot plot for expression of marker genes of the identified immune populations. Color
represents maximum-normalized mean expression of cells expressing marker genes, and size
represents the percentage of cells expressing these genes. (C) UMAP visualization of T cells and
ILCs colored by tissues. (D) Heatmap showing the distribution of each T cell or ILC population
across different tissues. Cell numbers are normalized within each tissue and later calculated as
proportions across tissues. Only tissues containing more than 50 ILC/T cells in at least two
donors were included. Asterisks mark significant enrichment in a given tissue relative to the
remaining tissues (Poisson regression stratified by donors, p < 0.05 after Benjamini-Hochberg
(BH) correction). (E and F) smFISH visualisation of CD3D, CD8A and CRTAM transcripts,
validating the tissue-resident memory CD8+ T cell population in the liver and lung-draining
lymph nodes. (G) TCR repertoire analysis of T cells across tissues. Stacked bar plot shows the
fraction of cells in a given cluster binned by clonotype size. (H) Heatmap showing the repertoire
overlap between expanded clones (>1 cell) across tissues and donors as determined by jaccard

distance.

Fig. 5. A cross-tissue updatable reference of immune cell types and cell states. (A) Heatmap
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showing the distribution of manually curated cell types across selected tissues. Cell numbers are
normalized within each tissue and later calculated as proportions across tissues. Asterisks mark
significant enrichment in a given tissue relative to the remaining tissues (Poisson regression
stratified by donors, p < 0.05 after Benjamini-Hochberg (BH) correction). (B) Workflow for the
iterative update of CellTypist through the periodic incorporation of curated cell type labels.

Supplementary Materials:
Materials and Methods
Supplemental text
Supplementary Figures S1 to S26
Supplemental tables S1 to S3

References (75 to 93)
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Materials and Methods

Tissue acquisition

All work was completed under ethically approved studies. Tissue was obtained from
deceased organ donors following circulatory death (DCD) or brain death (DBD) via the
Cambridge Biorepository for Translational Medicine (CBTM,
https://www.cbtm.group.cam.ac.uk/), REC 15/EE/0152. Briefly, donors proceeded to

organ donation after cessation of circulation. Organs were then perfused in situ with
cold organ preservation solution and cooled with topical application of ice. Samples for
the study were obtained within 60 minutes of cessation of circulation and placed in
University of Wisconsin (UW) organ preservation solution for transport at 4°C to the
laboratory. Gut samples were taken from the locations indicated in Fig. 1A. Additional
samples were obtained from the left lower lobe of the lung and the right lobe of the
liver. Skeletal muscle was taken from the third intercostal space and bone marrow was
obtained from the vertebral bodies. In addition, two donor-matched blood samples were

taken just prior to treatment withdrawal, under REC approval 97/290.

At Columbia University, human tissues were obtained from deceased organ donors at
the time of organ acquisition for clinical transplantation through an approved protocol
and material transfer agreement with LiveOnNY, the organ procurement organization
(OPO) for the New York metropolitan area, as previously described (54, 75). All donors
were free of cancer and seronegative for hepatitis B, hepatitis C, and HIV. As tissues
were obtained from brain-dead organ donors, this study does not qualify as “human
subjects” research, as confirmed by the Columbia University Institutional Review

Board.

Donor metadata which includes age, sex, cause of death, CMV/EBV/TOXO status and

medication is described in Table S1.



Tissue processing

The first six donors recruited were processed with a uniform protocol. The remaining
donors were processed with a tissue adapted protocol with the aim of improving
immune cell recovery, and this protocol was harmonised as closely as possible between
the Cambridge University and Columbia University collection sites. Immune cell

composition was broadly similar between all protocols used (fig. S12).

Tissue processing for donors A29, A31, A35, A36, A37, A52 (Cambridge University)

Tissues from these donors were processed using a uniform protocol. Briefly, solid
tissues were transferred to a 100mm tissue culture dish, cut into small pieces and
transferred to Gentlemacs C-tubes (Miltenyi Biotec) at a maximum of 5g/tube in SmL
of X-vivol5 media (Lonza LZBEO(O2) containing 0.13U/m Liberase TL (Roche
5401020001), 10U/mL DNase (benzonase nuclease, Merck 70746-4) supplemented
with 2% (v/v) heat-inactivated fetal bovine serum (FBS; Merck F6178), penicillin and
streptomycin (100 U/ml and 0.1 mg/ml, respectively, Sigma-Aldrich P0781), and 10mM
HEPES (Sigma Aldrich HO887). The samples were then dissociated using a
GentleMACS Octo dissociator (Miltenyi Biotec) using a protocol that provided gradual
ramping up of homogenisation speed along with 2x 15 minute heating/mixing steps at
37°C. Digested tissue was filtered through a 70-um MACS Smartstrainer (Miltenyi
Biotec 130-098-462) and washed with media containing 2mM EDTA (ThermoFisher
15575020) , prior to washing with PBS (Merck D8537). A ficoll density centrifugation
step (400g for 30min at RT) was performed to isolate mononuclear cells (MNCs). After
gradient centrifugation, cells were washed once with PBS prior to counting and

resuspending PBS containing 0.04% (v/v) BSA (Gibco 15260037).

Bone marrow aspirates and blood samples were diluted 1:1 with PBS and layered
directly onto ficoll for mononuclear cell isolation as described above. Cells taken from
the interphase layer were washed with PBS and exposed to the same enzymatic
conditions as solid tissues by resuspending cell pellets in tissue dissociation media
containing liberase TL for 30 minutes at 37°C prior to counting and resuspending in

PBS containing 0.04% (v/v) BSA.



Tissue processing for donors 582C, 621B, 637C and 640C (Cambridge University)

Lymphoid tissues like spleen and lymph nodes were mashed through a 70 uM filter
placed on top of a 50ml falcon, using the plunger from a 2 ml syringe as a pestle. The
filter was occasionally washed with x-vivo + 1% FBS + 10U/ml Benzonase (Merck).
Depending on the size of the tissue, the filtered cell suspension was topped up to

30-50ml with x-vivo + 1% FBS + 10U/ml Benzonase, and placed on ice as required.

Non-lymphoid tissue like lung, liver and kidney were first chopped up with scissors into
0.2-0.5cm pieces, then transferred into Gentlemacs C-tubes and 2.5ml of collagenase
(Merck C7926) and 2.5 ml x-vivo media added, then homogenised using a protocol that
provided gradual ramping up of homogenisation speed along with 2x 15 minute
heating/mixing steps at 37°C. Post-gentlemacs homogenisation 20 pl of 0.5 mM EDTA
(2mM final conc) per 5 ml of collagenase was added to neutralise, and the digested
tissue transferred into a 70uM cell strainer placed on top of a 50 ml falcon. Using the
plunger of a 2 ml syringe the tissue was mashed through the filter, with occasional
washing of the filter with x-vivo + 1% FBS + 10U/ml Benzonase. Depending on the
size of the tissue, the filtered cell suspension was topped up to 30-50ml with x-vivo +

1% FBS+ 10U/ml Benzonase, and placed on ice as required.

The protocol used to process jejunum was adapted from (/7) with the aim of separating
the lamina propria (LP) and intraepithelial layers (IEL), abbreviated to JEJLP and
JEJEPI in the dataset. The jejunum was washed with PBS + 0.04% BSA to remove any
chime, chopped up with scissors into 0.5 cm pieces then transferred into a 50 ml falcon
tube and 10 ml of x-vivo + 2 mM DTT (0.1M solution, ThermoFisher 707265ML) + 5
mM EDTA (0.5M solution, Invitrogen) + 1% FBS added, then placed in the 37°C
incubator for 20 minutes. The tube was shaken after 10 minutes. The jejunum chemical
digest was then put through a 70uM filter placed on top of a 50 ml falcon and rinsed
with 10 ml of x-vivo + 1% FBS + 10U/ml Benzonase. The wash through from the filter
contains the IEL cells, and was kept on ice. Excess tissue from the filter was scraped
back into a 50 ml falcon and the digest and filtering steps repeated. Remaining tissue

from the filter was next scraped into a Gentlemacs C tube and digested with 2.5 ml of



collagenase IV (Merck) and 2.5ml of x-vivo and run on the same Gentlemacs
programme used for the non-lymphoid tissues. 20 ul of 0.5 mM EDTA (Invitrogen) to
give a 2mM final concentration per 5 ml of collagenase was then added to neutralise
and the digested tissue placed into a 70uM cell strainer placed on top of a 50 ml falcon.
Using the plunger of a 2 ml syringe the tissue was mashed through the filter which was
occasionally washed with x-vivo + 1% FBS + 10U/ml Benzonase. The cells that pass
through the filter are LP cells. Depending on the size of the tissue, the filtered cell
suspension was topped up to 30-50ml with x-vivo + 1% FBS + 10U/ml Benzonase

(Merck), and placed on ice as required.

Once a single cell suspension was obtained from all tissues, they were centrifuged at
600g x 10 minutes and resuspended in x-vivo + 1% FBS ready for layering over ficoll.
Blood and bone marrow was diluted 1:1 in x-vivo + 1% FBS and layered over ficoll
with no additional processing steps. The mononuclear cell isolation using ficoll was
performed as described above. This protocol is available on protocols.io

(dx.doi.org/10.17504/protocols.io.bz4qp8vw).

Hashtag labeling of cells for donors 582C, 621B, 637C and 640C (Cambridge
University)

Cells were hashtagged to allow pooling of samples for loading on the 10X Chromium
instrument and the hashtags used are listed in Table S2. Approximately 500k MNC per
tissue was transferred into a 1.5ml lo-bind eppendorf. Cells were spun at 600g for 5
minutes and as much supernatant as possible was removed and the cells resuspended in
50ul PBS+0.04% BSA. 5ul of FC block (BioLegend 422301) was added to reduce
background labelling and incubated at 4°C for 10 minutes. Each hashtag was spun at
14,000g for 10 minutes, and then added 0.5ul of hashtag to each tube. Incubate at 4°C
for 30 minutes then top up to 500ul with PBS + 0.04% BSA, and spin at 600g x 5 mins,
and remove supernatant. Wash cells twice more with 500ul with PBS + 0.04% BSA,
then resuspend cells in 100ul with PBS + 0.04% BSA. Count cells and pool equal
numbers of cells from each tissue and proceed to loading of the 10X Chromium

Controller.



Tissue processing for donors D496 and D503 (Columbia University)

Each tissue was subjected to a tissue specific protocol to maximize cell recovery and

viability across a diversity of sites:

Blood samples and bone marrow aspirates shared a protocol in which they were diluted
1:4 and layered directly onto Ficoll-paque for a density centrifugation step (1200 x g for

20min at 20°C) and subsequent mononuclear cell isolation.

Spleen samples were mechanically digested with scissors, and mashed and washed
through a 100uM filter with a solution of PBS containing 5% (v/v) FBS and 2mM
EDTA. The single cell suspension was spun down (400 x g for 10 minutes at 20°C),
washed with PBS containing 5% (v/v) FBS and 2mM EDTA, and layered onto
Ficoll-paque for a density centrifugation step (1200 x g for 20min at 20°C) and

subsequent mononuclear cell isolation.

Lung and all lymph node samples shared a protocol where they were mechanically
digested with scissors and enzymatically digested on a shaker for 30 minutes at 37°C in
IMDM Media (Gibco 12440053) containing 1mg/mL Collagenase D (Millipore Sigma
11088882001) and 0.lmg/mL DNase (Worthington LS002139). After digestion, the
tissue was mashed and washed through a 100uM filter with a solution of PBS
containing 5% (v/v) FBS and 2mM EDTA. The single cell suspension was spun down
(400 x g for 10 minutes at 20°C), washed and resuspended with IMDM Media with
10% (v/v) FBS, and layered onto Ficoll-paque for a density centrifugation step (1200 x

g for 20min at 20°C) and subsequent mononuclear cell isolation.

Jejunum tissue was processed to separate the Epithelial Layer (EL) from the Lamina
Propria (LP) abbreviated to JEJEPI and JEJLP in the dataset respectively. The process
begins by washing the tissue of intestinal contents or chyme with cold PBS containing
5% (v/v) FBS. The EL was stripped by twice incubating the tissue at 37°C on a shaker
for 30 minutes with IMDM Media containing 2 mM DTT, 10 mM EDTA, and 10%
(v/v) FBS. After each strip, the media was removed from the tissue, filtered, and
washed through a 100uM filter with a solution of PBS containing 5% (v/v) FBS and
2mM EDTA to collect the EL fraction, which is stored on ice until the LP fraction has



been collected. In order to collect the cells of the LP, after the second stripping step, the
tissue was mechanically digested with scissors and enzymatically digested on a shaker
for 30 minutes at 37°C in IMDM Media (Gibco 12440053) containing 1mg/mL
Collagenase D (Millipore Sigma 11088882001) and 0.lmg/mL DNase (Worthington
LS002139). After digestion, the tissue was mashed and washed through a 100uM filter
with a solution of PBS containing 5% (v/v) FBS and 2mM EDTA. At this step, the
single cell suspensions of both the EL and LP fractions were spun down (400 x g for 10
minutes at 20°C), washed and resuspended in IMDM Media with 0.25U/ml Benzonase
(Millipore Sigma E1014-5KU). The samples were incubated for 30 minutes at 37°C,
washed and resuspended with IMDM Media with 10% (v/v) FBS, and layered onto
Ficoll-paque for a density centrifugation step (1200 x g for 20min at 20°C) and

subsequent mononuclear cell isolation.

Once isolated, all single cell suspensions were centrifuged (400 x g, 10 minutes at 4°C)
and washed twice with PBS containing 5% (v/v) FBS and 2mM EDTA. Cell counts
were acquired using the NC-2000 Cell Counter (Chemometec) and 50 million viable
cells from each site were treated with Trustain FcX (BioLegend 422302) and FcR
Blocking Reagent (Miltenyi 130-059-901). Cells were subsequently labeled for 30
minutes at 4°C with biotinylated anti-CD66B (BioLegend 305120), anti-CD235ab
(BioLegend 306618), anti-CD326 (BioLegend 324216) to remove granulocytes, red
blood cells, and epithelial cells respectively via streptavidin-coated magnetic particles
and negative selection (Bangs Laboratories BP628). Finally, all single cell suspensions

were subjected to dead cell removal using a Dead Cell Removal Kit (Milteny1).

Hashtag labeling of cells for donors D496 and D503 (Columbia University)

Each single cell suspension was hashtagged to allow pooling of samples for loading on
the 10X Chromium instrument and the hashtags used are listed in Table S2.
Approximately one million MNC per tissue were transferred into 4mL flow cytometry
tubes. Cells were centrifuged at 400 x g for 5 minutes, 4°C, supernatant removed, and
resuspended in PBS containing 5% (v/v) FBS and 2mM EDTA. Cells were treated with
Trustain FcX (BioLegend 422302) and FcR Blocking Reagent (Miltenyi 130-059-901)



to reduce background labelling and incubated at 4°C for 10 minutes. Each hashtag was
spun at 14,000 x g for 10 minutes, and 1uL of hashtag was added to each tube. The
samples were incubated at 4°C for 30 minutes, and subsequently centrifuged at 400 x g
for 5 minutes, 4°C and washed three times with PBS containing 5% (v/v) FBS and
2mM EDTA. 200K from each sample was added to a single 4mL flow cytometry tube.
This tube was centrifuged at 400 x g for 5 minutes, 4°C and resuspended in PBS
containing 5% (v/v) FBS and 2mM EDTA.

Single-cell RNA library preparation and sequencing

For scRNA-seq experiments, single cells were loaded onto the channels of a Chromium
chip (10x Genomics) for a target recovery of 5,000 cells. Immune cells from donors
A29, A31, A35, A36, A37, A52 were loaded into a single 10x channel per tissue per
donor. For the remaining donors, as the cells were hashtag labelled, each donor’s cells
were pooled and loaded into a maximum of sixteen 10x channels. Single-cell cDNA
synthesis, amplification, and sequencing libraries were generated using either the 10X
Genomics Single Cell 5" Reagent (vl 1000006 and 1000020 and v2 1000263 and
1000190) (Cambridge University) or 3’ Reagent (v3.1 1000121) (Columbia University)
Kit from 10x Genomics following the manufacturer’s instructions. The gene expression
libraries were sequenced on an Illumina NovaSeq 6000 platform at a target depth of
50,000 reads per cell. For samples prepared with the Single Cell 5" Reagent Kit, VDJ
libraries for TCRaf and BCR were prepared with the V(D)J enrichment Kit from 10x
Genomics (vl 1000005 and 1000016 and v2 1000252 and 1000253) following the
manufacturer’s instructions. VDJ libraries for TCRyd were prepared using previously
published primers (76) compatible with the Single Cell 5’ Reagent (v1) Kit from 10x
Genomics. VDI libraries for B and T cells were sequenced on either a HiSeq 4000 or
pooled with gene expression libraries on the NovaSeq 6000 platform at a target depth of
5,000 reads per cell. Hashtag libraries were pooled and sequenced on either an Illumina
NextSeq 500, Illumina HiSeq 4000 or pooled with gene expression libraries on the
NovaSeq 6000 platform.



Single-cell RNA-seq data pre-processing

scRNA-seq data was aligned and quantified using the cellranger software (version 6.1.1,
10x Genomics Inc.) using the GRCh38 human reference genome (official Cell Ranger
reference, version 1.2.0). For hashtagged and multiplexed samples (applies to donors
582C, 621B, 637C, 640C, D496 and DS503) hashtag-based cell demultiplexing was
performed using Hashsolo (67). Cells with fewer than 1,000 UMI counts and 600
detected genes were excluded from downstream analysis. scTCR-seq data was aligned
and quantified using the cellranger-vdj software (version 2.1.1, 10x Genomics Inc).
scBCR-seq data was aligned and quantified using the cellranger-vdj software (version
4.0, 10x Genomics Inc). For TCRyd we implemented a customized pipeline due to the
cellranger vdj annotation algorithm being tuned towards alpha/beta TCR chains. Briefly,
TCRyd libraries were mapped with cell ranger 4.0.0, using the 10x VDJ 4.0.0 reference.
All contigs deemed high quality were selected, and reannotated with IgBlast via the

workflow provided in dandelion 0.1.3 (https://github.com/zktuong/dandelion). We have

made  available an  example notebook  showcasing this  workflow

(https://sc-dandelion.readthedocs.io/en/latest/notebooks/gamma_delta.html).

Doublet detection

Doublet detection was performed on a per sample basis using the Scrublet algorithm

(https://github.com/AllonKleinLab/scrublet (68)) with percolation as previously

described (77). Briefly, scrublet scores were obtained per cell and the percolation step
was performed on over-clustered data using the scanpy.tl.louvain function from the
scanpy package. Each cluster was subsequently separately clustered again, yielding an
over-clustered manifold, and each of the resulting clusters had its Scrublet scores
replaced by the median of the observed values. The resulting scores were assessed for
statistical significance, with P values computed using a right-tailed test from a normal
distribution centred on the score median and a median absolute deviation
(MAD)-derived standard deviation estimate. The P-values were corrected for false

discovery rate with the Benjamini-Hochberg procedure, and a significance threshold of



0.1 was imposed. Cells with a Benjamini-Hochberg-corrected P-value less than 0.1 were

excluded from downstream analysis.

Clustering, batch alignment and annotation

Downstream analysis included data normalisation (scanpy.pp.normalize per cell
method, scaling factor 10,000), log-transformation (scanpy.pp.loglp), variable gene
detection (sc.pp.highly variable genes), data feature scaling (scanpy.pp.scale), PCA
analysis (scanpy.pp.pca, from variable genes), and Leiden graph-based clustering
(scanpy.tl.leiden, clustering resolution manually adjusted) performed using the python
package scanpy (version 1.6.0). Data integration across donors was done using

batch-balanced KNN (https:/github.com/Teichlab/bbknn) (70). Prior to donor

integration, batch correction for chemistry-associated effects was performed using ridge
regression as implemented in the BBKNN package. Cell identities were first predicted
using CellTypist, and then underwent manual curation including: 1) examination of
expression of known marker genes and marker genes derived from CellTypist models;
2) cross-validation and cross-prediction with CellTypist training datasets and two
independent datasets from the human gut and lung (27, 28). Differential expression
across clusters was assessed using the sc.tl.rank gene groups function from scanpy
using the wilcoxon rank sum method. To achieve a high-resolution annotation, we
sub-clustered ILC/T, B and myeloid cells and repeated the procedure of highly variable

gene selection, which allowed for fine-grained cell type annotations.

Comparisons of BBKNN integration with scVI

To examine the influence of alternative data integration methods on our dataset, scVI
was used to integrate the dataset with information of different donors as a covariate.
Specifically, we extracted the same set of highly variable genes as used in BBKNN, and
set up the input data with a raw count matrix. For the scVI model, the number of latent
representations was set as 20, and the dropout rate was set as 0.2. We obtained the

ultimate latent variables after 500 epochs of training (max epochs=500 and

10



early stopping=True) which were input to the Scanpy pipeline for neighborhood graph

construction (sc.pp.neighbors) and generation of UMAP coordinates (sc.tl.umap).

To assess the batch-mixing effect after BBKNN (fig. S24A) and scVI integration (fig.
S24B), we conducted the k-nearest neighbour batch effect test (kBET) (72) to assess the
degree of batch mixing for each cluster (fig. S24C) and cell type (fig. S24D). Clusters
were derived from respective neighborhood graph output by BBKNN or scVI using a
resolution of 1, and cell types were based on CellTypist predictions. For each method,
the resulting KNN graph was used as the input for kBET to reflect the
post-batch-correction distance between cells, and kBET observed rejection rates were
calculated using the function kBET from kBET. This analysis revealed that high kKBET
acceptance rates can be obtained after data integration using both methods, and that

BBKNN slightly outperformed scVI in our case.

scTCR-seq downstream analysis

VDJ  sequence information was  extracted from the output file
“filtered contig_annotations.csv”’ using the scirpy package (73). We determined
productive TCR chain pairing features using the scirpy.tl.chain_pairing function and
selected cells with a single pair of productive ap TCR chains for downstream analysis.
Clonotypes were determined using the scirpy.pp.tcr _neighbors function using the CDR3

nucleotide sequence identity from both TCR chains as a metric.

scBCR-seq downstream analysis

VDJ  sequence information was  extracted from the output file
“filtered_contig_annotations.csv”. Further single-cell VDI analysis for B cells was
performed broadly as described previously (17, 78), with all sequences from a given
patient grouped together for analysis. AssignGenes.py (79) and IgBLAST (80) were
used to reannotate IgH sequences prior to correction of ambiguous V gene assignments
using TIgGER (v1.0.0) (87). Clonally-related IgH sequences were identified using

DefineClones.py with a nearest neighbour distance threshold of 0.15 before running
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CreateGermlines.py (ChangeO) (82) to infer germline sequences for each clonal family
and calculate somatic hypermutation frequencies with observedMutations (Shazam)
(82). IgH diversity analyses were performed using the rarefyDiversity and testDiversity
of Alakazam (v1.0.2; (82)). scVDIJ sequences were then integrated with single-cell gene
expression objects by determining the number of high quality annotated IgH, IgK or IgL
per unique cell barcode. If more than one contig per chain was identified, metadata for
that cell was ascribed as “Multi”. To assess clonal relationships between scRNA-seq
clusters, co-occurrence of expanded clone members between cell types and tissues was
reported as a binary event for each clone that contained a member within two different

cell types or tissues in single-cell repertoires.

Single molecule FISH

Samples were either snap frozen in chilled isopentane (-70°C) or fixed in 10% NBEF,
dehydrated through an ethanol series, and embedded in paraffin wax. Samples were run
using the RNAscope 2.5 LS fluorescent multiplex assay (automated). Briefly, FFPE
tissue sections (5 um) and fresh frozen tissue sections (10um) were cut. Fresh frozen
tissues were pre-treated offline (4% PFA fixation 4°C 15 mins followed by 90mins at
room temperature, sequential dehydration steps (50%, 70%, 100%, 100% ethanol, air
dry)) and protease III was used. FFPE tissues required no pretreatment offline, but a
Heat Induced Epitope Retrieval (HIER) step was performed by the instrument for
15mins using Epitope Retrieval 2 (ER2) at 95°C. These tissues also had protease I1I
treatment. RNAscope probes used were from adcbio and included Hs-CD3D-C2
(599398-C2), Hs-CD8A-C3 (560398-C3), Hs-CRTAM (430248), Hs-AIRE (551248),
Hs-ITGAX-C2 (419158-C2) and Hs-CCR7-C3 (410721-C3). Opal fluorophores (Opal
520, Opal 570 and Opal 650) were used at 1:300 dilution. Slides were imaged on the
Perkin Elmer Opera Phenix High-Content Screening System, in confocal mode with 1
um z-step size, using 20X (NA 0.16, 0.299 pum/pixel) and 40X (NA 1.1, 0.149

um/pixel) water-immersion objectives.
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Flow cytometry

Spleen, bone marrow and thoracic lymph nodes from additional donors different to the
scRNA-seq study were used to validate the discovered cell populations. The MNCs
were either stained ex vivo or post activation with PMA+I (eBioscience, Cell
Stimulation Cocktail) for two hours. Cells were washed with PBS and then stained with
the live/dead marker Zombie Aqua for 10 minutes at room temperature, and then
washed with PBS+0.5%FCS. The MNCs were stained in PBS+0.5% FCS at 4°C for 45

minutes with the following panels of antibodies:

CDS8 panel: CD3-BUV395 (SK7, BioLegend), CD56-BUV737 (NCAMI16.2, BD
Horizon), CCR9-BV421 (L053ES8, BioLegend), CD4-BV605 (OKT4, BioLegend),
TCRgd-Fitc (B1.1, Invitrogen), CX3CRI1-PE (2A9-1, BioLegend), CRTAM-PECy7
(CR24.1, Invitrogen), CD16-APC (3GS8, BiolLegend), CD8-APCCy7 (RPA-TS,
BioLegend).

B cell panel: IgD-BUV395 (IA6-2, BD Horizon), CCR7-BV421 (G043H7, BioLegend),
CD3-BV605 (SK7, BioLegend), CD11c-BV785 (3.9, BioLegend), CD27-PE (0323,
eBioscience), CD19-APC (HIB19, BioLegend), Tbet-PECy7 (eBi0o4810, eBioscience,
Tbet staining was done after the surface staining using the eBioscience Foxp3

transcription factor staining buffer kit).

Cells were fixed with PBS+0.25%PFA and stored at 4°C until they were run on the
Fortessa flow cytometry instrument, located in the Cambridge NIHR BRC Cell
Phenotyping Hub. Spleen MNCs were used for single stain controls to calculate
compensation and FMOs were used to calculate background fluorescence. FlowJo was

used to analyse the flow cytometry data.

gPCR

qPCR was performed to validate the existence ITGAD-expressing yd T cells in the

spleen using three additional samples that were different to those used in the scRNA-seq
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study. Spleen MNCs were stained with the live/dead marker Zombie Aqua for 10
minutes at room temperature, and then washed with PBS+0.5%FCS. Cells were then
stained with the following antibodies at 4°C for 45 minutes: CD56-BV421 (HCD56,
BioLegend), CD4-BV605 (OKT4, BioLegend), TCRgd-Fitc (Bl.1, Invitrogen),
TCRab-PerCPCy5.5 (IP26, BioLegend), CD52-PE (MHCD5204, Life Technologies),
CDI127-PECy7 (eBioRDRS5, eBioscience), CDS-APC (RPA-T8, BioLegend),
CD3-APCfire (UCHTI1, BioLegend). Cells were washed with PBS+0.5% FCS and
passed through a Celltrics (Partec) 30 um filter prior to cell sorting. Cell sorting was
performed on a BD Fusion 4 laser sorter and an example of the gating strategy used is

shown in (fig. S22C).

Sorted cells were pelleted at 600g for 5 minutes and lysed in RNA lysis buffer and
frozen until RNA could be extracted. RNA was extracted using a Zymo Research RNA
micro kit with on column DNAse digestion. The standard protocol was followed and
RNA eluted in 11 pl of water. This RNA was then used to make cDNA using both oligo
dT and random hexamer primers with the reverse transcriptase Superscriptlll. Probes to
B2M (housekeeping gene) and two assays to ITGAD were purchased from
ThermoFisher, and qPCR reactions were performed in duplicate with the following
recipe: 8 pl master mix, 0.7 pul probe, 4.3 ul water and 3 pul cDNA. A ThermoFIsher
QuantStudio7 instrument was used for the qPCR, and the Ct values were determined

with the DCt being calculated as the Ct of ITGAD - Ct of B2M.

Immunofluorescence

Spleen and thoracic lymph node samples from unrelated donors were fixed in 1%
paraformaldehyde (Electron Microscopy Services, 50-980-487) for 24 hours followed
by 8 hours in 30% sucrose in PBS. 30um sections were permeabilized and blocked in
0.1M TRIS, containing 0.1% Triton (Sigma, T8787-50ML), 1% normal mouse serum
(Invitrogen, 10410), 1% normal rat serum (Invitrogen, 10710C) and 1% BSA (R&D
Systems, DY995). Samples were stained for 2h at RT in a wet chamber with the

appropriate antibodies, washed 3 times in PBS and mounted in Fluoromount-G®
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(Southern Biotech, 0100-01). Images were acquired using a TCS SP8 (Leica, Milton
Keynes, UK) confocal microscope. Raw imaging data were processed using Imaris

(Bitplane).

Antibodies used: CD3-AF488, clone UCHTI1, 1/100 dilution (BioLegend, 300415);
CDIc-PE, clone L161, 1/50 dilution (BioLegend, 331505); CCR7-PE, clone 3D12, 1/50
dilution (eBioscience, 12-1979-42); CDI19-AF594, clone HIB19, 1/100 dilution
(BioLegend, 302250); CDI11c-APC, clone MJ4-27G12, 1/100 dilution (Miltenyi,
130-114-102); HLA-DR-AF647, clone TAL 1BS5, 1/100 dilution (Abcam, ab223907).
Nuclei were stained with Hoechst 33258, 1/10,000 dilution (Biotum, 40044).
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Supplementary Text

CellTypist: an interpretable pan-tissue database and automated tool for cell type
annotation

Rationale

With the growing size of single-cell RNA-sequencing (scRNA-seq) datasets and
their wide applications in tissue and disease biology (83, 84), fast and accurate cell type
annotation becomes of crucial value in order to accelerate the interpretation of newly
generated scRNA-seq datasets. A variety of approaches have been put forward to
perform the matching of cell identities between datasets (85). However, there are few
tools that can harbor all features critical to the classification of a cell type, including
attributing a classification to cells that are not represented in the training dataset,
distinguishing highly homogeneous cell populations, easily integrating the existing

analysis workflow, and being scalable to large datasets.

Furthermore, in order to transfer cell type labels to a query dataset, most of the
existing tools use particular published datasets with cell annotations from individual
publications and transfer the cell labels from these reference data sets. The
comprehensiveness and quality of the reference training dataset, as a result, is not
guaranteed. Many cell compartments are shared across tissues, such as immune cells.
For these types of cell states, it is more useful to build a reference database with
cross-dataset and cross-tissue cell types including both organ-specific ones (e.g.,
tissue-resident macrophages like liver Kupffer cells, placenta Hofbauer cells and
kidney-resident macrophages) and shared ones (e.g., monocytes). Several efforts have
focused on building scRNA-seq references for cell type classification, such as a recent
approach which integrated query datasets with the reference atlas using conditional

neural network models (86).

In this study, we focused on immune cells and their large variety of subtypes.
Immune cells are ubiquitous and mobile across tissues, with specific adaptations to
corresponding local environments. This leads to a high degree of cell type

heterogeneity, which is further augmented by other factors such as developmental
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lineage dynamics. Despite this heterogeneity, immune cells can still be grouped into cell
types characterized by expression of definitive markers, functional roles, and parent
lineages. Therefore, both cross-tissue integration and domain-specific knowledge are
necessary in order to assemble a high-quality and well-curated pan-tissue immune
reference followed by transferring cell types from this reference to query datasets,
providing organ-agnostic automated annotation of immune cell types within a single

search.

Here we introduce CellTypist, a cell type database and server focused on
immune cells in its first incarnation as well as a directly interpretable pipeline for
automatic annotation of scRNA-seq data. CellTypist currently includes a wide
assortment of immune cell types collected from 20 tissues across 19 studies, with these
deeply curated cell types publicly available to the community. The prediction of
CellTypist is based on logistic regression classifiers optimized by the stochastic gradient
descent (SGD) algorithm. Extensive model tuning and optimization is performed to
ensure its applicability, with the derived models easily updatable for further releases by
incorporating new cell annotations, as well as by including non-annotated cells which in
future iterations may be described as specific cell types. Notably, our current CellTypist
release involves both low- and high-resolution models which classify cells with coarse
and fine granularities, respectively. CellTypist can be readily installed and used from
https://github.com/Teichlab/celltypist and the cell type resource is available at
https://www.celltypist.org.

Dataset compilation and integration

We sought to assemble a cross-tissue immune reference as a training set to
facilitate downstream cell type label transfer in an organ-agnostic manner. SCRNA-seq
data were collected from 19 publications covering 20 different tissues (fig. S2A). A raw
count matrix was obtained for each dataset and subsequently combined across datasets

based on their common genes.

In order to focus the model’s training data on bona fide immune cells, the
combined expression matrix was filtered to include only cells expressing PTPRC, a

general marker for immune cells, as well as not expressing EPCAM and PDGFRA,
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markers for epithelial cells and fibroblasts, respectively. In addition, for the datasets
which were already annotated in the original publications, only cells identified as
immune cell types were included. Exceptions to these rules were “Epithelial cells”,
“Endothelial cells” and “Fibroblasts” which were retained in the reference dataset to
serve as umbrella categories representing fall-backs for non-immune cell types. For
each of these datasets, meta-information was also collected, including the tissues of

origin, sequencing protocols, and original cell type annotations where possible.

To get an overview of this assembled immune atlas, we integrated the 19
datasets by correcting the confounders derived from batches across datasets and
sequencing protocols using scVI (fig. S2, B and C) (7/). Specifically, we set up the
input data with a raw count matrix and covariate keys of “Dataset” and “Protocol”. For
the scVI model, the number of latent representations was set as 20 (n_latent=20), and
the dropout rate was set as 0.2 (dropout rate=0.2). We obtained the ultimate latent
variables after 500 epochs of training (max_epochs=500 and batch_size=1024) which
were input to the Scanpy pipeline for neighborhood graph construction
(sc.pp.neighbors(use rep="X scVIl’)) and generation of UMAP coordinates
(sc.tl.umap). Our integrated atlas can be browsed at

https://www.celltypist.org/training-data-cellxgene/.

Cell type label harmonization

In order to train CellTypist models using uniform cell type labels, cell identities
across datasets were summarized into consistent names using a cell type label

harmonization pipeline (fig. S3).

For the vast majority of cells we collected, they were previously annotated by
the original studies. These cells were categorized into different cell types and subtypes
with knowledge inputs from experts (see the Acknowledgements section for
contributions from the CellTypist Annotation Team). These cell type labels encompass
two levels of hierarchies: a high-hierarchy (low-resolution) level which includes a total
of 32 broad cell types; and a low-hierarchy (high-resolution) level which comprises 91
detailed cell types and subtypes through subdivision of broad cell types. These two

levels are arranged hierarchically, such that the low-hierarchy annotations are able to
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consistently match corresponding high-level classes. This two-level knowledge-based
system was adopted for several reasons. First and foremost, the numbers of data points
for each tissue and cell compartment are limited in a tractable range, given that the
entire initial training dataset of CellTypist is less than one million cells, and our
cross-tissue immune resource is also less than half a million cells. This limited size of
data means that the knowledge about the immune cells still trumps data-driven
approaches. In future, as data sets expand and are added, we expect that building a cell
type hierarchy by the inputs from both domain knowledge and large-scale scRNA-seq
data can result in a refined and full cell type structure. However, at present, it is not
sufficient to assign certain types in the hierarchy, such as the different subtypes of T
cells whose transcriptomes are too similar to be organized in a hierarchy with >2 levels.
Second, with CellTypist we seek to provide an immune cell atlas that includes an
accurate and community-wide accepted “cell type encyclopedia”. Restricting to fewer
but high-quality and high-confidence hierarchies serves this purpose. Third, with
limited knowledge, some newly discovered cell types are purely based on the
transcriptomic data. Inserting such cell types into a hierarchy with many levels based on
their gene expression patterns alone is a risk with respect to the strength of biological

evidence supporting their origins.

To derive homogenized high-quality annotations, we refined the annotations of
all CellTypist training datasets through the label harmonization pipeline, including cell
type categorization, data integration, clustering, and external data validation, which
together were organized into four control modules: removal, correction, subdivision and

mining (fig. S3).

First, we removed cells that were mis-annotated by the original publications.
Specifically, we integrated the same cell type from different datasets by scVI with batch
covariates of different studies and sequencing protocols as in the section “Dataset
compilation and integration”, and after that, removed cells that did not belong to the
given category. Using mast cells as an example, when we combined 10 sources of mast
cells (fig. S4A, upper), the clusters 9 and 11 were transcriptomically separated from

other cells (fig. S4A, bottom). To confirm this phenomenon with external validations,
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we built two CellTypist models (see the section “Model training” for building
CellTypist models) from the gut (27) and lung immune cell populations (28), and then
transferred cell type labels from the two models to our training data sets. The prediction
results consistently showed that cluster 9 is a plasma cell population and cluster 11 is a
monocyte/macrophage population (fig. S4B). Moreover, their cell identities were
supported by the canonical plasma cell marker MZBI and monocyte/macrophage
marker CD74 (fig. S4C). With all the above evidence, we removed clusters 9 and 11
from the mast cell population. This removal process was performed for several other

cell types as well, such as the innate lymphoid cell (ILC) precursors (fig. S4, D to F).

Second, we corrected cell type labels for some cells that were mis-classified in
original studies. Before this, integration of cells from the same cell type, unsupervised
clustering, and generation of two independent models for external validations, were
performed as above. Next, cell types that were misclassified mostly due to their
transcriptomic similarity with other close cell types were corrected (i.e., relabeled).
Using regulatory T cells as an example, in CellTypist we combined nine sources of
regulatory T cells (fig. SSA, upper), and clustered them into 14 clusters (fig. S5A,
bottom). Among these clusters, clusters 0, 1, 2, 5, 7 and 10, which mainly originated
from two studies, were consistently predicted as naive/central memory CD4+ T cells by
the two independent CellTypist models (fig. SSB). Expression of definitive regulatory T
cell markers (CTLA4 and FOXP3) also supported the exclusion of these cells as
regulatory T cells (fig. SSC). Thus we relabeled these regulatory T cells as naive/central
memory CD4+ T cells in the CellTypist training datasets. This correction process was

performed for several other cell types as well, such as the ILCs (fig. S5, D to F).

Third, we subdivided some broad cell types into clear and
community-recognized cell subtypes. Similarly, before this, cells from a given cell type
were integrated and clustered, and two CellTypist models for external validations were
built. Next, high-confidence cell subtypes with consistent predictions from the two
CellTypist models and with evidence of well-established marker gene expression were
subdivided from a broad cell type. Using the monocytes as an example, after we

combined 12 sources of monocytes and clustered them into 15 clusters (fig. S6A), we
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resolved two clear monocyte subpopulations: non-classical monocytes and classical
monocytes (fig. S6B). Expression of non-classical monocyte marker FCGR3A
(encoding CD16) and classical monocyte marker CD/4 (encoding CD14) were also in
line with this subdivision scheme for monocytes (fig. S6C). In CellTypist we therefore
subdivided these monocytes into non-classical and classical ones. This subdivision
process was also applied to other cell types such as natural killer (NK) cells which

comprised CD16+ and CD16- NK cells (fig. S6, D to F).

Fourth, we identified cell populations that were hidden within other cell types
and neglected by original publications. Specifically, after cells from a given cell type
were integrated, clustered and predicted using the same strategy as before, we located
the hidden cell types and expanded their cell numbers and tissue distributions. For
example, within the cytotoxic T cell populations which were combined from 14 sources
and clustered into 16 clusters (fig. S7A), we found a MAIT cell population. This cell
type, though transcriptomically similar with cytotoxic T cells, was confidently predicted
out of the cytotoxic T cells using the CellTypist model trained from Madissoon et al.,
2021 (28) (fig. S7TB). Expression of MAIT cell markers SLC4410 and TRAVI-2 was
also prominent in these cells, further supporting their cell identity as MAIT cells (fig.
S7C). By adding back these cells, we expanded the number of MAIT cells from 1,132
to 2,367, and thus improved its representation (i.e., cell type size) in the CellTypist
training datasets and extended its tissue distribution to additional organs like the spleen.
Other examples included rare germinal center B cells in the adult immune system for
which we expanded the number from 391 to 516 by mining them out from the memory

B cells (fig. S7, D to F).

Through all of these, we deeply homogenized the cell type annotations of the
CellTypist training datasets and used them as the input for CellTypist training and for

obtaining annotations for non-annotated cells (see below).

Propagating annotations to non-annotated cells

After label standardization, a small subset of cells included in CellTypist still
had no designated cell type labels. These cells were also subject to the same expression

filtering as in the section “Dataset compilation and integration”. Given that the
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non-annotated cells may contain similar cell types as those in the annotated cells, we
next sought to minimize the label duplication and facilitate the incorporation of both
known and yet-to-be-annotated cell identities into the CellTypist models (fig. S3).
Specifically, the non-annotated cells from each combination of tissue and dataset were
clustered independently using a canonical Scanpy pipeline. The resulting clusters were
then compared with their predicted cell type labels which were inferred from the
CellTypist models trained from the annotated cells (for details of model training, see the
section of “Model training”). For a given cluster where at least 75% of its cells matched
a specific low-hierarchy annotation label, the whole cluster was annotated as such, and
meanwhile was assigned a corresponding high-hierarchy cell type label. For the
remaining clusters where this condition was not met, we assigned them cell type labels
at the high-hierarchy level where possible, through the same procedure as the
low-hierarchy labels. This resulted in a final set of harmonized labels between
non-annotated and annotated cells for a total of 738,647 cells, including 91 detailed cell
subtypes corresponding to 32 broad cell types across different datasets and tissues (fig.

S8).

Model training

Different classifiers for cell type predictions have been described (85, 87). Of
note, high performance can be achieved even when the classifiers are constructed using
canonical machine learning methods, notably the logistic regression models (88, 89).
We based the models of CellTypist on a logistic regression framework with several

adaptations.

First, randomly sampled mini-batches, instead of the whole training dataset,
were used during the training procedure. This approach not only bypassed the possible
memory excess when modelling our large dataset, but also ensured the fast convergence
not readily available for datasets with hundreds of thousands of cells. Each mini-batch
comprised 1,000 cells sampled from the whole dataset, and in a single epoch 100
mutually exclusive mini-batches were sequentially trained. This step was repeated 30
epochs, enabling the CellTypist models to see cell numbers with six orders of

magnitude. In practice, the number of epochs needed will be fewer, with the
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performance plateau reached within 10 epochs (1,000 iterations) (Fig. 1C), highlighting
the usefulness of the mini-batch training approach in CellTypist. In CellTypist, we have
also implemented a functionality to balance cell types within mini-batches. Specifically,
during the mini-batch sampling, cells from a given cell type are sampled with a
probability inversely proportional to the number of cells belonging to this cell type. This
ensures that a rare cell type is sampled into the mini-batches with a higher probability,
and close numbers of cell types will ultimately stay in the mini-batches (subject to the
maximum number of cells that can be provided by a given cell type). We also tested
how this option will influence our models and the downstream prediction, and found
that with the cell types balanced in mini-batches, the model prediction result for our
resource was similar (fig. S25B) to that based on randomly sampled mini-batches (fig.
S25A), indicating a high prediction accuracy that is already achieved by the model with
random mini-batch sampling. Some inconsistencies, mainly from the “Cytotoxic T
cells” and “Tem/Naive helper T cells”, were also observed (fig. S25C), possibly
resulting from the undersampling of these populations which had high intra-cell type

heterogeneity due to the oversampling of other rare cell types.

Second, SGD algorithm was used in combination with the mini-batch training to
derive the solutions of the model cost/loss function. This was implemented using the
scikit-learn package in Python (90) by the “partial fit’ method from the class
“SGDClassifier”. SGD also allows for online training, meaning that if new data are fed,

it can be easily incorporated into the model.

Third, L2 regularization was imposed on the logistic models to make the
predictions more applicable to external query datasets. This also allows each gene in the
model to have a weight of greater than 0 such that more genes can be utilized when
predicting query data with varying numbers of input features. The regularization term
(alpha) was chosen by training the models with alpha set to 0.01, 0.001, 0.0001,
0.00001 or 0.000001, and the alpha yielding the best performance on an independently
left-out data (10% of the total dataset) was chosen as the optimal hyper-parameter.
Ultimately, the alpha was set to 0.0001 for the low-hierarchy model and 0.001 for the
high-hierarchy model.
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Last, feature selection was conducted before the final models were trained.
Specifically, we performed an initial training based on the entire gene set, and selected
the top 300 genes from each class (cell type) by ranking the genes according to their
absolute weights associated with the given class. After combining the genes from all the
cell types, a total of 3,278 genes were obtained and later supplied as the input to a
second round of training. This step effectively reduces the complexity of the sample
space and emphasizes the major contributions of highly informative genes to the

classification of cell identities.

Processing of training and query datasets

As the input for CellTypist model training, the datasets were normalized to
10,000 counts per cell and log-transformed (with a pseudocount of 1). While this step
cannot fully resolve the sequencing depth-related batches, genes detected in the cells
after this step will have more comparable expression scales across different datasets.
Meanwhile, for the gene expression matrix in the query data, CellTypist will detect the
expression matrix and transform it into the same format as the CellTypist training
datasets (or report an error and require the user to input the same format) to again
ensure gene expression comparability between the training and query datasets. Later, to
enable the fast convergence using the optimal SGD learning rate, as well as to ensure a
comparable scale of weights across genes when L2 regularization was applied,
expression of each gene was standardized to a mean of zero and unit variance. In the
meantime, the mean and standard variation of each gene during this step are recorded in
the CellTypist models and will be applied to the shared genes in the query dataset.
Through this, we are able to further minimize the differences in expression scales and

sparseness across datasets.

To strengthen the applicability of CellTypist to datasets with different
sequencing protocols, an automatic feature selection step (see the section “Model
training’) was performed to reduce the gene numbers in the CellTypist models. This is
particularly important considering that even though different sequencing protocols have
different gene expression sparseness, marker or driving genes of cell types are stable

within the gene expression matrix across protocols. With such a feature selection step,
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we restrict the cell type-determining signals to fewer but more informative genes and

bypass the expression noises between training and query datasets.

Practically, in addition to utilizing the CellTypist models to predict our
cross-tissue immune cell dataset in this study representing intermediate gene expression
sparseness (10X, on average 1,932 expressed genes per cell), we examined the
performance of CellTypist models on two other datasets: 1) 2,494 immune cells
processed by SmartSeq2 from Travaglini et al., 2020 (9/) representing rich gene
expression (on average 2,555 expressed genes per cell). CellTypist prediction of this
dataset revealed cell populations that corresponded well with the cell type labels
provided by the original study (fig. S10A). Moreover, using CellTypist we added
previously unappreciated information to the cell types identified. For example, while the
original study roughly annotated a B cell cluster, with CellTypist we were able to
identify it as a naive B cell population. This was also the case for the natural killer cells
from the original study for which CellTypist predicted as the CD16+ natural killer
subtype. 2) 103,766 blood and immune cells processed using sci-RNA-seq3 from Cao et
al., 2020 (92) representing sparse gene expression (on average 414 expressed genes per
cell). CellTypist successfully assigned cell type labels to these cells that matched well
with the original labels provided by the publication (fig. S10B). Additional information
was also revealed, such as the original “Erythroblasts” cell population which was
predicted by CellTypist into “Mid erythroid” and “Late erythroid”, and the “B cells”

population which was predicted into “Pro-B cells”, “Plasma cells” and “Naive B cells”.

Notably, though we performed batch-correction and data integration of the
training datasets (see the section “Dataset compilation and integration”), we didn’t use
the resulting batch-corrected expression matrix as the input for CellTypist model
training, but instead relied on the normalized and scaled gene expression matrix for

several reasons.

First, with the data processing steps of normalization and scaling, the gene
expression scales across different batches have largely been made comparable. Though
some batches are still seen, genes with different expression levels can be equally

penalized when a L2 regularization term is applied to the logistic regression classifiers.
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Moreover, after proper normalization and scaling, the SGD learning can converge
towards the optimum of the loss function more quickly and accurately, which cannot be
achieved by a batch-corrected matrix. Therefore, through our optimized logistic
regression framework, the generalization of cross-batch predictions is significantly
improved. A minor advantage is that running the normalization and scaling is much
faster in training new models than using batch-correction methods which usually take a

long time to get a fully batch-corrected result.

Second, the normalization and scaling for the training datasets can be easily
reproduced in the query datasets. CellTypist recorded the mean and standard deviation
of each gene during training, and applied these parameters to the shared genes in the
query datasets. This is almost not possible with batch-correction methods where a
batch-correction procedure in the training datasets is hard to reproduce in the query
datasets. That is, batch-correction methods cannot ensure that the degrees of noise
removal in training and query datasets from two independent runs are comparable
(concatenating the training and query datasets together for a holistic batch-correction
can alleviate this problem but will result in the information leak from the query datasets

to the training datasets during model training, thereby skewing the cell type prediction).

Third, for the CellTypist training datasets, we have collected cell types from
different sources with a variety of batches. This creates a scenario where cells from a
given cell type already contain inter-batch variations. CellTypist prediction, under this
context, is the procedure of judging whether cross-cell-type differences are significantly
larger than within-cell-type variations. Moreover, each predicted cell will have a
confidence score ranging from 0 to 1 to quantify the significance of cell type prediction
(see the section “Cell type prediction” below). Therefore even when the query datasets
are from a different batch as compared to the training datasets, the prediction result will

possibly persist albeit with a decreased confidence score.

Fourth, for most batch-correction methods, a large proportion of genes are
usually discarded during the correction process, namely, only highly variable genes
(hvgs) are used for batch correction and data integration. While in CellTypist, we train

the models using all expressed genes and still maintain high prediction accuracy. After
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that, there is also an option in CellTypist to perform an automatic feature selection step
based on the first round of CellTypist run by selecting the cell type-driving genes across
all cell types. Using normalized and scaled gene expression matrix, instead of

hvgs-based batch-corrected gene expression matrix, can fit in with this pipeline.

Nevertheless, to assess how batch effects can impact the performance of
CellTypist models in practice, we extracted the batch-corrected expression matrix using
scVI, and repeated the training pipeline in CellTypist with all other parameters being
constant. This led to a new model trained from this batch-corrected expression matrix,
which was subsequently used to predict cell types from our cross-tissue immune
resource (fig. S11). The results showed that the predictions from the new model were
quite similar with those based on normalized and scaled gene expression matrices (fig.
S11, A and B). However, for a number of cell types, the new model yielded coarse or
incorrect predictions. For instance, the “Type 1 helper T cells”, “Tcm/Naive helper T
cells”, “CD8a/b(entry)”, “Helper T cells”, “Follicular helper T cells”, “Regulatory T
cells”, and “Tem/Effector helper T cells” are now grossly predicted as “Tcm/Naive
helper T cells” by the new model (fig. S11C), and the “ILC”, “Cytotoxic T cells”,
“Migratory DCs”, “Non-classical monocytes” and “Early MK” are incorrectly predicted
as “Epithelial cells” (fig. S11C). We therefore reason that a normalized and scaled
expression matrix is more suited to our CellTypist pipeline and is able to produce more

accurate and fine-grained cell type predictions.

11t rediction

Before the prediction, the input query data was normalized to 10,000 counts per
cell and log-transformed (with a pseudocount of 1). Only genes shared between the
CellTypist model and the input data were used in the downstream prediction. For each
gene, as noted in “Processing of training and query datasets”, we standardized it by
subtracting the mean and scaling the standard deviation using the corresponding mean

and standard deviation recorded in the training step for that gene.

For each cell type involved in the model, the decision scores of the query cells
are defined as the linear combination of the scaled gene expression and the model

coefficients associated with the given cell type (“decision function” from the class

27



“SGDClassifier” in sklearn), and the probabilities are calculated by transforming the
decision scores with a sigmoid function (“scipy.special.expit’ in scipy). The two metrics
are recorded in CellTypist outputs. Next, the cell type with the maximal decision score
(or probability) is selected as the predicted identity for the query cell. Of note, we
trained the models with an one-vs-rest (OVR) strategy, resulting in multiple
independent binary classifiers with their decision scores and probabilities being
comparable among cell types. Different from the multinomial logistic regression
framework where the probabilities of all cell types for a given query cell are constrained
to a sum of 1 during training and directly output by the tools, in CellTypist these
probabilities are calculated from the decision scores and later kept as is, enabling the

examination of novel and ambiguous cell types in the query data.

Specifically, depending on what the users want to achieve, CellTypist has two
modes during the prediction step (mode= ‘best match’ or mode= ‘prob match’), with the
former assigning the most likely cell type to a given query cell for the purpose of
distinguishing between homogeneous cell types, and the latter assigning 0 (i.e., a novel
cell type only in the query dataset), 1 (i.e., unique assignment), or >=2 (i.e., multi-label
assignments) to a given query cell using a probability threshold (default to 0.5 in

CellTypist, which is well applied in the logistic regression framework in practice).

Over-clustering and majority voting

The prediction step is performed to infer the identities of input cells, which
renders the prediction of each cell independent. To combine the cell type predictions
with the cell-cell transcriptomic relationships, CellTypist offers a majority voting
approach based on the idea that transcriptionally similar cells in the query dataset are
more likely to form a (sub)cluster regardless of their individual prediction outcomes. In
this study, the query data was first over-clustered using the Leiden algorithm on the
basis of an existing neighborhood graph in the input object (“scanpy.tl.leiden” in
Scanpy) with the resolution set to 25. If no neighborhood graph exists for the input data,
a neighborhood graph will be constructed before the over-clustering
(“scanpy.pp.neighbors” in Scanpy). Each resulting subcluster was then assigned the

identity supported by the dominant cell type predicted for this subcluster. Through this
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step, distinguishable small subclusters will be assigned distinct cell type labels, and
homogenous subclusters will be assigned the same labels and iteratively converge to a

bigger cluster.

However, after the majority-voting step, there may still exist heterogeneous
clusters due to the bias in technical confounders and algorithmic inability to further
resolve a subcluster. To bypass this, CellTypist has a proportion threshold defined as the
proportion of the dominant cell type required to name a given subcluster by this cell
type. Specifically, if the proportion of the dominant cell type fails to pass this cutoff (for
example, <70%, which means that the remaining cell populations occupy >30% of the
total number of cells in a given subcluster), the whole subcluster will be assigned
“Heterogeneous” by CellTypist. Moreover, CellTypist outputs two results: the predicted
labels for individual cells, and the labels after majority voting local subclusters.
Through this, if a subcluster is assigned “Heterogeneous”, the users are able to check
the composition of this subcluster and determine the confidence of this majority-voted
cell type.

We then applied this proportion threshold to our cross-tissue immune resource,
and located two “Heterogeneous” clusters which were previously annotated as
“HSC/MPP" and “Early MK”, respectively (fig. S26A). The first cluster is mainly
composed of progenitor cells, including 51.6% of “HSC/MPP”, 18.2% of “CMP”,
11.3% of “GMP”, 9.3% of “ELP”, 3.2% of “Granulocytes”, 2.3% of “Megakaryocyte
precursor”, 1.7% of “Neutrophil-myeloid progenitor”, 1.4% of “Double-negative
thymocytes”, and 1% of “Early MK” (fig. S26B). The second cluster is a
megakaryocyte population including 54.2% of “Early MK” and 45.8% of
“Megakaryocytes/platelets” (fig. S26C). Therefore through this approach, we are able to
identify heterogeneous subclusters in our resource. However, these cases of
heterogeneous clusters are rare and a vast majority of clusters after over-clustering and
majority voting by CellTypist are dominated by one cell type (fig. S26A), indicating the

usefulness of the majority-voting approach.
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Benchmarking with other label-transferring methods

We focused on the comparisons among five methods: CellTypist, traditional
logistic regression (Ir) classifier, support vector machine (svm) classifier, Azimuth (93),
and scNym (94). To this end, 10,000 cells were randomly sampled from our compiled
dataset as an independent test dataset. We further generated three training datasets with
the sizes being 5,000, 50,000, and 250,000 cells respectively, through sampling the cells
from the remaining dataset. This allows us to examine the effect of sizes of training
datasets on the prediction accuracy, representing small, medium and big training

datasets, respectively.

To make the comparisons unbiased across different methods, both the training
and test data were properly preprocessed beforehand (the time used for preprocessing is
not included in the benchmarking of running time): i) For CellTypist, Ir and svm, the
training data was normalized and scaled as in “Processing of training and query
datasets”. The test data was normalized in the same way while scaled using the
recorded mean and standard deviation as in the section “Cell type prediction”; ii) For
scNym, the training and test datasets were both normalized to 1,000,000 counts per cell
as suggested by the scNym guidelines and then log-transformed (with a pseudocount of
1); iii) For Azimuth, the training and test datasets were both normalized to 10,000
counts per cell and log-transformed (with a pseudocount of 1). For all the five methods,
we used the same set of highly variable genes extracted from the reference object

(“scanpy.pp.highly variable genes” in Scanpy).

We split the whole label-transferring procedure into the “training” and
“prediction” steps. Moreover, we define a “user time” as the time needed for a user to
get their prediction results after supplying the query data to the programs. This is critical
as the user time is more related with the user experience in practice. fig. S14A lists the
detailed split for the five methods. Specifically, in CellTypist, Ir and svm, the training
steps are only dependent on the training data, while in scNym and Azimuth, the training
steps rely on both the training and test data (“scnym_api(task='"train')” in scNym, and

“FindTransferAnchors” in Seurat, respectively). Therefore, from the perspective of a
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user, the user time in CellTypist, Ir and svm equals to the prediction time while to the

sum of training and prediction time in scNym and Azimuth.

For each method, we recorded both the training and prediction time, as well as
the predicted cell types for the test data. The performance was then assessed for each
cell type separately using three metrics: precision (“sklearn.metrics.precision_score”™),

recall (“sklearn.metrics.recall_score), and F1 score (“sklearn.metrics.fl _score”™).

The results show that when the training data size is small (5,000 cells),
CellTypist has a comparable performance as compared to the traditional logistic
regression, Azimuth and scNym, all of which outperform svm using our datasets (fig.
S13). When the training data size is medium (50,000 cells) or large (250,000 cells),
CellTypist has a similar performance with the traditional logistic regression and scNym,
which is slightly better than Azimuth and much better than svm. Importantly, our
mini-batch training approach with SGD learning dramatically decreases the time needed
for the model training and thus represents a more scalable method for large-scale
scRNA-seq datasets (fig. S14B). In terms of the user time, as with canonical machine
learning methods, CellTypist predicts the query data much more efficiently and quickly
than Azimuth and scNym (see the user time marked by asterisks in the fig. S14B),
largely due to the independence between the data training and prediction steps in

CellTypist.

CellTypist performance on the cross-tissue immune reference

We next examined the performance of CellTypist on our assembled immune cell
atlas. For an independently left-out dataset (10%), the CellTypist models trained from
the remaining dataset (90%) demonstrated the precision of 0.97 and 0.91 at the high-
and low-hierarchy levels, respectively (fig. S9A). The recall scores were relatively
lower, but still reached 0.88 and 0.84 at the two levels, respectively (fig. S9B). Further
summarizing the two metrics into the F1 score, the CellTypist models overall exhibited
the F1 scores of 0.95 and 0.89 at the two levels (Fig. 1C). Examination of the F1 score
for each cell type annotated in the models revealed that part of the models’ prediction
errors came from a low number of cells associated with certain labels (fig. S9C),

indicating a future need of collecting more rare cell types.
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Fig. S1. Overview of the immune cell compartment of the dataset. (A) UMAP
visualization of the immune cell compartment showing the donor distribution. (B) Bar
plot showing the number of cells in each tissue (upper), as well as the stacked bar plot
showing the percentages of donors per tissue (bottom). (C) As with (A), but colored by
high-hierarchy cell types predicted using CellTypist. (D) Dot plot displaying the
expression of CellTypist-derived marker genes for the predicted immune populations.
Color gradient represents maximum-normalized mean expression of cells expressing the
marker genes, and size represents the percentage of cells expressing these genes. The
bottom stacked bar plot shows the number and percentage of donors across the

predicted cell types.
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Fig. S2. Summary of the assembled immune atlas across tissues and datasets. (A)
Heat map showing the number of cells in each combination of dataset (row) and tissue
(column), as well as the total cell number in each dataset (horizontal bar plot) and each
tissue (vertical bar plot). Cell numbers are denoted in units of thousands. (B and C)
UMAP representations of the integrated immune cell atlas with information of tissues
(B) and datasets (C) overlaid. Integration is performed using scVI with covariates of

datasets and sequencing protocols.

33



Trai
models

J CellTypist Models
| Annotated datal "|(high and low levels)
Input data [ Sources of cell annotation

(gene expression), \ Predict
\ [ Tentative cell annotation
“label T Y Non-annotated —»’Clustering per tissue‘ S .
t curation } data - [ | No cell annotation
P
T e R % cells predicted
7 [Input cells | % 7o
/ : — \ with same low-level |5/ Annotated data
: : o = ! annotation?
, Cells with original Cells with no !
: cell type labels annotations ! \
' l | : °
; i |>75% cells predicted
; expert-approved Non-annotated : ; iah Yes [ Annotated data
¢ |cell type categorisation data with :{é}:{r\r:ﬁa?i»g:?level nnotatec da
i Vit l - cRemoval E No
! scVI integration for orrection, '
| each cell type -S—-vv-»——*u&?r?{:%on Annotated data ; S
s S annotation

Fig. S3. Schematic of the CellTypist pipeline to harmonize cell type labels across
training datasets. Among the input cells, annotated cells (i.e., cells with names and
labels from original publications) are categorized into expert-approved cell types and
cells belonging to a given cell type are further integrated and curated through four
modules: removal, correction, subdivision and mining (see Supplementary Text). For
unannotated cells, they are clustered and assigned the labels by training CellTypist
models on annotated cells and later propagating cell type labels from the models to the

unannotated cells.
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Fig. S4. Two examples of cell type label harmonization through removing cells that
are incorrectly annotated by original publications. (A) UMAP visualizations of all
mast cells in CellTypist training datasets with information of cell sources (datasets
followed by original cell type labels, upper) and unsupervised clustering (Leiden
clustering based on the neighbourhood graph constructed using scVI-derived latent
space, bottom). (B) UMAP visualizations of the transferred cell type labels from
Elmentaite et al., 2021 (27) (upper) and Madissoon et al., 2021(28) (bottom) by training
the CellTypist models on the two datasets, respectively. Clusters 9 and 11 are
consistently predicted as plasma cells and monocytes/macrophages, and thus can be
removed from the mast cell category. (C) Expression of plasma cell marker MZB1
(upper) and mononuclear phagocyte marker CD74 (bottom) overlaid onto the UMAP
representations, supporting the identities of clusters 9 and 11 as plasma cells and

monocytes/macrophages, respectively. (D to F) As with (A), (B), and (C), but for innate
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lymphoid cell (ILC) precursors. Only cells that are annotated as ILC precursors from

Popescu et al., 2019 (/) are kept after the removal process.
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Fig. S5. Two examples of cell type label harmonization through correcting labels of
cells that are misclassified by original publications. (A) UMAP visualizations of all
regulatory T cells in CellTypist training datasets with information of cell sources
(datasets followed by original cell type labels, upper) and unsupervised clustering
(Leiden clustering based on the neighbourhood graph constructed using scVI-derived
latent space, bottom). (B) UMAP visualizations of the transferred cell type labels from
Elmentaite et al., 2021 (27) (upper) and Madissoon et al., 2021 (28) (bottom) by
training the CellTypist models on the two datasets, respectively. Clusters 0, 1, 2, 5, 7
and 10 are consistently predicted into naive central memory CD4 T cells instead of
regulatory T cells, and thus can be renamed and relabelled. (C) Expression of regulatory
T cell markers CTLA4 (upper) and FOXP3 (bottom) overlaid onto the UMAP

representations, supporting the exclusion of clusters 0, 1, 2, 5, 7 and 10 from the
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regulatory T cell category. (D to F) As with (A), (B), and (C), but for innate lymphoid

cells (ILCs). Cells from cluster 0 are relabelled as NK cells after the correction process.
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Fig. S6. Two examples of cell type label harmonization through subdividing cell
types into well-recognized subtypes. (A) UMAP visualizations of all monocytes in
CellTypist training datasets with information of cell sources (datasets followed by
original cell type labels, upper) and unsupervised clustering (Leiden clustering based on
the neighbourhood graph constructed using scVI-derived latent space, bottom). (B)
UMAP visualizations of the transferred cell type labels from Elmentaite et al., 2021 (27)
(upper) and Madissoon et al., 2021 (28) (bottom) by training the CellTypist models on
the two datasets, respectively. Clusters 1 and 8 are predicted into non-classical (CD16+)
monocytes, and most of the remaining cells are predicted into classical (CD14+)
monocytes. (C) Expression of non-classical monocyte marker FCGR3A4 (upper) and
classical monocyte marker CD/4 (bottom) overlaid onto the UMAP representations,

supporting the subdivision of monocytes into the two subtypes. (D to F) As with (A),
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(B), and (C), but for natural killer (NK) cells. A subtype division is found between
CD16+ and CD16- (CD56+) NK cells.
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Fig. S7. Two examples of cell type label harmonization through identifying hidden
populations among given cell types. (A) UMAP visualizations of all cytotoxic T cells
in CellTypist training datasets with information of cell sources (datasets followed by
original cell type labels, upper) and unsupervised clustering (Leiden clustering based on
the neighbourhood graph constructed using scVI-derived latent space, bottom). (B)
UMAP visualizations of the transferred cell type labels from Madissoon et al., 2021
(28) by training the CellTypist model on this dataset. A group of 1,235 cells are
projected as mucosal-associated invariant T (MAIT) cells out of 1,969 cells with the
original cell type label ‘T _CD8 MAIT’. (C) Expression of MAIT cell markers
SLC4A10 (upper) and TRAVI-2 (bottom) overlaid onto the UMAP representations,
supporting the identity of these cells as MAIT cells. (D to F) As with (A), (B), and (C),

but for identifying germinal center B cells from memory B cells. Cells from cluster 16
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are relabelled as germinal center B cells. Note that due to the lack of germinal center B

cells in Madissoon et al., 2021, cells of cluster 16 are predicted as naive B cells instead.
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Fig. S8. Summary of cross-dataset and cross-tissue harmonized cell types. Binary
heat maps showing the distributions of harmonized cell types across tissues (left) and

datasets (right). Black grids denote the presence of cell types.
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Fig. S9. Building a human immune reference to predict immune cell identities. (A
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iteration of training using mini-batch stochastic gradient descent for high- and
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low-hierarchy CellTypist models, respectively. The black curves represent the median
scores averaged across the individual scores of all predicted cell types (grey curves).
(C) Fl-score for each tested high-hierarchy (left) or low-hierarchy (right) cell type as a
function of its representation in the compiled human immune datasets (corresponding to

10% of the total cells).
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bar plots demonstrating the cell type compositions across donors in each tissue/organ.

Only tissues with cell numbers of greater than 50 in at least two donors are shown.
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Fig. S13. Benchmarking of CellTypist accuracy with other methods. Box plots

showing the prediction precision (left), recall (center) and F1 score (right) for the

training dataset with 5,000 (lower), 50,000 (middle), and 250,000 (upper) cells,
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respectively. Five methods are assessed and the median value of these metrics across

individual cell types is shown for each method.
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Fig. S14. Benchmarking of CellTypist time complexity with other methods. (A)

Table summarizing the split of different label transfer methods into the training and

prediction steps. The “user” row shows the step/steps a user needs to get their prediction

results after inputting the query data. (B) Bar plots showing the training time in minutes

(left), prediction time in seconds (center) and total time in minutes (right) for the

training dataset with 5,000 (lower), 50,000 (middle), and 250,000 (upper) cells,

respectively. Five methods are assessed and the time is shown for each combination of

training data and methods. Asterisks mark the user time for different methods.
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Fig. S15. CellTypist prediction of the myeloid compartment and cell type

cross-validation with external datasets. (A) UMAP visualization of the myeloid

compartment colored by predicted cell types from CellTypist. (B) As in (A), but colored

by manually annotated cell types after curation of the CellTypist prediction result

(right). Sankey plot on the left shows the correspondence between the two sets of cell

type labels. MNP/T doublets are not shown in the Sankey plot to avoid strong noise

signals from this cluster for the sake of visual inspection. (C) Dot plot displaying the

expression of CellTypist-derived marker genes for the predicted myeloid populations.
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Color gradient represents maximum-normalized mean expression of cells expressing the
marker genes, and size represents the percentage of cells expressing these genes. (D)
Dot plot showing the cell type cross-validation by transferring cell type labels from our
resource (row) to cells from the CellTypist training datasets (column). For each column
(each cell type from the CellTypist training sets), size of a dot denotes the proportion of
cells assigned to a given cell type of the resource and color denotes the average
probabilities calculated from CellTypist. (E and F) As with (D), but for cross-validation
with the gut myeloid populations from Elmentaite et al. 2021 (27) and with the lung
myeloid populations from Madissoon et al. 2021 (28).

53



C
cD74
4 %i 3.0
o 25
3 ( 2.0
= 4 :RiII' 15
’_“! 1.0
i'/ 0.5
HLo.0
cCL17
: 3.0
B ' 25
% 2.0
1.5
1.0
0.5
Lo.0

CCL22

CSF2RA

3.0

25

2.0

1.5

1.0

0.5

=0.0

25

2.0

1.5

1.0

0.5

0.0

@ Dendritic cells

CRLF2

GPR157

2.0

15

1.0

0.5

=0.0

25

2.0

15

1.0

0.5

0.0

Fig. S16. Migratory dendritic cells in the lymph nodes and lung. (A)

Immunofluorescence validation of the CCR7+ migratory DCs in the thoracic lymph

nodes. (B) UMAP showing the distribution of lung dendritic cells in the scRNA-seq

dataset from Vieira et al.,

2019 (45). (C) UMAP plots of cells from Vieira et al.,

2019(45) as in (B), overlaid by expression of genes highly expressed by the migratory

DCs we identified in our data.
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Fig. S17. CellTypist prediction of the B cell compartment and cell type
cross-validation with external datasets. (A) UMAP visualization of the B cell
compartment colored by predicted cell types from CellTypist. (B) As in (A), but colored
by manually annotated cell types after curation of the CellTypist prediction result
(right). Sankey plot on the left shows the correspondence between the two sets of cell
type labels. (C) Dot plot displaying the expression of CellTypist-derived marker genes
for the predicted B cell populations. Color gradient represents maximum-normalized
mean expression of cells expressing the marker genes, and size represents the

percentage of cells expressing these genes. (D) Dot plot showing the cell type
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cross-validation by transferring cell type labels from our resource (row) to cells from
the CellTypist training datasets (column). For each column (each cell type from the
CellTypist training sets), size of a dot denotes the proportion of cells assigned to a given
cell type of the resource and color denotes the average probabilities calculated from
CellTypist. (E and F) As with (D), but for cross-validation with the gut B cell
populations from Elmentaite et al. 2021 (27) and with the lung B cell populations from
Madissoon et al. 2021 (28).
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Fig. S18. Validation of the ITGAX+ memory B cells. (A) Flow cytometry analysis of
memory B cells expressing CD11c¢ (encoded by /7GAX) and T-bet (encoded by TBX21).
(B) Immunofluorescence of spleen tissue showing colocalization of CD11c with CD19

(marking age-associated B cells).
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Fig. S19. Assessment of isotype features and somatic hypermutation levels in the B
cell compartment. (A to C) Stacked bar plot showing the isotype distribution across B
cell subsets (A), within the plasmablasts across tissues (B), and within the
age-associated memory B cells (ABCs) across tissues (C). (D) Violin plot showing
hypermutation frequency across B cell subsets. (E) Stacked bar plot of the isotype

distribution across 21 expanded clonotypes.
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A Predicted cell type labels B = CLL“C | [Kox] Cell type labels after manual
from the CellTypist mode