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Abstract 

A new, simple, formulation that describes capillary thinning as predicted by a two-mode Giesekus 

model is derived, and its application in analysing data from extensional rheometry (capillary thinning) 

experiments is discussed. An algorithm is presented that can be used to fit the expressions obtained 

from the Giesekus model to extensional rheometry data. Examples of data fitting are given for an 

idealised data set, for measurements obtained for aqueous solutions of 6 wt% 900,000 molecular 

weight polyethylene oxide, and for biological fluids obtained from pitchers of Nepenthes Rafflesiana. 

Good fits to the data were obtained, with coefficients of determination in excess of 0.98. For each data 

set, it was possible to calculate values of extensional viscosity and relaxation time for each of the two 

modes, allowing quantitative comparison of different fluids or of the same fluid as it ages. 

Keywords: Extensional rheometry, Giesekus fluids, multimode viscoelasticity, filament thinning 

  



2 

 

Introduction 

Fluids exhibiting complex rheological response are widespread, with examples ranging from polymer 

solutions to polymer melts, from emulsions to bubbly liquids, and from dense suspensions to foams. 

Complex fluids may exhibit viscoelastic behaviour, the effects of which must be taken into account 

when designing processes to handle them or products that contain them. Many processes will subject 

a fluid to both shear and extension, hence it is important to understand the fluid’s response to these 

deformations, and also for any modelling done to be able to represent both deformation modes 

accurately.  

Rheometers capable of characterising a complex fluid’s shear response have been available for many 

years, however devices that can accurately characterise a complex fluid’s extensional behaviour in 

isolation are relatively recent
1
. One experimental approach that has been used actively over the past 

two decades is that of capillary breakup rheometry; the basic principle of this technique is shown in 

Figure 1. A small cylindrical sample of liquid is loaded between two parallel flat plates, which are 

then drawn apart rapidly; this causes a liquid filament to form that subsequently reduces in diameter 

and eventually breaks. Capillary breakup rheometers typically track the mid-filament diameter as a 

function of time using optical means; photo cells, laser micrometers and high-speed imaging are all 

approaches that have been used. The liquid filament microrheometer
2
, developed by Bazilevsky and 

co-workers, was able to use fluid samples as small as 0.01 cm
3
 and was capable of interrogating the 

response of fluids with relaxation times as low as 0.01 s. The CaBER
TM

 (Capillary Breakup 

Extensional Rheometer)
3
 was developed by McKinley and co-workers at MIT in the early 2000s in 

conjunction with the Cambridge Polymer Group; this high-precision instrument uses a laser 

micrometer to track the mid-filament diameter and is currently the only commercial readily-available 

extensional rheometer. The Cambridge TriMaster
TM

 
4
 was developed by Tuladhar and Mackley at the 

University of Cambridge in about 2008, and was motivated by the desire to study low viscosity inkjet 

liquids; this device uses high-speed video imaging and subsequent image analysis to obtain the 

evolution of mid-filament diameter and is capable of acquiring images roughly every 25 s
5
. 
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Conventional extensional rheometers, whether bespoke or commercially-available, like most 

laboratory rheometers are heavy, delicate and expensive. Sometimes it is not possible to test the 

extensional response of a delicate fluid in a laboratory: for example, if a biological fluid found in a 

plant in a remote geographic location degrades rapidly it may neither be possible nor economically 

viable to transport it to a laboratory quickly. To solve this problem, a portable extensional rheometer, 

named Seymour, was developed at the University of Cambridge in 2014
6
; a photograph of this device 

is shown in Figure 2. The operation of Seymour differs from most extensional rheometers in that only 

one of the pistons move, and is actuated by a simple solenoid: this is shown schematically in Figure 3. 

Recent advances in solid-state high speed cameras, powered by a laptop and capable of up to 500 

frames per second yet only having a footprint of one square inch, have allowed high-speed video 

imaging and image analysis to become a robust and viable method of gathering data in a portable 

instrument such as Seymour.  

The stable and unstable behaviour of capillaries consisting of Newtonian and non-Newtonian fluids 

has received extensive attention in the literature
7–9

, so those aspects are not repeated here. In general, 

when analysing data obtained from a capillary breakup rheometer, it is usual to present the evolution 

of the normalised mid-filament diameter, 
𝐷(𝑡)

𝐷0
⁄ , as a function of time. A number of analytical 

expressions have been developed that relate 
𝐷(𝑡)

𝐷0
⁄ to parameters in constitutive models such as 

viscosity and relaxation time. The fluid’s rheology is quantified by selecting a model and fitting the 

appropriate expression to determine the values of the parameters. Some of the more commonly-used 

analytical expressions are given in Table 1. Figure 4 shows typical filament thinning profiles for 

Newtonian, Upper Convected Maxwell (UCM) and Giesekus fluids. All three expressions predict 

simple filament thinning behaviour, with the rate of change of filament diameter either remaining 

constant or increasing exponentially with time. 

Some complex fluids display extensional responses similar to those shown in Figure 4. However, 

when contributions from solvent viscosity are significant, or multiple relaxation modes are present, 
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then the rate of change of filament diameter as a function of time will deviate from these behaviours. 

Examples of experimental data that exhibit a more complex response are shown in Figure 5(A) for a 6 

wt% solution of 900,000 molecular weight PEO in de-ionised water
10

 and in Figure 5(B) for fluid 

extracted from pitchers of Nepenthes Rafflesiana
11

. Both of these data sets shown that there is an 

initial regime where the filament diameter decreases rapidly, followed by a second regime where the 

change in diameter follows a different kinetic. This effect has been observed in the literature for a 

number of systems, including solutions of diethyl phthalate
12

 and solutions of cellulose in 1-ethyl-3-

methylimidazolium acetate
13

. One-dimensional analysis has revealed that this type of response can be 

attributed to the viscous solvent dominating the early stages of the filament thinning process
14–17

: 

thereafter, one or more relaxation modes control the subsequent elastic phase of the thinning
14

, with 

viscous behaviour being regained in the limit of capillary breakup as the polymer chains are at the 

limit of finite extension and are behaving as a solution of rigid rods
14

.  

The rheological constitutive equations used by workers in this area include FENE-CR
14,17

, Oldroyd-

B
17

, and a combined Giesekus-FENE
16

 model. Asymptotic analysis of the FENE-P model
14

 identified 

expressions that can used to estimate rheological parameters such as solvent viscosity, elastic modulus 

and relaxation times from limiting cases of the early viscous regime, middle elastic regime, and limit 

of finite extensibility. Two- and three-dimensional modelling of capillary thinning using finite-

element methods is also reported extensively in the literature. Yao and co-workers
18

 examined the 

response of a multi-mode Giesekus fluid in extension using the POLYFLOW code. Webster and co-

workers used the multi-mode Giesekus constitutive equation, and the Oldroyd and linear PTT 

constitutive equations with an arbitrary Langrangian-Eulerian formulation to examine the dynamics of 

filament stretching
19

 and step-strain filament stretching
20,21

. Strain hardening fluids in extension have 

also been modelled using the Giesekus, Oldroyd and linear PTT models by several workers
22,23

.  

Previous work
6,24

 has demonstrated that a single mode Giesekus model can adequately describe the 

filament thinning behaviour of some experimental systems, including  the oft-observed Newtonian-

like approach to filament breakup. Despite finite extensibility effects not being explicitly incorporated 

within the Giesekus model, the extensional viscosity is bounded due to the inclusion of quadratic 
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stress terms. It seems conceivable, therefore, that some of the more complex filament thinning 

behaviour can be described by a two-mode Giesekus model. The objectives of the work presented in 

this paper are therefore twofold: (i) to obtain simple expressions that allow the calculation of filament 

thinning profiles according to a two-mode Giesekus model, and (ii) to investigate whether it is 

possible to obtain parameters for the Giesekus constitutive equation using capillary breakup 

rheometry. It is highly desirable that the resulting data analysis method should be simple enough to be 

implemented either within a spreadsheet or a simple computer script in a language such as Python or 

Matlab
®
. The aim is that it should be able to provide data analysis capability for use with a portable 

rheometer, such as Seymour, during use in the field. 

Theory 

Derivation of a simple expression for the extensional filament thinning of a dual-mode Giesekus 

fluid 

The derivation of an expression that describes the filament thinning of a single mode Giesekus fluid 

has been presented in a previous paper
24

; that derivation followed the approach developed by  Entov 

and Hinch
14

. The analysis presented in this section follows similar lines and starts by considering the 

total stress tensor, , for the fluid: it is assumed that the total stress is equal to the hydrostatic 

pressure, p, added to i components of extra stress, i, due to the presence of a polymer  

𝛔 = −𝑝𝐈 + ∑𝛕i

𝑖

 

 (1) 

Each of the i components of extra stress are assumed to be modelled by the Giesekus equation, with 

the contribution of the viscous solvent being negligible
25

 

 

𝛕𝑖

𝜆𝑖
+

𝜕𝛕𝑖

𝜕𝑡
+ 𝐯 ∙ 𝛁𝛕𝑖 − ((𝛁𝐯)T ∙ 𝛕𝑖 + 𝛕𝑖 ∙ (𝛁𝐯)) =

𝜂0,𝑖

𝜆𝑖
𝛄̇ −

𝑎𝑖

𝜂0,𝑖
𝛕𝑖 ∙ 𝛕𝑖 
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(2) 

The same assumptions and simplifications that were used previously
24

 are applied here, i.e. that 

extensional deformations only occur in the axial and radial directions within the liquid filament, that 

the dot product of the velocity field and the divergence of the extra stress tensor is zero due to the 

homogeneity of the flow field (implying that the rate of strain is uniform everywhere in the fluid) and 

that the axial extensional stress is the dominant stress in the problem. Writing the axial component of 

Equation (2) for two modes gives: 

𝜏𝑧𝑧,1

𝜆1
+

𝜕𝜏𝑧𝑧,1

𝜕𝑡
− 𝜏𝑧𝑧,1𝛾̇𝑧𝑧 =

𝜂0,1

𝜆1
𝛾̇𝑧𝑧 −

𝑎1

𝜂0,1
𝜏𝑧𝑧,1

2  

(3) 

𝜏𝑧𝑧,2

𝜆2
+

𝜕𝜏𝑧𝑧,2

𝜕𝑡
− 𝜏𝑧𝑧,2𝛾̇𝑧𝑧 =

𝜂0,2

𝜆2
𝛾̇𝑧𝑧 −

𝑎2

𝜂0,2
𝜏𝑧𝑧,2

2  

(4) 

In principle, the inclusion of more than two modes is quite straightforward at this point. The terms on 

the left and right hand sides of Equations (3) and (4) are now summed and equated viz. 

𝜏𝑧𝑧,1

𝜆1
+

𝜏𝑧𝑧,2

𝜆2
+

𝜕

𝜕𝑡
(𝜏𝑧𝑧,1 + 𝜏𝑧𝑧,2) − 𝛾̇𝑧𝑧(𝜏𝑧𝑧,1 + 𝜏𝑧𝑧,2) = 𝛾̇𝑧𝑧 (

𝜂0,1

𝜆1
+

𝜂0,2

𝜆2
) −

𝑎1

𝜂0,1
𝜏𝑧𝑧,1

2 −
𝑎2

𝜂0,2
𝜏𝑧𝑧,2

2  

(5) 

Some terms in Equation (5) can be substituted by considering the force balance in a cylindrical 

element of fluid and by using Equation (1). The boundary conditions on the liquid filament assume 

that it is connected to large, stagnant, drops
14

 on each of the rheometer plates resulting in zero axial 

stress. As discussed in a previous paper
24

, other boundary conditions that describe the normal stress 

state of a viscoelastic material have been used by other workers
26

 but these are not considered here. 

The radial stress that causes the filament to thin is assumed to be entirely due to surface tension, , 
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and is assumed to be equal to the Laplace pressure. The surface tension is assumed to be constant. 

These two boundary conditions can be derived from Equation (1) and give 

𝜎𝑧𝑧 = 0 = −𝑝 + ∑𝜏𝑧𝑧,𝑖

𝑖

 

(6) 

𝜎𝑟𝑟 = −
2𝛼

𝐷
= −𝑝 + ∑𝜏𝑟𝑟,𝑖

𝑖

 

(7) 

Substitution of the pressure term from Equation (6) into Equation (7), and the subsequent neglect of 

radial terms (as before
24

), allows the axial extra stress to be related to the capillary pressure by 

∑𝜏𝑧𝑧,𝑖

𝑖

≈
2𝛼

𝐷
 

(8) 

The calculation of the time-dependent variation of filament diameter requires an expression that 

relates the radial and axial extensional rates to the rate of change of filament diameter. It can be 

shown
24

 that this is described by a simple ordinary differential equation in terms of the radial direction 

extension rate, giving 

𝛾̇𝑧𝑧 = −
4

𝐷

d𝐷

d𝑡
 

(9) 

The expressions in Equations (9) and (8) can be substituted into Equation (5); some manipulation of 

the final result gives 

𝜏𝑧𝑧,1

𝜆1
+

𝜏𝑧𝑧,2

𝜆2
+

6𝛼

𝐷2

d𝐷

d𝑡
= −

4

𝐷

d𝐷

d𝑡
(
𝜂0,1

𝜆1
+

𝜂0,2

𝜆2
) −

𝑎1

𝜂0,1
𝜏𝑧𝑧,1

2 −
𝑎2

𝜂0,2
𝜏𝑧𝑧,2

2  
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(10) 

Further rearrangement of Equation (10) yields an ordinary differential equation that relates the rate of 

change of filament diameter to the Giesekus parameters for each of the two modes, and to the axial 

extra stress due to each of the two modes in Equation (2). 

d𝐷

d𝑡
=

−𝜆1𝜆2(𝑎1𝜂0,2𝜏𝑧𝑧,1
2 + 𝑎2𝜂0,1𝜏𝑧𝑧,2

2 ) − 𝜂0,1𝜂0,2(𝜆2𝜏𝑧𝑧,1 + 𝜆1𝜏𝑧𝑧,2)

𝜂0,1𝜂0,2𝜆1𝜆2 (
6𝛼
𝐷2 +

4
𝐷

(
𝜆2𝜂0,1+𝜆1𝜂0,2

𝜆1𝜆2
))

 

(11) 

If the two modes of the fluid are identical, i.e. they have the same relaxation times, zero shear rate 

viscosities and mobility parameters, then Equation (11) should reduce to the expression that has been 

previously derived
24

 to describe the filament thinning of a single mode Giesekus fluid. Under these 

conditions, the total axial extra stress will consist of equal extra stress contributions from each mode, 

viz. 

𝜏𝑧𝑧

2
= 𝜏𝑧𝑧,1 = 𝜏𝑧𝑧,2 

(12) 

The mechanical response of the two-mode fluid filament should match that of the single mode fluid, 

but each of the two modes is subject to half the stress. As a thought experiment, if this situation were 

applied to the phenomenological Maxwell element
27

, then the element's mechanical response is 

preserved if the spring modulus, g, and damper viscosity, , are both halved, i.e. 

𝑔1 = 𝑔2 =
𝑔

2
 

(13) 

𝜂1 = 𝜂2 =
𝜂

2
 

(14) 
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The relaxation time, , is defined as 𝜆 =
𝜂

𝑔
; this should hence remain unscaled. Referring back to the 

Giesekus fluid, it will be assumed for this particular case that the level of non-linearity in the system 

due to the mobility parameter, a, is the same for each mode, i.e. 

𝑎1 = 𝑎2 = 𝑎 

(15) 

Substitution of Equations (14) and (15) into Equation (11) yields, after some rearrangement, 

d𝐷

d𝑡
= −

𝑎𝜏𝑧𝑧
2𝜆 − 𝜏𝑧𝑧𝜂0

𝜂0𝜆 (
6𝛼
𝐷2 +

4
𝐷

(
𝜂0
𝜆

))

 

(16) 

Remembering that 𝜏𝑧𝑧 ≈
2𝛼

𝐷
 and substituting this into Equation (16) gives the result obtained 

previously  for a single mode fluid
24

, namely 

d𝐷

d𝑡
=

−𝛼

𝜂0
(
𝜂0𝐷 + 2𝛼𝑎𝜆

2𝜂0𝐷 + 3𝛼𝜆
) 

(17) 

 

Developing a solution algorithm 

Inspection of Equation (11) shows that the rate of change of filament diameter is dependent on the 

fluid’s material properties (zero shear rate viscosity, mobility parameter and relaxation time), the 

filament diameter, D, and the axial extra stress present in each mode, zz,i. An expression for the rate 

of change of axial extra stress can be obtained by combining Equation (3), or Equation (4), with 

Equation (9), viz 

d𝜏𝑧𝑧,𝑖

d𝑡
=

−𝜏𝑧𝑧,𝑖

𝜆𝑖
−

𝑎𝑖

𝜂0,𝑖
𝜏𝑧𝑧,𝑖

2 −
4

𝐷

d𝐷

d𝑡
(
𝜂0,𝑖

𝜆𝑖
+ 𝜏𝑧𝑧,𝑖) 
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(18) 

It can be seen that Equation (18) is coupled to Equation (11) and they must be solved simultaneously.  

In order to solve Equation (11) to predict filament thinning, the distribution of the total axial extra 

stress between the two modes needs to be known and, at the start of the filament thinning process at 

time t = 0, an initial stress condition is required in order to start the calculation. The original FENE-P 

model derived by Entov and Hinch
14

 assumed that the viscoelastic stress at the end of the initial 

filament stretch was zero; this was later refined when comparison was made to experimental data
28

 to 

allow an initial viscoelastic stress to be present. Anna and McKinley
7
 discussed the selection of the 

initial viscoelastic stress condition in some detail, identifying that the fluid filament starts to stretch at 

a rate that prevents the longest mode relaxing. Clasen and co-workers
29

 also identified this initial 

condition, but then note that the extension rates produced by the early stages of filament thinning are 

insufficient to the keep the longest mode stretched and that the initial viscoelastic stress decays 

rapidly. Once filament thinning progresses, it is understood that the polymer coils become extended 

once again
29

. 

A simplifying assumption has been made in this work: the stress contribution from the initial filament 

stretch has been neglected, after the initial FENE-P model of Entov and Hinch
14

, but the stress due to 

the capillary force balance is distributed across the two modes in the inverse proportion to the ratio of 

the relaxation times. Physically, this implies that the initial stress state within the fluid at the start of 

filament thinning is dominated by the mode that is able to adapt fastest to the initial extension rates. 

This assumption is also related to that made by Wagner and co-workers
15

 in their consideration of the 

filament thinning of a dilute polymer solution in a Newtonian solvent: they assumed that the early 

stages of filament thinning are dominated by the solvent dynamics since the polymer will not have 

had time to respond to the applied deformation, and is hence unable  to contribute to the stress.  

This initial extra stress condition allows an initial value of 
d𝐷

d𝑡
 to be calculated which, in turn, allows 

Equation (18) to be solved; this requires use of the same initial condition. Solving Equation (18) 
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yields the rate of change of extra stress for each mode, 
d𝜏𝑧𝑧,𝑖

d𝑡
, which allows the extra stress distribution 

for the next time step, at time t > 0, to be calculated. Direct use of the result from Equation (18) to 

calculate the extra stress distribution will not be made, rather it will be used as a predictor of the ratio 

of the extra stresses between the two modes, with the total extra stress being calculated using 

Equation (8) with the new filament diameter resulting from Equation (11).  

The solution procedure can therefore be written as: 

1. Assume a set of relaxation times, mobility parameters and zero shear rate viscosities for both 

modes. Choose a time-step, 𝛿𝑡, that is based on the frame-rate of the experimental data. 

2. At time t = 0, the filament diameter D = D0. Use of Equation (8), 𝜏𝑧𝑧,1 + 𝜏𝑧𝑧,2 = 𝜏𝑧𝑧 ≈
2𝛼

𝐷
 , 

allows the extra axial stress, 𝜏𝑧𝑧, to be evaluated. 

3. Assume that 𝜏𝑧𝑧,1 =
𝜆2

𝜆1+𝜆2
𝜏𝑧𝑧 and that 𝜏𝑧𝑧,2 = 𝜏𝑧𝑧 − 𝜏𝑧𝑧,1. 

4. Use Equation (11) to calculate 
d𝐷

d𝑡
. For an assumed time-step, 𝛿𝑡, calculate the new filament 

diameter, D, at the next time step by 𝐷(𝑡 + 𝛿𝑡) = 𝐷(𝑡) +
d𝐷

d𝑡
𝛿𝑡. 

5. Use 
d𝐷

d𝑡
 in Equation (18) to calculate a prediction of the new extra stress, 𝜏𝑧𝑧,𝑖

∗ , due to each 

mode, viz: 

𝜏𝑧𝑧,𝑖
∗ (𝑡 + 𝛿𝑡) = 𝜏𝑧𝑧,𝑖(𝑡) +

d𝜏𝑧𝑧,𝑖

d𝑡
𝛿𝑡 

6. Use the predicted extra stress for each mode to calculate a corrected extra stress from the 

Laplace pressure via Equation (8): 

𝜏𝑧𝑧,1(𝑡 + 𝛿𝑡) =
𝜏𝑧𝑧,1

∗ (𝑡 + 𝛿𝑡)

𝜏𝑧𝑧,1
∗ (𝑡 + 𝛿𝑡) + 𝜏𝑧𝑧,2

∗ (𝑡 + 𝛿𝑡)

2𝛼

𝐷(𝑡 + 𝛿𝑡)
 

𝜏𝑧𝑧,2(𝑡 + 𝛿𝑡) =
𝜏𝑧𝑧,2

∗ (𝑡 + 𝛿𝑡)

𝜏𝑧𝑧,1
∗ (𝑡 + 𝛿𝑡) + 𝜏𝑧𝑧,2

∗ (𝑡 + 𝛿𝑡)

2𝛼

𝐷(𝑡 + 𝛿𝑡)
 

7. Repeat from step (4) for 𝑡 = 𝑡 + 𝛿𝑡. 
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This solution procedure is straightforward to implement in a spreadsheet or programming language 

such as Matlab
®
 or Python. If the intention is to obtain material parameters from a set of extensional 

rheometry data, then the material properties used in step (1) will require initial estimation and 

subsequent optimisation using a suitably chosen objective function. This is considered in the next 

section. In order to generate initial estimates of the material parameters, however, it would be useful 

to understand how their variation affects the form of the predicted filament thinning profile. This is 

considered first. 

Discussion 

Equation (11) has six adjustable parameters that describe the filament thinning process for a dual-

mode Giesekus fluid; a set of three for the short relaxation mode (smaller value of ) and a set of 

three for the long relaxation mode (larger value of ). In order to explore the effect of systematic 

variation of the parameters on each mode on the form of the predicted filament thinning profile, an 

arbitrary set of parameters has been defined as given in Table 2Table 1; this is used as a datum. The 

solution to Equation (11) using these parameters is shown by the bold black line in Figure 6. In this 

Figure it can be seen that the dual-mode formulation successfully captures the initial region of 

filament decay that was seen in the experimental data for both PEO in Figure 5(A) and for the pitcher 

plant fluids in Figure 5(B). 

Figure 6 also shows the effect of varying the short mode parameters, 0,2, a2 and 2, on the reduction 

in normalised filament diameter, 𝐷 𝐷0
⁄ , as a function of non-dimensional time, 𝑡 𝜆1

⁄ ; the long mode 

parameters were held constant at their datum values.  Detailed examination of Figure 6 shows that 

increasing the zero shear rate viscosity, 0,2, from 0.0050,1 to 0.030,1, as shown by the light grey 

lines,  has a qualitatively very similar effect to decreasing the mobility parameter, a2, from being equal 

to a1 to 0.1a1, as shown by the dashed and dotted lines. Variation of these two parameters decreases 

the initial rate of change of normalised filament diameter, 𝐷 𝐷0
⁄ , over the range 0 < 𝑡

𝜆1
⁄ < 0.1. 

Furthermore, the time taken for the normalised filament diameter, 𝐷 𝐷0
⁄ , to reach a value of 0.01 
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increases from about 𝑡 𝜆1
⁄ = 0.62 to about 𝑡 𝜆1

⁄ = 0.90; it is notable that the shape of the 𝐷 𝐷0
⁄  curves 

appear to be similar. The inset in Figure 6 illustrates the impact of increasing 2 from
 
0.051 to 0.21: 

as its value approaches that of 1
 
the initial gradient of 𝐷 𝐷0

⁄  remains essentially unchanged but the 

magnitude of the reduction of 𝐷 𝐷0
⁄ in the region of initial filament decay decreases. The time for  

𝐷
𝐷0

⁄  to reach a value of 0.01 also increases significantly from about 𝑡 𝜆1
⁄ = 0.62 to about 𝑡 𝜆1

⁄ =

1.1. 

The plot shown in Figure 7 shows the reverse scenario: the short mode parameters are held at their 

datum values whilst the long mode parameters, 0,1, a1 and 1, are systematically varied. In this plot, 

time has again been non-dimensionalised by 𝜆1. It can be seen in this plot that there is striking 

similarity between the effect of decreasing 0,1 from 2000,2 to 200,2 and the effect of increasing a1 

from being equal to a2 to being 10a2. Alteration of both of these parameters has no significant effect 

on either the initial rate of change of 𝐷 𝐷0
⁄  or the magnitude of its reduction: 𝐷 𝐷0

⁄  reaches a value of 

approximately 0.24 by 𝑡 𝜆1
⁄ = 0.02. The significant effect is that the time taken for 𝐷 𝐷0

⁄  to reach a 

value of 0.01 decreases from about 𝑡
𝜆1

⁄ = 0.62 to about 𝑡
𝜆1

⁄ = 0.075. The inset in Figure 7 

illustrates the impact of decreasing 1 from 202
 
to 22: the initial rate of change of 𝐷 𝐷0

⁄ , and the 

magnitude of its reduction, are both significantly reduced. In the case where 𝜆1 = 2𝜆2, as shown by 

the dotted line, the initial region becomes essentially negligible and the form of the filament thinning 

profile approaches that of a single-mode Giesekus fluid. 

The similarity of the filament thinning profiles that are obtained when independently varying a and 0 

at constant  for the same mode warrants further consideration. Interestingly, the ratio of these terms 

feature in the definition of the extensional viscosity for the Giesekus model. For a uniaxial 

deformation, it can been shown that the steady-state extensional viscosity at high strain rate is 
2𝜂0

𝑎⁄  

30
.  To assist clarity and insight, three groups of parameters are defined, namely 
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𝜂𝐸,1 =
2𝜂0,1

𝑎1
 

(19) 

𝜂𝐸,2 =
2𝜂0,2

𝑎2
 

(20) 

𝜃 =
𝜂0,1

𝜂0,2
 

(21) 

If the groups defined in Equations (19) to (21) are substituted into Equation (11), one obtains, after 

some manipulation 

d𝐷

d𝑡
= −

𝐷2 (𝜆1𝜏𝑧𝑧,2 + 𝜆2 (𝜏𝑧𝑧,1 +
2𝜆1𝜏𝑧𝑧,1

2

𝜂𝐸,1
⁄ +

2𝜆1𝜏𝑧𝑧,2
2

𝜂𝐸,2
⁄ ))

6𝛼𝜆1𝜆2 + 4𝐷𝜂0,2(𝜆1 + 𝜃𝜆2)
 

(22) 

If the term containing D in the denominator is ≪ 6𝛼𝜆1𝜆2, this gives 

d𝐷

d𝑡
≈ −

𝐷2 (𝜆1𝜏𝑧𝑧,2 + 𝜆2 (𝜏𝑧𝑧,1 +
2𝜆1𝜏𝑧𝑧,1

2

𝜂𝐸,1
⁄ +

2𝜆1𝜏𝑧𝑧,2
2

𝜂𝐸,2
⁄ ))

6𝛼𝜆1𝜆2
 

(23) 

Equation (23) shows that the extensional viscosities, 𝜂𝐸,1 and 𝜂𝐸,2, control the filament thinning as 

opposed to unique values of a and 0; this is an important result. If Equation (11) is being fitted to 

experimental data, it will be necessary to specify either a or 0 from an estimate and then to optimise 

the remaining parameters to obtain the best fit possible.  

Insight into the filament behaviour near filament break-up can be obtained by assuming that the extra 

stress due to the long relaxation mode dominates. If the extra stress resulting from the capillary 
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pressure is distributed between the two modes according to Equation (8), then 𝜏𝑧𝑧,1 =
2𝛼(1 − 𝜑)

𝐷
⁄  

and 𝜏𝑧𝑧,2 =
2𝛼𝜑

𝐷⁄ . Here, 𝜑 is a parameter that quantifies the stress distribution between the two 

modes and when 𝜏𝑧𝑧,1 ≫ 𝜏𝑧𝑧,2, 𝜑 → 0. If these extra stress expressions are substituted into Equation 

(11), along with the groups defined in Equations (19) to (21), one obtains 

d𝐷

d𝑡
≈ −

(𝜑𝐷𝜆1 + 𝜆2 ((1 − 𝜑)𝐷 +
𝜆14𝛼(1 − 𝜑)2

𝜂𝐸,1
⁄ +

𝜆14𝛼𝜑2

𝜂𝐸,2
⁄ ))

3𝜆1𝜆2
 

(24) 

In the limit of small diameter, and as 𝜑 → 0, Equation (24) yields 

d𝐷

d𝑡
≈ −

4𝛼

3𝜂𝐸,1
 

(25) 

Equation (25) shows that as the filament approaches breakup, the rate of diameter change is entirely 

governed by the extensional viscosity of the long relaxation mode and by surface tension. This 

observation further reinforces the need to have a reliable heuristic to specify either a1 or 0,1 prior to 

fitting Equation (11) to experimental data such that an initial estimate of 𝜂𝐸,1 can be obtained.  

Equation (24) can also be used to deduce an analytical expression for the filament diameter when 

𝜏𝑧𝑧,1 ≫ 𝜏𝑧𝑧,2. Integrating Equation (24) from the lower bound that marks the end of the initial rate of 

change of normalised filament diameter, designated tH and DH for time and filament diameter 

respectively, yields 

∫d𝑡 = ∫ −
3𝜆1𝜆2𝜂𝐸,1𝜂𝐸,2

(𝜂𝐸,1𝜂𝐸,2(𝜑𝜆1 + (1 − 𝜑)𝜆2)𝐷 + 4𝛼𝜆1𝜆2(𝜂𝐸,2(1 − 𝜑)2 + 𝜂𝐸,1𝜑
2))

d𝐷

𝐷

𝐷𝐻

𝑡

𝑡𝐻
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⇒
𝑡

𝜆1
=

𝑡𝐻
𝜆1

−
3𝜆2

(𝜑𝜆1 + (1 − 𝜑)𝜆2)

(

 
 
 
 

ln

[
 
 
 
 
 
 𝜂𝐸,1𝜂𝐸,2(𝜑𝜆1 + (1 − 𝜑)𝜆2)

𝐷
𝐷𝐻

⁄ +
4𝛼𝜆1𝜆2(𝜂𝐸,2(1 − 𝜑)2 + 𝜂𝐸,1𝜑

2)
𝐷𝐻

⁄

𝜂𝐸,1𝜂𝐸,2(𝜑𝜆1 + (1 − 𝜑)𝜆2) +
4𝛼𝜆1𝜆2(𝜂𝐸,2(1 − 𝜑)2 + 𝜂𝐸,1𝜑

2)
𝐷𝐻

⁄

]
 
 
 
 
 
 

)

 
 
 
 

 

(26) 

A comparison between the numerical solution of Equation (11), using parameters from Table 1, and 

the analytical solution of Equation (26) is shown in Figure 8 for the case where 𝜑 → 0. A value of 

𝑡𝐻
𝜆1

⁄ was chosen such that the coefficient of determination
31

, R
2
, comparing the predictions of 

Equation (11) and Equation (26) over the second regime of filament thinning just exceeded 0.99. This 

resulted in  
𝐷𝐻

𝐷0
⁄ = 0.265 and 

𝑡𝐻
𝜆1

⁄ = 0.031. Examination of the filament thinning profile in 

Figure 8 shows that these values of 
𝐷𝐻

𝐷0
⁄  and 

𝑡𝐻
𝜆1

⁄  do indeed demarcate the two filament thinning 

regimes. It is noteworthy that Equation (26) is implicit with respect to 𝐷 𝐷𝐻
⁄ but explicit in terms of 

𝑡
𝜆1

⁄ , hence 𝑡 𝜆1
⁄  is solved as a function of 𝐷 𝐷𝐻

⁄  as opposed to vice-versa. It can be seen from Figure 

8 that Equation (26) captures the long relaxation mode behaviour quite well, including the approach to 

filament break up, but does not capture the initial regime of filament thinning. This is not surprising 

since the contribution of the short relaxation mode to the extra stress has been neglected.  

An estimate of the non-dimensional filament rupture time, 
𝑡𝐹

𝜆1
⁄ , can be obtained from Equation (26) 

by examining the limit where 𝐷 𝐷𝐻
⁄  and 𝜑 tend to zero, viz: 

𝑡𝐹
𝜆1

⁄ =
𝑡𝐻

𝜆1
⁄ + 3(ln [

𝜂𝐸,1𝐷𝐻
4𝛼𝜆1

⁄ + 1]) 

(27) 

Substitution of the parameters in Table 1 into Equation (27) along with 
𝐷𝐻

𝐷0
⁄ = 0.265 and 

𝑡𝐻
𝜆1

⁄ =

0.031 gives 
𝑡𝐹

𝜆1
⁄ = 0.065; numerical solution of Equation (11) shows that 𝑡 𝜆1

⁄ = 0.065 when 

𝐷
𝐷𝐻

⁄ = 0. Equation (27) demonstrates again that the approach to filament break-up is governed 
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essentially entirely by the long relaxation mode, with the long mode extensional viscosity being an 

important parameter; Equation (27) hence provides a method to estimate 𝜂𝐸,1, and hence a1, given 

0,1, 1, DH and . 

Fitting experimental data 

The objective when developing Equation (11) was to be able to obtain parameters for the long and 

short modes of the Giesekus equation from extensional rheometry data alone. The discussion above 

has highlighted that the long and short mode extensional viscosities, written as quotients of zero shear 

rate viscosity and mobility parameter, are partly responsible for controlling the filament thinning 

process. When fitting Equation (11) to experimental data using an iterative algorithm, it will be 

important to choose reasonable values of either the mobility parameter or the zero shear rate viscosity 

as initial conditions for both modes. The remaining parameter for each mode, along with the 

relaxation times for both modes, will then need estimation such that minimisation of a suitably-chosen 

objective function will be able to provide the best correlation between Equation (11) and experimental 

data. This is explored in more depth next. 

Fitting idealised data – impact of initial conditions and choice of objective function 

A number of expressions that relate 𝐷 𝐷0
⁄  to t were presented in Table 1. It can be seen that the 

Newtonian expression can be used to calculate a characteristic viscosity, and that the UCM expression 

can be used to calculate a characteristic relaxation time. Fitting the Newtonian and UCM expressions 

to different ranges of the experimental data, namely the initial region of filament thinning and the 

second regime of filament thinning, will give initial estimates for Giesekus parameters 0,1, 0,2, 1 

and 2; an example of one way these two equations can be fitted to data is shown in Figure 9(A). The 

data shown in this plot are idealised data and have been obtained by solving Equation (11) with the 

parameters given in Table 3; testing the fitting procedure on idealised data allows comparison 

between the parameters used to generate the data and parameters resulting from the data fitting.  

Estimates of the initial parameters were obtained as illustrated in Figure 9(A): 0,1 was obtained by 

fitting the Newtonian expression in Table 1 to the filament break up time, 0,2 by the best fit of the 
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Newtonian expression (by use of the coefficient of determination
31

, R
2
) to the initial region of filament 

thinning, 1 by fitting the UCM expression such that it is the best fit  to the second regime of filament 

thinning and 2 by fitting the UCM expression such that it is a best fit to the initial regime of filament 

thinning. The time and filament diameter at the end of the initial region of filament decay, tH and DH, 

along with an approximate time for filament breakup, tF, can then be estimated from the idealised 

data. These data can then be used to estimate 𝜂𝐸,1, hence a1, by rearrangement of Equation (27) 

𝜂𝐸,1 =
4𝛼𝜆1exp (

𝑡 − 𝑡𝐻
3𝜆1

) − 1

𝐷𝐻

 

 (28) 

The only unknown parameter remaining is a2. In the first instance, this will be assumed to be the same 

as a1; the initial set of parameters is given in Table 3. 

The choice of objective function used to fit the prediction of Equation (11) to the idealised data is 

important as the range of 𝐷 𝐷0
⁄  typically spans a minimum of two decades. A number of approaches 

to minimise the error between predicted values and idealised data were tested, but it was found that an 

objective function based on one of the formulations of the coefficient of determination, R
2
, denoted as 

𝑅1
2 in the review by Kvålseth

31
, was most robust. Kvålseth

31
 defined 𝑅1

2 as 

𝑅1
2 = 1 −

∑ ((𝐷 𝐷0
⁄ )

𝑗,𝑚
− (𝐷 𝐷0

⁄ )
𝑗,𝑝

)

2

𝑗

∑ ((𝐷 𝐷0
⁄ )

𝑗,𝑚
− (𝐷 𝐷0

⁄
̅̅ ̅̅ ̅̅ ̅

)
𝑚

)

2

𝑗

 

(29) 

Here, subscript ‘m’ denotes measured values, subscript ‘p’ denotes predicted values and an overbar 

denotes an arithmetic mean. The numerator of Equation (29) is the only term that contains the 

predicted values of 𝐷 𝐷0
⁄ , hence minimisation of this will result in the best value of 𝑅1

2. The chosen 

objective function, 𝜙, takes the difference between logarithms of the measured and predicted values 

of 𝐷 𝐷0
⁄  such that data over the entire two decade range is able to influence the objective function:  
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𝜙 = ∑(ln(
𝐷𝑗,𝑚

𝐷𝑗,𝑝
⁄ ))

2

𝑗

 

(30) 

Figure 9(B) compares the idealised data, generated using the parameters in row 1 of Table 3, and the 

prediction of Equation (11) using the solution procedure given above: this results in the parameters 

given in row 3 of Table 3. The objective function, 𝜙, was minimised by adjusting a1, a2, 1 and 2: 

minimisation was performed in Microsoft Excel
TM

 2013 in three steps. Firstly the generalised reduced 

gradient algorithm (GRG2
32,33

) was used, with central derivatives and a convergence tolerance set to 

1×10
-8

. This solver is able to minimise smooth non-linear functions, but may not find a global 

minimum. Secondly the Evolutionary solver
34

, a genetic algorithm capable of minimising non-

smooth, non-linear functions, was used with its default settings and the ‘Random seed’ value set to 2 

to test whether or not another minima existed. If this second step found a lower value of 𝜙, then the 

GRG2 algorithm was run again to find the exact values of a1, a2, 1 and 2  that defined the new 

minima. The mobility parameters were constrained to lie between values of 0 and 0.5, since this 

bounds their region of validity
35,36

. Reasonable upper and lower bounds, of 5 s and 1 ms respectively, 

were defined for the relaxation times to prevent the minimisation algorithms setting them to either 

zero or infinity. 

The first run of the GRG2 solver took 1 iteration to find a local minimum (with 𝑅1
2 = -6.13), the 

Evolutionary solver then took 854 iterations to find a point in the solution space where 𝑅1
2 = 0.890 

and the final run of the GRG2 solver took a further 271 iterations to reach a solution where 

𝑅1
2 = 1.000; the fitted parameters are reported in Table 3. If these parameters are compared to those 

used to generate the data it can be seen that, as expected, the absolute values of a and 0 do not match 

but that the extensional viscosities, 𝜂𝐸,1 and 𝜂𝐸,2, lie within the set precision. Moreover, the values of 

1 and 2 obtained by fitting lie within 2% of the generating ones. It should be noted that the solution 

procedure outlined above does not force 1  to be the long mode and 2 to be the short mode, as 

demonstrated by the fitted values reported in Table 3. These results demonstrate that the data fitting 
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procedure outlined above is capable of extracting representative values of the relaxation time and 

extensional viscosity for each mode of Equation (11) from extensional rheometry data. 

Fitting experimental data 

The data fitting procedure described above was tested on experimental data for a solution of 6 wt% 

PEO (900,000 molecular weight)
10

 and fluid from the same pitcher of N. Rafflesiana 3 days and 7 

days after opening
11

; the filament thinning profiles of these three fluids were shown in Figure 5. The 

surface tension of the PEO solution was set to be 63 mN/m, replicating the value measured by 

Tirtaatmadja and co-workers
37

. The surface tension of the pitcher fluid was assumed to be 72 mN/m; 

the surface tension of the particular pitchers tested as part of the field trial
6
 is unknown, and this 

represents a potentially large source of error in the rheological parameters reported in Table 4.  

In all cases, a good fit was achieved, typically with 𝑅1
2 > 0.98. Gauri and Koelling

38
 reported that PEO 

solutions exhibit Giesekus behaviour in extension, and that a single mode Giesekus model could 

predict the observed filament profile on a fibre-spinning line
39

. Previous work
6
 has also identified that 

a single mode Giesekus model can predict the filament thinning of some pitcher fluid samples. Figure 

10 shows the locus of points corresponding to the solution of Equation (11) with parameters given in 

Table 4 alongside the experimental data. 

Examination of the parameters in Table 4 reveals that the long mode extensional viscosity, 𝜂𝐸,1, and 

the relaxation time, 1, differ by an order of magnitude when comparing the PEO solution to the two 

pitcher plant samples. Furthermore, it can be seen that 𝜆1 = 5.0 s for the PEO solution, which was the 

specified upper bound on relaxation time; it was found that the optimal solution was always found 

when 𝜆1 reached the upper bound value, regardless of physical significance. The values of extensional 

viscosity for both modes, however, remained very similar. 

When the parameters for the two pitcher plant samples are compared, it can be seen that they are 

similar; 1 and 2 decrease with sample age while 𝜂𝐸,1 and 𝜂𝐸,2 increase with sample age. The 

increase in 𝜂𝐸,1 and 𝜂𝐸,2 with sample age is surprising and warrants further analysis. The inset graph 
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in Figure 10(B) plots values of 𝐷 𝐷0
⁄  close to filament break-up on linear axes; Equation (25) shows 

that 𝜂𝐸,1 close to filament breakup should be inversely proportional to the gradient of the filament 

break-up curve, inferring that the final stage of filament thinning is essentially Newtonian. Fitting a 

linear relationship to the data in the inset graph (not shown in Figure 10(B) for reasons of clarity) 

demonstrates that the gradient of the two sets of data sets similar: -0.229 1/s with 𝑅1
2 = 0.948 for day 3 

and -0.212 1/s with 𝑅1
2 = 0.921 day 7. The low values of 𝑅1

2, coupled with the stepped nature of the 

experimental data, casts significant doubt on the observed increase in 𝜂𝐸,1 and 𝜂𝐸,2 with sample age. It 

is likely that this increase is an artefact of fitting Equation (11) over two decades of data, where the 

level of noise in the data increases with decreasing 𝐷 𝐷0
⁄ . A further assumption that may affect the 

values of 𝜂𝐸,1 and 𝜂𝐸,2 is that surface tension remains constant throughout the ageing process. 

The similarity of the two parameter sets indicates that the solution algorithm is functioning robustly 

since the filament thinning curves for these fluids shown in Figure 10(B) are also similar. 

Anecdotally, this result is of interest since the pitcher plant literature suggests that pitcher fluid 

relaxation times decrease with time
6
 after the opening of a pitcher; however, previous studies have 

only been able to measure an overall relaxation time. More analysis of pitcher fluid data, along with 

determination of a representative value for surface tension, is required to examine whether or not this 

observation applies to both the short and long relaxation modes presented here and as to whether the 

initial regime of filament thinning correlates to a physiological requirement of the pitcher plant. This 

is the subject of ongoing work. 

Conclusions 

A simple method is presented describing how to obtain relaxation times and extensional viscosities 

for a dual-mode Giesekus fluid undergoing filament stretching. It is, however, not possible to 

calculate unique values for all six Giesekus parameters for the two modes from the expressions. 

Despite this limitation, the method presented here allows the relative differences between fluids or 

samples to be quantified, for example as a biological fluid ages or as a fluid pH is changed. 
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Fitting experimental data to the expressions developed in this paper requires use of a non-linear 

optimisation algorithm with a suitably-chosen objective function.  Successful data fitting was obtained 

to a model data set and to experimental data using both the generalised reduced gradient algorithm 

(GRG2) and the Evolutionary algorithm in Microsoft Excel
TM

 minimising an objective function 

inspired by the coefficient of determination. A coefficient of determination (𝑅1
2) value of 1.000 was 

obtained when fitting the model data set, while 𝑅1
2 values > 0.98 were obtained when fitting 

extensional rheometry data for a 6 wt% solution of 900k MW polyethylene oxide (PEO) in deionised 

water and fluids from a pitcher of N. Rafflesiana. 
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List of symbols 

Roman letters 

a - Giesekus mobility parameter (-) 

b - FENE-P finite extensibility parameter (-) 

D - Filament diameter   (m) 

D0 - Initial filament diameter  (m) 

Dp - Piston diameter   (m) 

Ec - Elasto-capillary number  (-) 

g - Elastic modulus   (Pa) 

h0 - Initial gap size    (m) 

I - Identity tensor   (-) 

R
2
 - Coefficient of determination  (-) 

p - Hydrostatic pressure  (Pa) 

t - Time    (s) 

𝑡′ - Dimensionless time  (-) 

v - Velocity vector    (m/s) 

X - Shape factor   (-) 

Greek letters 

 - Surface tension   (N/m) 

t - Time step    (s) 
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𝜑  - Stress distribution parameter  (-) 

𝜙 - Objective function to minimise (-) 

𝛄̇ - Strain rate tensor   (1/s) 

 - Maxwellian damper viscosity (Pa s) 

0 - Zero shear rate viscosity  (Pa s) 

𝜂𝐸  - Extensional viscosity  (Pa s) 

 - Viscosity ratio, 
𝜂0,1

𝜂0,2
  (-) 

 - Relaxation time   (s) 

 - Total stress tensor  (Pa) 

 - Extra stress tensor  (Pa) 

ξ - FENE-P dimensionless diameter  (-) 

 

Subscripts 

1 - Long relaxation mode 

2 - Short relaxation mode 

F - Value at filament breakup 

H - End of the initial regime of filament thinning 

i - i
th
 relaxation mode 

m - Measured value 

p - Predicted value 
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rr - Radial component 

zz - Axial component 

Superscripts 

 
* - Projected value 
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List of Tables 

Table 1. Analytical expressions used to describe filament thinning, 
𝑫(𝒕)

𝑫𝟎
⁄ . 

Constitutive model Equation Notes Key reference 

Newtonian 
𝐷

𝐷0
= 1 −

(2𝑋 − 1)𝛼

3𝜂0𝐷0
𝑡 

The shape factor, X, corrects for 

non-cylindrical filaments3 . 

Entov and Hinch14, Stelter 

et al.40 

Upper Convected 

Maxwell (UCM) 

𝐷

𝐷0
= exp (

−𝑡

3𝜆
) 

Simplest viscoelastic fluid 

model. 

Stelter et al.40 

Giesekus (4𝑎 − 3)ln (

𝐷
𝐷0

⁄ + 2𝛼𝜆𝑎
𝜂0𝐷0

⁄

1 + 2𝛼𝜆𝑎
𝜂0𝐷0

⁄
) −

2𝜂0𝐷0

𝛼𝜆
(𝐷 𝐷0

⁄ − 1) =
𝑡

𝜆
 Implicit in D, explicit in t. Torres et al.24 

FENE 
𝐷

𝐷0
= (∑(

𝑔𝑖𝐷0

2𝛼
)

𝑖

exp (
−𝑡

𝜆𝑖
))

1
3⁄

 

Applies to dilute suspension of 

non-interacting FENE 

dumbbells. Multimode model 

with i relaxation times. 

Entov and Hinch14, Anna 

and McKinley7 

FENE-P 

(
1

1 + 𝐸𝑐(𝑏 + 3)
−

1

1 + 𝜉𝐸𝑐(𝑏 + 3)
) + 3ln (

1 + 𝜉𝐸𝑐(𝑏 + 3)

1 + 𝐸𝑐(𝑏 + 3)
) + 4𝐸𝑐

(𝑏 + 3)

(𝑏 + 2)
(𝜉 − 1)

= −
(𝑏 + 3)2

𝑏(𝑏 + 2)
𝑡′ 

where 

𝜉 =
𝐷

𝐷0
; 𝑡′ =

𝑡

𝜆
; 𝐸𝑐 =

𝑔𝐷0

2𝛼
 

 Wagner et al.15 
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Table 2. Datum parameters for sensitivity study. 

a  

(-)  

0  

(Pa s)  

  

(s)  

D0 

(mm) 

 
 

(N/m) 

a1 a2  0,1 0,2  1 2  
0.25 0.072 

0.020 0.020  10.0 0.050  1.00 0.050  

 

Table 3. Parameters used to generate idealised experimental data in Figure 9(A) and initial 

conditions and final parameters for data fit shown in Figure 9(B). D0 = 0.25 mm and 

  = 0.072 N/m. 

 

Parameter set 

a ×10
4
 

(-) 

 

0  

(Pa s) 

 
  

(s)

𝜂𝐸,1 

(Pa s) 

𝜂𝐸,2  

(Pa s) 

𝑅1
2 

(-) 

 a1 a2  0,1 0,2  1 2    

Idealised data 20.0 80.0  1.00 0.100  1.00 0.100 1000 25  

Fit - Initial condition 1.78 1.78  0.209 0.007  0.165 0.021 2350 80  

Fit - Final values 168 0.14  0.209 0.007  0.102 1.00 24.8 999 1.00 

 

Table 4. Parameters obtained by fitting Equation (11) to the PEO extensional data shown in 

Figure 5(A) and to the pitcher fluid extensional data shown in Figure 5(B). For pitcher fluids, 

assumed value of  = 0.072 N/m; for PEO,  = 0.063 N/m
37

 

 

Parameter set 

a ×10
4
 

(-) 

 

0  

(Pa s) 

 
  

(s)

𝜂𝐸,1 

(Pa s) 

𝜂𝐸,2  

(Pa s) 

D0 

(mm) 

𝑅1
2  

(-) 

 a1 a2  0,1 0,2  1 2     

6 wt% 900k PEO 5.47 7.29  0.230 0.012  5.00
*
 0.53 840 33.5 0.336 0.988 

Pitcher fluid – 3 days 2.60 66.1  0.290 0.027  0.495 0.350 2230 8.12 0.248 0.994 

Pitcher fluid – 7 days 1.75 36.1  0.320 0.025  0.284 0.207 3650
§
 13.6

§
 0.218 0.994 

*
5 s was set as the upper constraint on relaxation time. 

§
 See discussion in text concerning these values 
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Figure captions 

Figure 1. Schematic diagram of traditional, twin-piston, capillary break-up rheometry. A cylindrical 

sample is loaded between two circular pistons (a). The pistons move apart an equal distance (b) 

forming a cylindrical filament having an initial mid-point diameter D0 (c). The filament then thins 

under the action of surface tension (d) 

Figure 2. Photograph of the portable extensional rheometer, Seymour. 

Figure 3. Schematic diagram of Seymour's operation. A cylindrical sample is loaded between two 

circular pistons (a). The top piston then moves away from the bottom piston (b) forming a filament 

having an initial diameter D0 (c). The filament then thins under the action of surface tension (d). 

Figure 4.  Plot of normalised filament diameter as a function of time for Newtonian ( = 0.072 N/m, 

0 = 80 mPas, X = 1), Upper Convected Maxwell ( = 0.07 s) and Giesekus ( = 0.072 N/m, 

a = 0.005, 0 = 1 Pa s,  = 1 s) models (see Table 1). In all cases D0 = 0.26 mm and 𝑫
𝑫𝟎

⁄ = 𝟏 

represents the start of surface tension driven filament thinning. 

Figure 5. Plot of normalised filament diameter as a function of time for (A) a 6 wt% solution of 

900,000 molecular weight PEO in deionised water; and (B) fluid extracted from a pitcher of  N. 

Rafflesiana over the course of 7 days. Open circles in (B) represent a newly-opened pitcher (day 0), 

open triangles the same pitcher 3 days later and crosses the same pitcher at 7 days old. Data have been 

decimated for clarity after 0.1 s 

Figure 6. Plot of normalised filament diameter as a function of non-dimensional time predicted by 

Equation (11) showing the effect of systematic variation of the rheological parameters governing the 

short timescale relaxation mode. 

Figure 7. Plot of normalised filament diameter as a function of non-dimensional time predicted by 

Equation (11) showing the effect of systematic variation of the rheological parameters governing the 

long timescale relaxation mode. The datum is the same as that shown in Figure 6. 
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Figure 8. Loci of points corresponding to the numerical solution of Equation (11) using parameters 

given in Table 2 (dotted black line) and the analytical solution of Equation (26), using parameters 

given in Table 2 with 
𝑫𝑯

𝑫𝟎
⁄ = 𝟎. 𝟐𝟔𝟓 and 

𝒕𝑯
𝝀𝟏

⁄ = 𝟎. 𝟎𝟑𝟏, that corresponds to vanishing short 

mode axial extra stress (solid grey line). 

Figure 9. (A) Illustration of fitting the Newtonian and UCM expressions in Table 1 to idealised 

experimental data generated using Equation (11), using parameters given in row 1 of Table 3, yielding 

initial estimates of 0,1, 0,2 and 1 and 2 respectively, given in row 2 of Table 3. (B) Loci of points 

(dashed line) represent best fit of Equation (11) to idealised data (open data points). Final parameters 

given in row 3 of Table 3. 

Figure 10. (A) Plot of normalised filament diameter as a function of time for a 6 wt% solution of 

900,000 molecular weight PEO in deionised water. Open circles represent experimental data and the 

loci of points show the prediction of Equation (11) using the parameters in Table 4. (B) Plot of 

normalised filament diameter as a function of time for fluid extracted from a pitcher of N. Rafflesiana 

over the course of 7 days. Inset plots the data near filament break-up on linear axes. Open triangles 

represent a 3-day old pitcher and crosses the same pitcher at 7 days old. Loci of points represent the 

prediction of Equation (11) with parameters given in Table 4. Experimental data have been decimated 

for clarity and 𝑫 𝑫𝟎
⁄ = 𝟏 represents the start of surface tension driven filament thinning. 
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List of Figures 

 

 

Figure 1. Schematic diagram of traditional, twin-piston, capillary break-up rheometry. A 

cylindrical sample is loaded between two circular pistons (a). The pistons move apart an equal 

distance (b) forming a cylindrical filament having an initial mid-point diameter D0 (c). The 

filament then thins under the action of surface tension (d), with mid-filament diameter D(t) 
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Figure 2. Photograph of the portable extensional rheometer, Seymour. 

 

  

Solenoid

Mobile upper piston

Fixed lower piston

Light source



35 

 

 

 

Figure 3. Schematic diagram of Seymour's operation. A cylindrical sample is loaded between 

two circular pistons (a). The top piston then moves away from the bottom piston (b) forming a 

filament having an initial diameter D0 (c). The filament then thins under the action of surface 

tension (d). 
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Figure 4. Plot of normalised filament diameter as a function of time for Newtonian 

( = 0.072 N/m, 0 = 80 mPas, X = 1), Upper Convected Maxwell ( = 0.07 s) and Giesekus 

( = 0.072 N/m, a = 0.005, 0 = 1 Pa s,  = 1 s) models (see Table 1). In all cases D0 = 0.26 mm 

and 𝑫 𝑫𝟎
⁄ = 𝟏 represents the start of surface tension driven filament thinning. 
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Figure 5. Plot of normalised filament diameter as a function of time for (A) a 6 wt% solution of 

900,000 molecular weight PEO in deionised water; and (B) fluid extracted from a pitcher of  N. 

Rafflesiana over the course of 7 days. Open circles in (B) represent a newly-opened pitcher (day 

0), open triangles the same pitcher 3 days later and crosses the same pitcher at 7 days old. Data 

have been decimated for clarity after 0.1 s and 𝑫 𝑫𝟎
⁄ = 𝟏 represents the start of surface tension 

driven filament thinning. 
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Figure 6. Plot of normalised filament diameter as a function of non-dimensional time predicted 

by Equation (11) showing the effect of systematic variation of the rheological parameters 

governing the short timescale relaxation mode.  

 

 

Increasing 0,2

Decreasing a2

Increasing 2

0,2= 0.0050,1=50 mPa s
a2=a1=0.02
2=0.051=50 ms

Datum:

Variation of 0,2: 

0,2= 0.010,1

0,2= 0.030,1

Variation of a2: 

a2= 0.4a1

a2= 0.1a1

Variation of 2 (inset): 

2= 0.11

2= 0.21
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Figure 7. Plot of normalised filament diameter as a function of non-dimensional time predicted 

by Equation (11) showing the effect of systematic variation of the rheological parameters 

governing the long timescale relaxation mode. The datum is the same as that shown in Figure 6. 
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Figure 8. Loci of points corresponding to the numerical solution of Equation (11) using 

parameters given in Table 2 (dotted black line) and the analytical solution of Equation (26), 

using parameters given in Table 2 with 
𝑫𝑯

𝑫𝟎
⁄ = 𝟎. 𝟐𝟔𝟓 and 

𝒕𝑯
𝝀𝟏

⁄ = 𝟎. 𝟎𝟑𝟏, that corresponds 

to vanishing short mode axial extra stress (solid grey line). 
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Figure 9. (A) Illustration of fitting the Newtonian and UCM expressions in Table 1 to idealised 

experimental data generated using Equation (11), using parameters given in row 1 of Table 3, 

yielding initial estimates of 0,1, 0,2 and 1 and 2 respectively, given in row 2 of Table 3. (B) 

Loci of points (dashed line) represent best fit of Equation (11) to idealised data (open data 

points). Final parameters given in row 3 of Table 3. 
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Figure 10. (A) Plot of normalised filament diameter as a function of time for a 6 wt% solution of 

900,000 molecular weight PEO in deionised water. Open circles represent experimental data 

and the loci of points show the prediction of Equation (11) using the parameters in Table 4. (B) 

Plot of normalised filament diameter as a function of time for fluid extracted from a pitcher of 

N. Rafflesiana over the course of 7 days. Inset plots the data near filament break-up on linear 

axes. Open triangles represent a 3-day old pitcher and crosses the same pitcher at 7 days old. 

Loci of points represent the prediction of Equation (11) with parameters given in Table 4. 

Experimental data have been decimated for clarity and 𝑫 𝑫𝟎
⁄ = 𝟏 represents the start of surface 

tension driven filament thinning. 
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