
Identification of nonlinear sparse networks using sparse Bayesian
learning

Junyang Jin, Ye Yuan†, Wei Pan, Claire Tomlin, Alex A.Webb, Jorge Gonçalves

Abstract— This paper considers a parametric approach to
infer sparse networks described by nonlinear ARX models,
with linear ARX treated as a special case. The proposed
method infers both the Boolean structure and the internal
dynamics of the network. It considers classes of nonlinear
systems that can be written as weighted (unknown) sums of
nonlinear functions chosen from a fixed (and potentially large)
basis dictionary. Due to the sparse topology, coefficients of most
groups are zero. Besides, only a few nonlinear terms in nonzero
groups contribute to the internal dynamics. Therefore, the
identification problem should estimate both group- and element-
sparse parameter vectors. The proposed method combines
Sparse Bayesian Learning (SBL) and Group Sparse Bayesian
Learning (GSBL) to impose both kinds of sparsity. Simulations
indicate that our method outperforms SBL and GSBL when
these are applied alone. A linear ring structure network also
illustrates that the proposed method has improved performance
compared to the kernel approach.

I. INTRODUCTION

When designing feedback controllers, it is typically
enough to learn the input-output dynamics of the system,
independently of its internal complexity. Hence, most of the
work on system identification focuses on modeling input-
output dynamics without exploring the topology, i.e., the
interactions between state-variables. In many applications,
however, information about the topology is critical. We
may require an understanding of the internal dynamics, to
provide a road-map and guidance for feedback control, or
to find source of faults. Examples range from biomedicine
to autonomous underwater vehicle (AUVs), power networks
and communication networks.

Sparsity is an inherent property of many important net-
works. In biology, most molecules bind with to a small
number of other molecules. In AUVs, communication can be
constrained to neighbours to minimise energy consumption.
Elements of power and communication networks are typi-
cally connected to a small number of other elements. Hence,
sparsity can be used as a constraint to model networks and
compensate for the sometimes low number of samples and
high amount of noise.

Junyang Jin and Alex Webb are with Circadian Signal Transduction
Group, Department of Plant Sciences, University of Cambridge. Ye Yuan
is with School of Automation, Huazhong University of Science and Tech-
nology. Wei Pan is with Cardwell Investment Tech and Imperial College
London. Claire J. Tomlin is with the Department of Electrical Engineering
and Computer Sciences, UC Berkeley. Jorge Gonçalves is with the Depart-
ment of Engineering, University of Cambridge and the Luxembourg Centre
for Systems Biomedicine. †For correspondence, yye@hust.edu.cn.

Standard system identification methods, such as the pre-
diction error method (PEM) or Maximum-likelihood (ML),
are widely used to explore input-output dynamics of sys-
tems [1]. However, these methods alone do not capture
sparse topology. For noisy MIMO systems, assuming no
prior knowledge of the topology, PEM generates full transfer
matrices even if the ground truths are sparse [2]. Hence,
methods must penalise model complexity to favour sparsity.

MAP (Type I method) including LASSO, Tikhonov regu-
larisation, FOCUSS and sparse group LASSO (SGL) [3], [4]
are all methods that penalise model complexity. For example,
algorithms were used to infer the topology of a linear MIMO
system from steady-state data [5], [6]. Similar work inferred
sparse multivariable ARX models with known polynomial
order using Block Orthogonal Matching Pursuit (BOMP) [7].
While these approaches effectively reduce over-fitting, the
tuning variable which controls the trade-off between data-
fitting and model complexity (sparsity) must be a priori
chosen or evaluated independently (using methods such as
cross-validation). This increases the computation burden and
causes information waste.

There are alternative methods that do not require extra
efforts to evaluate tuning variables such as Sparse Bayesian
Learning (Type II method) and kernel methods. The estima-
tion of tuning variables (namely hyperparameter) is incorpo-
rated into the identification process following Bayesian per-
spective. SBL is a well-known technique in machine learning
that applies a nonconvex penalty to approximate `0 norm [8]–
[11]. It was applied to identify nonlinear systems by selecting
nonlinear functions from a predefined dictionary [12], [13].
Nonlinear model structure is captured by either element SBL
or GSBL, depending on the type of available data. However,
the topology is not carefully considered. The kernel method
is a non-parametric approach, introduced to estimate impulse
responses of SISO systems [14]. Later it was combined with
GSBL to infer linear sparse networks [2], [15], [16].

This paper considers the parametric identification of a
sparse network described by a nonlinear multivariable ARX
model. The objective is two-fold: to infer the network
topology while also achieving accurate estimation of model
parameters. The identification problem is formulated as to
estimating a target vector consisting of model parameters
that is both group sparse (due to the network topology) and
element sparse (in terms of candidate nonlinear functions).
Our proposed scheme combines SBL and GSBL to simulta-
neously impose those two kinds of sparsity. Simulations on a

three-gene repressilator model show that our method is better
than SBL or GSBL applied alone. Inference of ring structure
networks further highlights the strength of our method to deal
with extremely sparse networks.

The paper is organized as follows. Section II introduces the
nonlinear multivariable ARX model. Section III formulates
the network reconstruction problem. Section IV promotes a
sparse prior and applies EM algorithm to solve the resulting
optimization problem. Section V compares the method with
other approaches via Monte Carlo simulation. Finally, Sec-
tion VI concludes and discusses further development in this
field.

Notation: The notation in this paper is standard. I denotes
the identity matrix. If L ∈ Rn×n, diag{L} denotes a
vector which consists of diagonal elements of the matrix
L. If l ∈ Rn, diag{l} denotes a diagonal matrix with its
diagonal elements to be the vector l. For a series of matrices
{A1, ..., An}, blkdiag{A1, ..., An} presents a block diagonal
matrix. vec{x1, .., xn} = [x1, ..., xn]

′ means to vectorise
elements {x1, .., xn}. A vector y(t1 : t2) denotes a row
vector

[
y(t1) y(t1 + 1) · · · y(t2)

]
. Aij denotes the

element at ith row and jth columm of the matrix A.

II. MODEL FORMULATION

The sparse network is described by a nonlinear multivari-
able ARX model: A(q−1)Y (t) = B(q−1)U(t)+F (t)+E(t),
where

A(q−1) = I + Â1q
−1 + ...+ Âna

q−na ,

B(q−1) = B̂1q
−1 + ...+ B̂nb

q−nb ,
(1)

q−1 is the time shift operator. Y (t) ∈ Rp are the nodes of
the network, U(t) ∈ Rm denotes input, and E(t) ∈ Rp is
i.i.d white Gaussian noise. Âi ∈ Rp×p and B̂i ∈ Rp×m

are matrices. A(q−1) is a polynomial matrix showing the
connectivity of each node to the others including self-loops.
Similarly, B(q−1) is a polynomial matrix relating the input to
the nodes. F (t) is a vector of nonlinear functions depending
on the past values of nodes and input. Each element of F (t)
is the linear combination of basis functions. The Boolean
structure of the network is reflected by the nonzero elements
in A(q−1), B(q−1), and nonlinear terms of F (t) whereas
the system dynamics is dominated by the elements in these
matrices.

If F (t) is set to 0, the model becomes a linear ARX.
The multivariable ARX model defines a unique Input-Output
map:

Y (t) = G(z−1)U(t) +H(z−1)E(t), (2)

where

G(z−1) = A−1(z−1)B(z−1)

H(z−1) = A−1(z−1).
(3)

III. RECONSTRUCTION PROBLEM
FORMULATION

We parameterize each node of a nonlinear multivariable
ARX model in the similar form:

yi(t) = −Ai1(q−1)y1(t)− . . .−Aip(q−1)yp(t)+

[1−Aii(q−1)]yi(t) + ...+Bim(q−1)um(t) + Fi(t) + Ei(t).
(4)

yj(t) denotes jth node, u(t) ∈ Rm input, Ei(t) i.i.d
Gaussian noise and:

Aii(q
−1) = aii1 q

−k + aii2 q
−k+1 + . . .+ aiik q

−1 + 1

Aij(q
−1) = aij1 q

−k + . . .+ aij(k−1)q
−2 + aijk q

−1

Bij(q
−1) = bij1 q

−k + . . .+ bij(k−1)q
−2 + bijk q

−1

Fi(t) =

p∑
j=1

l∑
q=1

θijq f
ij
q (t)

f ijq (t) = gijq [yj(t− k : t− 1), u(t− k : t− 1)]

(5)

where a and b denote parameters in polynomial matrices
A(q−1) and B(q−1) respectively, q−1 the time shift operator,
superscript ij the polynomial of ijth element of matrices and
subscript i the index of the ith coefficient of the polynomial.
The order k is the maximum time delay. Fi(·) is the linear
combination of nonlinear basis functions g(·) which depends
on the past evolution. The time delay of nonlinear terms is
flexible as long as it is smaller than k. For convenience,
the time delay in all terms is unified to k. The vector θi is
divided into p groups corresponding to the number of nodes
with l elements in each group. θijq denotes the qth element
of the jth group of θi.

Assume time-series data from discrete time indices 1 to t
for each node and input is available. For the ith node, we
define the following matrices and vectors:

y =

 yi(t)
...

yi(k + 1)

 , w =

 w1

...
wp+m


Φ =

[
Φ1 ... Φp+m

]
λ = E{Ei(t)2}, E{Ei(t)} = 0

wj =


[
aij1 . . . aijk θij1 . . . θijl

]T
, j ≤ p[

b
i(j−p)
1 . . . b

i(j−p)
k

]T
, p < j ≤ p+m

If j ≤ p

Φj =

 −yj(t− k : t− 1) f ij1 (t) ... f ijl (t)
...

...
−yj(1 : k) f ij1 (k + 1) ... f ijl (k + 1)


elseif p < j ≤ p+m

Φj =

 uj−p(t− k : t− 1)
...

uj−p(1 : k)


(6)

The likelihood function based on Bayes’ rule is thus:

p(y
∣∣w, λ) =

1

(2πλ)(t−k)/2
exp{− 1

2λ
‖y − Φw‖22}. (7)

By maximizing its logarithm with respect to w, we end
with the PEM (ML) method. In practice, given limited data,
PEM may suffer from over-fitting and also generate a fully-
connected network even if the true one is sparse. Therefore,
penalties for both network topology and model complexity
are essential. Referring to the parameterizations in (6), a
sparse network can be interpreted as group sparse w, whereas
sparsity within each group indicates that only few nonlinear
terms out of a dictionary and reduced order polynomial are
relevant to the dynamics of the network. For instance, a
group of nonlinear terms are added to a gene regulatory
network to describe the potential transcription activity of
a transcriptional factor associated to a specific node. The
group sparsity determines if this node regulates the target.
Besides, only a specific type of the hill functions in this group
is appropriate depending on whether such a transcription is
repressive or active. We resort to Sparse Bayesian Learning
to promote these two kinds of sparsity.

IV. INDUCING SPARSITY VIA SPARSE BAYESIAN
LEARNING

A. Sparsity inducing priors

Full Bayesian treatment requires introducing a prior dis-
tribution for w to reflect its main features. Priors like
Generalized Gaussian, Student’s t and Logistic are normally
used to induce sparsity of the parameter [11]. However, esti-
mating w using its posterior mean is intractable in this case
because the posterior distribution p(w|y) is non-Gaussian
and not analytical. Sparse Bayesian learning approximates
p(w|y) with a Gaussian distribution so that E(w|y) can
be easily calculated. A sparse prior is first presented in a
variational form which yields a lower bound for that prior
[17], [18]. The property of the lower bound is controlled by
its hyperparameters. A designed criterion is then applied to
find the most proper hyperparameters.

As discussed, the parameter vector w is both element
sparse and group sparse. There are priors able to induce
either of these two types of sparsity. We use these priors
to construct a novel one that can impose both of them.

Sparse priors able to induce element sparsity to w ∈
Rk(p+m)+lp can be expressed in the variational from as [11],
[12]:

p(w) =

p+m∏
i=1

p(wi) = max
β≥0
N (w|0, B)ϕβ(β)

p(wi) =
∏
j

p(wij) = max
βi≥0
N (wi|0, Bi)ϕβi (βi)

p(wij) = max
βij≥0

N (wij |0, βij)ϕβij(βij)

(8)

where subscript i denotes ith group in a vector and j the
jth element in that group. β = vec{β1, ..., βp+m} is a

vector of hyperparameters which controls element sparsity
of the vector w and βi = vec{βi1, .., βi(k+l)} if i ≤ p or
vec{βi1, .., βik} if p < i ≤ p + m. B is the covariance
matrix of Gaussian distribution and parameterized by vector
β as B = diag{β} and Bi = diag{βi}. N (w|µ,Σ) denotes
the Gaussian distribution of w with mean µ and covariance
Σ. ϕβij(·) is a positive function which depends on the prior
p(w).

To impose group sparsity, the hyperparameters of each
group are unified so that elements in a group share the same
sparse profile [13], [19]:

p(w) =

p+m∏
i=1

p(wi) = max
γ≥0
N (w|0,Γ)ϕγ(γ)

p(wi) = max
γi≥0
N (wi|0, γiI)ϕγi (γi)

(9)

where γ is a vector of hyperparameters which controls group
sparsity of w and Γ = blkdiag{γ1I, .., γp+mI}. ϕγ(·) is a
positive function.

Remark 1: : In practice, if the model is linear ARX, the
group of w that presents auto-regression can be excluded
from the group prior to improve the estimation accuracy.

According to the construction of element and group sparse
priors, neither of them is suitable to impose both element and
group sparsity. The hyperparameters in (8) are independent
so that the resulting prior is too flexible to impose group
sparsity. The prior in (9) disables the element sparsity
within each group thus too rigid. To promote both element
and group sparsity, we combine (8) and (9) to get a new
distribution:

p(w) = C max
γ≥0,β≥0

N (w|0, B)N (w|0,Γ)ϕβ(β)ϕγ(γ) (10)

where C is the normalization constant independent on hy-
perparameters γ and β which can be absorbed by positive
functions ϕβ(β) or ϕγ(γ).

Based on (10), we deduce an improper prior as the lower
bound of the original one as:

p̂(w) = N (w|0, B)N (w|0,Γ)ϕβ(β)ϕγ(γ)

≤ p(w).
(11)

The prior in (11) shows that two types of sparsity are
controlled by two series of hyperparameters, β and γ re-
spectively. As γi → 0, the ith group of w is enforced
to 0 regardless of βi. That means the group sparsity can
be determined from the hyperparameter space of dimension
p+m instead of k(p+m) + lp if only element sparse priors
are applied. Similarly, within a non-zero group (γi 6= 0),
wij is driven to 0 if βij → 0. As a result, for a target
vector consisting of q non-zero groups out of p in total and
k elements in each group, its sparse profile is determined
from a {Rp} × {Rqk} hyperparameter space compared to
{R(p−q)k}×{Rqk} without group sparse priors. The values
of these hyperparameters are unknown which remain to be
estimated from the data.

Remark 2: : The conventional way to promote both el-
ement and group sparsity is to use hierarchical Bayesian.
Two hyperparameters, β and γ are used for element and
group sparsity respectively. The prior of w is parameterised
by the hyperparameter β, while another prior conditioned
on γ is introduced to β. As a result, the hyperparameter γ
controls the group sparsity of w indrectly via β. However,
the hyperparameter which is deeper in hierarchy has less
impact on the inference procedure [20]. This means that
the resulting penalty is weak in imposing group sparsity to
w. As such, multiplying two priors makes sense since both
hyperparameters influence w directly.

B. Type II Maximisation

Although the prior p̂(w) is improper, we can still get a
normalized posterior distribution of w as:

p̂(w|y) =
p(y|w)p̂(w)∫
p(y|w)p̂(w)dw

. (12)

Clearly, p̂(w|y) is a Gaussian distribution:

p̂(w|y) = N (w|µ,Σ), (13)

where

Σ =
[
(Γ−1 +B−1) + λ−1ΦTΦ

]−1
µ = λ−1ΣΦT y

(14)

It is clear that the sparsity of the estimated w from
E(w|y) = µ depends on hyperparameters β and γ. Since
they are unknown, SBL introduces Bayesian approximation
to estimate their optimal values.

In what follows, vectors diag{Σ} and µ are partioned into
groups in the form of the hyperparameter β. To approximate
the real p(w|y), we minimize the misaligned mass between
p(w) and p̂(w) weighted by the marginal likelihood p(y|w)
which is also called evidence maximization or Type II
maximization [11], [12], [21]. It is equivalent to estimating
hyperparameters using the maximum likelihood method:

(γ∗, β∗, λ∗) = arg min
β,γ,λ≥0

∫
p(y|w)|p(w)− p̂(w)|dw

= arg min
β,γ,λ≥0

−2 log

∫
p(y|w)p̂(w)dw

= arg min
β,γ,λ≥0

−2 log p̂(y|β, γ, λ).

(15)
Remark 3: It should be noticed that not all the sparse

priors can lead to a sparse solution to (15) under the
framework of Bayesian approximation. That is, the selection
of the functions ϕβ(·) and ϕγ(·) influences the sparsity of
the final result. It is shown that one reasonable choice is that
− logϕ(·) is concave and nondecreasing [11]. In this paper,
we set ϕ(·) as a constant. Therefore, it can be ignored in the
following discussion.

C. EM Algorithm to solve Type II maximisation

EM method is a traditional technique to solve (15). It
belongs to the class of majorization-minimization (MM)
method and is a special case of DCA (Difference of Con-
vex functions Algorithm). To maximise a likehood func-
tion, L(θ) = log p(y|θ), EM implements Expectation (E
step) and Maximisation (M step) iteratively. In the E
step, the function, Q(θ, θn) = Ex|y,θn [log p(y, x|θ)] =∫

log p(y, x|θ)p(x|y, θn)dx is calculated where x is the
unobservable latent random variable. In the M step, the opti-
misation problem, θn+1 = arg maxQ(θ, θn) is solved [21],
[22]. The generated sequence, {θn} leads to the increased
likelihood function (L(θn) < L(θn+1)). In our case, we
regard w as the latent variable. Following the standard
procedure of EM method, the algorithm is described in
Algorithm 1. To solve the optimisation problem (15) with
the matrix Φ ∈ RN×M and N �M , the cost of EM method
is O(MN2) in each iteration.

Algorithm 1 Solve (15) using EM method

1: Initialize β0, γ0, λ0

2: for n = 1 : Max do
3: E step: Formulate p(w|y, βn, γn, λn) according to

(13) and (14)
4: M step: Formulate the optimisation problem and

update solutions as:

[βn+1, γn+1, λn+1]

= arg minEw|βn,γn,λn {ln p(y, w|β, γ, λ)}
(16)

γn+1
i =

{
1
k+l

∑k+l
j=1 diag{Σn}ij + (µnij)

2, i ≤ p
1
k

∑k
j=1 diag{Σn}ij + (µnij)

2, p < i ≤ p+m

βn+1
ij = diag{Σn}ij + (µnij)

2

λn+1 =
‖y − Φµn‖22 + λn

∑p+m
i=1

∑
j 1− τijdiag{Σn}ij

N
(17)

where

τij = (βnij)
−1 + (γni)−1, N = (k + l)p+ km. (18)

5: if some stopping criteria is satisfied then
6: Break;
7: end if
8: end for

V. SIMULATION

We present two simulations to illustrate our method. The
first example is a three-gene repressilator network discussed
in [12]. In the second example, linear ARX models are
studied.

The topology inferences are evaluated using the average of
True Positive Rate (TPR), the average of the Precision (Prec),
and the percentage of successful inference (100% TPR and
100% Prec) among all runs. TPR reveals the percentage
of how many true links of the ground truth networks are

identified. Prec indicates the confidence of estimation, which
equals TP/(TP + FP), where TP is the number of true
links correctly identified and FP is the number of those
incorrectly identified. For example, if Prec is 50%, it means
that half of the links in the estimated network are wrong.

To evaluate the accuracy of estimated parameters, we
calculate the normalised root mean square error (NRMSE)
as:

NRMSE =
1√
Nx̂
‖xest − xtrue‖2

x̂ =
1

N
‖xtrue‖1.

(19)

A. Gene regulatory network

The repressilator model describes the transcription and
translation activities among three genes and proteins. Hill
functions are used to represent dynamics of transcription
while degradation and translation are described by linear
terms. The model is given below:

x1(k + 1) = (1− δ1)x1(k) +
α1

1 + xn1
6 (k)

+ u(k) + e1(k)

x2(k + 1) = (1− δ2)x2(k) +
α2

1 + xn2
4 (k)

+ e2(k)

x3(k + 1) = (1− δ3)x3(k) +
α3

1 + xn3
5 (k)

+ e3(k)

x4(k + 1) = (1− δ4)x4(k) + β1x1(k) + e4(k)

x5(k + 1) = (1− δ5)x5(k) + β2x2(k) + e5(k)

x6(k + 1) = (1− δ6)x6(k) + β3x3(k) + e6(k),
(20)

where

δ1 = 0.3, δ2 = 0.4, δ3 = 0.5, δ4 = 0.2, δ5 = 0.4, δ6 = 0.6

α1 = 4, α2 = 3, α3 = 5, β1 = 1.4, β2 = 1.5, β3 = 1.6

n1 = 1, n2 = 2, n3 = 2.
(21)

Variables x1, x2, x3 denote the concentration of mRNAs of
three genes whereas x4, x5, x6 represent proteins. e denotes
i.i.d Gaussian noise. u presents the stimuli into the network
(known) and was set to be a step function with amplitude
0.01. Parameters of the model correspond to the rate of
biochemical reactions. The nonlinear terms in the model are
Hill functions describing repressive transcriptional activity.
The model was simulated with different noise variance from
time indices 1 to 50. Full state measurements were used for
identification.

The objectives are to infer the topology of the network,
estimate model parameters and recognize whether the gene
regulations are repressive or active. Assuming no prior
knowledge of the network, we built a dictionary of candidate
functions including linear functions and Hill functions with
the Hill coefficient from 1 to 4 in both repression and
activation forms. For the ith node (we do not know whether

it is mRNA or protein), there are 9 relevant functions:[
xi,

xi
1 + xi

,
1

1 + xi
,

x2i
1 + x2i

,
1

1 + x2i
, ...,

x4i
1 + x4i

,
1

1 + x4i

]
.

(22)
Therefore, the target vector w for each node is of dimension
9×6+1 = 55 (6 groups with 9 elements in each group plus
an extra term of the input).

Successful identification should not only infer the correct
network topology but also indicate the type of the gene
regulation by selecting the proper Hill functions.

Table I compares the inferred Boolean structure of the
repressilator network. With no process noise, our method
and SBL achieve perfect inference (TPR = 100%, Prec =
100%). With relatively small noise variance (1e− 3), while
SBL and GSB inferred all the true linkgs, their Prec de-
creases to 53% and 45% respectively meaning it becomes
difficult to tell which links in their inferred networks are true.
In the contrast, our method still retains high Prec (81%). As
the noise variance increases to 1e−1, Prec of SBL and GSBL
further drops to below 50%. Although our method missed
some true links, the confidence of estimation is much higher
than the other two methods (Prec = 76%). On average, our
method identified 6.6 links in total, among which only 1.6
links are wrong.

Table II shows that with no process noise, the estimation
error of our method and SBL is negligible but the estimation
accuracy of our method is more robust to the process noise.

B. Linear ARX models

Data was simulated from stable and sparse linear ARX
models (θ = 0) with 10 nodes. Our approach was compared
with other methods: kernel method in [2], GSBL and SBL.
For the kernel approach, the stable spline kernel was used to
estimate the finite impulse responses of ARX models. Hyper-
parameters of kernel functions were estimated using Type II
maximisation. Note that there are no obstacles preventing
the application of our method to unstable networks since no
constraint is required on the system property.

The simulation generated 100 random networks, from a
fixed topology: a ring network as in Figure 1. Internal dy-
namics (polynomial matrices) up to 5th order were generated
randomly. There is only one input applied to node 1. Both
the exciting input (known) and process noise (unknown) were
independent Gaussian. The ratio of input and noise variance
was SNR = 10 log10(σ2

u/σ
2
e) = 20dB. The upper bound of

the polynomial order (k in (5)) was set to 8.
For identification, the simulation collected 65 data points

for each node and input. This class of networks is very sparse
and contains a feedback loop.

The inference of ring networks further highlights the
significance of Prec. The ring network contains only 10 links
(of a total of 90 possible links). Hence, a high TPR is only
meaningful if Prec is also high, or otherwise there is a low
probability to choose a true link from all of those inferred.
Therefore, the main task of inference in this case is to achieve

TABLE I: Inference results for the Repressilator network.

No noise 1e-3 Var 1e-1 Var
Prec TPR Success Prec TPR Success Prec TPR Success

Our 100% 100% 100% 81% 98% 12% 76% 84% 8%
SBL 100% 100% 100% 53% 100% 0 36% 100% 0

GSBL 75% 100% 0 45% 100% 0 36% 100% 0

TABLE II: NRMSE of the Repressilator network.

No noise 1e-3 Var 1e-1 Var
Our 1e-3 0.94 3.90
SBL 1e-3 1.28 4.07

GSBL 3.4 6.89 6.16

TABLE III: Inference results for ring networks using differ-
ent methods.

Prec TPR Succ NRMSE
Our 93.2% 92.4% 49% 1.48
SBL 11.2% 100% 0 9.04

GSBL 13.2% 97.9% 0 7.99
Kernel 46.4% 95.2% 0 2.62

both high TRP and Prec. The results in Table III confirm
this consideration. All the methods attain very high TPR
(> 90%). While our method has the lowest TPR (92.4%), it
has by far the largest Prec (93.2%), meaning that on average
9.2 links are correctly inferred (out of 10) in a total of 9.9
links estimated (out of 90). The Prec of SBL and GSBL is
extremely low, meaning that these methods estimated almost
all 90 possible links. Even for the kernel method, its Prec is
below 50% meaning that, on average, there are 20.5 links
estimated but only 9.5 of them are correct. Finally, our
method perfectly estimated (100% TPR and 100% Prec) 49%
of all networks and had the lowest estimation error of all
methods.

Fig. 1: A ring network.

VI. CONCLUSION AND DISCUSSION

This paper combines SBL and GSBL to identify nonlinear
multivariable ARX models given measured time series data.
No prior knowledge of the system is needed besides sparse
topology. Motivated by simulation examples, the topology
and model parameters must be taken care of simultaneously
to infer sparse networks accurately. The newly proposed
method achieves this by inducing both group and element
sparse priors so that a sparse model structure is imposed, as
well as the least number of candidate functions. EM algo-
rithm is used to solve the Type II maximisation efficiently.
This framework can also be applied to linear ARX models.

In this case, element sparse priors penalise the polynomial
order. Simulations also show our method is superior to SBL,
GSBL and kernel methods.

Further developments should include two aspects. The
first is to obtain theoretical guarantees of the algorithm
performance. Since the dictionary matrix Φ correlates with
process noise due to the intrinsic property of dynamic
systems, its analysis is much more complex than a pure linear
regression case [11]. The second question is how to extend
this framework to infer more general network models, such
as NARMAX models. The main obstacle here is that SBL
normally demands the logarithm of the likelihood function
be quadratic, which does not naturally happen with these
model classes, i.e. their posterior distribution is intractable,
even if the sparse prior is approximated by its lower bound.

REFERENCES

[1] L. Ljung, System Identification: Theory for User. Prentice Hall, 1998.
[2] A. Chiuso and G. Pillonetto, “A Bayesian approach to sparse dynamic

network identification,” Automatica, pp. 1553–1565, 2012.
[3] D. Wipf, “Bayesian methods for finding sparse representations,” Ph.D.

dissertation, University of California, 2006.
[4] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group

lasso,” Journal of Computational and Graphical Statistics, vol. 22, pp.
231–245, 2013.

[5] Y. Yuan, G. Stan, S. Warnick, and J. Goncalves, “Robust dynamical
network structure reconstruction,” Automatica, vol. 47, pp. 1230–1235,
2011.

[6] D. Hayden, Y. Chang, J. Goncalves, and C. Tomlin, “Sparse network
identifiability via compressed sensing,” Automatica, vol. 68, pp. 9–17,
2016.

[7] B. Sanandaji, T. Vincent, and M. Wakin, “Exact topology identification
of large-scale interconnected dynamical systems from compressive
observations,” Proceedings of the 2011 American Control Conference,
pp. 649–656, 2011.

[8] S. Babacan, S. Nakajima, and M. Do, “Bayesian group-sparse mod-
eling and variational inference,” Signal Process. IEEE Trans., vol.
62(11), pp. 2906–2921, 2014.

[9] M. Tipping, “Sparse Bayesian learning and the relevance vector mach,”
J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[10] R. Chen, C. Chu, S. Yuan, and Y. Wu, “Bayesian sparse group
selection,” Journal of Computational and Graphical Statistics, pp. 1–
29, 2015.

[11] D. Wipf, B. Rao, and S. Nagarajan, “Latent variable Bayesian models
for promoting sparsity,” IEEE Trans. Inf. Theory., vol. 57(9), pp. 6236–
6255, 2011.

[12] W. Pan, Y. Yuan, J. Goncalves, and G. Stan, “A sparse Bayesian
approach to the identification of nonlinear state-space systems,” IEEE
Trans. Automat. Contr., vol. 61(1), pp. 182–187, 2016.

[13] W. Pan, Y. Yuan, L. Ljung, J. Goncalves, and G. Stan, “Identifying
biochemical reaction networks using heterogeneous datasets,” IEEE
Conference on Decision and Control, 2015.

[14] G. Pillonetto and G. D. Nicolao, “A new kernel-based approach for
linear system identification,” Automatica, vol. 46(1), pp. 81–93, 2010.

[15] G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao, and L. Ljung, “Ker-
nel methods in system identification, machine learning and function
estimation: A survey,” Automatica, vol. 50(3), pp. 657–682, 2014.

[16] T. Chen, M. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto, “System
identification via sparse multiple kernel-based regularization using
sequential convex optimization techniques,” Automatica, vol. 59(11),
pp. 1–33, 2014.

[17] J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao, “Variational em
algorithms for non-Gaussian latent variable models,” Adv. Neural Inf.
Process. Syst., vol. 18, p. 1059, 2006.

[18] M. Wainwright and M. Jordan, “Graphical models, exponential fam-
ilies, and variational inference,” Foundations and Trends in Machine
Learning, pp. 1–305, 2008.

[19] Z. Zhang and B. Rao, “Extension of SBL algorithms for the recovery
of block sparse signals with intra-block correlation,” IEEE Trans.
Signal Process., vol. 61(8), pp. 2009–2015, 2013.

[20] R. Giri and B. Rao, “Type I and type II Bayesian methods for sparse
signal recovery using scale mixtures,” IEEE Transactions on Signal
Processing, pp. 3418–3428, 2016.

[21] C. Bishop., Pattern recognition and machine learning. Springer New
York, 2006.

[22] D. Wipf and B. Rao, “An empirical Bayesian strategy for solving the
simultaneous sparse approximation problem,” IEEE Transactions on
Signal Processing, vol. 55(7), pp. 3704–3716, 2007.

	INTRODUCTION
	MODEL FORMULATION
	RECONSTRUCTION PROBLEM FORMULATION
	INDUCING SPARSITY VIA SPARSE BAYESIAN LEARNING
	Sparsity inducing priors
	Type II Maximisation
	EM Algorithm to solve Type II maximisation

	SIMULATION
	Gene regulatory network
	Linear ARX models

	CONCLUSION AND DISCUSSION
	References

