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Abstract

Given a polytope P ⊂ Rn, we say that P has a positive semidefinite lift (psd lift) of size d if one can
express P as the projection of an affine slice of the d×d positive semidefinite cone. Such a representation
allows us to solve linear optimization problems over P using an SDP of size d and can be useful in
practice when d is much smaller than the number of facets of P . If a polytope P has symmetry, we can
consider equivariant psd lifts, i.e., those psd lifts that respect the symmetries of P . One of the simplest
families of polytopes with interesting symmetries is regular polygons in the plane. In this paper we
give tight lower and upper bounds on the size of equivariant psd lifts for regular polygons. We give an
explicit construction of an equivariant psd lift of the regular 2n-gon of size 2n− 1, and we prove that our
construction is essentially optimal by proving a lower bound of Ω(logN) on the size of any equivariant
psd lift of the regular N -gon. Our construction is exponentially smaller than the (equivariant) psd lift
obtained from the Lasserre/sum-of-squares hierarchy, and it also gives the first example of a polytope
with an exponential gap between equivariant psd lifts and equivariant LP lifts.

1 Introduction

1.1 Preliminaries

Semidefinite programming is the problem of minimizing (or maximizing) a linear function subject to linear
matrix inequalities. The feasible set of a semidefinite program is known as a spectrahedron and corresponds
to an affine slice of the cone of positive semidefinite matrices. An important question that has attracted a lot
of attention in optimization is to give representations of convex sets as feasible sets of semidefinite programs.

In this paper we are interested in lifted semidefinite representations. We say that a convex set C has
a positive semidefinite lift (psd lift) if it can be written as the linear projection of a spectrahedron. More
formally, we have the following definition of psd lift (we work with Hermitian lifts for convenience):

Definition 1. (Gouveia et al. [GPT13]) Let C be a convex set in Rn. Let Hd be the space of d×d Hermitian
matrices, and Hd

+ be the cone of d×d Hermitian positive semidefinite matrices. We say that C has a Hd
+-lift,

or a psd lift of size d, if there exists a linear map π : Hd → Rn and an affine subspace L ⊂ Hd such that:

C = π(Hd
+ ∩ L).

An interesting question that has gained a lot of interest recently is, for a given polytope P , to characterize
the size of the smallest psd lift of P . This quantity, known as the psd rank of P , was introduced in Gouveia
et al. [GPT13] and studied in e.g., Fiorini et al. [FMP+12], Gouveia et al. [GRT13], Briët et al. [BDP13]
and Fawzi et al. [FSP15a]. Positive semidefinite lifts are interesting in practice when the size of the psd lift
is much smaller than the number of facets of P (which is the size of the trivial representation of P ). Indeed,
if P has a psd lift of size d, then one can formulate any linear optimization problem over P as a semidefinite
program of size d.

The definition of a psd lift given here was first formulated in Gouveia et al. [GPT13] and is the generaliza-
tion of the notion of LP lift (also called LP extended formulation) to the case of semidefinite programming.
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The definition of an LP lift of size d is similar to that of a psd lift except that the psd cone Hd
+ is replaced

by Rd+ (see Appendix B for the formal statement of the definition). The size of the smallest LP lift of a
polytope P is called the LP extension complexity. An important question in the area of lifted representations
of polytopes is to know whether there exist polytopes with large gaps between sizes of LP lifts and psd lifts.
The following open question is taken from [FGP+15]:

Question 1. Find a family of polytopes that exhibits a large (e.g. exponential) gap between its psd rank and
LP extension complexity.

One of the results of this paper shows that regular polygons constitute an example of such a gap when
we restrict to lifts that respect symmetry, in a sense that we now make precise. Note that the recent paper
[FSP15b] gives an example with a multiplicative gap of O( log k

k ) between sizes of LP and psd lifts without
symmetry requirement, for a family of trigonometric cyclic polytopes in R2k (trigonometric cyclic polytopes
can be seen as multidimensional generalizations of regular polygons).

Equivariant lifts In many situations, the polytope P of interest has certain symmetries. The symmetries
of a polytope P ⊂ Rn are the geometric transformations that leave P invariant: more precisely if G is a
group linearly acting on Rn, we say that P is invariant under the action of G if g · x ∈ P for any x ∈ P
and g ∈ G. For example the regular N -gon in the plane, is invariant under the action of the dihedral group
which consists of N rotations and N reflections. In Fawzi et al. [FSP15a], we studied so-called equivariant
psd lifts of polytopes, which are psd lifts that respect the symmetry of a polytope P . Intuitively, a psd
lift P = π(Hd

+ ∩ L) respects the symmetry of P if any transformation g ∈ G that leaves P invariant can
be lifted to a transformation Φ(g) of Hd that leaves the cone Hd

+ and the subspace L invariant and such
that the following natural equivariance condition holds: π(Φ(g)Y ) = g · π(Y ) for all Y ∈ Hd

+ ∩ L. Since
the transformations that leave the psd cone Hd

+ invariant are precisely the congruence transformations (i.e.,
transformations of the form Y 7→ RY R∗ where R ∈ GLd(C), cf. Tunçel [Tun00, Theorem 9.6.1]), the
transformation Φ(g) is required to have the form Φ(g) : Y 7→ ρ(g)Y ρ(g)∗ where ρ : G→ GLd(C) is a group
homomorphism. This leads to the following definition of equivariant psd lift from [FSP15a]:

Definition 2. Let P ⊆ Rn be a polytope and assume P is invariant under the action of some group G.
Let P = π(Hd

+ ∩ L) be a Hd
+-lift of P , where L ⊂ Hd is an affine subspace of the space of Hermitian d× d

matrices. The lift is called G-equivariant if there exists a homomorphism ρ : G→ GLd(C) such that:

(i) The subspace L is invariant under congruence transformations by ρ(g), for all g ∈ G, i.e.:

ρ(g)Y ρ(g)∗ ∈ L ∀g ∈ G, ∀Y ∈ L. (1)

(ii) The following equivariance relation holds:

π (ρ(g)Y ρ(g)∗) = g · π(Y ) ∀g ∈ G, ∀Y ∈ Hd
+ ∩ L. (2)

In [FSP15a] we studied equivariant psd lifts of a general class of symmetric polytopes known as orbitopes.
An orbitope, cf. Sanyal et al. [SSS11], is a polytope of the form P = conv(G · x0) where G · x0 is the orbit of
x0 ∈ Rn under the action of a finite group G. In [FSP15a] we established a connection between equivariant
psd lifts of such polytopes and sum-of-squares certificates for its facet-defining inequalities from an invariant
subspace. This connection allowed us to prove exponential lower bounds on sizes of equivariant psd lifts for
two families of polytopes, namely the cut polytope and the parity polytope.

Note that when working with LP lifts (i.e., lifts with the cone Rd+) one can also give a natural definition
of equivariant LP lift (also known as symmetric LP lift in the literature). The definition of an equivariant
LP lift is similar to that of an equivariant psd lift, except that the action by congruence transformations
Y 7→ ρ(g)Y ρ(g)∗ is replaced by a permutation action y 7→ Φ(g)y where Φ : G → Sd is a homomorphism
from G to the permutation group on d elements (see Appendix B for the formal statement).

Equivariant LP lifts of various polytopes have been studied before in e.g., Yannakakis [Yan91], Kaibel et
al. [KPT12], Pashkovich [Pas14], Gouveia et al. [GPT13], Chan et al. [CLRS13] and it was shown that the
requirement of equivariance can affect the size of the lift: several examples have been provided of polytopes
with an exponential gap between sizes of LP lifts and equivariant LP lifts. One of the simplest such examples
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are regular N -gons in the plane which are known to have an LP lift of size logN (cf. Ben-Tal and Nemirovski
[BTN01]), and yet any equivariant LP lift must have size at least N when N is a power of a prime (cf. Gouveia
et al. [GPT13] and also Appendix B for more details).

Further results about lifts of non-regular polygons were obtained in Fiorini et al. [FRT12] where it was
shown that generic N -gons have LP extension complexity at least

√
2N (where generic means that the

coordinates of the vertices are algebraically independent over Q). For psd lifts of N -gons much less is known.

The only asymptotic lower bound on the psd rank of N -gons is Ω
(√

logN
log logN

)
which comes from quantifier

elimination theory [GPT13, GRT15]. It is also known that generic N -gons have psd rank at least (2N)1/4,
cf. Gouveia et al. [GRT15].

1.2 Summary of contributions

In this paper we propose to study equivariant psd lifts of regular polygons. Our contribution is threefold:

1. To obtain an equivariant psd lift of the regular polygon, one way is to use the Lasserre/sum-of-squares
hierarchy, cf. Lasserre [Las09] and Gouveia et al. [GPT10]. Our first contribution is to show that the
sum-of-squares hierarchy for the regular N -gon requires exactly dN/4e iterations. The lower bound
of dN/4e seems to be known in the community, though not written explicitly anywhere. Our main
contribution here is to show that the dN/4e’th iteration is exact (the previously known upper bound
was dN/2e − 1). We prove this new upper bound by exploiting the fact that the regular N -gon is
a dN/2e-level polytope and by showing that in some cases —and in the particular case of regular
polygons— k-level polytopes only require dk/2e levels of the sum-of-squares hierarchy, instead of the
previously known bound of k−1, cf. Gouveia and Thomas [GT12, Theorem 11]. The results developed
here are of independent interest and can be applied to other k-level polytopes.

2. The second contribution of the paper is to give an explicit construction of an equivariant psd lift of
the regular 2n-gon of size 2n− 1. The main feature of our construction is that it is equivariant (with
respect to the full dihedral group), unlike the LP lift of Ben-Tal and Nemirovski [BTN01] which is not
equivariant. It was actually shown in [GPT13, Proposition 3] that any equivariant LP lift of the regular
N -gon must have size at least N when N is a prime or a power of a prime (cf. Appendix B for more
details). Our construction thus gives an exponential gap between sizes of equivariant psd and linear
programming lifts and thus gives an answer to a restricted version of Question 1, where the restriction
is to the case of equivariant lifts. Also note that the size of our construction is exponentially smaller
than the lift obtained from the Lasserre/sum-of-squares hierarchy, which has size 1 + 2n−1. Theorem
1 below describes our lift which uses the Cartesian product cone (H3

+)n−1 and which is easier to state

(we refer the reader to Section 4 for an alternative lift over the cone H2n−1
+ ).

Theorem 1. Let XN be the N roots of unity in C ' R2. Then conv(X2n) is the set of y0 ∈ C such
that there exist y1, . . . , yn−2 ∈ C and yn−1 ∈ R such that 1 yk−1 yk−1

yk−1 1 yk
yk−1 yk 1

 ∈ H3
+ for k = 1, 2, . . . , n− 2 and

 1 yn−2 yn−2
yn−2 1 yn−1
yn−2 yn−1 1

 ∈ H3
+. (3)

Remark 1. Note that the semidefinite lift (3) uses rational numbers only, whereas the LP lift of Ben-Tal
and Nemirovski [BTN01] involves irrational numbers.

Remark 2. The construction we give in this paper only works for 2n-gons. In the recent paper [FSP15b]
we show that for any integer N , the regular N -gon has an equivariant psd lift of size O(logN).

3. Lastly, we prove that our equivariant lift is optimal by proving a lower bound on the sizes of equivariant
psd lifts of the regular N -gon. In fact we show that any equivariant Hermitian psd lift of the regular
N -gon must have size at least ln(N/2).

Theorem 2. Any Hermitian psd lift of the regular N -gon that is equivariant with respect to the rotation
group RotN of order N has size at least ln(N/2).
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Equivariant Non-equivariant
LP Lower bound: 2n (Gouveia et al. [GPT13])

Upper bound: 2n (trivial)
Lower bound: n (Goemans [Goe15])
Upper bound: 2n+1 (Ben-Tal and Nemirovski [BTN01])

SDP Lower bound: (ln 2)(n− 1) (Theorem 2)
Upper bound: 2n− 1 (Section 4)

Lower bound: Ω
(√

n
logn

)
(Gouveia et al. [GPT13,

GRT15])
Upper bound: 2n− 1 (Section 4)

Table 1. Bounds on the size of the smallest LP/PSD lifts for the regular 2n-gon in both the equivariant
and non-equivariant cases. The main contributions of this paper are highlighted in bold.

Table 1 summarizes our contributions as well as previously known bounds on LP/PSD lifts of the regular
2n-gon in both the equivariant and non-equivariant cases.

The proofs of our results rely on the connection between equivariant psd lifts and sum-of-squares certifi-
cates of facet inequalities for the regular N -gon. In fact the main ingredient to prove Theorem 1 is to show
that the facet inequalities of the regular 2n-gon admit a certain sparse sum-of-squares certificate that only
requires a small number of monomials. Similarly the proof of Theorem 2 consists in obtaining a lower bound
on the sparsity of polynomials that arise in any sum-of-squares certificate of the facet-defining inequalities
of the regular N -gon.

Organization The paper is organized as follows: In Section 2 we describe some of the notations used in
this paper, and we provide precise statements about the connection between equivariant psd lifts and sums of
squares, that will be crucial for the rest of the paper. In Section 3 we prove that the Lasserre/sum-of-squares
hierarchy of the regular N -gon requires exactly dN/4e iterations. Then in Section 4 we show a construction of
an equivariant psd lift of the regular 2n-gon of size 2n−1. Finally in Section 5 we show that any equivariant
psd lift of the regular N -gon must have size at least ln(N/2).

2 Notations

In this section we introduce some notations and we describe more formally the connection between equivariant
psd lifts and sum-of-squares certificates.

Regular N-gon The regular N -gon we consider in this paper has vertices the N ’th roots of unity:

XN = {(cos (2πt/N) , sin (2πt/N)) : t ∈ ZN}

where ZN is the set of integers modulo N . Figure 1 shows a picture for N = 7. The symmetry group of the
regular N -gon is the dihedral group Dih2N of order 2N which consists of N rotations and N reflections. We
denote by RotN the subgroup of rotations, isomorphic to ZN .

cos(π/N)x+ sin(π/N)y = cos(π/N)

Figure 1. The regular 7-gon.

The “first” facet of the regular N -gon is defined by the linear inequality cos(π/N) − cos(π/N)x −
sin(π/N)y ≥ 0. Throughout this paper, we denote by ` the restriction of this facet on the vertices of
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the N -gon:
`(t) = cos(π/N)− cos(π/N) cos(2πt/N)− sin(π/N) sin(2πt/N), t ∈ ZN . (4)

Concretely ` is an element of CN (or, more precisely, CZN ) whose components are all nonnegative.

Fourier basis It is well-known that any element of CN admits a decomposition in the Fourier basis. The
elements of the Fourier basis are given by

ek(t) = e2iπkt/N ∀t ∈ ZN

where k ∈ ZN . For convenience we are going to define the elements ck and sk which play the role cos(2πkt/N)
and sin(2πkt/N):

ck =
ek + e−k

2
, sk =

ek − e−k
2i

.

With the notations above, the element ` defined earlier in Equation (4) can be written as:

` = cos(π/N)c0 − cos(π/N)c1 − sin(π/N)s1

= cos(π/N)e0 −
1

2
e−iπ/Ne1 −

1

2
eiπ/Ne−1.

(5)

Equivariant lifts and sum-of-squares certificates A sum-of-squares certificate for ` takes the form:

` =
∑
i

|hi|2 (6)

where hi ∈ CN and where |hi|2 is the componentwise modulus square of hi. The next theorem, which is
a special case of results in [GPT10, Las09], shows that to construct an equivariant psd lift of the regular
N -gon, it suffices to find a sum-of-squares certificate of ` of the form (6) where the his are sparse in the
Fourier basis.

Theorem 3 (Special case of [GPT10, Las09]). Assume that ` defined in (5) admits a sum-of-squares cer-
tificate of the form:

` =

q∑
i=1

∑
j

|hij |2 (7)

where for each i = 1, . . . , q and each j the function hij is in
⊕

k∈Ki Cek where Ki ⊆ ZN . Then the regular

N -gon admits the following Hermitian psd lift over the Cartesian product Hd1
+ × . . .H

dq
+ where di = |Ki| for

each i = 1, . . . , q:

conv(XN ) =
{

(Re[y1], Im[y1]) : y0 = 1, [yk′−k]k,k′∈Ki ∈ Hdi
+ ∀i = 1, . . . , q

}
. (8)

Furthermore this lift is equivariant with respect to the rotation group RotN . Also if Ki = −Ki for all i, then
the lift is equivariant with respect to the dihedral group Dih2N .

Proof. We include a proof in Appendix C for completeness. The reason such sum-of-squares certificates
lead to RotN -equivariant lifts is that any subspace of CN of the form ⊕k∈KCek is invariant under the
action of RotN which shifts the vertices of the regular N -gon. We refer the reader to [FSP15a] for more
information.

Remark 3. The additional (“lifting”) variables in (8) are the yk′−k for k, k′ ∈ Ki and i = 1, . . . , q, where
k′ − k is understood modulo N . Note that the Hermitian psd constraint on the matrices [yk′−k]k,k′∈Ki
automatically implies that y−j = yj . For example if N = 6 and K = {0, 1,−1, 3} then the constraint
[yk′−k]k,k′∈K � 0 together with y0 = 1 corresponds to:

1 y1 y1 y3
y1 1 y2 y2
y1 y2 1 y2
y3 y2 y2 1

 � 0.
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Note that 3 = −3 mod 6 and so this is why the (1, 4) and (4, 1) entries of the matrix above are both y3. This
in particular implies that y3 has to be real (for the matrix to be Hermitian).

The next theorem is a converse to Theorem 3. It shows that any equivariant psd lift corresponds to a
certain sum-of-squares certificate for `. This theorem is a special case of the structure theorem in [FSP15a].

Theorem 4 (Special case of [FSP15a]). Assume that the regular N -gon has a Hermitian psd lift of size d
that is equivariant with respect to RotN , the rotation group of order N . Then there exists a set K ⊆ ZN
with |K| ≤ d and functions hi ∈

⊕
k∈K Cek such that

` =
∑
i

|hi|2.

Proof. See Appendix D.

This result shows that in order to prove a lower bound on the size of equivariant psd lifts of the regular
N -gon, it suffices to prove a lower bound on the sparsity of sum-of-squares certificates for `. This is the
approach we adopt in Section 5 to prove a lower bound of ln(N/2) on the size of RotN -equivariant psd lifts
of the regular N -gon.

3 Sum-of-squares hierarchy and nonnegative polynomial interpo-
lation

In this section we study the Lasserre/sum-of-squares hierarchy for the regular N -gon and we show that the
hierarchy is exact after dN/4e levels.

The Lasserre/sum-of-squares hierarchy for the regular N -gon seeks to certify the nonnegativity of the
facet ` using low-degree sum-of-squares. We say that an element h ∈ CN has degree at most k if it is in the
subspace ⊕

i∈{−k,...,k}

Cei.

Equivalently one can show that deg h ≤ k if and only if h is the restriction of a bivariate polynomial in C[x, y]
of degree k to the vertices of the regular N -gon. With this definition, the k’th level of the sum-of-squares
hierarchy is exact if there exist hi ∈ CN with deg hi ≤ k such that1 ` =

∑
i |hi|2. The smallest k for which

such a certificate exists is called the theta-rank of the N -gon, in reference to the terminology on theta-bodies
[GPT10]. In this section we prove that the theta-rank of the regular N -gon is exactly dN/4e:
Theorem 5. The facet functional ` = cos(π/N)c0−cos(π/N)c1−sin(π/N)s1 ∈ CN admits a sum-of-squares
certificate ` =

∑
i |hi|2 where each hi has degree at most dN/4e. Furthermore if ` has a sum-of-squares

certificate ` =
∑
i |hi|2 then at least one hi has degree ≥ N/4.

We first prove the lower bound which is apparently well-known though does not seem to be written
explicitly anywhere. The argument we present below is due to G. Blekherman.

Proposition 1. If ` has a sum-of-squares certificate ` =
∑
i |hi|2 then at least one hi has degree ≥ N/4.

Proof. In this proof we will think of ` as the linear function `(x, y) = cos(π/N) − x cos(π/N) − y sin(π/N)
in R2, and of hi as polynomials in C[x, y]. Let g(x, y) = `(x, y) −∑i |hi(x, y)|2. By assumption g vanishes
on the vertices of the N -gon. Since g is not identically zero (g(1, 0) ≤ `(1, 0) < 0) it follows that g must
have degree at least N/2 (recall that a nonzero polynomial in C[x, y] of degree d can have at most 2d zeros
on the unit circle). Since deg ` = 1 it follows directly that at least of one of the hi’s has degree ≥ N/4.

The rest of this section is mainly devoted to the proof that dN/4e levels of the sum-of-squares hierarchy
are sufficient for the regular N -gon. Namely we show that ` admits a sum-of-squares certificate (6) where
deg hi ≤ dN/4e for all i. To do so we exploit the fact that the regular N -gon is a k-level polytope where
k = dN/2e. In fact we develop new general results about the theta-rank of k-level polytopes.

1Note that the sum-of-squares hierarchy is exact at level k if all the facet inequalities can be certified using functions of
degree at most k. However since all the facets are equivalent up to rotation it is sufficient to consider just one of them.
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3.1 k-level polytopes and nonnegative polynomial interpolation

In this section we study polytopes that are k-level, and we see how this property implies an upper bound
on the sum-of-squares hierarchy. The material presented in this section concerns general polytopes P , and
is not restricted to the case of regular N -gons.

We first recall the definition of a k-level polytope (see e.g., [GT12]):

Definition 3. A polytope P is called k-level if every facet-defining linear function of P takes at most k
different values on the vertices of the polytope.

Example 1 (Regular polygons). It is easy to verify that the regular N -gon is a dN/2e-level polytope. Indeed
the values taken by the facet-defining linear function `(x, y) = cos(π/N) − x cos(π/N) − y sin(π/N) on the
N vertices of the polytope are:

0, x1,N − x2,N , . . . , x1,N − xdN/2e,N where xk,N = cos

(
(2k − 1)π

N

)
.

By symmetry, the number of values taken by the other facet-defining linear functions is also dN/2e, and thus
the regular N -gon is dN/2e-level.

It was shown in [GT12, Theorem 11], via a Lagrange interpolation argument, that if a polytope P is
k-level, then the (k − 1)’st level of the sum-of-squares hierarchy is exact. To prove this result, the idea is
to look at a “one-dimensional projection” of the problem: Let `(x) ≥ 0 be a facet-defining linear inequality
for P and assume that `(x) takes the k values 0 = a0 < a1 < · · · < ak−1 on the vertices of P . To get
an upper bound on the sum-of-squares hierarchy for P , we need to express the function ` on the vertices
of P as a sum-of-squares. To do this, one can proceed as follows: let p be a univariate polynomial that
satisfies p(ai) = ai for all i = 0, . . . , k−1 and that is globally nonnegative on R. Since nonnegative univariate
polynomials are sums of squares (see e.g., [BPT13, Exercise 3.30]), this means that we can write p =

∑
i h

2
i

for some polynomials hi. Then observe that for any vertex x of the polytope P we have

`(x)
(∗)
= p(`(x)) =

∑
i

hi(`(x))2,

where equality (∗) follows from the fact `(x) ∈ {a0, . . . , ak−1} since x is a vertex of P . This shows that `
coincides on the vertices of P with a sum-of-squares polynomial of degree d = deg p. If one can find such
a sum-of-squares certificate of degree d for all the facet-defining linear functions of P , then this shows that
the d/2-level of the sum-of-squares hierarchy is exact.

Note that there is a simple way to construct a polynomial p that satisfies the required conditions, i.e.,
p(ai) = ai for all i = 0, . . . , k− 1 and p globally nonnegative: One can simply take a Lagrange interpolating
polynomial r of degree k − 1 such that r(ai) =

√
ai and then take p(x) = r(x)2. The resulting polynomial

p has degree 2(k − 1) and thus gives an upper bound of k − 1 for the sum-of-squares hierarchy of k-level
polytopes. This is the construction used in [GT12, Theorem 11].

It turns out however that one can sometimes find a polynomial p that has smaller degree. This motivates
the following definition:

Definition 4. Let 0 = a0 < a1 < · · · < ak−1 be k points on the real line. We say that the sequence
(a0, . . . , ak−1) has nonnegative interpolation degree d if there exists a globally nonnegative polynomial p with
deg p = d such that p(ai) = ai for all i = 0, . . . , k − 1.

The construction outlined above with Lagrange interpolating polynomials shows that any sequence of
length k has nonnegative interpolation degree at most 2(k−1). Also note that the nonnegative interpolation
degree of any sequence with k elements must be at least k: indeed if p has degree ≤ k− 1 and p(ai) = ai for
all i = 0, . . . , k − 1 then p must be equal to the linear polynomial x, which is clearly not nonnegative.

The previous discussion concerning the sum-of-squares hierarchy for k-level polytopes can be summarized
in the following proposition:

Proposition 2. Let P be a k-level polytope in Rn. Assume that for any facet-defining linear functional ` of
P , the k values taken by ` on the vertices of P have nonnegative interpolation degree d. Then the d/2-level
of the sum-of-squares hierarchy for P is exact (note that d is necessarily even).
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In the rest of this section we study sequences of length k that have nonnegative interpolation degree
equal to k (i.e., the minimum possible value). Let k be an even integer and let 0 = a0 < a1 < · · · < ak−1
be k points on the positive real axis. The question that we thus consider is: does there exist a univariate
polynomial p such that: 

deg p = k

p(ai) = ai ∀i = 0, . . . , k − 1

p(x) ≥ 0 ∀x ∈ R.

(9)

The next proposition gives a simple geometric characterization of the existence of a polynomial p that
satisfies (9):

Proposition 3. Let q(x) =
∏k−1
i=0 (x − ai) be the monic polynomial of degree k that vanishes at the ai’s.

Then the following are equivalent:
(i) There exists a polynomial p that satisfies (9);
(ii) The curve of q(x) is above its tangent at x = 0, i.e.:

q(x) ≥ q′(0)x ∀x ∈ R. (10)

Proof. Note that if a polynomial p satisfies (9) then it must be of the form:

p(x) = αq(x) + x

where α is a scalar. Furthermore, since p is nonnegative and p(0) = 0, then 0 must be a double root of p,
i.e., p′(0) = 0. This means that we must have αq′(0) + 1 = 0 which implies α = −1/q′(0). In other words,
the unique p which can satisfy conditions (9) is the polynomial:

p(x) = − q(x)

q′(0)
+ x.

Observe that p is, up to scaling, equal to the difference between q(x) and its linear approximation at x = 0:

p(x) = − 1

q′(0)
(q(x)− q′(0)x).

Since q′(0) < 0 (since k is even), we see that p(x) ≥ 0 if and only if the curve of q is above its linear
approximation at x = 0.

Example 2 (Equispaced and subadditive sequences). To illustrate this result consider the sequence ai = i

for i = 0, . . . , k−1. Figure 2 shows the plot of the polynomial q(x) =
∏k−1
i=0 (x−ai) for k = 6 and its tangent

at x = 0. We see from the figure that the curve of q is always above its linear approximation at x = 0. This
means, by Proposition 3, that the nonnegative interpolation degree of the sequence 0, 1, . . . , 5 is 6. One can
actually prove that the nonnegative interpolation degree of the sequence ai = i for i = 0, . . . , k − 1 is equal
to k for any k even. In fact this is true even more generally for any sequence a0, . . . , ak−1 that is subadditive,
i.e., that satisfies ai+j ≤ ai +aj for all i, j such that i+ j ≤ k− 1. This is the object of the next proposition:

Proposition 4. Let k be an even integer and assume that 0 = a0 < a1 < · · · < ak−1 is a subadditive sequence,
i.e., ai+j ≤ ai + aj for all i, j such that i+ j ≤ k. Then (ai)i=0,...,k−1 has nonnegative interpolation degree
k; in other words there exists a globally nonnegative polynomial p of degree k such that p(ai) = ai for all
i = 0, . . . , k − 1.

Proof. Let q(x) =
∏k−1
i=0 (x − ai) and note that q′(0) = −A where A =

∏k−1
i=1 ai. To use Proposition 3, we

need to show that the polynomial

q(x)− q′(0)x = x

[
A+

k−1∏
i=1

(x− ai)
]

(11)

8
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Figure 2. Plot of the polynomial q(x) =
∏5

i=0(x− i) and its tangent at x = 0. We see that the tangent
is always below the curve of q. Thus from Proposition 3 there is a polynomial p of degree 6 that satisfies
(9) for the sequence ai = i, (i = 0, . . . , 5).

is nonnegative for all x ∈ R. We first show that (11) is nonnegative for x ∈ (0, ak−1). Let x ∈ (0, ak−1) and
let j be the index in {0, 1, . . . , k − 2} such that aj ≤ x ≤ aj+1. Then we have:

−
k−1∏
i=1

(x− ai) ≤
∣∣∣∣∣
k−1∏
i=1

(x− ai)
∣∣∣∣∣ =

j∏
i=1

(x− ai) ·
k−1∏
i=j+1

(ai − x)

= [(x− a1)(x− a2) . . . (x− aj)] · [(aj+1 − x) . . . (ak−1 − x)]

(a)

≤ [(aj+1 − a1)(aj+1 − a2) . . . (aj+1 − aj)] · [(aj+1 − aj) . . . (ak−1 − aj)]
(b)

≤ (ajaj−1 . . . a1)(a1 . . . ak−1−j)

(c)

≤ (a1 . . . aj)(aj+1 . . . ak−1) = A

where in (a) we used that aj ≤ x ≤ aj+1; in (b) we used the subadditivity property of the sequence
(a0, . . . , ak−1), and in (c) we simply used the fact that a1 ≤ aj+1, a2 ≤ aj+2, . . . , ak−1−j ≤ ak−1. This
shows that (11) is nonnegative for all x ∈ (0, ak−1). Since (11) is also clearly nonnegative for all x ≤ 0 and
x ≥ ak−1, we can thus use Proposition 3 to conclude the proof.

Application for the parity polytope: Consider the parity polytope PARn defined as the convex hull of
points in {−1, 1}n that have an even number of −1’s:

PARn = conv

{
x ∈ {−1, 1}n :

n∏
i=1

xi = 1

}
. (12)

It is known that the theta-rank of the parity polytope is exactly equal to dn/4e, see [GLPT12, Corollary
5.7] (see also [FSP15a] for a proof of the lower bound). Using the interpolation argument given above for
equispaced sequences, one can give another proof that the theta-rank of the parity polytope is at most
dn/4e. Indeed, it is not difficult to verify that the parity polytope is a dn/2e-level polytope, and that the
levels of each facet are equispaced. Thus, by Proposition 2 and since equispaced sequences of length k have
nonnegative interpolation degree k (when k is even) it follows that the theta-rank of the parity polytope is
dn/4e.

Any 2-level polytope has theta-rank one (see, e.g. [GT12]). One way to see this is to note that any
sequence 0 = a0 < a1 of length 2 has nonnegative interpolation degree 2. One can see this from the
Lagrange interpolation argument given earlier, but perhaps more directly from Proposition 3. In this case
the polynomial q(x) = (x − a0)(x − a1) = x(x − a1) is convex and so its graph is certainly above its linear
approximation at x = 0.

Any sequence of length 4 has nonnegative interpolation degree either 4 or 6 (since the Lagrange in-
terpolation argument constructs a nonnegative interpolant of degree 6). Furthermore, there is a simple
characterization of those sequences of length 4 that have nonnegative interpolation degree 4.

9



Proposition 5. A sequence 0 = a0 < a1 < a2 < a3 of length 4 has nonnegative interpolation degree 4 if and
only if

(a1 + a2 + a3)2 ≤ 4(a1a2 + a1a3 + a2a3). (13)

Proof. We appeal to Proposition 3. In this case q(x)−q′(0)x = x2(x2−(a1+a2+a3)x+(a1a2+a1a3+a2a3)).
This is nonnegative for all x if and only if the quadratic polynomial x2−(a1+a2+a3)x+(a1a2+a1a3+a2a3)
is nonnegative for all x. This occurs precisely when the discriminant is nonpositive, i.e.

(a1 + a2 + a3)2 − 4(a1a2 + a1a3 + a2a3) ≤ 0.

Geometrically, the set of (a1, a2, a3) satisfying (13) is the largest convex quadratic cone centered at (1, 1, 1)
that fits inside the nonnegative orthant. It is remarkable that these sequences form a convex cone.

It would be interesting to understand, for general k, the set of sequences 0 = a0 < a1 < · · · < ak−1 of
length k with nonnegative interpolation degree k. For example, motivated by the construction of psd lifts of
polytopes we pose the following problem.

Question 2. Give a simple (i.e., easy-to-check) sufficient condition for a sequence 0 = a0 < a1 < · · · < ak−1
to have nonnegative interpolation degree k.

In this section we worked with ordered sequences (ai)i=0,...,k−1 that start at a0 = 0 and we considered
the problem of finding a nonnegative polynomial p that takes the same values as the linear polynomial x at
the points a0, . . . , ak−1. For the regular polygon it will be convenient to work with shifted sequences, and
with linear polynomials that have negative slope. We record the following result which we will use later, and
which is an equivalent formulation of Proposition 3:

Proposition 6. Let k be an even integer and let a0 > a1 > · · · > ak−1 be k points on the real axis. Let
l(x) be a decreasing linear function with l(ai) ≥ 0 for i = 1, . . . , k − 1 and l(a0) = 0. Let q be the monic

polynomial that vanishes on the ai’s, q(x) =
∏k−1
i=0 (x− ai).

If the curve of q(x) is above its tangent at x = a0 then there exists a polynomial p of degree k that is
globally nonnegative and such that p(ai) = l(ai) for all i = 0, . . . , k − 1.

3.2 Application to the theta-rank of regular polygons

We now go back to the regular N -gon and use the results from the previous section to show that the
theta-rank of the N -gon is dN/4e. We focus on the facet inequality of the regular N -gon introduced earlier:

`(x, y) = cos(π/N)− x cos(π/N)− y sin(π/N). (14)

Our main result in this section is:

Theorem 6. The linear function `(x, y) agrees with a sum-of-squares polynomial of degree 2dN/4e on the
vertices of the N -gon, i.e., there exist polynomials hi ∈ R[x, y] with deg hi ≤ dN/4e such that

cos(π/N)− x cos(π/N)− y sin(π/N) =
∑
i

hi(x, y)2 ∀(x, y) ∈ XN .

Proof. The proof of this theorem relies mainly on Proposition 6. We consider first the case where N is a
multiple of 4; the other cases are similar but slightly more technical and are treated in Appendix A. Thus
assume N = 4m where m is an integer. Define

ai = cos

(
(2i+ 1)π

4m

)
i = 0, . . . , 2m− 1

and note that a0 > a1 > · · · > a2m−1. Let l be the univariate linear polynomial l(x) = a0 − x. Ob-
serve that l(a0), l(a1), . . . , l(a2m−1) are precisely the values that the linear functional `(x, y) = cos(π/4m)−
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x cos(π/4m) − y sin(π/4m) takes on the vertices of the regular 4m-gon (see Example 1). Consider the
polynomial q which vanishes at the ai’s:

q(x) =

2m−1∏
i=0

(x− ai) =

2m−1∏
i=0

(
x− cos

(
(2i+ 1)π

4m

))
. (15)

Note that, up to scaling, the polynomial q is nothing but the Chebyshev polynomial of order 2m. Indeed
recall that the Chebyshev polynomial of degree r has roots cos((2i+ 1)π/2r), i = 0, . . . , r − 1 and coincides
with the function cos(r arccos(x)) on x ∈ [−1, 1]. Using this observation it is not difficult to show, by
properties of Chebyshev polynomials, that q satisfies the condition of Proposition 6, namely that the curve
of q lies above its linear approximation at x = a0 (cf. Figure 3 for a picture (N = 8) and Lemma 1 in
Appendix A for a formal proof).

●●●●
-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

Figure 3. Plot of the polynomial q(x) of Equation (15) for 2m = 4 and its tangent at x = a0 = cos(π/8).
We see that the tangent is always below the curve of q (for a proof, cf. Lemma 1 in Appendix A). Thus
from Proposition 3 there is a polynomial p of degree 4 that is globally nonnegative and such that
p(ai) = a0 − ai for all i = 0, . . . , 2m− 1 where ai = cos((2i+ 1)π/(4m)).

Thus from Proposition 6 it follows that there exists a nonnegative polynomial p of degree 2m such that
p(ai) = l(ai) = a0 − ai for all i = 0, . . . , 2m − 1. Since nonnegative univariate polynomials are sums of
squares we can write p =

∑
i g

2
i where gi are polynomials of degree at most m. Thus it follows that for any

vertex (x, y) of the regular N -gon, we can write:

`(x, y) = a0 − x cos(π/4m)− y sin(π/4m)

= l(x cos(π/4m) + y sin(π/4m))

(∗)
= p(x cos(π/4m) + y sin(π/4m))

=
∑
i

gi(x cos(π/4m) + y sin(π/4m))2 (16)

where in (∗) we used the fact that x cos(π/4m) + y sin(π/4m) ∈ {ai}i=0,...,2m−1 for (x, y) ∈ XN and that p
agrees with l on the ai’s. Defining hi(x, y) = gi(x cos(π/4m) +y sin(π/4m)) establishes the result in the case
where N is a multiple of four.

The proof when N is not a multiple of four is slightly more technical for two reasons: the polynomial
q(x) is not necessarily a Chebyshev polynomial (though it is related), and the number of values that the
facet `(x, y) takes is not necessarily even. These cases are treated in detail in Appendix A.

4 Construction

In this section we construct two equivariant psd lifts of the regular 2n-gon. The first is a (H3
+)n−1-lift, i.e.,

it expresses the regular 2n-gon using n− 1 linear matrix inequalities of size 3× 3 each, whereas the second
is a H2n−1

+ -lift and uses a single linear matrix inequality of size 2n − 1. Both of our constructions arise
from a sum of squares certificate of the nonnegativity of ` = cos(π/2n)c0 − cos(π/2n)c1 − sin(π/2n)s1 (see
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Proposition 7 to follow). Applying Theorem 3 in two different ways then gives the two different equivariant
psd lifts of the regular 2n-gon.

We now establish the following sum of squares representation of the linear functional `.

Proposition 7. Let ` = cos(π/2n)c0 − cos(π/2n)c1 − sin(π/2n)s1 ∈ C2n . Then we have the following
sum-of-squares certificate for `:

` =

n−2∑
k=0

sin
(
π
2n

)
2k sin

(
2k+1 · π2n

) (cos
( π

2n−k

)
c0 − cos

( π

2n−k

)
c2k − sin

( π

2n−k

)
s2k
)2
.

Proof. To prove that ` has such a decomposition, it is sufficient to establish that

cos
(
π
2n

)
− cos

(
π
2n

)
cos(φ)− sin

(
π
2n

)
sin(φ)

sin
(
π
2n

) = − sin(2n−1φ)

2n−1
+ (17)

n−2∑
k=0

(cos
(
2k · π2n

)
− cos

(
2k · π2n

)
cos(2kφ)− sin

(
2k · π2n

)
sin(2kφ))2

2k sin
(
2k+1 · π2n

)
for all n ≥ 1 and all φ ∈ R. This is enough to prove Proposition 7 because ck (respectively sk) is the
restriction of cos(kφ) (respectively sin(kφ)) to the angles φ = θk = 2kπ

2n for k = 0, 1, . . . , 2n−1 corresponding

to the vertices of the regular 2n-gon, and s2n−1 = 0 in C2n . By using the change of variables θ = φ − π
2n

and the identity cos(2kθ) = cos(2kφ) cos(2k · π/2n) + sin(2kφ) sin(2k · π/2n) (for positive integers k), we see
that (17) is equivalent to

cos
(
π
2n

)
− cos(θ)

sin
(
π
2n

) = −cos(2n−1θ)

2n−1
+

n−2∑
k=0

(cos
(
2k · π2n

)
− cos(2kθ))2

2k sin
(
2k+1 · π2n

) for all n ≥ 1 and all θ ∈ R. (18)

We now establish the identity in (18) by induction. For the base case, observe that cos(π/2)−cos(θ)
sin(π/2) =

− cos(θ) which agrees with (18) for n = 1.
To take the induction step, we first prove the following simple trigonometric identity that holds for all

N ≥ 3 and all θ:

cos
(
π
N

)
− cos(θ)

sin
(
π
N

) =
(cos

(
π
N

)
− cos(θ))2

sin
(
2 · πN

) +
1

2
· cos

(
2 · πN

)
− cos(2θ)

sin
(
2 · πN

) . (19)

To prove this identity, we start with the right-hand side, expand the square and use the identity cos(2t) =
2 cos2(t)− 1, then rewrite the denominator using sin(2t) = 2 sin(t) cos(t), i.e.,

RHS =

[
cos2

(
π
N

)
− 2 cos

(
π
N

)
cos(θ) + cos2(θ)

]
+ cos2

(
π
N

)
− cos2(θ)

sin
(
2 · πN

) =
2 cos

(
π
N

)
(cos

(
π
N

)
− cos(θ))

sin
(
2 · πN

)
=

cos
(
π
N

)
− cos(θ)

sin
(
π
N

)
which is exactly the left-hand side.

With (19) established, we return to our argument by induction. Assume that (17) holds for some n ≥ 1.
By first using (19) (with N = 2n+1), then applying the induction hypothesis (17) evaluated at 2θ we have
that:

cos
(

π
2n+1

)
− cos(θ)

sin
(

π
2n+1

) =
(cos

(
π

2n+1

)
− cos(θ))2

sin
(
π
2n

) +
1

2
· cos

(
π
2n

)
− cos(2θ)

sin
(
π
2n

)
=

(cos
(
20 · π

2n+1

)
− cos(20 · θ))2

20 sin
(
20+1 · π

2n+1

) +
1

2

[
n−2∑
`=0

(cos
(
2` · π2n

)
− cos(2`(2θ)))2

2` sin
(
2`+1 · π2n

) − cos(2n−1(2θ))

2n−1

]

=
(cos

(
20 · π

2n+1

)
− cos(20 · θ))2

20 sin
(
20+1 · π

2n+1

) +

[
n−2∑
`=0

(cos
(
2`+1 · π

2n+1

)
− cos(2`+1θ))2

2`+1 sin
(
2`+2 · π

2n+1

) − cos(2nθ)

2n

]

=

n−1∑
k=0

(cos
(
2k · π

2n+1

)
− cos(2kθ))2

2k sin
(
2k+1 · π

2n+1

) − cos(2nθ)

2n
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completing the proof.

In the context of Theorem 3 there are two natural ways to interpret the sum of squares decompostion of `
given in Proposition 7. Both of these lead to different equivariant lifts of the regular 2n-gon. In Sections 4.1
and 4.2 we describe these lifts.

4.1 An equivariant (H3
+)

n−1-lift of the regular 2n-gon

We can apply Theorem 3 with the sum-of-squares certificate of Proposition 7 to get a Hermitian psd lift of
the regular N -gon. Indeed the certificate of Proposition 7 has the form:

` =

n−2∑
i=0

1∑
j=1

|hij |2

where hi1 ∈ Ce0 ⊕ Ce2i ⊕ Ce−2i for i = 0, . . . , n − 2. Thus by applying Theorem 3 we get the following
Hermitian psd lift of the regular 2n-gon:

conv(X2n) =

{
(Re[y0], Im[y0]) : ∃y1, . . . , yn−2 ∈ C, yn−1 ∈ R such that 1 yk−1 yk−1

yk−1 1 yk
yk−1 yk 1

 ∈ H3
+ for k = 1, 2, . . . , n− 2

and

 1 yn−2 yn−2
yn−2 1 yn−1
yn−2 yn−1 1

 ∈ H3
+

}
.

(20)

Real equivariant psd lift Observe that Proposition 7 actually gives a real sum-of-squares certificate of
`, i.e., the functions hi in ` =

∑
i |hi|2 are real-valued. This sum-of-squares certificate can be used to get

a psd lift of the regular 2n-gon using the cone of real symmetric psd matrices (instead of Hermitian psd
matrices). The real psd lift can be shown to take the form (S3

+ denotes the cone of 3 × 3 real symmetric
positive semidefinite matrices):

conv(X2n) =

{
(x0, y0) : ∃(xi, yi)n−2i=1 , xn−1 ∈ R,

 1 xk−1 yk−1
xk−1

1+xk
2

yk
2

yk−1
yk
2

1−xk
2

 ∈ S3
+ for k = 1, 2, . . . , n− 2

and

 1 xn−2 yn−2
xn−2

1+xn−1

2 0

yn−2 0 1−xn−1

2

 ∈ S3
+

}
. (21)

4.2 An equivariant H2n−1
+ -lift of the regular 2n-gon

By applying Theorem 3 in a different way we can get a different Hermitian psd lift of the regular N -gon.
Indeed note that we can write the sum-of-squares certificate of Proposition 7 as:

` =

1∑
i=1

n−2∑
j=0

h2ij

where h1j ∈
⊕

k∈K(Cek ⊕ Ce−k) where K = {0, 20, 21, . . . , 2n−2}. Note that |K| = 2n − 1. With this

decomposition we get the following H2n−1
+ -lift of the regular 2n-gon:

conv(X2n) =
{

(Re[y1], Im[y1]) : y0 = 1 and [yk′−k]k,k′∈K ∈ H2n−1
+

}
.
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For example for N = 16 we get that conv(X16) is the set of (Re[y1], Im[y1]) ∈ R2 such that the following
7× 7 Hermitian matrix is positive semidefinite:

1 y1 y1 y2 y2 y4 y4
y1 1 y2 y1 y3 y3 y5
y1 y2 1 y3 y1 y5 y3
y2 y1 y3 1 y4 y2 y6
y2 y3 y1 y4 1 y6 y2
y4 y3 y5 y2 y6 1 y8
y4 y5 y3 y6 y2 y8 1


.

Note that the auxiliary variables are y2, y3, y4, y5, y6, y8 and that y8 is a real variable whereas the others are
complex.

Real equivariant psd lift Like in the previous section, since the sum-of-squares certificate constructed in
Proposition 7 is real, one can obtain a version of the lift given above over the cone of real symmetric positive
semidefinite matrices. For example for the case N = 16 we get that the regular 16-gon is the set of (x1, y1)
such that the following 7× 7 real symmetric matrix is positive semidefinite:

2 2x1 2y1 2x2 2y2 2x4 2y4
2x1 1 + x2 y2 x1 + x3 y1 + y3 x3 + x5 y3 + y5
2y1 y2 1− x2 −y1 + y3 x1 − x3 −y3 + y5 x3 − x5
2x2 x1 + x3 −y1 + y3 1 + x4 y4 x2 + x6 y2 + y6
2y2 y1 + y3 x1 − x3 y4 1− x4 −y2 + y6 x2 − x6
2x4 x3 + x5 −y3 + y5 x2 + x6 −y2 + y6 1 + x8 0
2y4 y3 + y5 x3 − x5 y2 + y6 x2 − x6 0 1− x8


.

5 Lower bound on equivariant psd lifts of regular polygons

In this section we are interested in obtaining lower bounds on equivariant psd lifts of the regular N -gon.
The main result of this section is the following:

Theorem 2. Any Hermitian psd lift of the regular N -gon that is equivariant with respect to RotN has size
at least ln(N/2).

Using the relation between equivariant psd lifts of conv(XN ) and sum-of-squares certificates for ` (see
Theorem 4) this section is dedicated to proving Theorem 7:

Theorem 7. Let ` ∈ CN be as defined in (5) and assume that we can write

` =
∑
i

|hi|2 where hi ∈
⊕
k∈K

Cek ∀i (22)

for some set K ⊆ ZN . Then necessarily |K| ≥ ln(N/2).

Theorem 2 then follows directly from Theorems 7 and 4. We introduce some notations which will be
used throughout the section.

Definition 5. Given h ∈ CN and K ⊆ ZN , we say that h is supported on K and we write supph ⊆ K if
h ∈⊕k∈K Cek.

Definition 6. A set K ⊆ ZN is called sos-valid if ` admits a sum-of-squares certificate ` =
∑
i |hi|2 where

supphi ⊆ K for all i.

Our proof of Theorem 7 proceeds in two steps. In the first step, we give necessary conditions in terms
of the “geometry” for a set K to be sos-valid: we show that if the elements in K can be clustered in a
certain way then K is not sos-valid. In the second step we propose an algorithm to cluster any given set K,
and we prove that our algorithm finds a valid clustering whenever the set K is small enough, i.e., whenever
|K| < ln(N/2).

14



5.1 Necessary conditions for a set to be sos-valid

In this section we give a necessary condition on the “geometry” of a set K to be sos-valid. Before stating
the theorem, we make some observations and definitions:

First, observe that if K is a set that is sos-valid, then any translation K ′ = K + t of K is also sos-valid,
where t ∈ ZN . This is because if ` =

∑
i |hi|2 where supphi ⊆ K, then we also have ` =

∑
i |h′i|2 where

h′i = ethi are supported on K ′ (since etek = et+k).
Second, it is useful to think of ZN as the nodes of a cycle graph of length N , and of a set of frequencies

K ⊆ ZN as a subset of the nodes of this graph. For example Figure 4 shows a set K with |K| = 7 for
the N = 12-gon (the elements of K are the black dots). Note that since the property of being sos-valid is
invariant under translation, the cycle graph need not be labeled. The only information that matters are the
relative distances of the elements of K with respect to each other.

Figure 4. A set of frequencies K for the regular 12-gon.

We endow ZN with the natural distance d on the cycle graph. The distance between two frequencies
k, k′ ∈ ZN is denoted by d(k, k′); also if C,C ′ are two subsets of ZN we let

d(C,C ′) = min
k∈C,k′∈C′

d(k, k′).

If x ∈ ZN and r is a positive integer, we can define the ball B(x, r) centered at x and with radius r to be
the set B(x, r) := {y ∈ ZN : d(x, y) ≤ r}. We also let [x, x + r] be the interval {x, x + 1, . . . , x + r} ⊆ ZN .
Note that the ball centered at x of radius r is simply the interval [x− r, x+ r].

In Section 3, Proposition 1 we showed that the linear functional ` of the regular N -gon does not admit
any sum-of-squares certificate with polynomials of degree smaller than N/4. One can state this result in a
different way as follows: If K is a set of frequencies that is included in a ball of radius smaller than N/4,
then K is not sos-valid. The goal of this section is to extend this result and give a more general necessary
condition for a set K to be sos-valid in terms of its geometry.

To state the main theorem, it will be more convenient to work with diameters instead of radii of balls
(mainly to avoid the issue of dividing by two). We introduce the notion of in-diameter of a set K which is
essentially twice the radius of the smallest ball containing K. More formally we have:

Definition 7. Let K ⊆ ZN . We define the in-diameter of K, denoted indiam(K) to be the smallest positive
integer r such that K is included in an interval of the form [x, x+ r] where x ∈ ZN .

Remark 4. Note that the in-diameter of a set K is in general different from the usual notion of diameter
(largest distance between two elements in K). Note for example that indiam(ZN ) = N whereas the diameter
of ZN is equal to bN/2c.

We are now ready to state the main result of this section:

Theorem 8. Let N be an integer and let K ⊆ ZN be a set of frequencies. Assume that K can be decomposed
into disjoint clusters (Cα)α∈A:

K =
⋃
α∈A

Cα,

such that the following holds for some 1 ≤ γ < N/2:

(i) For any α ∈ A, Cα has in-diameter ≤ γ.
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(ii) For any α 6= α′, d(Cα, Cα′) > γ.

Then the set K is not sos-valid (i.e., it is not possible to write the linear function ` as a sum of squares of
functions supported on K).

Proof. To prove this theorem, we will construct a linear functional L on CN such that:

(a) L(`) < 0, and;

(b) for any h supported on K we have L(|h|2) ≥ 0.

Clearly this will show that we cannot have ` =
∑
i |hi|2 where supphi ⊆ K.

We first introduce a piece of notation that will be needed for the definition of L: Given k ∈ ZN , we let
k mod N be the unique element in {

−dN/2e+ 1, . . . , bN/2c
}

that is equal to k modulo N . The main property that will be used about this operation is the following,
which can be verified easily: If k, k′ ∈ [0, γ] where γ < N/2 then:

(k′ − k) mod N = (k′ mod N)− (k mod N). (23)

Let p = eiπ/N and note that p does not belong to our regular N -gon. We define the linear functional
L : CN → C as follows, for all k ∈ ZN :

L(ek) =

{
pk mod N if d(0, k) ≤ γ
0 else.

(24)

Note that the map L can be interpreted as the composition of two maps:

L = Evalp ◦E

where E is a map that extrapolates a function h ∈ CN defined on the vertices of the N -gon to a function
on the unit circle, and Evalp is a map that evaluates a function on the unit circle to the point p. The
extrapolation map E is defined on the Fourier basis as follows: E(ek)(z) = zk mod N if d(0, k) ≤ γ and 0
otherwise, for z in the unit circle.

We now prove that L satisfies properties (a) and (b) above.

(a) It is easy to see that L(`) < 0. Indeed since γ ≥ 1 we have L(e1) = eiπ/N and L(e−1) = e−iπ/N which
implies that:

L(`) = L
(

cos(π/N)e0 − (e−iπ/Ne1 + eiπ/Ne−1)/2
)

= cos(π/N)− 1 < 0.

(b) We now show that if h is a function supported on K, then L(|h|2) ≥ 0. Since K = ∪α∈ACα, we can
write

h =
∑
k∈K

hkek =
∑
α∈A

∑
k∈Cα

hkek.

Thus

|h|2 = h∗h =
∑
α∈A

∣∣∣∣∣ ∑
k∈Cα

hkek

∣∣∣∣∣
2

︸ ︷︷ ︸
P

+
∑
α 6=α′

∑
k∈Cα,k′∈Cα′

h∗khk′e
∗
kek′︸ ︷︷ ︸

Q

. (25)

Let P and Q be the first and second terms in the equation above. We will show that L(Q) = 0 and
that L(P ) ≥ 0. Observe that if k ∈ Cα and k′ ∈ Cα′ where α 6= α′ then we have:

L(e∗kek′) = L(ek′−k) = 0
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where the last equality follows since d(k′ − k, 0) = d(k′, k) > γ (cf. assumption (ii) on the clustering).
Thus this shows that L(Q) = 0.

We will now show that L(P ) ≥ 0, by showing that for any α ∈ A we have

L

∣∣∣∣∣ ∑
k∈Cα

hkek

∣∣∣∣∣
2
 ≥ 0.

Let α ∈ A. By assumption (i) on the clustering, we know that the in-diameter of Cα is ≤ γ, i.e., that
Cα is included in an interval [x, x+ γ]. Note that since∣∣∣∣∣ ∑

k∈Cα

hkek

∣∣∣∣∣
2

=

∣∣∣∣∣e−x ∑
k∈Cα

hkek

∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
k∈Cα

hkek−x

∣∣∣∣∣
2

we can assume without loss of generality that x = 0. Now since Cα ⊆ [0, γ], we have from (23) that
for any k, k′ ∈ Cα:

(k′ − k) mod N = (k′ mod N)− (k mod N) (26)

Using this we have:

L

∣∣∣∣∣ ∑
k∈Cα

hkek

∣∣∣∣∣
2
 =

∑
k,k′∈Cα

h∗khk′L(ek′−k)
(a)
=

∑
k,k′∈Cα

h∗khk′p
(k′−k) mod N

(b)
=

∑
k,k′∈Cα

h∗khk′p
k′ mod Np−(k mod N)

=

∣∣∣∣∣ ∑
k∈Cα

hkp
k mod N

∣∣∣∣∣
2

≥ 0

where in (a) we used the fact that d(0, k′ − k) = d(k′, k) ≤ γ and in (b) we used identity (26).
Thus this shows that L(|h|2) ≥ 0 for all h supported on Cα, which implies that L(P ) ≥ 0 (since

P =
∑
α∈A

∣∣∑
k∈Cα hkek

∣∣2) which is what we wanted.

Remark 5. To illustrate the previous theorem consider the following two simple applications:

• Note that the lower bound of N/4 on the theta-rank of the N -gon (cf. Proposition 1 in Section 3)
can be obtained as a direct corollary of Theorem 8. Indeed if K is contained in the open interval
(−dN/4e, dN/4e), then the in-diameter of K is < N/2 which means that if we consider K as a single
cluster, it satisfies conditions (i) and (ii) of the theorem with γ = indiam(K). Thus such a K is not
sos-valid.

• We can also give another simple application of the previous theorem: Assume K is a set of frequencies
that has no two consecutive frequencies, i.e., for any k, k′ ∈ K where k 6= k′ we have d(k, k′) ≥ 2.
It is not hard to see that such a set K cannot be sos-valid: indeed if h is a function supported on
K, then the expansion of |h|2 does not have any term involving the frequencies e1 or e−1. Thus it is
not possible to write ` as a sum-of-squares of elements supported on such K. This simple fact can be
obtained as a consequence of Theorem 8 if we consider each frequency of K as its own cluster (i.e., we
write K = ∪k∈K{k}) and conditions (i) and (ii) of the theorem are satisfied with γ = 1.

5.2 An algorithm to find valid clusterings and a logarithmic lower bound

We now study sets K which admit a clustering that satisfies points (i) and (ii) of Theorem 8. The main
purpose of this section is to show that any set K with |K| < ln(N/2) admits such a clustering, which implies
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that it cannot be sos-valid. This would thus show that any RotN -equivariant Hermitian psd lift of the regular
N -gon has to have size at least ln(N/2).

For convenience we call a valid clustering of a set K, any clustering that satisfies points (i) and (ii) of
Theorem 8. We state this in the following definition for future reference:

Definition 8. Let K ⊆ ZN . We say that K has a valid clustering if K can be decomposed into disjoint
clusters (Cα)α∈A:

K =
⋃
α∈A

Cα,

such that the following holds for some 1 ≤ γ < N/2:

(i) For any α ∈ A, Cα has in-diameter ≤ γ.

(ii) For any α 6= α′, d(Cα, Cα′) > γ.

We propose a simple greedy algorithm to search for a valid clustering for any set K ⊆ ZN : We start
with each point of K in its own cluster and at each iteration we merge the two closest clusters. We keep
doing this until we get a clustering that satisfies the required condition, or until all the points are in the
same cluster. We show in this section that if the number of points of K is small enough, if |K| < ln(N/2),
then this algorithm terminates by producing a valid clustering of K. For reference we describe the algorithm
more formally in Algorithm 1.

Algorithm 1 Algorithm to produce a clustering of a set K

Input: A set K ⊆ ZN
Output: A valid clustering of K (in the sense of Definition 8) or “0” if no valid clustering found.
• Consider initial clustering where each element of K is in its own cluster. If this clustering is already
valid (which is equivalent to say that for any distinct elements k, k′ ∈ K we have d(k, k′) ≥ 2) then output
this clustering as a valid clustering with parameter γ = 1.
• Precompute the pairwise distances between points in K and sort these distances in increasing order
d1 ≤ d2 ≤ d3 ≤ . . . (cf. Figure 5; note that two distances di and dj could be equal).
for i = 1, 2, . . . , |K| − 1 do

Let x, y ∈ K be the i’th closest points in K so that d(x, y) = di. If x and y are in different clusters,
then merge these two clusters.
If the current clustering satisfies points (i) and (ii) of Definition 8 (with γ equal to the largest in-diameter
in all the clusters) stop and output the current clustering.

end for
If no valid clustering was found, output “0”

In the next theorem, we show that any set K ⊆ ZN with |K| < ln(N/2) has a valid clustering.

Theorem 9. If a set K ⊆ ZN satisfies |K| < ln(N/2), then a valid clustering of K exists and Algorithm 1
will produce one.

Proof. Observe that at the end of iteration i of the algorithm, the distance between any pair of clusters is
greater than or equal di+1: Assume for contradiction that there are two clusters C,C ′ at iteration i where
d(C,C ′) < di+1. This means that there exist x ∈ C, y ∈ C ′ such that d(x, y) < di+1. But this is impossible
because the algorithm processes distances in increasing order, and so x and y must have merged in the same
cluster at some iteration ≤ i.

Now, to prove that the algorithm terminates and produces a valid clustering, we need to show that at
some iteration i, each cluster has in-diameter smaller than min(di+1, N/2). Note that one can get a simple
upper bound on the in-diameter of the clusters at iteration i: indeed, it is not hard to show that at iteration
i any cluster has in-diameter at most Si, where Si is defined as:

Si := d1 + d2 + · · ·+ di =

i∑
j=1

dj .
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d1

d2

d3

Figure 5. A set of frequencies K. At iteration 0 of the algorithm each frequency is in its own cluster.
At iteration 1 of the algorithm, the two nodes at distance d1 from each other are merged in a single
cluster. At iteration 2, the two nodes at distance d2 are merged and we get one cluster having 3 nodes
with in-diameter d1 + d2. In general, at iteration i the clusters cannot have in-diameter larger than
d1 + · · · + di.

Figure 5 shows a simple illustration of this bound.
Let a be the largest index i where di = 1, and let b the largest index i where Si < N/2.2 If i ∈ [a, b], then

at the end of the i’th iteration, the distance between any two clusters is greater than 1 (since di+1 > 1) and
the in-diameter of any cluster is smaller than N/2. To prove that the algorithm terminates and produces a
valid clustering, it suffices to show that there exists i ∈ [a, b] such that di+1 > Si.

Assume for contradiction that this is not the case. Then this means that we have:

da+1 ≤ d1 + · · ·+ da

da+2 ≤ d1 + · · ·+ da+1

...

db+1 ≤ d1 + · · ·+ db

We will now show that this implies that |K| ≥ ln(N/2) which contradicts the assumption of the theorem.
Define the function f(x) = 1/x and note that, on the one hand we have:

b∑
i=a

di+1f(Si) =

b∑
i=a

di+1
1

d1 + · · ·+ di
≤

b∑
i=a

1 = b− a+ 1.

On the other hand, since f is a decreasing function we have (cf. Figure 6):

b∑
i=a

di+1f(Si) ≥
∫ Sb+1

Sa

f(x)dx = [ln(x)]
Sb+1

Sa
= ln(Sb+1)− ln(Sa).

Thus we get that:
b− a+ 1 ≥ ln(Sb+1)− ln(Sa).

Now note that Sa = a since di = 1 for all 1 ≤ i ≤ a. Thus we have:

b ≥ ln(Sb+1)− ln(Sa) + a− 1 ≥ ln(Sb+1)

since a − ln(Sa) ≥ 1 (we assume here that a ≥ 1 because otherwise the distance between any two elements
in K is at least 2 in which case K is clearly not sos-valid). Now since |K| ≥ b and Sb+1 ≥ N/2 we get

|K| ≥ ln(N/2)

as desired.
2Note that we can assume indiam(K) ≥ N/2 which implies that S|K|−1 ≥ N/2. Indeed, if the in-diameter of K is smaller

than N/2, then we have a valid clustering of K by considering K as a single cluster.
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da+1 da+2 · · · db+1

Sa Sa+1 SbSa+2

da+3

Sb+1Sa+3

Figure 6

6 Conclusion

Regular polygons in the plane have played an important role in the study of extended formulations. In this
paper we studied equivariant psd lifts of regular polygons. One of the main techniques to obtain equivariant
psd lifts of polytopes is using the Lasserre/sum-of-squares hierarchy. The first contribution of this paper
was to show that the hierarchy requires exactly dN/4e iterations for the regular N -gon. To prove this we
used a specific property about the levels of the facet defining linear functionals of the regular N -gon. The
techniques we developed are actually quite general and can be used to study the theta-rank of general k-level
polytopes. For example they may be useful for understanding the theta-rank of other families of k-level
polytopes, such as matroid base polytopes, which were studied in this context in the recent work of Grande
and Sanyal [GS14].

The second contribution of this paper is the construction of an explicit equivariant psd lift of the regular
2n-gon of size 2n − 1. This lift was obtained by showing that the facet-defining linear functionals admit a
sparse sum-of-squares representation that requires only a small number of “frequencies”. This construction
gives the first example of a polytope with an exponential gap between equivariant psd lifts and equivariant
LP lifts. Also it shows that one can construct equivariant psd lifts that are exponentially smaller than the
lift produced by the sum-of-squares hierarchy. In our recent paper [FSP15b] we exploited further the idea of
sparse sum-of-squares representations to produce small semidefinite lifts for trigonometric cyclic polytopes
(in particular we generalize the lift of size O(logN) given in the present paper to the case where N is not
necessarily a power of two).

Finally we proved that the size of our equivariant psd lift is essentially optimal by showing that any
equivariant psd lift of the regular N -gon has size at least ln(N/2). An important question that remains
open in the study of regular polygons is to know whether one can obtain smaller psd lifts by relaxing
the equivariance condition. Currently the only lower bound on the psd rank of N -gons in the plane is

Ω
(√

logN
log logN

)
which comes from quantifier elimination theory [GPT13, GRT15].

A Finishing the proof on theta-rank of the regular N-gon

In this appendix we complete the proof of Theorem 6 concerning the theta-rank of the N -gon, when N is
not a multiple of four. We first prove the following lemma:

Lemma 1. Let N be a positive integer and let TN be the Chebyshev polynomial of degree N . Then for any
u ≥ cos(π/N), the curve of TN (x) lies above its tangent at x = u on the interval [−1,∞), i.e.,

TN (x) ≥ TN (u) + T ′N (u)(x− u) ∀x ∈ [−1,∞). (27)

Furthermore, when N is even the inequality (27) is true for all x ∈ R.

An illustration of Lemma 1 is given in Figure 7.
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Proof. First observe that T ′′N (x) ≥ 0 for all x ∈ [cos(π/N),∞): indeed note that cos(π/N) is the largest
root of T ′N , and thus, since the roots of T ′′N interlace the roots of T ′N we have necessarily that T ′′N ≥ 0
on [cos(π/N),∞). Thus this shows that TN is convex on the interval [cos(π/N),∞) and in particular
shows that inequality (27) holds for all x ∈ [cos(π/N),∞). It remains to show that the inequality (27)
holds for x ∈ [−1, cos(π/N)). Since cos(π/N) is a minimum of TN on the interval [−1, 1] we have, for any
x ∈ [−1, cos(π/N)):

TN (x) ≥ TN (cos(π/N))
(a)

≥ TN (u) + T ′N (u)(cos(π/N)− u)
(b)

≥ TN (u) + T ′N (u)(x− u)

where (a) follows from the first part of the argument which shows that inequality (27) holds for x = cos(π/N)
and, where in (b) we used the fact that x ≤ cos(π/N) and that T ′N (u) ≥ 0. Thus this proves inequality (27).

When N is even inequality (27) is clearly true for x ≤ −1 also since for x ≤ −1, TN (x) ≥ 0 whereas the
linear function TN (u) + T ′N (u)(x− u) is negative.

cos[π /N]

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Figure 7. Illustration of Lemma 1 with N = 4 and some value u ≥ cos(π/N).

We now complete the proof of Theorem 6 by considering the cases where N is not a necessarily a multiple
of four. For i = 0, . . . , dN/2e − 1, let ai = xi+1,N = cos((2i + 1)π/N) and let qN be the polynomial that
vanishes at the ai’s:

qN (x) =

dN/2e−1∏
i=0

(x− ai) =

dN/2e−1∏
i=0

(
x− cos

(
(2i+ 1)π

N

))
. (28)

To complete the proof of Theorem 6 we need to show that the tangent of the curve of qN at cos(π/N) lies
below the curve of qN (cf. Proposition 6). We have already proved this in the case where N is a multiple
of four, by showing that in this case qN (x) is, up to a scalar, the Chebyshev polynomial TN/2(x). The next
lemma expresses the polynomial qN in terms of Chebyshev polynomials for any N :

Lemma 2. The polynomial qN satisfies:

qN (x) ∝
{
TN/2(x) if N is even

(TbN/2c(x) + TdN/2e(x))/2 if N is odd.

where the symbol ∝ indicates equality up to multiplicative constant.

Proof. The case where N is even is clear by comparing the roots of qN and those of TN/2. For the case N odd,
observe that if cosα is a root of qN then ± cos(α/2) are roots of qN (T2(x)) = qN (2x2−1). Since the roots of
qN are the {cos((2i−1)π/N), i = 1, . . . , dN/2e}, the roots of qN (2x2−1) are thus {± cos((2i−1)π/(2N)), i =
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1, . . . , dN/2e} (with a double root at 0). Note that these are exactly the roots of xTN (x) (the multiplication
by x is for the double root at 0). Thus from this observation we have for any x ∈ R:

qN (T2(x)) ∝ xTN (x) = T1(x)TN (x)
(a)
= (TN−1(x) + TN+1(x))/2

(b)
= (T(N−1)/2(T2(x)) + T(N+1)/2(T2(x)))/2.

Equality (a) follows from the identity Ta(x)Tb(x) = 1
2 (Ta+b(x) + Ta−b(x)) and equality (b) follows from

Ta(Tb(x)) = Tab(x). Thus since we are working with polynomials and since {T2(x) : x ∈ R} is infinite we
have the desired identity:

qN (x) ∝ TbN/2c(x) + TdN/2e(x).

We are now ready to finish the proof of Theorem 6 by proving that the tangent of qN (defined in (28))
at cos(π/N) lies below the curve of qN . Since the case where N is a multiple of four was already treated,
we distinguish in what follows the three remaining cases according to the residue class of N modulo 4:

• Case N = 4m−1: In this case the polynomial qN is even degree and we want to show that qN (x) is above
its linear approximation at x = cos(π/N). From Lemma 2 we have that qN (x) ∝ T2m−1(x) + T2m(x).
Since, for all x ∈ [−1,∞), T2m(x) and T2m−1(x) are both above their linear approximations at cos(π/N)
(using Lemma 1 and because cos(π/N) ≥ cos(π/(2m)) and cos(π/N) ≥ cos(π/(2m − 1))) it follows
that the same holds for qN on [−1,∞). Since, in addition qN has even degree and qN (−1) ≥ 0 this
shows that qN (x) is above its linear approximation at cos(π/N) for all x, which is what we wanted.

• Case N = 4m−2: In this case the polynomial qN is qN (x) = T2m−1(x) (from Lemma 2). Note that qN
has odd degree. Thus to apply Proposition 6 we will add an additional “dummy” root for q to make
it even degree (the resulting interpolating polynomial p we get will interpolate the linear function l at
this additional “dummy” point). Consider the polynomial q̃N (x) = xqN (x). We will show that the
assumption of Proposition 6 holds for q̃N (x). Observe that

q̃N (x) = xqN (x) ∝ T1(x)T2m−1(x) = (T2m(x) + T2m−2(x))/2.

Since both T2m and T2m−2 are globally above their linear approximations at cos(π/N) (by Lemma 1
and because cos(π/N) ≥ cos(π/(2m)) and cos(π/N) ≥ cos(π/(2m− 1))), the same holds for q̃N (x) =
xqN (x). Thus this shows that q̃N (x) lies above its tangent at x = cos(π/N), which is what we want.

• Case N = 4m− 3: In this case we have, from Lemma 2, qN (x) = (T2m−1(x) +T2m−2(x))/2. Note that
the polynomial qN has odd degree and thus we need to add an additional “dummy” root to make it
even degree. Take q̃N (x) = xqN (x) and note that

q̃N (x) ∝ (T2m(x) + T2m−2(x) + T2m−1(x) + T2m−3(x))/4.

Using Lemma 1, for x ∈ [−1,∞), each of the four Chebyshev polynomials are above their linear
approximation at cos(π/N) (because cos(π/N) ≥ cos(π/(2m)) and cos(π/N) ≥ cos(π/(2m − 1)) and
cos(π/N) ≥ cos(π/(2m − 2)) and cos(π/N) ≥ cos(π/(2m − 3))). Since q̃N (x) has even degree and
q̃N (−1) ≥ 0, it holds that q̃N is globally above its linear approximation at x = cos(π/N).

B Linear programming lifts

In this section we recall the definitions of LP lifts and equivariant LP lifts. For reference we also provide the
proof from [GPT13] that any equivariant LP lift of the regular N -gon must have size at least N when N is
a power of a prime.

We first recall the definition of a linear programming (LP) lift:

Definition 9. Let P ⊂ Rn be a polytope. We say that P has a LP lift of size d if we can write P = π(Rd+∩L)
where π : Rd → Rn is a linear map and L is an affine subspace of Rd.
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We now give the definition of an equivariant LP lift, from [GPT13, KPT12] (also known as symmetric
LP lift). We denote by Sd the group of permutations on d elements. If σ ∈ Sd and y ∈ Rd, we denote by
σy the left action of Sd on Rd which permutes the coordinates according to σ.

Definition 10. Let P ⊂ Rn be a polytope and assume that P is invariant under the action of a group G.
Let P = π(Rd+ ∩ L) be a LP lift of size d. The lift is called G-equivariant if there exists a homomorphism
Φ : G→ Sd such that:

(i) The subspace L is invariant under the permutation action of Φ(g), for all g ∈ G:

Φ(g)y ∈ L ∀g ∈ G, ∀y ∈ L. (29)

(ii) The following equivariance relation holds:

π(Φ(g)y) = g · π(y) ∀g ∈ G, ∀y ∈ Rd+ ∩ L. (30)

Given integer N , let RotN be the subgroup of rotations of the dihedral group of order 2N . Note that
RotN ∼= ZN .

Proposition 8. [GPT13, Proposition 3] If N is a prime or a power of a prime, then any RotN -equivariant
LP lift of the regular N -gon has size N .

Proof. Let P be the regular N -gon and assume that P has a LP lift of size d that is RotN -equivariant. By
Definition 10 there exists a homomorphism Φ : RotN → Sd such that (29) and (30) are satisfied. It is not
hard to show that Φ must be injective: indeed if Φ(g) = 1 for some g ∈ RotN then by the equivariance
relation (30) we must have π(y) = g · π(y) for all y ∈ Rd+ ∩ L, which means that x = gx for all x ∈ P . Since
P is full-dimensional this means that g is the identity element in RotN .

Since Φ is injective, we have that Φ(RotN ) is a cyclic subgroup of Sd of size N and thus Sd has an
element of order N . One can show that if Sd has an element of order pt where p is a prime and t ≥ 1, then
d ≥ pt: to see this one can use the decomposition of a permutation into cycles with disjoint support, and
recall that the order of a permutation is the least common multiple of the cycle lengths; thus if the order of
a permutation is pt then at least one of the cycle lengths must be divisible by pt which implies that d ≥ pt.
Thus this shows that when N has the form N = pt then we must have d ≥ pt.
Remark 6. When N is a prime we easily see that we must have d ≥ N by the simple fact that N is a prime
and that it has to divide d!.

C Lifts from sum-of-squares certificates

In this appendix we sketch a proof of Theorem 3 which shows how to obtain a psd lift of the regular N -gon
from a sum-of-squares certificate of `.

To prove the inclusion ⊆ in (8), consider a point (cos θj , sin θj) ∈ XN where θj = 2jπ/N . Define
yt = e2ijtπ/N . Then clearly (Re[y1], Im[y1]) = (cos θj , sin θj) and y0 = 1, and it is not hard to show that the
sequence (yt) satisfies the psd constraints in the right-hand side of (8).

To prove the inclusion ⊇, let (yt) be as in the right-hand side of (8). We will show that the point
(Re[y1], Im[y1]) satisfies the facet inequality defined by `, i.e., that

cos(π/N)− cos(π/N) Re[y1]− sin(π/N) Im[y1] ≥ 0.

For i = 1, . . . , q let Ti : H|Ki| → CN be the map defined by:

Ti(Q) =
∑
r,s∈Ki

Qr,seres
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where eres is the pointwise multiplication of er and es which are both elements of CN . One can show that
since ` has a sum-of-squares certificate (7), there exist positive semidefinite Hermitian matrices Q1, . . . , Qq
(the Gram matrices in the sum-of-squares representation) such that

` =

q∑
i=1

Ti(Qi).

Let y be in the dual space (CN )∗ defined by y(et) = yt. The main observation is that the moment matrix
[yk′−k]k,k′ ∈ Ki is precisely T ∗i (y) where T ∗i is the adjoint of Ti. Thus we have:

〈y, `〉 =

q∑
i=1

〈y, Ti(Qi)〉 =

q∑
i=1

〈T ∗i (y), Qi〉 ≥ 0

since T ∗i (y) is positive semidefinite by assumption. But since 〈y, `〉 = cos(π/N) − cos(π/N) Re[y1] −
sin(π/N) Im[y1] this shows that the point (Re[y1], Im[y1]) satisfies the facet inequality defined by `.

To conclude the proof note that since ` has a sum-of-squares certificate (7), then all the other facet
inequalities of the regular N -gon also have sum-of-squares certificates of the same type: this is because all
the other facet inequalities can be obtained from ` by rotation, and the spaces ⊕k∈KiCei are invariant under
the action of RotN (which shifts the vertices of the N -gon). The argument given above can thus be used
to show that the point (Re[y1], Im[y1]) satisfies all the facet inequalities of the regular N -gon, which means
that it is in conv(XN ).

The reason the psd lift is RotN -equivariant is that subspaces of CN of the form ⊕k∈KCek are invariant
under the action of RotN , see [FSP15a, Appendix A] for details.

D Proof of the structure theorem for regular polygons

In this appendix we prove Theorem 4 concerning the structure of equivariant psd lifts for regular polygons.
This theorem is a special case of the results in [FSP15a] but we include the proof here for completeness.

Theorem 10. Assume that the regular N -gon has a Hermitian psd lift of size d that is equivariant with
respect to the rotation group RotN of order N . Then there exists a set K ⊆ ZN with |K| ≤ d and functions
hi ∈

⊕
k∈K Cek such that

` =
∑
i

|hi|2

where ` is the facet-defining function (5).

Proof. In this proof we identify the vertices of the regular N -gon with ZN and we also identify the rotation
group RotN with ZN . As such the action of RotN on the vertices of the regular N -gon can be described
as follows: if r is an element of RotN ∼= ZN and t ∈ ZN represents a vertex of the regular N -gon then the
result of rotating t by r is the vertex r + t ∈ ZN .

Since we have an RotN -equivariant Hermitian psd lift of the regular N -gon of size d, the factorization
theorem [FSP15a, Theorem A] says that there exists a map A : ZN → Hd

+ and B ∈ Hd
+ such that the

following holds:

1. For all t ∈ ZN , `(t) = 〈A(t), B〉.

2. The following equivariance relation:

A(r + t) = ρ(r)A(t)ρ(r)∗ ∀r ∈ ZN , ∀t ∈ ZN

where ρ : ZN → GLd(C) is a group homomorphism.

Note that ρ is nothing but a d-dimensional linear representation of ZN . Since the irreducible representations
of ZN are all one-dimensional, there is a change-of-basis matrix T ∈ GLd(C) so that ρ(r) is diagonal, i.e.,
we can write:

ρ(r) = T diag(φ(r))T−1 ∀r ∈ ZN ,
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where φ = (φ1, . . . , φd) : ZN → (C∗)d. Note that for each j = 1, . . . , d, the map φj : ZN → C∗ is a group
homomorphism and thus takes the form

φj(r) = e2ikjrπ/N = ekj (r) ∀r ∈ ZN (31)

where kj ∈ ZN . Let
K = {k1, . . . , kd} ⊆ ZN (32)

and note that |K| ≤ d. We will now show that K is sos-valid, i.e., that ` has a sum-of-squares representation
using functions supported on K.

Observe that, by the equivariance relation on A, we have: A(r) = ρ(r)A(0)ρ(r)∗ for any r ∈ ZN . Thus
we have, for any r ∈ ZN (denoting T−∗ := (T−1)∗):

`(r) = Tr[ρ(r)A(0)ρ(r)∗B∗]

= Tr[T diag(φ(r))T−1A(0)T−∗ diag(φ(r))∗T ∗B∗]

(a)
= Tr[diag(φ(r))A′ diag(φ(r))∗B′∗]

(b)
= φ(r)∗(A′ ◦B′)φ(r)

where in (a) we used A′ = T−1A(0)T−∗ and B′ = T ∗BT and in (b) we denoted by A′ ◦ B′ the Hadamard
(componentwise) product of A′ and B′. Since A′, B′ are positive semidefinite, A′ ◦B′ is positive semidefinite
too (by the Schur product theorem) and thus we can write

A′ ◦B′ =
∑
i

viv
∗
i

where vi ∈ Cd. Thus we finally get that:

`(r) =
∑
i

|v∗i φ(r)|2 =
∑
i

|hi(r)|2 ∀r ∈ ZN (33)

where hi := v∗i φ : ZN → C are linear combinations of the φj = ekj given in (31), i.e., supphi ⊆ K. This
completes the proof.
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