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Preface
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The work in Sections 2.3–2.5 and Chapter 3 was done jointly with T. Cubitt, A. Harrow

and N. Linden, resulting in a paper under review in Phys. Rev. Lett. (arXiv:1602.07963

[quant-ph]). T. Cubitt, A. Harrow and N. Linden conceived the idea for qubit operators

(Section 2.3) and the application to the Solovay-Kitaev Theorem (Chapter 3), and were

somewhat involved in writing the manuscript. I performed all of the calculations for

the paper and independently developed the generalisation in Section 2.4.

The work in Chapters 5 and 6 and Appendix A was done jointly with S. Strelchuk and

R. Jozsa, resulting in a paper published in QIC Vol.17 No.7&8 (2017) (arXiv:1609.01600

[quant-ph]). S. Strelchuk and I jointly conceived the idea of developing a quantum

analogue of the classical COND oracle, and S. Strelchuk and R. Jozsa assisted in writing

the manuscript. I performed all of the calculations for the paper and independently

developed the idea for Chapter 6.

The work in Chapter 8 and Appendix B was done jointly with S. Strelchuk and R.

Jozsa, resulting in a paper soon to be submitted for publication. S. Strelchuk and

I jointly conceived the idea for the paper, and S. Strelchuk and R. Jozsa assisted in

writing the manuscript. I performed all of the calculations for the paper, and inde-

pendently developed the idea for Section 8.4.
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Abstract

Since they were first envisioned, quantum computers have oft been portrayed as de-

vices of limitless power, able to perform calculations in a mere instant that would

take current computers years to determine. This is, of course, not the case. A huge

amount of effort has been invested in trying to understand the limits of quantum

computers—under which circumstances they outperform classical computers, how

large a speed-up can be gained, and what draws the distinction between quantum

and classical computing. In this Ph.D. thesis, I investigate a few intriguing properties

of quantum computers involving quantum oracles and classically-simulatable quan-

tum circuits.

In Part I I study the notion of black-box unitary operations, and procedures for ef-

fecting the inverse operation. Part II looks at how quantum oracles can be used to

test properties of probability distributions, and Part III considers classes of quantum

circuits that can be simulated efficiently on a classical computer.

In more detail, Part I studies procedures for inverting black-box unitary operations.

Known techniques are generally limited in some way, often requiring ancilla systems,

working only for restricted sets of operators, or simply being too inefficient. We de-

velop a novel procedure without these limitations, and show how it can be applied

to lift a requirement of the Solovay-Kitaev theorem, a landmark theorem of quantum

compiling.

Part II looks at property testing for probability distributions, and in particular consid-

ers a special type of access known as the conditional oracle. The classical conditional

oracle was developed by Canonne et al. in 2015 and subsequently greatly explored.

We develop a quantum version of this oracle, and show that it has advantages over

the classical process. We use this oracle to develop an algorithm that decides whether

or not a mixed state is fully mixed.

In Part III we study classically-simulatable quantum circuits in more depth. Two

well-known classes are Clifford circuits and matchgate circuits, which we briefly re-

view. Using these as inspiration, we use the Jordan-Wigner transform to develop new

classes of non-trivial quantum circuits that are also classically simulatable.
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The outline of results

This thesis is presented in three parts: Quantum Gate Inversion, Quantum Distribution

Testing, and Classical Simulation of Quantum Circuits. Here I shall give a brief descrip-

tion of the results that are developed in each of these parts.

Quantum Gate Inversion

In Chapter 2 we consider methods for effecting the inverse of an unknown unitary

operation U. We begin by discussing two known, but limited, procedures for achiev-

ing this, Quantum Process Tomography and Quantum State Refocussing. In Sections 2.3

and 2.4, currently under review in Phys. Rev. Lett. (arXiv:1602.07963 [quant-ph]), we

develop a novel procedure for the ‘in-line’ inversion of an arbitrary unitary operator.

In this scenario the operator U is provided in the form of an unlimited number of

‘black-boxes’ and our system is restricted such that all control unitaries are required

to act on a single system with the state space of U. We determine a sequence of quan-

tum gates (unitary operators) that inverts U with arbitrarily small error and failure

probability.

Section 2.3 demonstrates this method for a qubit black-box operator. The first step

is based on Concatenated Dynamical Decoupling, a refocussing technique described

in Section 2.2.2, which is analysed in detail. The remaining steps serve to ‘move’ U

around the space of unitary operators and into a region in which the first step can

be applied. The final sequence length is logarithmic in the inverse error and inverse

polynomial in the failure probability. Section 2.4 aims to generalise these ideas to

unitary operators acting on states of dimension d, rather than 2.

In Chapter 3 we discuss the Solovay-Kitaev theorem and its limitations. A univer-

sal gate set is a finite set of gates for which any quantum operation can be approx-

imated (to arbitrary accuracy) by a sequence of gates from this set. Informally, the

Solovay-Kitaev Theorem states that these sequences are ‘short’. One drawback of this

theorem, however, is that it requires the inverse of each gate in the universal gate set

to also be part of the set. In Section 3.2 we develop an ‘inverse-free’ version of the

Solovay-Kitaev Theorem by approximating the inverse operators using the work in

Section 2.4.



6

Quantum Distribution Testing

In Chapter 4 we introduce the notion of distribution testing, and describe recent work

involving the classical conditional oracles, COND and PCOND, defined by C. Canonne,

D. Ron and R. Servedio [CRS15]. These authors demonstrated that even the simplest

conditional oracles could provide substantial speed-ups in classical distribution test-

ing.

In Chapter 5, published in QIC Vol.17 No.7&8 (2017) (arXiv:1609.01600 [quant-ph]), we

define quantum analogues of these oracles, called QCOND and PQCOND, and show

that significant speed-ups are also possible in quantum distribution testing. In addi-

tion, our algorithms outperform their classical counterparts. The problems we con-

sider are:

1. Uniformity Test: Given a distribution D and a promise that D is either the uni-

form distribution A or |D−A| ≥ ε, where | · | is the L1-norm, decide which of

the options holds.

2. Identity Test: Given a fixed distribution D∗ and a promise that either D = D∗ or

|D− D∗| ≥ ε, decide which of the options holds.

3. Equivalence Test: Given two distributions D(1) and D(2) and a promise that either

D(1) = D(2) or |D(1) − D(2)| ≥ ε, decide which of the options holds.

4. Distance from uniformity: Given a distribution D and the uniform distributionA,

estimate d̂ = |D−A|.

The query complexities for these problems with the standard quantum sampling ora-

cle QSAMP and the classical PCOND oracle are listed in Table 1, with our new results

given in the last column. The notation Õ( f (N, ε)) denotes O( f (N, ε) logk f (N, ε)) for

some k, i.e. logarithmic factors are hidden.

In Section 5.5, we show that a slight modification of the PQCOND oracle will allow

for efficient testing of whether a boolean function is ‘balanced’ or ε-far from bal-

anced.

Chapter 6, also published in QIC Vol.17 No.7&8 (2017) (arXiv:1609.01600 [quant-ph]),

is concerned with testing mixedness [MdW13] of a quantum state, that is, deciding

whether an n-dimensional quantum state ρ is the fully mixed state or is ε-far from

it. We describe a novel type of access to ρ that is based on the PQCOND oracle, and
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Task
Standard quantum

oracle (QSAMP)
PCOND

oracle [CRS15]
PQCOND oracle

[Chapter 5]

Uniformity Test O
(

N1/3

ε4/3

)
[BHH11] Õ

(
1
ε2

)
, Ω
(

1
ε2

)
Õ
(

1
ε

)
Identity Test Õ

(
N1/3

ε5

)
[CFMdW10] Õ

[(
log N

ε

)4
]

Õ
[(

log N
ε

)3
]

Equivalence Test Õ
(

N1/2

ε3/2

)
[Mon15] Õ

[(
log2 N

ε7

)3]
Õ
[(

log2 N
ε7

)2]
Distance from unifor-
mity

Õ
(

N1/2

ε3/2

)
[Mon15] Õ

(
1

ε20

)
Õ
(

1
ε13

)

Table 1: Query complexity for property testing problems using three different access
models: the standard quantum oracle (QSAMP), the PCOND oracle, and our PQCOND
oracle.

develop an algorithm that solves the decision problem using Õ(n/ε) queries. We ad-

ditionally give a proof (see Appendix A.2), subject to a small conjecture, that Õ(
√

n/ε)

queries are sufficient.

Classical Simulation of Quantum Circuits

In this part we consider and construct non-trivial quantum circuits that can be ef-

ficiently simulated by a classical computer. Perhaps some of the most well-known

examples of these are circuits comprising Clifford gates (the Gottesman-Knill Theo-

rem [Got98, NC10, Got97]), and those comprising matchgates (Valiant’s Theorem [Val02,

TD02, Joz08, JM08]). We discuss both of these constructions in Chapter 7. In addition,

we use the connection between matchgates and the Jordan-Wigner transform [TD02]

as motivation for the work in Chapter 8 (soon to be submitted for publication).

There we consider a novel method for constructing classically-simulatable circuits by

generalising the Jordan-Wigner transform to 2-dimensional lattices. Such circuits are

generated whole, rather than comprising specific sets of gates. Naı̈ve attempts to

generalise the Jordan-Wigner transform to higher-dimensional lattices map fermionic

Hamiltonians with local terms to spin Hamiltonians with non-local terms. We there-

fore make use of a method based on that given in [VC05] to show how nearest-
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neighbour fermionic Hamiltonians on a 2-dimensional lattice may be mapped to a

local spin Hamiltonian on a similar lattice. This spin Hamiltonian can be broken into

commuting parts and turned into a local, 3-dimensional quantum circuit, for which

the output probabilities can be calculated from the partition function of the original

system.

Furthermore, we show how the Jordan-Wigner transform can be generalised to deal

with multiple flavours of fermions at each site on the lattice. We use this generalisa-

tion to construct circuits that are related to the Hubbard model.

In Section 8.5 we extend this mapping and present a classical technique for comput-

ing the thermodynamic properties of the original, 2-dimensional fermionic system

by transforming it into a 3-dimensional pseudo-classical system and applying the

Metropolis-Hastings algorithm.
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Chapter 1

Introduction

1.1 Technical background

This thesis assumes that the reader is familiar with the basic concepts of quantum

computation and classical probability theory. For a general introduction to quantum

computation, see [NC10]. A useful reference on probability theory is [GW14].

We now present some more specific technical details that we make use of later on in

this thesis. We include some basic details of probability theory for completeness.

1.1.1 Weyl operators and the su(d) Lie algebra

Weyl operators [Wey27] are a specific higher-dimensional generalisation of the Pauli

operators that exist in 2-dimensional systems.

Consider a d-dimensional quantum system, a qudit, with basis {|0〉 , . . . , |d− 1〉}. Up

to a phase factor, the operators acting on the quantum system can be described by the

(d2 − 1)-dimensional Lie algebra su(d) with corresponding Lie group SU (d).

Let {κt}d2−2
t=0 be a basis for su(d). It is well-known [Pfe03] that all κt are traceless and

anti-Hermitian. We now introduce the Weyl operators:

Definition 1.1.1 (Weyl operators in d dimensions [Wey27]). σ1 and σ3 are defined by
their actions on the computational basis states:

σ1 |x〉 = |(x + 1) mod d〉 , σ3 |x〉 = ωx |x〉 ,

where ω = exp(2πi/d) is a primitive dth root of unity.

Setting a = (a1, a2) with a1, a2 ∈ [d] := {0, . . . , d− 1}, we define σa := σ3
a1σ1

a2 .

The following properties of the σa and κt are important to Part I:
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Proposition 1.1.2 (Properties of the σa and κt). .

1. The σa’s form an orthogonal basis with respect to the Hilbert-Schmidt inner product1

for GL(d, C). More specifically, they satisfy Tr(σ†
aσb) = dδab. Note, in addition, that

by setting a = 0, we have that Tr(σb) = 0 for b 6= 0.

2. σaσb = σbσaω[a,b], where ω = exp(2πi/d) and [a, b] is the symplectic inner prod-
uct2.

3. ∑a∈[d]2 ω[a,b] = d2δb0.

4. ∑a∈[d]2 σaσbσ
†
a = d2δb01.

5. ∑a∈[d]2 σaκtσ
†
a = 0 ∀t.

Proof. .

Let a = (a1, a2) and b = (b1, b2), with a1, a2, b1, b2 ∈ [d], and set ω = exp(2πi/d).

1.

Tr(σ†
aσb) = Tr(σ1

−a2σ3
−a1σ3

b1σ1
b2)

= Tr(σ3
b1−a1σ1

b2−a2)

= ∑
j∈[d]
〈j| σ3

b1−a1σ1
b2−a2 |j〉

= ∑
j∈[d]

ω(a1−b1)j 〈j|j + b2 − a2 mod d〉︸ ︷︷ ︸
=δa2,b2

= δa2,b2 ∑
j∈[d]

ω(a1−b1)j

︸ ︷︷ ︸
=dδa1,b1

= dδab

2. Note that

σ3σ1 |j〉 = σ3 |j + 1 mod d〉 = ω j+1 |j + 1 mod d〉 = ω j+1σ1 |j〉 = ωσ1σ3 |j〉 ,

and hence that
σ3σ1 = ωσ1σ3. (1.1)

Then

σaσb = σ3
a1σ1

a2σ3
b1σ1

b2 = ωa1b2−a2b1σ3
b1σ1

b2σ3
a1σ1

a2 = ω[a,b]σbσa,

where the second equality is due to eq. (1.1).

1〈A, B〉 := Tr(A†B) [GG81]
2[a, b] := a1b2 − a2b1, where a = (a1, a2)

T and b = (b1, b2)
T
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3.

∑
a∈[d]2

ω[a,b] =

 ∑
a1∈[d]

ωa1b2


︸ ︷︷ ︸

=dδb2,0

 ∑
a2∈[d]

ω−a2b1


︸ ︷︷ ︸

=dδb1,0

= d2δb0

4.

∑
a∈[d]2

σaσbσ
†
a = ∑

a∈[d]2
σbω

[a,b] (Property 2)

= d2δb01. (Property 3)

5. From Property 1, we can write

κt = ∑
b∈[d]2

(κt)bσb,

where (κt)b ∈ C for b ∈ [d]2. Taking the trace of both sides (remembering that
κt is traceless) immediately gives

0 = ∑
b∈[d]2

(κt)b Tr(σb) = (κt)0 Tr(σ0) = d(κt)0,

and hence we conclude that (κt)0 = 0.

Now,

∑
a∈[d]2

σaκtσ
†
a = ∑

a∈[d]2
σa

 ∑
b∈[d]2

(κt)bσb

 σ†
a

= ∑
a∈[d]2

σa

 ∑
b∈[d]2,b 6=0

(κt)bσb

 σ†
a

= ∑
b∈[d]2,b 6=0

(κt)b

 ∑
a∈[d]2

σaσbσ
†
a

 ,

and the result follows from Property 4.

1.1.2 Classical probability theory

The following definitions and formulae can be found in any basic course on probabil-

ity theory (e.g. [GW14]).
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Expectation

Given a discrete random variable X, which takes values x ∈ ζ with probability pζ(x),

the expectation or mean of X is defined to be

E(X) := ∑
x∈ζ

xpζ(x).

If X is a continuous random variable over the domain ζ ⊆ R with probability density

function pζ(x) (i.e. pζ(x) ≥ 0 ∀x ∈ ζ;
∫

ζ pζ(x) dx = 1), then

E(X) :=
∫

ζ
xpζ(x) dx.

Note that if X and Y are two random variables distributed over the domain ζ and

α, β ∈ C, then

E(αX + βY) = αE(X) + βE(Y). (1.2)

Variance and Covariance

The variance is a measure of the spread of a random variable, and is defined to be

Var(X) := E
(
(X−E(X))2

)
= E(X2)−E(X)2 ≥ 0. (1.3)

Given two random variables X and Y distributed over the same domain Ω, the covari-

ance of X and Y is a measure of the linear dependence of the variables, and is defined

by

Cov(X, Y) := E ((X−E(X))(Y−E(Y))) = E(XY)−E(X)E(Y)

and may be less than 0. Note that Cov(X, X) = Var(X).

Suppose that we have n random variables, X1, . . . Xn, distributed over the domain Ω.

Then

Var

(
n

∑
i=1

Xi

)
= E

( n

∑
i=1

Xi

)2
−(E

(
n

∑
i=1

Xi

))2

=
n

∑
i,j=1

(
E(XiXj)−E(Xi)E(Xj)

)
=

n

∑
i=1

Var(Xi) + ∑
i 6=j

Cov(Xi, Xj). (1.4)
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The Chebyshev Inequality

If the variance of a random variable X is small, one would expect that a sample from

X is likely to be near E(X) (since variance measures the spread from the mean). The

Chebyshev inequality [Tch67] quantifies this as follows:

P [|X−E(X)| > ε] ≤ Var(X)

ε2 , (1.5)

provided that Var(X) < ∞.

1.1.3 Fermionic operators and the 1-dimensional Jordan-Wigner trans-
form

In this section we describe the fermionic creation and annihilation operators and de-

rive the Jordan-Wigner transform.

We consider a 1-dimensional chain of sites numbered 1, . . . , N. Each site i can hold

a fermion with associated creation and annihilation operators a†
i and ai obeying the

canonical commutation relations (CCRs) [VC05]

{a†
i , a†

j } = {ai , aj } = 0, {a†
i , aj } = δij1. (1.6)

Let |Ω〉 be the normalised vacuum state, and write

|α〉 ≡ |α1, α2, . . . , αN〉 :=
(

a†
1

)α1
(

a†
2

)α2
· · ·
(

a†
N

)αN
|Ω〉 , (1.7)

where αi ∈ {0, 1}. The CCRs in eq. (1.6) can easily be used to show that

〈α|α′〉 = δαα′ , (1.8)

and thus that {|α〉}α∈{0,1}N is a basis for the fermionic space. Hence we can associate

the state |α〉 on N fermions with equivalent state |α〉 on N qubits.

We can now determine the form of the a†
i and ai operators within the spin paradigm.

By calculating 〈α| a†
i |α′〉 using the CCRs in eq. (1.6), we find that

a†
i = Z1 · · · Zi−1S+

i

ai = Z1 · · · Zi−1S−i ,
(1.9)

where Ri effects the R operator on the ith qubit and acts as the identity elsewhere,

S± = 1
2(X± iY), and X, Y and Z are the standard one-qubit Pauli operators. Eq. (1.9)
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is known as the Jordan-Wigner transform, and its exact form depends on the ordering

of the operators chosen in eq. (1.7).

Here we also define the Majorana fermions [MM06, BK02], ci := (ai + a†
i ) and di :=

i(ai − a†
i ). In the spin paradigm, these are represented as

ci = Z1 · · · Zi−1Xi

di = Z1 · · · Zi−1Yi.
(1.10)

Using the CCRs in eq. (1.6), we find that ci and dj obey the commutation rela-

tions

{ci , cj } = {di , dj } = 2δij1, {ci , dj } = 0. (1.11)
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Part I

Quantum Gate Inversion
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Chapter 2

Inversion of black-box unitary operators

2.1 Introduction

A ’black-box’ operator is a quantum process for which we do not have a specifica-

tion. Unitary black-box operators are commonly employed in quantum computation,

where the task is often to determine whether or not they satisfy a given property.

Black-boxes can be effected by the unknown evolution of a state over time, by a quan-

tum oracle, or by a sequence of gates unknown to us. The constant-balanced problem

describes a black-box comprising an oracle for a function f that is either constant or

balanced (see Problem 5.5.1), and one must determine which is the case. This can

be decided by the Deutsch-Jozsa algorithm [CEMM98, DJ92] with only one use of

the black-box. Another example is when one is presented with a black-box U effect-

ing an unknown (classically-described) circuit, and one must decide whether or not

U acts almost as the identity on all states. This problem was shown [JWB03] to be

QMA-complete.

Here, we consider the problem of whether or not a black-box unitary U can be in-

verted, i.e. given access to as many copies of U as we need, can we implement U−1?

Aside from being an interesting question in its own right, there are two particularly

useful applications of such a result, both of which we explore:

• Refocussing: A quantum state evolves over time according to the system’s in-

herent Hamiltonian. The black-box U would describe the evolution over one

time-step. Being able to invert U would mean that the evolution could be can-

celled out. (see Section 2.2.2)

• Solovay-Kitaev theorem: The Solovay-Kitaev theorem, a landmark theorem in

quantum computing, requires access to the inverse operations of a set of unitary

operators. Being able to invert these operators directly would mean that this

requirement could be removed. (see Chapter 3)
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We shall discuss a number of different methods that may be used to effect U−1. First,

we look at quantum process tomography, a procedure that uses additional ancilla sys-

tems to gain a complete description of the operator, after which the matrix can be

classically inverted and subsequently implemented. We then consider refocussing tech-

niques, which solve a related problem in a different area of physics. Both methods of

refocussing that we study are ‘on the fly’ protocols that require no ancillas. These

techniques, however, are limited in that they are applicable only to restricted sets of

operators U. We subsequently, therefore, derive a universal procedure to refocus any

unitary U to arbitrary accuracy. We develop a protocol to generate a sequence of

unitary operations {R1, . . . , Rn}, independent of U, such that

R1UR2U · · ·URn ≈ U−1. (2.1)

with high probability. More precisely, ‖R1UR2U · · ·URn−U−1‖ ≤ ε, where the num-

ber n of control unitaries R only needs to scale as n = O(log2(1/ε)) if U is a qubit

operator.

2.2 Known inversion techniques

2.2.1 Quantum process tomography

Here we describe a technique presented in [NC10], Section 8.4.2. Quantum process

tomography is a procedure that completely specifies an operator U (to within a given

error). Once this specification has been deduced, U−1 can be easily calculated and

subsequently implemented.

To understand quantum process tomography, we must first discuss quantum state to-

mography. To simplify the analysis, we shall work with a single qubit, although the

idea is generalisable to many d-dimensional qudits.

The method works intuitively as follows:

• Quantum state tomography: copies of a density matrix state ρ are measured in

several different bases to deduce a classical description of the state;

• Quantum process tomography: one acts with the operator U on a known state,

and the output is evaluated using quantum state tomography. This process is

repeated with a full basis of states to gain a complete specification of U.
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We now analyse quantum state tomography in more detail. Suppose that we have

many copies of a qubit density matrix ρ. Since the matrices 1√
2
, X√

2
, Y√

2
, Z√

2
form an

orthonormal basis (where X, Y and Z are the 2-dimensional Pauli operators) with

respect to the Hilbert-Schmidt inner product (see Section 1.1.1), we can write

ρ =
1
2

Tr(ρ)1+
1
2

Tr(ρX)X +
1
2

Tr(ρY)Y +
1
2

Tr(ρZ)Z.

Expressions like Tr(ρA) can be interpreted as the expectation of the observable A

given the state ρ. Thus, for example, Tr(ρZ) can be determined by repeatedly mea-

suring the observable Z, and averaging the result. The central limit theorem (Section

8 in [GW14]) can be used to determine how accurate this estimate is. Repeating this

process for each of the four observables, we can determine ρ to arbitrary accuracy

with high probability.

This procedure can be extended to quantum process tomography in the following

way. Suppose that U is a unitary operator on one qubit. Choose the pure states

|ψ1〉 , . . . , |ψ4〉 so that the corresponding density matrices |ψ1〉 〈ψ1| , . . . , |ψ4〉 〈ψ4| form

a basis for the space of (2× 2) matrices. One such choice is

|ψ1〉 = |0〉 , |ψ2〉 = |1〉 , |ψ3〉 =
1√
2
(|0〉+ |1〉), |ψ4〉 =

1√
2
(|0〉+ i |1〉).

U can be applied to each of these states respectively, gaining ρ1 = U |ψ1〉 〈ψ1| U†,

. . . , ρ4 = U |ψ4〉 〈ψ4| U†, which can be estimated using quantum state tomography.

This gives a complete classification of the operator U, since for any density matrix

ρ = α1 |ψ1〉 〈ψ1| + · · ·+ α4 |ψ4〉 〈ψ4| , α ∈ C, we have that UρU† = α1ρ1 + · · ·+ α4ρ4.

Through classical processing the matrix form of U can be deduced.

The method extends trivially if U is acting on a d-dimensional space, for which d2

pure states are required.

Finally, the matrix can be inverted to deduce U−1.

Other variants on standard quantum process tomography exist, such as ancilla-assisted

quantum tomography and entanglement-assisted quantum tomography [ABJ+03].

2.2.2 Refocussing techniques

It is a common problem in fields such as nuclear magnetic resonance (NMR) and

quantum information processing that the state of a system will evolve over time.
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This evolution is tied to the Hamiltonian governing the system, which is often time-

independent. Refocussing techniques work by applying certain radio-frequency pulses

to the system at pre-determined times that cancel out this evolution, thus ‘refocussing’

the state.

In the two techniques presented below, the Hamiltonian is considered to be time-

independent, and the interval between the pulses is constant. As a result, the evolu-

tion of the system between consecutive pulses can be described by a unitary operator

U = e−iH, where H is the Hamiltonian governing the system’s dynamics. The n

pulses that are applied can be described by unitary operators R1, . . . , Rn (indepen-

dent of U). As a result, the evolution of the system can be described by the quantum

circuit R1UR2U · · ·URnU. The aim of the refocussing technique is to eliminate the

evolution caused by U, so that

R1UR2U · · ·URnU ≈ 1.

Of course, this is quickly rearranged to give

R1UR2U · · ·URn ≈ U−1.

Spin Echo

Spin echo is a technique often employed within the field of NMR, and is able to correct

for evolution caused by Hamiltonians of a particular form, using just two pulses [Hah50,

FM98].

Suppose we consider a system consisting of a single qubit, with a governing Hamil-

tonian of the form Hz = αX + βY, where α, β ∈ R. Then

U = e−iHz .

Using the Pauli operator commutation relations (Exercise 2.4.1 in [NC10]), we see that

ZHzZ = −Hz, and hence that

ZUZ = U−1 =⇒ ZUZU = 1.

This method can be generalised, noting that if the anti-commutator {H, σ} = 0 for

some operator σ, then

σUσ = U−1 =⇒ σUσU = 1,

where U = e−iH.
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In particular, X pulses will refocus a Hamiltonian Hx = βY + γZ, and Y pulses will

refocus a Hamiltonian Hy = αX + γZ, where α, β, γ ∈ R.

Dynamical Decoupling

A general Hamiltonian acting on a single-qubit system is of the form

H = αX + βY + γZ,

where α, β, γ ∈ R. If the Hamiltonian is unknown, spin echo will not be effective in

refocussing the state, and a different technique must be employed.

This is a common problem encountered in quantum information processing, where

an unwanted and unknown always-on evolution leads to a coupling between two ini-

tially isolated systems [ÁSS12, D+00, KL05, VKL99, WS07, YWL11, ZWL14, KL11].

Dynamical decoupling encompasses a set of perturbative methods, similar to spin echo,

that involve applying several control pulses to the combined system over a period of

time to dynamically eliminate the coupling [KL11].

Here we focus on a technique known as Concatenated Dynamical Decoupling (CDD) [YWL11,

WS07, KL11, KL05, ÁSS12], a natural extension of spin echo, and for which the inter-

val between pulses is constant.

Since H can be written as a linear combination of Hamiltonians of the form of Hx, Hy

and Hz, CDD considers a sequence formed from the spin echo refocussing pulses for

each of these Hamiltonians [ÁSS12]:

CDD1 = (XUX)(YUY)(ZUZ)U = −XUZUXUZU.

By using Property 4 of Proposition 1.1.2, this sequence can be shown to give 1 to first

order in H when expanded as a power series.

We then recursively concatenate the sequence to eliminate higher-order terms in H:

CDDN = −X CDDN−1 Z CDDN−1 X CDDN−1 Z CDDN−1 .

To eliminate terms of order up to (and including) N, the number of pulses required is

then n = 4N [KL05, KL11].

For such sequences to be practical for refocussing a system, ‖H‖ must be small. In

Section 2.3.1 we place bounds on ‖H‖ in an attempt to understand the effectiveness

of this method. If ‖H‖ is ‘small enough’, however, we produce a sequence

R1UR2U · · ·URnU ≈ 1 =⇒ R1UR2U · · ·URn ≈ U−1.
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2.3 Universal in-line inversion of qubit operators

We describe here our procedure to invert a black-box unitary operator acting on a

single qubit.

Any unitary operation U ∈ SU (2) may be written in the form U = e−iH, where the

Hamiltonian H is of the form H = h · σ, where σ = (X, Y, Z) is the vector of Pauli

matrices, and h ∈ R3.

We introduce the function (also seen in Section 2.2.2)

f (U) := XUXYUYZUZU = (−X)UZUXUZU. (2.2)

As noted previously, this can be shown to give 1 to first order in H when expanded

as a power series. Thus1 we expect that for U within a certain distance of 1, the

recursive application of f will reduce this distance. This forms the basis of CDD (see

Section 2.2.2), and one of the stages of our procedure.

Outside of this region, what can be said about f ? It is clear that f does not necessarily

reduce the distance to the identity, as it has several fixed points and cycles. For exam-

ple, the unitary operator 1−i
2

( 1 i
−1 i

)
is a fixed point, and

(
1−i

2

( i i
−1 1

)
, 1−i

2

( 1 −1
i i

))
is a

two-cycle. This provides strong motivation for developing a randomised, rather than

deterministic, protocol for refocussing.

Note that f can be expressed in the form of eq. (2.1) as f (U) = (−X)UZUXUZU.

The analysis for the one-qubit case can be computed explicitly, and we do so in the

following three stages:

1. In terms of a chosen measure of distance, we lower bound the size of the neigh-

bourhood of 1 for which an application of f reduces the distance to 1. We shall

call this the shrinking region. This is the crux of CDD, which can only be applied

within this region.

2. We find other points in SU (2) that are mapped exactly to 1 under a single ap-

plication of f , and hence (by continuity of f ) determine regions that are mapped

into the shrinking region. We call these jumping regions.

3. We apply certain random operations to our unitary and lower bound the prob-

ability of moving it into one of the jumping regions. We call these random conju-

gations.
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2.3.1 Bounding the shrinking region

We start by proving the following well-known proposition:

Proposition 2.3.1. Any U ∈ SU (2) can be written in the form

U = a1+ ibX + icY + idZ,

a2 + b2 + c2 + d2 = 1, a, b, c, d ∈ R.
(2.3)

Proof. Any unitary operation U ∈ SU (2) may be written in the form U = eiu·σ [Pfe03],
where u = (u1, u2, u3) ∈ R3, and σ = (X, Y, Z). Since (u · σ)2 = |u|21, we see that if
u 6= 0,

U = eiu·σ = (cos |u|)1+ i(sin |u|)(û · σ)

where û = u/|u| = (û1, û2, û3) is a normalised vector. Letting a = cos |u|, b =

(sin |u|)û1, c = (sin |u|)û2, and d = (sin |u|)û3, we arrive at eq. (2.3).

Now, using the Hilbert-Schmidt norm ‖A‖ :=
√

Tr(A† A), we define the distance be-

tween U and 1 to be

ε0 := ‖U − 1‖ = 2
√

1− a.

A straightforward matrix multiplication then tells us that

f (U) = (1− 8b2d2)1+ i · 8abd2X + i · 4bd(d2 − 1)Y + i · (−8bcd2)Z

and hence that the distance between f (U) and 1 is

ε1 := ‖ f (U)− 1‖ = 2
√

8|bd| ≤
√

8(b2 + d2) ≤
√

8(1− a2) ≤
√

2ε2
0, (2.4)

where the second inequality follows from eq. (2.3).

If εm is the distance from 1 after m applications of f , then repeated application of eq.

(2.4) implies that εm ≤
√

2
2m−1

ε2m

0 . Choosing ε0 ≤ 1/2 gives us doubly-exponential

convergence towards 1 as m increases, that is,

εm ≤ 2−
1
2 (2

m+1). (2.5)

We thus define the shrinking region to be a = 1− ε2
0

4 ≥ 15/16. This is represented in

Figure 2.1 as region A.
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2.3.2 Bounding the jumping regions

We saw previously that ε1 = 2
√

8|bd|. To ensure that f (U) is inside the shrinking

region A, we require that ε1 ≤ 1/2. Let us denote the ‘jumping region’ by J ≡ f−1(A)

and thus observe that J is the set of U with 2
√

8|bd| ≤ 1/2 =⇒ |bd| ≤ 1/
√

128; see

Figure 2.1.

2.3.3 Bounding the probability of landing in a jumping region after
applying a random conjugation

We now write U in the form U = a1+ i(u ·σ), where u = (b, c, d) and σ = (X, Y, Z).

The operation we apply is conjugation by an operator R = r ·σ, where r is a real unit

vector, and R is unitary. Then

U′ := RUR† = a1+ iu′ · σ.

where u′ = [2(r ·u)r−u] = (b′, c′, d′). This transformation has two important prop-

erties:

• The distance from 1 is invariant, i.e. ‖U − 1‖ = ‖U′ − 1‖. This ensures that the

unitary can never leave the shrinking region once inside it; and

• u′ is the rotation of u by π about the vector r. Thus choosing r to point in a

uniformly random direction (according to the spherical measure on S2) ensures

that u′ also points in a similarly uniformly random direction (with |u′| = |u|).
In Figure 2.1, this would be represented by a reflection of the sphere in a plane

containing 1 along the a axis.

We now lower bound the probability that U′ is in a jumping region. To do so, we

write u′ in spherical co-ordinates: u′ = (b′, c′, d′)cart = (|u|, θ, φ)sph. The jumping

region J corresponds to the unitaries with

|u|2| cos(θ) sin(θ) cos(φ)| ≤ 1√
128

.

Recall that θ ∈ [0, π], φ ∈ [0, 2π) are drawn uniformly at random from the sphere,

while |u| depends on U. To eliminate this dependence we can bound

P[U′ ∈ J] ≥ P
[
| cos(θ) sin(θ) cos(φ)| ≤ 1/

√
128
]

≈ 0.271 · · ·

The constant 0.271 · · · can be obtained by numerical integration, and for notational

convenience we will use P[U′ ∈ J] ≥ 1/4.
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Figure 2.1: Universal refocussing for U ∈ SU (2). For illustration we set c = 0 in
eq. (2.3) so that the surface of the sphere represents the remaining part of SU (2). A
represents the shrinking region, with U = 1 marked at its center point. J ≡ f−1(A)

is the jumping region, for which |bd| ≤ 1/
√

128. The action of a random conjugation
R = r · σ (where, for this illustration, r = (r1, 0, r3)) is to reflect the sphere in a plane
along the a axis containing 1, leaving the distance to 1 invariant.
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2.3.4 Tying it all together

We now introduce the function g(U) = (r · σ)U(r · σ)†, where each application of

g chooses a unit direction vector r uniformly at random according to the spherical

measure on S2. Consider ( f ◦ g)◦l, i.e. f and g composed l times. In order to enter a

jumping region with probability ≥ 1− η we require

l ≥
log2(1/η)

log2(4/3)
.

Once in the shrinking region, we require a further m steps to get within ε := εl+m

distance of the identity, where

m ≥ log2 log2

(
1√
2ε

)
+ 1.

Combining these and introducing the function F(U) := ( f ◦ g)◦k, we see that if

k ≥
log2(1/η)

log2(4/3)
+ log2 log2

(
1√
2ε

)
+ 1, (2.6)

U will be mapped to within ε distance of 1 with probability ≥ 1− η.

Expanding F(U) gives a pulse sequence of the form

F(U) = R1UR2 · · · RnURn+1.

In order to produce a sequence of the form of eq. (2.1), we conjugate by Rn+1, since

‖(Rn+1R1)UR2 · · · RnU − 1‖ = ‖Rn+1(F(U)− 1)R†
n+1‖ = ‖F(U)− 1‖.

The number of pulses n required for the full refocussing function F is the same as the

number of uses of U, which is 4k. Thus we see that the number of pulses is bounded

by

n = 4k ≤ 16
η5 log2

2

(
1√
2ε

)
. (2.7)

The multiplicative factor of 16 comes from the fact that k may need to be rounded up

to the nearest integer greater than the RHS of eq. (2.6). In addition, we have rounded

the power of 1/η up from 2/ log2(4/3) ≈ 4.82 to 5.
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2.4 Universal in-line inversion of d-dimensional qudit
operators

Though the basic idea of the one-qubit case generalises to d dimensions, it is more dif-

ficult to determine the jumping regions, and not at all clear that random conjugations

can even bring arbitrary d-dimensional unitary operations close to these jumping re-

gions. However, we will show there exist jumping regions that can be reached from

any unitary operator.

2.4.1 Bounding the d-dimensional shrinking region

We introduce the mapping f : SU (d)→ SU (d), defined by

f (U) = ∏
a∈[d]2

σaUσ†
a. (2.8)

Using the operator norm1, we define the distance between an operator W and 1 to

be ‖W − 1‖. We write U = 1+ δU = e−iH, where iH can be expressed as a linear

combination of κt’s, the generators for the Lie algebra su(d), which are defined in

Section 1.1.1. Furthermore, we impose that ‖δU‖ ≤ 1/2.

We have that H = i log(1+ δU), and hence the Mercator series2 gives us that

‖H‖ ≤
∞

∑
k=1

‖δU‖k

k
≤

∞

∑
k=1

(1/2)k−1

k
‖δU‖ < 1

1− 1/2
‖δU‖ = 2‖δU‖ ≤ 1. (2.9)

With f defined as in eq. (2.8) and writing U = 1+ δU, we see that

f (U) = ∏
a∈[d]2

σa(1+ δU)σ†
a = 1+ ∑

a∈[d]2
σaδUσ†

a + ∑
a<b

σaδUσ†
a · σbδUσ†

b + · · · ,

where < is an ordering on the set [d]2 (the exact form of the ordering is irrelevant).

As an example, we could have a < b ⇔ da1 + a2 < db1 + b2, for a = (a1, a2), b =

(b1, b2) ∈ [d]2.

After moving the 1 to the left-hand side, we take the operator norm of both sides and

1‖A‖ = sup|ψ〉∈Cd ,‖|ψ〉‖=1 ‖A |ψ〉 ‖
2If ‖A‖ < 1, log(1+ A) = ∑∞

k=1(−1)k+1 Ak/k
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use the triangle inequality and sub-multiplicative property3 to deduce that

‖ f (U)− 1‖ ≤

∥∥∥∥∥∥ ∑
a∈[d]2

σaδUσ†
a

∥∥∥∥∥∥+
d2

2

 ‖δU‖2 +

d2

3

 ‖δU‖3 + · · ·

=

∥∥∥∥∥∥ ∑
a∈[d]2

σaδUσ†
a

∥∥∥∥∥∥+
d2

∑
j=2

d2

j

 ‖δU‖j.

Since ‖δU‖ ≤ 1/2, ‖δU‖j ≤ ‖δU‖2 for j ≥ 2. Thus

‖ f (U)− 1‖ ≤

∥∥∥∥∥∥ ∑
a∈[d]2

σaδUσ†
a

∥∥∥∥∥∥+
d2

2

+ · · ·+

d2

d2

 ‖δU‖2

=

∥∥∥∥∥∥ ∑
a∈[d]2

σaδUσ†
a

∥∥∥∥∥∥+ (2d2 − d2 − 1)‖δU‖2.

Now consider the first term on the right-hand side, and recall that U = e−iH. Hence∥∥∥∥∥∥ ∑
a∈[d]2

σaδUσ†
a

∥∥∥∥∥∥ =

∥∥∥∥∥∥ ∑
a∈[d]2

σa(e−iH − 1)σ†
a

∥∥∥∥∥∥
=

∥∥∥∥∥∥ ∑
a∈[d]2

σa

(
∞

∑
k=1

(−iH)k

k!

)
σ†
a

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ ∑
a∈[d]2

σa(−iH)σ†
a

∥∥∥∥∥∥+
∞

∑
k=2

1
k!

∥∥∥∥∥∥ ∑
a∈[d]2

σa(−iH)kσ†
a

∥∥∥∥∥∥
≤
(

∞

∑
k=2

1
k!

)
‖H‖2d2

≤ 4d2(e− 2)‖δU‖2,

where the third line follows from the triangle inequality. The first term in the third

line is 0 by Property 5 in Proposition 1.1.2. The fourth line then follows by the triangle

inequality, the sub-multiplicative property, and the fact that ‖H‖ < 1 (from eq. (2.9)).

The final line follows from eq. (2.9). Hence we discover that

‖ f (U)− 1‖ ≤ (2d2
+ d2(4e− 9)− 1)‖δU‖2 < α‖δU‖2, (2.10)

where α = 2d2+1.

We now define the shrinking region to be

‖U − 1‖ = ε0 ≤ 1/(2α). (2.11)

3‖AB‖ ≤ ‖A‖‖B‖ for all d× d complex matrices A, B
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If εm is the distance from 1 after m applications of f , then the repeated application of

eq. (2.10) implies that

εm < 2−2m
/α. (2.12)

2.4.2 Finding and bounding the d-dimensional jumping regions

As before, we can write U = e−iH, where iH ∈ su(d). We show below that if U (and

hence H) is diagonal, f (U) = 1. Thus the jumping regions include the neighbour-

hoods of all diagonal unitaries.

Property 1 of Proposition 1.1.2 allows us to write

iH = ∑
a∈[d]2,a 6=0

λaσa, (2.13)

where λa ∈ R ∀a, and a = 0 is excluded from the sum because iH ∈ su(d) is

traceless. In addition, if U is diagonal, we have that iH is diagonal, and thus the only

non-zero λa’s are those corresponding to diagonal σa’s (i.e. a = (a1, 0)).

From eq. (2.8), we have

f (U) = ∏
c∈[d]2

σcUσ†
c = ∏

c∈[d]2
exp(−Λc),

where

Λc = σc(iH)σ†
c = ∑

a 6=0

ω[c,a]λaσa,

in which we have used eq. (2.13) and Property 2 of Proposition 1.1.2 to deduce the

final equality. Note that the non-zero terms of the sum are diagonal (recall that they

correspond to a’s of the form a = (a1, 0)), and hence all Λc commute. Thus using

Property 3 of Proposition 1.1.2, we see that

f (U) = exp
(
−∑

c

Λc

)
= exp

(
− ∑
a 6=0

(
∑
c

ω[c,a]
)

︸ ︷︷ ︸
=0

λaσa

)
= 1.

f (U) is a product of operators, containing d2 instances of U. The hybrid argument,

Theorem 2 in [Vaz98], then implies that

‖ f (U)− f (V)‖ ≤ d2‖U −V‖. (2.14)

Suppose that we have a W such that f (W) = 1, and define W ′ = W(1+ δW). Eq.

(2.14) then gives

‖ f (W ′)− 1‖ ≤ d2‖δW‖.
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Thus to ensure that f (W ′) is in the shrinking region, we must have, from eq. (2.11),

that

‖δW‖ ≤ δ :=
1/(2α)

d2 =
1

2αd2 . (2.15)

2.4.3 Bounding the probability of landing in a d-dimensional jump-
ing region after applying a random conjugation

Here we conjugate U with a Haar random unitary V ∈ SU (d) (i.e. uniformly ran-

dom with respect to the Haar measure [Haa33]) and bound the probability that the

resulting operator is close to diagonal, and thus in a jumping region. Conjugation is

a useful operation to apply since

‖VUV† − 1‖ = ‖V(U − 1)V†‖ = ‖U − 1‖

and thus, as in the one-qubit case, it leaves the distance from the identity invari-

ant.

We note that there is at least one good choice of V: let V0 be a unitary such that V0UV†
0

is diagonal. While V = V0 has zero probability, we argue that there is a non-negligible

probability that V will be close to V0. We choose a unitary operator V ∈ SU (d)
uniformly at random according to the Haar measure [Haa33], and lower-bound the

probability that it is close to V0, where V0 ∈ SU (d) and V0UV†
0 is diagonal.

We first note that P[‖V − V0‖ ≤ δ] is independent of V0, and so wlog we consider

V0 = 1. Consider the map exp : su(d) → SU (d), and let Br = {s ∈ su(d) : ‖s‖ ≤ r},
for r ≤ π. Note that exp(Br) is a ball around 1 in SU (d) of radius | exp(ir) − 1| =
2 sin(r/2). Thus the pre-image of the ball of radius δ is Bν with

ν = 2 arcsin(δ/2) (2.16)

Now, the volume of Br is vol(Br) = crd2−1, where c is dependent upon d, and we are

using the Euclidean metric on su(d).

Lemma 4 in [Sza97] provides the result

4
10
‖s‖ ≤ ‖ exp(s)− 1‖ ≤ ‖s‖

for s ∈ su(d); the upper bound holds for all s, and the lower bound holds for ‖s‖ ≤
π/4. Thus

• if ν ≤ π/4, then vol(exp(Bν)) ≥ 4
10 vol(Bν) =

4
10 cνd2−1; and
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• since exp(Bπ) = SU (d), we have that vol(SU (d)) ≤ vol(Bπ) = cπd2−1.

Hence the probability that a random operator V ∈ SU (d) is within distance δ from 1

(or any other V0) is lower bounded by

P[‖V −V0‖ ≤ δ] ≥ 4
10

( ν

π

)d2−1
.

In addition, eq. (2.16) implies that

ν = 2 arcsin(δ/2) ≥ δ,

hence we arrive at

P[‖V −V0‖ ≤ δ] ≥ 4
10

(
δ

π

)d2−1

≥
(

δ

10

)d2−1

. (2.17)

2.4.4 Summary of the d-dimensional case

We summarise the results below:

1. Given U ∈ SU (d), the shrinking region is defined (from eq. (2.11)) by ε0 ≤
1/(2α), where α = 2d2+1. Within this region, f provides doubly-exponential

convergence to 1. More specifically, (from eq. (2.12)) we have that εm < 2−2m
/α.

2. The jumping regions include W(1+ δW), where W is diagonal, and (from eq.

(2.15)) ‖δW‖ ≤ δ = 1/(2αd2)

3. Applying a random conjugation gives us (from eq. (2.17)) a probability of at

least p := (δ/10)d2−1 of landing in a jumping region.

As in the one-qubit case, we now introduce the function g(U) = VUV†, where each

application of g chooses a unitary V uniformly at random according to the Haar mea-

sure on SU (d). Consider the function F(U) = ( f ◦ g)◦k, i.e. f and g composed k times.

Following identical logic to the qubit case, we deduce that if

k ≥
log2(1/η)

log2(1/(1− p))
+ log2 log2

(
1

αε

)
+ 1, (2.18)

where ε ≤ ε0 ≤ 1/(2α), then U will be mapped to within ε distance of 1 with proba-

bility ≥ 1− η. As before, F can then be trivially expanded in the form of eq. (2.1) to

give the required function.

The number of pulses n required for the full refocussing function F is the same as

the number of uses of U, which is d2k. Thus we see that the number of pulses looks
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like

n = d2k ≤ d2
(

1
η

)2O(d4) (
log2

(
1
ε

)
− d2 − 1

)2 log2 d
,

where the multiplicative factor of d2 comes from the fact that k may need to be rounded

up to the nearest integer greater than the RHS of eq. (2.18). For fixed d, we see that

this is similar to eq. (2.7) from the one-qubit case. With increasing d, we see that the

dependence on ε increases only modestly (owing to the decrease in size of the shrink-

ing region), but the number of steps required to maintain the probability of success,

1− η, increases doubly-exponentially in the Hilbert-space dimension.

2.5 Final remarks and open questions

As described in Section 2.2.2, refocussing techniques are generally limited in that they

can only be applied to restricted sets of unitary operators. The procedures that we

developed in Sections 2.3 and 2.4 can also be used to refocus states, and have the

advantage that they can be applied to all unitary operators. Chapter 3 additionally

explores the relevance of these results to the Solovay-Kitaev Theorem.

One may ask whether it is possible to have sequences where η = 0. Here, the random-

ness is important to our analysis. Moreover, the function f contains fixed points and

cycles of various orders, and the random conjugations serve to break free of these.

Indeed, we conjecture that there are cycles of all orders. However, it may be possible

to avoid the random conjugations completely, as numerical simulations strongly sug-

gest these cycles form a zero-measure subset of SU (d), and that the only stable fixed

point of f is 1. This is also noted in [BG07], where it is observed that ‘a few iterations

[of f ] are sufficient to reach a good approximation to the identity’. We leave rigorous

proof of these conjectures as an interesting open problem.

In this chapter we have developed techniques for inverting a black-box unitary oper-

ator. A future research direction might be to understand what other functions of these

operators is it possible to effect in a similar way. For example, would it be possible

to effect an arbitrary power of a black-box unitary operator? Or perhaps a controlled

version of the operator?
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Chapter 3

Efficient Gate Approximation

3.1 The Solovay-Kitaev Theorem

Given a set of unitary operators, a gate set, one might wonder what operators can be

generated from products of those in the gate set. For example, the qubit gates X and

Z generate (up to phases) the Pauli group, {1, X, Y, Z}.

For any unitary operator U, if an arbitrarily close approximation to U can be gener-

ated by the gate set, then the set is called a universal gate set (see Section 4.5 of [NC10]).

An example of such a gate set is the set comprising the 1-qubit gates

H =
1√
2

1 1

1 −1

 , Rπ/4 =

1 0

0 eiπ/4

 ,

and the 2-qubit gate

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Naturally, one might ask how many of these gates are required to approximate any

given U, and whether this depends on the gate set that is being used. One of the

central results in quantum compiling—the Solovay-Kitaev theorem [NC10, KSV02]—

states that a universal quantum gate set that includes inverse gates can simulate any

other universal gate set to arbitrary precision ε, with at most O(log3.97(1/ε)) over-

head [NC10, DN05]. This is fundamental to the theory of quantum circuits and to

practical quantum computation, as it shows that any universal gate set can simulate

any other with low overhead.

In a circuit of size L we can think of ε as O(1/L), so changing from one universal gate

set to another would increase the number of gates to at most O(L log3.97(L)). How-
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ever, when inverse gates are not included, all known variants of the Solovay-Kitaev

theorem [DN05, KSV02] fail. The only previously known method of approximating

the inverse of a gate U was to wait until a member of the sequence U, U2, U3, . . . ap-

proximated U−1, which in general required overhead 1/εd2−1, i.e. 1/ε3 for qubits.

Thus, a circuit of size L would turn into poly(L) gates, which is a large enough over-

head to overwhelm the polynomial speedup from algorithms such as Grover’s.

More formally, the theorem is stated as follows:

Theorem 3.1.1 (Solovay-Kitaev Theorem). Let G ⊆ SU (2) be a quantum gate set such
that G ∪ G† is universal in SU (2), where G† := {V† : V ∈ G}. For any ε > 0 and
any U ∈ SU (2), there is an efficient classical algorithm that constructs a sequence of gates
VL · · ·V1V0 with Vi ∈ G ∪ G† and L = O(log3.97(1/ε)) such that ‖VL · · ·V1V0 −U‖ ≤ ε,
where ‖ · ‖ is the Hilbert-Schmidt norm.

For a proof of the theorem, we refer the reader to Appendix 3 of [NC10].

Note that the norm used in [NC10] is the trace norm, whereas we are using the

Hilbert-Schmidt norm. But these are equivalent up to an unimportant factor of
√

2.

Remark: G ∪ G† is universal⇔ G is universal, as any element V† ∈ G† can be approx-

imated to arbitrary accuracy by an integer power of V ∈ G, as described above. In

addition, the theorem can be scaled up from SU (2) to SU (d) for d ≥ 2 [DN05], but at

a cost that is exponential in d.

3.2 An ‘inverse-free’ Solovay-Kitaev Theorem

An application of our universal in-line inversion result is to extend the Solovay-Kitaev

theorem to the case when inverse gates are not included.

By using our refocussing result to efficiently approximate inverse gates, we obtain

a new inverse-free version of the theorem: Any universal quantum gate set that in-

cludes the Pauli operators (or Weyl operators for qudits) can simulate any other uni-

versal gate set to arbitrary precision ε, with at most O(log5.97(1/ε)) overhead.

Definition 3.2.1 (η-net [NC10]). A set S is an η-net for a set T if every element of T is
within a distance η of an element of S.

The following is the key lemma, using part of our refocussing result to show that

inverses can be approximated efficiently:
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Lemma 3.2.2. Let ∆ be a 1
2 -net for SU (2), and let P = {1, X, Y, Z} be the set of Pauli

operators (2-dimensional Weyl operators).

For any ε and any U ∈ SU (2), there is an efficient classical algorithm that constructs a
product of unitary operators gε(U) from the set ∆ ∪ P , of length O(log2(1/ε)), for which
‖gε(U)−U†‖ ≤ 1√

2
ε.

Proof. Since ∆ is a 1
2 -net for SU (2), there exists a W ∈ ∆ with ‖U† −W‖ ≤ 1

2 , and
hence ‖1−WU‖ ≤ 1

2 . Thus WU is in the shrinking region.

Let f : SU (2)→ SU (2) be the mapping defined in eq. (2.2). By eq. (2.5), ‖ f m(WU)−
1‖ ≤ 2−

1
2 (2

m+1). Setting m = log2 log2(1/ε2), we have ‖ f m(WU)− 1‖ ≤ 1√
2

ε.

Now, f m(WU) is a sequence of unitary operators of the form

R1WUR2WU · · · RL−1WURLWU,

where the Ri are Pauli operators. By removing the trailing U from this sequence to
form the sequence

gε(U) := R1WUR2WU · · ·WURLW,

we see that ‖gε(U)−U†‖ = O(ε) by unitary invariance of the norm.

f m(WU) has length 3× 4m = O(log2(1/ε)), hence gε(U) also has length O(log2(1/ε)).

Putting Theorem 3.1.1 and Lemma 3.2.2 together, we obtain the inverse-free Solovay-

Kitaev theorem:

Theorem 3.2.3 (Inverse-free Solovay-Kitaev). Let G ⊆ SU (2) be a universal quantum
gate set for SU (2) such that P ⊆ G, where P = {1, X, Y, Z} is the set of Pauli operators.

For any ε > 0 and given any U ∈ SU (2), there is an efficient classical algorithm that
constructs a sequence of gates VL · · ·V1V0 with Vi ∈ G and L = O(log5.97(1/ε)) such that
‖VL · · ·V1V0 −U‖ ≤ ε.

Proof. We wish to apply Lemma 3.2.2 to elements of G† := {V† : V ∈ G}.

As G is universal, we can generate a 1
2 -net, denoted ∆, from constant-length prod-

ucts of operators from G. One can see that constant-length products are sufficient as
follows:

Given a set of unitary operators U = {U1, ..., UN}, let us define

w(U ) := max
V∈SU (2)

min
U∈U
‖V −U‖,

v(L) := w({set of all products of operators from G of length L}).
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Clearly, v(L) ≤ v(L− 1). In addition, since 〈G〉 is dense in SU (2), limL→∞ v(L) = 0.
In other words: for all δ > 0 there exists an L such that v(L) < δ.

Now, since G contains the Pauli operators, Lemma 3.2.2 allows us to construct a
O(log2(1/ε))-length product gε(V) of operators from G such that ‖gε(V) − V†‖ ≤

1√
2

ε.

Theorem 3.1.1 lets us construct a product of gates ṼK · · · Ṽ1Ṽ0 with Ṽi ∈ G ∪ G† and
K = O(log3.97(1/ε)) such that ‖ṼK · · · Ṽ1Ṽ0 −U‖ ≤ ε/2. We construct a new product
of gates VL · · ·V1V0 with Vi ∈ G by replacing each Ṽi ∈ G† \ G with gε/(

√
2K)(Ṽ

†
i )

(where Ṽ†
i ∈ G).

Thus ‖VL · · ·V1V0 − ṼK · · · Ṽ1Ṽ0‖ ≤ ε/2, and hence ‖VL · · ·V1V0 −U‖ ≤ ε.

Since we have replaced at most K = O(log3.97(1/ε)) gates, we see that

L = K ·O(log2(
√

2K/ε)) = O(log5.97(1/ε)).

Remark: Theorem 3.2.3 is easily extended to SU (d) by using the d-dimensional gener-

alisation of Theorem 3.1.1 [DN05], replacing the Pauli operators with the d-dimensional

Weyl operators, and making use of the definition and bound from eq. (2.8) and eq.

(2.12) respectively.
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Part II

Quantum Distribution Testing
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Chapter 4

Setting the scene: classical probability
distribution testing

4.1 Introduction

The world is quickly moving towards a reality that is shaped by big data. In a

statistics-fuelled environment, one of the most important challenges faced is inferring

information about properties of large datasets as efficiently as possible. In particu-

lar, it would be desirable to determine properties of collected data without examining

the entire datasets, which is typically infeasible. This can be formalised as the task

of property testing: determining whether an object has a certain property, or is ‘far’

from having that property, ideally minimising the number of inspections of it. There

has been an explosive growth in recent years in this field [GGR98, Gol10, BBM12],

and particularly in the sub-field of distribution testing, in which one seeks to learn

information about a data set by drawing samples from an associated probability dis-

tribution.

A few simple questions that one might ask could be:

• Are two probability distributions independent? For example, is the probability

that a person likes movie B affected by whether or not they like movie A?

• Does a lottery machine really choose balls uniformly at random?

• Does the distribution of children’s heights in the UK match the known distribu-

tion of children’s heights in France?

• Are the distributions of the weights of adults the same, or different, for two

randomly chosen countries?

Many of these problems, and others, have been extensively studied in the classi-
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cal [BFR+10, VV11, CRS15, CR14, DKN15, GMV06, CDVV14, CFMdW10] literature,

and near-optimal bounds have often been placed on the number of queries required

to solve the respective problems.

We discuss these problems in more detail in Section 4.3.

4.2 Preliminaries & Notation

Let D be a discrete probability distribution over a finite set [N] := {0, 1, . . . , N − 1},
where D(i) ≥ 0 is the weight of the element i ∈ [N]. Furthermore, if S ⊆ [N],

then D(S) = ∑i∈S D(i) is the weight of the set S. If D(S) > 0, define DS to be the

conditional distribution, i.e. DS(i) := D(i)/D(S) if i ∈ S and DS(i) = 0 if i /∈ S.

The distance between two distributions D(1) and D(2) over [N] is defined by the L1-

norm: |D(1) − D(2)| = ∑i∈[N] |D(1)(i)− D(2)(i)|. We say that D(1) is ε-far from D(2) if

|D(1) − D(2)| ≥ ε.

Algorithms for classical distribution testing often make use of the following two types

of classical ‘oracle’.

Definition 4.2.1 (Classical Sampling Oracle [CRS15]). Given a probability distribution D
over [N], we define the classical sampling oracle SAMPD as follows: each time SAMPD is
queried, it returns a single i ∈ [N], where the probability that element i is returned is D(i).

Definition 4.2.2 (Classical Evaluation Oracle [CRS15]). Given a probability distribution
D over [N], we define the classical evaluation oracle EVALD as follows: EVALD returns
D(i) when queried with argument i ∈ [N].

The complexity of algorithms for classical distribution testing is usually described by

the total number of queries made to the SAMP oracle and queries to EVALD are ig-

nored, as access to the EVAL oracle implies that we already ‘know’ the distribution.

We typically present such complexities using big-O notation. Furthermore, the no-

tation Õ( f (N, ε)) denotes O( f (N, ε) logk f (N, ε)) for some k, i.e. logarithmic factors

are hidden. Generally, the algorithms work with bounded probability, i.e. they output

the correct answer with probability, say, at least 2/3. This can be boosted arbitrarily

close to 1 by repeating the test several times and taking a majority.

A Naı̈ve Approach

It is quick to show (using a Chernoff bound—eq. (1) in [CRS15]) that up to an addi-

tive error ε, the weights of all elements i ∈ [N] can be determined using just O(1/ε2)
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queries to the SAMPD oracle. However, for the problems we describe below, the ad-

ditive error is required to be ε/N, and thus the number of queries required to solve

these problems is naı̈vely O(N2/ε2).

Much work has been put into finding ‘sub-linear’ algorithms that can solve these

problems using fewer than O(N) queries, and we mention these in the discussion

below.

4.3 Examples

Independence Test: Predicting movie preferences.

Suppose we had a large enough amount of data about two movies, A and B, in order

to access the joint probability distribution D describing how many people watch these

movies on any given day. One would like to find out if watching movie A affects

whether or not a person will watch movie B. More generally, we ask: is D a product of

two independent distributions, or are viewings of movie A correlated with viewings

of movie B? That is, we must decide between:

• D is independent; i.e. D is a product of two distributions, D = D(A) × D(B); or

• D is ε-far from independent; i.e. it is ε-far from every product distribution.

If we assume that D(A) and D(B) are distributions over [N] and [M] respectively (with

M ≤ N), then naı̈ve solutions to this problem, such as the Kolmogorov-Smirnoff test

(see [BFF+01]), require more than NM queries. The authors of [BFF+01] develop an

algorithm that uses only Õ(N2/3M1/3 poly(ε−1)) queries.

Uniformity Test: Lottery machine. A gravity pick lottery machine works as follows

[CFGM16]: N balls, numbered 1, . . . , N, are dropped into a spinning machine, and

after a few moments a ball is released. One might wish to determine whether or not

such a machine is fair, i.e. whether or not a ball is released uniformly at random. We

must decide between the following two options:

• The lottery machine is fair and outputs i with probability 1/N;

• The lottery machine is ε-far from uniform.

Using the naı̈ve approach described in Section 4.2 this would require O(N2/ε2) queries.

However, a different algorithm is presented in [BFF+01] (Theorem 17) that solves
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this problem with Õ(
√

N/ε4) queries, which is essentially optimal (see Section 6.3

of [BHH11]).

Identity Test: Height distribution of the UK population. Suppose that we have

a detailed description of the distribution D∗ (i.e. access to EVALD∗) governing the

heights of children in France, and we suspect that the heights of children in the UK

follow the same distribution. If we call the latter distribution D, we need to decide

between

• D = D∗; and

• D is ε-far from D∗.

This can be solved naı̈vely using O(N2/ε2) queries to the SAMPD oracle to approxi-

mate the weight of each element i ∈ [N] to additive error ε/(2N), and N calls to the

EVALD∗ oracle. In [BFF+01], the authors give an algorithm to solve this problem using

Õ(
√

N poly(ε−1)) queries to SAMPD (and some queries to EVALD∗).

Equivalence Test: Weight distribution of two countries. Suppose that we choose

two countries (at random) and decide to test whether the distributions of the weights

of adults are equal. Let D(1) be the distribution of adults’ weights in the first country,

and D(2) be the distribution in the second. We must decide between

• D(1) = D(2); and

• D(1) is ε-far from D(2).

Once again this can be solved naı̈vely using O(N2/ε2) queries to SAMPD(1) and SAMPD(2)

by approximating both D(1) and D(2) as we did for D in the previous example. In

[BFR+10], the authors present an algorithm to solve this problem using Õ(N2/3ε−8/3)

queries to the oracles.

4.4 Conditional sampling

The classical conditional sampling oracle (COND) [ACK14, CRS15, CFGM16] grants ac-

cess to a distribution D such that one can draw samples not only from D, but also from

DS, the conditional distribution of D restricted to an arbitrary subset S of the domain.

Such oracle access reveals a separation between the classical query complexity of

identity testing (i.e. whether an unknown distribution D is the same as some known

distribution D∗), which takes a constant number of queries, and equivalence testing
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(i.e. whether two unknown distributions D1 and D2 are the same), which requires

Õ((log log N)/ε5) queries, where N is the size of the domain [ACK14, FJO+15].

Definition 4.4.1 (Classical Conditional Sampling Oracle [CRS15]). Given a probability
distribution D over [N] and a ‘query subset’ S ⊆ [N] such that D(S) > 0, we define the
classical conditional sampling oracle CONDD as follows: each time CONDD is queried
with query set S, it returns a single i ∈ [N], where the probability that element i is returned
is DS(i).

In other words, given such a set S, CONDD effects SAMPDS . We note here that CONDD

encompasses SAMPD, since a query to CONDD with S = [N] effects SAMPD.

In addition, we define the PCONDD ‘pairwise-COND’ oracle, described in [CRS15],

which is a simplification of the CONDD oracle, only accepting query subsets S of car-

dinality 2 or N.

4.4.1 Improved algorithms

In this section we consider the PCOND oracle, the simplest type of COND oracle. The

results we present were developed in [CRS15], and greatly improve those given in

Section 4.3.

Uniformity Test. Given a distribution D over [N], one must decide between

• D = A, where A is the uniform distribution, i.e. A(i) = 1/N; or

• |D−A| ≥ ε

There is an algorithm that decides between these two options using Õ(1/ε2) (and in

fact Ω(1/ε2)) PCONDD queries. To provide an understanding of the intuition behind

this algorithm, a simpler procedure requiring Õ(1/ε4) queries to the PCOND oracle is

presented in Section A.1.

Identity Test. Given a distribution D and a ‘known’ distribution D∗ (i.e. we have

access to EVALD∗) over [N], one must decide between

• D = D∗; or

• |D− D∗| ≥ ε

There is an algorithm that decides between these two options using Õ
[(

log N
ε

)4
]

PCONDD queries.
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Equivalence Test. Given two distributions D(1) and D(2) over [N], one must decide

between

• D(1) = D(2); or

• |D(1) − D(2)| ≥ ε

There is an algorithm that decides between these two options using Õ
[(

log2 N
ε2

)3]
PCONDD(1) and PCONDD(2) queries.

As can be seen from these results, even the PCOND oracle provides significant advan-

tages over the standard classical sampling oracle. Even more drastic improvements

on these complexities can be derived by adopting the full COND oracle, which can be

seen in [CRS15, FJO+15, ACK14].

4.4.2 Motivation for a conditional oracle

But does the COND oracle represent a natural model of access? Let us consider a few

practical examples, some of which are explored in [FJO+15, CRS15].

Bacterial growth. Controlled bacterial growth could be restricted in certain ways by

changing environmental factors or by introducing a range of chemicals. This would

only allow cells with particular characteristics to survive, thus conditioning the out-

put distribution of the experiment. The COND oracle perhaps is a first step into un-

derstanding scenarios like these in more detail.

Lottery machine. We return to the example given in Section 4.3, in which one must

decide if a lottery machine is fair. In this example, access to a COND oracle is equiv-

alent to being able to choose which balls are allowed into the spinner. The number

of queries required by the uniformity test algorithm given in Section 4.4.1 is indepen-

dent of N, i.e. independent of the size of the lottery machine. This, therefore, is a

practical method to efficiently test the fairness of lottery machines of any size.

Cloud-based computation. Cloud computing has become versatile and ubiquitous

resource in recent years, allowing huge amounts of computation to be performed

on dedicated and powerful servers, while the user works at a comparatively weak

computer. As an example, cloud computing is currently used to provide users with

cheap computers with the ability to play resource-heavy video games by off-loading

all of the intensive computations to another server.
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Suppose that a server has access to a set of data describing a probability distribution,

and is powerful enough to instantly execute associated COND and PCOND queries. A

user at a desktop computer could use this cloud-based scenario to ascertain properties

of the distribution. Moreover, several individual users could have concurrent access

to the data.
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Chapter 5

Distribution testing using quantum al-
gorithms

5.1 Introduction

Quantum computers are often described as being ‘infinitely’ powerful machines, able

to instantly compute the solution to any problem. While this is far from the truth,

they do exhibit advantages over classical computers in many scenarios. The field of

quantum property testing involves using quantum computers to solve the decision

problems described in Chapter 4, and is a new and exciting area of research [BHH11,

MdW13, Mon15].

In Chapter 4 we introduced the classical sampling oracle (SAMP) and the classical

conditional sampling oracle (COND) and discussed how they may be used to solve

various distribution-testing problems. In this chapter we will introduce natural quan-

tum versions of the SAMP and COND oracles. More specifically, we will introduce

the PQCOND oracle—a quantum analogue of PCOND oracle—and study its computa-

tional power.

Consider the example of the lottery machine, first introduced in Section 4.3. The dis-

tribution testing algorithm must decide between the following options:

• The lottery machine is fair and outputs i with probability 1/N;

• The lottery machine is ε-far from uniform.

As we noted in Section 4.3, the classical algorithms to decide this require

• Õ(N1/2/ε4) queries using the SAMP oracle;

• Õ(1/ε2) queries using the PCOND oracle. In fact, in [CRS15] it was shown that

Ω(1/ε2) queries to the PCOND oracle (and COND oracle) are required.
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Using the quantum versions of these oracles, however, we find that there are algo-

rithms that require

• O(N1/3/ε4/3) queries using the QSAMP oracle [BHH11];

• Õ(1/ε) queries using the PQCOND oracle (see Section 5.4).

In this chapter we will develop quantum algorithms using the PQCOND oracle that

are more efficient than their PCOND counterparts. We additionally show how these

algorithms can be applied to property testing of Boolean functions. In Chapter 6, us-

ing these procedures, we develop an algorithm for testing whether or not a quantum

state ρ is the fully mixed state.

5.2 Preliminaries & Notation

One might wonder how to define a quantum analogue of the classical sampling oracle

SAMP. SAMP works by returning a random sample from the distribution each time

it is accessed. What would this mean in a quantum setting? And can we define a

quantum oracle with which we can take advantage of superposition?

The quantum sampling oracle (QSAMP) was defined in [BHH11], and this natural

generalisation is derived in the following way: We first start by examining the classi-

cal sampling oracle in a different light. Suppose that we have a distribution D over

[N], and some specified integer T ∈ N. We assume that D can be represented by a

map OD : [T]→ [N], such that the weight D(i) of any element i ∈ [N] is proportional

to the number of elements in the pre-image of i, i.e. D(i) = |{t ∈ [T] : OD(t) = i}|/T.

In other words, OD labels the elements of [T] by i ∈ [N], and the D(i) are the frequen-

cies of these labels, and are thus all rational with denominator T. Then if t ∈ [T] is

chosen uniformly at random, OD(t) is a sample from the distribution D.

This notion of an oracle, which now requires an input t ∈ [T], can be elevated to a

quantum oracle in the usual way, resulting in the following definition:

Definition 5.2.1 (Quantum Sampling Oracle [BHH11]). Given a probability distribution
D over [N], let T ∈ N be some specified integer, and assume that D can be represented by a
mapping OD : [T]→ [N] such that for any i ∈ [N], D(i) = |{t ∈ [T] : OD(t) = i}|/T.

Then each query to the quantum sampling oracle QSAMPD applies the unitary operation
UD, described by its action on basis states:

UD |t〉 |β〉 = |t〉 |β + OD(t) mod N〉 .
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In particular,
UD |t〉 |0〉 = |t〉 |OD(t)〉 .

As an example, note that querying with a uniformly random t ∈ [T] in the first register will
result in i ∈ [N] in the second register with probability D(i).

In Chapter 4, we also defined the classical conditional sampling oracle, CONDD. We

are now ready to define our quantum analogue of this oracle, the quantum conditional

sampling oracle, QCOND, and the related oracle PQCOND.

Definition 5.2.2 (Quantum Conditional Sampling Oracle). Given a probability distribu-
tion D over [N], let T ∈ N be some specified integer, and assume that there exists a mapping
OD : P([N])× [T]→ [N], where P([N]) is the power set of [N], such that for any S ⊆ [N]

with D(S) > 0 and any i ∈ [N], DS(i) = |{t ∈ [T] : OD(S, t) = i}|/T.

Then each query to the quantum conditional sampling oracle QCONDD applies the unitary
operation UD, defined below.

UD acts on 3 registers:

• The first consists of N qubits, whose computational basis states label the 2N possible
query sets S;

• The second consists of log T qubits that describe an element of [T]; and

• The third consists of log N qubits to store the output, an element of [N].

The action of the oracle on basis states is

UD |S〉 |t〉 |β〉 = |S〉 |t〉 |β + OD(S, t) mod N〉 .

In particular,
UD |S〉 |t〉 |0〉 = |S〉 |t〉 |OD(S, t)〉 .

An illustrative example of how the QCONDD oracle works is given in Figure 5.1.

Remark: Note that querying QCONDD with query set S = [N] is equivalent to a query

to QSAMPD.

Remark: In the above definition we have made two key assumptions: the first is that

the D(i) are rational values; and the second is that OD exists, which requires that the

values DS(i) are consistent for different subsets S ⊆ N. These are strong promises on

D and perhaps rather restrictive. However, by making T sufficiently large (requiring

only log T qubits), we can approximate any probability distribution closely enough

that the algorithms discussed in the remainder of this part of the thesis can still be

applied (since the value of T does not affect the number of queries).
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Figure 5.1: A diagram illustrating the OD function described in the definition of the
QCOND oracle, Definition 5.2.2, in the case where N = 3, T = 12 and D(0) = 1/4,
D(1) = 1/2, D(2) = 1/4. In the topmost diagram, choosing t uniformly at random
from [T] and calculating OD([N], t) will give an element i ∈ [N] with probability D(i).
For the lower two diagrams, calculating OD(S, t) (where S = {0, 1} and S = {0, 2}
respectively) will give an element i ∈ [N] with probability DS(i).
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Definition 5.2.3 (Pairwise Quantum Conditional Sampling Oracle). The PQCONDD

oracle is equivalent to the QCONDD oracle, with the added requirement that the query set S
must satisfy |S| = 2 or N, i.e. the distribution can only be conditioned over pairs of elements
or the whole set.

5.3 Efficient comparison of conditional probabilities

In this section we first prove a lemma to improve the dependency on failure probabil-

ity for a general probabilistic algorithm. We subsequently use this result to prove our

main technical tool, the QCOMPARE algorithm, which compares conditional proba-

bilities of a distribution, and is crucial to our improved property tests.

5.3.1 Improving dependence on success probability

The following lemma (described in [Mon15]) provides a general method for improv-

ing the dependence between the number of queries and the failure probability of the

algorithm.

Lemma 5.3.1. Suppose an algorithm (classical or quantum) ALGA(ξ, ε, δ) (ε > 0, δ ∈
(0, 1]) outputs an (additive) approximation to f (ξ) ∈ R. More formally, suppose it outputs
f̃ (ξ) such that P[| f̃ (ξ)− f (ξ)| ≤ ε] ≥ 1− δ using M(ξ, ε, δ) queries to a classical/quantum
oracle, for some function M.

Then there exists an algorithm ALGB(ξ, ε, δ) that makes Θ(M(ξ, ε, 1
10) log(1/δ)) queries to

the same oracle and outputs f̃ (ξ) such that P[| f̃ (ξ)− f (ξ)| ≤ ε] ≥ 1− δ, i.e. the dependence
of the number of queries on the success probability can be taken to be log(1/δ).

Proof. We first state the procedure for ALGB(ξ, ε, δ) (ε > 0, δ ∈ (0, 1]).

1. Run ALGA(ξ, ε, 1
10) m times, where m = Θ(log(1/δ)) (and such that m is even).

Denote the outputs as f̃1, . . . f̃m, labelled such that f̃1 ≤ · · · ≤ f̃m.

2. Output f̃m/2.

Consider ALGA(ξ, ε, 1
10), and let E1 be the event that | f̃ (ξ) − f (ξ)| ≤ ε, which is

equivalent to the event that f̃ (ξ) ∈ [ f (ξ)− ε, f (ξ) + ε]. Then we have that P[E1] ≥ 9
10 .

Let Y be a random variable that takes the value 1 if E1 occurs during a run of
ALGA(ξ, ε, 1

10), and 0 otherwise. Let Y1, . . . , Ym ∼ Y be i.i.d. random variables. Let E2

be the event that at least 8
10 m of the Yi output 1 (i.e. the event that E1 occurs at least

8
10 m times).
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Using a Chernoff bound (here we use eq. (1) in [CRS15]), it is easy to see that P[E2] ≥
1− exp(− 1

50 m).

Setting m to be a multiple of 2 such that m ≥ 50 log(1/δ) then gives P[E2] ≥ 1− δ.

Thus, we see that, with probability at least 1− δ, Step 1 results in f̃1 ≤ · · · ≤ f̃m such
that | f̃i − f (ξ)| ≤ ε for at least 8

10 m values of i ∈ {1, . . . , m}. Henceforth we assume
that E2 occurs. Now consider f̃m/2. Suppose f̃m/2 /∈ [ f (ξ)− ε, f (ξ) + ε]. Then one of
the two following statements must hold:

• f̃m/2 < f (ξ) − ε. Since f̃1 ≤ · · · ≤ f̃m/2, we have that f̃1, . . . , f̃m/2 /∈ [ f (ξ) −
ε, f (ξ) + ε], which contradicts the statement of E2;

• f̃m/2 > f (ξ) + ε. Since f̃m/2 ≤ · · · ≤ f̃m, we have that f̃m/2, . . . , f̃m /∈ [ f (ξ)−
ε, f (ξ) + ε], which contradicts the statement of E2.

Hence we conclude that f̃m/2 ∈ [ f (ξ)− ε, f (ξ) + ε].

Remark: It is worth noting that the method used in the above proof could be applied

to algorithms with multiplicative error, amongst others.

We additionally make use of Theorem 5 of [BHH11], which we recast below in our

notation.

Theorem 5.3.2 (Theorem 5 of [BHH11]). There exists a quantum algorithm ESTPROB(D, S, M)

that has QSAMP access to a distribution D over [N] and takes as input a set S ⊂ [N] and
an integer M. The algorithm makes exactly M queries to the QSAMPD oracle and outputs
D̃(S), an approximation to D(S), such that P[|D̃(S)− D(S)| ≤ ε] ≥ 1− δ for all ε > 0
and δ ∈ (0, 1/2] satisfying

M ≥ c
δ

max

(√
D(S)
ε

,
1√
ε

)
,

where c = O(1) is some constant.

Applying Lemma 5.3.1 to Theorem 5.3.2 gives an exponential improvement, from

1/δ to log(1/δ), in the dependence on the failure probability. This is summarised

in the theorem below. Note that this changes the requirement that δ ∈ (0, 1/2] in

Theorem 5.3.2 to δ ∈ (0, 1] in Theorem 5.3.3.

Theorem 5.3.3. There exists a quantum algorithm ADDESTPROB(D, S, M) that has QSAMP

access to a distribution D over [N] and takes as input a set S ⊂ [N] and an integer M. The
algorithm makes exactly M queries to the QSAMPD oracle and outputs D̃(S), an approxi-
mation to D(S), such that P[|D̃(S) − D(S)| ≤ ε] ≥ 1− δ for all ε > 0 and δ ∈ (0, 1]
satisfying

M ≥ c log(1/δ)max

(√
D(S)
ε

,
1√
ε

)
,
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where c = O(1) is some constant.

A multiplicative version of Theorem 5.3.3 follows straightforwardly:

Theorem 5.3.4. There exists a quantum algorithm MULESTPROB(D, S, M) that has QSAMP

access to a distribution D over [N] and takes as input a set S ⊂ [N] and an integer M. The al-
gorithm makes exactly M queries to the QSAMPD oracle and outputs D̃(S), an approximation
to D(S), such that P[D̃(S) ∈ [1− ε, 1 + ε]D(S)] ≥ 1− δ for all ε, δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)

ε
√

D(S)
,

where c = O(1) is some constant.

Access to the QCONDD oracle effectively gives us access to the oracle QSAMPDS for

any S ⊆ [N], and this allows us to produce stronger versions of Theorems 5.3.3

and 5.3.4:

Theorem 5.3.5. There exists a quantum algorithm ADDESTPROBQCOND(D, S, R, M) that
has QCOND access to a distribution D over [N] and takes as input a set S ⊆ [N] with D(S) >
0, a subset R ⊂ S and an integer M. The algorithm makes exactly M queries to the QCONDD

oracle and outputs D̃S(R), an approximation to DS(R), such that P[|D̃S(R) − DS(R)| ≤
ε] ≥ 1− δ for all ε > 0 and δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)max

(√
DS(R)

ε
,

1√
ε

)
,

where c = O(1) is some constant.

Theorem 5.3.6. There exists a quantum algorithm MULESTPROBQCOND(D, S, R, M) that
has QCOND access to a distribution D over [N] and takes as input a set S ⊆ [N] with
D(S) > 0, a subset R ⊂ S and an integer M. The algorithm makes exactly M queries to
the QCONDD oracle and outputs D̃S(R), an approximation to DS(R), such that P[D̃S(R) ∈
[1− ε, 1 + ε]DS(R)] ≥ 1− δ for all ε, δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)

ε
√

DS(R)
,

where c = O(1) is some constant.

5.3.2 The QCOMPARE algorithm

An important routine used in many classical distribution testing protocols (see [CRS15])

is the COMPARE function, which outputs an estimate of the ratio rX,Y := D(Y)/D(X)

of the weights of two disjoint subsets X, Y ⊂ [N] over D. As stated in Section 3.1
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of [CRS15], if X and Y are disjoint, D(X ∪Y) > 0, and 1/K ≤ rX,Y ≤ K for some inte-

ger K ≥ 1, the routine outputs r̃X,Y ∈ [1− η, 1 + η]rX,Y with probability at least 1− δ

using only O(K log(1/δ)/η2) CONDD queries. Surprisingly, the number of queries is

independent of N, the size of the domain of the distribution.

Here we introduce a procedure called QCOMPARE that makes use of the QCONDD or-

acle and subsequent quantum operations to perform the same function as COMPARE,

whilst using only O(
√

K log(1/δ)/η) queries. As the COMPARE algorithm cannot be

trivially adapted to take advantage of the QCOND oracle, we devise a new algorithm

for the QCOMPARE procedure, constructed from calls to ADDESTPROBQCOND and

MULESTPROBQCOND. The proof of this algorithm does, however, make use of some

of the ideas involved in the proof for the COMPARE procedure.

Algorithm 1 QCOMPARE(D, X, Y, η, K, δ)

Input: QCOND access to a probability distribution D over [N], disjoint subsets X, Y ⊂
[N] such that D(X ∪ Y) > 0, ‘range’ parameter K ≥ 1, ‘distance’ parameter η ∈
(0, 3

8K ), and ‘failure probability’ δ ∈ (0, 1].

1. Set M = O
(√

K log(1/δ)
η

)
.

2. Set w̃+(X) = ADDESTPROBQCOND(D, X ∪Y, X, M).
3. Set w̃+(Y) = ADDESTPROBQCOND(D, X ∪Y, Y, M).
4. Set w̃×(X) = MULESTPROBQCOND(D, X ∪Y, X, M).
5. Set w̃×(Y) = MULESTPROBQCOND(D, X ∪Y, Y, M).
6. Check that w̃+(X) ≤ 3K

3K+1 −
η
3 . If the check fails, return Low and exit.

7. Check that w̃+(Y) ≤ 3K
3K+1 −

η
3 . If the check fails, return High and exit.

8. Return r̃X,Y = w̃×(Y)
w̃×(X)

.
Output: One of the following: a value r̃X,Y > 0, the string High or the string Low.

Theorem 5.3.7. Given the input as described, QCOMPARE (Algorithm 1) outputs Low, High,
or a value r̃X,Y > 0, and satisfies the following:

1. If 1/K ≤ rX,Y ≤ K, then with probability at least 1− δ the procedure outputs a value
r̃X,Y ∈ [1− η, 1 + η]rX,Y;

2. If rX,Y > K then with probability at least 1− δ the procedure outputs either High or a
value r̃X,Y ∈ [1− η, 1 + η]rX,Y;

3. If rX,Y < 1/K then with probability at least 1− δ the procedure outputs either Low or
a value r̃X,Y ∈ [1− η, 1 + η]rX,Y.

The procedure performs O
(√

K log(1/δ)
η

)
QCONDD queries on the set X ∪ Y via use of AD-

DESTPROBQCOND and MULESTPROBQCOND.

Proof. We prove this case-by-case. As in the proof of the COMPARE procedure [CRS15],
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we introduce the shorthand w(X) := DX∪Y(X) = D(X)/D(X∪Y), w(Y) := DX∪Y(Y) =
D(Y)/D(X ∪Y) and note that rX,Y = w(Y)/w(X). In addition, since w(X) + w(Y) =
1, it is straightforward to show the following inequalities for a constant T ≥ 1:

rX,Y ≥
1
T

=⇒ w(X) ≤ T
T + 1

, w(Y) ≥ 1
T + 1

rX,Y ≤
1
T

=⇒ w(X) ≥ T
T + 1

, w(Y) ≤ 1
T + 1

rX,Y ≥ T =⇒ w(X) ≤ 1
T + 1

, w(Y) ≥ T
T + 1

rX,Y ≤ T =⇒ w(X) ≥ 1
T + 1

, w(Y) ≤ T
T + 1

(5.1)

The strict versions of these inequalities also hold true.

1. 1/K ≤ rX,Y ≤K

In this case we wish our algorithm to output r̃X,Y ∈ [1− η, 1 + η]rX,Y.

From eq. (5.1), we immediately have that

1
K + 1

≤ w(X), w(Y) ≤ K
K + 1

. (5.2)

Steps 2 and 3 use ADDESTPROBQCOND to estimate w(X) and w(Y) to within
additive error η/3 with probability at least 1− δ/4. As stated in Theorem 5.3.5,
this requires

O

(
max

(√
w(X)

η
,

1
√

η

)
log(1/δ)

)
= O

(
log(1/δ)

η

)
queries to QCONDD, where the equality is due to the fact that w(X) ≤ 1, and
thus M (defined in Algorithm 1) queries suffice.

Step 4 uses MULESTPROBQCOND to estimate w(X) to within multiplicative er-
ror η/3 with probability at least 1− δ/4. From Theorem 5.3.6, we clearly require

O

(
log(1/δ)

η
√

w(X)

)
= O

(√
K log(1/δ)

η

)
queries to QCONDD in order to achieve these, where the equality is due to eq.
(5.2), and thus M queries suffice. Step 5 requires the same number of queries.

With a combined probability of at least 1− δ, Steps 2–5 all pass, and produce the
following values:

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

w̃×(X) ∈ [1− η/3, 1 + η/3]w(X),

w̃×(Y) ∈ [1− η/3, 1 + η/3]w(Y).
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From eq. (5.2), we see that

w̃+(X), w̃+(Y) ≤
K

K + 1
+

η

3
<

3K
3K + 1

− η

3
,

where the final inequality is due to the algorithm’s requirement that η
3 < 1

8K .

Thus, the checks in Steps 6 and 7 pass, and Step 8 gives us

r̃X,Y ∈ [1− η, 1 + η]rX,Y.

2. K < rX,Y

This is split into two sub-cases.

(a) 3K < rX,Y

In this case we wish our algorithm to output High.

From eq. (5.1) we have that

w(X) <
1

3K + 1
, w(Y) >

3K
3K + 1

. (5.3)

As in Case 1, Steps 2 and 3 allow us to gain

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

with combined probability at least 1− δ/2. (We henceforth assume that we
have gained such values.)

Using eq. (5.3) it is easy to show that w̃+(X) < 3K
3K+1 −

η
3 and that w̃+(Y) >

3K
3K+1 −

η
3 . Hence the check in Step 6 passes, but the check in Step 7 fails,

and the algorithm outputs High and exits.

(b) K < rX,Y ≤ 3K

In this case we wish our algorithm to either output High or output r̃X,Y ∈ [1−
η, 1 + η]rX,Y.

From eq. (5.1), we have that

1
3K + 1

≤ w(X) <
1

K + 1
,
(

1
3K + 1

<

)
K

1 + K
< w(Y) ≤ 3K

3K + 1
. (5.4)

Thus, with O(
√

K log(1/δ)/η) queries, as in Case 1, we gain

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

w̃×(X) ∈ [1− η/3, 1 + η/3]w(X),

w̃×(Y) ∈ [1− η/3, 1 + η/3]w(Y),
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with combined probability at least 1− δ. (We henceforth assume that we
have gained such values.)

Using eq. (5.4), we see that w̃+(X) < 3K
3K+1 −

η
3 , and thus Step 6 will pass.

Assuming the check in Step 7 passes, Step 8 will output r̃X,Y ∈ [1− η, 1 +

η]rX,Y.

However, given the upper bound for w(Y) in eq. (5.4), it is possible to have
w̃+(Y) > 3K

3K+1 −
η
3 , causing the check in Step 7 to fail and the algorithm to

output High.

3. rX,Y < 1/K

This is split into two sub-cases.

(a) rX,Y < 1/(3K)

This is equivalent to the condition that 3K < rY,X, and thus follows the
same argument as Case 2a, with X and Y interchanged and an output of
Low instead of High.

(b) 1/(3K) ≤ rX,Y < 1/K

This is equivalent to the condition that K < rY,X ≤ 3K, and thus follows
the same argument as Case 2b, with X and Y interchanged and an output
of Low instead of High.

5.4 Property testing of probability distributions

We now apply our results to obtain new algorithms for a number of property testing

problems.

Corollary 5.4.1. LetA(N) be the uniform distribution on [N] (i.e. A(N)(i) = 1/N, i ∈ [N]).
Given PQCOND access to a probability distribution D over [N], there exists an algorithm that
uses Õ(1/ε) PQCONDD queries and decides with probability at least 2/3 whether

• |D−A(N)| = 0 (i.e. D = A(N)) (the algorithm outputs Equal), or

• |D−A(N)| ≥ ε (the algorithm outputs Far),

provided that it is guaranteed that one of these is true.

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE

in Algorithm 4 of [CRS15]. For this method, calls to QCOMPARE only require condi-
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tioning over pairs of elements, and hence the PQCONDD oracle may be used instead
of QCONDD.

Remark: The corresponding classical algorithm (Algorithm 4 in [CRS15]) uses Õ(1/ε2)

PCONDD queries. The authors also show (Section 4.2 of [CRS15]) that any classical

algorithm making CONDD queries must use Ω(1/ε2) queries to solve this problem

with bounded probability. Thus the above quantum algorithm is quadratically more

efficient than any classical COND algorithm.

To provide an understanding of the intuition behind Corollary 5.4.1, a simpler algo-

rithm requiring Õ(1/ε3) queries to the PQCOND oracle is presented in Section A.1.

Corollary 5.4.2. Given the full specification of a probability distribution D∗ (i.e. a known
distribution) and PQCOND access to a probability distribution D, both over [N], there exists

an algorithm that uses Õ
(

log3 N
ε3

)
PQCONDD queries and decides with probability at least

2/3 whether

• |D− D∗| = 0 (i.e. D = D∗), or

• |D− D∗| ≥ ε,

provided that it is guaranteed that one of these is true.

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE

in Algorithm 5 of [CRS15].

Remark: The corresponding classical algorithm (Algorithm 5 in [CRS15]) uses Õ
(

log4 N
ε4

)
PCONDD queries.

Corollary 5.4.3. Given PQCOND access to probability distributions D(1) and D(2) over [N],
there exists an algorithm that decides, with probability at least 2/3, whether

• |D(1) − D(2)| = 0 (i.e. D(1) = D(2)), or

• |D(1) − D(2)| ≥ ε,

provided that it is guaranteed that one of these is true. The algorithm uses Õ
(

log4 N
ε14

)
PQCONDD(1)

and PQCONDD(2) queries.

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE

in Algorithm 9 of [CRS15].

Remark: The corresponding classical algorithm (Algorithm 9 in [CRS15]) uses Õ
(

log6 N
ε21

)
PCONDD(1) and PCONDD(2) queries.
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Corollary 5.4.4. Given PQCOND access to a probability distribution D over [N], there exists
an algorithm that uses Õ(1/ε13) queries and outputs a value d̂ such that |d̂− |D−A(N)|| =
O(ε).

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE

in Algorithm 11 of [CRS15]. In addition, we trivially replace all queries to the SAMPD

oracle with queries to PQCONDD with query set [N].

Remark: The corresponding classical algorithm (Algorithm 11 in [CRS15]) uses Õ(1/ε20)

queries.

5.5 Property testing of Boolean functions

The results in Section 5.4 can be applied to test properties of Boolean functions. One

challenge in the field of cryptography is determining whether or not a given boolean

function is ‘balanced’. We present an algorithm to solve this problem with a constant

number of PQCOND queries.

Consider a function f : {0, 1}n → {0, 1}m, for n, m ∈ N with n ≥ m. If m = 1, we

might consider the following problem:

Problem 5.5.1 (Constant-balanced problem). Given f : {0, 1}n → {0, 1}, decide whether

• f is a balanced function, i.e. |{x ∈ {0, 1}n : f (x) = 0}| /2n = |{x ∈ {0, 1}n : f (x)
= 1}| /2n = 1

2 , or

• f is a constant function, i.e. f (x) = 0 ∀x ∈ {0, 1}n or f (x) = 1 ∀x ∈ {0, 1}n,

provided that it is guaranteed that f satisfies one of these conditions.

With standard quantum oracle access to f , this problem can be solved exactly with

one query, through use of the Deutsch-Jozsa algorithm [CEMM98, DJ92]. Consider

the following extension of this problem:

Problem 5.5.2. Given f : {0, 1}n → {0, 1}, write Fi := |{x ∈ {0, 1}n : f (x) = i}| /2n.
Decide whether

• f is a balanced function, i.e. F0 = F1 = 1
2 , or

• f is ε-far from balanced, i.e.
∣∣∣F0 − 1

2

∣∣∣+ ∣∣∣F1 − 1
2

∣∣∣ = 2
∣∣∣F0 − 1

2

∣∣∣ ≥ ε,

provided that it is guaranteed that f satisfies one of these conditions.

This problem can be solved classically with bounded probability by querying f O(1/ε2)

times to estimate F0 to error ε/3, described as the ‘naı̈ve approach’ in Section 4.2.
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Now we consider an even more general problem:

Problem 5.5.3. Given f : {0, 1}n → {0, 1}m, write Fi := |{x ∈ {0, 1}n : f (x) = i}| /2n.
Decide whether

• f is a balanced function, i.e. Fi =
1

2m ∀i ∈ {0, 1}m, or

• f is ε-far from balanced, i.e. ∑i∈{0,1}m

∣∣∣Fi − 1
2m

∣∣∣ ≥ ε,

provided that it is guaranteed that f satisfies one of these conditions.

By allowing PQCOND access to f , this can be solved in Õ(1/ε) queries. In what sense

do we allow PQCOND access to f ? We relate f to a probability distribution by set-

ting N = 2m, D(i) = Fi (i.e. D is the probability distribution formed from the image

of f ), and using the definition of DS(i) given at the start of Section 5.2. The prob-

lem is now a question of uniformity testing, and is solved by an application of the

algorithm presented in Corollary 5.4.1. Using the standard quantum oracle QSAMP,

this problem requires Ω(2m/3) queries (a lower bound for uniformity testing given

in [CFMdW09, BHH11]).

The problem does not naturally lend itself to the classical COND model, as our solu-

tion makes use of the mapping OD (see Definition 5.2.1). Using the standard classical

sampling oracle SAMP, this problem requires Ω(2m/2) queries [BFF+01].
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Chapter 6

Mixedness Testing

6.1 Introduction

The problem of deciding if a quantum state ρ of dimension n is maximally-mixed or ε-

far from it is a natural question within the framework of Quantum Spectrum Testing.

In the standard model, where one measures a number of copies of ρ, it is found that

Θ(n/ε2) measurements are needed [OW15]. It is of interest to study whether the

PQCOND model, a more powerful model, can improve the complexity of solving this

problem, without trivialising it.

Formally, the Mixedness problem is stated as follows: Given access to copies of a

quantum state ρ of dimension n and a constant ε > 0, it is promised that one of the

following holds:

• ‖ρ− 1/n‖1 = 0, i.e. ρ is the maximally-mixed state; or

• ‖ρ− 1/n‖1 ≥ ε, i.e. ρ is ε-far from the maximally-mixed state,

where ‖ · ‖1 is the trace norm1. Decide which is the case.

In this chapter we prove the following theorem about the complexity of the Mixedness

problem:

Theorem 6.1.1. Given an n-dimensional quantum state ρ ∈ Cn × Cn and a basis B =

{|bi〉}i∈[n] where n is even, let D(ρ,B)
[n] be the probability distribution over [n] defined by

D(ρ,B)
[n] (i) := Tr(ρ |bi〉 〈bi| ) = 〈bi| ρ |bi〉 .

For any ε > 0, there exists an algorithm that solves the Mixedness problem for ρ with proba-
bility at least 2/3 using Õ(n/ε) PQCOND queries to D(ρ,B)

[n] (where each query may involve
a different B). The algorithm outputs MaximallyMixed if ρ is the maximally-mixed state, and
NotMaximallyMixed otherwise.

1For an (n× n) matrix A, ‖A‖1 = Tr
√

AA† = ∑i∈[n] ai, where the ai are the singular values of A.
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We additionally prove and make use of the following theorem and lemmas, which

may be of independent interest.

Theorem 6.1.2. Given an n-dimensional quantum state ρ ∈ Cn ×Cn satisfying

‖ρ− 1/n‖ ≥ ε

for some ε > 0 and where n is even, we choose a basis B = {|bi〉}i∈[n] uniformly at random
(i.e. if {

∣∣b̃i
〉
}i∈[n] is a fixed basis, then we choose W ∈ U (n) uniformly at random according

to the Haar measure, and set |bi〉 = W
∣∣b̃i
〉
∀i).

Define
δ(B) :=

∣∣∣D(ρ,B)
[n] −A

(n)
∣∣∣ , (6.1)

where A(n) is the uniform distribution over [n].

Then
P

[
δ(B) ≥ min(1, ε)

8
√

n

]
≥ 1

8
√

n
.

Lemma 6.1.3. Define

M(d) := max
σ∈Sym([n])

∣∣∣dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)

∣∣∣ ,

where n is even, Sym([n]) is the symmetric group on [n], and d = (d0, d1, . . . , dn−1) ∈ Rn

for n ≥ 2 and satisfies

∑
i∈[n]

di = 0, ∑
i∈[n]
|di| = η.

Then M(d) ≥ 1
2 η.

Lemma 6.1.4. Let

Tn := {(v0, . . . , vn−1) : vi ∈ [0, 1], ∑i∈[n] vi = 1}

be the probability simplex in n dimensions with associated probability measure

dV := (n− 1)! δ

1− ∑
i∈[n]

vi

 dv0 · · · dvn−1.

Then the quantity

En := E(|v0 − v1 + v2 − · · · − vn−1|) (6.2)

=
∫

Tn
|v0 − v1 + v2 − · · · − vn−1| dV

has the lower bound
En ≥

1
2
√

n
,

and for large n,

En ∼
√

2
π

1√
n

.
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Algorithm 2 MAXIMALLYMIXEDSTATETEST(ρ)

Input: PQCOND access to a probability distribution D(ρ,B)
[n] over [n] for any B, as de-

scribed in Theorem 6.1.1, and parameter ε. Set l = 128 log n.
1. Choose k = 32

√
n bases B1, . . .Bk uniformly at random.

2. For each j = 1, . . . , k, run the algorithm given in Corollary 5.4.1 on the distribu-

tion D
(ρ,Bj)

[n] l times with distance parameter min(1,ε)
8
√

n , returning uj = 1 if at least
1
2 l of the runs return Far, and uj = 0 otherwise.

3. If uj = 0 ∀j, output MaximallyMixed, otherwise output NotMaximallyMixed.
Output: Either the string MaximallyMixed or the string NotMaximallyMixed.

A sub-linear algorithm

From numerical calculations, it is clear that Õ(
√

n/ε) queries (rather than Õ(n/ε)

queries, as stated in Theorem 6.1.1) will be sufficient to solve the Mixedness prob-

lem. In Appendix A.2 we give a proof of this result, barring a small conjecture that is

currently open.

6.2 Proof of Theorem 6.1.1

The full algorithm is set out in Algorithm 2.

Firstly, we note that in Step 2, each run of the algorithm given in Corollary 5.4.1

requires Õ(
√

n/ε) PQCOND queries if ε ≤ 1, and hence in total Algorithm 2 re-

quires

Õ
(

kl
√

n
ε

)
= Õ

(n
ε

)
PQCOND queries, as claimed.

Now, letA(n) be the uniform distribution over [n], and introduce δ(B) :=
∣∣∣D(ρ,B)

[n] −A
(n)
∣∣∣,

as in eq. (6.1). Let k = 32
√

n and l = 128 log n as specified in Algorithm 2. We analyse

each case of the algorithm separately.

The case when ‖ρ− 1/n‖1 = 0

It is easy to see that δ(B) = 0 for any basis B, and hence that each run of Corollary 5.4.1

in Step 2 will output Equal with probability at least 2
3 . By using a Chernoff bound (eq.

(1) in [CRS15]), it follows that for each j, P[uj = 1] ≤ e−l/18. By the union bound2, we

2For a countable set of events A1, A2, . . . , we have that P [
⋃

i Ai] ≤ ∑i P[Ai].
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have that P
[
at least one of the uj is 1

]
≤ ke−l/18 ≤ 1

3 , and hence the algorithm will

output MaximallyMixed in Step 3 with probability at least 2
3 .

The case when ‖ρ− 1/n‖1 ≥ ε

From Theorem 6.1.2, we know that if the basis B is chosen uniformly at random,

P

[
δ(B) ≥ min(1, ε)

8
√

n

]
≥ 1

8
√

n
.

Suppose we choose k different bases B1, . . . ,Bk uniformly at random. We call B ‘good’

if δ(B) ≥ min(1,ε)
8
√

n . Let K(k) represent the event that at least one of B1, . . . ,Bk is ‘good’.

Then

P[K(k)] ≥ 1−
(

1− 1
8
√

n

)k
≥ 1− 1

e4 ≥
49
50

.

Suppose now that Bk∗ is ‘good’. Each time the algorithm given in Corollary 5.4.1 is

performed on D(ρ,Bk∗ )
[n] in Step 2, it will output Far with probability at least 2

3 . Using a

Chernoff bound (eq. (1) in [CRS15]), we see that with probability at least 1− e−l/18 >
99
100 we have uk∗ = 1, and the algorithm outputs NotMaximallyMixed in Step 3.

Combining these two events, we see that the probability that Algorithm 2 outputs

NotMaximallyMixed in Step 3 is at least 49
50 ·

99
100 > 2

3 .

Remark: We may consider what the complexity would be if we allowed access only

to the QSAMP oracle, rather than the PQCOND oracle. In this case, instead of Corol-

lary 5.4.1, Step 2 would make use of the essentially optimal uniformity testing algo-

rithm in [BHH11], the complexity of which is given in Table 1. This would result in an

algorithm to solve the Mixedness problem with a total complexity of Õ(n3/2/ε4/3).

6.3 Proof of Theorem 6.1.2

First, note that

δ(B) =
∣∣∣D(ρ,B)

[n] −A
(n)
∣∣∣ = ∑

i∈[n]
| 〈bi|∆ |bi〉 |.

Now let B̃ =
{∣∣b̃i

〉}
i∈[n] be the eigenbasis of ∆, and let di :=

〈
b̃i
∣∣∆
∣∣b̃i
〉
, i ∈ [n] be the

eigenvalues. Thus, ∆ = ∑i∈[n] di
∣∣ b̃i
〉 〈

b̃i
∣∣ . Note that Tr ∆ = ∑i∈[n] di = 0, and also

η := ‖ρ− 1/n‖1 = ‖∆‖1 = ∑i∈[n] |di| ≥ ε.
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Now suppose we choose a basis B = {|bi〉}i∈[n] uniformly at random, i.e. we choose

W ∈ U (n) uniformly at random according to the Haar measure, and set |bi〉 = W
∣∣b̃i
〉
.

Then

δ(B) = ∑
i∈[n]
| 〈bi|∆ |bi〉 | = ∑

i∈[n]

∣∣∣∣∣∣ ∑
j∈[n]
|Wji|2dj

∣∣∣∣∣∣ ,

where Wji :=
〈
b̃j
∣∣W ∣∣b̃i

〉
.

The triangle inequality gives

δ(B) ≥
∣∣∣∣∣ ∑

j∈[n]

(
∑

i∈[n]
|Wji|2

)
dj

∣∣∣∣∣ =
∣∣∣∣∣ ∑

j∈[n]
dj

∣∣∣∣∣ = 0,

δ(B) ≤ ∑
j∈[n]

(
∑

i∈[n]
|Wji|2

)
|dj| = η.

(6.3)

Let v(i)j = |Wji|2, introduce the vector V(i) = (v(i)0 , . . . , v(i)n−1), and write d = (d0, . . . , dn−1).

Then

δ(B) = ∑
i∈[n]
|V(i) · d|.

We now make use of Sykora’s theorem [Sỳk74, DDJB14], which states that if W is

chosen uniformly at random according to the Haar measure on U (n), then the vector

V(i), for any i, is uniformly distributed over the probability simplex

Tn = {(v0, . . . , vn−1) : vi ∈ [0, 1], ∑i∈[n] vi = 1}.

Since all of the V(i)’s have the same distribution, we see from eq. (1.2) that

E
(

δ(B)
)
= nE(|V · d|), (6.4)

where V is a generic V(i).

The following lemma allows us to relate a lower bound on E
(

δ(B)
)

to a lower bound

on P[δ(B) ≥ λ], for some λ.

Lemma 6.3.1.
P
[
δ(B) ≥ λ

]
≥ 1

η

(
E
(

δ(B)
)
− λ

)
Proof. Let p = p(µ) be the probability density function for δ(B). As noted in eq. (6.3),
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0 ≤ δ(B) ≤ η. Thus, for λ ∈ [0, η] we can write

E
(

δ(B)
)
=
∫ η

0
µp(µ) dµ

=
∫ λ

0
µp(µ) dµ +

∫ η

λ
µp(µ) dµ

≤
∫ λ

0
λp(µ) dµ +

∫ η

λ
ηp(µ) dµ

≤ λ + ηP
[
δ(B) ≥ λ

]
.

Rearranging the inequality gives the result.

We now write E(|V · d|) as an integral over the probability simplex Tn. We have

E( f (V)) =
∫

Tn
f (V)dV

= (n− 1)!
∫ 1

v0=0
· · ·

∫ 1

vn−1=0
δ(1−∑i∈[n] vi) f (V) dv0 · · · dvn−1. (6.5)

where dV = (n − 1)! δ(1− ∑i∈[n] vi) dv0 · · · dvn−1 is the normalised measure on Tn,

defined so that E(1) = 1, and δ( · · · ) is the Dirac delta.

Note that the integral expression for E(|V · d|) = E(|v0d0 + · · ·+ vn−1dn−1|) is com-

pletely symmetric in the vi’s (and hence in the di’s). Thus, if σ is a permutation on [n],

we have that

E(|v0d0 + · · ·+ vn−1dn−1|) = E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|).

Using this observation, we can write

E(|v0d0 + · · ·+ vn−1dn−1|)

=
1
n

[
E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|) + E(|v0dσ(1) + · · ·+ vn−1dσ(0)|)

+E(|v0dσ(2) + · · ·+ vn−1dσ(1)|) + · · ·+ E(|v0dσ(n−1) + · · ·+ vn−1dσ(n−2)|)
]

=
1
n

[
E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|) + E(| − v0dσ(1) − · · · − vn−1dσ(0)|) (6.6)

+E(|v0dσ(2) + · · ·+ vn−1dσ(1)|) + · · ·+ E(| − v0dσ(n−1) − · · · − vn−1dσ(n−2)|)
]

≥ 1
n

E
[
|v0(dσ(0) − dσ(1) + · · · − dσ(n−1)) + v1(dσ(1) − dσ(2) + · · · − dσ(0)) (6.7)

+ v2(dσ(2) − dσ(3) + · · · − dσ(1)) + · · · vn−1(dσ(n−1) − dσ(0) + · · · − dσ(n−2))|
]

=
1
n

∣∣∣dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)

∣∣∣ E(|v0 − v1 + v2 − · · · − vn−1|),

where in eq. (6.6) minus signs are added inside every other expectation (note that n
is even), and eq. (6.7) is derived using the triangle inequality.
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Since σ was an arbitrary permutation, we can instead write

E(|V · d|) ≥ 1
n

M(d)En,

where

M(d) := max
σ∈Sym([n])

∣∣∣dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)

∣∣∣ ,

En := E(|v0 − v1 + v2 − · · · − vn−1|)

and Sym([n]) is the symmetric group on [n]. Thus

E
(

δ(B)
)
≥ M(d)En ≥

η

4
√

n
, (6.8)

where the final inequality is due to Lemmas 6.1.3 and 6.1.4.

Use of Lemma 6.3.1 immediately tells us that

P
[
δ(B) ≥ λ

]
≥ 1

4
√

n
− λ

η
.

Setting λ = min(1,ε)
8
√

n and recalling that ε ≤ η gives

P

[
δ(B) ≥ min(1, ε)

8
√

n

]
≥ 1

4
√

n
− min(1, ε)

8η
√

n
≥ 1

4
√

n
− 1

8
√

n
=

1
8
√

n
.

6.4 Proof of Lemma 6.1.3

Let D+ be the set of non-negative di’s, labelled such that d+0 ≥ d+1 ≥ · · · , and similarly
let D− be the set of negative di’s, labelled such that d−0 ≤ d−1 ≤ · · · . w.l.o.g. suppose
|D−| ≥ |D+|.

Let |D+| = n
2 − k, where k ≤ n

2 . Thus |D−| = n
2 + k. Note that ∑i d+i = −∑i d−i =

1
2 η.

We now define σ so that the following statements are true:

• dσ(1) = d−0 , dσ(3) = d−1 , . . . , dσ(n−1) = d−n
2−1;

• dσ(0) = d+0 , dσ(2) = d+1 , . . . , dσ(n−2k−2) = d+n
2−k−1;

• dσ(n−2k), dσ(n−2k+2), . . . , dσ(n−2) can be filled with the remaining members of D−.

Then

• dσ(0) + dσ(2) + · · ·+ dσ(n−2k−2) =
1
2 η;
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• d−0 , . . . , d−n
2−1 ≤ d−n

2−1 =⇒ −dσ(1) − dσ(3) − · · · − dσ(n−1) ≥ −n
2 d−n

2−1;

• d−n
2

, . . . , d−n
2+k−1 ≥ d−n

2−1 =⇒ dσ(n−2k) + dσ(n−2k+2) + · · ·+ dσ(n−2) ≥ kd−n
2−1.

Hence ∣∣∣dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n)

∣∣∣ ≥ ∣∣∣∣12η +
(

k− n
2

)
d−n

2−1

∣∣∣∣ ≥ 1
2

η,

where the final inequality follows since k ≤ n
2 and d−n

2−1 < 0.

Thus M(d) ≥ 1
2 η.

6.5 Proof of Lemma 6.1.4

To evaluate En we will make use of the Hermite-Genocchi Theorem (Theorem 3.3
in [Atk08]), which relates integrals over the probability simplex to associated divided
differences.

The divided difference of n points (x0, f (x0)), . . . , (xn−1, f (xn−1)) is defined by

f [x0, . . . , xn−1] := ∑
j∈[n]

f (xj)

∏k 6=j(xj − xk)
, (6.9)

where limits are taken if any of the xj are equal. It can be shown that for repeated
points (see Exercise 4.6.6 in [Sch02])

f [ x0, . . . , x0︸ ︷︷ ︸
(r0+1) times

, x1, . . . , x1︸ ︷︷ ︸
(r1+1) times

, x2, . . . , xn−1] =
1

r0!r1!
∂r0+r1

∂xr0
0 ∂xr1

1
f [x0, x1, x2, . . . , xn−1],

(6.10)
where x0, . . . , xn−1 ∈ R are distinct.

Now, the Hermite-Genocchi Theorem states that

f [x0, . . . , xn−1] =
1

(n− 1)!

∫
Tn

f (n−1)(v0x0 + · · ·+ vn−1xn−1) dV,

where dV = (n− 1)! δ(1−∑i∈[n] vi) dv0 · · · dvn−1.

In order to evaluate En, we set f (n−1)(ξ) = (n− 1)!|ξ|. Thus

f (ξ) =

{
1
n ξn ξ ≥ 0
− 1

n ξn ξ < 0

and En = f [1,−1, 1,−1, . . . , 1,−1].

Let m = n
2 − 1 (i.e. n = 2m + 2). Then by eq. (6.10) we have that

E2m+2 =
1

m!2
∂m

0 ∂m
1 f [x0, x1]|x0=−1,x1=1 ,
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where we have used the notation ∂i ≡ ∂
∂xi

.

In the neighbourhood of x0 = −1, x1 = 1, we have (by eq. (6.9))

f [x0, x1] = −
1

2m + 2
x2m+2

0 + x2m+2
1

x0 − x1
,

and thus
E2m+2 = − 1

2m + 2
1

m!2
A|x0=−1,x1=1 , (6.11)

where

A = ∂m
0 ∂m

1

(
x2m+2

0 + x2m+2
1

x0 − x1

)
.

We see that

A = ∂m
1 ∂m

0

(
x2m+2

0
x0 − x1

)
− ∂m

0 ∂m
1

(
x2m+2

1
x1 − x0

)

= ∂m
1 ∂m

0

(
x2m+2

0
x0 − x1

)
− (same term with x0 and x1 interchanged). (6.12)

We use the Leibniz product rule3 to deduce that

∂m
0

(
xn

0

(
1

x0 − x1

))
=

m

∑
k=0

(
m
k

) [
(2m + 2)!

(2m + 2− k)!
x2m+2−k

0

] [
(−1)m−k

(x0 − x1)m+1−k (m− k)!

]
,

and hence that the first term in eq. (6.12) is

∂m
1 ∂m

0

(
xn

0

(
1

x0 − x1

))
=

m

∑
k=0

(
m
k

) [
(2m + 2)!

(2m + 2− k)!
x2m+2−k

0

] [
(−1)m−k

(x0 − x1)2m+1−k (2m− k)!

]

= (2m + 2)!(−1)m
m

∑
k=0

(
m
k

)
(−1)k(2m− k)!
(2m + 2− k)!

x2m+2−k
0

(x0 − x1)2m+1−k

= (2m + 2)!(−1)m(x0 − x1)
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)

(
x0

x0 − x1

)2m+2−k
.

Substituting this into eq. (6.12) and setting x0 = −1, x1 = 1 gives

A|x0=−1,x1=1 = −4(2m + 2)!(−1)m
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)

(
1
2

)2m+2−k
.

Now set

B = (−1)m
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)
γ2m+2−k

3 ∂m(uv) = ∑m
k=0 (

m
k )∂

k(u)∂m−k(v)
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so that
A|x0=−1,x1=1 = −4(2m + 2)!B|γ= 1

2
. (6.13)

Next, note that

∂2B
∂γ2 = (−1)m

m

∑
k=0

(
m
k

)
(−1)kγ2m−k = γm

m

∑
k=0

(
m
k

)
(−γ)m−k = γm(1− γ)m,

and thus

B|γ= 1
2
=
∫ 1

2

z=0

∫ z

α=0
αm(1− α)m dα dz + C

=
∫ 1

2

z=0
Bz(m + 1, m + 1) dz + C,

where Bz(p, q) =
∫ z

0 αp−1(1 − α)q−1 dα is the incomplete Beta function. By setting
m = 0 it is easy to deduce that C = 0.

Now, the indefinite integral of the incomplete Beta function is∫
Bz(p, q) dz = zBz(p, q)− Bz(p + 1, q),

and hence we deduce that

B|γ= 1
2
=

1
2

B 1
2
(m + 1, m + 1)− B1

2
(m + 2, m + 1)

=
1
2

∫ 1
2

0
αm(1− α)mdα−

∫ 1
2

0
αm+1(1− α)mdα

=
1
2

[ ∫ 1
2

0
αm(1− α)m (1− 2α)︸ ︷︷ ︸

=(1−α)−α

dα

]

=
1
2

∫ 1
2

0
(αm(1− α)m+1 − αm+1(1− α)m) dα

=
1

2(m + 1)

∫ 1
2

0

d(αm+1(1− α)m+1)

dα
dα

=
1

2(m + 1)
[αm+1(1− α)m+1]1/2

0

=
1

22m+3(m + 1)
.

Substituting this into eq. (6.13) and subsequently into eq. (6.11), we get

E2m+2 = − 1
2m + 2

1
m!2
· −4(2m + 2)! · 1

22m+3(m + 1)

=
(2m + 1)!

22m+1m!2(m + 1)

=
2m + 1
m + 1

· (2m)!
m!2

· 1
22m+1 . (6.14)
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Stirling’s formula [Rob55] tells us that for m ≥ 1
√

2πmm+ 1
2 e−m < m! <

√
2πmm+ 1

2 e−me
1
12 , (6.15)

and thus
(2m)!
m!2

>

√
2π(2m)2m+ 1

2 e−2m

2πm2m+1e−2me
1
6

=
22me−

1
6

√
mπ

.

Since 2m+1
m+1 ≥

3
2 , eq. (6.14) tells us that

E2m+2 >
3e−

1
6

4
√

π
· 1√

m
.

Replacing m with n
2 − 1, we deduce that

En >
3e−

1
6

4
√

π
· 1√n

2 − 1
>

3e−
1
6

4
√

π
· 1√n

2
=

3e−
1
6

2
√

2π
· 1√

n
>

1
2
√

n
. (6.16)

The case when m = 0 is easily dealt with through direct calculation using eq. (6.14),
giving E2 = 1

2 . Hence we conclude that eq. (6.16) holds for all positive, even n.

Remark: Using the asymptotic form of Stirling’s formula (the lower bound of eq.

(6.15)), it can be easily shown that En ∼
√

2
π

1√
n for large n.

6.6 Final remarks and open questions
Quantum conditional oracles give us new insights into the kinds of information that
are useful for testing properties of distributions. In addition, they are able to demon-
strate separations in query complexity between a number of problems, thereby pro-
viding interesting new perspectives on information without trivialising the set-up.
We now mention some open questions.

Group testing and pattern matching are further important areas to which our notion
of a quantum conditional oracle could be applied. The structure of questions com-
monly considered there suggest that the use of the PQCOND oracle would decrease
the query complexity dramatically for many practically relevant problems compared
to the best known quantum and classical algorithms [Por09, DBGV05, ABRdW15,
Bon15].

In our algorithms, we have made particular use of the PQCOND oracle, the quantum
analogue of the PCOND oracle. It is noted in [CRS15] that the unrestricted COND ora-
cle offers significant advantages over the PCOND oracle for many problems, and it is
possible that similar improvements could be achieved for some quantum algorithms
through use of the unrestricted QCOND oracle.

The algorithm that we present for quantum spectrum testing (Algorithm 2) chooses
several bases B1, . . . ,Bk independently and uniformly at random. It remains open,
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however, whether or not a more adaptive approach to choosing bases will yield an
algorithm requiring fewer queries.

Our definition of the spectrum testing problem in Chapter 6 made use of the trace
norm, ‖ · ‖1. One might wonder how the query complexity would be affected if
the problem were defined with a different norm, such as the operator norm4, ‖ · ‖∞.
Numerical simulations and limited analysis suggest that the probability of picking a
‘good’ basis B tends to 1 as n→ ∞, and hence that the number of queries required to
distinguish between the two options would be independent of n. We leave the proof
of this conjecture as an open question.

4For an (n× n) matrix A, ‖A‖∞ = maxi∈[n] ai, where the ai are the singular values of A.
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Part III

Classical Simulation of Quantum
Circuits
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Chapter 7

Drawing the line between classical and
quantum—what do we know?

7.1 Introduction

One can easily show that all classical processes can be simulated on a quantum com-
puter with little or no overhead, but whether or not quantum processes can be effi-
ciently simulated on a classical computer is still very much an active area of research.
Even the question of whether or not quantum computers are more ‘powerful’ than
classical computers remains a mystery, although it is widely suspected that they are.
Thus, a natural area of research is determining what gives quantum computers their
‘power’.

It is known that without large-scale entanglement, quantum circuits are efficiently
classically simulatable. But is entanglement a sufficient condition for making circuits
more powerful? It is relatively straightforward to find a counter example to show
that this is not the case. So what does draw the line between classical and quantum
computation? One approach that has been used to investigate this is determining
classes of non-trivial (highly entangling) quantum circuits that can be efficiently sim-
ulated on classical computers, and understanding what must be added to allow for
full quantum computing.

Two well-known results in this area are for circuits built from Clifford gates, and those
built from matchgates (see Section 7.2). Both of these gate sets produce non-trivial
quantum circuits for which the output probabilities can be efficiently calculated on a
classical computer.

The Jordan-Wigner transform (see Section 1.1.3) is a very useful tool developed to deal
with fermionic systems. Surprisingly, it is the crux of a beautiful proof of the classical
simulability of matchgates [TD02, JM08, JMS15]. This begs the question of whether a
similar or generalised transform can be used to develop other classes of simulatable
circuits. We explore this idea in Appendix B.1.
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7.2 Known classes of classically-simulatable circuits

The Gottesman-Knill Theorem

The Gottesman-Knill Theorem [Got98, Joz08] is a landmark result that shows that out-
put probabilities of circuits comprising Clifford gates (and subject to some boundary
conditions) are efficiently simulatable on a classical computer. The description of the
theorem that we give here can also be found in [Joz08].

We define the one-qubit gates

H =
1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
,

and the two-qubit gate

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Arbitrary circuits on n qubits comprising these gates are called Clifford operations.

Theorem 7.2.1 (Gottesman-Knill Theorem (slightly modified)). Consider a polynomial-
sized circuit on n-qubits comprising H, P and CZ gates (i.e. a Clifford circuit). Provided
that:

• The input is a product state; and

• The output is a Z measurement (i.e. measurement in the computational basis) of any
single qubit;

then the output is efficiently classically-simulatable (i.e. the output probabilities can be calcu-
lated to k digits in poly(n, k) time).

A simple proof of this theorem is given in [Joz08].

The authors of a recent paper [VFGE12] even show that for a wide range of inputs
the state of the system can be tracked through a discrete phase space as the circuit
progresses, providing a hidden variable model for such computations.

Matchgates

Matchgates, introduced by L. Valiant [Val02], are another (non-trivial) class of gates
for which circuits built from these gates can be efficiently simulated on a classical
computer.
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A matchgate is defined to be any two-qubit matrix G(A, B) of the form

G(A, B) =


p 0 0 q
0 w x 0
0 y z 0
r 0 0 s

 ,

where

A =

(
p q
r s

)
, B =

(
w x
y z

)
,

and A, B ∈ U (2) and det A = det B.

The structure is such that G(A, B) essentially acts with A on the even-parity subspace
(spanned by |00〉 and |11〉), and acts with B on the odd-parity subspace (spanned by
|01〉 and |10〉).

Valiant’s theorem is as follows:

Theorem 7.2.2 (Valiant’s Theorem (slightly modified)). Consider a polynomial-sized cir-
cuit on n-qubits comprising G(A, B) gates acting on nearest-neighbour qubits only. Pro-
vided that:

• The input is a product state; and

• The output is a Z measurement (i.e. measurement in the computational basis) of any
single qubit;

then the output is efficiently classically-simulatable (i.e. the output probabilities can be calcu-
lated to k digits in poly(n, k) time).

The proof given in [JM08] makes use of the connection between matchgates and the
Jordan-Wigner transform for Majorana fermions (see Section 1.1.3), a relationship first
presented in [TD02].

In this proof, c1, d1, . . . , cn, dn are relabelled to b1 , b2 , . . . , b2n respectively. In addition,
let L2 be the span of {bi bj}2n

i,j=1, that is, the quadratic span of the bi’s. The crux of the
proof is the statement that the commutator of any two elements of L2 is also in L2.
More formally,

[bi bj , bk bl ] ∈ L2.

It is through this surprising property that the classical simulability of the circuit arises.
In Appendix B.1, we explore the idea of whether or not there exist qutrit or general
qudit Jordan-Wigner-type representations that have the same property, and provide
evidence that such representations do not exist.
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Chapter 8

Beyond the line: generating classically-
simulatable quantum circuits in higher
dimensions

8.1 Introduction

Fermionic systems describe a diverse range of complex physical phenomena, ranging
from quantum dots to low-temperature effects, such as the quantum Hall effect and
superfluidity. The study of their properties through mathematical physics, and more
recently through computer science, has revealed new, intriguing connections between
the respective fields.

There exist a wide number of tools for studying fermionic systems [Suz93, ID91], one
of the simplest being the Jordan-Wigner transform [JW28] (see Section 1.1.3). This rep-
resents a simple, yet powerful, method for investigating the behaviour of fermionic
models by mapping them directly to spins. It dramatically simplifies the represen-
tations of Hamiltonians for some of the most ubiquitous statistical models—such as
the Ising and XY models in a transverse magnetic field—by transforming them into
exactly solvable systems of non-interacting fermions [LM13]. This spin-fermion map-
ping, coupled with the correspondence between the resulting spin system and a class
of quantum computations, has led to a surprising connection between 1-dimensional
local non-interacting fermionic systems and classically-simulatable quantum circuits
comprised of matchgates acting on qubits [TD02, Joz08, JM08, JMS15, Tsv07].

Little is known about relating generic local fermionic systems to quantum computa-
tion, current examples being confined to chains of spin-1/2 particles in one dimen-
sion [TD02, JM08, JMS15, BC14]. Such a link depends on two transformations: (a) the
existence of a new (locality-preserving) spin-fermionic mapping, and (b) the corre-
spondence between the resulting local quantum spin Hamiltonian and a local quan-
tum circuit. It would give rise to novel, physically-motivated classes of circuits acting
on qudits that are classically simulatable and which would help us better understand
the properties of the underlying fermionic systems, giving insight into their compu-
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tational power.

A natural way to proceed in the search for the former transformation is to naı̈vely
extend the Jordan-Wigner transform beyond spin-1/2 chains to lattices of higher di-
mension. Such generalisations unfortunately suffer from a failure to preserve the lo-
cality of the interactions. However, more complex generalisations [VC05, Bal05] are
able to retain locality, at the expense of an increase in the number of lattice sites.

In this chapter we present a systematic approach for relating general models of non-
interacting fermions on two-dimensional (and higher-dimensional) lattices to quan-
tum circuits. The latter can be efficiently classically simulated whenever the original
Hamiltonian is solvable. Furthermore, we show how this mapping may be applied to
the Hubbard model.

We additionally show how these same models of fermions may be related to pseudo-
classical spin models on higher-dimensional lattices, and subsequently how classical
algorithms may be used to derive their thermodynamic properties.

In more detail:

• In Section 8.2 we discuss how the Jordan-Wigner transformation maps a local
fermionic system on a 2-dimensional lattice to a non-local spin model. By mak-
ing use of tools from [VC05], we develop a mapping to a spin model that retains
locality.

• In Section 8.3 we show how these local spin models may be mapped to a quan-
tum circuit, for which the output probabilities are related to the partition func-
tion of the original fermionic system. If the original Hamiltonian is solvable, i.e.
there is a closed form for its partition function, then the corresponding quantum
circuit is efficiently classically simulatable.

• As an example, in Section 8.4 we apply this mapping to the Hubbard model
[Tas98a, Tas98b, Lie04, Jar92, FK90], which describes the movements of electrons
in a solid. In order to do this, we introduce a new, generalised version of the
Jordan-Wigner transform that maps multi-flavour fermions to spins.

• In Section 8.5 we extend this mapping and present a classical technique for com-
puting the thermodynamic properties of the original, 2-dimensional fermionic
system by transforming it into a 3-dimensional pseudo-classical system and ap-
plying the Metropolis-Hastings algorithm [MRR+53, Has70]. In order to achieve
this, we make use of the quantum-classical mapping [HKM15] to relate the lo-
cal quantum spin models, generated in Sections 8.2 and 8.3, to local pseudo-
classical spin models on a higher-dimensional lattice.
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Figure 8.1: An operator that acts non-trivially on sites 2, 6, 7, 8 and 10 is a distance-1
(nearest-neighbour) operator about site 7.

8.2 A local Jordan-Wigner transform on a 2-dimensional
lattice

In this section we explain how to map a local fermionic Hamiltonian to a local spin
Hamiltonian, using a method based on the work in [VC05]. In [VC05], the authors ad-
ditionally require that the ground state of the Hamiltonian is preserved by the map-
ping. This is not necessary for our result, and we adapt and simplify the procedure to
remove this requirement.

Let us first define our notion of locality: a distance-k Hamiltonian.

Definition 8.2.1. Given a d-dimensional regular lattice, we define an operator O to be distance-
k if there exists a site i such that O only acts non-trivially on sites of taxicab distance at most
k from site i.

See Figure 8.1 for an example.

Remark: The above definition can be easily modified to account for irregular lattices;
however, we have insisted upon regular lattices for simplicity. See Section 8.6.

Non-locality of the Jordan-Wigner transform on a 2-dimensional lat-
tice

Consider again the fermionic system on a 1-dimensional chain described in Section
1.1.3. A non-interacting, distance-k fermionic Hamiltonian H governing the system
would consist of two types of terms: the single-site terms ni = a†

i ai , and the hop-
ping terms (a†

i aj + a†
j ai ). Using the Jordan-Wigner transform (eq. (1.9)), these can be
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(a) Enumeration of sites on a 2D square
lattice that is treated as a 1D chain

(b) Enumeration of sites on a 2D square lat-
tice
that is treated as a 2D grid

Figure 8.2: Enumerating sites on a 2D lattice in two different ways. (a) treats the
sites as a 1D chain, which is important for applying the Jordan-Wigner transform as
derived in eq. (1.9); (b) treats the sites as a 2D grid, which is important for describing
our local transform in eq. (8.4).

written in terms of spin operators:

ni =
1
2
(Z + 12)i

a†
i aj + a†

j ai = −1
2
(XiXj + YiYj)Zi+1 · · · Zj−1 (i < j).

It is clear from the above representations that a Hamiltonian that is distance-k in the
fermionic representation remains distance-k in the spin representation.

Let us now consider a fermionic system over a 2-dimensional lattice, where we num-
ber the sites as in Figure 8.2a. If the Hamiltonian is distance-1 (i.e. allows single-
site terms and nearest-neighbour hopping terms only), then it could contain vertical
hopping terms such as (a†

9a16 + a†
16a9). These terms do not remain local when writ-

ten in the spin representation. For example, the (a†
9a16 + a†

16a9) term is equivalent to
−1

2(X9X16 + Y9Y16)Z10 · · · Z15, which is now a distance-3 term on the lattice, and this
degree of locality is dependent upon the width of the lattice (that is, if this lattice had
a width of Q, the term would be approximately distance-Q/2 in the spin representa-
tion).

We now construct a new Hamiltonian H′ that encompasses the dynamics of H, but is
also local in the spin representation.
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Figure 8.3: The original ‘0-layer’ of sites with an additional 1-layer of corresponding
sites. The dotted line illustrates our ordering of the sites.

8.2.1 Construction of a new Hamiltonian that retains locality

We add another ‘layer’ to our lattice so that for each existing site i (which we now
call i(0)), there is a new, neighbouring site i(1), and we order the sites as 1(0), 1(1),
2(0), 2(1), . . . , N(0), N(1), as shown in Figure 8.3. We define states ‘restricted’ to the
both the original layer (0-layer) and the additional layer (1-layer) of sites respectively
by

|α〉0 :=
(

a†
1(0)

)α1 · · ·
(

a†
N(0)

)αN
|Ω〉

|γ〉1 :=
(

a†
1(1)

)γ1 · · ·
(

a†
N(1)

)γN
|Ω〉 ,

where α = (α1, . . . , αN) and γ = (γ1, . . . , γN).

For these states it is unclear what is meant by the tensor product ⊗, and so here
we explicitly define the bilinear product operator �. If |ϕ〉 = Aϕ |Ω〉 and |ξ〉 =

Aξ |Ω〉 are two states on the full lattice, where Aϕ and Aξ are products of creation and
annihilation operators (a†

i(σ) and aj(σ) respectively), then |ϕ〉 � |ξ〉 is defined by

|ϕ〉 � |ξ〉 := Aϕ Aξ |Ω〉 .

Let the set Λ(1) contain ordered pairs 〈i(1), j(1)〉 of sites in the 1-layer corresponding
to directed edges pointing vertically down the lattice, as shown in Figure 8.4. We
define an operator Pi(1) j(1) for each pair 〈i(1), j(1)〉 ∈ Λ(1) by

Pi(1) j(1) = θi(1) j(1)ici(1)dj(1),
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Figure 8.4: The Pi(1) j(1)’s correspond to the directed edges on the 1-layer that point
vertically down the lattice.

where ci(1) = (ai(1) + a†
i(1)) and di(1) = i(ai(1) − a†

i(1)) are Majorana fermions (see

Section 1.1.3), and the value of θi(1) j(1) = ±1 is to be determined.

Using eq. (1.11), it is straightforward to derive the following three useful properties
of the Pi(1) j(1):

1. (Pi(1) j(1))
2 = 1 =⇒ Pi(1) j(1) has eigenvalues of ±1.

2. [Pi(1) j(1), Pk(1) l(1)] ∝ δj(1)l(1)ck(1)ci(1) − δi(1)k(1)dj(1)dl(1) = 0, since 〈i(1), j(1)〉,
〈k(1), l(1)〉 ∈ Λ(1) (we know that (i(1) = k(1)) ⇔ (j(1) = l(1)) and that
(cm(1))

2 = (dm(1))
2 = 1).

3. [Pi(1) j(1), a(†)k(0)] = 0 since k(0) is in the 0-layer.

Point 2 implies that the Pi(1) j(1) have a common eigenbasis over the 1-layer. We choose

an element of this eigenbasis, |χ〉1, and fix the values θi(1) j(1) appropriately for each

Pi(1) j(1) so that

Pi(1) j(1) |χ〉1 = |χ〉1 ∀{i(1), j(1)} ∈ Λ(1),

which is possible owing to Point 1.
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In addition, we can use Point 3 to show that

Pi(1) j(1) |α〉0 � |γ〉1 = Pi(1) j(1)

[(
a†

1(0)

)α1 · · ·
(

a†
N(0)

)αN
] [(

a†
1(1)

)γ1 · · ·
(

a†
N(1)

)γN
]
|Ω〉

=
[(

a†
1(0)

)α1 · · ·
(

a†
N(0)

)αN
] [

Pi(1) j(1)

(
a†

1(1)

)γ1 · · ·
(

a†
N(1)

)γN
]
|Ω〉

= |α〉0 �
(

Pi(1) j(1) |γ〉1
)

.

Hence it is clear that
Pi(1) j(1) |ϕ〉0 � |χ〉1 = |ϕ〉0 � |χ〉1 (8.1)

for any state |ϕ〉0 on the 0-layer.

Similarly, since the original Hamiltonian H consists only of operators on indices in
the 0-layer, we immediately have that

H (|ϕ〉0 � |ξ〉1) = (H |ϕ〉0)� |ξ〉1 . (8.2)

We now construct a new Hamiltonian H′ from H by altering the vertical hopping
terms as follows:

a†
i(0)aj(0) + a†

j(0)ai(0) 7→ (a†
i(0)aj(0) + a†

j(0)ai(0))Pi(1) j(1)

where i is the site directly above j on the lattice.

It is clear from eq. (8.1) and eq. (8.2) that

H′ (|ϕ〉0 � |χ〉1) = (H |ϕ〉0)� |χ〉1 (8.3)

and thus the local fermionic system described by H follows the same dynamics as the
0-layer of sites of the system described by H′. Now it remains to be shown that H′ is
local in the spin representation.

Locality of H′ in the spin representation

After ordering the sites as 1(0), 1(1), 2(0), 2(1), . . . , the relevant form of eq. (1.9)
is

a†
i(0) = Z1(0)Z1(1) · · · Z(i−1)(0)Z(i−1)(1)S

+
i(0)

ai(0) = Z1(0)Z1(1) · · · Z(i−1)(0)Z(i−1)(1)S
−
i(0)

ci(1) = Z1(0)Z1(1) · · · Zi(0)Xi(1)

di(1) = Z1(0)Z1(1) · · · Zi(0)Yi(1).

This allows us to determine the spin representations of the terms in H′, and we find
that the problematic string of Z operators that arose for vertical hopping terms is
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cancelled off by a string of Z operators created by the additional Pi(1) j(1) operators.
We can show this explicitly:

ni(0) =
1
2
(Z + 12)i(0)

a†
i(0)aj(0) + a†

j(0)ai(0) = −
1
2
(Xi(0)Xj(0) + Yi(0)Yj(0))Zi(1)Z(i+1)(0) · · · Z(j−1)(1)

Pi(1) j(1) = θi(1) j(1)Yi(1)Z(i+1)(0)Z(i+1)(1) · · · Zj(0)Yj(1)

(a†
i(0)aj(0) + a†

j(0)ai(0))Pi(1) j(1) = −
1
2

θi(1) j(1)(Yi(0)Xj(0) − Xi(0)Yj(0))Xi(1)Yj(1).

So far we have consistently labelled the sites with a single integer as if they were part
of a 1-dimensional chain (as in Figure 8.2a). However, in order to determine the full
form of H′, we now consider the sites to be points on a grid, labelling each site by its
co-ordinate, as in Figure 8.2b.

Allowing only distance-1 (nearest-neighbour) hopping terms, we see that H consists
of three types of terms:

n(i,j)(0); a†
(i,j)(0)a(i,j+1)(0) + a†

(i,j+1)(0)a(i,j)(0); a†
(i,j)(0)a(i+1,j)(0) + a†

(i+1,j)(0)a(i,j)(0).

In H′, these respectively become:

n(i,j)(0); a†
(i,j)(0)a(i,j+1)(0) + a†

(i,j+1)(0)a(i,j)(0);

(a†
(i,j)(0)a(i+1,j)(0) + a†

(i+1,j)(0)a(i,j)(0))P(i,j)(1) (i+1,j)(1),

which, in the spin representation, respectively have the form

1
2
(Z + 12)(i,j)(0); −1

2
(X(i,j)(0)X(i,j+1)(0) + Y(i,j)(0)Y(i,j+1)(0))Z(i,j)(1);

−1
2

θ(i,j)(1) (i+1,j)(1)(Y(i,j)(0)X(i+1,j)(0) − X(i,j)(0)Y(i+1,j)(0))X(i,j)(1)Y(i+1,j)(1),
(8.4)

which are all at most distance-2 terms.

Hence the dynamics of the local fermionic Hamiltonian H acting on N sites can be
simulated by a local spin Hamiltonian H′ acting on 2N qubits.

8.2.2 Summary

This section summarises the results thus far:

Suppose that the original fermionic lattice (the 0-layer) has height P and width Q (i.e.
i ∈ {1, . . . , P}, j ∈ {1, . . . , Q}), where for ease of notation we assume P and Q are
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even, with dynamics governed by a distance-1 Hamiltonian H of the form

H = µ ∑
1≤i≤P
1≤j≤Q

n(i,j)(0) + ∑
1≤i≤P

1≤j≤Q−1

µH
ij (a†

(i,j)(0)a(i,j+1)(0) + a†
(i,j+1)(0)a(i,j)(0))

+ ∑
1≤i≤P−1

1≤j≤Q

µV
ij (a†

(i,j)(0)a(i+1,j)(0) + a†
(i+1,j)(0)a(i,j)(0)).

In general, µ could be site-dependent, but for simplicity we treat it as a constant.

We then increase the number of lattice sites by introducing an additional site i(1) for
each 0-layer site i(0), and introduce the Hamiltonian H′, with

H′ = J ∑
1≤i≤P
1≤j≤Q

(Z + 12)(i,j)(0) + ∑
1≤i≤P

1≤j≤Q−1

JH
ij (X(i,j)(0)X(i,j+1)(0) + Y(i,j)(0)Y(i,j+1)(0))Z(i,j)(1)

+ ∑
1≤i≤P−1

1≤j≤Q

JV
ij (Y(i,j)(0)X(i+1,j)(0) − X(i,j)(0)Y(i+1,j)(0))X(i,j)(1)Y(i+1,j)(1), (8.5)

where J = 1
2 µ, JH

ij = −1
2 µH

ij and JV
ij = −1

2 θ(i,j)(1) (i+1,j)(1)µ
V
ij . H′ is then a distance-2

Hamiltonian, whose action on the 0-layer is identical to the original action of H.

8.3 Classically-simulatable quantum circuits from quan-
tum lattice models

Here we show how to map the quantum partition function Z of the fermionic Hamil-
tonian H to the output probabilities of a quantum circuit. If the original Hamiltonian
is solved (i.e. there is a closed form for Z), then the resultant circuit is efficiently
classically simulatable.

The quantum partition function Z is defined by

Z := Tr0

[
e−βH

]
= ∑
α∈{0,1}PQ

〈α|0 e−βH |α〉0 = ∑
α∈{0,1}PQ

(〈α|0 � 〈χ|1) e−βH′ (|α〉0 � |χ〉1) , (8.6)

where the final equality is due to eq. (8.3).

Each of the terms in H′ (see eq. (8.5)) is distance-2, and they can be separated into
four sets such that all interactions in each set are disjoint, as can be seen in Figure 8.5.
Hence

H′ = ∑
(i,j)∈aH

HH
ij + ∑

(i,j)∈aV

HV
ij + ∑

(i,j)∈bH

HH
ij + ∑

(i,j)∈bV

HV
ij ,
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(a) aH = {(1, 1), (1,
3), (2, 1), (2, 3), (3, 1),
(3, 3), (4, 1), (4, 3)}

(b) aV = {(1, 1), (1,
2), (1, 3), (1, 4), (3, 1),
(3, 2), (3, 3), (3, 4)}

(c) bH = {(1, 2), (2,
2), (3, 2), (4, 2)}

(d) bV = {(2, 1), (2,
2), (2, 3), (2, 4)}

Figure 8.5: All possible distance-1 interactions on the lattice, broken up into four sets
inside each of which all of the interactions are disjoint. The sets aH, aV , bH, bV con-
tain the co-ordinates of the points marked as full black disks on (a), (b), (c) and (d)
respectively, where the site in the top-left corner has co-ordinate (1, 1), and in these
diagrams, the site in the top-right corner has co-ordinate (1, 4).

where

HH
ij =



1
2 J(Z + 12)(i,j)(0) +

1
4 J(Z + 12)(i,j+1)(0)

+ JH
ij (X(i,j)(0)X(i,j+1)(0) + Y(i,j)(0)Y(i,j+1)(0))Z(i,j)(1)

j = 1,

1
4 J(Z + 12)(i,j)(0) +

1
4 J(Z + 12)(i,j+1)(0)

+ JH
ij (X(i,j)(0)X(i,j+1)(0) + Y(i,j)(0)Y(i,j+1)(0))Z(i,j)(1)

2 ≤ j ≤ Q− 1,

1
4 J(Z + 12)(i,j)(0) j = Q,

HV
ij =



1
2 J(Z + 12)(i,j)(0) +

1
4 J(Z + 12)(i+1,j)(0)

+ JV
ij (Y(i,j)(0)X(i+1,j)(0) − X(i,j)(0)Y(i+1,j)(0))X(i,j)(1)Y(i+1,j)(1)

i = 1,

1
4 J(Z + 12)(i,j)(0) +

1
4 J(Z + 12)(i,j+1)(0)

+ JV
ij (Y(i,j)(0)X(i+1,j)(0) − X(i,j)(0)Y(i+1,j)(0))X(i,j)(1)Y(i+1,j)(1)

2 ≤ i ≤ P− 1,

1
4 J(Z + 12)(i,j)(0) i = P.

For ease of notation, we define

MR
ij = exp

(
−β

n
HR

ij

)
, R ∈ {H, V} (8.7)

TR
τ = exp

−β

n ∑
(i,j)∈τR

HR
ij

 = ∏
(i,j)∈τR

MR
ij , τ ∈ {a, b}, (8.8)

where n is any non-negative integer, and the second equality in eq. (8.8) follows
because the sets τR ensure that the HR

ij all act on disjoint pairs of lattice sites, and
hence commute.
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We now make use of the Suzuki-Trotter expansion, which states that

exp (A0 + · · ·+ Am−1) =

[
exp

(
1
n

A0

)
· · · exp

(
1
n

Am−1

)]n
+ O

(
1
n

)
for any (even non-commuting) operators Ai, provided that n ≥ maxi ‖Ai‖ [Suz76].

From eq. (8.6), we thus have

Z ∼ ∑
α∈{0,1}PQ

(〈α|0 � 〈χ|1) ·Π · (|α〉0 � |χ〉1) . (8.9)

where

Π :=
(

TH
a TV

a TH
b TV

b

)n

=
n−1

∏
q=0

 ∏
(i,j)∈aH

MH
ij

 ∏
(i,j)∈aV

MV
ij

 ∏
(i,j)∈bH

MH
ij

 ∏
(i,j)∈bV

MV
ij

 . (8.10)

We include q in the above expression to illustrate how it relates to Figure 8.7.

If we now consider each pair of qubit sites (i, j)(0) and (i, j)(1) to be a single 4-
dimensional qudit site, we can view Π as a circuit, displayed in Figure 8.7. In order
for Π to represent a realisable quantum circuit, however, MR

ij must be unitary for all
i, j, R, which occurs only when β is imaginary (see eq. (8.7)).

If the original quantum system is solved (i.e. there is a closed form forZ) for imaginary
β, then this circuit is efficiently simulatable on a classical computer, in the sense that
the trace over the 0-system can be calculated, as in eq. (8.9).

Remark: A similar result is obtained in [VdNDRB09], in which classical lattice mod-
els are mapped to classically-simulatable quantum circuits. The authors additionally
note that β may be complex in order for the constructed gates to be unitary.

An alternative view

Using the ideas of Knill and Laflamme [KL98], the circuit in Figure 8.6 essentially
calculates the trace over the 0-system of Π. More specifically, the output of the circuit
is 0 with probability (1

2 + 1
2PQ Re Z). Using the state 1

2(|0〉 − i |1〉)(〈0|+ i 〈1|) on the
first line similarly produces output 0 with probability (1

2 +
1

2PQ Im Z). A closed form
for Z thus implies that we can efficiently calculate the outcome probabilities of these
circuits.

If no closed form for Z is known, however, quantum process tomography (see Sec-
tion 2.2.1) can be used on these circuits to determine Z to arbitrary accuracy.

We now examine the form of the gates that make up Π in more detail.
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H

0

1

Figure 8.6: A circuit based on the ‘one clean qubit’ work by Knill and
Laflamme [KL98], for which the output probabilities are dependent upon Z , and the
relationship between Π and Z is defined in eq. (8.9). In particular, the probability
of the output being 0 is (1

2 + 1
2PQ Re Z). The first line of the circuit is a single qubit,

whereas the second and third lines consist of PQ qubits each. The middle line is set
to the fully mixed state.

i

j
q

Direction of circuit

Figure 8.7: The resultant circuit after applying the mapping in Section 8.3. There are
PQ lines, each of which represents a 4-dimensional qudit. The gates shown in the
circuit are the individual local unitary operators given in eq. (8.10).
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Evaluation of MR
ij when R = H (and 2 ≤ j ≤ Q− 1)

From the definition of MR
ij (eq. (8.7)), we have

MH
ij = exp

(
−β

n
HH

ij

)
= exp

(
−β

n

(
1
4

J(Z⊗ 1⊗2
2 + 12 ⊗ Z⊗ 12 + 21⊗3

2 ) + JH
ij (X⊗ X⊗ Z + Y⊗Y⊗ Z)

)
⊗ 12

)
= exp

(
−β

n

(
1
4

J(Z⊗ 1⊗2
2 + 12 ⊗ Z⊗ 12 + 21⊗3

2 ) + JH
ij (X⊗ X⊗ Z + Y⊗Y⊗ Z)

))
⊗ 12

=



A12 0 0 0

0 CH
ij 12 BH

ij Z 0

0 BH
ij Z CH

ij 12 0

0 0 0 12


⊗ 12,

where each block is a 2× 2 matrix, and

A = e−Jβ/n,

BR
ij = −e−Jβ/2n sinh

(
2JR

ij β/n
)

,

CR
ij = e−Jβ/2n cosh

(
2JR

ij β/n
)

.

Evaluation of MR
ij when R = V (and 2 ≤ i ≤ P− 1)

Again from the definition of MR
ij (eq. (8.7)), we have

MV
ij = exp

(
−β

n
HV

ij

)
= exp

(
−β

n

(
1
4

J(Z⊗ 1⊗3
2 + 12 ⊗ Z⊗ 1⊗2

2 + 21⊗4
2 ) + JV

ij (Y⊗ X⊗ X⊗Y− X⊗Y⊗ X⊗Y)
))

=



A14 0 0 0

0 CV
ij 14 iBV

ij X⊗Y 0

0 iBV
ij X⊗Y CV

ij 14 0

0 0 0 14


, (8.11)

where each block is a 4× 4 matrix.
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8.4 An example: the Hubbard Model

In this section we explain how the above mapping may be applied to the Hubbard
model [Tas98a, Tas98b, Lie04, Jar92, FK90], a well-studied model that attempts to ap-
proximate the behaviour of electrons in a solid by ignoring all but the shortest-range
interactions. It is described by a Hamiltonian of the form [Tas98b]

H = − ∑
〈i,j〉, σ

tijai (σ)
†aj (σ) + ∑

i
Uini (1)ni (−1)− µ ∑

i
(ni (1) + ni (−1))

where 〈i, j〉 denotes the set of nearest neighbours i and j, σ ∈ {1,−1} is the ‘flavour’
of the fermion, ni (σ) := ai (σ)

†ai (σ) is the number operator, and tij, Ui, and µ are real
constants.

Unlike the model described in Section 8.2, we deal here with two flavours of fermions.
There are two natural cases for investigation:

1. the flavours of fermions are exclusive, i.e. the site can be empty, contain a
fermion of flavour 1, or contain a fermion of flavour −1 (note that this implies
that the second term in the Hamiltonian is 0);

2. the flavours of fermions can co-exist, i.e. the site can be empty, contain a fermion
of flavour 1, contain a fermion of flavour−1, or contain both a fermion of flavour
1 and a fermion of flavour −1.

We focus here on case 1 (although the methods used can also be applied to case 2)
and develop a generalisation of the Jordan-Wigner transform for multiple flavours of
fermions.

The ai (σ) must obey the following relations [Tas98b]:

{ai (σ)
†, aj (σ

′)†} = {ai (σ), aj (σ
′)} = 0,

{ai (σ)
†, aj (σ

′)} = δijδσσ′1,

where σ, σ′ ∈ {1,−1}. In addition, we require the exclusivity of fermion flavours.
This is a restriction on the state space of the fermions, but here we simplify our anal-
ysis by imposing the condition on the operators instead:

ai (σ)
†ai (σ

′)† = 0.

For ease of notation, let us define ai (0)
(†) := 1.

If we write
|α〉 = |α1, . . . , αN〉 :=

[
a1(α1)

†
]
· · ·
[

aN(αN)
†
]
|Ω〉

with αi ∈ {1, 0,−1}, then, as in Section 1.1.3, it is straightforward to determine that
〈α|α′〉 = δαα′ .
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In addition, for σ ∈ {1,−1}, the anti-commutation relations imply that

ai (σ) |α〉 = ai (σ)
([

a1(α1)
†
]
· · ·
[

ai (αi)
†
]
· · ·
[

aN(αN)
†
]
|Ω〉

)
=

{
(−1)|{j:αj 6=0,j<i}| |α′〉 if αi = σ

0 otherwise
(8.12)

where α′j = αj for j 6= i and α′i = 0.

If we now write

|1〉 =

1
0
0

 , |0〉 =

0
1
0

 , |−1〉 =

0
0
1

 ,

then eq. (8.12) implies that in the spin paradigm,

ai (σ) = Φ1 · · ·Φi−1Si(σ),

where

Φ =

−1 0 0
0 1 0
0 0 −1

 , S(1) =

0 0 0
1 0 0
0 0 0

 , S(−1) =

0 0 0
0 0 1
0 0 0

 .

This construction is easily generalised to arbitrarily many fermionic flavours, giving
a natural generalisation of the Jordan-Wigner transform. The case of two flavours
yields a much more straightforward generalisation of the transform for spin-1 parti-
cles introduced in [BO01].

For ease of notation, let us also define, for any 2× 2 matrix Q =
(

Q00 Q01
Q10 Q11

)
,

Q(1) =

Q00 Q01 0
Q10 Q11 0

0 0 0

 , Q(−1) =

0 0 0
0 Q00 Q01

0 Q10 Q11

 .

Extending the technique given in Section 8.2.1, where a second ‘1-layer’ of fermions
was added to the lattice, we now add two extra layers of fermions to the lattice, the
1-layer and the (−1)-layer. We order the sites as 1(0), 1(1), 1(−1), 2(0), 2(1), 2(−1),
. . . , N(0), N(1), N(−1). To aid notation, we additionally define Φi(σ)→j(σ′) to be the
operator that effects Φ on all sites between i(σ) and j(σ′) (exclusive). In particular,
Φi(0)→i(1) = 1 and Φi(0)→i(−1) = Φi(1).

We now continue as in Section 8.2.1 to obtain analogues of the Pi(1) j(1) operators. The
Majorana fermions (see Section 1.1.3) are

ci(σ)(σ) := ai(σ)(σ) + ai(σ)(σ)
†, di(σ)(σ) := i(ai(σ)(σ)− ai(σ)(σ)

†).
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As before, let Λ(σ) be the set of all directed edges on the σ-layer pointing vertically
down the lattice (see Figure 8.4). We define the Pi(σ) j(σ)(σ) operators for each pair
〈i(σ), j(σ)〉 ∈ Λ(σ) to be

Pi(σ) j(σ)(σ) = θi(σ) j(σ)ici(σ)(σ)di(σ)(σ)

where the θi(σ) j(σ) = ±1 are to be determined.

Similar to Section 8.2.1, we find that

[Pi(σ) j(σ)(σ), Pk(σ′) l(σ′)(σ
′)] = [Pi(σ) j(σ)(σ), am(0)(σ)

(†)] = 0,

for σ, σ′ ∈ {1,−1}.

Now, (Pi(σ) j(σ)(σ))
2 = 1i(σ)(σ)1j(σ)(σ). Thus,

• in the {|0〉 , |1〉}-spanned subspace, Pi(1) j(1)(1) has eigenvalues ±1. By fixing

θi(1) j(1) appropriately, we can find a state |χ〉1 such that

Pi(1) j(1)(1) |χ〉1 = |χ〉1 ∀ 〈i(1), j(1)〉 ∈ Λ(1)

• in the {|0〉 , |−1〉}-spanned subspace, Pi(−1) j(−1)(−1) has eigenvalues ±1. By

fixing θi(−1) j(−1) appropriately, we can find a state |ξ〉−1 such that

Pi(−1) j(−1)(−1) |ξ〉−1 = |ξ〉−1 ∀ 〈i(−1), j(−1)〉 ∈ Λ(−1)

As before, we find that

Pi(σ) j(σ)(σ)(|ϕ〉0 � |χ〉1 � |ξ〉−1) = |ϕ〉0 � |χ〉1 � |ξ〉−1 ,

H(|ϕ〉0 � |ζ1〉1 � |ζ2〉−1) = H(|ϕ〉0)� |ζ1〉1 � |ζ2〉−1 .

We construct a new Hamiltonian H′ from H by altering the vertical hopping terms as
follows:

ai(0)(σ)
†aj(0)(σ)+ aj(0)(σ)

†ai(0)(σ) 7→ (ai(0)(σ)
†aj(0)(σ)+ aj(0)(σ)

†ai(0)(σ))Pi(σ) j(σ)(σ).

From the above equations, it follows that

H′
(
|ϕ〉0 � |χ〉1 � |ξ〉−1

)
= H (|ϕ〉0)� |χ〉1 � |ξ〉−1 ,

and thus the local fermionic system described by H follows the same dynamics as
the 0-layer sites of the system described by H′. In addition, H′ is local in the spin
representation.

H consists of only three types of terms:

n(i,j)(0)(σ); a(i,j)(0)(σ)
†a(i,j+1)(0)(σ) + a(i,j+1)(0)(σ)

†a(i,j)(0)(σ);

a(i,j)(0)(σ)
†a(i+1,j)(0)(σ) + a(i+1,j)(0)(σ)

†a(i,j)(0)(σ).
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In H′, these respectively become:

n(i,j)(0)(σ); a(i,j)(0)(σ)
†a(i,j+1)(0)(σ) + a(i,j+1)(0)(σ)

†a(i,j)(0)(σ);(
a(i,j)(0)(σ)

†a(i+1,j)(0)(σ) + a(i+1,j)(0)(σ)
†a(i,j)(0)(σ)

)
P(i,j)(σ) (i+1,j)(σ)(σ),

which, in the spin representation, have the form

1
2
(Z(σ) + 12(σ))(i,j)(0);

1
2

(
X(i,j)(0)(σ)X(i,j+1)(0)(σ) + Y(i,j)(0)(σ)Y(i,j+1)(0)(σ)

)
Φ(i,j)(1)Φ(i,j)(−1);

−1
2

θ(i,j)(σ) (i+1,j)(σ)(X(i,j)(0)(σ)Y(i+1,j)(0)(σ)−Y(i,j)(0)(σ)X(i+1,j)(0)(σ))·

X(i,j)(σ)(σ)Y(i+1,j)(σ)(σ)Φ(i,j)(0)→(i,j)(σ)Φ(i+1,j)(0)→(i+1,j)(σ).

This gives a final Hamiltonian

H′ = J ∑
σ,1≤i≤P,
1≤j≤Q

(Z(σ) + 12(σ))(i,j)(0)

+ ∑
σ,1≤i≤P,
1≤j≤Q−1

JH
ij

(
X(i,j)(0)(σ)X(i,j+1)(0)(σ) + Y(i,j)(0)(σ)Y(i,j+1)(0)(σ)

)
Φ(i,j)(1)Φ(i,j)(−1)

+ ∑
σ,1≤i≤P−1,

1≤j≤Q

JV
ij (X(i,j)(0)(σ)Y(i+1,j)(0)(σ)−Y(i,j)(0)(σ)X(i+1,j)(0)(σ))·

X(i,j)(σ)(σ)Y(i+1,j)(σ)(σ)Φ(i,j)(0)→(i,j)(σ)Φ(i+1,j)(0)→(i+1,j)(σ)

for some real constants J, JH
ij , JV

ij .

If we write

HH
ij =



∑
σ=±1

(
1
2 J(Z(σ) + 12(σ))(i,j)(0) +

1
4 J(Z(σ) + 12(σ))(i,j+1)(0)

+ JH
ij (X(i,j)(0)(σ)X(i,j+1)(0)(σ) + Y(i,j)(0)(σ)Y(i,j+1)(0)(σ))Φ(i,j)(1)Φ(i,j)(−1)

) j = 1,

∑
σ=±1

(
1
4 J(Z(σ) + 12(σ))(i,j)(0) +

1
4 J(Z(σ) + 12(σ))(i,j+1)(0)

+ JH
ij (X(i,j)(0)(σ)X(i,j+1)(0)(σ) + Y(i,j)(0)(σ)Y(i,j+1)(0)(σ))Φ(i,j)(1)Φ(i,j)(−1)

) 2 ≤ j ≤ Q− 1,

∑
σ=±1

1
4 J(Z(σ) + 12(σ))(i,j)(0) j = Q,
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HV
ij =



∑
σ=±1

(
1
2 J(Z(σ) + 12(σ))(i,j)(0) +

1
4 J(Z(σ) + 12(σ))(i+1,j)(0)

+ JV
ij (X(i,j)(0)(σ)Y(i+1,j)(0)(σ)−Y(i,j)(0)(σ)X(i+1,j)(0)(σ))·

X(i,j)(σ)(σ)Y(i+1,j)(σ)(σ)Φ(i,j)(0)→(i,j)(σ)Φ(i+1,j)(0)→(i+1,j)(σ)

) i = 1,

∑
σ=±1

(
1
4 J(Z(σ) + 12(σ))(i,j)(0) +

1
4 J(Z(σ) + 12(σ))(i+1,j)(0)

+ JV
ij (X(i,j)(0)(σ)Y(i+1,j)(0)(σ)−Y(i,j)(0)(σ)X(i+1,j)(0)(σ))·

X(i,j)(σ)(σ)Y(i+1,j)(σ)(σ)Φ(i,j)(0)→(i,j)(σ)Φ(i+1,j)(0)→(i+1,j)(σ)

) 2 ≤ i ≤ P− 1,

∑
σ=±1

1
4 J(Z(σ) + 12(σ))(i,j)(0) i = P,

we see that

H′ = ∑
(i,j)∈aH

HH
ij + ∑

(i,j)∈aV

HV
ij + ∑

(i,j)∈bH

HH
ij + ∑

(i,j)∈bV

HV
ij .

Setting MR
ij and TR

τ as in eq. (8.7) and eq. (8.8) respectively, and Π as in eq. (8.10), gives
a local quantum circuit with output probabilities dependent on Z , the partition func-
tion of the original system. If Z is known, the corresponding circuits are efficiently
classically simulatable. IfZ is unknown, however, quantum process tomography (see
Section 2.2.1) can be used on the circuit to estimate Z to any desired accuracy.

8.5 An aside: computing thermodynamic properties of
quantum lattice models

This section deviates from the main focus of the chapter to illustrate another useful
property of the mapping that we derived in Sections 8.2 and 8.3. Here we show how
thermodynamic properties of quantum fermionic lattice models may be computed
using classical algorithms.

A result that we make use of is the so-called quantum-classical mapping [HKM15],
a technique for transforming a quantum partition function (of the form Tr[e−βHqu ])
[CL00] for a d-dimensional system into a classical partition function (of the form
∑s e−β′Hcl(s)) for a (d + 1)-dimensional system. The mapping is not exact, but pro-
duces an approximation that can be made arbitrarily close.

There are two parts to our analysis:

1. Combining the quantum-classical mapping with the results from Sections 8.2
and 8.3, we derive a transformation that maps a local quantum fermionic lat-
tice model in 2 dimensions to a local pseudo-classical spin lattice model in 3
dimensions.
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2. We subsequently show how the Metropolis-Hastings Algorithm [MRR+53, Has70,
CG95] may be applied to this system to derive thermodynamic properties of the
original quantum lattice model.

8.5.1 Mapping the quantum lattice model to a pseudo-classical lat-
tice model

Here we apply the quantum-classical mapping to the Hamiltonian H′ given in Sec-
tion 8.3, though it is easily generalised to the Hubbard model presented in Section 8.4.

Returning to eq. (8.9), we note that {|α〉0 � |α′〉1}α,α′∈{0,1}PQ forms a basis for the full
fermionic space (over both the 0-layer and the 1-layer), which is easily verified using
the CCRs as we did with eq. (1.7) and eq. (1.8). We can therefore write the identity
operator on the whole space as

1 = ∑
s∈{0,1}2PQ

| s〉 〈 s| ,

where s = (s0, s1) and |s〉 = |s0〉0 � |s1〉1.

Inserting a copy of the identity operator between each pair of terms gives

Z ∼ ∑
α∈{0,1}PQ,

s0,...,s4n∈{0,1}2PQ

[(
〈α|0 � 〈χ|1

) ∣∣s0〉 ·
n−1

∏
q=0

〈
s4q
∣∣∣ TH

a

∣∣∣ s4q+1
〉 〈

s4q+1
∣∣∣ TV

a

∣∣∣ s4q+2
〉 〈

s4q+2
∣∣∣ TH

b

∣∣∣ s4q+3
〉 〈

s4q+3
∣∣∣ TV

b

∣∣∣s4q+4
〉
·

〈
s4n
∣∣∣ (|α〉0 � |χ〉1)

]
.

Writing Ut,R
τ :=

〈
st
∣∣ TR

τ

∣∣st+1〉, we see that

Z ∼ ∑
α∈{0,1}PQ ,

s0,...,s4n∈{0,1}2PQ

[ (
〈α|0 � 〈χ|1

) ∣∣∣s0
〉]

︸ ︷︷ ︸
lattice boundary term

[
n−1

∏
q=0

U4q,H
a U4q+1,V

a U4q+2,H
b U4q+3,V

b

]
︸ ︷︷ ︸

main lattice term

[ 〈
s4n
∣∣∣ (|α〉0 � |χ〉1)

]
︸ ︷︷ ︸
lattice boundary term

.

(8.13)

Remark: The lattice boundary terms are so called because they only affect the front (t =
0, see Figure 8.8) and back (t = 4n, see Figure 8.8) of our now 3-dimensional lattice.
The main lattice term contains the interactions that run throughout the lattice. See
Figure 8.8 for more details.

We shall now evaluate each term of the expression in eq. (8.13), writing it in the form
of an exponential.
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The main lattice term

Here we consider the term

n−1

∏
q=0

U4q,H
a U4q+1,V

a U4q+2,H
b U4q+3,V

b .

Since the interactions in each of the Ut,R
τ are disjoint, we can write

Ut,R
τ = ∏

(i,j)∈τR

Wt,R
ij ,

where

Wt,R
ij =

〈
St,R

ij

∣∣∣MR
ij

∣∣∣St+1,R
ij

〉
, (8.14)

and ∣∣∣St,H
ij

〉
=
∣∣∣st
(i,j)(0) st

(i,j+1)(0) st
(i,j)(1) st

(i,j+1)(1)

〉
,∣∣∣St,V

ij

〉
=
∣∣∣st
(i,j)(0) st

(i+1,j)(0) st
(i,j)(1) st

(i+1,j)(1)

〉
.

Note that as we no longer require MR
ij to be unitary, we choose β to be real (see eq.

(8.7)).

We now write |S〉 = |S1 S2 S3 S4〉 and |S′〉 = |S′1 S′2 S′3 S′4〉, and let SR
ij = {(S, S′) :

〈S|MR
ij |S′〉 6= 0}. Then from eq. (8.14) we see that

Wt,R
ij = ∆t,R

ij exp
(

Et,R
ij

)
,

where

∆t,R
ij := ∑

(S,S′)∈SR
ij

δSt,R
ij , S δSt+1,R

ij , S′

Et,R
ij := ∑

(S,S′)∈SR
ij

log
(
〈S|MR

ij
∣∣S′〉 ) δSt,R

ij , S δSt+1,R
ij , S′ ,

with log z defined by its principal branch (i.e. for z ∈ C, log z = log |z|+ i arg z, where
arg z ∈ (−π, π]).

This is easily verified by noting that ∆t,R
ij restricts us to the non-zero elements of MR

ij ,

and that the δ’s in Et,R
ij ensure that the sum collapses to one term.

Notice that thus far our spins have taken values in {0, 1}, as we started with a quan-
tum system. Now that we are dealing with a classical system of spins, however, it is
more useful to define spins to take values in {1,−1}. We define s̄t

(i,j)(σ) = 1− 2st
(i,j)(σ),
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where st
(i,j)(σ) ∈ {0, 1}, to be the value of our classical spin. The δ-terms in the ex-

ponent can now be written as interactions between these classical spins. For exam-
ple,

δSt,H
ij , 1101 = δst

(i,j)(0), 1 δst
(i,j+1)(0), 1 δst

(i,j)(1), 0 δst
(i,j+1)(1), 1

= st
(i,j)(0) st

(i,j+1)(0)

(
1− st

(i,j)(1)

)
st
(i,j+1)(1)

=
1

16

(
1− s̄t

(i,j)(0)

) (
1− s̄t

(i,j+1)(0)

) (
1 + s̄t

(i,j)(1)

) (
1− s̄t

(i,j+1)(1)

)
As a more complete example, the term in the exponent corresponding to the element
in the top-left corner of the matrix in eq. (8.11) is

(log A)
(

1 + s̄t
(i,j)(0)

) (
1 + s̄t

(i+1,j)(0)

) (
1 + s̄t

(i,j)(1)

) (
1 + s̄t

(i+1,j)(1)

)
·(

1 + s̄t+1
(i,j)(0)

) (
1 + s̄t+1

(i+1,j)(0)

) (
1 + s̄t+1

(i,j)(1)

) (
1 + s̄t+1

(i+1,j)(1)

)
,

which is an 8-degree, distance-3 classical interaction. In general, each of these inter-
actions will similarly be 8-degree and distance-3.

In addition, δ-terms in ∆t,R
ij can be straightforwardly adjusted to take account of the

new classical spin values. For example, a term of the form δS1, S2 , where
∣∣Si〉 =∣∣Si

1 Si
2 Si

3 Si
4
〉
, is equivalent to δS̄1, S̄2 , where

∣∣S̄i〉 = ∣∣S̄i
1 S̄i

2 S̄i
3 S̄i

4
〉
.

If we now write Θt,R
τ := ∏(i,j)∈τR

∆t,R
ij and Kt,R

τ := ∑(i,j)∈τR
Et,R
(i,j), we see that

Ut,R
τ = Θt,R

τ eKt,R
τ .

We can therefore write the main lattice term of eq. (8.13) as

n−1

∏
q=0

U4q,H
a U4q+1,V

a U4q+2,H
b U4q+3,V

b

=

[
n−1

∏
q=0

Θ4q,H
a Θ4q+1,V

a Θ4q+2,H
b Θ4q+3,V

b

]
exp

(
n−1

∑
q=0

(
K4q,H

a + K4q+1,V
a + K4q+2,H

b + K4q+3,V
b

))
.

Remark: In applying this procedure to MH
ij , one can either expand the tensor product

to get a 16× 16 matrix, or one can note that we can work with the 8× 8 matrix and
include the condition of δs̄t

(i,j+1)(1), s̄t+1
(i,j+1)(1)

.

A note on reducing the range of locality and degree of the interaction term

In some cases the interaction can be made more local, and the degree can be reduced.
For example, consider the top left 4× 4 block in eq. (8.11). The δ-terms in ∆t,V

ij restrict
us to the diagonal of this block, and hence it would be sufficient to have

(log A)
(

1 + s̄t
(i,j)(0)

) (
1 + s̄t

(i+1,j)(0)

) (
1 + s̄t+1

(i,j)(0)

) (
1 + s̄t+1

(i+1,j)(0)

)
,
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as the relevant term in the exponent, as it references the block as a whole, rather than
through individual elements. This interaction term is now 4-degree and distance-2
(rather than 8-degree and distance-3).

The lattice boundary terms

Writing |χ〉1 = ∑α′ χα′ |α′〉1, we see that the boundary term at the front of the lattice
in eq. (8.13) is(

〈α|0 � 〈χ|1
) ∣∣∣s0

〉
= ∑

α′∈{0,1}PQ

χ∗α′
(
〈α|0 �

〈
α′
∣∣
1

) (∣∣∣s0
0

〉
0
�
∣∣∣s0

1

〉
1

)
= χ∗s̄0

1
δα,s̄0

0
,

where we have changed to classical spins as we did for the main lattice term (i.e. if
s = (s1, s2, s3, . . . ), then s̄ = (s̄1, s̄2, s̄3, . . . )).

Similarly, the boundary term at the back of the lattice gives〈
s4n
∣∣∣ (|α〉0 � |χ〉1) = ∑

α′∈{0,1}PQ

χα′

(〈
s4n

0

∣∣∣
0
�
〈

s4n
1

∣∣∣
1

) (
|α〉0 �

∣∣α′〉1

)
= χs̄4n

1
δα,s̄4n

0
.

The pseudo-classical spin lattice model

Substituting the main lattice and lattice boundary terms into eq. (8.13) gives

Z ∼ ∑
s̄0,...,s̄4n

∈{−1,1}2PQ

δs̄0
0, s̄4n

0
χ∗s̄0

1
χs̄4n

1

[
n−1

∏
q=0

Θ4q,H
a Θ4q+1,V

a Θ4q+2,H
b Θ4q+3,V

b

]
·

exp

[
n−1

∑
q=0

(
K4q,H

a + K4q+1,V
a + K4q+2,H

b + K4q+3,V
b

)]

= ∑
s̄0,...,s̄4n

∈{−1,1}2PQ

δs̄0
0, s̄4n

0

[
n−1

∏
q=0

Θ4q,H
a Θ4q+1,V

a Θ4q+2,H
b Θ4q+3,V

b

]
·

exp

[
n−1

∑
q=0

(
K4q,H

a + K4q+1,V
a + K4q+2,H

b + K4q+3,V
b

)
+ log

(
χ∗s̄0

1
χs̄4n

1

)]

= ∑
s̄0,...,s̄4n

∈{−1,1}2PQ

∆(s̄0, . . . , s̄4n)e−Hcl(s̄0,...,s̄4n) (8.15)

where

∆(s̄0, . . . , s̄4n) := δs̄0
0,s̄4n

0

n−1

∏
q=0

Θ4q,H
a Θ4q+1,V

a Θ4q+2,H
b Θ4q+3,V

b ∈ {0, 1}

Hcl(s̄0, . . . , s̄4n) := −
n−1

∑
q=0

(
K4q,H

a + K4q+1,V
a + K4q+2,H

b + K4q+3,V
b

)
− log(χ∗s̄0

1
χs̄4n

1
),

with log z once again defined by its principal branch.
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Q

4n
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1

2
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4
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1
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j
t

Figure 8.8: The resultant lattice after applying the quantum-classical mapping. Each
site is illustrated by a black circle. The local interactions in eq. (8.15) are represented
by grey boxes that enclose the relevant sites. Note that the co-ordinates in the i and j
directions start at 1, while the co-ordinates in the t direction start at 0.

This is in the form of a classical partition function on a 3-dimensional lattice: two
dimensions are present from the quantum lattice (height P, width Q), but with an ad-
ditional third dimension arising from breaking the Hamiltonian into 4n pieces in eq.
(8.9) and eq. (8.10) (see Figure 8.8). However, since Hcl contains complex terms aris-
ing from the logarithms, this Hamiltonian does not represent a real classical system,
and hence we describe it as a pseudo-classical spin lattice model.

Note that Hcl is not only dependent upon the spins at each of the sites, but also on
the value of β from the definition of the quantum partition function in eq. (8.6). In
addition, Hcl is made from distance-3 terms, and each of these terms is an interaction
between at most 8 of the spins in the lattice.
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8.5.2 Computing thermodyamic properties using the Metropolis-
Hastings algorithm

We now wish to make use of the mapping derived above to compute thermodynamic
properties of the original quantum system. Let us first rewrite the partition function
(eq. (8.15)) as

Z ∼ ∑
s̄0,...,s̄4n :

∆(s̄0,...,s̄4n)=1

e−Hcl(s̄0,...,s̄4n), (8.16)

which is possible since the function ∆(s̄0, . . . , s̄4n) defines the set of allowed spin con-
figurations in the system.

The average energy of the quantum system 〈E〉, for example, is defined to be

〈E〉β̄ = − 1
Z

∂Z
∂β

∣∣∣∣
β=β̄

.

Using eq. (8.16), we see that

〈E〉β̄ ∼ ∑
s̄0,...,s̄4n :

∆(s̄0,...,s̄4n)=1

(
∂Hcl(s̄0, . . . , s̄4n)

∂β

∣∣∣∣
β=β̄

)(
1
Z e−Hcl(s̄0,...,s̄4n)

)
β=β̄

, (8.17)

which is a quantity that can be evaluated using the Metropolis-Hastings Algorithm.

The Metropolis-Hastings algorithm

The Metropolis-Hastings Algorithm [MRR+53, Has70, CG95] employs a Monte-Carlo
method to efficiently approximate some intractable probability distributions. It can
be adapted to calculate values like 〈E〉β̄ above.

Below we give a description of the algorithm [MRR+53, Has70, CG95].

Let us suppose that a system can take configurations σ ∈ Ω, and that we wish to
evaluate the quantity

〈A〉 = ∑
σ∈Ω

A(σ)

(
1
ZW(σ)

)
, Z = ∑

σ∈Ω
W(σ),

where we assume that σ ∈ Ω⇒W(σ) 6= 0.

The idea behind the algorithm is the formation of a random walk process through
configurations of the system, after which the probability of arriving at a particular
configuration σ is approximately W(σ)/Z . Several σ’s are obtained in this way, A(σ)

is calculated for each, and the approximation of 〈A〉 is calculated as the average of
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these values. The way in which the random walk process occurs makes the algo-
rithm particularly suited to evaluating thermodynamic variables in Statistical Physics,
which are generally only strongly dependent on a small number of different configu-
rations.

The random walk is effected as follows. Given the current configuration σ and two
probability distributions {Qσσ′}σ′ and {Rσσ′}σ′ ,

• a new configuration σ′ is picked with respect to the distribution {Qσσ′}σ′ ;

• the walk either proceeds to σ′ (with probability Rσσ′), or remains at σ (other-
wise).

Hence the total probability of moving from σ to σ′ is Pσσ′ = Qσσ′Rσσ′ , which we
may treat as the transition matrix for the Markov chain formed by the random walk
process. Note that it is essential that Q and R are designed so that the Markov chain is
ergodic in Ω (i.e. wherever the random walk starts, any configuration may be reached
at some point with non-zero probability).

We aim for the equilibrium distribution of our random walk to be π, where πσ =
1
ZW(σ), and hence

πP = π. (8.18)

This allows P a lot of freedom, and most implementations of the algorithm impose
the following condition, known as the Detailed Balance Condition [CG95], to simplify
the analysis:

πσPσσ′ = πσ′Pσ′σ (8.19)

for all σ, σ′ ∈ Ω. This is consistent with eq. (8.18), since summing over σ′ gives

πσ ∑
σ′∈Ω

Pσσ′︸ ︷︷ ︸
=1

= ∑
σ′∈Ω

πσ′Pσ′σ︸ ︷︷ ︸
=(πP)σ

⇒ πP = π.

We can then use eq. (8.19) to write

Rσσ′

Rσ′σ
=

πσ′

πσ
· Qσ′σ

Qσσ′
=

W(σ′)

W(σ)
· Qσ′σ

Qσσ′
=: λσσ′ .

This equation is satisfied by choosing

Rσσ′ = min(1, λσσ′).

The algorithm then runs as follows:

1. Pick a starting configuration σ, and set n = 0 and A = 0.
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2. Pick σ′ according to the distribution {Qσσ′}σ′ .

3. Accept σ′ with probability Rσσ′ = min(1, λσσ′). If it is accepted, then set σ = σ′.

4. Repeat Steps 2 and 3 several times to ensure that we are close to the equilibrium
distribution.

5. n = n + 1; A = A + A(σ).

6. Repeat from Step 2 as many times as desired.

7. 〈A〉 ≈ 1
n A

It is common to repeat the entire algorithm for several starting configurations.

Application of the Metropolis-Hastings algorithm to Z

In order to relate the above algorithm to our expression for 〈E〉β̄ in eq. (8.17), we

set W(σ) = e−Hcl(σ)
∣∣∣
β=β̄

and A(σ) = [∂Hcl(σ)/∂β]β=β̄, and we define Ω such that

σ = (s̄0, . . . , s̄4n) ∈ Ω if and only if ∆(s̄0, . . . , s̄4n) = 1.

Choosing the distribution Qσσ′ is more complicated. While many implementations of
the Metropolis-Hastings algorithm change one of the spins at random, it is not clear
in this case that this would lead to an ergodic process (owing to our irregular state
space Ω). We therefore adopt the following procedure to pick a new configuration σ′

given a configuration σ:

1. Choose an integer ns ∈ {0, . . . , N}with probability 1/(2ns+1(1− 2−N−1)), where
N = 2PQ(4n + 1) is the total number of spins in the system.

2. Select, uniformly at random, a subset of ns spins from the system and flip the
signs of all of these spins, denoting the resultant configuration σ′.

3. If σ′ is a valid configuration of the system (i.e. ∆(σ′) = 1), then choose σ′ as the
new configuration (i.e. set σ = σ′). Otherwise, the walk remains at σ.

Qσσ′ is then easily calculable for σ 6= σ′, and clearly forms an ergodic system, as it
is possible (while unlikely) to move from any given spin configuration to any other
valid spin configuration in one step.

The Metropolis-Hastings algorithm then allows us to calculate 〈E〉β̄ to any desired
accuracy.
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8.6 Final remarks and open questions

The procedures described in this chapter are easily generalised to fermionic systems
on higher-dimensional lattices, with arbitrarily many flavours of fermions. The cir-
cuits and classical lattices that result from these mappings will have one additional
dimension, owing to the use of the Suzuki-Trotter expansion.

In addition, it is not necessary for the fermionic system to exist on a regular lattice,
as is specified in Definition 8.2.1. This definition can be relaxed to allow for sites at
arbitrary points in space, or even to allow for arbitrary graphs in which the sites are
vertices and the edges denote that there is a non-negligible interaction between the
connected sites.

While the connection between matchgates and the Jordan-Wigner transform [TD02,
JM08, JMS15] was the initial motivation for developing classically-simulatable quan-
tum circuits in this way, the resultant circuits differ greatly from those formed from
matchgates. In particular, our construction outputs circuits that are generated whole,
rather than comprising specific sets of gates. In addition, the property of the Jordan-
Wigner transform for one-flavour fermions that leads to the classical simulability of
matchgates (see eq. (B.1)) is lost in our general transform for multiple flavours. It is
an open question whether there is a generalisation that retains this property, and we
explore the idea in Appendix B.1.

In order to ensure that a local, non-interacting fermionic Hamiltonian was mapped
to a local spin Hamiltonian, we doubled the number of sites in the lattice (for the
Hubbard model, we tripled the number of sites). This begs the question: how large
must the auxiliary space be in order to retain locality throughout the mapping? We
leave this as an open question.
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Concluding remarks

The research topics addressed in this thesis are varied and were drawn from a wide
range of interesting questions that can be asked about quantum computation.

The first part of the thesis aimed to gain a deeper understanding of our ability to
manipulate unknown quantum operations, and focussed on different procedures for
inverting such processes. We presented a detailed study of a novel technique for the
in-line inversion of unitary operators, firstly for those acting on qubits, and more gen-
erally for those acting on d-dimensional qudit operators. This procedure was shown
to have applications both in the refocussing of quantum states, and in the proof of an
‘inverse-free’ version of the Solovay-Kitaev Theorem.

The second part was motivated by startling results released by Canonne et al. in 2012,
on the power of conditional oracles in classical distribution testing. Surprisingly, even
the most restricted conditional oracle was able to significantly reduce the number of
queries necessary to test several properties. Indeed, in one example, the number of
queries was so diminished that it was found to be completely independent of the
size of the domain of the distribution. We defined natural quantum analogues of
the conditional oracles and investigated their power, developing an algorithm to test
whether or not a state was fully mixed, and up to a small conjecture, proved that this
algorithm could be sub-linear.

The third part was inspired by the remarkable link between matchgates and the Jordan-
Wigner transform [TD02, JM08], sparking an investigation into whether a generalised
transform could lead to higher-dimensional analogues of matchgates. While we pro-
vided evidence that this is not possible, we were able to develop generalised trans-
forms that could be used to construct other classically-simulatable quantum circuits.
Furthermore, we demonstrated the existence of a relationship between local, non-
interacting fermionic systems and local, classical spin systems.

The fascinating problems studied in this thesis have given rise to several intriguing
open questions and ideas. I look forward to exploring these new pathways and direc-
tions in my future research.
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Appendix A

Quantum Distribution Testing

A.1 An Õ(1/ε4)-query PCOND algorithm for testing uni-
formity

This section aims to provide an understanding of the intuition behind the improved uniformity
testing algorithm in Section 4.4.1 and Corollary 5.4.1. We present a simpler and slightly
weaker algorithm for uniformity testing requiring Õ(1/ε4) queries to the PCOND oracle, or
Õ(1/ε3) queries to the PQCOND oracle. The PCOND version of the algorithm is presented
in [CRS15], though here we give a more in-depth derivation.

Let A(N) be the uniform distribution on [N] (i.e. A(N)(i) = 1/N, i ∈ [N]). Given
PCOND access to a probability distribution D over [N], we wish to decide (with high
probability) whether

• |D−A(N)| = 0 (i.e. D = A(N)), or

• |D−A(N)| ≥ ε,

provided that it is guaranteed that one of these is true.

Suppose that the latter option is true, i.e. D is ε-far from uniform.

We now partition our domain into two sets: elements of weight at least 1/N; and
elements of weight less than 1/N. More formally, we define

H :=
{

h ∈ [N] : D(h) ≥ 1
N

}
, L :=

{
l ∈ [N] : D(l) <

1
N

}
Proposition A.1.1.

∑
h∈H

(
D(h)− 1

N

)
= ∑

l∈L

(
1
N
− D(l)

)
≥ ε

2
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Proof. First, note that ∑i∈[N] D(i) = 1 and thus

0 = ∑
i∈[N]

(
D(i)− 1

N

)
= ∑

h∈H

(
D(h)− 1

N

)
+ ∑

l∈L

(
D(l)− 1

N

)
= ∑

h∈H

(
D(h)− 1

N

)
−∑

l∈L

(
1
N
− D(l)

)
and the equality follows.

Since D is ε-far from uniform, we have that

ε ≤ ∑
i∈[N]

∣∣∣∣D(i)− 1
N

∣∣∣∣
= ∑

h∈H

∣∣∣∣D(h)− 1
N

∣∣∣∣+ ∑
l∈L

∣∣∣∣D(l)− 1
N

∣∣∣∣
= 2 ∑

h∈H

∣∣∣∣D(h)− 1
N

∣∣∣∣ = 2 ∑
l∈L

∣∣∣∣ 1
N
− D(l)

∣∣∣∣
and the inequality follows.

We define the ‘significantly heavy’ and ‘significantly light’ sets

H′ :=
{

h ∈ [N] : D(h) ≥ 1
N

+
ε

4N

}
⊆ H,

L′ :=
{

l ∈ [N] : D(h) <
1
N
− ε

4N

}
⊆ L

Now,

ε

2
≤ ∑

h∈H

(
D(h)− 1

N

)
= ∑

h∈H′

(
D(h)− 1

N

)
+ ∑

h∈H\H′

(
D(h)− 1

N

)
︸ ︷︷ ︸

< ε
4N

< D(H′)− |H
′|

N
+

ε

4N
( |H|︸︷︷︸
≤N

−|H′|)

≤ D(H′) +
ε

4
−
(
|H′
N

+
ε|H′|
4N

)
≤ D(H′) +

ε

4
,

and hence
D(H′) >

ε

2
− ε

4
=

ε

4
.
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And,

ε

2
≤ ∑

l∈L

(
1
N
− D(l)

)
= ∑

l∈L′

(
1
N
− D(l)

)
+ ∑

l∈L\L′

(
1
N
− D(l)

)
︸ ︷︷ ︸

≤ ε
4N

≤ |L
′|

N
− D(L′) +

ε

4N
( |L|︸︷︷︸
≤N

−|L′|)

≤ |L
′|

N
+

ε

4
−
(

D(L′) +
ε|L′|
4N

)
≤ |L

′|
N

+
ε

4
,

and thus
|L′| ≥ Nε

4
.

We can obtain an element of L′ with high probability by sampling from SAMPA(N)

O(1/ε) times, and we can obtain an element of H′ with high probability by sampling
from SAMPD O(1/ε) times. These elements will have a multiplicative difference of at
least 1/N+ε/(4N)

1/N−ε(4N)
≥ 1 + ε

2 , which can be detected with high probability by using the

COMPARE procedure with parameters, say, η = ε/100 and K = 2, requiring Õ(1/ε2)

PCONDD queries.

Since there will be O(1/ε2) pairs to test, and each use of COMPARE requires Õ(1/ε2)

queries, the overall sample complexity of the algorithm will be Õ(1/ε4).

In addition, by replacing the COMPARE procedure with the QCOMPARE procedure,
we can instantly reduce the sample complexity of this algorithm to Õ(1/ε3).

A.2 A sub-linear algorithm for Mixedness Testing

Conjecture A.2.1. Given an n-dimensional quantum state ρ ∈ Cn × Cn and a basis B =

{|bi〉}i∈[n] where n is even, let D(ρ,B)
[n] be the probability distribution over [n] such that

D(ρ,B)
[n] (i) := Tr(ρ |bi〉 〈bi| ) = 〈bi| ρ |bi〉.

For any ε > 0, there exists an algorithm that solves the Mixedness problem for ρ with proba-
bility at least 2/3 using Õ(

√
n/ε) PQCOND queries to D(ρ,B)

[n] (where each query may involve
a different B). The algorithm outputs MaximallyMixed if ρ is the maximally-mixed state, and
NotMaximallyMixed otherwise.

In order to prove the above conjecture, we make use of the Chebyshev inequality (see
eq. (1.5)), and analyse E

(
δ(B)

)
and Var

(
δ(B)

)
more closely than in Section 6.3.
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We first prove the following useful proposition:

Proposition A.2.2.∫
Tn

vα0−1
0 · · · vαn−1−1

n−1 dV = (n− 1)!
Γ(α0) · · · Γ(αn−1)

Γ(α0 + · · ·+ αn−1)
.

Proof. First, note that∫ a

0
xp−1(1− x)q−1dx = ap+q−2

∫ a

0

(x
a

)p−1 (
1− x

a

)q−1
dx

= ap+q−1
∫ 1

0
yp−1(1− y)q−1dy

= ap+q−1B(p, q), (A.1)

where B(p, q) is the Beta function.

Now,∫
Tn

vα0−1
0 · · · vαn−1−1

n−1 dV

= (n− 1)!
∫ 1

v0=0
· · ·

∫ 1

vn−1=0
vα0−1

0 · · · vαn−1−1
n−1 δ(1−∑i∈[n] vi) dv0 · · · dvn−1

= (n− 1)!
∫ 1

v0=0

∫ 1−v0

v1=0
· · ·

∫ 1−∑n−3
i=0 vi

vn−2=0
vα0−1

0 · · · vαn−2−1
n−2

(
1−

n−2

∑
i=0

vi

)αn−1−1

dv0 · · · dvn−2

= (n− 1)!
∫ 1

v0=0
vα0−1

0

∫ 1−v0

v1=0
vα1−1

1 · · ·

∫ 1−∑n−3
i=0 vi

vn−2=0
vαn−2−1

n−2

(
1−

n−2

∑
i=0

vi

)αn−1−1

dvn−2


︸ ︷︷ ︸

(1−∑n−3
i=0 vi)

αn−2+αn−1−1B(αn−2,αn−1)

dvn−3 · · · dv0,

where, in the last line, we have made use of eq. (A.1). Repeated use of this identity
gives ∫

Tn
vα0−1

0 · · · vαn−1−1
n−1 dV

= (n− 1)!B(α0, α1 + · · ·+ αn−1)B(α1, α2 + · · ·+ αn−1) · · · B(αn−2, αn−1).

The result follows from use of the identity for the Beta function B(p, q) = Γ(p)Γ(q)
Γ(p+q) .

Analysing E
(
δ(B)

)
Recall that n is even, and let 2 ≤ k ≤ n be even.

By slightly modifying the approach used in eq. (6.6) and eq. (6.7) (by cycling only the
first k indices), we arrive at

E(|V · d|) ≥ 1
k

[
max

σ∈Sym([n])
|dσ(0) − dσ(1) + dσ(2) − · · · − dσ(k−1)|

]
E(|v0 − v1 + v2 − · · · − vk−1|).

(A.2)
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We now evaluate the quantity Ek,n := E(|v0 − v1 + v2 − · · · − vk−1|).

Recall that En := E(|v0 − v1 + v2 − · · · − vn−1|) (defined in eq. (6.2)), and note that
Ek,n 6= Ek, as the expectation is still over n variables.

Now, from eq. (6.5) we have

Ek,n = (n− 1)!
∫ 1

v0=0
· · ·

∫ 1

vn−1=0
δ

(
1−

n−1

∑
i=0

vi

)
|v0 − v1 + v2 − · · · − vk−1| dvn−1 · · · dv0

= (n− 1)!
∫ 1

vn−1=0

∫ 1−vn−1

vn−2=0
· · ·

∫ 1=∑n−1
i=2 vi

v1=0
|v0 − v1 + v2 − · · · − vk−1| dvn−1 · · · dv0,

where, in the second line, v0 is defined to be 1−∑n−1
i=1 vi, as it is no longer a variable

in the integration. Here, if we let λ = ∑n−1
i=k vi, then v0 = λ−∑k−1

i=1 vi, and

Ek,n = (n− 1)!
∫ 1

vn−1=0
· · ·

∫ 1−∑n−1
i=k+1 vi

vk=0
Λλ,k dvk · · · dvn−1,

where

Λλ,k :=
∫ λ

vk−1=0

∫ λ−vk−1

vk−2=0
· · ·

∫ λ−∑i=2k−1vi

v1=0
|v0 − v1 + v2 − · · · − vk−1| dv1 · · · dvk−1

= λk
∫ 1

wk−1=0

∫ 1−wk−1

wk−2=0
· · ·

∫ 1−∑i=2k−1wi

w1=0
|w0 − w1 + w2 − · · · − wk−1| dw1 · · · dwk−1,

where we have performed the substitution wi =
vi
λ . Thus

Λλ,k = λk
∫ 1

wk−1=0
· · ·

∫ 1

w1=0
δ

(
1−

k−1

∑
i=0

vi

)
|w0 − w1 + w2 − · · · − wk−1| dw1 · · · dwk−1

=
λk

(k− 1)!
Ek,

from the definition in eq. (6.2). Hence

Ek,n =
(n− 1)!Ek
(k− 1)!

∫ 1

vn−1=0
· · ·

∫ 1−∑n−1
i=k+1 vi

vk=0
λk dvk · · · dvn−1.

By writing vn in place of λ, we can rewrite this as (where the dummy indices have
been altered)

Ek,n =
(n− 1)!Ek
(k− 1)!

· 1
(n− k)!

∫
Tn−k+1

vk
0 dV

=
(n− 1)!Ek
(k− 1)!

· k!
n!

,
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by using Proposition A.2.2. Thus,

Ek,n =
k
n

Ek ≥
√

k
2n

, (A.3)

where we have used the bound derived in eq. (6.16).

We now wish to find a lower bound for maxσ∈Sym([n]) |dσ(0) − dσ(1) + dσ(2) − · · · −
dσ(k−1)|.

Wlog assume that |d0| ≥ |d1| ≥ · · · , and define S := ∑k−1
i=0 |di|. The approach used in

Section 6.4 then yields

max
σ∈Sym([n])

∣∣∣dσ(0) − dσ(1) + dσ(2) − · · · − dσ(k−1)

∣∣∣ ≥ S
2

.

Combining this result with eq. (A.2), eq. (A.3) and eq. (6.4), we find that

E
(

δ(B)
)
≥ S

4
√

k
(A.4)

for any k, and so we choose k to maximise the RHS. Note that if k = n then S = η, and
we regain the same bound as in eq. (6.16).

Analysing Var
(
δ(B)

)
From the definition of the variance, we see that

Var
(

δ(B)
)
= Var

 ∑
i∈[n]
|V(i) · d|


= ∑

i∈[n]
Var

(
|V(i) · d|

)
+ ∑

i,j∈[n];i 6=j
Cov

(
|V(i) · d|, |V(j) · d|

)
= n Var (|V · d|) + n(n− 1)Cov

(
|V(1) · d|, |V(2) · d|

)
≤ nE

(
|V · d|2

)
+ n(n− 1)Cov

(
|V(1) · d|, |V(2) · d|

)
, (A.5)

where the second line follows from eq. (1.4), the third line follows since each of
the |V(i) · d|’s has the same marginal distribution, and the final line follows from eq.
(1.3).

We now calculate

E
(
|V · d|2

)
=
∫

Tn
|v0d0 + · · · vn−1dn−1|2 dV

= ∑
i∈[n]

d2
i

∫
Tn

v2
i dV + ∑

i,j∈[n];i 6=j
didj

∫
Tn

vivj dV

= ∑
i∈[n]

d2
i ·
(∫

Tn
v2

0 dV
)
+ ∑

i,j∈[n];i 6=j
didj ·

(∫
Tn

v0v1 dV
)

,
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where the final line follows because the integral is symmetric in the vi.

Using Proposition A.2.2, we see that the integral in the first term evaluates to 2
n(n+1) ,

and the integral in the second term evaluates to 1
n(n+1) . Thus

E
(
|V · d|2

)
=

2
n(n + 1) ∑

i∈[n]
d2

i +
1

n(n + 1) ∑
i,j∈[n];i 6=j

didj

=
1

n(n + 1) ∑
i∈[n]

d2
i +

1
n(n + 1) ∑

i,j∈[n]
didj

=
1

n(n + 1) ∑
i∈[n]

d2
i +

1
n(n + 1)

 ∑
i∈[n]

di

2

.

The sum in the second term is 0 by definition (noted in Section 6.1), and hence

E
(
|V · d|2

)
=

1
n(n + 1) ∑

i∈[n]
d2

i . (A.6)

As we chose k to maximise the bound in eq. (A.4), we can immediately deduce the
inequality (recalling that |d0| ≥ |d1| ≥ · · · )

S
4
√

k
≥ |d0|+ |d1|

4
√

2
=⇒ |d0|+ |d1| ≤ S

√
2
k

.

We thus see that |d0| ≤ S
√

2/k, and hence that |di| ≤ S
√

2/k for all i.

The maximum value of ∑k−1
i=0 d2

i is therefore obtained by setting |d0| = · · · = |dd√k/2e| =
S
√

k/2 and |dd√k/2e+1| = · · · = |dk−1| = 0, and so

k−1

∑
i=0

d2
i ≤ S2 · 2

k
·
⌈√

k
2

⌉
≤ s2 · 2

k

(√
k
2
+ 1

)
= S2 2

k
+ S2

√
2
k

. (A.7)

Since ∑k−1
i=0 |di| = S, we see that |dk−1| ≤ S

k , and hence |dk|, . . . , |dn−1| ≤ S
k . Also,

∑n−1
i=k |di| = η − S, and thus we can similarly maximise this sum to deduce that

n−1

∑
i=k

d2
i ≤

S2

k2 ·
⌈

η − S
S/k

⌉
≤ S(η − S)

k
+

S2

k2 . (A.8)
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By combining eq. (A.6), eq. (A.7) and eq. (A.8), we see that

E
(
|V · d|2

)
≤ 1

n(n + 1)

(
S2 2

k
+ S2

√
2
k
+

S(η − S)
k

+
S2

k2

)
,

=
1

n(n + 1)

(
S2

√
2
k
+

S(η + S)
k

+
S2

k2

)

≤ 1
n(n + 1)

· 5Sη√
k

=
1

n(n + 1)
· 20η · S

4
√

k

≤ 20η

n(n + 1)
·E
(

δ(B)
)

Substituting this back into eq. (A.5), we get

Var
(

δ(B)
)
≤ 20η

n + 1
·E
(

δ(B)
)
+ n(n− 1)Cov

(
|V(1) · d|, |V(2) · d|

)

Here we include a conjecture about Cov
(
|V(1) · d|, |V(2) · d|

)
.

Conjecture A.2.3. In this scenario,

∣∣∣Cov
(
|V(1) · d|, |V(2) · d|

)∣∣∣ ≤ ν

n
Var (|V · d|)

(
≤ ν

n
E
(
|V · d|2

))

for some constant ν.

Reasoning. V(1) and V(2) are derived from columns of a unitary matrix, W(1) and
W(2), for which the only dependence is that W(1) ·W(2) = 0. This property is one
restriction on two n-dimensional vectors, suggesting that ‖Cov(W(1), W(2))‖ will be
roughly the same as ‖Var(W)‖/n, where W is a generic W(i). One would expect that
by applying the same function to W(1) and W(2) (and W), neither the covariance nor
the variance could increase by more than a constant factor. This leads to the statement
of the conjecture.

If we take Conjecture A.2.3 to be true, then we see that

Var
(

δ(B)
)
≤ 20η(1 + ν)

n + 1
·E
(

δ(B)
)

Applying the Chebyshev inequality

The Chebyshev inequality (see eq. (1.5)) implies that

P

[∣∣∣δ(B) −E
(

δ(B)
)∣∣∣ ≤ 1

2
E
(

δ(B)
)]
≥ 1− 20η(1 + ν)

(n + 1)E
(
δ(B)

) .
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Now, E
(

δ(B)
)
≥ η

4
√

n (from eq. (6.8)), which implies that

P

[
δ(B) ≥ η

8
√

n

]
≥ Pr

[∣∣∣δ(B) −E
(

δ(B)
)∣∣∣ ≤ 1

2
E
(

δ(B)
)]

≥ 1− 80(1 + ν)√
n

.

As n → ∞, we see that the probability tends to 1, and hence it is almost certain that
we will get a ‘good’ basis. The analysis presented in Section 6.2 then follows to yield
an algorithm that requires only Õ(

√
n/ε) queries.
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Appendix B

Classical Simulation of Quantum Circuits

B.1 Higher-dimensional analogues of matchgates

The Jordan-Wigner transform (see Section 1.1.3) maps fermions of one flavour to (2-
dimensional) qubits. This transform has a particularly advantageous property, de-
scribed below, that is the crux of the proof given in [JM08, JMS15] that circuits built
from matchgates are classically-simulatable.

Is it possible to extend the Jordan-Wigner transform to map multiple flavours of
fermions to d-dimensional qudits, while still retaining this property? This would lead
directly to higher-dimensional analogues of matchgates.

We provide evidence that such a mapping is not possible for odd d, and that for even
d, the circuits that are achieved can be trivially reduced to those built from match-
gates.

Classically-simulatable quantum circuits on qubits

To ease notation, we define the 2N Majorana fermions to be

b2i = ci = (ai + a†
i ) = Z1 . . . Zi−1Xi

b2i+1 = di = i(ai − a†
i ) = Z1 . . . Zi−1Yi,

where we have used the Jordan-Wigner transform expressed in eq. (1.10).

A surprising property that these operators obey is that the span of their quadratic
products form a Lie algebra, that is:

[bi bj , bk bl ] ∈ span({bpbq}p,q) (B.1)

This property leads directly to the classical simulability of circuits comprising ele-
ments of the corresponding Lie group i.e. matchgates) as gates. For more details,
see [JMS15, JM08] and Section 7.2.
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Classically-simulatable quantum circuits on qudits?

Here, we (non-rigorously) illustrate some of the difficulties in generalising the Jordan-
Wigner operators to d dimensions, while still retaining a closed algebra like that in eq.
(B.1).

For this we consider odd d and begin with the assumption that the b operators take
the form

bi,α = T1 . . . Ti−1(Aα)iSi+1 . . . SN,

where S, T and Aα are invertible Hermitian d× d matrices. We also impose the condi-
tions

AαT = tαTAα, AαS = sαSAα, ST = σTS, Aα Ab = ραβ Aβ Aα, (B.2)

where tα, sα, α, ραβ 6= 0. (Note that in the 2-dimensional case, T = Z, S = 1, A1 =

X, A2 = Y, tα = −1, sα = 1, σ = 1, ραβ = −1 for a 6= b.)

For p < q, we have that

bp,gbq,h = T2
1 . . . T2

p−1(AgT)p(ST)p+1 . . . (ST)q−1(SAh)qS2
q+1 . . . S2

N

bq,hbp,g = T2
1 . . . T2

p−1(TAg)p(TS)p+1 . . . (TS)q−1(AhS)qS2
q+1 . . . S2

N,
(B.3)

and we consider the following commutator for i < j

[bi,abj,b , bi,abj+1,c]

∝ T4
1 . . . T4

i−1(AαT)2
i (ST)2

i+1 . . . (ST)2
j−1(S

2TAβ)j(S3Ac)j+1S4
j+2 . . . S4

N,

which has been simplified using the commutation relations in eq. (B.2). In the 2-
dimensional case, this is one of the few commutator expressions that is non-zero, and
so we aim for a non-zero value here also.

We attempt to match this expression with the quadratic terms in eq. (B.3), and notice
that the sites at the ends of the chain suggest1 that T4 = T2 ⇒ T2 = 1 and, similarly,
that S4 = S2 ⇒ S2 = 1.

This simplifies the quadratic terms and commutator significantly, and we see that

bp,gbq,h = (AgT)p(ST)p+1 . . . (ST)q−1(SAh)q

bq,hbp,g = (TAg)p(TS)p+1 . . . (TS)q−1(AhS)q

[bi,abj,b , bi,abj+1,c] ∝ (Aα)
2
i (TAb)j(SAc)j+1.

Comparing the commutator to the quadratic terms, the possibilities are2

1Actually, this suggests that T4 ∝ T2 and S4 ∝ S2, but for our purposes it is more illustrative to treat
these as equalities.

2Once again we have replaced the proportionalities with equalities for illustration.
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1. p = i, q = j, and hence SAc = 1 ⇒ Ac = S ∀c, which gives only a trivial result
(as we would expect our Ac’s to be different)

2. p = i, q = j + 1, and hence that TAb = 1 ⇒ Ab = T ∀b, which also gives a
trivial result (as we would expect our Ab’s to be different)

3. p = j, q = j + 1, and hence that (Aα)2 = 1 ∀a.

Moving forward with Point 3, we see that T2 = S2 = A2
α = 1. Now, from eq. (B.2),

we see that STS = σT. Taking the trace of both sides, we see that Tr T = σ Tr T,
and so either Tr T = 0 (which is a contradiction, since T has an odd number of ±1
eigenvalues), or σ = 1. Hence we conclude that T and S commute. Using the other
relations in eq. (B.2), we conclude that T, S and all of the Aα’s mutually commute,
and WLOG can be considered to be diagonal. Circuits built from diagonal operators
are trivially classically simulatable, and hence this approach does not yield a useful
result.

Instead of quadratic terms in the commutator, we may consider cubic terms. How-
ever, we find that [bi,abj,bbk,c , bi,abj,bbk+1,d] exhibits similar problems to [bi,abj,b , bi,abj+1,c]:
we find that T6 = T3 ⇒ T3 = 1. Since T is Hermitian, it has real eigenvalues, and
hence these eigenvalues can only be±1, which leads us to the conclusion that T2 = 1,
as in the case discussed above. This also holds true for S and the Aα’s, and we arrive
at another trivial classical simulation result.

It is clear from this that increasing the degree of terms in the commutator will not
produce a more useful result, and so it appears that for odd d this approach will not
yield a generalisation of the Jordan-Wigner operators that leads to non-trivial classical
simulation results.

For even d, it is possible to have Tr T = 0 even when T2 = 1. Continuing the anal-
ysis quickly leads to the conclusion that σ, tα, sα = ±1 and that A2

α = 1. Hence we
conclude that all of the operators either commute or anti-commute. By considering
the commutator [bi,abj,b , bi,abj,c], it becomes clear that there must be a set of Aα’s that
mutually anti-commute in order to ensure that not all of the commutators are equal to
zero. This leads directly to the bi’s forming a Clifford algebra, as in the 2-dimensional
case. While this produces a generalisation of the Jordan-Wigner operators in even di-
mensions, the resultant quantum circuits can easily be decomposed into matchgates
and so do not yield any new classes of classically-simulatable quantum circuits.
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[ÁSS12] Gonzalo A Álvarez, Alexandre M Souza, and Dieter Suter. Iterative
rotation scheme for robust dynamical decoupling. Physical Review A,
85(5):052324, 2012.

[Atk08] Kendall E Atkinson. An introduction to numerical analysis. John Wiley &
Sons, 2008.

[Bal05] R. C. Ball. Fermions without Fermion Fields. Physical Review Letters,
95(17):176407, October 2005.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower
bounds via communication complexity. Computational Complexity,
21(2):311–358, 2012.

[BC14] Daniel J Brod and Andrew M Childs. The computational power of
matchgates and the XY interaction on arbitrary graphs. Quantum Infor-
mation & Computation, 14(11-12):901–916, 2014.

[BFF+01] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubin-
feld, and Patrick White. Testing random variables for independence
and identity. In Foundations of Computer Science, 2001. Proceedings. 42nd
IEEE Symposium on, pages 442–451. IEEE, 2001.

[BFR+10] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith,
and Patrick White. Testing Closeness of Discrete Distributions.
arXiv:1009.5397 [cs, math, stat], September 2010. arXiv: 1009.5397.

[BG07] Joakim Bergli and Leonid Glazman. Spin echo without an external per-
manent magnetic field. Physical Review B, 76(6):064301, 2007.



BIBLIOGRAPHY 118

[BHH11] S. Bravyi, A. W. Harrow, and A. Hassidim. Quantum Algorithms for
Testing Properties of Distributions. IEEE Transactions on Information
Theory, 57(6):3971–3981, June 2011.

[BK02] Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computa-
tion. Annals of Physics, 298(1):210–226, 2002.

[BO01] C. D. Batista and G. Ortiz. Generalized Jordan-Wigner Transforma-
tions. Physical Review Letters, 86(6):1082–1085, February 2001.

[Bon15] Annalisa De Bonis. Constraining the number of positive responses in
adaptive, non-adaptive, and two-stage group testing. Journal of Combi-
natorial Optimization, pages 1–34, September 2015.

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant.
Optimal Algorithms for Testing Closeness of Discrete Distributions. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 1193–1203, Philadelphia, PA, USA, 2014.
Society for Industrial and Applied Mathematics.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca.
Quantum algorithms revisited. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 454,
pages 339–354. The Royal Society, 1998.

[CFGM16] S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah. On the Power
of Conditional Samples in Distribution Testing. SIAM Journal on Com-
puting, pages 1261–1296, January 2016.

[CFMdW09] Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf.
Quantum queries for testing distributions, 2009.

[CFMdW10] Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf.
New Results on Quantum Property Testing. arXiv:1005.0523 [quant-ph],
May 2010. arXiv: 1005.0523.

[CG95] Siddhartha Chib and Edward Greenberg. Understanding the
Metropolis-Hastings algorithm. The American Statistician, 49(4):327–
335, 1995.

[CL00] P. M. Chaikin and T. C. Lubensky. Principles of Condensed Matter Physics.
Cambridge University Press, September 2000.

[CR14] Clément Canonne and Ronitt Rubinfeld. Testing probability distribu-
tions underlying aggregated data. In International Colloquium on Au-
tomata, Languages, and Programming, pages 283–295. Springer, 2014.



BIBLIOGRAPHY 119

[CRS15] Clément L Canonne, Dana Ron, and Rocco A Servedio. Testing prob-
ability distributions using conditional samples. SIAM Journal on Com-
puting, 44(3):540–616, 2015.

[D+00] David P DiVincenzo et al. The physical implementation of quantum
computation. arXiv preprint quant-ph/0002077, 2000.

[DBGV05] A. De Bonis, L. Gasieniec, and U. Vaccaro. Optimal Two-Stage Al-
gorithms for Group Testing Problems. SIAM Journal on Computing,
34(5):1253–1270, January 2005.

[DDJB14] Nilanjana Datta, Tony Dorlas, Richard Jozsa, and Fabio Benatti. Prop-
erties of subentropy. Journal of Mathematical Physics, 55(6):062203, 2014.

[DJ92] David Deutsch and Richard Jozsa. Rapid Solution of Problems by
Quantum Computation. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 439(1907):553–558, De-
cember 1992.

[DKN15] Ilias Diakonikolas, Daniel M Kane, and Vladimir Nikishkin. Testing
identity of structured distributions. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1841–1854.
Society for Industrial and Applied Mathematics, 2015.

[DN05] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev
algorithm. arXiv preprint quant-ph/0505030, 2005.

[FJO+15] Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj
Pichapathi, and Ananda Theertha Suresh. Faster algorithms for test-
ing under conditional sampling. CoRR, vol. abs/1504.04103, 2015.

[FK90] Holger Frahm and VE Korepin. Critical exponents for the one-
dimensional Hubbard model. Physical Review B, 42(16):10553, 1990.

[FM98] Ray Freeman and Michael J Minch. Spin choreography: basic steps in high
resolution NMR. Oxford University Press New York, 1998.

[GG81] Israel Gohberg and Seymour Goldberg. Basic operator theory.
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