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Chapter 1

Introduction

page 1 Inelastic neutron scattering experiments can provide much information about
the thermal motions in solids and liquids. Neutrons which have been thermalised
by the moderator of a nuclear reactor have energies similar to those associated
with these thermal motions. It so happens that they also have wavelengths
similar to the interatomic spacing in solids and liquids. Quite large and easily
measured changes in energies and wave vectors are apparent when neutrons are
scattered from solids or liquids, and these may be related to properties of the
thermal motions.

The theory of the thermal motions in a crystalline solid is well-known, and
was first published as long ago as 1912 (Born, von Kármán, 1912). The motion
is described in terms of plane waves or normal modes of vibration. At first, the
only experimental information came from specific heat measurements, and the
success of the very much simpler Debye theory did not encourage development of
the Born–von Kármán crystal dynamics. However,page 2 discrepancies were apparent
and some more detailed calculations were made (e.g. Kellermann 1940).

Since the introduction of nuclear reactors, large fluxes of thermal neutrons
have been available for inelastic neutron scattering experiments. The scattering
from a single crystal enables us to deduce the phonon dispersion relation, that
is the frequency of the normal modes as a function of their wave vectors. These
experiments provide a far more direct test of theories of crystal dynamics than
do specific heat measurements.

The possibility of experimental measurements of the dispersion relation has
stimulated theoretical work on crystal dynamics. The theory of ionic crystals is
particularly well advanced. The Shell Model has been developed by Cochran and
others to give excellent agreement with the experimental dispersion relations for
the alkali halides (Cowley, Cochran, Brockhouse and Woods 1963).

This dissertation describes experiments to investigate the inelastic scatter-
ing of neutrons from a magnesium oxide single crystal. The phonon dispersion

page 3 relation is deduced, and is discussed in terms of the Shell Model . The Shell

Model is shown to provide a good description of the crystal dynamics of magne-
sium oxide. A less extensive experiment of the same type to deduce the phonon
dispersion relation for a lead single crystal is also described.

1



Chapter 2

An Introduction to Lattice Dynamics and

the Inelastic Scattering of Neutrons from

Single Crystals

2.1 Introduction

page 4The Born–von Kármán theory of crystal dynamics for crystals with more
than one atom per unit cell is summarised to introduce the notation used in
this thesis. The notation is similar to that of Born and Huang (1954), but
cartesian components are indicated by superscripts, all other indices being writ-
ten as subscripts. The principal features of the phonon dispersion relation are
discussed, including the effects of crystal symmetry. The value of experimental
measurements of this dispersion relation, and the advantages of thermal neu-
tron scattering over other methods are emphasised. Two particular methods
for neutron spectroscopy are mentioned, and the relevant cross section formulae
given.

2.2 The Normal Modes of Vibration of a Crystal Lattice

The dynamics of crystals have been discussed at length by Born and Huang
(1954). The basis of the Born page 5von Kármán theory of crystal dynamics is the
use of a potential function for the crystal which is a function of the nuclear co-
ordinates only, and is quadratic in these coordinates. To derive such a potential
function, we must make two approximations. The adiabatic approximation is to
assume that the electrons accommodate themselves rapidly to the changing nu-
clear coordinates, so that the electron coordinates do not enter into the potential
function. The electron does not make transitions from one state to another, but
the state itself is continuously deformed by the nuclear motion. This is a good
approximation if the energies of electron excitations are very much higher than
the energies of vibration of the nuclei. This is the case for insulators, but it is
more difficult to justify the approximation in the case of metals. The harmonic
approximation is to ignore higher powers of the nuclear coordinates than the
second. This is a necessary approximation in order to obtain a first solution to
the problem, but is at variance with such properties of the crystal as thermal
expansion and heat conduction. Having obtained a first solution in terms of
normal modes of vibration, the effects of the higher powers may be described
by an interaction page 6between the normal modes.

A crystal has translational symmetry. That is, it could be built up from
a series of identical cells placed together so as to fill the volume occupied by
the crystal. The unit cell is the smallest such cell from which the crystal can
be constructed. It is not unique, but all possible unit cells will have the same
volume.

Consider a crystal with n particles in its unit cell. A particle is referred to
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by two indices, l denoting the unit cell, and k = 1, 2 . . . , n denoting the position
in the unit cell. The cartesian components of the particle displacements from
their equilibrium positions are Uα

l,k where α = 1, 2, 3. We write

(

∂2Φ

∂Uα
l,k ∂U

β
l′,k′

)

0

= Φα,β
l−l′,k,k′

where Φ is the potential energy of the crystal. Because of the symmetry of the
lattice, this force constant depends only on the relative cell index l− l′, and not
on l and l′ individually. The equations of motion for each particle are

mkÜ
α
l,k = −

∑

l′,k′,β

Φα,β
l−l′,k,k′ U

β
l′,k′

page 7 wheremk is the mass of the kth particle in the unit cell, For an infinite lattice, we
have an infinite number of simultaneous differential equations. These equations
may be reduced by substitution of the wave solutions

Uα
l,k =

1√
mk

ξαk exp {2πi q · rl,k − i ωt}

ξαk is a component of the polarisation vector, rl,k is the position vector of the
kth particle in the lth cell, ω is the angular frequency of the wave, and q is its
wave vector. We obtain 3n simultaneous equations for ξαk

ω2ξαk =
∑

k′,β

Mα,β
k,k′ ξ

β
k′

where

Mα,β
k,k′(q) =

1√
mkmk′

∑

l′

Φα,β
l−l′,k,k′ exp {−2πi q · (rl,k − rl′,k′)}

=
exp{−2πi q · (rk − rk′)}√

mkmk′

∑

l

Φα,β
l,k,k′ exp{−2πi q · rl} (2.1)

Here rl is the position of an origin in the lth cell, and rk is the position of the
kth particle in the cell with respect to this origin. Thus

rl,k = rl + rk

page 8

Consider Mα,β
k,k′ , written out as a 3n× 3n matrix. the row index is taken to

be (k + nα− n), and the column index (k′ + nβ − n). This is then the familiar
eigenvalue problem. The dynamical matrix will have 3n eigenvalues denoted by
ω2
j (q), j = 1, 2, . . . , 3n, and 3n corresponding eigenvectors ξαk,j(q). The ω2

j are
the solutions of the secular equation

Determinant
(

Mα,β
k,k′ − ω2δα,βδk,k′

)

= 0

The dynamical matrix is Hermitian i.e.,

Mβ,α,
k′,k =

(

Mα,β
k,k′

)⋆

3



where M⋆ denotes the complex conjugate of M . This means that all its eigen-
values will be real. Furthermore, if any of the eigenvalues were negative, the
frequency would be imaginary, and the lattice consequently unstable. The ω2

j

are then real positive numbers. The polarisation vectors are orthogonal; i.e.,
when normalised

∑

αk

ξαk,i ξ
α
k,j = δij

The wave solutions are known as normal modes of vibration.

2.3 The Direct and Reciprocal Lattices

page 9The positions specified by the vectors rl form a regular lattice of points,
known as the direct lattice, which is uniquely determined by the crystal struc-
ture. If we choose a lattice point as origin, we may express all lattice vectors rl
as multiples of three lattice vectors a1, a2, anda3, known as the basis vectors.

rl = l1a1 + l2a2 + l3a3

where l1, l2 and l3 are integers. The basis vectors are not unique.
We define basis vectors of the reciprocal lattice by

b1 = a2 ∧ a3/v b2 = a3 ∧ a1/v b3 = a1 ∧ a2/v

where v = a1 · (a2 ∧ a3) and is the volume of the unit cell.
The reciprocal lattice basis vectors have the following properties:

bi · aj = δij

The scalar product between a vector in the direct and a vector in the reciprocal
lattice is simply expressed in terms of their components in direct and reciprocal
lattice basis vectors. page 10

If r = r1a1 + r2a2 + r3a3 and q = q1b1 + q2b2 + q3b3

then r · q = r1q1 + r2q2 + r3q3

Again, although the basis vectors arc not unique, the reciprocal lattice is uniquely
determined by the crystal structure. Reciprocal lattice vectors; will be denoted
by τ .

τ = h1b1 + h2b2 + h3b3

where h1, h2 andh3 are integers. The scalar product between a direct lattice
vector and a reciprocal lattice vector is an integer as

rl · τ = l1h1 + l2h2 + l3h3

2.4 The Phonon Dispersion Relation
Consider the effect on the dynamical matrix of adding a reciprocal lattice

vector τ to q. The factor e−2πiq·rl in the sum in equation 2.1 is unchanged
as τ · rl is an integer. The only effect is to multiply rows and columns of the

4



dynamical matrix by factors like e−2πiτ ·rk . This will not alter the eigenvalues
although the eigenvectors will be changed. (Some authors definepage 11 the polarisation
vectors as (ξαk e2πi q·rk). In this case the eigenvectors also remain unchanged on
adding a reciprocal lattice vector to the wave vector.)

A quantum of vibrational energy associated with a particular normal mode
is known as a phonon. It has energy ~ω and wave vector q. The frequency
ωj(q) as a function of q is known as the phonon dispersion relation. There are
3n branches of this relation corresponding to the 3n values of j. We have just
shown that the dispersion relation is periodic in the reciprocal lattice, as ωj(q) is
unchanged when a reciprocal lattice vector is added to q. All possible solutions
are then obtained if q is restricted to a unit cell of the reciprocal lattice. This cell
is normally chosen to be the first Brillouin zone. This is the region surrounding
the origin enclosed by the planes which are the perpendicular bisectors of the
reciprocal lattice vectors. The volume of the Brillouin zone is 1/v, the unit cell
volume of the reciprocal lattice.

If the crystal as a whole is displaced, there is no change in the potential
energy. This leads to the relation

∑

l,k′

Φα,β
l,k,k′ = 0

page 12 If the dynamical matrix is expanded for small q, and this relation used, it can
be shown that 3 branches of the dispersion relation pass through the origin, and
in any particular direction, ωj(q) is proportional to |q| for small |q|. These solu-
tions correspond to sound waves, where the crystal is behaving as a continuum.
The normal modes described by these three branches are accordingly known as
the acoustic modes. The other (3n− 3) branches have non-zero frequencies and
zero gradient when q = 0. The corresponding normal modes are known as optic
modes as, in ionic crystals, they can interact with infra-red radiation. In an
acoustic mode of small q, all particles in a unit cell are displaced by an equal
amount in the same direction, but in an optic made of small q, the centre of
mass of the cell remains static.

2.5 Some Effects of Crystal Symmetry

The symmetry of the crystal will determine some features of the normal
modes. The phonon dispersion relation shows the full symmetry of the crystal.
Except for the acoustic modes at q = 0, the dispersion relation is smooth and
continuous. For points lying on a mirrorpage 13 plane of the reciprocal lattice, the
dispersion relation must, therefore, have zero gradient in a direction perpendic-
ular to the mirror plane. It should be noted that the zone boundary frequently
coincides with such a mirror plane.

For general values of q, the directions of the polarisation vectors are deter-
mined by the details of the forces between the particles in the crystal. How-
ever, for some value of q, the polarisation vectors lie parallel to q (longitudinal
modes), or perpendicular to q (transverse modes), no matter what these forces
are. This is the case for the optic modes with small q, and for all modes in
certain directions of high symmetry. With a suitable choice of axes, one axis
(denoted by the superscript 1) lying in the direction of q, the only non-zero

5



components of the polarisation vectors in the latter case are

Longitudinal ξ1k,j j = 1, 4, . . . , 3n− 2 k = 1, 2, . . . , n

Transverse 1 ξ2k,j j = 2, 5, . . . , 3n− 1 k = 1, 2, . . . , n

Transverse 2 ξ3k,j j = 3, 6, . . . , 3n k = 1, 2, . . . , n

With this choice of axes, the dynamical matrix is already page 14diagonal in its cartesian
indices: i.e.,

Mα,β
k,k′ = 0 for α 6= β

Since the axes are determined solely by the symmetry of the crystal, the problem
of calculating the eigenvalues for q in these symmetry directions is very much
simplified. If q lies in a mirror plane of the crystal, one third of the modes will
be polarised perpendicularly to this plane, but the other modes will be polarised
in general directions in the plane.

For general values of q, no classification into longitudinal and transverse
types is possible. In fact the branches of the dispersion relation frequently mix,
so that it is possible to find a continuous smooth path in the dispersion relation
linking a point on one branch with a point on another.

The symmetry of the crystal may cause same of the solutions to be degener-
ate. For instance, the transverse modes in a (1,0,0) direction in a cubic crystal
describe exactly equivalent motions of the particles, and must, therefore, have
the same frequencies. page 15

Some of the features of the phonon dispersion relation discussed in the last
two sections are shown in the following diagram. This shows a dispersion relation
in the (1,0,0) direction for sodium chloride (n = 2) calculated by Kellermann
(1940).

page 15

Figure 2.1: Phonon dispersion relation for sodium chloride

A denotes an acoustic mode, O an optic mode, L a longitudinally polarised
mode and T a transversely polarised one. The transverse modes are degenerate,
and all modes have zero gradient at the zone boundary. page 16
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2.6 Periodic Boundary Conditions
When discussing the energy of a crystal, or the quantum mechanics of lattice

dynamics, it is desirable to consider a crystal of finite size. We impose periodic
boundary conditions to maintain the translational symmetry of the lattice and
to enable the equations of motion to be reduced as before. It is reasonable to
suppose that, for a large enough crystal, the conditions at the boundary will
have little effect on the normal modes of vibration. In fact it can be shown that
the number of normal modes with frequencies between two given values will be
changed by a fraction of order 1/ 3

√
N by a change in boundary conditions for a

crystal containing N particles (Born and Huang, 1954).
Suppose that the crystal is a parallelepiped with edges parallel to the basis

vectors, and contains N1, N2, andN3 unit cells in the directions of the three
basis vectors. Imagine this crystal repeated to form an infinite crystal. We
apply our previous theory to this infinite crystal, but the motions of the unit
cell with position

rl+N = (l1 +N1)a1 + (l2 +N2)a2 + (l3 +N3)a3

are to be identical with the motions of the cell at

page 17 rl = l1a1 + l2a2 + l3a3

for all integral l1, l2 and l3. This implies that

e2πi q·rl+N = e2πi q·rl

or q1N1, q2N2, and q3N3 must be integers, where

q = q1b1 + q2b2 + q3b3

q is then restricted to the points of a sub-reciprocal lattice. There are N allowed
values of q in the Brillouin zone, where N = N1N2N3 and is the number of unit
cells in the crystal. It is interesting to note that we now have 3Nn normal
modes to describe the motion of Nn particles, which is equal to the number of
degrees of freedom of the system.

2.7 Experimental Methods of Investigating the Phonon
Dispersion Relation

The dispersion relation may be calculated if the interactions between the
particles forming the crystal are known. A knowledge of the dispersion relation
from experiment will provide a fairly direct test of the correctness of the theo-
retical interactions. The calculation can be reversed to some extent so that the
forcepage 18 constants are deduced from the dispersion relation. In particular Fore-
man and Lomer (1957) have shown that the range of the forces may be found
by a Fourier analysis of the dispersion relation in symmetry directions. An
experiment to determine the dispersion relation will, then, give considerable
information about the forces coupling the particles in a crystal.

Some information is available from quantities depending on the frequency
distribution function f(ν), where ν = ω/2π. If there are F (ν) modes with fre-
quency between ν and ν +∆ν, we may write

f(ν) =
1

3n
lim

∆ν→0

{

1

∆ν
lim

N→∞

(

F (ν)

N

)}

7



where f(ν) has been normalised so that

∫ ∞

0

f(ν) dν = 1

f(ν) may be written as a surface integral over the branches of the dispersion
relation (Born and Huang, 1954):

f(ν) =
v

3n

∑

j

∫∫

dSj

|grad νj(q)|

Here dSj is an element of area of the surface νj(q) = ν
The frequency distribution function has the advantage that it contains infor-

mation about the dispersion relation page 19for all values of q, whereas direct methods
of obtaining the dispersion relation are usually restricted to a coarse sample of q
by the limited volume of experimental data it is possible to handle. However, it
is impossible to obtain the dispersion relation from the frequency distribution,
and it does not provide a very detailed check on theories of the forces linking
particles in the crystal.

The frequency distribution function is an important factor in incoherent
neutron scattering, defect induced and two phonon infra-red absorption, and, of
course, the specific heat as a function of temperature. However, it is not usually
possible to reconstruct the frequency distribution function unambiguously from
the experimental data, although this has been done in some cases (Turberfield
and Egelstaff, 1960).

The expression given for f(ν) contains the gradient of the dispersion relation
in the denominator of the integrand. Discontinuities in the slope of f(ν) occur
at frequencies corresponding to the critical points where this gradient vanishes.
The shape of the curve in the region of the singularity depends on whether
the critical point is a maximum, minimum, or a type of saddle point page 20(Van
Hove, 1953). The wave vectors for many critical points are determined by the
crystal symmetry. Such singularities have been seen in the two phonon infra-red
absorption spectrum of diamond (Hardy and Smith, 1961). The singularities
have been allocated to the known critical points, so that the frequencies of some
normal modes have been determined.

The most direct information about the dispersion relation comes from ex-
periments in which a photon or a neutron interacts coherently with one phonon.
In this type of interaction energy and quasi-momentum are conserved according
to the following equations:

E1 − E0 = ±hν
k1 − k0 = Q = ±q + τ (2.2)

E1, k1 are the energy and wave vector of the scattered particle, and E0, k0 are
the corresponding quantities for the incident particle. The equations describe
the annihilation (+) or the creation (−) of a phonon. If the energy and wave
vector of the particle are known both before and after scattering, the energy
and wave vector of the interacting phonon can be determined. This calculation
can be made with any precision only if page 21the particle energy and wave vector are
similar to that of the phonon. The energy wave vector relationships for photons,
neutrons and phonons are shown in fig 2.2. The suitability of thermal neutrons

8



page 22

Figure 2.2: Phonon frequencies and wave vectors
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for these measurements is obvious. Infra-red radiation interacts with the optic
modes of small q, in ionic crystals, and the frequencies of these modes may
be determined from the infra-red absorption spectrum. X-rays interact with
a useful range of wave vectors, but the energy change is far too small to be
observed. Dispersion relations have, however, been determined from the diffuse
X way scattering, as the energies may be obtained from the scattered intensity if
the polarisation vectors are known. In practice this restricts the measurements
to the dispersion relations in symmetry directions of crystals with one atom per
unit cell. Walker (1956) has determined the dispersion relation for aluminium
in this way. The most useful region in which to obtain information about the
dispersion relation away from the limits of small q is shown in the figure by the
red square∗. The Energy wave vector relation for thermal neutrons is seen to
pass through this region.

The gradients of the acoustic modes for small q are page 23of course the velocities of
sound in the crystal which may be measured by means of ultrasonic techniques
or may be calculated from the elastic constants measured in some other way.

2.8 Methods for Neutron Spectroscopy
The only practicable source of thermal neutrons for this type of inelastic scat-

tering experiment is a nuclear reactor. A collimator let into the shielding wall of
a reactor allows a beam of thermal neutrons to emerge. Two methods may be
use to monochromate this beam. In the first, the beam is Bragg-reflected from
a single crystal monochromator, and in the second the beam is passed through
a mechanical velocity selector. The monochromatic beam impinges on the sin-
gle crystal sample, and some of the neutrons are inelastically scattered. There
are again two methods of determining the energy of these scattered neutrons.
They may be Bragg-reflected by a single crystal analyser, or the beam may
be pulsed, and the neutrons timed over a flight path to the detectors. Peaks
will be observed in the scattered energy spectrum, corresponding to neutrons
satisfying equations 2.2. These peaks have a width depending an the resolution
of the page 24apparatus and on anharmonic effects (caused by the inadequacy of the
harmonic approximation).

The three axis spectrometer (Brockhouse, 1960) makes use of Bragg reflec-
tion both to define the incident neutron energy and to determine the scattered
neutron energy. In the chopper-time of flight apparatus used in the present
experiments, the mechanical velocity selector also pulses the beam, allowing
the energy of the scattered neutrons to be determined by the time of flight
technique. These instruments are shown schematically in f1g 2.3.

The three axis spectrometer uses a continuous beam, but only analyses one
scattered energy at once, whereas time chopper-time of flight apparatus uses an
interrupted beam, all energies of scattered neutrons being analysed simultane-
ously. The times taken to determine a phonon frequency by these two techniques
are similar. The main advantage of the three axis spectrometer is that the en-
ergy and wave vector change undergone by a neutron arriving at the detector is
completely under the experimenter’s control. By suitable manipulation of the
instrument, the energy change may be varied while the wave vector change re-
mains constant. If the energy page 26change is scanned in small steps, a peak intensity
will be observed for energies corresponding to the energies of phonons with this

∗
black in this copy
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Sample

Analyser
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Figure 2.3a: Triple axis spectrometer
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Sample
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Figure 2.3b: Chopper-time-of-flight apparatus
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wave vector. This method of using the spectrometer is known as the constant
Q method (Brockhouse, 1960). It is a very convenient method for obtaining
the dispersion relation in symmetry directions of the crystal. With the time
of flight apparatus, such exact control of the wave vector is not possible, and
the best that normally can be done is to ensure that the phonon wave vectors
lie in a mirror plane of the crystal. The main advantage of the time of flight
apparatus is that many detectors my be used simultaneously, and in this case
information is obtained considerably faster than with the three axis instrument.
The three axis spectrometer can also give misleading results due to second order
contamination in either the monochromator or the analyser, or both. The time
of flight apparatus is, of course, not subject to this trouble.

2.9 The Neutron Cross Section Formula
The theory of the inelastic scattering of thermal neutrons by a single crystal

has been given by Placzek and Van Hove (1954) and by Waller and Fröman
(1952). page 27The scattering cross section per unit solid angle per unit cell for a
coherent scattering process in which one phonon is created or destroyed may be
written as

dσ

dΩ
=

h

2(2π)3
|k1|
|k0|

1

νj
Pj

g2j
Jj

(2.3)

The population factor Pj is equal to
{

exp
(

hνj

kBT

)

− 1
}−1

when a phonon is

annihilated, and to one plus this expression when a phonon is created. kB is
Boltzmann’s constant, and T is the absolute temperature of the sample. Jj is the
Jacobian factor giving a measure of the number of normal modes contributing
to the process.

Jj =

∣

∣

∣

∣

1∓ h

2E1
(k1 · ∇νj(q))

∣

∣

∣

∣

The (−) sign is used when a phonon is annihilated, the (+) sign when a phonon
in created.

g2j =

∣

∣

∣

∣

∣

∑

k

bkQ · ξk,j

m
1
2

k e
Wk

e2π iτ ·rk

∣

∣

∣

∣

∣

2

where bk is the bound scattering length of the kth type of nucleus averaged
over all the unit cells and e−2Wk is the Debye Waller factor for the kth type of
particle.

The factor e2π iτ ·rk would be replaced by e2π iQ·rk if the polarisation vectors
were defined in the alternative way suggested in section 2.4

page 28Pj becomes very small for high frequencies or low sample temperatures. In
these cases, the experiment must involve the creation of phonons in order to
obtain a reasonably large cross section.

The integrated intensity under a peak in a time of flight spectrum is propor-
tional to the cross section given. The integrated intensity under a peak obtained
in a constant Q experiment using a triple axis spectrometer, however, does not
depend on the Jacobian term Jj . This is an advantage if the intensities are to
be used to give information about the polarisation vectors (Brockhouse et al.,
1962).
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Chapter 3

Cold Neutron Apparatus

3.1 Introduction

Both the experiments described in this thesis madepage 29 use of the Cold Neutron
Apparatus on D.I.D.O. reactor. This consists basically of a mechanical chopper
with associated apparatus for time at flight analysis. It was designed and is run
by members of the P.N.R. group of the Nuclear Physics Division at A.E.R.E.
Harwell primarily as an instrument to study inelastic neutron scattering from
liquids and polycrystalline solids. The apparatus has been described by Harris,
Cocking, Egelstaff and Webb (1962), and only a brief description will be given
here.

The scattering from a liquid or polycrystalline solid does not depend on
the orientation of the sample. Consequently the scattering is the same in all
directions lying on a cone of constant scattering angle. The detectors are divided
into several banks each consisting of detectors placed around such a cone. This
arrangement is not suitable for observing the scattering frompage 30 a single crystal
sample. We have, therefore, added a second array of detectors which have
good angular resolutions both in the scattering plane and perpendicular to it.
These detectors all lie in the vertical plane through the sample. A goniometer
has been constructed which allows adjustment of the sample orientation. The
theory of the transmission of a curved slot rotor is treated in some detail as
it is fundamental to a discussion of the resolution of the apparatus. It is not
claimed that this treatment is original. Collins (1961) ascribes the fundamental
approximation of the method to Butterworth. The use of slots in the form of a
circular arc is justified in spite of the very narrow slot width (1/10 ins), and the
effects of the off centre slots are considered, in Appendices I and II.

The resolution of the apparatus and the factors governing the choice of a
detector are also discussed.

3.2 The Cold Neutron Apparatus

The general layout of the apparatus is shown in fig. 3.1. The appearance of
the apparatus with the original detector shielding is shown in fig. 3.2, and with
thepage 34 extended shielding for twelve detectors in fig. 3.3.

The low energy neutron flux in the reactor is increased by a liquid hydrogen
moderator. The moderator chamber is only 3 ins in diameter so full thermal-
isation to liquid hydrogen temperatures is impossible. In practice a fourfold
increase in flux at 4 Å is observed when the chamber is filled. The modera-
tor chamber is refrigerated by circulating liquid hydrogen through cooling coils
in the chamber. The liquefying apparatus is designed to run continuously and
largely automatically for a reactor cycle of three weeks. The cold neutron source
has been described by Webb and Pearce (1962).

Neutrons of wavelength less than 4 Å are scattered from the beam before
it emerges from the reactor shield by a polycrystalline beryllium filter. This
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Figure 3.1: Cold neutron apparatus (diagram)
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page 32

Figure 3.2: Cold neutron apparatus (photo)
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page 33

Figure 3.3: Cold neutron apparatus (photo)
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page 36

Figure 3.4: Neutron spectra – cold neutron apparatus DIDO

filter is cooled with liquid nitrogen to increase its transmission for neutrons
of wavelength greater than 4 Å. A bismuth single crystal is also placed in the
beam, and this, together with the beryllium filter, considerably reduces the flux
of fast neutrons and γ rays emerging from the reactor. The filter is mounted
in a turret so that it can be swung out of the beam and replaced either by a
beam stop, or by a collimator allowing an unfilteredpage 35 beam to be obtained. The
unfiltered beam is 1/4 ins in diameter and is attenuated by 2 ins of lead. It is
used in aligning the sample as described in Appendix III.2.

The low energy neutron beam emerging from the reactor is pulsed and ren-
dered monochromatic by a curved slot rotor spinning at high speed. The action
of the rotor is considered later in this chapter. Neutron spectra at various points
in the incident beam are shown in fig. 3.4. The bursts of monochromatic neu-
trons are scattered by the sample which is placed as near the rotor as possible,
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Figure 3.5: Goniometer
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and the neutrons then travel over a 2.3m flight path before reaching the detec-
tors. The goniometer on which the single crystal sample is mounted is described
elsewhere (Peckham, 1964c) and the detectors are Li-ZnS scintillators described
later in this chapter.

Two monitor detectors are placed in the beam, one just before the sample,
and the second 11/2m away at the beam stop.

The massive detector shielding seen in the photographs consists of one foot
thick water tanks at the sidepage 38 topped with tanks containing a mixture of borax
and wax. The side tanks are also lined with 3 ins pockets filled with borax.
The inside surface of the shielding is covered with 0.05 ins cadmium sheet. It
is preferable to absorb the bulk of the neutrons in boron rather than cadmium
as the high energy γ ray emitted by the cadmium may be detected by the
scintillator.

The time of arrival of the neutrons at the detectors is measured by means
of a crystal oscillator driving dividing circuits which are released by a start
pulse from the rotor. The time of arrival is recorded on magnetic tape together
with an indication of which detector registered the neutron. This tape may
subsequently be analysed to give a time of flight spectrum for each detector. A
time of flight spectrum is also obtained from the beam monitors from which the
time of arrival of the neutron burst at the sample may be deduced. The tape
recorder time of flight analyser is more fully described in the next chapter.

3.3 Rotor Theory
A beam of thermal neutrons may be pulsed and rendered monochromatic

by means of a mechanical rotorpage 40 spinning in the beam. The type used in these
experiments consists of a disc of magnesium-cadmium alloy in which a number
of curved slots have been cut. When the disc is spinning, only neutrons with
velocities within a limited range can pass through the slots without striking
the walls where they would be absorbed by the cadmium in the magnesium-
cadmium alloy. In practice there may be as many as 12 slots.

page 40

Figure 3.7: The rotor (diagram)

The slots are cut as arcs of a circle all on the same centre. It is shown in
Appendix I that a circular arc is a good approximation to the path of a neutron
relative to the rotor, but the fact that all the slots have the same centre of
curvature does cause some extra spread in the velocities passed (see Appendix
II). The rotor is suspended in a vacuum tank and is spun at high speed (up to
about 600 revolutions per second) by a hysteresis motor.page 41 The calculation of the
transmission function is simplified if it is assumed that all neutrons whose paths
relative to the rotor pass through both ends of the slot are transmitted. This is
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Figure 3.6: The rotor (photo)
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not strictly true as it is possible for some of these neutrons to strike the walls of
the slot en route. However, the results obtained agree substantially with those
of Marseguerra and Pauli (1959) who make an exact calculation for parabolic
slots. The method used by these authors and the method used in the present
treatment involve approximations when the slots are circular arcs and it is not
obvious that one method is more accurate than the other. With this assumption,
the rotor may be replaced by two shutters in the beam, separated by a rotor
diameter, and moving with opposite velocities across the beam. The following
diagram (fig. 3.8) shows the shape in space of the groups of neutrons passed
by the two shutters when a beam of neutrons of a given velocity is incident on
either of them. Obviously the beam will only be transmitted through the pair
of shutters if the two groups overlap, and the transmission will be proportional
to the area of overlap.

page 42

↑ ωR ↓ ωR

s

Figure 3.8: Neutron groups formed by moving shutters

page 42 In the following analysis,
R is the rotor radius

ω is the rotor angular velocity

s is the rotor slot width

n is the neutron inverse velocity

t is the time of arrival of the neutron at the rotor centre.
The shutter speed is ωR and the length of the neutron group in time at a

given position across the slot is τ1 = s
/

ωR
Let shutter 1 be fully open at a time −τ , and shutter 2 be fully open at time

τ .
The centre of the group passed by shutter 1 will arrive at the rotor centre

at time −τ +Rn = −τ2
The centre of the group passed by shutter 2 passed the rotor centre et time

τ −Rn = +τ2
We may now show the various degrees of overlap between the two groups,

plotting time at the rotor centrepage 45 instead of distance along the beam. Thus
overlapping areas are shaded (fig. 3.9).
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page 43
Group passed by 1st shutter Group passed by 2nd shutter
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Figure 3.9: The three degrees of overlap between the neutron groups passed by
the two shutters

The transmission function, f , is a function of n and t, or of τ2 and t. f
is proportional to the height of the shaded areas in the diagrams, and is equal
to 1 when this height is s, i.e., when neutrons are allowed through across the
whole width of the slot. f is plotted as a function of t for two values of τ2,
corresponding to the two degrees of overlap shown for the neutron groups. If we
combine these cases, f as a function of τ2 and t is found to form the hexagonal
pyramid shown in plan in the last diagram (fig. 3.10).

If the transmission function is expressed as a function of t only by integrating
over τ2, the following form is obtained (fig. 3-11)
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t

τ1
/

2
τ1

τ2

C B A

τ1
/

2
f = 1− τ2 + t

τ1

f = 1− 2t

τ1

f

t

Case C, τ1
/

2 ≥ τ2 ≥ 0

f

t

Case B, τ1 ≥ τ2 ≥ τ1
/

2

Case A, τ2 ≥ τ1, f = 0

Figure 3.10: The rotor transmission function f(τ2, t)

page 45

τ1

τ1
/

2t

f

Figure 3.11: Rotor transmission as a function of t
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page 46The second moment of this function is τ
2
1/24.

The transmission function may also be expressed as a function of τ2 by
integrating over t.

page 46

τ1/2

f

τ2 τ1/2 τ1

f =
τ1
2
− τ22
τ1

f =
(τ1 − τ2)2

τ1

Figure 3.12: Rotor transmission as a function of τ2

The second moment of this function is τ
2
1/8.

The total transmission is found by integrating either of the above curves to

be τ21/2.

The results may be expressed in terms of n0, the neutron inverse velocity
for which the transmission function is a maximum (n0 = τ/R). Let the ratio of
the best transmitted neutron speed to the rotor tip speed be p.

p = 1/ωRn0

Now τ1 = s
/

ωR

Hence τ1 = spn0

page 47We may define a time spread δt at the centre of the rotor by

(δt)2 =

∫∞
−∞ t2f(t) dt
∫∞
−∞ f(t) dt

where f(t) =

∫ ∞

−∞
f(n, t) dn

The spread in inverse velocities δn is similarly defined. If the number of incident
neutrons falling on area dA in time dt with inverse velocities in the range n to
n + dn is (N dAdt dn), then the number of neutrons passing the rotor in time
dt is (Ng dt), where g is the rotor transmission. g is averaged over time.

Using the expressions found for the second moments of the transmission
function, and remembering that τ2 = τ − Rn, the following expressions are
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found for δt, δn and g.

δt =
1

2
√
6
spn0 (3.1)

δn =
1

2
√
2

sp

R
n0 (3.2)

g =
As2p

4πR2
n0 (3.3)

where A is the total cross sectional area of the slots in the rotor.
page 48 Values of these quantities are listed for three rotors which have been used

by the Cambridge Slow Neutron Group.

Table 3.1: Rotor Parameters

Rotor p s R A δt/n0
δn
n0

g/n0

(ins) (ins) (ins2) (cms) (cms2)

1 4 .5 5 1.25 1.04 .14 .026

2 4 .25 5 .563 .52 .071 .0029

3 3 .1 4 1.15 .156 .0265 .00115

Rotor 1 was used by Collins (1961) and Dolling (1961) in their experiments
on magnesium and silicon, rotor 2 by myself in the experiment on lead (Chapter
5), and rotor 3 by Sinha and myself in experiments on copper and magnesium
oxide.

Marseguerra and Pauli (1959) have calculated the transmission of a curved
slot rotor, assuming the slot to be parabolic. Their results differ little from the
present ones. Their transmission function is shown inpage 49 the following diagram in
our notation.

page 49

τ1/4 τ2 τ1

τ1/2

t
f = 1− 2t

τ1
boundary

t = 2(−τ2 +
√
τ1τ2)

f = 1− τ2 + t

τ1
− t2

4τ1τ2

Figure 3.13: Marseguerra and Pauli rotor transmission function

The only difference is seen to be the addition of the extra term to one of
the expressions for f and consequent slight changes in the boundaries of the
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function. The total transmission is now τ2
1/2.12 instead of τ21/2, and, as a function

of τ2, the second moment is τ2
1/8.25 instead of τ2

1/8.

3.4 The Time Spread at the Sample

Let the time of arrival of the neutron at the sample be t1, and the distance
from the centre of the rotor to the sample be d. With our previous notation,

t1 = t+
d

R
τ2

page 50If the distribution of neutrons at the sample is h(τ2, t1),

h(τ2, t1) = f(τ2, t)

The second moment of the time distribution at the sample is

(δt1)
2 =

∫∫∞
−∞ t21h(τ2, t1) dτ2 dt1
∫∫∞

−∞ h(τ2, t1) dτ2 dt1

=

∫∫∞
−∞(t+ d

Rτ2)
2f(τ2, t) dτ2 dt

∫∫∞
−∞ f(τ2, t) dτ2 dt

=
τ21
24

+

(

d

R

)2
τ21
8

+

∫∫∞
−∞

2d
R tτ2f(τ2, t) dτ2 dt

(τ21 /2)

The last integral is zero as f is symmetrical about the axes. In fact we could
have treated the time spreads at the sample due to the velocity spread, and due
to the time spread at the centre of the rotor, as being independent.

Hence (δt1)
2 =

τ21
24

(

1 + 3

(

d

R

)2
)

page 51or δt1 =
spn0

2
√
6

√

1 + 3

(

d

R

)2

(3.4)

d/R must be greater than 1 for physical reasons, hence the part of t1 due to
velocity spread is always dominant. In a practical case, d/R is likely to be about
2, when the part of t1 due to time spread at the rotor centre is only 5.9% of the
whole. The transmission of the rotor could therefore be considerably improved
by increasing δt, the time spread at its centre, without appreciably increasing
δt1, as the transmission is proportional to δt. Unfortunately, for a single rotor,
δt can only be increased for a given δn by increasing the rotor radius. Little is
to be gained from this, however, as the sample is then forced further from the
rotor centre, the ratio d/R is not appreciably reduced and the fraction of δt1,
due to the time spread at the rotor centre is not significantly increased. This
situation can be improved by the use of twin rotors. With such an arrangement
it is possible to obtain increased transmission for the same velocity resolution
(Cocking, 1960).

Some improvement is possible with a single rotor by the use of a beryllium
filter to reduce the velocity spread δn without affecting δt. If the rotor is run
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at suchpage 52 a speed that the best transmitted neutron energy coincides with the
beryllium out off, δn is given by

δn =

√
23

24

sp

R
n0 (3.5)

and the corresponding formula for time spread at the sample is

δt1 =
spn0

2
√
6

√

1 + 0.942

(

d

R

)2

(3.6)

If this sample time spread were achieved by reducing the rotor slot width instead
of by using a filter, the transmission would be only 0.735 of that of the filter-
rotor system, and the velocity spread would be 1.07 times greater (this assumes
d/R = 2). It might be argued that the filter transmission offsets this gain, but
even if the filter cut off is not used to reduce δn, the filter is necessary to remove
fast neutrons from the beam which would otherwise be a troublesome source of
background counts in the detectors.

3.5 Resolution of the Apparatus
The cross section for one phonon coherent scattering contains delta functions

of both energy and momentum. This is due to the fact that this cross section was
derived using the harmonic approximation. In higher orderpage 53 approximations,the
phonons are allowed to interact with each other and with imperfections in the
crystal. The delta functions then broaden and have a finite width inversely
proportional to the lifetime of the phonon. The peak we observe in the time
of flight spectrum has the natural line shape of the phonon convolved with the
various resolution functions of the apparatus.

If the observed number of neutrons as a function of time is p(t) , we may
write

p(t) =

∫ ∫ ∫

· · ·
∫

p1(t1)p2(t2 − t1)p3(t3 − t2) . . . pn(t− tn−1) dt1 . . . dtn−1

where p1(t) is the distribution which would be observed in the absence of all
resolution broadening, p2(t) the distribution if the spread in incident wave vector
were the only cause of broadening, etc. Let us define a resolution width r by

r2 =

∫∞
−∞(t− t̄)2dt
∫∞
−∞ p(t) dt

where t̄ is the mean of p(t). If ri is similarly related to pi(t), it can be shown
that

r2 =
∑

i

r2i (3.7)

The number of neutrons observed in a peak in a givenpage 54 time is proportional to
the product of powers of the resolution widths. For example the intensity is
proportional to the counter area and so is proportional to the width multiplied
by the length, or to the diameter squared

I =
∏

i

(ri)
αi (3.8)
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We wish to obtain the maximum intensity I for a given overall resolution r.
Introducing the Lagrange multiplier λ, we must maximise

∏

i

(ri)
αi + λ

(

∑

i

r2i − r2
)

with respect to the rj ,

whence
αi

rj
I + 2λrj = 0

or rj ∝
√
αj (3.9)

when the resolution widths are proportioned according to this relation, we shall
say that they are balanced. we shall now calculate the ratio of the intensity ob-
tained with one resolution width out of balance to that obtained with all widths
balanced and the same overall resolution. This will indicate how accurately
resolution widths should be balanced in practice.

(a) Balanced resolutions

From equation 3.9, ri ∝
√
αi page 55

Put ri = r0
√
αi

The overall resolution, r, is given by

r2 = r20S

where S =
∑

i αi, and the intensity, I0, by

I0 = rS0
∏

i

α
αi/2
i

(b) One resolution out of balance

Assume that we have

ri = r′
√
αi for i 6= 1

where r′ is a constant, and

r1 = p r′
√
α1 where p 6= 1

The overall resolution, r, is given by

r2 = r′
2 (
S + (p2 − 1)α1

)

and the intensity, I ′, is given by

I ′ = pα1r′
S
∏

i

α
αi/2
i
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Comparing these with the equations for balanced resolutions,

(

r′

r0

)2

=
1

1 + α1

S (p2 − 1)

and the ratio of the intensities is

I ′

I0
= pα1

(

1 +
α1

S
(p2 − 1)

)−S
2

page 56 Put p = 1 + q and expand the above equation in powers of q

I ′

I0
= 1− α1

(

1− α1

S

)

q2 + · · ·

For the present experiment, considering time spreads at the sample, S = 6, and
the following values are obtained for I ′/I0:

Table 3.2: The Effect of Unbalanced Resolutions on the Intensity

α1 p I ′/I0
1 1± 0.25 0.95

1 0.31 0.5

1 2.2 0.5

2 1± 0.25 0.92

2 0.44 0.5

2 2.0 0.5

It is seen that the intensity does not change appreciably if one resolution
width is allowed to become more or lesspage 57 than the others by about 1/4, but

no
(

ri
/√

αi

)

should be greater than twice the others if an appreciable loss of
intensity is to be avoided.

The following table shows the various contributions to the spread in the
time at which neutrons are scattered by the sample (δt). This time spread
limits the accuracy with which the time of flight of the scattered neutrons can
be measured. Contributions to spreads in the incident wave vector components
are also shown (δk0x, δk0y, δk0z). α has the same significance as in the above
analysis.page 58

The effects of the rotor slot width and of the beam width were calculated
using equations 3.5, 3.6 and II.2 with d/R = 2.2. The time spread due to the
sample diameter assumes a scattered neutron inverse velocity of 400µ secs/m,
but is not very sensitive to this value as incident neutrons are slower and most
of the time spread is due to the time it takes an incident neutron to traverse the
sample. The time at which the rotor allows a neutron to pass depends on the
direction from which it approaches, and so the collimation of the incident beam
in the horizontal plane contributes to the time spread. The incident beam
collimation was calculated from the size and position of the liquid hydrogen
source.

If the contributions to the time spread were exactly balanced, each δt
/√

α
would equal 3.76 for the same overall resolution. From equation 3.8, we find
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Table 3.3: Contributions to the Resolution of the Apparatus

α δt δt/
√
α δk0x δk0y δk0z

(µ secs) (Å
−1

)

Incident
beam
colli-
mation

hori-
zontal

.40◦ 1 2.3 2.3 .0017

verti-
cal

.36◦ 1 .0015

Rotor slot width .1′′ 2 3.8 2.7 .0037

Beam width
(effect of off
centre slots)

2′′ 1 2.9 2.9 .0031

Sample diameter 2.4
cms

2 7.6 5.4

Total 9.2 .0048 .0015 .0017

that the intensity obtained with the resolution widths in the table is 0.50 of
the intensity in this ideal case. This reduction in intensity is almost entirely
due to the time spread caused by the sample diameter being out of balance.
However, the incident beam collimation could not conveniently be changed, and
changes in the rotor parameters and in the sample size could only be page 59made by
using different rotors or samples and the alternatives were grossly different from
those used. The balance of resolutions achieved was therefore considered to be
satisfactory.

The uncertainty that the time spread at the sample introduces into the
measurement of the scattered neutron energy depends on the length of the
flight path to the detectors. This flight path should be long enough to make
the uncertainty in the scattered neutron wave vector at least as small as that in
the incident wave vector. The angle subtended by the detectors at the sample
should also give uncertainties in scattered wave vector of the same order. Two
factors limit the length of the flight path. The further the detectors are from
the sample, the larger area they must have to subtend the same angle at the
sample, and consequently the greater the background count rate will become.
The flight path should not be so great that the fastest neutrons from one burst
can overtake the elastically scattered neutrons from the previous burst.

The resolution widths in scattered wave vector are summarised in the fol-
lowing table for two scattered wave page 60vectors corresponding to typical phonon
energies in magnesium oxide. (In these tables, the incident beam is in the di-
rection of the X axis, and the scattered beam is assumed to be in the direction
of the Y axis).
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Table 3.4: Resolution of the Scattered Neutron wave Vector

Incident beam energy spread .046× 1012 c/sec

Phonon frequency for overlap 81× 1012 c/sec

Phonon k1(Å
−1

) δE1 δk1x(Å
−1

) δk1y(Å
−1

) δk1z(Å
−1

)

freq. (c/s) (1012c/s)

5× 1012 .559 .11 .0060 .0049 .0060

10× 1012 .752 .26 .0081 .0088 .0081

In this table, k1 is the scattered neutron wave vector, δE1 is the spread in
energy of the scattered neutrons, and δk1x etc. are the spreads in scattered
neutron wave vector components.

It is seen that the spreads in scattered neutron energy and wave vector are
larger than the spreads in incident neutron energy and wave vector. A longer
flight path, therefore, could profitably have been used. Howeverpage 61 a longer flight
path would have resulted in danger of overlap of the neutron bursts, and since
the only place there was room to mount the detectors was above the sample,
a very large and expensive tower would have been necessary to support the
detectors and shielding.

The overall energy resolution of the apparatus is shown in fig. 3.14 as a
function of phonon frequency. The population factor, Pj , in the cross section
formula 2.3 is also shown. The apparatus is useful in a range of phonon frequen-
cies from about 1.0×1012 c/sec to 14×1012 c/sec. The lower limit is set by the
rapid deterioration in the resolution due to the incident beam energy spread,
and the upper limit by the falling off of the population factor Pj .

The overall resolution of the apparatus for phonons of frequency 10 × 1012

c/sec is found to be 2.6% in energy, and 0.0089 Å−1 in wave vector (averaging
over the three components). The radius of the Brillouin zone of MgO is 0.238
Å−1, and the wave vector resolution is 3.7% of this. It should be possible to
measure energies and wave vectors more accurately than this as the resolution
determines the width of the peak in the time ofpage 63 flight spectrum, and it is
possible to fine the mean of the peak with an error considerably less than the
width of the peak.

The spread in k0 causes a spread in k1 depending on the gradient of the
dispersion relation. This spread may add to or subtract from the resolution
spread already calculated. For instance, neutrons incident on the sample with
greater velocity than average arrive earlier. If these neutrons after scattering
have less than the average scattered velocity, they will take longer to reach
the detector and may in fact arrive at the same time as average neutrons which
were scattered later. This is a focussing effect and would reduce the width of the
peak in the time of flight spectrum. Obviously, if the dispersion relation were
estimated before the experiment, we could make use of this effect to improve
the resolution. However, the apparatus would only be focussed for one angle of
scatter and since twelve detectors were used it was not considered worth while
to try to focus the peaks.page 64

3.6 Optimum Detector Efficiency
Near a reactor there is always a considerable flux of fast neutrons, some of

which will penetrate the shielding around the detectors and give rise to a back-
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ground count rate. The detector is thin to this fast neutron background, i.e., if
the detector thickness is doubled, other factors remaining the same, the num-
ber of fast neutrons detected will also be doubled. However, we wish to detect
thermal neutrons, and if the detector efficiency were already 90% for thermal
neutrons, doubling its thickness would increase its efficiency to 99%. We have
then doubled the background count rate for a marginal (10%) increase in the
number of thermal neutrons detected. There is an optimum detector efficiency
which is less than 100% due to the presence of this fast neutron background.
The criterion which determines this optimum efficiency may be obtained by con-
sidering features in a time of flight spectrum which are only just distinguishable
from the background. The same criterion is obtained in two different ways.

We accept the presence of a feature in a time of flight spectrum only if
the feature is large compared with page 65the fluctuations in the background. If the
feature contains N counts, and the background under it contains B counts,
the fluctuations in the background are proportional to

√
B and the feature is

accepted only if N
/√
B > g where g depends on the degree of certainty we

require. we should then choose our detector efficiency to maximise N
/√
B.

We may obtain the position of such a feature by first subtracting a smoothed
background, and then taking the mean time of flight. If the second moment of
the feature is σ2, and we take the mean over a range of time 3.5σ, it can be

shown that the standard deviation of the mean is (σ
2/

N + B σ
2/

N2)
1/2. In the

case of a small feature on a large background (B ≫ N), this reduces to
√
B σ
/

N .
To obtain the positions of these small features most accurately, we should again
choose our detector efficiency to maximise N

/√
B.

The efficiency of a detector for thermal neutrons is (1 − e−x) where x is
proportional to the detector thickness. Its efficiency for fast neutrons is γx,
where γ is the ratio of fast neutron to thermal neutron cross section. To satisfy
either of the above criteria, page 66we must maximise N

/√
B or (1− e−x)

/√
x This leads

to the equation 2x+1 = ex, the solution of which is x = 1.256, corresponding to
a detector efficiency for thermal neutrons of about 72%. This maximum is not
very sharp. Over a range of efficiencies from 44% to 92%, the value of N

/√
B

does not fall below 90% of its maximum.

It is seen that the detector efficiency is not critical, but if we are interested in
features in the time of flight spectrum near the background level, the efficiency
should be in the range 40 to 90%. In practice it is difficult to obtain detectors
with an efficiency of more than 40 or 50% for thermal neutrons and insensitive
to γ radiation.

3.7 Choice of Detector

There are two main types of detector for thermal neutrons: the BF3; pro-
portional counter and various types of scintillator. Each type has advantages
and disadvantages in use.

BF3 proportional counter

Advantages–

The detector is insensitive to γ radiation.
page 67The E.H.T. voltage and the discriminator setting are not critical, and it is

easy to determine the correct values.
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BF3 counters and the equipment to run them are readily available at Harwell.

Disadvantages–

For reasonable efficiency the detector has to be so thick that the time of
flight resolution is poor. For example, a 9EB70 detector side on to the beam
has an efficiency of 17% to thermal neutrons, and a thickness of 2.54 cms. The
same detector used end on has an efficiency of 49%, but the thickness is now 9
cms, or about 4% of the flight path.

BF3 counters are available only in the form of cylinders 1 or 2 in in diameter
and of various lengths. It is often difficult to arrange the detectors to cover a
given area and no more. If the detector is masked with cadmium to reduce the
area to that desired, the background is not reduced in proportion. ’

Scintillators

Advantages–

A scintillator can be made with an efficiency of 40 or 50% and a thickness
of only a few millimetres.

A mask may be placed between the scintillator and the photomultiplier tube
to reduce the area of the detector, or the scintillator may be cut to any desired
shape.page 68

Disadvantages–

Scintillators are more sensitive to γ radiation than BF3 counters. Some
types are so sensitive that they cannot be used in the high energy γ flux near a
reactor.

The E.H.T. voltage on the photomultiplier tube, and the discriminator set-
ting must be very near the optimum values to discriminate against the γ rays.

It is seen that a scintillator has much to recommend it if it can be made
sufficiently insensitive to γ radiation.

Tests of Scintillators

Our first tests on scintillators in the conditions in which they were to be used
were disappointing. A comparison was made between a lithium glass scintillator,
a lithium iodide scintillator and a BF3 proportional counter. The detectors
were mounted in neutron shielding consisting of 1 ft. thick tanks of water lined
with a 5 in. pocket containing borax powder. When using scintillators it is
preferable to absorb neutrons in boron rather than cadmium, as the scintillator
may detect the high energy γ ray emitted by cadmium on absorbing a neutron.
The assembly was placed about 5 ft. from thepage 69 DIDO reactor face. No attempt
was made to shield the detectors against γ radiation. A kicksorter was used to
obtain a pulse height spectrum from each detector. Fig. 3.15 shows the pulse
height spectra obtained from background alone (full line), and with a Po–Be
neutron source placed inside the shielding near the detectors (broken line where
this differs from the full line). Also shown is the spectrum obtained from the
scintillator detectors when a Co60 γ source was placed near them. This has been
reduced in scale.

Optimum discriminator levels (both upper and lower for the scintillators)
have been determined from the pulse height spectra, and counts to background
ratios calculated for each detector.

page 71
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Table 3.5: Counts to Background Ratios for 3 Types of Detector

Type of detector Counts / background

Lithium glass scintillator 0.4

(1/8 in thick)

Lithium iodide scintillator 1

BF3 proportional counter 16

The BF3 proportional counter is seen to have a very much higher
counts/background ratio than either of the scintillators, and was accordingly
chosen as the most suitable detector for our first experiment. It is seen that the
γ ray cut off in the pulse height spectrum is well below the pulse heights given
by the more energetic γ ray background near the reactor. The performance of
scintillators in discriminating against γ rays from a Co6O source is accordingly a
poor guide to the performance of such a detector in the conditions encountered
near a reactor.

Two designs for banks of BF3 counters are shown in fig. 3.16. The first
consisted of 7 9EB7O counter tubes placed end on to the incident neutrons.
Detectors of this type were used in the lead experiment. The efficiency for the
detection of thermal neutrons was 49%, but the active length of 9 cm gave poor
time of flight resolution. The second design was intended to reduce this active
length. 3 9EB7O counter tubes were placed side on to the incident neutrons.
The electrical components and the ends of the counter tubes were encased or
potted in Araldite resin to make a very compact assembly. The page 73detectors could
be double banked, the pulses from the front bank being delayed to improve the
time of flight resolution. The efficiency of the double bank for the detection of
thermal neutrons would be 50%. Some trouble was experienced with the potted
electrical circuit, and, before this was corrected, we had obtained a satisfactory
scintillator. The potted counter assembly accordingly was never used.

Sun et. al. (1936) describe a scintillator which consists of a boron-containing
plastic mixed with zinc sulphide. Stedman (1960) has more recently developed
a similar type consisting of lithium fluoride enriched in Li6, again mixed with
zinc sulphide. Both these types give good neutron detection efficiency with low
sensitivity to γ radiation. Furthermore, γ rays give a very much shorter pulse
than neutrons, and various electronic circuits are available to make use of this
fact in discriminating against γ rays. We used a circuit developed by Wraight
(1964). A discussion of the merits of various types of scintillator is Given by
Harris, Wraight and Duffil (1962).

Tests of a LiF–ZnS scintillator supplied by Harris page 74showed that it had a similar
efficiency and background count rate to the BF3 proportional counters we were
then using, and was thin enough to give a negligible contribution to the time of
flight resolution width. It was therefore decided to adopt this type of detector.
We were able to obtain these scintillators commercially from Nuclear Enterprises
(type NE42l). The detector units containing a scintillator, photomultiplier tube
and pulse shape discriminator are shown in fig. 3.16. Three such units were
in use for the first part of the magnesium oxide experiment, but the counter
shielding was subsequently extended to take the twelve units used in the second
part of the experiment.

A lithium glass scintillator detector has a very well defined plateau in its
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discriminator bias curve and forms a convenient absolute standard for detector
efficiency measurements. The absorption of the glass is assumed to equal its
efficiency as a detector. A crystal spectrometer on the BEPO reactor provided
a beam of neutrons of wavelength 1.7 Å(thermal energy). The absorption of the
lithium glass was found to be 77%, and by comparing the count rates given by
the lithium glasspage 75 detector and by one of the LiF–ZnS detectors when each in turn
was placed in the beam, the efficiency of the LiF-ZnS detector was calculated
to be 45%. No allowance has been made for second order contamination of the
neutron beam, which might reduce this calculated efficiency by a small amount.
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Figure 3.14: Energy resolution and population factor (P ) as functions
of phonon frequency (ν)
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page 70

Figure 3.15: Scintillators in DIDO
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page 72

Figure 3.16: Neutron detectors
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Chapter 4

Data Processing

4.1 Introduction

One of the advantages of the time of flight methodpage 76 is that many detectors
may be used to observe the scattering from a sample at many different angles
simultaneously. We used 12 detectors mounted in the vertical plane containing
the sample. Modified kicksorters have been used to record time of flight spectra
from single detectors. However, it would have been a very expensive solution
to the problem to have used 12 kicksorters to record the time of flight spectra
from our 12 detectors. The kicksorter is essentially a one parameter recorder,
i.e., it classifies the pulses from the detector according to a single criterion. A
far more economical solution was to use a magnetic tape recorder, which could
record two parameters for each pulse as it arrived, namely, its time of arrival and
the identity of the detector concerned. Subsequently the tape was analysedpage 77 by
passing it many times through a one parameter analyser, each pass producing
a time of flight spectrum for a particular detector. The analyser could read the
tape at about 100 times the recording speed.

Because of the heavy demand for time on the Cold Neutron Apparatus, it
was run continuously day and night. We designed and built a goniometer and
control units which automatically changed the crystal orientation after a pre-set
number of beam monitor counts had been accumulated. Many angles could be
programmed in advance, so that the experimenter had only to intervene every
48 hours to change the magnetic tape.

Computer programmes were written to determine points on the phonon dis-
persion relation from the spectra produced by the time of flight analyser. The
I.B.M. 7090 programme Fit and Search found peaks in the time of flight spectra
and estimated their position. The Ferranti Mercury programme Phonon Reduc-

tion determined the energy and wave vector of a phonon from the peak position
given by Fit and Search. Fig. 4.1 shows the various stages in the analysis of
the data from the detection of the neutrons to the deduction of points on the
phonon dispersion relation.page 79

4.2 Time of Flight Recorder

The time of flight recorder (Hall, 1959) contained a crystal oscillator driving
scaling circuits which were started from zero on receipt of a start pulse derived
from the rotor. When a neutron was detected, the scaling circuits were stopped
and they then indicated the time of arrival of the neutron at the detector. This
time was recorded on 1 inch magnetic tape together with a number identifying
the detector. A single line was recorded across the 16 tracks on the tape as
follows:page 80 A record in track 10, the clock track, indicated to the analyser that
the other tracks contained information and were to be read. Pulses from the
beam monitor were recorded in track 16 and, in the event of failure of the
apparatus, could show where this occurred on the tape. Track 15 is normally
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page 78
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Figure 4.1: The data reduction scheme

used to record the most significant digit of the detector address, but as we used
only 12 detectors, 4 digits were sufficient for this address and track 15 was used
to separate adjacent recordings made with different crystal orientations.

Only the first neutron to arrive after a start pulse was recorded. This meant
that there were fewer counts in the later time channels than there would have
been had all counts been recorded. The effects of this on the area and mean
of a peak can be shown to be negligible for the count rates we experienced. If
the peak is at time t after the start pulse, its width is σ, and the total count
rate in all detectors is c, an order of magnitude calculation shows that the area
of the peak is reduced by a fraction ct, and its mean is altered by cσ2. In our
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page 79
Table 4.1: Contents of the Tape Tracks

Track Content

1
...

9

28

...

20











Time channel number

10 Clock

11
...

14

20

...

23











Detector address

15 Crystal angle

16 Monitor

experiment, c was of order 10 counts per second, the maximum value of t was
about 2,100 µ secs, and σ was about 20 µ secs. The reductionpage 81 in area was then
not more than about 2%, and the change in the mean was of order 0.0002σ.

The 9 tracks allocated to the time channel number allowed up to 512 time
channels to be used. However, the counting statistics and resolution of the
apparatus did not warrant the use of this many time channels. We used time
channels 8 µ secs wide. The rotor period was 2120 µ secs, but the tape recorder
was reset by a stop pulse occurring about 20 µ secs before the start pulse. We
thus used 262 time channels, leaving 24 µ secs dead time before the next start
pulse.

The start and stop pulses were generated by a magnetic shim attached to
the rotor shaft passing close to stator pickup coils. The stator could be rotated
about the shaft to change the phase of these pulses with respect to the neutron
burst passing through the rotor. Beam monitor 1, placed between the rotor
and the sample, was used to determine the time of arrival of the neutron burst.
As was explained earlier, there was a dead time of 24 µ secs between the end
of the last time channel and the start of the first. It was desirable that this
dead time should occur outside the range of time in which phononpage 82 peaks would
be observed. The start pulse was so phased that elastically scattered neutrons
would arrive at the detectors in the last few time channels. Neutrons which had
gained energy by interaction with a phonon would arrive earlier than this and
so would not arrive during the dead time.

A second monitor was placed in the beam about 1.5 metres beyond the
sample. The outputs from both beam monitors were time analysed during the
experiment. The time zero correction necessary to convert time channel number
into time of flight from the sample to the detector and the mean incident neutron
velocity were determined from the monitor time of flight spectra.

4.3 Crystal Goniometer and Control Units

We wished to determine the phonon dispersion relation in a mirror plane of
the crystal. The crystal was held in a goniometer which was adjusted so that
this plane coincided with the plane of scattering. Measurements were made with
the crystal at various orientations about an axis perpendicular to the plane of
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scattering. The goniometer was rotated about this axis by an electric motor
controlled from the Programming Unit. The angles page 83required were set up on a
patchboard, and the goniometer was moved on to the next position on receipt
of a signal from the Cyclic Control Unit.

The Cyclic Control Unit is designed to control any sample changing mecha-
nism. It allows up to four different samples to be placed in the beam one after
the other for short periods, repeating the cycle indefinitely for the duration of
the experiment. The Cyclic Control Unit also controls recording on track 15
of the tape recorder, or on both tracks 15 and 14 if more than 2 samples are
used. The number recorded in these tracks identifies the particular sample in the
beam and allows the results for different samples to be separated on analysing
the tape. The sample is changed after a pre-set number of beam monitor counts
have been received.

In our case, the Cyclic Control Unit changed the digit recorded in track 15
each time the orientation of the crystal was changed. This made it easy to
separate adjacent recordings when the tape was analysed.

The goniometer and its control units are described fully elsewhere (Peckham,
1964 b and c). page 84

4.4 The Magnetic Tape Analyser

The magnetic tape analyser produced the time of flight spectra punched
on paper tape as octal based numbers. The mercury computer was used to
transform these numbers to decimal form, and to punch them on cards which
could be listed to obtain the time of flight spectra. The analyser also produced
graphs of the time of flight spectra which provided a valuable check on the
correct functioning of the equipment.

4.5 The Computer Programme ‘Fit and Search’

We were producing about 18 time of flight spectra a day and to examine
each spectrum by hand would have been extremely laborious. It was considered
desirable to use a definite statistical criterion to decide whether a particular
group of time channels contained more neutrons than could be accounted for by
background alone. Also we required the mean of a peak and not its maximum or
other simply observed feature. By using the mean peak position, mean incident
wave vector, mean counter angles etc, we obtained an answer correct to first
order. page 85That means we ignored the curvature of the scattering surface over the
angle subtended by the counter, for instance, and the change in cross section over
this angle. A computer programme was written which automatically searched
for peaks which were statistically significant and estimated their means.

This programme originated as a technique for obtaining the positions of
peaks which considerably overlapped each other. The time of flight spectrum
was assumed to consist of Gaussian peaks on a flat background and the param-
eters of the Gaussian were adjusted to minimise the weighted square deviations
from the observed spectrum. Perhaps the use of Gaussians needs some justifi-
cation. The peak we observed had the natural line shape of.a phonon convolved
with all the various resolution functions of the apparatus. For instance, if the
probability of a neutron arriving at the centre of the sample at time t is p(t) and
if the probability of it then being scattered at time t′′ = t+t′ is q(t′) (depending
on the size and shape of the sample), then the probability of any neutron being
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Figure 4.2: Convolutions
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scattered at time t′′ is
∫∞
−∞ p(t)q(t′′− t) dt; i.e., the convolution page 86of p and q. The

more functions we convolve together, in general the nearer we get to a Gaussian
shape. The central limits theorem of statistics bears on this, but the rapidity
with which this occurs is best seen by an example. In fig.4.2 the solid curve C
has been obtained by convolving curve A with curve B. The dotted curve U is
a Gaussian of the same area, mean and second moment as the solid curve. It is
seen that little of the asymmetry of curve A remains. C is again convolved with
D to give E and the difference from a Gaussian shape is seen to be very small.
This, of course, would not happen so quickly if the curves were not of similar
width. However, the resolutions of the apparatus have been carefully matched
to optimise the count rate and we would therefore expect the observed peaks
to be very close to Gaussian form. In practice a Gaussian was found to fit the
peaks well (see fig. 7.1, the fitted spectrum is shown as a full line).

The fitted Gaussians performed a second duty in providing a theoretical
time of flight spectrum which could be compared with the observed spectrum
to check that no further peaks were present. The time channels were grouped,
first in threes, then in sevens and fifteens, the page 88groups being moved through the
time channels in steps of 1, 3 or 7 channels at a time. In each position, the
sum of observed counts in the group was compared with the sum of theoretical
counts. If there were significantly more, the parameters of a new peak were
estimated and the least squares fitting repeated with the extra peak. Since this
involved perhaps 100 trials in each time of flight spectrum and there were several
hundred time of flight spectra in the experiment, a group was only counted as
significant if it could have arisen by chance with a probability of 1 in 105 or
less. If the sum of theoretical counts was m, the sum of observed counts had to
exceed m+4.27

√
m+3.1 to be significant on the above criterion. This formula

gives the correct limit according to the Poisson distribution within ±1 certainly
in the range 1 ≤ m ≤ 1, 000.

The mean of the Gaussian was taken as the mean peak position. There
are some difficulties in taking a true mean, such as the presence of background
counts and the nearness of other peaks, but in several cases this was done and
the true mean was found to agree with the Gaussian mean within the limits of
statistical error. page 89The programme Fit and Search accepted the time of flight cards
from Mercury. Provision was made for the addition of runs or the grouping of
time channels, and comprehensive checks were made to ensure that the correct
time of flight cards had been used. Graphs of the fitted and observed time
of flight spectra were produced and also one card for each peak bearing an
identification number, the crystal goniometer setting, the peak position and
width, the standard deviation the peak position and the relative intensity of the
peak.

4.6 The Computer Programme ‘Phonon Reduction’

From the peak positions, the frequencies and wave vectors of the phonons
with which the neutrons interacted, could be deduced. This was conveniently
done using another Mercury programme Phonon Reduction. Phonon wave vec-
tors were reduced to the most elementary sector of the first Brillouin zone. This
reduction was done using the two-dimensional lattice which is the section of the
reciprocal lattice in the plane of scattering. The lattice was specified by gen-
erating vectors and the symmetry automatically determined by inspection page 90of
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these vectors. This programme accepted cards produced by Fit and Search and
produced one card for each phonon bearing the identification number, inten-
sity, unreduced wave vector, reduced wave vector, frequency and the standard
deviations in these quantities. The Brillouin zone was also divided into nar-
row sectors and the frequency of phonons lying in each sector was plotted as a
function of the wave vector amplitude to give a section of the dispersion rela-
tion. The velocity of sound was calculated and the corresponding straight line
dispersion relation plotted in the region of the origin.

Only one error has been considered, that is the error in determining the
position of the peak in the time of flight spectrum. However, if we write down
estimates of the errors introduced by errors in other quantities, we see that this
was the dominant error.

This is as it should be as these other quantities are measured much more
easily than the peak position which needs perhaps a day of counting to determine
it. It was not clear how these other errors should be treated, as quantities such
as counter angle or incident wave vector were common to the whole experiment.

page 91 However inaccuracies in these quantities would give rise to scatter of the points

page 91
Table 4.2: Sources of Error

Source of error error Equivalent error in
scattered wave vector

Incident wave
vector 0.2% 0.1 %

Crystal angle 0.1◦ 0.17%

Counter angle 0.1◦ 0.17%

Counter distance 0.1% 0.1 %

Position of peak 3 µ secs (Phonon freq. 1013 c/sec)
0.4 %

(A11 errors are standard deviations)

on the dispersion relation through the reduction of the wave vector to the first
Brillouin zone.

A distinction should be made between resolutions and errors. The above
errors were the errors in determining the mean incident wave vector, the mean
counter angle, etc. These were considerably less than the spreadpage 92 in incident
velocities or the angle subtended by the counter at the sample, that is the
resolutions of the apparatus. The resolutions introduce an error through the
second order effects discussed earlier. This error is not treated here.

Since the errors in wave vector and frequency were assumed to arise from
one error, they were closely correlated and the correlation coefficients were cal-
culated. For example we may write

δq1 =
∂q1
∂t

δt

δq2 =
∂q2
∂t

δt
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where δq1 and δq2 are errors in the components of the wave vectors arising from
a time of flight error δt.

δq1 δq2 =
∂q1
∂t

∂q2
∂t

(δt)2

The correlation coefficient c12 is given by

c12 =
∂q1
∂t

∂q2
∂t

σ2 (4.1)

where σ is the standard deviation error in the time of flight.
An error was given in each quantity, e.g., the page 93error in q1 was ∂q1

∂t σ and the
various correlation coefficients could be found by multiplying them as in 4.1.
This, of course, was only possible because all errors were assumed to arise from
the one error, σ, in the time of flight.
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Chapter 5

Phonon Dispersion Relation in Lead

5.1 Introduction

A preliminary experiment was performed to checkpage 94 the time it would take to
accumulate sufficient counts from the detectors to define the positions of the
peaks in the time of flight spectra. A low resolution rotor was used, but it was
hoped that the results of this experiment would justify the use of higher reso-
lution in future experiments. A single crystal of lead was used as the scattering
sample. Lead has a high coherent neutron cross section and low incoherent and
absorption cross sections, which makes it suitable for this type of experiment.
However, the highest phonon frequencies are about 2 × 1012 c/sec, which is
low compared with most crystals. This results in a low fractional accuracy in
determining these frequencies.

The phonon dispersion relation largely agreed with that determined by
Brockhouse et al. (1960) using a triple axis spectrometer. An analysis of the
results was made by Squires. He found the values of the shortpage 95 range forces which
gave a best fit to the measured frequencies by a least squares method. The ex-
perimental results have several serious shortcomings, but did indicate that the
resolution of the apparatus could be increased without leading to prohibitively
long counting periods.

5.2 Theory

Phonon dispersion relations in metals are frequently calculated on the as-
sumption that the interatomic forces have a fairly short range. If one atom is
taken as origin, the remaining atoms may be divided into orders such that all
atoms in one order are equivalent in terms of the point group symmetry of the
crystal. If the force constants for one atom in the order are known, those for the
other atoms in the order are determined by symmetry. Arbitrary parameters
are introduced to describe the most general forces consistent with the symmetry
of the crystal. The elements of the dynamical matrix are calculated by means
of equations 2.1. The arbitrary parameters may be chosen to be consistent with
the elastic.constants, which may be shown to be linear combinations of the pa-
rameters. Before the advent of direct experimental methods for determining
thepage 96 dispersion relation, the number of parameters had to be restricted to the
number of elastic constants. Now, however, more parameters may be used, and
their values determined by fitting the calculated dispersion curve to the experi-
mental data. The number of parameters rises rapidly as the range of the forces
increases. This is shown in the following table for a crystal with the face centred
cubic structure. Clearly, few experiments willpage 97 justify an analysis of this type
with forces extending beyond 5 or 6 orders. The most general force constant
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page 96
Table 5.1: Number of Parameters in Force Constant Models for F.C.C. Crystals

Order Type Distance

No. of
para-
meters

Total no.
of para-
meters

1 (0, 1, 1) 0.707 a0 3 3

2 (0, 0, 2) 1.000 a0 2 5

3 (1, 1, 2) 1.225 a0 4 9

4 (0, 2, 2) 1.414 a0 3 12

5 (0, 1, 3) 1.581 a0 4 16

6 (2, 2, 2) 1.732 a0 2 18

7 (1, 2, 3) 1.871 a0 6 24

8 (0, 0, 4) 2.000 a0 2 26

matrices for the first 3 orders are given be1ow..

Order 1 2 3

Matrix





α1 0 0

0 β1 δ1
0 δ1 β1









α2 0 0

0 α2 0

0 0 γ2









α3 ρ3 δ3
ρ3 α3 δ3
δ3 δ3 γ3





A severe disadvantage of this method of analysis is that the dispersion rela-
tion is expressed in terms of a set of functions of the wave vector which are not
orthogonal. This means that a final set of values for say the first order force
constants cannot be determined from the experimental measurements because
the values will vary depending on whether we allow forces to extend to 1, 2,
3, . . . orders. Squires (1962) has commented on this difficulty in his analysis of
Larsson’s experiment on aluminium.

Foreman and Lomer (1957) have pointed out that the dispersion relation
in symmetry directions can be expressed as a Fourier series, the coefficients of
which can be identified with forces between planes of atoms:

mω2 = Φ0 +

N
∑

n=1

Φn

(

1− cos
(

nπ
q

qm

)

)

qm is half the shortest distance between equivalent page 98points in reciprocal space
in the symmetry direction. The coefficients Φn are linear combinations of the
interatomic force constants. The relationships are given by Squires (1963), table
4. The table is repeated here, as the force constants are differently defined (Table
5.2). In this table, lines one and two for instance, mean that, for the symmetry
direction where q takes the form (ξ, 0, 0) the coefficients for the longitudinal
mode are given by

Φ1 = 8β1 + 16α3 + terms from 4thand higher orders

Φ2 == 2γ2 + 8γ3 + terms from 4thand higher orders

A final set of values for these coefficients may be determined because the dis-
persion relation is now expressed in terms of orthogonal functions. The Φn give
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an estimate of the range of the forces since distant planes of atoms contain only
distant orders.

No satisfactory alternative to the force constant method has emerged for
the analysis of experimental results in non-symmetry directions. This method,
therefore, has been used with the present results.

page 99
Table 5.2: Relations between the Interplanar Force Constants and
the Interatomic Force Constant

Branch n α1 β1 δ1 α2 γ2 α3 γ3 δ3 ρ3

(ζ, 0, 0) L 1 – 8 – – – 16 – – –

2 – – – – 2 – 8 – –

T 1 4 4 – – – 8 8 – –

2 – – – 2 – 8 – – –

(ζ, ζ, 0) L 1 4 4 – – – 4 4 8̄ –

2 – 2 2 2 2 4 – – 4

3 – – – – – 4 4 8 –

T1 1 – 8 – – – 8 – – –

2 2 – – 4 – – 4 – –

3 – – – – – 8 – – –

T2 1 4 4 – – – 4 4 8 –

2 – 2 2̄ 2 2 4 – – 4̄

3 – – – – – 4 4 8̄ –

(ζ, ζ, ζ) L 1 2 4 4 4 2 8 4 – 8̄

2 – – – – – 4 2 8 4

T 1 2 4 2̄ 4 2 8 4 – 4

2 – – – – – 4 2 4̄ 2̄

5.3 Experiment

The apparatus has been described in Chapter 3.page 100 Rotor 2 in Table 3.1 was
used together with two detectors of the first type described in section 3.7. The
lead single crystal was in the form of a cylinder 2.5 in long and 1.5 in in diameter.
The mosaic spread, given by a neutron rocking curve, was about 0.4◦ standard
deviation. The hydrogen liquefier was not very reliable at this time, and no
liquid hydrogen moderator was available for this experiment.

The lead crystal was mounted with a (1,1,0) mirror plane parallel to the
scattering plane. Neutron time-of-flight spectra were obtained with the crystal
at various orientations about an axis perpendicular to the scattering plane.
All phonons whose frequencies have been determined therefore have their wave
vectors and polarisation vectors in the (1,1,0) mirror plane.

A typical time of flight spectrum is shown in fig.5.1. The time channel width
is 40 µ sec. Thepage 102 positions of the peaks were estimated by eye as the computer
programme Fit and Search had not been written at this time. The I.B.M. 7090
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Figure 5.1: Typical time-of-flight spectrum from lead
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computer was used to calculate the phonon frequencies and wave vectors from
the positions of these peaks and the geometry of the apparatus.

Time of flight spectra were observed for 18 different orientations of the crystal
spaced 10◦ apart. There was some difficulty at first in cooling the beryllium filter
and it was necessary to accumulate the counts from the detectors for 12 hours
to determine the time of flight spectra. Later, with the filter cooling system
functioning, the counting period was reduced to 6 hours. A force constant model
was fitted to the results by Squires, and the dispersion relation for the (110)
plane according to this model is shown as a contour map in fig.5.3. Two branches
of the dispersion relation have polarisation vectors parallel to the plane. The
upper branch (1) is shown on the left-hand side of the diagram, and the lower
branch (2) on the right. Degenerate points are indicated (see key in fig.5.2). The
symmetry classification (longitudinal (L) or transverse (T) ) of the branches in
symmetry directions is also shown.

The triangles indicate the experimental points. Let the components of the
wave vector of the phonon bepage 105 q1, q2 and its frequency be νe. Estimates of the
standard deviation errors in these quantities due to errors in determining the
time of flight corresponding to the phonon peak are δq1, δq2, δνe . As in Chapter
4, this is considered to be the main source of error. The effective error in the
frequency δν is given by

δν = δνe +
∂ν

∂q1
δq1 +

∂ν

∂q2
δq2

where the errors are combined linearly as they are all derived from the one error
in the time of flight. The gradients of the dispersion relation were approxi-
mated by assuming that they were given by the elastic constants out to a radius
of half the Brillouin zone radius, and were zero beyond this. The theoretical
frequency for wave vector (q1, q2) is νt. The branch to which the experimental
point belonged was usually obvious because of the large difference in frequency
between branches over most of the Brillouin zone. The mid point of the base of
the triangle has coordinates (q1, q2), the height of the triangle is proportional
to (νe−νt) (1 cm = 0.2×1012 c/sec∗), and the width of its base is proportional
to δν to the same scale. An inverted triangle indicates that νe is less than νt.
It is seen that there are few significant deviations from the theory, as would be
representedpage 106 by tall thin triangles, and in no region of the plane do the experi-
mental frequencies lie systematically above or below the theoretical values. The
theory is then a good fit to the experimental points. The experimental error is
of order 5% standard deviation for points near the zone boundary.

5.4 The Force Constant Model

Squires used the I.B.M. 7090 computer to fit force constant models to the
measured dispersion relation for forces extending to 1, 2, . . . , 6 orders. The
parameters of the theory were adjusted to minimise the sum of the quantities

(

ν2t − ν2e
2νe δν

)2

∗ The figures have been been scaled to fit an a4 page size. The original height (smaller
side) of the figure was 12 cm, equivalent to 2.4× 1012 c/sec
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a0

The structure of lead

b

b

b

b

b

b

b

b

b

2/a0

The reciprocal lattice of lead, showing the portion of the mirror plane covered
by the contour map

Symmetry direction

− − − −− − − −− − − − Brillouin zone boundary

• Reciprocal lattice point

◦ Point of high symmetry ((1, 0, 0) or (1/2, 1/2, 1/2))

⊙ Degeneracy with branch above

⊕ Degeneracy with branch below

N H Experimental point (see section 5.3)

The contour interval is 0.2× 1012 c/sec

Spot frequencies are in units of 1012 c/sec

Figure 5.2: Key to contour map (fig. 5.3)
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Figure 5.3: Phonon dispersion relation for lead
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for all the experimental points. The force constants were constrained to fit the
elastic constants given by Goens and Weerts(1936).

c11 = 4.83× 1011 dynes/cm
2

c12 = 4.09× 1011 ′′

c44 = 1.44× 1011 ′′

Little further reduction in the sum of squares was obtained page 107by allowing the force
constants to extend beyond 5 orders. The force constants obtained for forces
extending to 3 orders were

α1 = −0.928
β1 = 3.544

δ1 = 3.539

α2 = −1.249
γ2 = 1.641

α3 = 0.339

γ3 = 0.035

δ3 = 0.559

ρ3 = −0.570

The units are 103 dynes/cm. These force constants have been used to calculate
the frequencies from which the contours in fig. 5.3 have been drawn.

Sections of the theoretical dispersion relation in the symmetry directions
marked ABCD in fig. 5.3 are shown in fig.5.4 as full lines. The broken lines
represent Brockhouse’s experimental results. These have been calculated from
his listed coefficients Φn for the dispersion relation in the (ζ, 0, 0) and (ζ, ζ, ζ)
directions at room temperature. Brockhouse does not page 109quote results at room
temperature for the direction (ζ, ζ, 0), so the dispersion relation in this direction
has been scaled from his diagram for results taken at 1000K.

The two sets of results give quite different frequencies in the neighbourhood
of the point B (1,0,0), particularly for the lower branch. An examination of
figure 5.3 shows that there are no experimental points in this region. This is a
serious shortcoming of the present results.

The coefficients Φn have been calculated from the relations expressed in
Table 5.2, and are plotted in fig. 5.5 (the points are joined by full lines). Brock-
house’s coefficients are shown joined by broken lines. These are his room
temperature results for the directions (ζ, 0, 0) and (ζ, ζ, ζ) and 1000K results
for the direction (ζ, ζ, 0). The previously mentioned differences show up as
an increase in even harmonics, and a decrease in odd harmonics in the present
results as compared with those of Brockhouse.

5.5 Conclusions

page 111The present results agree with those of Brockhouse as far as they go, but they
are not very accurate. The importance of obtaining values of the frequency for
wave vectors in all regions of the mirror plane has been emphasised by the effects
of the lack of values in the neighbourhood of the point (1, 0, 0). Measurements
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Figure 5.4: Phonon dispersion relation for lead
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page 110

Figure 5.5: Inter-planar force constants (Φn) for lead
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in the other mirror plane would have been necessary to determine a full set of
interatomic force constants had the range of the forces been extended beyond
the third order. However, forces extending to the third order gave a satisfactory
fit to the experimental data.

The counting period necessary to obtain time of flight spectra in each crys-
tal position was not unduly long (6 hours). The presence of a liquid hydrogen
moderator increases the flux by a factor of about 3 1/2, so that with the moder-
ator a rotor of significantly greater resolution could be used. It would then be
necessary to decrease the detector thickness, or this would be the source of the
dominant term in the time of flight resolution.

It was decided not to extend these measurements topage 112 meet the above criticisms
as an extensive series of experiments on lead had been started by Brockhouse
and it was thought that the time would be better spent studying the dispersion
relation of another material.
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Chapter 6

The Phonon Dispersion Relation for

Magnesium Oxide – Theoretical

page 113

6.1 Introduction
The rigid ion and shell models for the lattice dynamics of ionic crystals are

discussed. A technique for evaluating the lattice sums occurring in the expres-
sions for the electrostatic coupling coefficients is given. Physical assumptions
are made to reduce the number of arbitrary parameters in the theory to six and
these parameters are chosen to fit the three elastic constants and the three con-
stants describing the infra-red dispersion. Theoretical dispersion relations are
calculated for phonons with wave vectors in the two mirror planes, and polari-
sation vectors parallel to these planes. The dispersion relations are presented as
contour maps of the four branches in each plane. The nature of the degeneracies
between these branches is discussed.

6.2 The Rigid Ion Model
The main contribution to the cohesive energy of an ionic crystal is the

Madelung energy due to the electrostatic page 114attraction of the ions. Other forces
in the crystal are of short range and in sum are repulsive, exactly balancing
the electrostatic forces when the ions occupy their equilibrium positions. The
change in the electrostatic potential caused by moving an ion from its equilib-
rium position may be described by introducing dipole, quadripole, and higher
moments centred on the equilibrium position of the ion. We shall use the dipole
approximation and ignore the quadripole and higher moments. In the rigid ion
model, the ion moves without distortion, and the dipole moment is the prod-
uct of the ionic charge, Zk, and the displacement, u1,k. The elements of the
dynamical matrix are the sum of two terms

Mα,β
k,k′ =

1√
mkmk′

{

Rα,β
k,k′ + ZkZk′ Cα,β

k,k′

}

the first due to the short range forces, and the second due to the long range
dipole forces. Kellermann (1940) used the rigid ion model to calculate phonon
dispersion relations for sodium chloride. Arbitrary parameters were introduced
for the short range forces, their values being obtained from experimental mea-
surements of page 115the elastic constants, and rapidly convergent series were used to

calculate the Coulomb coefficients Cα,β
k,k′

6.3 The Short Range Forces
It has been found that a consistent set of ionic radii can be given to the

ions so that in an ionic crystal, the nearest neighbour separation is given by
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the sum of the ionic radii. Obviously a constant could be added to the radii
of the positive ions and subtracted from the radii of the negative ions without
upsetting the above additivity rule, so that additional information is required
to fix the ionic radii. Wasastjerna (1923) determined ratios of the ionic radii
indirectly from the molar refractions of the ions by assuming that the radii in-
dicate the extensions of the electron orbits. Goldschmidt’s (1926) radii have
been chosen so that the values for O−− and F− agree with those obtained by
Wasastjerna. Pauling (1948) defines a set of univalent radii inversely propor-
tional to Z − S, where Z is the ionic charge and S is a screening constant,
for ions in the same iso-electronic series (i.e., ions with the same number of
electrons). The constant of proportionality is chosen to reproduce correctly the
empirical latticepage 116 constant for the alkali halide crystal formed from ions in the
series. Crystal radii are obtained from the univalent radii by correcting for the
increased electrostatic attraction with an inverse power form for the short range
forces. Pau1ing’s radii are in general agreement with those of Goldschmidt. The
following ionic radii are given for magnesium and oxygen:

page 116
Table 6.1: Ionic Radii (Å)

Mg++ O−−

Goldschmidt 0.78 1.32

Pauling 0.65 1.40

The following table shows the separation between first and second neighbour
pairs of ions compared with the sum of their radii.

page 116
Table 6.2: Separation of the ions in MgO compared with the sum of the ionic
radii(Å)

Ions Separation Sum of ionic radii

Goldschmidt Pauling

Mg++−O−− 2.10 2.10 2.05

Mg++−Mg++ 2.97 1.56 1.30

O−−−O−− 2.97 2.64 2.80

page 117 The short range forces arise from overlap of the electron wave functions.
If the ionic radii indicate the extent of the wave functions, we can expect the
largest contribution to these forces to come from the interaction between Mg++

and O−− ions, a significant contribution from the interaction between O−− and
O−− ions and lesser contributions from other interactions.

Cowley (1962) gives expressions for the elastic constants in terms of snort
range force constant parameters and the ionic charge (see section 6.6). The
combination c11 + c44 in the absence of second neighbour forces is determined
by the ionic charge alone.

c11 + c44 =

(

e2

vr0

)

1.39100Z2
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v is the volume of the unit cell, ro the separation between ions and Z the ionic
charge in units of the electronic charge e. For MgO, with Z = 2, the right-hand
side of this expression is equal to 32.57 × 1011 dynes/cms2. The experimental
values for the elastic constants (Dae-Hyun Chung, 1963; values quoted in section
6.8) give the left-hand side a value of 24.26×1011 dynes/cms2. This discrepancy
can be removed by the introduction of second neighbour forces as was suggested
by page 118by a consideration of the ionic diameters. The short range interaction be-
tween first neighbours (Mg++−O−−) is described by two parameters. The force
between the ion at (1, 0, 0) and the ion at the origin is described by the 2 × 3

matrix Φα,β
l,1,2 where l depends on the choice of unit cell and α, β = 1, 2, 3. In

Cowley’s (1962) notation this matrix may be written

e2

2v





A 0 0

0 B 0

0 0 B





The matrices of force constants between other first neighbours are found from
symmetry.

The short range interaction between second neighbours (O−−−O−−) is de-
scribed by 3 parameters. The force between the ion at (1, 1, 0) and the ion at

the origin is described by the matrix Φα,β
l,2,2

e2

2v





1/2(A′′ +B′′) 1/2(A′′ −B′′) 0
1/2(A′′ −B′′) 1/2(A′′ +B′′) 0

0 0 D′′





The force constants between other second nearest neighbours may be found by
symmetry from this matrix.

page 119These force constants describe the most general forces possible in a cubic
crystal. The forces may be restricted in several ways:

(a) Axially symmetric forces

The force constant matrix is invariant under a rotation of the axes about
the line joining the particles concerned. If axes are chosen so that the X axis
is parallel to this line (these axes will be called axes A), the matrix must be of
the form





A 0 0

0 B 0

0 0 B





The first neighbour matrix is already in this form. The second neighbour matrix,
when referred to axes A, becomes





A′′ 0 0

0 B′′ 0

0 0 D′′





If the forces are to be axially symmetric, we must, then, impose the condition

D′′ = B′′
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(b) Central forces

The potential energy associated with each force ispage 120 assumed to be a function
only of the distance between the particles. The derivatives of this potential are

∂φ

∂rα
=
∂|r|
∂rα

∂φ

∂|r| =
rα

|r|
∂φ

∂|r|
∂2φ

∂(rα)2
=

(

rα

|r|

)2
∂2φ

(∂|r|)2 +

(

1

|r| −
(rα)2

|r|3
)

∂φ

∂|r|
∂2φ

∂rα ∂rβ
=
rαrβ

|r|2
∂2φ

(∂|r|)2 −
rαrβ

|r|3
∂φ

∂|r| for α 6= β

Referred to axes A, the force constant matrix ∂2φ
∂rα ∂rβ

becomes







∂2φ
∂(rα)2 0 0

0 1
|r|

∂φ
∂|r| 0

0 0 1
|r|

∂φ
∂|r|







The forces are seen to be axially symmetric.

However, we now have a relation between some of the force constants and
the first derivatives of the potential energy

e2

2v
B =

1

r0

∂φ(1,0,0)

∂r0
and

e2

2v
B′′ =

1

r1

∂φ(1,1,0)

∂r1

page 121 where r0 is the separation of nearest neighbour ions and r1 =
√
2r0. This leads

to a stability condition. The potential energy per unit cell of the crystal, Φ, is
given by

Φ = −αM
Z2e2

r0
+ 6φ(1,0,0) + 6φ(1,1,0)

where αM is Madelung’s constant. (αM = 1.7476 for a crystal with the sodium
chloride structure). In the absence of external pressure, we must have

∂Φ

∂r0
= 0

This gives the stability condition (Kellermann, 1940; Cowley, 1962)

B + 2B′′ = −2

3
αMZ

2

Use of the stability condition, together with the conditions for axially symmetric
forces, gives the Cauchy relation between the elastic constants (see section 6.6)

c12 = c44

The coupling coefficients of the short range interactions are given by Cowley
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(1962) as page 122

Rα,α
1,2 = −e

2

v
{A cosπqα +B(cosπqβ + cosπqγ)}

Rα,α
1,1 =

e2

v
{A+ 2B}

Rα,α
2,2 =

e2

v
{A+ 2B + 2A′′ + 2B′′ + 2D′′ − (A′′ +B′′)(cosπqα)

(cosπqβ + cosπqγ)− 2D′′ cosπqβ cosπqγ}
Rα,β

1,2 = 0

Rα,β
1,1 = 0

Rα,β
2,2 =

e2

v
(A′′ −B′′) sinπqα sinπqβ

α, β and γ are all different in these formulae. The phonon wave vector q is in
units of 1/2r0.

6.4 The Electrostatic Forces
The potential at the origin due to the dipole p at the point r

−p · ∇

(

1

|r|

)

The Coulomb coefficients are given by

Cα,β
k,k′ = −e2 lim

r→0

{

∑

l

′ ∂2

∂rα∂rβ
1

|r − rl|
e2πi q·rl

}

Cα,β
k,k′ = −e2e−2πi q·(rk−rk′ ) lim

r→rk−rk′

{

∑

l

∂2

∂rα∂rβ
1

|r − rl|
e2πi q·rl

}

page 123where k and k′ are different, and
∑

l
′
excludes the term with l = 0. These

series as they stand converge very slowly. A rapidly convergent form can be
found by making use of the Ewald transformation

2√
π

∑

l

exp
(

ǫ2|r − rl|2 + 2πi q · rl
)

=
2π

v

∑

h

1

ǫ3
exp

(

π2

ǫ2
|q + τh|2 + 2πi r · (q + τh)

)

where τh is a vector of the reciprocal lattice.
Kellermann (1940) gives the following formulae for the Coulomb coefficients

(his coefficients differ in sign from those given here)

Cα,β
1,1 =

e2

v

{

Gα,β
1,1 −HGα,β

l − 8

3
√
π
ǫ3δαβ

}

Cα,β
1,2 =

e2

v

{

Gα,β
1,2 −Hα,β

m

}

Cα,β
2,2 = Cα,β

1,1 and Cα,β
2,1 = Cα,β

1,2
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where Gα,β
k,k′ = 4π

∑

h

p(h)
(hα + qα)(hβ + qβ)

|h+ q|2 e−
π2

4ǫ2
|h+q|2

and for (k, k′) = (1, 1), p(h) = +1

for (k, k′) = (1, 2), p(h) = +1 for hα even

= −1 for hα odd

page 124

Hα,β
l = 2

∑

l

{

−f(l)δα,β + g(l)
lαlβ
l2

}

cosπq · l

f(l) =
2√
π
ǫ
e−ǫ2l2

l2
+
ψ(ǫl)

l3

g(l) =
4√
π
ǫ3 e−ǫ2l2 +

6√
π
ǫ
e−ǫ2l2

l2
+ 3

ψ(ǫl)

l3

ψ(ǫl) = 1− 2√
π

∫ ǫl

0

e−ζ2

dζ

l = |l|

The phonon wave vector q is expressed in units of 1/2r0.

qα are the components of q in the directions of the crystal cube edges.
∑

l

indicates a sum over the sites of ions of the same type as that at the
origin. lα take all integral values for which

∑

α lα is even. The origin is
excluded.

∑

m

indicates a sum over the remaining ion sites. mα take all integral values
for which

∑

α mα is odd.
∑

h

indicates a sum over the reciprocal lattice points. hα are integers and
either all even or all odd.

page 125 l is a vector with components lα. h is similarly defined.

ǫ is an arbitrary parameter controlling the convergence of G and H. G is
more rapidly convergent for small ǫ, and H is more rapidly convergent
for large ǫ.

A routine was written for the Stretch computer to evaluate the Coulomb
coefficients and their derivatives with respect to the components of q for any
phonon wave vector q. The lattice points may conveniently be divided into
orders, each order consisting of all those points which can be generated from a
single point by the operations of cubic symmetry. f(l) and g(l) are the same
for all points in an order. The summation is done order by order in increasing
distance from the origin. Simple algebraic expressions can be found for the
sum H over a given order. However, this is not possible for the sum G and
explicit summation over the points in an order was necessary. In fact it proved
convenient to sum explicitly over the points in an order for H as well as for G.
If we impose the following restriction on l, only one point in each order is given.

0 ≤ l1 ≤ l2 ≤ l3
1 2 3

(6.1)
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page 126The other points in each order may be generated using the cubic symmetry. In
general there are 48 points in an order, but if any of the equality signs apply
in the restriction (6.1), there are less than this. If an order contains n points, a
sum over the order may be evaluated by summing over 48 points, ignoring the
fact that points may be duplicated, and then multiplying by n/48. This method
leads to unnecessary computation and it was decided to use a technique which
would ensure that none of the points in an order would be duplicated. All the
points in an order may be generated by repeated application of the following
four operators:

page 126
Table 6.3: The Cubic Symmetry Operators

Operator Effect on l = (l1, l2, l3)

C3 (triad axis) C3 l =(l2, l3, l1)

C4 (tetrad axis) C4 l =(l̄2, l1, l3)

σ (mirror plane) σ l =(l2, l1, l3)

I (centre of inversion) I l =(l̄1, l̄2, l̄3)

page 127They are applied as indicated in the following diagram. The first term in the
sum is calculated for the point l = (l1, l2, l3) and the operator C3 is applied to l.
The next term is added and C3 applied again, and so on until n(C3 terms have
been calculated and C3 applied n(C3 times. The operator C4 is now applied
and the whole repeated until C4 has been applied n(C4 times when σ is applied
and so on. All operations enclosed by a return path in the diagram are to be
performed the number of times shown on the return path each time they are
entered afresh. (The return path is used this number minus one times.) page 128If

page 127

Add term

l→ C3 l

n(C3)

l→ C4 l

n(C4)

l→ σ l

n(σ)

l→ I l

n(I)

Figure 6.1: Application of the operators to generate the points of one order

n(C3), n(C4), n(σ), and n(I) are set to the values shown in table 6.4, a term
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will be added for each point in the order and no points will be duplicated. In

page 128
Table 6.4: Numbers of operations

Equalities
satisfied
in 6.1

Form of l n n(C3) n(C4) n(σ) n(I)

None (l1, l2, l3) 48 3 4 2 2

1 (0, l1, l2) 24 3 4 1 2

2 (l1, l1, l2) 24 3 4 1 2

3 (l1, l2, l2) 24 3 4 1 2

1, 2 (0, 0, l1) 6 3 1 1 2

2, 3 (l1, l1, l1) 8 1 4 1 2

3, 1 (0, l1, l1) 12 3 1 2 2

1, 2, 3 (0, 0, 0) 1 1 1 1 1

this table 0 < l1 < l2 < l3 for the components of a given l.
page 129 Values of l, m and h and of g(l) and f(l) for the first 20 orders are prepared

by a separate routine which is called once only each time the programme is
loaded. Summation over orders is continued until three adjacent groups of
orders are found such that the largest contribution to the sum from the first
group has magnitude less than 10−6, that from the second group less than 10−7,
and that from the third group less than 10−8. (The sums are of order unity).
This method will not terminate the sum prematurely if the contribution from an
order is negligible, but that from the next order is important, as might happen
with a simpler criterion. The sums for all the Coulomb coefficients and their
derivatives are calculated at once, so that the largest contribution from an order
is taken as the largest contribution to any of the Coulomb coefficients or their
derivatives. After a few trials, ǫ was set to 1.3. About 9 orders were then
included in each sum.

6.5 The Shell Model

Kellermann, using the rigid ion model, was able to account quite well for
the measured elastic constants and infra-red absorption frequency of sodium
chloride. However, it is easily seen that this theory is inconsistentpage 130 with the
known dielectric constants. In the presence of a high frequency electric field,
the ions do not move and the polarisation of the crystal arises entirely from
distortion of the ions. If, as in the rigid ion model, we ignore this distortion, we
shall obtain a value of 1 for the high frequency dielectric constant. In practice
the high frequency dielectric constants of ionic crystals range from about 1.7 to
5.1 (Born and Huang, 1954, table 17).

The She1l Model allows the effects of the distortion of the ions to be taken
into account, whilst the theory remains within the framework of the Born–von
Karman theory of lattice dynamics. This theory was introduced by Dick and
Overhauser (1958) and by Hanlon and Lawson (1959) in studies of the dielectric
properties of alkali halides. The theory has been used to calculate phonon
dispersion relations in the alkali halides by Woods, Cochran and Brockhouse
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(1960). This account of the theory follows the last reference and subsequent
papers by Cochran (1961), Cowley (1962) and Cowley, Cochran, Brockhouse
and Woods (1963).

The outer electrons of an ion are considered to page 131form a shell which can move
without distortion about its equilibrium position centred on the core of the
ion. Relative displacement of the shell and core produces a dipole moment
on the ion, representing the effect of distorting the ion. We use the Coulomb
coefficients introduced for the point ion model to calculate the long range effects
of this dipole moment, and the short range effects are allowed for by introducing
arbitrary short range forces linking the shells and cores. Each shell is linked to
its own core by an isotropic force constant, k1 for the positive ion and k2 for the
negative ion. The shell charges are Y1e and Y2e respectively, so that the free

ion polarisability of the positive ion is
Y 2
1 e2

k1
and of the negative ion

Y 2
2 e2

k2

The potential energy Φ is a function of the core displacements ul,k, and the
shell displacements vl,k. The force constants are defined by

Φ
(E)α,β
l−l′,k,k′ =

∂2Φ

∂uαl,k∂u
β
l′,k′

Φ
(S)α,β
l−l′,k,k′ =

∂2Φ

∂vαl,k∂v
β
l′,k′

Φ
(F )α,β
l−l′,k,k′ =

∂2Φ

∂uαl,k∂v
β
l′,k′

(1− δll′δkk′)

We assume

∂2Φ

∂uαl,k∂v
β
l,k′

= kkδα,β

page 132The notation is similar to that of Chapter 2. we define coupling coefficients
E, S, and F by

Eα,β
k,k′ = exp {−2πi q · (rk − rk′)}

∑

l

Φ
(E)α,β
l,k,k′ e−2πi q·rl

etc. From their definitions, E and S are Hermitian, but not F . We define F ′ as
the Hermitian conjugate of F , i.e.,

F ′α,β
k,k′ =

(

F β,α
k′,k

)∗

The forces contributing to the various coupling coefficients are shown schemat-
ically in figure 6.2. for a crystal with two ions per unit cell.

The equations of motion are most easily written in terms of the core displace-
ments and the relative displacements of the shells and cores, wl,k = vl,k −ul,k.
We introduce an ion-ion coupling coefficient, R, and a shell-ion coefficient, T ,
where

R = E + S + F + F ′

and T = S + F
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page 133

E12

F ′
12

F12

S12

S11

F11

F ′
11

E11

k1

S22

F22

F ′
22

E22

E21

F ′
21

F21

S21

k2

All other type 1 ions All type 1 ions

All type 2 ions All other type 2 ions

Type 1 ion Type 2 ion

Figure 6.2: Forces between ions

R is Hermitian, but T need not be. In accordance withpage 134 the adiabatic approxi-
mation, the masses of the shells are assumed to be zero.

The equations of motion in matrix notation are

mω2u = Au+Bw

0 = B′u+Dw

where m is a diagonal matrix

mij = mkδij

u and w are column matrices

ui = uαk wi = wα
k

and Aij = Rα,β
k,k′ + ZkZk′Cα,β

k,k′

Bij = Tα,β
k,k′ + ZkYk′Cα,β

k,k′

B′
ij = (Bji)

∗

Dij = Sα,β
k,k′ + kkδα.βδk,k′ + YkYk′Cα,β

k,k′

In these equations i = nα + k − n and j = nβ + k′ − n. Since α = 1, 2, 3 and
k = 1, 2, . . . , n, i = 1, 2, . . . , 3n and similarly for j.

We now restrict ourselves to crystals with the sodium chloride structure.
A, B and D are real 6× 6page 135 matrices, and A and D are symmetrical. For q = 0,
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choosing axes parallel to the crystal cube edges,

Rα,β
k,k′(0)= δαβRkk′(0)

Sα,β
k,k′(0)= δαβSkk′(0)

Tα,β
k,k′(0)= δαβTkk′(0)











independent of α

The invariance of the crystal under translation and the symmetry of R require

R11(0) = R22(0) = −R12(0) = −R21(0)

T11(0) = −T21(0)
T22(0) = −T12(0)

We have introduced four parameters, the shell charges and the shell displace-
ments, to describe two physically meaningful quantities, the electronic dipole
moments of the ions. We can, therefore, impose two arbitrary conditions on the
equations.

R11(0) = T11(0) = T22(0) =
e2

v
R0

This makes the R and T matrices identical at q = 0..
These equations may be derived by postulating that the energy perturba-

tion in the crystal, when the ions are given small displacements, is a quadratic
function of the nuclear displacements and the electronic dipole moments. The
shell model takes account of the dipole terms in a multipole expansion of the
charge distribution about the ion sites. Cowley (1962) has given a quantum
mechanical page 136justification for the shell model, and indicated its extension to in-
clude quadripole terms. Other theories based on dipole expansions give similar
equations to the shell model, the differences being largely in the physical as-
sumptions used to reduce the number of arbitrary parameters (Cowley et al.,
1963). It would, of course, be possible to base a theory on a dipole expansion
about points in the unit cell other than the ion sites.

6.6 The Macroscopic Constants

page 136An ionic crystal with the sodium chloride structure requires three constants
to describe its elastic properties, and three more constants to describe the be-
haviour of the dielectric constant as a function of frequency for frequencies near
the infra-red dispersion frequency.

The elastic constants are given in terms of the short range ion-ion force
constants by Cowley (1962). The elastic constants do not depend on the polar-
isabilities of the ions and are the same as those given by the rigid ion model.
In terms of the first and second neighbour force constants defined in the section
on the page 137rigid ion model, the elastic constants are

c11 =
e2

vr0

{

1

2
(A+A′′ +B′′)− 2.55604Z2

}

c12 =
e2

vr0

{

1

4
(A′′ − 2D′′ − 2B − 3B′′) + 0.11298Z2

}

c44 =
e2

vr0

{

1

4
(2B + 2D′′ +A′′ +B′′) + 1.27802Z2

}
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If the forces are central, use of the stability criterion,

B + 2B′′ = −2

3
αMZ

2

and the condition D′′ = B′′ gives

c12 = c44 =
e2

vr0

{

1

4
(A′′ −B′′)− 0.69550Z2

}

The equations of motion at q = 0 may be written in terms of the effective
field E at an ion site. Due to the symmetry of the crystal this effective field is
the same at all ion sites.

m1ω
2u1 =

e2

v
{R0u1 −R0u2 +R0w1 −R0w2} − ZeE

m2ω
2u2 =

e2

v
{−R0u1 +R0u2 −R0w1 +R0w2}+ ZeE

0 =
e2

v
{R0u1 −R0u2 + (k1 + S11)w1 + S12w2} − Y1eE

0 =
e2

v
{−R0u1 +R0u2 + S12w1 + (k2 + S22)w2} − Y2eE

As before, we have dropped the cartesian superscripts and have used the two
arbitrary parameters of the shell modelpage 138 to make the R and T matrices identical
at q = 0. We have put

Sα,β
k,k′(0) = δαβ

e2

v
Sk,k′

and S21 = S12

From the first two equations,

m1u1 +m2u2 = 0

and the equations may be rewritten in terms of the relative ion displacements
u = u1 − u2 and the reduced mass m = m1m2

M1+M2

mω2u =
e2

v
{R0u+R0w1 −R0w2} − ZeE

0 =
e2

v
{R0u+ (k1 + S11)w1 + S12w2} − Y1eE

0 =
e2

v
{−R0u+ S12w1 + (k2 + S22)w2} − Y2eE

The polarisation, P , is given by

P =
e

v
(Zu+ Y1w1 + Y2w2)

The effective field is the sum of the macroscopic field, E, and the Lorentz field
4π
3 P .

E = E +
4π

3
P
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The displacement, D, is given by page 139

D = ǫE = E + 4πP

where ǫ is the dielectric constant.

Hence E =
4π

ǫ− 1
P

and E =
1

b
P where b =

3

4π

(

ǫ− 1

ǫ+ 2

)

This is the Clausius-Mossotti relation.
We now have a fourth equation to add to the other three:

e

v
(Zu+ Y1w1 + Y2w2)− b E = 0

A solution for u, w1, w2 and E is possible if

b Y1 Y2 Z

Y1 k1 + S11 S12 R0

Y2 S12 k2 + S22 −R0

Z R0 −R0 R0 − vm
e2 ω

2

= 0

This equation determines b as a function of ω. The function is completely
determined by three constants defined in terms of the shell model parameters.
In terms of the dielectric constant, this dispersion formula may be written as

ǫ = ǫ∞ +
ǫ0 − ǫ∞
1− ( ω

ω0
)2

(6.2)

page 140ǫ0 is the value of ǫ for ω = 0, ǫ∞ the value of ǫ as ω tends to infinity, and when
ω = ω0, ǫ is infinite. These three constants are given in terms of the shell model
parameters by the following equations:

b0 Y1 Y2 Z

Y1 k1 + S11 S12 R0

Y2 S12 k2 + S22 −R0

Z R0 −R0 R0

=0

b0 =
3

4π

(

ǫ0 − 1

ǫ0 + 2

)

b∞ Y1 Y2
Y1 k1 + S11 S12

Y2 S12 k2 + S22

=0

b∞ =
3

4π

(

ǫ∞ − 1

ǫ∞ + 2

)

3
4π Y1 Y2 Z

Y1 k1 + S11 S12 R0

Y2 S12 k2 + S22 −R0

Z R0 −R0 R0 − vm
e2 ω

2
0

=0

page 141
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6.7 Reduction of the Number of Arbitrary Parameters

The equations of the shell model contain a large number of arbitrary param-
eters, and some simplification is necessary when applying the theory in practice.
The polarisability of the positive ion is frequently so small compared with that
of the negative ion that it may be ignored. In the case of MgO, the polaris-
abilities given by Kittel (1956, table 7.1) are 3.88 × 10−24 cms3 for O−−, and
0.094 × 10−24 cms3 for Mg++. We shall, then, ignore the polarisability of the
magnesium ion and set k1 =∞. Y1 then disappears from the equations.

The polarisation of the ion arises from the relative motion of the outer elec-
trons and the core. The short range forces are expected to act mainly through
these same electrons, which, in the shell model, form the shell of the ion. We
assume that all short range forces act through the shell, i.e., F = E = O, giving
R = T = S. Cowley et al (1963) present a rough justification for this procedure.
We need now only consider one set of short range coupling coefficients.

page 142

6.8 Evaluation of the Parameters of the Theory in
Terms of the Macroscopic Constants

The assumption that all short range forces act through the shell and that only
forces between first and second nearest neighbours are important, reduces the
number of parameters needed to describe these forces to five. If the polarisability
of the positive ion is ignored, the theory contains the following 8 parameters.

Short range
forces























Nearest neighbours A
′′ B

2nd Nearest neighbours A′′
′′ B′′
′′ D′′

Ionic charge Z

Shell charge Y

Shell isotropic force constant k

We make the following assumptions to reduce the number of parameters to
six which may then be determined from the macroscopic constants. The ionic
charge is assumed to be twice the electronic charge (Z = 2), and the forces
between second nearest neighbours are assumed to be axially symmetric (D′′ =
B′′). There is no justification for this second assumption in the case of ionic
crystals,page 143 but the exact form assumed for the weaker second neighbour forces is
unlikely to affect the results very much.

Smart’s (1961) infra-red measurements give the following values for the infra-
red dispersion frequency and the dielectric constants:

∗ν0 = 11.52× 1012 c/sec

ǫ0 = 9.77

ǫ∞ = 2.94
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These values give

R0 = 23.56 (R0 = S11 = −S12 = A+ 2B)

Y = −2.64
k = 50.84

One other set of values is possible, but gives an imaginary frequency for the
L.A. mode at (1, 0, 0).

Dae-Hyun Chung (1963) gives the following values for the elastic constants
of magnesium oxide:

c11 = 28.917× 1011 dynes/cms
2

c12 = 8.796 ′′

c44 = 15.461 ′′

These values, together with the value already obtained for R0, give page 144

A = 32.31

B = −4.38
A′′ = −2.50
B′′ = 0.42 (D′′ = B′′)

These values of the parameters have been used to draw contours of constant
frequency for phonons with wave vectors in the (1, 0, 0) and (1, 1, 0) mirror
planes and with polarisation vectors lying in the plane, and also to draw sections
of the dispersion relation for various directions in these planes for comparison
with the results of the neutron scattering experiments.

6.9 Degeneracy

Before the contour maps are introduced, it is of some interest to determine
the types of degeneracy that can occur between the various branches of the dis-
persion relation. Landau and Lifshitz (1958) give an account of the degeneracies
which occur between electron terms in a molecule which is readily applied to
the present case.

Assume that two branches are near degenerate at wave vector q page 145

Mξ1 = ω2
1ξ1 and Mξ2 = ω2

2ξ2

where ω1 ≈ ω2

An eigenvector of the dynamical matrix for a point near q with frequency
near ω1 and ω2 will be a linear combination of ξ1 and ξ2 to a first order of
approximation:

ξ(q + δq) = c1ξ1(q) + c2ξ2(q)

write M(q + δq) =M(q) +M ′

then (M +M ′)ξ = ω2ξ

∗See, however, section 6.11
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or c1(ω
2
1 +M ′ − ω2)ξ1 + c2(ω

2
2 +M ′ − ω2)ξ2 = 0

Form the scalar products of this expression with ξ1 and ξ2

c1(ω
2
1 +M ′

11 − ω2) + c2M
′
12 = 0

c1M
′
21 + c2(ω

2
2 +M ′

22 − ω2) = 0

where M ′
ij =

∑

α,β
k,k′

ξαk,iM
′α,β
k,k′ξ

β
k′,j

The solubility condition for these equations gives two possible values of ω

ω2
1 +M ′

11 − ω2 M ′
12

M ′
21 ω2

2 +M ′
22 − ω2 = 0

or

ω2
1 =

1

2

(

ω2
1 + ω2

2 +M ′
11 +M ′

22

)

±
{

1

4

(

ω2
1 − ω2

2 +M ′
11 −M ′

22

)2
+ (M ′

12)
2

}
1
2

page 146 where we have used the fact that M ′
21 =M ′

12. For a degenerate solution, two
conditions must be fulfilled:

ω2
1 − ω2

2 +M ′
11 −M ′

22 = O

and M ′
12 = 0

If we allow q to have s dimensions, the dispersion relation is a surface in
(s + 1) dimensional space, and degeneracies occur in general in a manifold of
(s−2) dimensions. However, it can happen that, from symmetry considerations,
M ′

12 is always zero. This is the case when we can divide the branches into
symmetry types, and branches 1 and 2 belong to different types. In this case
only one condition remains, and degeneracy occurs in a manifold of (s − 1)
dimensions. We shall distinguish three different cases.

(1) q general (s = 3) The dispersion relation is a surface in 4 dimensional
space. No division into symmetry types is possible. Degeneracies between
branches occur along lines in reciprocal space.page 147

(2) q in a mirror plane (s = 2)
The dispersion relation is a surface (in 3 dimensional space). The branches
may be divided into two symmetry types; those with polarisation vectors
perpendicular to the plane, and those with polarisation vectors in the
plane. Degeneracy between perpendicular and parallel types occurs along
lines in the plane, but degeneracy between like types occurs only at isolated
points.

(3) q in a symmetry direction (s = 1)
The dispersion relation is a line. The branches may be divided into 3
symmetry types, L, T1 and T2 where the polarisation vectors of the L
type are parallel to the symmetry direction, and those of the T1 and
T2 types are perpendicular to the symmetry direction. Degeneracy is
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possible only between unlike types, when it will in general occur at points.
Since degeneracy between, say, the two L branches is impossible, they
may be labelled LO and LA, depending on their behaviour at the origin,
without risk of confusion at points away from the origin. In the case of
the T1 and T2 branches in the (1,0,0) direction in a cubic crystal, the first
condition is also satisfied from symmetry considerations, and the branches
are degenerate for all q in this direction.

It can be shown that the gradient of the dispersion relation and the polari-
sation vectors change continuously page 148along a line in the dispersion relation which
passes through a degeneracy. Let us move a distance αδq from our original
point towards the degeneracy

M(q + αδq) =M(q) + αM ′

With α = 1 we reach the degeneracy, so M ′ satisfies the two conditions already
found. The equations for c1 and c2 become

c1(ω
2
1 + αM ′

11 − ω2) = 0

c2(ω
2
2 + αM ′

22 − ω2) = 0

where we have used the fact that M ′
12 = 0. If c1 6= 0 and c2 6= 0, we must have

α = 1 for the above equations to be true. If c1 6= 0 and c2 = 0

ω2 = ω2
1 + αM ′

11

or ω = ω1 +
α

2

M ′
11

ω1

If c2 6= 0 and c1 = 0

ω2 = ω2
2 + αM ′

22

or ω = ω2 +
α

2

M ′
22

ω2

c1 and c2 cannot both be zero if we are to have ξ = c1ξ1+c2ξ2. The frequencies
are seen to be linearly dependent on α, and the polarisation vector does not
change along the line through the degeneracy.

page 149In the case of point degeneracies between branches of like symmetry types
in a mirror plane, the M ′

ij are linear functions of the two components of the
wave vector. The equation for the frequencies then gives a dispersion relation
in the form of an elliptic cone. The following diagram shows the form of the
dispersion relation near the degeneracy, and the changes in polarisation vector
that would occur in say the upper surface in the region of the degeneracy. If the
polarisation vectors at the point P are ξ1 and ξ2 for the upper and lower surfaces
respectively, the polarisation vectors for the upper surface at other points are
of the form ξ = c1ξ1 + c2ξ2, and these are drawn as lines at an angle φ to
the q1 axis where tanφ = c1

c2
. page 150The lines represent the polarisation vectors

in a conventional way for the two component vectors obtained in the case of a
Bravais lattice. The polarisation vectors of say the upper surface on opposite
sides of the degenerate point are orthogonal.
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Figure 6.3: The dispersion relation in the neighbourhood of a degeneracy

6.10 Preparation of the Contour Maps

The experimental measurements enable the phonon dispersion relation to be
determined for phonons with wave vectors in a mirror plane, and with polari-
sation vectors parallel to the plane. Contour maps of the theoretical dispersion
relation have been prepared for the four branches of the dispersion relation in
the (1,0,0) and (1,1,0) mirror planes which have polarisation vectors parallel
to the planes. It has been shown that these branches are degenerate only at
isolated points, and so may be separated readily and displayed as four separate
surfaces each represented by its own contour map. If, for any wave vector, the
four solutions of the secular equation are arranged in order of descending fre-
quency, branch 1 describes the behaviour of the first solution as a function of
wave vector, branch 2 that of the second solution, etc.page 151 To draw each contour of
constant frequency, the secular determinant

∆ = det
(

Mα,β
k,k′ − ω2δαβδkk′

)

was evaluated for the particular frequency for values of the wave vector forming
a grid of points in reciprocal space, so spaced that there were 40 points between
the origin and the point (1,0,0), and between the origin and the point (1,1,0).
The Stretch computer was used to make these calculations, and a library rou-
tine used to interpolate the contour ∆ = 0 between the grid points and to
prepare the output for the automatic graph plotter. The interpolation formula
is quadratic and uses six values of ∆ on the sides of a triangle to determine
the contour within the triangle.page 152 Each contour was initially drawn on a sepa-
rate sheet, and the various disconnected parts of the contour were allocated to
one of the four branches with the aid of some additional frequency calculations
where necessary. The contours were then traced to form four contour maps.
Symmetry directions are shown by full lines, and the symmetry classification
of the branch is written beside the line. This classification changes at degen-
erate points. The optic branches are normally identified by their behaviour at
a lattice point. However, it has been shown that in a symmetry direction, two
branches of the same symmetry type (i.e., LO and LA or TO and TA) cannot be
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page 151

Figure 6.4: The six points used by the interpolation formula to determine the
contour within the shaded area

degenerate. Consequently, the optic branch may also be defined as the branch
of a given symmetry type of higher frequency. This second definition is used in
the symmetry direction where q takes the form (0, ζ, 1), as this direction does
not pass through a lattice point.

Degenerate points have been marked and their frequencies given. An iter-
ative method based on the equations of section 6.8 was used to locate these
points in regions where the shape of the contours suggested a page 153possible degener-
acy. It is possible that there are other degenerate points that are not marked.
Symmetry arguments show that some degeneracies must occur. For instance,
the degeneracies at the point (0,1,1) in the (1,0,0) plane must occur there from
symmetry. In the (1,1,0) plane we can show that there must be degeneracies
between the L0 and T0 and between the LA and TA branches somewhere along
the path joining the three points (0,0,0), (0,0,1) and (1, 1̄, 1). If we assume that
the degeneracy does not occur between the first two points, since L is above T
at the origin, L must still be above T at (0,0,1). In the new symmetry direction
towards (1, 1̄, 1), the classification of the branches changes, and L and T are
interchanged. Hence T is above L. However, at (1, 1̄, 1), a lattice point, L is
above T and, therefore, there must be a degeneracy between the last two points.
This argument applies to both optic and acoustic modes.

page 153

T L

L T

T

L

T

L

(0,0,0) (0,0,1) (1, 1̄, 1)

ω ↑

−→
q

Figure 6.5: Degeneracies in the (1,1,0) plane
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b
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b
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b b

b

b b

b

b b

b

b

Oxygen ion

Magnesium ion

The structure of magnesium oxide

b

b

b

b

b

b

b

b

b

1r0

(1, 0, 0) plane

(1, 1, 0) plane

The reciprocal lattice of magnesium oxide, showing the portions of the mirror
planes covered by the contour maps

Symmetry direction

− − − −− − − −− − − − Brillouin zone boundary
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Figure 6.6: Key to contour map (figs. 6.7 to 6.14)
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Figure 6.7: (1 0 0) plane branch 1
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Figure 6.8: (1 0 0) plane branch 2
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Figure 6.9: (1 0 0) plane branch 3
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Figure 6.10: (1 0 0) plane branch 4
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Figure 6.11: (1 1 0) plane branch 1
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Figure 6.12: (1 1 0) plane branch 2
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Figure 6.13: (1 1 0) plane branch 3
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Figure 6.14: (1 1 0) plane branch 4

85



6.11 The Infra-Red Dispersion Frequency for Magnesium

Oxide
The infra-red dispersion frequency is the frequency occurring in the denom-

inator of equation 6.2. It may be found from infra-red measurements. Field,
Smart and Wilkinson (l964) give two values for the dispersion frequency:-

(a) 394 cms−1 This value is based on a measurement of the infra-red absorp-
tion of a thin film of magnesium oxide

(b) 403 cms−1 This value is based on a Kramers-Krönig analysis of the reflec-
tion spectrum. This is a revised value. Smart gives the value 384 cms−1

in his thesis,and,this vaLue was used in the previous calculations, but ap-
parently there were errors in his analysis (Field, private communication).

Von Häfele (1963) has measured the infra-red reflectivity of magnesium
oxide, and obtained the following value for the dispersion frequency:

(c) 394 cms−1 Reflection measurements were made at two different angles page 164of
incidence, and the Kramers-Krönig analysis avoided.

Kramers-Krönig analysis depends on a general property of complex functions
which involves integrals over an infinite range. To perform these integrals, the
reflectivity must be known over an infinite range of frequencies. This type of
analysis requiring an infinite range of experimental data is not usually very
satisfactory. The value of 394 cms−1 (= 11.81 × 1012 c/sec) based on a direct
absorption measurement has therefore been chosen. This value agrees with that
obtained by von Häfele. The values of the dielectric constants have also been
taken from Born and Huang (1954), Table 17, rather than from the infra-red
measurements. The agreement, however, is very good and this involves little
change. Revised parameters have been calculated, and the frequencies at points
of high symmetry are compared with the original values. page 165page 166

page 165
Table 6.5: Data on which Model is Based

c11 c12 c13 ǫ0 ν0 ǫ∞
(1011 dynes/cms2) (1012 c/sec)

Original
data

28.917 8.796 15.461 9.77 11.52 2.94

Revised
data

′′ ′′ ′′ 9.8 11.81 2.95

page 165
Table 6.6: Shell Model Parameters

A B A′′ B′′ Z Y k

Original 32.31 -4.38 -2.50 0.422 2 -2.641 50.84

Revised 32.43 -4.26 -2.57 0.365 ′′ -2.782 58.36
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Table 6.7: Calculated Frequencies (1012 c/sec)

(0,0,0) L.O. 21.00 21.53

T.O. 11.52 11.81

(1,0,0) L.O. 15.52 15.42

L.A. 12.87 12.83

T.O. 12.37 12.50

T.A. 9.13 9.05

( 12 ,
1
2 ,

1
2 ) L.O. 20.22 20.29

L.A. 15.16 15.44

T.O. 9.95 10.05

T.A. 8.42 8.58

The revised frequencies differ little from those originally calculated.
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Chapter 7

The Phonon Dispersion Relation of

Magnesium Oxide – Experimental

7.1 Introduction

The shell model has been used with considerable page 167success to describe the
crystal dynamics of the alkali halides. It is of some interest to see if the same
theory (as discussed in Chapter 6) can describe as successfully the dynamics of a
crystal such as magnesium oxide which is considered to be not as purely ionic in
character as the alkali halides. Both magnesium and oxygen have high coherent
cross sections and low incoherent and absorption cross sections, which makes
magnesium oxide suitable for the type of experiment described in this thesis.
However, the calculations of Chapter 6 show that phonons with frequencies
up to 21 × 1012 c/sec are present. The population factor, Pj , in the cross
section formula 2.3 becomes very small for experiments in which neutrons gain
energy from phonons of such high frequency. In fact very few phonons from the
branch with the highest frequency were observed. Apparatus was constructed
to overcome this restriction by the use of a neutron energy loss page 168technique, and is
described in Chapter 8. Unfortunately, no results have yet been obtained with
this apparatus.

The frequencies of 656 phonons were determined. 388 of these had wave
vectors parallel to the (1,0,0) mirror plane, and 268 wave vectors parallel to the
(1,1,0) mirror plane. Each plane has been divided into a series of sectors 5◦ wide,
and for each sector graphs of frequency against wave vector amplitude have been
plotted for all phonons with wave vectors lying in the sector. Sections of the
theoretical dispersion relation along the centre line of the sectors are shown on
the same graphs. An attempt has been made to identify the branch to which
a phonon belongs by comparing the theoretical and observed intensities of the
peaks in the time of flight spectrum. This has not been altogether successful.

The theory is found to agree quite closely with the experimental points. The
portions of the branches which become T0 in symmetry directions have slightly
lower frequencies than the experimental results indicate, and the branch with
the highest frequency lies above the experimental points in the neighbourhood
of the point page 169(1,0,0). Very few points have been obtained on this latter branch
except near the zone boundary where its frequency is comparatively low.

7.2 Apparatus

This experiment made use of the cold neutron apparatus described in Chap-
ter 3. Rotor 5 in Table 3.1 was used. At first three LiF-ZnS scintillator detectors
were mounted above the sample in the shielding shown in fig. 3.2. These de-
tectors are described in section 3.7. Most of the results for phonons with wave
vectors parallel to the (1,1,0) mirror plane were obtained with the apparatus
in this form. The detector shielding was later extended (figs. 3.1 and 3.3) to
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house 12 detectors, and the results for the (1,0,0) plane were obtained with the
12 detectors.

Two different magnesium oxide crystals were used. One had a (1,1,0) mirror
plane perpendicular to its longest axis, and so was conveniently shaped for
measurements in this plane. The other had a (1,0,0) mirror plane perpendicular
to its longest axis and was used for measurements in this plane. The mosaic

spread of both crystals, given by neutron rocking curves, was about 0.3◦ standard
deviation. It is probable that this is not apage 170 true mosaic spread, but that the
crystals consisted of several parts which had slightly different orientations.

The crystals were oriented with their mirror planes parallel to the scattering
plane by means of the techniques described in Appendix III. Full use was made
of the automatic features of the goniometer (Peckham, 1964c). Several crystal
angles were set in advance, and the crystal was automatically turned to the next
angle when a preset number of beam monitor counts had been accumulated.
Counting periods of about 18 hours were necessary to obtain time of flight
spectra for each crystal orientation. Two typical spectra are shown in fig. 7.1.
The liquid hydrogen moderator was available for the whole of this experiment.

The various stages in the reduction of the data are described in Chapter
4. Initially, the time of arrival of each neutron was recorded on magnetic tape.
Time of flight spectra were obtained from the magnetic tape by the analyser.
The I.B.M. computer was used to find peaks in the time of flight spectra and to
determine their positions. Phonon frequencies and wave vectors were calculated
from the peak positions by the Ferranti Mercury computer.

7.3 Results

Sections of the reciprocal lattice in the (1,0,0)page 172 and (1,1,0) mirror planes
are shown in fig.7.2. The Brillouin zone boundaries are shown as broken lines.
The symmetry of the lattice is such that the dispersion relation is completely
determined if the frequencies corresponding to wave vectors-lying in one half of
the areas shown are given. These regions have been divided into 5◦ wide sectors
as shown in the diagram. The sectors are labelled A1, A2, . . . , A9 in the (1,0,0)
plane, and B1, B2, . . . , B18 in the (1,1,0) plane. A reduced wave vector lying
in one of these sectors has been calculated for each observed phonon. A section
of the dispersion relation is obtained by plotting the frequencies against the
reduced wave vector amplitudes of all phonons with reduced wave vectors lying
in a given sector. These sections, labelled with the sector number, are shown
in figs. 7.5 to 7.18. Sections of the theoretical dispersion relation, in directions
along the centre line of each sector, have been taken from the contour maps
given in Chapter 6.

A standard deviation error in the frequency of each phonon was calculated
in the way described inpage 173 Chapter 4. The errors were found to depend strongly
on the frequency, as the neutron groups corresponding to the higher frequency
phonons were very much weaker (see the behaviour of the population factor in
fig. 3.14). Average errors have been calculated for phonons with frequencies
between 0 and 2, 2 and 4, 4 and 6, etc. ×1012 c/sec. The curve in fig.7.3 is a
smooth curve which gives approximately these errors.
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Figure 7.1: Neutron time of flight spectra from MgO

7.4 Resolution

A function, which is the sum of two similar Gaussian peaks, shows a central
dip only if the separation of the peaks is greater than the sum of their standard
deviations. It would be unlikely that two peaks in a time of flight spectrum
would be resolved if they were so close together that they did not show a central
dip. This resolution criterion is to some extent arbitrary, but must be of the
right order of magnitude. Fig. 3.14 shows that the resolution of the apparatus
at a phonon frequency of 12×1012 c/sec is about 3%, or 0.36×1012 c/sec. Two
branches of the dispersion relation will be unresolved if they are separated by
less than about 0.7× 1012 c/sec. The position assumed for the combined peak

page 191will lie somewhere between the two branches and depends on the intensities of
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A1

A2

A3

A9

b

(1, 0, 0) Plane

B1 B2 B3

B18b

(1, 1, 0) Plane

Figure 7.2: Sections of the reciprocal lattice of magnesium oxide showing the
positions of the sectors. The areas shown are shaded in Fig. 6.6
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0.1

0.2

0.3

5 10 15 20

δν
(1012 c/sec)

ν (1012 c/sec)

Figure 7.3: Experimental error (δν) (standard deviation) as a function of phonon
frequency (ν)

page 176

Figure 7.4: Key to figs. 7.5 to 7.18

Experimental points have been allocated to one of the four branches of the
dispersion relation on the basis of observed intensity.

Symbol Branch

△ 1

▽ 2

N 3

H 4

© Unknown
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Figure 7.5
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Figure 7.6
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Figure 7.7
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Figure 7.8
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Figure 7.9
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Figure 7.10
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Figure 7.11
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Figure 7.12
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Figure 7.13
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Figure 7.14
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Figure 7.15
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Figure 7.16
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Figure 7.17
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Figure 7.18
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the two constituent peaks. If one branch is known to give a very small intensity,
it could be assumed that the peak position corresponded to the other branch.
Unfortunately, the branches are of course nearest together in the region of a
degeneracy, and this is just the region where we are most unsure of the phonon
polarisation vectors and hence of the intensity of the peaks. It has been shown
in Chapter 6 that the polarisation vectors change rapidly near a degeneracy, and
hence the polarisation vector of a particular branch for a given wave vector will
depend critically on the position of the neighbouring degeneracy. This position
will depend on the exact values of the parameters of the theory. In a symmetry
direction, however, the polarisation vectors are known, and the above difficulty
does not arise.

The sections of the dispersion relations show that branches 2 and 3 will be
unresolved over quite large areas of reciprocal space.

7.5 Intensities

The cross section formula (equation 2.3) may bepage 192 used to calculate the ex-
pected intensity of a peak in the time of flight spectrum given the wave vector,
branch and the parameters of the theory. The Debye-Waller factor may be es-
timated from the Debye temperature. This, for MgO, is of the order 800◦K. A

typical neutron wave vector change in the scattering process is 0.5 Å
−1

. The
factor e−2W is then about 0.95. This differs little from unity, and the Debye-
waller factor has therefore been ignored. The expression for g2j for a crystal with
the sodium chloride structure becomes

g2j =

(

b1√
m1

Q · ξ1j −
b2√
m2

Q · ξ2j

)2

(7.1)

where the + sign is taken if the lattice vector τ in the equation

Q = q + τ

is even, and the − sign if it is odd. The notation is that of Chapter 2.
An empirical formula was used for the detector efficiency E:–

E =
1

1.10|k1|3 + 1.97
(k1 in Å

−1
)

This formula approximately reproduces the efficienciespage 193 given by Harris, Wraight
and Duffil (1962) for similar detectors.

The factor Jj depends on the gradient of the dispersion relation. This was
calculated for each of the four possible branches for the observed phonon wave
vector. The factor g2j depends on the polarisation vectors, and was again cal-
culated for each of the four possible branches. The other factors on the cross
section were calculated from the experimental values of phonon frequency and
wave vectors. Four theoretical intensities given by

Ij = E|k1|
P

ν

g2j
Jj

are thus calculated and compared with the observed intensity I0. No attempt
has been made to obtain an absolute value for the theoretical intensity, which
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would depend on the sample size, beam flux, etc, but the ratio Ij/I0 should be
a constant for the experiment with a correct choice of j . In practice, this ratio
was found to vary between about 0.2 and 1.2. Various factors could have caused
this variation. The efficiency of the individual detectors was not measured and
might have varied from one to another by as much as a factor of 2. Different
volumes of the sample may page 194have been in the beam at different crystal angles. An
anomalous intensity will be found if the neutron underwent a Bragg reflection
either before or after the inelastic scattering process. This latter effect will be
discussed below. It seems to be important because, due to the high frequencies
of some of the phonons in MgO, the wave vectors of the scattered neutrons may
be large.

When the ratio Ij/I0 was within the range mentioned for a particular j,
but well outside the range for other values of j, the phonon has been plotted in
figs.7.5 to 7.18 with a special symbol to indicate its branch (see key in fig.7.4).
When two theoretical frequencies were similar to the observed frequency, but
the other two quite different, the intensity has been used to distinguish between
the two nearest branches only.

The intensity calculations are not considered to be very reliable for the rea-
sons already given, and if a phonon quite obviously belongs to a particular
branch by virtue of its frequency, this should overrule the allocation to a partic-
ular branch according to intensity. However, it is considered that if the intensity
consistently favours a particular branch for several adjacent points, these points
probably do belong to this branch. page 195In Chapter 6 it was shown that the dis-
persion relation takes the form of an elliptic cone in the neighbourhood of a
degeneracy. A cross section passing near the degeneracy will be hyperbolic in
form and the polarisation vectors will be as shown in fig. 7.19 (see fig.6.3).

page 195

ξ2 ξ1

ξ1 ξ2

branch 1

branch 2

ω

|q|

Figure 7.19: Dispersion relation near a degeneracy showing polarisations

The intensity of neutron groups scattered from branch 1 on the left of fig.
7.19 will be similar to the intensity from branch 2 on the right as both the
polarisation vectors and gradients are similar.
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7.6 Bragg Reflections in the Sample

If the neutrons undergo a Bragg reflection either before or after the inelastic
scattering process, the calculated phonon wave vector will differ by a reciprocal
lattice vector from the true phonon wave vector. Thispage 196 will not affect the reduced
wave vector, and a point on the dispersion relation will still be obtained. How-
ever, the factor (Q ·ξ)2 in the intensity formula will not be correctly calculated,
and the calculated intensity will not agree with the observed intensity. In fact
the intensity may well indicate that the phonon belongs to a different branch.
The probability of a Bragg reflection is given by the following considerations.

A neutron wave vector (k) satisfies the Bragg condition if any reciprocal
lattice point (Q) lies on the surface of the sphere centred on the end of the wave
vector (P) , and passing through the origin (O) (fig. 7.20). Since OP = PQ in
the triangle OPQ,

page 196

b

b

b

δr

k
τ

θ

P

δτ Q

O

Figure 7.20: Change in neutron wave vector caused by Bragg reflection

where τ is the reciprocal lattice vector OQ. Becausepage 197 of the finite resolution
of the apparatus, neutrons with wave vector (k + δk) are also accepted by the
detectors. A lattice point at (τ + δτ ) would satisfy the Bragg condition with
this wave vector where

(τ − k) · δτ = τ · δk (7.2)

(τ−k) is the vector PQ and |τ−k| = |k|. The left-hand side of equation 7.2 may
be written as |k|δr, where δr is the distance of the lattice point (τ+δτ ) from the
surface of the sphere OQ. If we assume that the apparatus has an independent
standard deviation resolution σ in each component of k, the quantity τ ·δk has
standard deviation |τ |σ. The right-hand side of equation 7.2 exists between the
approximate limits ±1.6|τ |σ (These limits include about 90% of the neutrons
accepted by the detectors). The limits of δr are given by

|k|δr = ±1.6|τ |σ

δr = ±1.6 |τ |σ|k|
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We may integrate over the surface of the sphere OQ to obtain the volume V in
which reciprocal lattice points must lie to satisfy the Bragg condition:

V =

∫ π

0

2π|k|2
(

3.2
|τ |σ
|k|

)

sin θ dθ

Now |τ | = 2|k| sin θ
2

page 198

The integral may be evaluated to give

V = 53.6|k|2σ

Table 3.4 shows that the resolution in the scattered wave vector is about 1.1%
and remains more or less constant over the range of wave vectors obtained. The
number of reciprocal lattice points per unit volume in reciprocal space is 2r30,
and the average number of points, N , which will satisfy the Bragg condition is
given by

N = 2r30V

or N = 10.9|k1|3

where |k1| is in Å
−1

.

page 198
Table 7.1: Average Number of Reciprocal Lattice Points Satisfying the Bragg
Condition

Phonon frequency (c/sec) |k1| (Å
−1

) N

5× 1012 0.559 1.9

10× 1012 0.752 4.7

page 199It is difficult to calculate the fraction of neutrons of a given energy that will
be Bragg reflected by a crystal. The fraction will depend on the size and shape
of the crystal and its mosaic spread. Calculations have been made for the case
of an infinite crystal slab by Bacon and Lowde (1948). In practice it is found
that, for a crystal a centimetre or so thick formed of atoms with a high coherent
cross section, as much as 50% of an incident neutron beam may be reflected.
The percentage reflected will be less than this if the reciprocal lattice point
involved is far removed from the origin. The scattering lengths for magnesium
and oxygen are similar, and the structure factor for odd lattice points which
contains their difference is thus small. However, it is considered that since there
are usually several reciprocal lattice points satisfying the Bragg condition for a
given neutron wave vector (k1) (Table 7,1), strong reflection of the inelastically
scattered neutrons will frequently occur. The presence of neutron groups with
anomalous intensities is explained by this effect as was mentioned in section 7.5.

7.7 Discussion

The experimental results appear to be in good agreement page 200with the theory.
The agreement is particularly good for branch 4, the lowest frequency branch.
Unfortunately, the resolution of the apparatus was not good enough for the
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behaviour of branches 2 and 3 to be determined unambiguously where they are
nearly degenerate. This is particularly obvious in sectors A6 to A9.

There are no points on the optic branches near the origin in any of the
sectors in the (1,0,0) plane. All lattice points in this plane are even and the
plus sign must be used in equation 7.1 for the structure factor. For optic modes
near a lattice point, ξ1j ≈ −ξ2j , and since the scattering lengths b1 and b2
are nearly equal for magnesium and oxygen, the two terms almost cancel one
another, giving a very small cross section. The results for the (1,1,0) plane show
that the theoretical frequencies for branch 2 near the origin are too low. This
indicates that the value used for the infra-red dispersion frequency was too low.
Further analysis of Smart’s results, and other independent measurements show
that this was indeed the case (see section 6.11).

page 201 The revised frequencies given in Table 6.7 make branch 2 a better fit to the
experimental results near the origin, but discrepancies remain near the point
(1/2, 1/2, 1/2) where the theoretical frequencies for this branch appear to be too
low (see sectors B8 to B15).

There are very few results for branch 1 owing to its high frequency and
consequent small population factor in the cross section. The few results there
are indicate that the theoretical frequency is too low near the point (1,0,0), and
too high near the point (1/2, 1/2, 1/2) (see sectors B1 to B12). However, these
are rather inaccurate measurements as the number of counts in the peaks of the
time-of-flight spectra were small (fig.7.3).

Some isolated points do not appear to lie on any of the branches shown. It
is possible that these points lie on the branches polarised perpendicularly to the
mirror planes. The cross section for scattering by such phonons should of course
be zero, but it has been pointed out that if the neutrons undergo a Bragg reflec-
tion after being inelastically scattered, neutron groups corresponding to these
phonons may be observed. The theoretical frequencies for the perpendicularly
polarised branches have not been calculated.

page 202 Some of the experimental results have been presented elsewhere (Peckham,
1963), and compared with previously unpublished calculations by Hardy and
Karo. The present calculations are in considerably better agreement with the
experimental dispersion curves. Hardy and Karo’s value for the frequency of
branch 4 at the point (1/2, 1/2, 1/2) for example, is almost one half that given by
the Shell Model calculations.

The Shell Model provides a fairly accurate description of the crystal dynamics
of magnesium oxide. However, further experimental results are required to check
the frequencies given for the branch of the dispersion relation with the highest
frequency. It would be necessary to perform an experiment in which the neutron
loses energy to obtain such results.
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Chapter 8

Crystal Spectrometer

8.1 Introduction

The frequencies of the longitudinal optic mode in page 203magnesium oxide are ex-
pected to be as high as 21 × 1012 c/sec. At this frequency, the occupation
factor, Nj , in the expression for the cross section falls to 0.033 and the mode
can, therefore, be investigated only in phonon creation experiments. In this type
of experiment, a high energy incident neutron beam is required. Two phased
rotors are necessary to monochromate such a beam mechanically with reason-
able resolution, and no such equipment was available at Harwell. However, a
crystal spectrometer was available which was capable of providing a monochro-
matic beam of the required energy. It was decided to construct an analysing
spectrometer which would convert the apparatus into a three axis spectrometer
suitable for inelastic scattering experiments.

The constantQmethod of operation – described in the next section – seemed
to offer such advantages (Brockhouse, 1960) that the necessary control equip-
ment page 204was designed and built. This consisted of a mechanism to control the
monochromator spectrometer arm angle, the sample angle, and the scattering
angle automatically from punched paper tape. The tapes were prepared directly
by the Mercury computer.

A study was made of the conditions necessary to obtain narrow, focussed
peaks in the energy spectra, and a convenient graphical method of focussing
was evolved.

Unfortunately, fast neutrons leaking past the collimator and through the in-
adequate monochromator shielding produced so high a background count rate
in the detector that experiments proved impossible with the original arrange-
ment. The apparatus is currently being rebuilt with a new collimator, and much
improved shielding around the monochromator.

8.2 The Three Axis Spectrometer

A horizontal cross section of the spectrometer is shown in fig.8.1. The orig-
inal apparatus consisted of a spectrometer arm which could be rotated by an
electric motor about the monochromator crystal in steps of 1/3 of a degree. The
spectrometer arm was heavily built and page 206counterbalanced to support the scat-
tering sample, detectors, and shielding. The aluminium monochromator crystal
was mounted on a turntable which was driven from the arm by a half angling
device. This ensured that as the monochromator Bragg angle changed, the
reflected beam always passed down the centre of the spectrometer arm. The
monochromator crystal could be rotated on its platform by electric motors dur-
ing its initial alignment and when it was desired to change the reflecting planes.
The monochromator crystal was surrounded by about 18 in of shielding com-
posed of a mixture of polythene chips, resin and boric oxide. The arm carried
a further 12 in of similar shielding which covered the slot in the monochroma-
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Figure 8.1: Triple axis spectrometer

113



tor shielding through which the beam emerged. The whole spectrometer was
enclosed in a concrete blockhouse to absorb the fast neutrons and γ radiation
escaping from the collimator. The radiation level inside the blockhouse was
such that the blockhouse could not be entered when the collimator was open.
Provision was made for closing the collimator by rotating a turret containing a
steel plug, and flooding a tank in the beam with water.

The spectrometer was converted to a three axis instrument by the addition
of a second arm, the detector page 207arm, bearing an analyser crystal and detector.
This arm was mounted on the end of the spectrometer arm and could rotate
about a vertical axis. The sample was supported by levelling screws from a
turntable which could be independently rotated about the same vertical axis.
Neutrons scattered from the sample in a direction defined by a multi-slit colli-
mator carried by the detector arm, reached the analyser crystal and, if they were
of the correct energy, were Bragg reflected into the detector. A second multi-
slit collimator, with twice the angular divergence of the first, was interposed
between the analyser crystal and the detector to reduce the number of back-
ground neutrons reaching the detector. The detector was a scintillator similar
to that used in the cold neutron apparatus. The spectrometer was intended to
be used with a fixed detector energy, so no provision was made for changing the
analyser Bragg angle. The analyser crystal could be rotated through 4◦ from
its Bragg position to measure the background count rate in the detector. This
motion was controlled by the existing spectrometer control equipment. The
sample, analyser crystal and detector were surrounded by shielding against fast
and thermal neutrons.

page 208The triple axis spectrometer allows neutrons undergoing a desired energy
and momentum change in the sample to reach the detector. A series of mea-
surements of the scattered neutron intensity is made at closely spaced intervals
along a particular line or track in energy-momentum space. Where this track
crosses the phonon dispersion relation of the sample, a peak will be observed.
The momentum change is restricted to the horizontal plane, but otherwise any
track may be followed by adjustment of the spectrometer arm angle, the sample
angle and the detector arm angle between each measurement. In particular,
the momentum change may be held constant while the energy change is varied.
This is the constant Q method described by Brockhouse (1960) and is very
useful if the frequency of a phonon with a particular wave vector is required.
Each of these angles could be varied by electric motors driving through worm-
reduction gearing. The angles were measured to the nearest 1/10

th
of a degree

by revolution counters geared to the worm. The revolution counters could be
read electrically by means of ten position switches attached to each drum, and
the motor was controlled to make each revolution counter agree with a number
punched on paper tape. The control page 209equipment required to set the three angles
worked in conjunction with existing equipment, which timed and printed out
counts of pulses from the neutron detector. The equipment is completely auto-
matic and is fully described elsewhere (Peckham, 1964a). Punched paper tapes
for constant Q control were prepared directly by the Mercury computer.

8.3 Focussing

In a beam of neutrons which has been rendered monochromatic by Bragg
reflection from a single crystal, there is a strong correlation between the direction
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of travel and the energy of the neutrons. We shall show in the next section
that the ends of the wave vectors of neutrons in the beam occupy a thin disc
in reciprocal space. We can make use of the known orientation of this disc to
determine conditions when the broadening of the peak in the observed spectrum,
caused by the resolution of the apparatus, is at a minimum. These conditions
are known as focussing conditions. The width of the peak is also affected by
the direction of the track in energy-momentum space, which should be normal
to the dispersion relation for minimum width. This effect is independent of the
focussing conditions and will will not be discussed further.

page 210 We can define a scattering surface as the locus of the ends of the wave vectors
of those neutrons scattered by a particular branch of the dispersion relation for
a given incident neutron energy and direction. As the experiment proceeds, the
disc of wave vectors acceptable to the analysing spectrometer is tracked through
this surface, and while the disc is cutting the surface, a peak is observed in the
scattered intensity. It is clear that the peak is narrowest when the disc is parallel
to the surface. In this condition, the analyser is focussed. Similar considerations
apply to the monochromator. In this case a scattering surface is defined as the
locus of the ends of the wave vectors of those incident neutrons which, when
scattered by phonons of a particular branch of the dispersion relation, give rise
to neutrons of a given energy in a given direction. (The energy and direction
are determined by the analysing spectrometer.) The disc of wave vectors of
neutrons in the incident beam must be parallel to this scattering surface.

If the monochromator (or analyser) mosaic spread were zero, the disc would
be parallel to the reflecting planes. It will be shown in the next section that
it ispage 211 always approximately in this direction, and, for the sake of simplicity, the
effect of the mosaic spread will be ignored.

The Bragg condition may be written

k0 + d0 = constant (8.1)

where k0 is the neutron wave vector and d0 is a vector normal to the reflecting
planes (see fig.8.2).

Due to finite collimation, neutrons with wave vector (k0 + δk0) are present,
where, differentiating 8.1,

d0 · δk0 = 0 (8.2)

Conservation of energy and momentum in the scattering process give

ω(Q) = (ℏ2m)(k20 − k21) (8.3)

Q = k0 − k1 (8.4)

where k0 is the incident neutron wave vector and k1 the scattered neutron wave
vector. m is the mass of a neutron. Q is the phonon wave vector and ω(Q) its
angular frequency.

Incident neutrons of wave vector (k0 + δk0) alsopage 213 give rise to scattered neu-
trons of wave vector k1 if, differentiating 8.5 and 8.4,

∇ω · δk0 = (ℏ/m)k0 + δk0

or (∇ω − (ℏ/m)k0) · δk0 = 0 (8.5)
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Figure 8.2: The change in wave vector of Bragg reflected neutrons on changing
the incident beam direction

From equations 8.2 and 8.5, if all neutrons incident on the sample are to be
capable of being scattered with wave vector k1, (∇ω − (ℏ/m)k0) must be in
the direction d0. This is the focussing condition for the monochromator.

Similar considerations apply to the analyser. (∇ω − (ℏ/m)k1) must be in
the direction d1.

Put g = (m/ℏ)∇ω
The spectrometer is focussed if it is possible to draw the focussing diagram

as in fig.8.3 with g drawn from the intersection of d0 and d1 to the end of k0.
Frequently the spectrometer is used with either incident or scattered neutron

energies fixed. In this case, generally it is not possible to satisfy the focussing
conditions exactly. However, there are usually several points in the reciprocal
lattice of the sample page 215at which the desired phonon could be observed and the
focussing diagram provides a convenient way to select the best point.

The focussing diagram deals with focussing in the plane of scattering when
d0 and d1 also lie in this plane. With this arrangement focussing at right angles
to the plane is automatically achieved if a mirror plane of the sample also lies in
the plane of the spectrometer. Figure 8.4 shows another possible arrangement
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of the spectrometer to achieve focussing.

For a longitudinal phonon (in a symmetry direction) g is parallel to ξ (the
polarisation vector). Since the factor (Q · ξ)2 occurs in the cross section, fig-
ure 8.4 represents a suitable arrangement for focussing longitudinal phonons.
Similarly figure 8.3 represents a suitable arrangement for transverse phonons.

8.4 The Locus of the Ends of the Wave Vectors of

Bragg reflected Neutrons in the Case of Finite
Incident Collimation and Finite Mosaic Spread

In fig.8.2, θ, φ, ζ are the angles of the incident neutron, the normal to the
reflecting planes,and the reflected neutron respectively, measured from a fixed
direction.

page 217 From the conditions for Bragg reflection,

θ − φ = φ− ζ (8.6)

or θ = 2φ− ζ
and k cos(φ− ζ) = constant (8.7)

differentiating 8.6 and 8.7,

δθ = 2 δφ− δζ (8.8)

δk cos(φ− ζ)− k sin(φ− ζ){δφ− δζ} = 0

or δφ =
δk

k tan(φ− ζ) + δζ (8.9)

substituting 8.9 in 8.8,

δθ =
2 δk

k tan(φ− ζ) + δζ (8.10)

Let the incident beam intensity as a function of angle be I0 exp
(

− δθ2

2η2

)

and

let the reflectivity of the crystal be R0 exp
(

− δφ2

2 ǫ2

)

.

The reflected intensity is

I0R0 exp

{

−1

2

(

δθ2

η2
+
δφ2

ǫ2

)}

and a contour of constant intensity is given by

(

δθ

η

)2

+

(

δφ

ǫ

)2

= constant

page 218 Substituting from 8.9 and 8.10,

(

4
η2 + 1

ǫ2

)

tan2(φ− ζ) δk
2 +

2
(

2
η2 + 1

ǫ2

)

tan(φ− ζ) δk (k δζ) +

(

1

η2
+

1

ǫ2

)

(k δζ)
2
= constant
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The contour of constant intensity is seen to be an ellipse in wave vector space.
The axes of this ellipse are at an angle α to the scattered neutron direction given
by

tanα =
tanα′

tan(φ− ζ)

where tan 2α′ =
2

3

(

(η

ǫ

)2

+ 2

)

The angle between the minor axis and the normal to the reflecting planes is β,
given by

β = (φ− ζ)− α

In the following table, β45 is the value of β for a Bragg angle of 45◦, βmax is the
maximum value of β for any Bragg angle, and r is the ratio of minor to major
axes.

For any ratio of incident beam collimation (η) to crystal mosaic spread (ǫ),
the locus of the ends of the reflected neutron wave vectors is seen to be a thin
disc (r ≪ 1). page 219

page 219page 219
Table 8.1: Orientation and Thickness of the Disc of Wave Vectors

η/ǫ β45 βmax r

0 18◦24′ 19◦24′ 0
1/

√
2 15◦28′ 0.12

1 13◦15′ 13◦36′ 0.15√
2 10◦15′ 0.16

∞ 0 0 0

The angle (β) the normal to this disc (the minor axis of the ellipse) makes
with the normal to the reflecting planes is less than 20◦.

8.5 Redesigned Instrument
Experiments proved impossible with the arrangement so far described be-

cause of the very high background count rate in the detector. This was found to
be almost entirely due to fast neutrons leaking past the collimator and through
the inadequate monochromator shielding. A new collimator was already being
designed which should page 220improve the position considerably, but it was also decided
to build new monochromator shielding which would allow only certain discrete
Bragg angles to be used. The holes in the monochromator shielding through
which the beam would emerge for Bragg angles other than the one in use could
be blocked, resulting in very much better shielding around the monochromator
than could be obtained with the open slot in the old arrangement. As the inci-
dent beam energy would not be continuously variable, a variable energy analyser
had to be constructed. This makes use of a half angling device in a similar way
to the old monochromator. Much of the equipment of the old spectrometer
including the control equipment is used in the redesigned instrument.
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Figure 8.3a: Focussing vector diagram

119



p
a
g
e
2
1
6

MONOCHROMATOR

SAMPLE

ANALYSER

DETECTOR

Figure 8.4b: Path of neutrons through the apparatus

Q

g

k1

k0

d0

d1

Figure 8.4a: Focussing vector diagram

120



Appendix I

The Circular Arc Approximation for Rotor

Slots

page 221 For ease of manufacture, the rotor slots are cut as arcs of a circle. We shall
show that a circular arc is a good approximation to the path of a neutron relative
to axes rotating with the rotor.

Relative to fixed axes, the equation of motion of a neutron of velocity v is

x′ = vt y′ = 0

With respect to axes rotating with the rotor (angular velocity ω)

x = x′ cos θ y = −x′ sin θ where θ = ωt

Put v/ωR = p where R is the rotor radius, then

vt = p θR

and x = p θR cos θ y = −p θR sin θ

This curve is sketched below. Also shown is a circle, radius r, centre (0, −r(1+
β)), which approximates the curve. There are 5 points of maximum deviationpage 222

page 222

r

θ = θ1θ = −θ1

θ = 0

θ = θ2θ = −θ2

↑ y↑ y↑ y
→ x→ x→ x

Figure I.1: Circular arc approximation for rotor slots

from the circle, corresponding to values of θ of 0, ±θ1, ±θ2. We shall assume
that, for the circle that is the best fit to the curve, these deviations are equal in
magnitude, but alternate in sign.
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The distance of points on the curve from the centre of the circle is d given
by

d2 = x2 + (y + r(1 + β))
2

or d2 = x2 + y2 + 2xy(1 + β) + r2(1 + 2β)

ignoring terms of order β2 as |β| ≪ 1

Write d = r(1 + ǫ) where |ǫ| ≤ |β| ≤ 1

d2 = r2 + 2ǫr2

page 223ǫ =
1

2

(

d2 − r2
x2

)

Substituting for d2,

ǫ =
x2 + y2

2x2
+
y

r
(1 + β) + β

Substituting for x and y and putting pR
r = γ

ǫ =
γ2

2
θ2 − γ(1 + β)θ sin θ + β

To find the positions of maximum deviation, put dǫ/dθ = 0

or γ2 − γ(1 + β)(sin θ + θ cos θ) = 0

The solutions are θ = 0 and θ = ±θ1, where
sin θ1
θ1

+ cos θ1 =
γ

1 + β
(I.1)

Now ǫ(0) = −ǫ(θ1) = ǫ(θ2)

and ǫ(0) = β

ǫ(θ1) =
γ

2
θ21 − γ(1 + β)θ1 sin θ1 + β

ǫ(θ2) =
γ

2
θ22 − γ(1 + β)θ2 sin θ2 + β

hence
γ2

2
θ21 − γ(1 + β)θ1 sin θ1 + 2β = 0

and
γ2

2
θ22 − γ(1 + β)θ2 sin θ2 = 0

page 224

or
1

4

(

γ

1 + β

)2

θ21 −
1

2

(

γ

1 + β

)

θ1 sin θ1 +
β

(1 + β)2
= 0 (I.2)

and
1

2

(

γ

1 + β

)

=
sin θ2
θ2

(I.3)
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Now θ2 = ωR/v = 1/p, and for the rotors under consideration, p ≈ 3. Equations
I.1, I.2 and I.3 may be solved by expanding the trigonometric functions. From
I.1 and I.3, eliminating ( γ

1+β) ) and expanding both sides, we obtain

1− θ21
3

+
θ41
40

= 1− θ22
6

+
θ42
120

or θ21 =
1

2
θ22 +

7

160
θ42

Substituting this result in I.2 and expanding,

β

(1 + β)2
=

θ42
24
− 29 θ62

2880

or β =
θ42
24
− 29 θ62

2880

page 225 The second term in the expression for β is about 1/38 of the first.
For the last rotor listed, p = 3, and θ2 = 1/3

Hence β =
1

1944

(

1− 1

38

)

= 0.0005

From I.3, γ ≈ 2, and from the definition of γ,

r =
pR

γ
=

3× 4

2
= 6 ins

The maximum deviation of the neutron path from the circle is βr or .003ins.
The slot width of this rotor is 0.1ins. Hence the neutron does not deviate more
than 3% of the slot width from the circular path, justifying the manufacture of
the rotor with circular slots.

A frequently made assumption is that the best fitting arc has the same
curvature as, and coincides with, the neutron path at the centre of the rotor.
This assumption is equivalent to putting β = 0 and γ = 2 in our equations. The
deviation at the end of the slot is then

ǫ(θ2) = 2θ2 (θ2 − sin θ2)

=
θ42
3
− θ62

60

page 226 This deviation is 8 times the maximum deviation from the circular arc previ-
ously chosen. For the rotor considered above, the deviation would be 0.024ins,
or 1/4 of the slot width. If the rotor slot really deviated this much or more from
every neutron path, there would be a severe loss of intensity. A circular arc is
then a very much better approximation than this simplified analysis shows.

The best transmitted inverse velocity
From equation I.3 we can obtain an expression for p, the ratio of neutron

speed to rotor tip speed for the neutron whose path is the best fit to the rotor
slot. Substituting for γ and θ2, we find

sin(1/p) = (R/2r)/(1 + β)

or sin(1/p) = (R/2r) as β is of order 1/2, 000 (I.4)
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In deriving the rotor transmission function, we obtained an expression for n0,
the best transmitted inverse velocity, i.e., the inverse velocity at which the
transmission is a maximum

n0 = τ/R

where 2τ is the time it takes the rotor to turn from a page 227position with one end of
the slot in the neutron beam to a position with the other end in the beam. It
can be shown that τ = 1/ω sin

−1(R/2r)

hence n0 ωR = sin−1(R/2r)

or sin(1/p) = (R/2r)

This is identical to the expression obtained above.
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Appendix II

Slots not Passing through the Centre of

the Rotor

page 228 By considering the times at which neutrons passed the ends of the slot,
we obtained an expression for the best transmitted inverse velocity in close
agreement with that obtained from a much more careful consideration of the
neutron path along the whole length of the slot. We will now apply this same
method to determine the best transmitted neutron inverse velocity for a slot
not passing through the centre of the rotor.

page 228

r

R

C

O

A
P

Bθ
α

Figure II.1: Slots not passing through the centre of the rotor

page 229 In the above diagram, AB is the slot, O the rotor centre, and C the centre of
curvature of the slot. CO meets the slot at A, and P is a point on the periphery
of the rotor such that PA is perpendicular to CO.

A neutron following the slot travels from A to P while the rotor turns through
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the angle BOP (marked θ in the diagram). Hence, with our previous notation,

n =
θ

ωR sinα

or θ =
sinα

p

In triangle BOC,

BC2 = CO2 + BO2 + 2BO CO cos B̂OA

or (r +R cosα)2 = r2 +R2 + 2Rr cos(α+ θ) (II.1)

and cos

(

α+
sinα

p

)

= cosα− R

2r
sin2 α

or cos

(

α+
sinα

p

)

= cosα− sin

(

1

p0

)

sin2 α

Where sin(1/p0) = R/2r, and p0 is the ratio of neutron speed to rotor tip speed
for a slot with the same centre of curvature, but passing through the centre of
the rotor.

For the slot through the rotor centre, α = π/2. page 230Differentiating the above
expression, and putting α = π/2 and p = p0, we find

dp

dα
= p20

(

1− 1

cos 1/p0

)

−
(

1

2
+

5

24

1

p20
+ · · ·

)

This gives the approximate expression for p

p = p0 + β

(

1

2
+

5

24 p20

)

where β = π/2− α
For p0 = 3 and cosα = 1/4, the accurate expression gives p = 3.129, and the

approximate expression p = 3.132.
For a rotor with many slots extending over a width 2c and all cut with

the same centre of curvature, the limits of β are approximately ±c/R. The
corresponding limits of p are given by

p− p0 = ± c

R

(

1

2
+

5

24

1

p20

)

We may define a width in p as the square root of the second moment of the
neutron distribution as a function of p

δp =
1√
3

c

R

(

1

2
+

5

24

1

p20

)

page 231or
δp

p0
=

δn

n0
=

1√
3

c

Rp0

(

1

2
+

5

24

1

p20

)

(II.2)

page 231For rotor 3, c = 1”, R = 4”, p0 = 3.

Then
δn

n0
= 0.0252
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This is almost equal to the spread in velocities due to the finite width of the
slots previously calculated for this rotor.

For ease of manufacture, rotors are usually made with all the slots cut with
the same centre of curvature. It has been shown that this leads to an appreciable
increase in the velocity spread transmitted by the rotor, and it is of some interest
to see how the centre of curvature should be changed for slots not passing
through the centre of the rotor.

Differentiating equation II.1 with respect to α, keeping p constant,

dr

dα
= r

1− cos(1/p0)

sin(1/p0)
when α =

π

2
and p = p0

If c is the distance OA of the slot from the rotor centre,

dr

dc
= − 1

R

dr

dα

page 232 = − r

R

1− cos(1/p0)

sin(1/p0)

= −1

2

1− cos(1/p0)

sin2(1/p0)

= −1

2

1

1 + cos(1/p0)

r should be increased by an amount δr given by

δr = − c

2

1

1 + cos(1/p0)

= − c

4

(

1 +
1

4

(

1

p0

)2

+
1

24

(

1

p0

)4

+ · · ·
)

(II.3)

If we compare this slot with the one through the centre of the rotor, we find to
a first approximation that the centre of curvature should be displaced 1/4 as far
as the slot is displaced and in the same direction. A more accurate value could
be obtained in a particular case by using equation II.1.
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Appendix III

Alignment of Apparatus

III.1 Goniometer Alignment

page 233The axis of rotation of the goniometer is made perpendicular to the scat-
tering plane by adjustment of the goniometer platform levelling screws. The
alignment is checked optically. (Refer to fig. 3.1)

(1) A telescope has been fixed in the line of the beam near the reactor wall.
with the beam off and the beamstop removed, crosswires at the position
of the beam stop are adjusted to be in line with this telescope and the
aperture in the rotor tank.

(2) A double-sided mirror is inserted in the goniometer in place of the crystal.
The mirror should be parallel to the small arc of the goniometer. A band
is placed across the mirror at a position corresponding to the centre of the
crystal. The goniometer arcs and lateral slides are adjusted to their zero
marks, so that the axis of rotation of the goniometer lies approximately
in the plane of the mirror.

(3) The mirror is viewed from the beam stop, and the goniometer platform
is adjusted vertically and horizontally until the part of the mirror crossed

page 234by the band appears central against the aperture in the rotor tank.

(4) The goniometer is turned so that the mirror is in a vertical plane, and
a vertical wire is erected at the beam stop so that the wire, its image in
the mirror, and the band are in line. The mirror is turned through 180◦

and a second wire erected in the same way. A third wire is placed midway
between the first two and the first two wires are removed. The goniometer
large arc is adjusted so that this wire, its image in the mirror and the band
are in line.

The axis of rotation of the goniometer should now be parallel to the plane
of the mirror. The mirror is again rotated through 180◦ to check that
the wire remains in line with its image and the band, and the adjustment
repeated if necessary. When making this check, it should be remembered
that as the crosswires are about 5 ft from the mirror, if the mirror is 0.1◦

out of alignment, the image and the band will appear in line when viewed
from a point 0.2 ins to one side of the wire. The wire is now removed.

(5) The goniometer platform is turned about a vertical axis until the vertical
cross wire, its image, and the band are in line. The axis of rotation of the
goniometer should now be perpendicular to the neutron beam page 235direction.
The mirror is turned through 180◦ and a check is made that the vertical
cross wire, its image, and the band are still in line.
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(6) The first (90◦) detector is adjusted to be central between the shielding
tanks. The position of this detector, together with the direction of the
incident beam, defines the scattering plane.

The goniometer is turned so that the image of this detector in the mirror
is visible from the beam stop. The goniometer platform is tilted about
an axis parallel to the beam until the vertical crosswire, the band on the
mirror, and the centre of the image of the detector are in line.

The axis of rotation of the goniometer should now be perpendicular to the
scattering plane. The last adjustment is checked by rotating the mirror
through 180◦ and checking that the vertical crosswire, the band, and the
image of the detector are still in line.

(7) The goniometer is turned so that each of the other detectors in turn is
visible in the mirror from the beam stop. The position of the detectors
between the side tanks is adjusted so that they line up in the same way
as the first detector.

All of the detectors now lie in the scattering plane.

(8) The angle of each detector is found by rotating the goniometer until the
image of the detectorpage 236 appears central in the mirror when viewed from the
horizontal crosswire at the beam stop, and then reading the vernier scale
attached to the goniometer axis. The reading of the vernier scale should
also be noted for the position of the goniometer when the image of the
horizontal crosswire itself appears central in the mirror. These readings
are noted for both sides of the mirror so that scale eccentricity can be
allowed for. The mirror is removed

(9) The distances from monitor 1 to the sample, from monitor 1 to monitor
2, and from the sample to each of the detectors is measured.

III.2 Alignment of the Single Crystal Sample
It is assumed that we wish to align the crystal with a mirror plane parallel

to the scattering plane. This can be done by adjusting the goniometer so that
Bragg reflections from two planes at right angles to this mirror are observed
in one of the detectors. The beryllium filtered beam which will be used in the
inelastic scattering measurements can be used if planes can be found with a
spacing of more than 2.8 Å. The lead crystal was aligned in this way as its (1,
1, 1) planes have a spacing of 2.85 Å. However, most crystals dopage 237 not have such
widely spaced planes, and in order to observe Bragg reflections in the detectors,
a higher energy incident beam must be used. The beam turret may be rotated,
moving the beryllium filter out of the beam and allowing higher energy neutrons
to emerge from the reactor. The rotor must also be lifted clear of the beam.
One of the magnesium oxide crystals was aligned using this open beam.

Many ionic crystals will cleave along symmetry planes, allowing them to be
aligned optically by reflection from these cleaved surfaces. Both the magnesium
oxide crystals were aligned in this way.

Neutron alignment

(1) The crystal is inserted in the goniometer so that the large arc is not parallel
to either of the planes which are to be used to align the crystal.
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The output of the 90◦ detector is taken to a ratemeter.

(2) The crystal is adjusted to approximately the correct position for a Bragg
reflection to be observed in this detector. If this position is not known,
it is best to commence the alignment using a detector which subtends a
much larger page 238angle.

A search is made for the Bragg reflection by making a series of sweeps
with the motor-driven axis of the goniometer for settings of the large arc
spaced about 1/2

◦
apart. The readings of the vernier scale and of the large

arc should be noted when the ratemeter indicates a maximum. A flexible
drive is provided for the large arc so that it may be adjusted without the
beam being turned off.

Let the angle between the Bragg reflecting plane normal and the normal
to the plane containing the large arc be θ1, and let the scale reading of
the large arc be α1

(3) Repeat this search for the other Bragg reflection, again adjusting the
motor-driven axis and the large arc only. Let the corresponding angles
be θ2 and α2.

(4) The angle α to which the large arc should be set is given by

α =
α1 tan θ1 − α2 tan θ2

tan θ1 − tan θ2

The angle β by which the small arc should be moved is given by

β =
α1 − α2

cot θ1 − cot θ2

The positive directions of rotation are given in the following diagram.

page 239

θ

Large arc normal

Small arc normal

α
β

Bragg reflecting
plane normal

Figure III.1: Goniometer arc rotation angles

(5) page 239With the arcs set to these angles, it should be possible to observe both
Bragg reflections by rotating the goniometer about the motor-driven axis
only. If either of the reflections are significantly weaker than before, the
adjustment must be repeated.

The crystal is now oriented with the mirror plane in the scattering plane.
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Optical Alignment

Two cleaved planes cannot always be found which are perpendicular to the
mirror plane chosen as the scattering.plane. The procedure will depend on the
cleaved faces available on any particular sample. The methods used to align the
two magnesium oxide crystals will be described.

Crystal A

This crystal was to be aligned with a (1,1,0)page 240 mirror plane as the scattering
plane. It possessed one cleaved (1,0,0) plane (a) perpendicular to this mirror
plane, and two more cleaved planes of the same type (b and c) at 45◦ to the
mirror plane.

(1) The crystal was mounted in the goniometer with plane (a) parallel to the
small arc. A strongly illuminated slit was placed by the vertical crosswire
at the beam stop, and the large arc adjusted until the vertical crosswire,
the image of the slit in plane (a), and the centre of the crystal were in
line.

(2) The illuminated slit was next placed as shown in the following diagram

page 240

Plane (b)

Plane (c) Plane (a)

Goniometer
axis

Illuminated
slit

To Observer
at beam stop

Direction of
neutron beam

H

Figure III.2: Optical alignment of a magnesium oxide crystal

so that its reflection in plane (b) could be observed from the beam stop.
A wire was erected at the beam stop in line with the image of the slit and
a mark atthe crystal. The goniometer was then rotated through 180◦ so
that the image of the slit was observable in plane (c). A second wire was
erected in the same way. A third wire was placed midway between the
first two, and the first two removed. The small arc was then adjusted so
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that the image of the slit, the mark at the crystal, and the wire were in
line.

This procedure was repeated until the same wire was in line with the
image of the slit and the mark at the crystal when viewed in both planes
(b) and (c) .

(3) The alignment of this crystal was checked by the neutron method already
described. The two methods were found to agree within 1/4

◦

Crystal B

This crystal was to be aligned with a (1,0,0) mirror plane parallel to the
scattering plane. The alignment was more straightforward as all four (1,0,0)
faces perpendicular to the (1,0,0) mirror plane were cleaved. The crystal was
mounted in the goniometer with these cleaved faces parallel to the goniometer
arcs, and both arcs were adjusted as in paragraph (1) for crystal A.
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