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Summary 
 

Application of Radial Distribution Functions to Diffraction and Imaging Data: Interfacial 

Structures, Amorphous, Disordered Materials 

Karim Tanju Mukaddem 

 

The central theme of this thesis is the application of radial and pair distribution function 

analysis to materials characterisation problems for nanotechnology. These concepts are 

introduced in Chapter 1, and the associated methods are described in Chapter 2. 

 

Chapter 3 details the first of the results which discusses the design and development of a 

software tool called ImageDataExtractor. This auto-extracts microscopy images and then 

analyses them to afford quantitative information regarding particles in a sample, such as shape, 

size and distribution. It realises an opportunity for data-mining the ubiquity of readily available 

images in the literature. Chapter 4 presents results of the development and execution of a novel 

experimental technique, called glancing-angle pair distribution function (gaPDF) analysis, 

applied to the structure of the working electrode in dye-sensitised solar cells (DSSCs). This 

structure was successfully observed, validating this novel method. The investigation also 

suggested preferred binding modes of the carboxylic acid anchoring groups present in this 

interfacial structure. Chapters 5 and 6 demonstrate the application of PDF analysis to 

synchrotron-based powder diffraction data of two material case studies: the rare earth phosphate 

glass (REPG) (Gd2O3)0.230(P2O5)0.770, and four Ru based photo-isomers. The closest R…R rare 

earth separation, which governs optical properties of REPGs, was determined to be 4.2(1) Å, 

aided by various statistical techniques. Analysis on four Ru-based photo-isomers confirmed: the 

existence of local structure in such compounds, their ability to be photo-isomerised in powder 

form, the theoretical models constructed using computational techniques, and the lack of 

heterogeneity in photo-isomerisation throughout a given light-induced sample. Chapter 7 

concludes the work and offers a future outlook. 
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1. Introduction 
 

One of the most challenging stages in the development of new materials is their structural 

characterisation. The unequivocal determination of the structures of such materials is crucial for 

subsequent research and development, through the establishment of structure-property 

relationships.  

 

Certain materials are sufficiently simple and homogeneous that their average surface or 

bulk structure can be considered representative and used for the establishment of these structure-

property relationships. Other materials, usually those that are more specific in their functionality, 

require the elucidation of local structural information that pertains to the nanometre-to-angstrom 

scale in order to uncover the mechanisms that underlay their mode of operation. The 

performance of such materials can be affected by, and sometimes rely on, factors pertaining to 

their local structure, such as nanoscale morphology, surface reconstructions, interfaces, point or 

extended defects and others.1 

 

An example of the former class of materials would be a crystalline sample of nickel, 

whose structure can be characterised with sufficient accuracy using bulk analysis techniques (e.g. 

single-crystal X-ray diffraction), as its functionality is indifferent to local structural 

perturbations.   

 

An example of the latter class of materials would be trans-[Ru(NH3)4(SO2)Cl]Cl (one of 

the materials investigated in Chapter 7). The mechanism of functionality exhibited by this 

material depends on light-induced structural changes at the angstrom scale, and thus it cannot be 

characterised by a spatiotemporal average, like in the case of the former. 
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Atomic pair distribution function (PDF) analysis, especially when combined with 

complementary techniques, is a highly suitable technique to tackle this so-called nanostructure 

problem.2,3 

 

Atomic PDF analysis (described in detail in Chapter 2), is an experimental technique 

used to describe the local structure of samples, by employing a Fourier Transform to make full 

use of a diffraction pattern. This is accomplished through the calculation of a mathematical 

function called the PDF, which describes the distribution of distances between pairs of objects - 

in this context: pairs of atoms.  

 

A close relative of the PDF is the radial distribution function (RDF), which describes the 

distribution of objects in space as a function of radial distance. It contains information regarding 

the shape, size, and local environment of the objects.  

 

The primary focus of this thesis is the application of PDF and RDF analysis to the 

characterisation of the local structure in materials. 

 

This was accomplished in three distinct manners, through the:  

 

• Development of an image-recognition-based software tool called ImageDataExtractor, 

which auto-extracts and analyses imaging data from the literature to calculate various 

properties of detected particles, including their RDF.  

• Development of a novel experimental technique called glancing-angle PDF (gaPDF), which 

allows PDF analysis of samples in the form of thin films and the application of this technique 

to working electrodes of dye-sensitised solar cells (DSSCs).  

• Applications of PDF analysis to two materials case studies: the Gd-doped rare earth 

phosphate glass (Gd2O3)0.230(P2O5)0.770, and four Ru-based photoisomers. 
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1.1 ImageDataExtractor 

 

 
Figure 1.1 An illustration of the auto-extraction and analysis process of images from the 
scientific literature performed by ImageDataExtractor.  

 

Data-driven materials discovery carries the idea that one can source and mine scientific 

data to establish structure-property relationships and uncover new scientific correlations. These 

new correlations can then be used to discover or re-purpose chemicals for a given materials 

application. To date, a large number of data-driven materials predictions have been presented 

using data generated by high-throughput computation.4-8  

 

A significant hurdle is that the sought-after scientific data exist in a fragmented form 

across scientific papers and technical documents. Text mining tools relying on natural language 

processing and optical character recognition have been developed to partially overcome this 

challenge,9-12 with a tool geared specifically towards the specialised language and textual-

structure of the materials science domain being developed in the form of ImageDataExtractor. 13  

 

Despite these successes, tools that capture and quantify image-based data in this domain 

are starkly lacking, while images from microscopy techniques, containing a wealth of 

information, remain pervasive in scientific publications. Such images are often not quantified in 

the academic literature, in which cases the authors generally opt to discuss relevant features 

qualitatively, drawing quantitative conclusions about the material structure from less visual 

metrology techniques. 
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Computer vision, machine learning and Bayesian statistics have assisted the manual 

analysis of images from these specialised microscopy experiments to address very specific 

problems in materials science. For example, Holm and co-workers have used convolutional 

neural nets to analyse grain boundaries in SEM images of ultrahigh carbon steel.14 Azimi et al. 

have classified microstructural features of steel in SEM and light optical microscopy images 

using fully convolutional neural networks.15 Gola et al. used a support vector machine to classify 

microstructural images of low carbon steels.16 Deep-learning methods have also been applied to 

STEM images in order to determine which crystal lattice defects are responsible for solid-state 

structural transformations in tungsten sulphide, 17 or semantic segmentation of defects in steels. 18 

Bayesian inference has been used to extract interatomic interaction parameters of materials in 

STM images. 19 

 

ImageDataExtractor seeks to fulfil the data-mining need for a generic tool that auto-

extracts and quantifies microscopy images from scientific documents, while harnessing the 

essence of these types of computing and mathematical capabilities that are being used for 

bespoke, manual, image quantification. It is capable of automated, high-throughput image 

extraction and quantification, providing information about the shape, size, and distribution of the 

2-D projections of particles held within an image. The development of ImageDataExtractor is a 

significant first step toward the ultimate goal of auto-generating materials databases of 

information on particles from imaging data.  
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1.2 Glancing-angle PDF Analysis of DSSC Working Electrodes 

 

 
Figure 1.2 (A) Schematic drawing of the experimental setup of glancing-angle PDF (gaPDF). 
(B) A model resulting from density functional theory (DFT) calculations on the dye N3 adsorbed 
onto TiO2. (C) The PDF agreement between the gaPDF data and model of N3 on TiO2.  

 

Dye-sensitised solar cells (DSSCs) represent promising prospects for the next generation 

of photovoltaic devices. 20 In particular, their transparency stimulates their development in solar-

powered windows for energy-sustainable buildings in future cities.21,22 In addition to 

representing the only truly transparent building-integrated photovoltaic technology, DSSCs excel 

in poor or ambient sunlight conditions. This stands in sharp contrast to other photovoltaic 

devices.23,24  

 

The working electrode of a DSSC device usually adopts the form of a 

dye…semiconductor composite thin film, whose thickness is typically 5-10 µm, depending on the 

manufacturing method. The sunlight-harvesting dye molecules are bound to the semiconductor 
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(usually TiO2) surface via an anchoring group, which is fundamental to the function of the DSSC 

since it facilitates the transfer of electrons from the photo-excited dye, initiating the electrical 

circuit. Therefore, the structural determination of a dye…TiO2 interface, including a resolution of 

its preferred anchoring mode, is essential for the strategic improvement of DSSC technology.25-27  

 

The structural nature of dye…TiO2 interfaces has already been investigated using various 

materials characterisation methods such as: vibrational spectroscopy (IR and Raman), 28-31 X-ray 

photoelectron spectroscopy (XPS),7,32,33 X-ray absorption spectroscopy, 33 optical metrology, 

such as UV-vis absorption and emission spectroscopy,31,34 X-ray (XRR) and neutron 

reflectometry (NR), 8,35-39 concerted scanning tunnelling microscopy and scanning tunnelling 

spectroscopy (STM/STS),40,41 and atomic force microscopy (AFM). 8,42,43 

 

These materials characterisation efforts have afforded discussions and conclusions in 

areas such as the ligands responsible for dye anchoring,33 the existence of multiple binding 

modes29,31,40 and variations in binding geometries.28,32 However, the DSSC field still lacks a 

consistent, quantitative and reliable method to probe the local atomic structure of dyes on TiO2. 

 

PDF analysis has become a powerful technique for the characterisation of 

nanostructures,1 having been borne out of a field of materials characterisation on liquids44-47 and 

glasses,44,48,49 which exclusively exhibit a local short-range order of the atomic structure. 

 

PDF analysis has previously been applied to bulk powder (prepared by scraping off 

meso-MAPbI3 from thin film electrodes) constituents of perovskite solar cell working electrodes, 

which revealed a two-component nanostructure, underscoring the need for a full characterisation 

in order to systematically improve cell performance. 50  

 

PDF analysis has also been successfully used to investigate the structure of thin films of 

FeSb3, using a technique called thin-film PDF (tfPDF). 51 However, PDF analysis has not yet 

been used for the investigation of the thin-film working electrodes of DSSCs. 
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This study presents a novel experimental setup for PDF analysis, that we have termed 

glancing-angle PDF (gaPDF), which aims to analyse thin films of intact DSSC working 

electrodes. The study also employs complementary density functional theory (DFT) calculations 

to provide structural models, used to simulate corresponding PDFs of the two investigated 

interfaces, N3…TiO2 and N749…TiO2. The study also used data collected as a reference on pure 

N3 dye using a traditional PDF experiment setup. The chemical formulae of the dyes used are 

cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N3) and tris(N,N,N-

tributyl-1-butanaminium) [[2,2′′6′,2′′-terpyridine]-4,4′,4′′-tricarboxylato(3-

)N1,N1′,N1′′]tris(thiocyanato-N) hydrogen ruthenate (N749).  

 

 Moderate agreement observed with the calculated models confirmed our ability to 

observe this interfacial structure using the gaPDF method. Deviations from the models, which 

employed one instance each of two separate binding modes (bidentate bridging and monodentate 

ester), showed shorter-than-expected bond lengths associated with the anchoring groups, 

suggesting a preference for the bidentate bridging mode, which features shorter overall bond 

lengths when compared to the alternative.  
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1.3 Gd…Gd Separations in Amorphous (Gd2O3)0.230(P2O5)0.770  

 

 
Figure 1.3 Short-range order of rare-earth (R) phosphate glasses, (R2O3)x (P2O5)1-x,  (x = 0.167 
(ultraphosphate) to x = 0.25 (metaphosphate) showing its modelled geometry up to a radial 
distribution of r = 3.8 Å. Bond lengths presented in units of angstroms.  

 

Rare-earth phosphate glasses (REPGs) show great promise for applications in the laser 

and optoelectronics industry,52-56 whereby REPGs of the type (R2O3)x(P2O5)1-x (x = 0.167 

(ultraphosphate) to x = 0.25 (metaphosphate)) are particularly interesting. REPGs in this 

stoichiometric range exhibit various attractive properties at low temperatures (T < 20 K), 

including acoustic mode softening, which results in negative thermal expansion coefficients 57 

and bulk moduli,58 as well as unprecedented magnetic, optomagnetic, and optoacoustic 

phenomena.59 

 

A proper understanding the structure-property relationships of REPGs would help to 

significantly advance research and development in this area. The atomic structures of 

(R2O3)x(P2O5)1-x (x = 0.167−0.250; R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) have 

been probed by a variety of spectroscopy and diffraction techniques, including conventional X-

ray60-67and neutron61,63,65,68 diffraction, as well as rare-earth K-edge 69 and LIII-edge 60,70-72 X-ray 

absorption spectroscopy (XAS), 27Al and 31P solid-state NMR,62,68 and Fourier-transform IR 

spectroscopy (FTIR).73 The combination of results from these previous studies has afforded a 

model of the local atomic structure of such REPGs, comprehensive only out to r ~ 3.8 Å. 
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However, the closest R···R separations cannot be discerned by these conventional techniques, 

implying this separation must lie at r > 3.8 Å. This structural feature is particularly important to 

define, given that rare-earth ion clustering can inhibit certain optical properties through 

quenching. 

 

To that end, a Gd K-edge anomalous X-ray scattering (AXS) study was performed on the 

REPG (Gd2O3)0.230(P2O5)0.770 in order to determine Gd…Gd separations in its local structure. My 

contributions to this study were the calculations and the statistical analysis of the ∆PDFs, which 

allowed drawing the structural conclusions.  

 

A weak Gd…Gd pairwise correlation was located at 4.2(1) Å, which is representative of a 

meta-phosphate R…R separation. More intense first-neighbour Gd…Gd pairwise correlations 

were observed at larger radial distributions of 4.8(1) Å, 5.1(1) Å, and 5.4(1) Å. The local 

structure of this glass thus displays multiple rare-earth ion environments, presumably because its 

composition lies between the two stoichiometric formulae, (R2O3)x(P2O5)1-x (x = 0.167 

(ultraphosphate) to x = 0.25 (metaphosphate)). 

 

To the best of our knowledge, this is the first report of a Gd K-edge AXS study on an 

amorphous material. This study demonstrates the ability to characterise the local structure of a 

REPG, heralding exciting potential prospects for AXS studies on other ternary non-crystalline 

materials. It also shows that AXS results are not only tractable, but they also reveal local 

structure of REPGs that is important from a materials-centred perspective and which could not 

be obtained by other materials characterisation methods. 
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1.4 Local Structure of SO2 Photo-isomers in Ruthenium Coordination Complexes   

 

 
Figure 1.4 Molecular structure of the cation in [Ru(NH3)4SO2Cl]Cl with SO2 ligand in its (A) 
dark state (GS) and (B) photo-induced metastable state (MS2). (C) PDF analysis on data 
collected before and after photo-irradiation. (D) ∆PDF representing light-induced structural 
changes, compared to analogous ∆PDF calculated from photo-crystallography results.  

 

Materials that exhibit linkage photo-isomerism have a wide range of applications in the 

field of optoelectronics, given their optical switching74 and nano-optomechanical transduction75 

characteristics. The optically accessible, metastable energy levels can allow a structure to 

function as a binary switch, with the ground state representing ‘0’ and the excited ‘1’, enabling 

use as logic gates or in 3D data storage. 76,77 Additionally, the steric consequences of the photo-

activation process can be so severe that a secondary phenomenon (nano-mechanical 

transduction) is triggered, like in the case of a series of ruthenium-sulfur dioxide complexes,78 

where the photo-isomerisation of the SO2 ligand in the cation of a coordination complex causes 

the neighbouring anion to move away from it.  
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More generally, a wider series of ruthenium-sulfur dioxide complexes have been found to 

behave as single-crystal optical actuators, exhibiting optical switching79-85 or nano-

optomechanical transduction78,86 in their single-crystal form. The generic formula of these 

complexes is [Ru(SO2)(NH3)4X]Y, where X is the ligand that lies in the trans position to the 

photo-active SO2 ligand. Up to three different SO2 configurations can co-exist within a structure 

in different fractions: the η1-S-bound SO2 dark state (‘GS’), the most thermally stable photo-

isomer, an η2-(O/S)-side-bound SO2 photo-isomer (‘MS2’) and the η1-O-bound SO2 photo-

isomer (‘MS1’). 

 

In situ light-induced single-crystal X-ray diffraction, known as photo-crystallography,87-90 

has been the primary method used to characterise the photo-induced crystal structures of these 

complexes, in attempts to understand the molecular origins of their linkage photo-isomerism. 

However, this method does not appear to tell the whole story. Correlated effects between light-

induced atomic units, such as subtle levels of X-ray diffuse scattering or splitting of Bragg peaks, 

are often indicated in such studies. 

 

The goal of this study is to investigate the local atomic structure of such materials, with a 

specific focus on light-induced changes, using PDF analysis of synchrotron scattering data, 

collected before and after sample photo-irradiation. ∆𝐺!"#(𝑟)$%&'()*+,- profiles were calculated 

in order to isolate the structural changes associated with photo-isomerisation. These were then 

compared to analogous ∆𝐺.%/(𝑟)$%&'()*+,- simulated from models constructed using photo-

crystallography results.   

 

 Qualitative analysis of the structural features in the ∆𝐺!"#(𝑟)$%&'()*+,- was used to 

evidence the existence of local atomic structure in the samples as well as to demonstrate that 

photo-isomerisation is achievable in these compounds in their polycrystalline form; even when 

single-crystal samples are crushed into powders. 
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Visual peak analysis of ∆𝐺!"#(𝑟)$%&'()*+,- showed features consistent with the light-

induced structural changes inferred from reference photo-crystallography results. Statistical 

comparison with analogous  ∆𝐺.%/(𝑟)$%&'()*+,-  calculated using models constructed from said 

photo-crystallography results showed high Pearson correlation coefficients (I: 0.98, 0.79, 0.94; 

II: 0.94, 0.84, 0.49; III: 0.98, 0.95, 0.26; IV: 0.86, 0.69, 0.67) over sample-dependent 

subdivisions of the r = [1.5-5] Å range, in decreasing order of association with light-induced 

structural changes. Disagreements in the ∆𝐺(𝑟)$%&'()*+,-, particularly in the highest-r regions 

mentioned above, could possibly be caused by the unavoidable omission of ‘mixed’ type inter-

ionic interactions (GS-MS1, GS-MS2, MS1-MS2), as well as other short-range order from the 

constructed models. This would point to the prevalence of such interactions, implying a lack of 

heterogeneity in the photo-isomerisation and, in turn, short-range order in these compounds.  

This study outlines an experimental procedure that paves the way for developing structural 

investigations on these types of materials using pair distribution function analysis. 
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2. Methods 
 

2.1 Overview of Diffractive Techniques 

 

Diffractive techniques rely on the interaction of incident radiation with a sample. The 

resulting diffraction pattern depends on both the crystallographic structure of the sample and its 

atomic composition. It is therefore possible to back-track information regarding the specific 

structural traits of a sample.  

 

Traditional X-ray diffraction methods, developed more than 100 years ago, analyse 

Bragg peaks, i.e., peaks in the diffraction pattern that are due to reflections from the most 

ubiquitous interatomic spacings present in the sample, ignoring the remainder of the pattern that 

is referred to as diffuse scattering. These methods provide information that agrees well with 

theoretical models, describing the average long-range order (LRO), while deviations of the short-

range order (SRO) or inhomogeneous arrangements below a certain threshold are ignored.91 

 

While these techniques dominated the field of diffraction analysis for more than a 

century, contemporary advanced materials require an in-depth understanding of their 

nanostructure, as it is often SRO that generates unique functionality. Nanoscopic examinations of 

chemicals with this short-range deviation from the average structure will manifest themselves as 

diffuse scattering. Since such chemicals have become of pivotal importance for the design and 

development of advanced materials, techniques that can provide insight into nanoscopic SRO 

have become indispensable materials characterisation tools.92 Figure 2.1 (left) provides an 

example of a hypothetical material whose structure exhibits both SRO and LRO. Techniques 

describing average structure, such as traditional X-ray diffraction, would be sufficient to 

characterise the structure of this material, since its interatomic spacings are quite regular. The 

hypothetical structure in Figure 2.1 (right) exhibits only SRO. Therefore, only methods probing 

local atomic structure would be able to appropriately characterise the structure of this material. 
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Figure 2.1 Schematic of hypothetical materials exhibiting different kinds of structural order.  

 

Atomic PDF analysis, described in detail below, uses a Fourier Transform to make full 

use of the total scattering pattern, i.e., Bragg peaks and diffuse scattering. This allows the 

description of both LRO and SRO, making it suitable to analyse structurally complex materials. 

 

2.2 The PDF Method 

 

The atomic PDF analysis method is an apt tool to uncover the information that is targeted 

in this project. It uses powder diffraction patterns to provide information regarding the local 

structure of a sample within the context of the average structure.  

 

Although the roots of this method lie in experiments carried out almost 100 years ago, the 

potential of real-space resolution afforded by PDF analysis was not demonstrated until the late 

1990s, thanks to advances in high-energy X-rays.1  
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This technique begins with the scattering vector, Q, the raw diffraction intensity, Iexp, the 

interference function, i(Q), and the atomic scattering factor, f. 

 

𝑄 = 4𝜋 !"#$
%

                                                             (2.1) 

                                                

𝑖(𝑄) = 	 &!"#'
〈)$〉

〈)〉$
                                                        (2.2)                                                                                        

                                    

 

The atomic PDF can be defined by many inter-related functions, each of which is used 

for slightly different analyses of the same basic information, such as the total radial distribution 

function, G(r), the differential distribution function, D(r), or the total correlation function, T(r), 

defined as:  

𝐺(𝑟) = 	 +
(-.)% ∫ 4𝜋𝑄-𝑖(𝑄) !"#(01)

01
𝑑𝑄2

3                                   (2.3) 

 

𝐷(𝑟) = 	4𝜋𝑟𝜌3𝐺(𝑟)                                                  (2.4) 

 

𝐷(𝑟) = 	4𝜋𝑟𝜌3[𝐺(𝑟) + (∑ 𝑐4〈𝑓4〉)5
46+

-]                                (2.5) 

 

 

where 𝑐% denotes the proportion of species, i, in the material and 𝜌0 denotes the average 

atomic number density.  

 

Each of these functions have corresponding partial functions, g(r), d(r), and t(r), which 

represent contributions from individual pairwise correlations and have analogous definitions to 

the aforementioned total distribution functions. 
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Details of the atomic PDF analysis method and nomenclature, including data corrections 

and normalisations can be found in references 93 and 94. 

 

 

2.3 Applications of the PDF Method 

 

In practice, PDF analysis begins with a diffraction pattern. Figure 2.2 shows an example 

of a 2-D diffraction pattern, using data collected on sample I in Chapter 6.  

 

 
Figure 2.2 A representative 2-D powder diffraction pattern obtained from sample I in Chapter 6. 

 

The sum of the 1-D cross sections of the Debye-Scherrer rings, which make up the 2-D 

pattern in Figure 2.2, afford Iexp (Figure 2.3). 
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Figure 2.3 A representative Iexp pattern obtained from sample I in Chapter 6. 

 

 Equations 2.2 and 2.3 furnish the PDF, in this case: G(r) (Figure 2.4). 

 

 
 

Figure 2.4 Representative PDF, G(r), obtained from the diffraction data of sample I in Chapter 
6. 
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2.4 Analysing a PDF 

 

A PDF represents the real-space scattering interactions between all pairs of atoms in the 

sample. Each pair-wise correlation contributes to the function on the y-axis (e.g., G(r), D(r), or 

T(r)), at the radial distance, r, by which they are separated. The contributions from pairs of atoms 

at similar radial distances form a peak in the PDF, which is typically Gaussian in shape (Figure 

2.5). The parameters of these peaks allow conclusions to be drawn about the SRO of the subject 

material.  

 

 

 

Figure 2.5 Representative Gaussian peak of a PDF, together with the most salient peak 
parameters. 

 

The centre of the peak, r, denotes the average separation associated with a pairwise 

correlation. The area underneath the peak is related to the abundance of this pairwise correlation 

and can be used to determine its coordination number, N. The full width at half maximum 

(FWHM) of the peak provides the Debye-Waller factor, s2, which is a measure of the variation 

in this average radial separation. The FWHM is greatly influenced by temperature and disorder. 
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Samples that are less challenging in the context of PDF analysis are simple in both 

structure and composition, thus generating only few unique, first neighbour, pairwise 

correlations. These lead to well-defined Gaussian peaks that are easily traced back to its 

responsible atomic pairwise correlations.  

 

More challenging samples will exhibit more complex structures and/or compositions 

which contain a multitude of unique atomic pairwise correlations. These lead to numerous, ill-

defined, and usually overlapping peaks that are difficult to analyse.  

 

Some samples that are simple in both structure and composition may still be challenging 

due to the nature of their atomic composition, which is a factor to be considered especially when 

using X-rays. Lighter atoms scatter X-rays more weakly than heavier atoms, making it easier for 

their contributions to the PDF to be dominated by background artefacts, noise, or those of 

heavier atoms that may also be present in the sample. 

 

An example of a less challenging sample in the context of an X-ray-based experiment 

would be crystalline Ni, which is often used for calibration, since it strongly scatters and exhibits 

few types of first-neighbour pairwise correlations. An example of a more challenging sample 

would be a complex organic molecule, as it scatters weakly and exhibits multiple types of first-

neighbour interactions, which leads to overlapping and ill-defined peaks.  
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Figure 2.6 An example of two overlapping Gaussian peaks, whereby the first is centred at r1 = 
1.5, while the second is centred at r2 = 2.5; the amplitude of the peak at r2 is half that of the peak 
at r1. 

 

Figure 2.6 shows an example of two overlapping Gaussian peaks, whereby the first is 

centred at r1 = 1.5, while the second is centred at r2 = 2.5. The second, smaller, peak is often 

referred to as a “shoulder” of the first peak. In this example, the smaller peak has half the 

amplitude of the first peak. If the amplitude of the second peak were to become a bit smaller, the 

shoulder would be too subtle to discern, especially once experimental noise is considered. An 

example of such an instance might be the reduction in compositional stoichiometry of a material, 

whereby the pairwise atomic correlation responsible for this composition pertains to this 

shoulder. Such cases are ubiquitous during the analysis of challenging samples.  

 

2.5 Difference PDFs 

 

The analysis of such subtle features may benefit from more specialised sub-methods 

within PDF analysis. Often, such features are subtle because they concern only a particular part 

of the structure of a material rather than the entire structure. They are dominated by other 

unambiguous, but irrelevant, features. Therefore, such analysis calls for techniques that allow the 

isolation of specific pairwise correlations that are responsible for the features in question. 
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Difference PDFs (∆PDFs) allow a subtraction of unwanted X-ray scattering contributions 

that originate from the irrelevant parts of the structure, thus isolating the specific structural 

feature that is targeted. This is accomplished by repeating the experimental process twice on a 

sample whose X-ray diffraction patterns only differ by the structural feature in question. The 

corresponding PDFs can then be subtracted, which isolates the PDF signal that describes only the 

structural difference.  

 

Many of the conclusions presented in Chapters 4-6 are based on the ∆PDF technique.  

 

One of the samples analysed in Chapter 6, trans-[Ru(NH3)4(SO2)Cl]Cl (sample I), is now 

provided as an example. In summary, this study investigated the light-induced structural changes 

in four compounds, including sample I, by applying ∆PDF analysis to synchrotron-based X-ray 

powder diffraction data collected before and after sample photo-irradiation.   

 

 
Figure 2.7 G(r) of sample I, collected before (dark state, orange) and after (light state, blue) 
photo-irradiation. 
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As can be seen in Figure 2.7, the G(r) profiles of the sample in its dark and light-induced 

states are exceptionally similar, showing a Pearson correlation coefficient of ρ = 0.99964 over 

the range r = 1.5 – 5 Å, where a value of 1 would indicate a perfect correlation.95 It would be 

very challenging to try to draw conclusions regarding the light-induced structural changes of this 

sample using its G(r) data in this form.  

 

 

Figure 2.8 ∆𝐺(𝑟)$%&'()*+,- for sample I generated from experimental data (blue) and from 
simulated models (orange) that account for its light-induced structural changes. 

 

Figure 2.8 shows the ∆𝐺(𝑟)$%&'()*+,- for sample I. The difference calculated from the 

data presented in Figure 2.7 is shown in blue, presenting the peaks that manifest light-induced 

structural changes much more clearly than in the previous step. A comparison of this 

experimental difference with analogous ∆G(r) profiles, calculated from structural models from 

photo-crystallography, shows strong statistical agreement, as can be seen in the high Pearson 

correlation coefficients annotated in Figure 2.8; this strongly supports their validity. Pearson 

coefficients above 0.70 were considered indicators of strong agreement in this context, given the 

inherent drawbacks of applying a photo-crystallographic model to ∆PDF data.   
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2.6 Statistical Methods 

 

The example presented above made use of the Pearson correlation coefficient. This is a 

statistical coefficient, among others such as the Kendall or Spearman’s rank,95 that is often used 

on PDFs96,97 and ∆PDFs.98-100 It can be used to quantify an observed agreement or confirm the 

existence, or lack thereof, of structural similarities between separate cases. The assumptions of 

these correlation coefficients can vary slightly; for example, Pearson’s coefficient will assume a 

linear relationship between two data sets while the latter two make no such assumption.95 

Regardless of their relative sensitives, such coefficients ignore absolute scaling, while remaining 

sensitive to relative peak scaling as well as shifts in peak positions, making them extremely 

suitable for comparing PDFs.   
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Figure 2.9 Representative PDFs with increasing amounts of added noise from top to bottom. 
Annotations show Pearson coefficients between each PDF and the original from Figure 2.4.  

 

As can be seen in Figure 2.9, these statistical coefficients remain capable of identifying 

correlations, even in situations where data exhibit poor signal-to-noise ratios. Such statistical 

analysis helped draw many of the conclusions presented in Chapters 4-6. 
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3. ImageDataExtractor 
 

The first instance of radial distribution function analysis is through an image-recognition 

based software, ImageDataExtractor, which extracts quantitative information, such as particle 

size and particle distribution function, from microscopy images. This chapter is based on a paper 

published in the Journal of Chemical Information and Modeling101 (see Publications on page II). 

All figures and tables are reproduced in accordance with the guidelines set by the publisher. 

http://pubs.acs.org/articlesonrequest/AOR-bS5eBXSMECNNakJsmGi2  

 

My PhD supervisor, Jacqueline Cole, and I conceived and designed the research together, 

working closely on developing the concepts associated with each stage of the work. I wrote the 

majority of the code. Batuhan Yildirim, also from the Molecular Engineering group, wrote the 

SRCNN module (explained in Chapter 3.3, Step 2). The code was prepared for installation and 

embedded into ImageDataExtractor by Edward Beard, who also created the web platform 

https://www.imagedataextractor.org/.  

 

3.1 Summary 

 

The rise of data science is leading to new paradigms in data-driven materials discovery. 

This carries an essential notion that large data sources containing chemical structure and property 

information can be mined in a fashion that detects and exploits structure-property relationships, 

such that chemicals can be predicted to suit a given material application. The success of material 

predictions is predicated on these large data sources of chemical structure and property 

information being suited to a target application. Microscopy is commonly used to characterise 

chemical structure, especially in fields such as nanotechnology where material properties are 

highly dependent on the size and shape of nanoparticles. Large data sources of nanoparticle 

information stemming from microscopy images would thus be highly beneficial. Millions of 

microscopy images exist but they lie fragmented across the literature, typically presented 
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individually within a paper article and usually in a qualitative fashion therein, even though they 

harbour a wealth of numeric information. We present the ImageDataExtractor toolkit that auto-

identifies and auto-extracts microscopy images from scientific documents, whereupon it 

autonomously analyses each image to produce quantitative particle size and shape information 

about its subject material. Each image is quantified by decoding its scale bar information using 

optical character recognition, with help from super-resolution convolutional neural networks 

where required. Individual particles are detected and profiled using various thresholding, 

segmentation, polygon fitting, and edge correction routines. The high-throughput operational 

capability of ImageDataExtractor means that it can be used to generate large-data sources of 

particle information for data-driven materials discovery. Evaluation metrics, precision and recall, 

are greater than 80% for the majority of the image processing steps, and precision is above 80% 

for all critical steps. The ImageDataExtractor tool is released under the MIT license and is 

available to download from http://www.imagedataextractor.org. 

 

 

3.2 Introduction 

 

The rise of data science is heavily indebted to major advances in artificial intelligence 

(AI) that can probe large arrays of data to uncover patterns that refer to previously unseen 

scientific correlations. AI has a data dependency in return, often requiring massive data sets to 

realise its full potential. Large scientific datasets have started to become openly available via 

government-regulated open-access requirements for data and literature. Data science in the 

materials domain has been stimulated specifically by the US government via their Materials 

Genome Initiative; 102 this seeks to reduce the average 10-20 year ‘molecule-to-market’ 

industrialisation timeframe by finding innovative ways to discover and manufacture advanced 

materials for a given device application. Data-driven materials discovery has been forged from 

this initiative.  
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Data-driven materials discovery carries the idea that one can source and thence mine data 

about chemicals and their cognate material properties. The data-mining pursuit involves 

identifying relationships between chemical and material properties and then employing these 

structure-property relationships as knowledge-based rules or training data to find new data 

correlations. This leads to the discovery of new or re-purposed chemicals for a given materials 

application.   

 

A large number of data-driven materials predictions have been presented using data 

generated by high-throughput computation.4-6 Such data sources tend to be sparsely, if at all, 

benchmarked by experimental data, while the material predictions themselves are rarely 

experimentally validated. A notable exception is the data-driven materials discovery of organic 

light-emitting diodes 103  that was informed by computational data. 

 

Successful examples of data-driven materials discovery that employ both experimental 

and computational data in the data-mining workflow are even rarer, but do exist in the realisation 

of new light-harvesting chromophores for photovoltaic applications.7,8 The chromophores 

discovered by Cole et al. 7 used the Cambridge Structural Database 104 as the experimental data 

source while Cooper et al. 8 employed a UV/vis absorption spectroscopy database 105 for their 

materials discovery objectives. Given that structure-property relationships lie at the core 

foundation of data-driven materials discovery, materials characterisation data from metrology 

measurements offer the primary experimental sources of information on chemical structure for 

data-mining. Yet, there is a dearth of openly available materials databases of this nature. 

Accordingly, experimental databases are commonly unavailable to solve a data-mining task in 

the materials-science domain, even though the data themselves often exist in a fragmented form, 

e.g. in academic papers, or technical documents such as patents or company reports.  

 

Text-mining tools have been developed in order to partially overcome this hurdle 

whereby fragmented data on chemical materials and properties are auto-extracted from 

documents and automatically stored in custom materials databases for a bespoke application.9-12 
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The text-processing capabilities of such tools rely on developments in natural language 

processing (NLP) and optical character recognition (OCR) that were borne out of computer 

science; yet, with adaptation in order to cope with the highly specialised language and textual-

structure of the materials science domain. It was with this spirit that the ‘chemistry-aware’ text-

mining tool, ChemDataExtractor 13 was developed. This tool has already been used successfully 

to auto-generate a database for metrology e.g. an open-source database of UV/vis absorption 

spectra 105 and a materials database for chemical properties, e.g. a materials database of magnetic 

Curie and Néel phase-transition temperatures. 106 

 

Despite these successes in auto-generating materials databases via text-mining, tools that 

capture and quantify image-based data in the materials domain are starkly lacking, at least at the 

generic level. Yet, images from microscopy techniques are pervasive in scientific publications, 

notably in areas of nanotechnology and crystallography, and they contain a wealth of 

information. This is particularly true of scanning electron microscopy (SEM), transmission 

electron microscopy (TEM) and atomic force microscopy (AFM) which act as the most common 

workhorse image-based materials characterisation methods in a laboratory. Such images shown 

in the academic literature are rarely quantified, although certain image features are often 

discussed qualitatively within the paper in which they feature. Moreover, quantitative 

conclusions about a material structure in a given study tend to come from one or more, less 

visual, metrology technique presented elsewhere in a scientific document.  

 

Image quantification is nonetheless possible in microscopy, as is exemplified by research 

carried out on more specialised, low-throughput, microscopy techniques, such as scanning TEM 

(STEM), scanning tunnelling microscopy (STM) and scanning X-ray microscopy (SXM). The 

typical time and resource investments on these types of experiments are several orders of 

magnitude higher than that of a routine image-based materials characterisation measurement. 

Thus, the researcher is far more inclined to invest manual effort into image analysis to quantify 

their results. Moreover, a scientific problem that has been pre-selected for such a resource-
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intensive experiment is a priori high priority, such that the images accrued deserve as 

quantitative an understanding wherever possible. 

 

Computer vision, machine learning and Bayesian statistics have assisted the manual 

analysis of images from these specialised microscopy experiments, to address very specific 

problems in materials science. For example, Holm and co-workers have used convolutional 

neural nets to analyse grain boundaries in SEM images of ultrahigh carbon steel 14 Azimi et al. 

have classified microstructural features of steel in SEM and light optical microscopy images 

using fully convolutional neural networks. 15 Gola et al. used a support vector machine to 

classify microstructural images of low carbon steels.16 Deep-learning methods have also been 

applied to STEM images to determine which crystal lattice defects are responsible for solid-state 

structural transformations in tungsten sulfide, 17 or semantic segmentation of defects in steels. 18 

Bayesian inference has been used to extract interatomic interaction parameters of materials in 

STM images. 19 

 

This study seeks to fulfil the data-mining need for a generic tool that auto-extracts and 

quantifies microscopy images from scientific documents, while harnessing the essence of these 

types of computing and mathematical capabilities that are being used for bespoke, manual, image 

quantification. To this end, we present a new software tool, ImageDataExtractor, which is 

capable of automated, high-throughput, image extraction and quantification. We describe the 

three main components of the program: an image auto-extraction tool to mine images from 

documents such as the academic literature, an image recognition algorithm that identifies objects 

of interest, and an analysis suite that quantifies these objects where they are particles in a sample, 

in terms of shape, size and distribution. We evaluate the tool using standard precision and recall 

metrics and showcase examples of its application. ImageDataExtractor can be applied in one of 

two modes. It may operate as a stand-alone tool where it receives images directly, in various 

formats. Alternatively, it may function with ChemDataExtractor 13 as a plug-in, in cases where 

scientific documents are the input. Thereby, ChemDataExtractor 13 first acts to locate 

prospective microscopy images within documents by searching the text of figure captions for 
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keywords such as SEM, TEM or AFM; ImageDataExtractor then proceeds to assess if this is a 

true image and, pending this to be the case, extract and quantify the image. Our system overview 

below describes primarily the operational mode when ChemDataExtractor 13 is used as a plug-in, 

since this is a superset of the other, simpler, mode of function. 

 

3.3 Implementation 

 

System Overview  

 

Figure 3.1 shows the system overview of ImageDataExtractor when in its operational 

mode that incorporates the full processing workflow, from the input of scientific documents to 

output that expresses features within images in a quantifiable manner. There are three essential 

steps in this pipeline: (1) image identification and auto-extraction from documents; (2) image 

recognition of material objects of interest; (3) quantitative analysis of material objects of interest 

in the images. Each step will now be described in detail via the following sections. 

  

 

Figure 3.1 Overarching system pipeline for ImageDataExtractor. 
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Step 1: Image auto-identification and auto-extraction from documents 

 

ChemDataExtractor 13 may be used as a prelude to ImageDataExtractor, in order to mine 

the text of figure caption which helps to identify prospective microscopy images that comprise, 

or reside within, figures of documents. ImageDataExtractor then mines these identified figures, 

splitting them into their constituent parts where required, to auto-extract images that pertain 

exclusively to microscopy. More detailed mining and splitting procedures are now described. 

 

Mining Figures from Documents. One or more files, most conveniently formatted in 

mark-up language, HTML or XML, are used as input for ChemDataExtractor. 13 This software 

distinguishes the various structural components of the document; for example: headings, 

paragraphs, figures, tables. All figure objects are then extracted from each document together 

with a tokenised version of its figure caption and a URL link to its online source. The tokenised 

caption is then parsed using a set of simple rules to identify keywords that are indicative of a 

microscopy image, such as the acronyms ‘SEM’ and ‘TEM’. When the conditions of these rules 

are met, the figure object is downloaded using its URL link and an associated text file is 

temporarily saved in CSV format; this is populated with metadata including the article’s Digital 

Object Identifier (DOI), the figure’s unique identifier (e.g. this is ‘4’ for ‘Figure 4’ within the 

original document) and its caption text. For the purposes of illustrating the use of our new tool, 

the auto-extraction feature of ChemDataExtractor 13 for ImageDataExtractor input has been set 

up to support downloads from the Royal Society of Chemistry publishing service. However, it 

could in principle support image auto-extraction from any available document source. 

 

Splitting Figures into Constituent Images. A given figure object may comprise 

exclusively a microscopy image. Yet, microscopy images are commonly placed together with 

other types of images to form an image panel that constitutes an overall figure within a 

document. Microscopy images present in such panels need separating from the other images in 
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the figure, in order that they can be analysed. An example of an image panel is given in Figure 

3.2, together with a conceptual illustration of the need to separate the microscopy images. 

 

The separation process is performed in ImageDataExtractor, where required, and this 

comprises two steps: firstly, binarisation, secondly, a bespoke method that examines an image 

for signatures of straight lines. The binarisation step is simply a means of converting image 

pixels into black and white to signify if they belong to an image or not. It is carried out with a 

very high threshold to ensure that the extractions represent a photographic image. The resultant 

black rectangles indicate a unique micrograph, which defines a set of bounding boxes for 

segmentation. The second step employs a bespoke figure splitting algorithm which splits any 

figures that use minimal, to no, borders while collating images of identical sizes. The algorithm 

searches for long, straight, axes that manifest along fractions of the width and height of the 

image. This is accomplished using the built-in OpenCV23 function HoughLinesP, which 

implements the probabilistic Hough line transform, as described by Matas et al. 107 The nature of 

such lines determines if a figure should be split vertically or horizontally, and into how many 

parts (e.g. half, thirds, quarters). 

 

ChemDataExtractor Plug-in versus Stand-alone ImageDataExtractor Operation. 

ImageDataExtractor supports high-throughput image extraction for large-scale analysis in either 

its stand-alone version or in its form where it is used in concert with ChemDataExtractor. 13 

However, it can only achieve high-throughput extraction from documents when 

ImageDataExtractor operates with ChemDataExtractor 13 as a plug-in. Thereby, its input is a 

corpus of articles, which can be obtained in large quantities using the ‘scrape’ package provided 

inside ChemDataExtractor 13 to search for relevant articles from a range of supported publishers. 

Alternatively, users can access the Application Programming Interfaces (APIs) of specific 

publishers directly to create a corpus. ChemDataExtractor 13 processes these documents, 

identifying the images as well as producing metadata. The stand-alone version of 

ImageDataExtractor extracts one or more images directly from image file format, and thus does 

not produce any metadata. 
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Figure 3.2 The original figure extracted from an article (left), the three microscopy images 
extracted (right) from the original figure. Reproduced with permission from reference 108. Please 
note the figure labels (a)-(d) were carried over from the original publication and can be 
disregarded for our purposes. 

 

Step 2: Image recognition algorithms that identify material objects of interest 

 

This step can be broken down into two distinct sequences of manifold operations, one 

that determines the scale of a micrograph and another that detects individual particles within an 

image. Details of each operation are now given. 

 

Interpreting scale information. This process begins with the identification and isolation 

of regions in an image where text is suspected to exist. Text usually appears white or black in a 

greyscale image, so text can be found by looking for image regions that feature very high or low 

grayscale pixel intensity. Once text in these regions has been identified, a convolutional neural 
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network is used to enhance textual resolution, where this is deemed necessary, to facilitate the 

next step which employs optical character recognition (OCR). All image text is read by OCR and 

stored. The scale bar in the image is then identified. Thereby, OCR-resolved text that contains 

values and units is distinguished, since such text is typically associated with a scale bar. The 

image region surrounding this scale-bar text is then searched for rectangular shapes that may 

denote a scale bar. Once located, three constituent parts of the scale bar (its width, textual value 

and unit) are drawn out from the image, in order that this scale bar can be used to calculate the 

scale of the actual image. This process is summarised in Figure 3.3, while the details are now 

discussed. 

 

 
Figure 3.3 Process for interpreting scale information in images.  

 

All image manipulations are carried out using built-in OpenCV 109  functions or manual 

array editing, unless otherwise noted. Details of the algorithms employed by the OpenCV 

functions are provided below where necessary. 

 

Calculate Calculate the scale of the image.

Measure Measure the length of the scale bar associated with the scale information.

Read Read region using OCR to interpret scale information.

Super-resolve Super-resolve region to facilitate OCR, if deemed necessary.

Isolate Isolate regions of text in image.
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Isolating Regions of Text. The isolation of text in images begins with the conversion of 

the image to grayscale and its subsequent binarisation, with a threshold value calculated 

according to: 

𝑡 = 	 	𝜇#" + 3.5	 ×	𝜎#"                                                        (3.1) 

 

where 	𝜇#" is the mean pixel intensity and 𝜎#" is the standard deviation of the pixel 

intensity of the image. A ceiling value of 235 is applied. This process ensures that any pixel with 

an intensity lower than the threshold value is set to 0 (black) and all others to 255 (white), 

leaving behind white text and often small artefacts elsewhere in the image.  

 

Next, contour detection is applied to the filtered image using the OpenCV function, 

findContours, which isolates the regions of an image that are of interest via the border detection 

algorithm described by Suzuki et al. 110 This algorithm considers a given candidate region in a 

filtered image and assesses if it includes an artificial box (example in Figure 3.4) upon which the 

text was placed, as opposed to text placed directly on the image. This invokes the contour 

detection method and a search for strictly rectangular shapes that include further shapes within 

them. If an artificial box is found, the candidate region is cropped to contain only its area, and 

then passed onto OCR processing. The corresponding regions from the unfiltered image, whose 

rectangular bounding boxes are larger than 1% of the total image area, are also passed on to OCR 

processing. 
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 Figure 3.4 An example of an image featuring scale information placed on an artificial box 
(bottom right). 111 Please note the figure label (b) was carried over from the original publication 
and can be disregarded for our purposes. 

 

Next, OCR is applied to the textual regions of interest, using the Python wrapper 

Pytesseract 112 of the open-source OCR engine, Tesseract 3. 113 Specifically, OCR is applied to 

the unfiltered region of interest, as well as seven different binarised versions of the colour-

inverted region, since the OCR engine was found to perform better on black text on white 

background. Binarisation is applied using absolute threshold values (any pixel with an intensity 

above this value is set to white while all others are set to black), ranging from grayscale pixel 

intensities of [5,35] in increments of 5, until the text surveyed fitted several bespoke conditions. 

These conditions are that: (i) the text must include the phrase “nm” or “um” (it was found that 

the default Tesseract library performed better searching for “u” instead of “𝜇”), preceded either 

by digits or whitespace and then digits; (ii) the numeric value of the text must not be smaller than 

0.01 or larger than 1000 and it must be evenly divisible by 5 if larger than 10. These conditions 

greatly reduce the risk of incorrect readings. Other units of length such as “cm” or “mm” were 

excluded from condition (i) since their appearances in the literature were not high enough to 

justify the reduced precision their inclusion introduced to this step, mostly due to confusions of 

“mm” with “nm”. 
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If this OCR processing stage is unsuccessful, a convolutional neural network is applied to 

the candidate region to increase its resolution and the same OCR process mentioned above is 

then repeated. 

 

Facilitating OCR using Super-Resolution Convolutional Neural Networks. The image 

resolution of the isolated text is then enhanced where required using a super-resolution 

convolutional neural network (SRCNN),114,115 albeit in a modified form as described below. The 

SRCNN method first upsamples an input image x0 with dimensions (H x W) by a scale factor, s, 

using bicubic interpolation. Its output is then passed to the convolutional neural network116 as an 

input. A series of convolution operations, with non-linear mappings using the rectified linear unit 

(ReLU) operation,117 are then performed. The output is a high-resolution image with sharper 

edges than the original image. The entire process is represented as: 

 

𝐹 ∶ 	ℝ1	×4 	→ 	ℝ.1	×.4    (3.2) 

 

where F is the upsampling operator which produces the super-resolution image.  

 

Our specific SRCNN is composed of three layers, each consisting of a depthwise 

separable convolution118 and a ReLU non-linearity,117 with the exception of the output layer 

which omits the ReLU operation. The first layer learns a set of feature maps from the input 

image, in the form of a set of high-dimensional vectors. The second layer is a 1 x 1 depthwise 

separable convolution in which no spatial information is used and the features are mapped from 

one high-dimensional channel space to another. Finally, the output layer aggregates the feature 

maps into the super-resolved pixels, to afford the high-resolution image as output. 

 

We modified the original SRCNN architecture by replacing the traditional convolution 

operation with depthwise separable convolutions118 to realise improved speed and performance. 

Depthwise separable convolutions consist of a spatial convolution performed on each channel of 

the input, followed by a 1 x 1 pointwise convolution which projects the output of the spatial 
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convolutions onto a different channel space. Thus, channel-wise features are learned separately 

from spatial features.  

	

Figure 3.5 The super-resolution module, consisting of four operations. 

 

Figure 3.5 describes the four operations of which make up this module: (i) The scalebar 

text image is resized by bicubic interpolation. (ii) The first convolution operation (*) performs an 

aggregation of each pixel and its neighbours in a 9 x 9 region via convolution by a (9 x 9 x 1 x 

64) weight matrix W1, to produce a 64-dimensional feature vector for each pixel. This is 

followed by a ReLU non-linearity, which is applied element-wise to each pixel. (iii) The second 

convolutional layer produces for each input 64-dimensional pixel feature map, a subsequent 32-

dimensional pixel feature map. In this step, convolution is performed by a (1 x 1 x 64 x 32) 

kernel weight matrix W2, meaning pixel feature maps are not aggregated with their neighbours. 

This step also includes a ReLU non-linear transformation, which follows the convolution. (iv) 

The final convolution operation which produces the output super-resolution image, convolves 

each 32-dimensional feature map by a (5 x 5 x 32 x 1) weight matrix W3. This is purely a linear 

transformation with no non-linearity, which maps each 32-dimensional pixel feature map from 

the previous layer, to a single super-resolved pixel in the output image. 
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If OCR is still unsuccessful post-SRCNN processing, the candidate region determination 

is repeated after inverting the colours of the original image.   

 

Identifying and Measuring the Scale Bar. The scale bar in the image is then identified via 

a two-step procedure. The first step involves a search through all candidate regions of the image 

that OCR found to include text and that satisfied the aforementioned imposed conditions of text 

composition. For example, text such as ‘1 μm’ is characteristic of textual information held within 

a scale bar. The search for the actual scale bar begins by expanding the candidate region of the 

text-containing imagery evenly by 9, keeping the original candidate region in the centre (see 

Figure 3.6), save one exception. This exception concerns any region that was previously 

determined to be an artificial box, in which case the expansion is unnecessary, and this step is 

thus skipped.  

 

 
Figure 3.6 Illustration of an expansion of the candidate region for a scale-bar search. A “ghost 
image” is embedded behind the boxed areas to illustrate the region in which the textual scale 
information will reside and provide an example of where the associated scale bar might be found 
in a neighbouring search-box region.  

 

The expanded candidate regions of text-containing imagery are then searched for objects 

which possess highly regular rectangular contours, i.e. befit scale bars. This high level of 
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regularity is imposed by stringent acceptance criteria in the scale bar search, whereby rectangular 

contours must exhibit (i) high aspect ratios (width / height) of at least 1.3, and a width less than 

the total image width / 1.5; (ii) either the mean pixel intensity of the contour must be greater than 

200 or less than 30 (white or black); or the pixel intensity mode must be greater than 245 or less 

than 10. Note that it is important to analyse the colour of each candidate region via two colour-

contrasting methods since the colour of a small scale bar can be easily affected by image 

resolution and contrast. 

 

Although there is usually only one region of the image that contains the scale bar, 

sometimes multiple candidate regions of text-containing imagery can reach this stage of image 

processing; such instances typically involve images that contain additional text inlays or 

‘foreign’ scale bars - for example, where a small image containing a scale bar is inset within the 

main image which contains the scale bar sought. The second procedural step of scale bar 

identification thus resolves these ambiguities. The case of additional text inlays is easily dealt 

with since such regions do not contain a scale bar. Thus, once can search the region immediately 

surrounding this text for an object that has an approximately rectangular shape with a high aspect 

ratio. If no such shape is found, the candidate region is removed from further consideration. In 

the case where ‘foreign’ scale bars are present, all detected scale bars are measured and the 

largest is used since that is the one most likely to be associated with the main image.  

 

Calculating the Scale of the Image. The {text,contour} pair describing the scale of the 

image have now been identified. The width of the contour describing the scale bar (in pixels) 

together with the textual value and unit are then used to calculate the scale of the actual image. 

This is achieved by simply referencing the number of pixels along the scale bar to its annotated 

text and unit and then normalizing this reference to the number of pixels in the entire image. 

Note that our ImageDataExtractor code hardwires the text resolution of the unit in each scale bar 

to be either μm or nm, since this restriction engenders data extraction with high precision, yet 

negligible compromise on recall; optical microscopy images nearly always carry one of these 

two unit options. The scaled image output is presented in units of pixels/m in order to comply 
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with the Système International (SI) d’unités for length. If the scale of the image cannot be 

determined, detection continues with all outputs reported in units of pixels.  

 

Figure 3.7 presents an example of an image whose scale information has been interpreted 

by ImageDataExtractor, using the overall procedure described in this section. This image will be 

familiar as it is ‘image (c)’ within the image panel shown in Figure 3.2. For the benefit of the 

reader, this image will be used as the running example throughout this chapter, to illustrate the 

function of each salient processing step of ImageDataExtractor.  

 

 
 

Figure 3.7 Demonstration of the scale interpretation function in ImageDataExtractor, using the 
running example image 108. The output of ImageDataExtractor provides image annotations in red 
and blue. These show that the value of the scale bar has been interpreted correctly, as shown by 
‘1.0*1e-06’, given in red; the scale bar has been correctly defined by the red rectangle; and the 
region containing scale information region is demarcated concisely by the blue rectangle. 

 

Particle Detection.  Having interpreted the scale information, ImageDataExtractor then 

undergoes a process that detects individual particles within an image. Figure 3.8 shows how this 

process breaks down into its constituent parts. The process begins with a thresholding procedure 

that samples each pixel in an image to determine if it belongs to particle information or not. 
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Pixels belonging to particles are coloured white while those pertaining to the image background 

are coloured black; the resulting image binarisation highlights the visual contrast of particles, to 

facilitate their detection which comprises the next step. Particles are provisionally detected using 

the same border detection algorithm by Suzuki et al. 110 that was described earlier for scale 

interpretation. Particles are then approximated to polygons using an algorithm, whereupon a 

range of corrections is employed to assess if these detected particles are: (i) real or not (false 

positive detection), (ii) single particles or particle clusters which need to be broken apart, or (iii) 

particles that have been truncated (e.g. by the image border, or by image contrast problems). The 

list of detected particles in an image is confirmed once ImageDataExtractor has processed this 

range of corrections, whereupon they are taken on to quantitative analysis (see next section).  All 

image manipulations were carried out using built-in OpenCV109 functions or manual array 

editing, unless stated otherwise. Each of these particle detection and corrections steps are now 

described in detail. 
 

 
 

Figure 3.8 Process for detecting individual particles in images. 

Secondary Edge 
Correction

Filter out fitted ellipses distorted by edges of the image frame or text 
inlays.

Ellipse Fitting Attempt conic fitting of the detected particle shape to model an 
ellipse; judge if the ellipse or detected shape is truer.

Edge Correction Filter out particles distorted by edges of the image frame or text 
inlays.

Multi-Particle 
Break-up Separate clusters of particles incorrectly detected as single particles. 

False Positive 
Filtering

Filter out false positives such as background or particles that are 
obscured by text inlays.

Particle 
Detection Detect provisional list of particles and their bounding contours.

Image 
Thresholding Adaptive thresholding of the image to enhance particle contrast.



 

 

 

 

 

43 

Thresholding. This procedure generates a black and white version of the original image 

by assigning particle information as foreground (white) against background information (black). 

This colour classification is achieved by sampling each pixel of the image with an adaptive 

thresholding procedure which considers the absolute value of its colour encoding, but relative to 

the colour values of its neighbouring pixels. Nearby pixels with similar colour values are likely 

to belong to the same classification (e.g. particle or background), while a particle boundary is 

likely to lie between neighbouring pixels with disparate colour values. Subject to these local 

similarity considerations, the absolute value of the colour encoding is compared against a 

threshold value to determine whether a given pixel is a particle (white) or background (black).  

 

The precise algorithm used for this adaptive thresholding procedure is built into OpenCV 

via the function, adaptiveThreshold, which is used with two parameters: THRESH_BINARY, 

which sets pixels brighter than the threshold value to the maxValue, which in this case is white; 

and ADAPTIVE_THRESH_GAUSSIAN_C, which calculates the mean of the neighbourhood 

window using a Gaussian kernel, as opposed to the default statistical mean. The thresholding can 

be described by the equation below:  

 

𝑝5 = 7255, 𝑝0 > 𝑇
0, 𝑝0 < 𝑇                                                           (3.3) 

 

where the threshold value, T, is a weighted sum (cross-correlation with a Gaussian 

kernel) of the 151 x 151 pixel neighbourhood of the pixel coordinates.109 

 

This type of thresholding is referred to as adaptive because it considers its neighbouring 

environment, in contrast to, say, absolute thresholding which would simply label pixels as black 

or white according to whether the pixel colour value was above or below a fixed threshold value. 

Locally adaptive thresholding methods, such as those in ‘category 6’ as defined by Sezgin et 

al.119 are good for classifying 3-D particles rendered in 2-D images, since their 3-D nature 

imparts different “lighting” conditions across different local regions within an image. It also 
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ensures that particles which are darker, because they lie deeper in the surface or they possess a 

disparate composition to other particles, are not classified as part of the background.  

 

Following adaptive thresholding, noise reduction is applied using a technique called 

median filtering, which sets all pixel intensities in a window (which we have set to 3 x 3 pixels) 

to the median of that window. This filtering process uses the medianFilter built-in function of 

OpenCV.109 There are various reasons to employ noise reduction routines. As can be surmised 

from our small window size, our motivation to employ this step is to reduce “salt and pepper” 

noise in the background rather than to perform its more common functions such as smoothing 

out contour features.   

 

Figure 3.9 presents the result of thresholding the running example image in this chapter, 

using ImageDataExtractor. 

 

 
Figure 3.9 The running example image 108 after adaptive thresholding and noise reduction. 
Please note the figure label (c) was carried over from the original publication and can be 
disregarded for our purposes. 
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Detection. Individual particles are now defined according to image regions that are 

contained within a closed contour. Such contours were identified using the same contour 

detection functions that were outlined for the aforementioned scale interpretation process. The 

number of points that define each contour in the raw output of this detection procedure can be 

large. Fewer points can often describe contours determined by digitalised methods, without 

significant loss of information. To this end, each contour was approximated to a polygon, using 

the Douglas-Peucker algorithm.120 Each contour was fitted to within 0.25% of its perimeter, to 

optimise efficiency. 

 

The result of applying this particle detection feature in ImageDataExtractor to the 

running example image in this chapter is illustrated in Figure 3.10. 

 

 
Figure 3.10 The profiles of all closed contours (green) detected in the running example image 108 

by the contour detection procedure within ImageDataExtractor, prior to the subsequent 
correction steps in the detection process Please note the figure label (c) was carried over from 
the original publication and can be disregarded for our purposes..  

 

Following this procedure, almost all of the contours required to define each particle in the 

image have been identified. However, certain types of diagnostics need to be performed at this 

stage in order to pick out contours that are either deformed, or present as false positives. The 
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display of overlapping particles in an image, or poor image compression, are typical causes of 

such issues. In fact, the purpose of the remaining steps of the particle detection process (as 

shown in Figure 3.8) is to filter out and, if necessary, modify the preliminary listing of particles 

from the contour detection procedure to ensure correct and optimal identification of every 

particle.  

 

False Positive Filtering. The first correction step involves a basic identification, and 

thence elimination, of contours that are false positives, i.e. contours that appear to describe 

particles but are in fact artefacts. Such false positives are often caused by artificial inlays (text, 

shapes, arrows etc.) or sometimes regions of textured background. The correction procedure 

involves first calculating the mean, mode, and standard deviation of the grayscale pixel 

intensities of each pixel contained within the borders of a detected contour. Contours are then 

eliminated wherever their pixels meet the following statistical criteria: the mode pixel intensity is 

greater than 250, or the mean pixel intensity is less than 2, greater than 240, or less than 60% of 

the global mean, and the standard deviation in pixel intensity is smaller than 25% of the global 

value. 

 

The running example image in this chapter did not actually contain any false positives, so 

somewhat anomalously, a different example 121 is shown in Figure 3.11 to demonstrate the 

effectiveness of this particular step using ImageDataExtractor. 
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Figure 3.11 Determination of false positive contours in ImageDataExtractor, demonstrated via 
an example image, reproduced with permission from reference 121 . Contours shown in red refer 
to two text inlays that cause these false positive contours: (i) the ‘a’ annotated on the top right 
corner of the image; (ii) the scale bar information at the bottom of the image. The false positive 
correction step in ImageDataExtractor eliminates both of these contours. However, it is worth 
mentioning that the false positive contour associated with the scale bar would have also been 
eliminated in a subsequent edge correction step (vide infra) that lies within the overarching 
detection workflow of ImageDataExtractor. Please note the figure label (a) was carried over 
from the original publication and can be disregarded for our purposes. 

 

Breaking up clusters. This step aims to separate particles that overlap or lie extremely 

close together in an image. The particles involved cannot be defined by closed contours as their 

borders are ambiguous; rather, the contour detection procedure erroneously categorises multiple 

particles as one large closed contour, i.e. as a single large particle. These clusters of particles are 

separated by a three-part sequence of operations.  

 

Firstly, the multiple particles that have been erroneously classified as one particle are 

identified. This procedure uses the fact that the size of a contour for such false positive single 

particles will be anomalously large, relative to a true positive single particle, since they really 

comprise multiple particles. Accordingly, all contours that are larger than 50% of the mean 

contour area, or are 50% of the image size, are classified as possible multiple particles.  
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Secondly, features called ‘narrow bottlenecks’ are sought within these identified 

multiple-particle regions. Narrow bottlenecks are characteristic features of an object within an 

image that connect particles by a thin channel or ‘neck’. The points associated with the smallest 

diameter of this neck are called convex defect points, which lie a significant distance from the 

convex hull of that object. This is perhaps easier to comprehend via an example. A narrow 

bottleneck within an object is illustrated via the insets of Figure 3.12. The accompanying 

geometric drawing of Figure 3.13 labels this bottleneck and the convex hull that surrounds the 

object; a convex hull is the polygon that wholly encapsulates an object while occupying the 

minimum area, pending the constraint that the contour of the object touches all vertices of the 

convex hull, whose reflex interior angles are all less than 180°. A narrow bottleneck is identified 

by first finding the convex hull of the object, using an algorithm described by Sklansky 122  which 

employs the convexHull function of OpenCV.  If a narrow bottleneck exists within an object, 

then the shortest diameter of its neck will be bounded by two convex defect points. Such a point 

is formally defined as the point on the contour of the object which lies furthest in perpendicular 

distance from the convex hull boundary between two adjacent convex hull vertices. This is 

illustrated for a particle cluster in the running example image,108 whereby Figure 3.13 denotes 

the furthest normal distances between the object contour and the convex hull, d1 and d2, between 

the convex hull vertices, v1 and v2, and v5 and v6, respectively. All convex defect points of an 

object can thus be calculated via standard geometric functions that determine the maximum 

distance between the object contour and the convex hull, between adjacent convex hull vertices. 

The close proximity of two convex defect points within an object, and their relative geometric 

positioning at opposite sides of the object, are considerations used to identify a narrow 

bottleneck.  

 

If such points are detected and thus a narrow bottleneck is located, the particle cluster is 

sliced apart at these points and reinserted into the master list of identified particles in their 

broken-apart forms. This slicing operation represents the third and final part of the particle 

cluster separation algorithm. Figure 3.12 shows how ImageDataExtractor follows this process of 

particle separation for a particle cluster, using the running example108 for the purposes of 



 

 

 

 

 

49 

demonstration. As an addendum, it is worth noting that samples sometimes include particles of 

multiple shapes that are actually physically joined; however, these sorts of clusters rarely feature 

narrow bottlenecks, and thus survive this step unharmed. 

 
Figure 3.12 Demonstration of the step in ImageDataExtractor that breaks up particle clusters 
using the running example 108  carried throughout this chapter. This process is applied to almost 
every particle. The insets with red borders show the sequence by which the particle cluster is 
identified and broken up. Please note the figure label (c) was carried over from the original 
publication and can be disregarded for our purposes. 
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Figure 3.13 This schematic drawing shows the geometry associated with the cluster break up 
algorithm. Drawing annotations include the convex hull (red), convex hull vertices, vn, (red) 
convex defect points of the narrow bottleneck (blue), and the associated normal distances, d1 and 
d2, between the object contour (green) and the convex hull between adjacent convex hull 
vertices, v1 and v2, and v5 and v6, respectively.  

 

 

Edge Correction. The edge correction step eliminates any particles deemed to be 

artificially distorted by the borders of the image frame or scale information region. It is a simple 

process where any contour featuring two or more vertices intersecting the image borders or scale 

bar region are eliminated from the master list of identified particles. The effect of performing this 

correction in ImageDataExtractor is illustrated in Figure 3.14 using the running example108 used 

throughout this chapter. 
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Figure 3.14 Demonstration of the edge correction procedure in ImageDataExtractor, using the 
running example 108  used throughout this chapter. Particle contours that intersect the borders of 
the image or the scale information region (blue rectangle) are eliminated. Please note the figure 
label (c) was carried over from the original publication and can be disregarded for our 
purposes. 

 

 

Ellipse Fitting. This penultimate correction step in particle detection tackles the pervasive 

problem of non-uniformly shaded particles. In such cases, the darker portions of a particle may 

end up being ignored by the border contour while its lighter side is defined correctly. A 

hypothetical example is given in Figure 3.15, where the original particle (left) is detected poorly, 

as a shape resembling an ellipse truncated by a chord (middle); the chord bisects the registered 

(lighter) part of the particle from its curtailed darker portion. Conic fitting is used to model the 

shape profile of the partially detected particle to that of a Euclidean conic section, whereby this 

geometric approximation projects well the shape of the full particle (right). Thereby, the near-

elliptical part of the originally detected particle in our hypothetical example is fitted as an 

elliptical conic section which envelopes the originally detected particle; the conic fitting method 

used in ImageDataExtractor applies the OpenCV conic fitting functions, which are derived from 

the procedure described in first part of the summary paper by Fitzgibbon and Fisher.123 
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Figure 3.15 (left) A heterogeneously shaded particle, (middle) the particle that has been 
erroneously detected (green contour), owing to detection issues from the heterogeneous shading 
of the particle, (right) conic fitting of the originally detected particle to an ellipse (green 
contour). 

 

The originally detected particle and the fitted elliptical conic section are compared via a 

custom metric that we define as the discreteness index (DI). This judges autonomously which 

option is the better fit to the true particle. The fitted elliptical conic section is approximated to a 

polygon with an angle of 175° in between subsequent line segments (using the OpenCV function 

ellipse2Poly with delta parameter set to 5) for the sake of efficiency, and is thus defined by the 

vertices of a polygon. The DI of a contour, DIcont, is defined to be the mean pixel intensity 

difference between two pairs of points just inside and just outside the contour border at every 

vertex, whereby: 

 

𝐷𝐼6!,(!"(𝑥, 𝑦) = B
𝐼7("9:),=> − 𝐼7("):),=>,			𝑖𝑓	𝑥% <	𝑥/
𝐼7("):),=> − 𝐼7("9:),=>,			𝑖𝑓	𝑥% >	𝑥/

 

(3.4) 

																										+	B
𝐼(",(=9:) − 𝐼(",(=):)),			𝑖𝑓	𝑦% <	𝑦/
𝐼(",(=):) − 𝐼7",(=9:)>,			𝑖𝑓	𝑦% >	𝑦/
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DI?@A( =
B CD!"#$"%(",=)

(%,()*
(%,()+

A
                                                     (3.5) 

 

 

for all vertices (x,y) that define the particle contour, where I(x,y) is the intensity of the 

pixel marked by the vertex with coordinates (x,y), (xm,ym) are the coordinates of the centre of 

mass of the contour and n is the number of points in the contour. In practice, the fitting process is 

applied to the convex hull of the contour instead of every vertex of the fully detected contour, to 

allow accurate results with reduced computing cost.  

 

 

Using Figure 3.15 (middle) as an example, the value of interest (DIvertex) for the vertex 

marked by the black cross (x,y) would be calculated as follows. Since this vertex (x,y) has x < xm  

and y > ym  (the point is above and to the right of the centre of mass of the contour), DIvertex 

would be calculated by subtracting pixel intensities of the points marked by the blue crosses 

(above and to the right ) from that of those marked by the red crosses (below and to the left). 

 

𝐷𝐼6!,(!"(𝑥, 𝑦) = (𝐼7("9:),=> − 𝐼7("):),=>) + (𝐼(",(=):) − 𝐼7",(=9:)>)	                 (3.6) 

 

i.e. (redx – bluex) + (redy – bluey) 

 

The discreteness index is the mean of all such values for every vertex, i.e.  

 

𝐷𝐼?@A( = 𝐷𝐼6!,(!"HHHHHHHHHH                                                          (3.7) 

 

One can imagine this calculation repeated for multiple points along each contour in the 

hypothetical case presented in Figure 3.15, where the original contour insufficiently described 

the particle (Figure 3.15, middle). The elliptical conic section fitted to the near-elliptical portion 

of the original particle shape (Figure 3.15, right) would have a higher discreteness index than the 
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original fitted profile in Figure 3.15 (middle), since the difference in colour on either side of the 

contour is, on average, larger for the fitted ellipse. The elliptical conic section would thus be 

determined to represent the more correct fit to the shape of the true particle. 

 

Considering now a real example, using the running image used throughout this chapter,108 

Figure 3.16 illustrates the effect of fitting ellipses to particles using ImageDataExtractor. This 

demonstrates that the fitting method is very powerful, despite its simplicity. While this simple 

method of determining pixel positions by moving by 3 pixels vertically or horizontally (to 

determine sample points inside/outside the contour) does not work perfectly in the case of oddly 

shaped particles, it is deemed sufficiently accurate, such that the computational cost of a more 

complex approach is not justified.  

 

 
Figure 3.16 The results of fitting ellipses (red) to the contours that described the originally 
detected particle shapes (green) in the running example image 108 used throughout this chapter, 
as implemented by ImageDataExtractor. The shape of the originally detected contour is 
compared with its fitted ellipse; the fit that best matches the true shape of the particle gets 
passed to the final product. The fitted ellipse is deemed to be the better fit in this image for 
particles 10, 11 and 14, whose labelling is given in magenta. Please note the figure label (c) was 
carried over from the original publication and can be disregarded for our purposes. 
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Secondary Edge Correction. The final correction step is a secondary edge correction step, 

identical to the previous one, which serves to eliminate any new elliptical fits that intersect with 

the image frame or scale bar region. The updated master list of border contours defining each 

particle can now be passed on to the quantitative analysis stage of ImageDataExtractor, as 

described in the next section. Figure 3.17 shows the set of particles in the running example 108 

used throughout this chapter that are finally selected for this next stage of analysis. 

 

 
Figure 3.17 Visual representation of the running example image 108 used throughout this 
chapter, annotated with the final set of detected particles that are taken forward for quantitative 
analysis in the next stage of ImageDataExtractor. Please note the figure label (c) was carried 
over from the original publication and can be disregarded for our purposes. 

 

Step 3: Quantitative analysis of material objects of interest in images including the 

creation of radial distribution functions  

 

Microscopy images become much more useful in data analysis once representative 

particles contained within them have been detected, since such particles can be analysed 

quantitatively. ImageDataExtractor provisions for this utility by subjecting all detected particles 

from inputted images to a quantitative analysis process. This process comprises six steps which 

are summarised in Figure 3.18. The number of detected particles in each image processed by 
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Step 2 of the ImageDataExtractor system pipeline is first passed to this Step 3, as the source for 

quantitative analysis. These particles are then classified according to shape, by performing a 

similarity match on the contour of each particle with respect to a reference list of commonly 

recognised geometric shapes (e.g. circle, rectangle). A histogram that describes the range of 

particle sizes is then constructed. Particle whose sizes are statistical outliers are distinguished at 

this point, to afford a list of particles of representative sizes. This is to provide the user with an 

idea of the expected particle size, not necessarily for the individual sample, but for the material, 

filtering out unusually sized particles that are often incorrect detections or uncharacteristic of the 

material. However, further calculations, such as the mean aspect ratio of the particles, are applied 

to the entire list of detected particles, to more fully describe a given sample. Pending that at least 

10 particles have been detected, a radial distribution function (RDF) of the particles in each 

image is then calculated in order to depict the separations between particles. This RDF is 

presented in the output of ImageDataExtractor together with the annotated image that visualises 

the particle detection results. The ImageDataExtractor output also contains a textual listing of 

the number of particles detected, the representative particle size, the shape resemblance of 

particles to common geometries, and the average aspect ratio of particles in each image. The 

figure and document from which each image is sourced is also identified in this textual output. A 

detailed description of the calculations that produce these output features is now given. A typical 

output of ImageDataExtractor is then shown for the running example image 108 used throughout 

this chapter. 
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Figure 3.18 Quantitative analysis steps in ImageDataExtractor. 

 

Match Particles to Common Geometric Shapes. A shape matching classification 

procedure is used to portray the resemblance of detected particles to regular geometric shapes. 

This is accomplished by comparing the shape of the detected contour for each particle with that 

of a reference list of common geometric shapes (e.g. rectangle, ellipse, diamond, circle), using 

the similarity index according to Hu moments.124 Thereby, the similarity of two given shapes, I1, 

is calculated according to:  

 

𝐼E(𝐴, 𝐵) = ∑ L E
/,
- −

E
/,
.L%FE…H                                                    (3.8) 

 

𝑚%
I = 𝑠𝑖𝑔𝑛Qℎ%IS ∙ logQℎ%IS                                                    (3.9) 

 

𝑚%
J = 𝑠𝑖𝑔𝑛(ℎ%J) ∙ log(ℎ%J)                                                  (3.10) 
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where m is the sign-adjusted logarithm for the ith Hu moment;  ℎ%I and ℎ%J being the Hu 

moments of A and B. 109 I1 ranges from 0 to 1, where 0 denotes a perfect match. The Hu 

moments were calculated in ImageDataExtractor using the OpenCV function, matchShapes. 

 

If the statistical mode of I1, determined across all particles surveyed in an image, is less 

than 0.1 for any of the reference geometric shapes, the textual output of ImageDataExtractor 

notes the most common shape resemblance of the particles in the image. If multiple particle 

shapes manifest within an image, a range of shape resemblances of particles is also given in the 

textual output of ImageDataExtractor, together with their associated similarity indices. A default 

file of reference geometric shapes, shapes_to_match.png, is provided for ImageDataExtractor. 

However, the user can manually create their own reference shapes of interest, using the same 

.png image file format, and compare them against the particle contour shapes from input images.  

  

Calculate Histogram of Particle Sizes. ImageDataExtractor generates a histogram of the 

particle size distribution for each image that it surveys. The radial unit for this distribution is 

given in either m2 or px2, since the originating image is a 2-D projection of a particle. m2 is 

specified pending it has been possible to interpret the image scale; otherwise, px2 is specified. 

This histogram is used to distinguish particles of representative sizes from those that are deemed 

to be statistical outliers. The removal of statistical outliers channels the range of detected 

particles to a representative particle size with modest standard deviation. This channelled metric 

is useful for experimental practitioners such as materials scientists who tend to be most interested 

in a typical size of nanoparticle for their work. However, it should be remembered that these are 

purely statistical outliers; particle sizes residing at the extreme values of a size range may not 

necessarily arise from incorrectly detected particles. Rather, the nanostructure of a material could 

naturally feature a range of particle sizes including many of a regular size and just a few that are 

much larger or smaller. Thus, while we provide the metric of representative particle size, the 

other quantitative analysis metrics presented herein are determined using all detected particles, 

irrespective of their size. Any size variations should naturally partition such metrics in any case; 

for example, particle separations that will be defined shortly will naturally separate large 
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particles from small ones; meanwhile, metrics that concern particle shape that have just been 

discussed are not size dependent. 

 

ImageDataExtractor distinguishes a statistical outlier as any particle with contour area A, 

where:  

 

𝐴 > 𝜇 + 1.75 × 	𝜎	or	𝐴 < 𝜇 − 	𝜎		                                       (3.11) 

 

with 𝜇 and 𝜎 being the mean and standard deviation of contour areas, respectively.  

 

This process by which particles of representative sizes are distinguished from statistical 

outliers is illustrated in Figure 3.19 using the running example image 108 used throughout this 

chapter. 
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Figure 3.19 Histogram of particle sizes (areas) for the running example image 108 used 
throughout this chapter. The brown columns are contributions from particles of representative 
sizes. The blue columns are contributions from particles deemed to be outliers. 

 

 

Determine the Representative Particle Size. This is simply a calculation of the mean of 

all particles of representative sizes in an image. Considering the filtered data in Figure 3.19, the 

representative particle size for the running example image108 is calculated to be 1.92 x 10-12 m2. 

In this case study, one can essentially approximate all particles to a sphere, such that their 2-D 

projected circular area translates to a mean particle diameter of 1.56 μm. This value is consistent 

with a judgement by manual inspection. 
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Compute the Aspect Ratio of Particles. The mean aspect ratio (width/height) was 

calculated using all particles from the image by calculating the bounding rectangle for each 

particle using the OpenCV function boundingRect and dividing the width of the rectangle by its 

height.  

 

Generate the Minimum Radial Distribution Function. If at least 10 particles are identified 

in an image, then ImageDataExtractor computes a ‘minimum radial distribution function’ 

(minRDF) of particles which is also displayed as part of its output. In the context of this work, a 

radial distribution function (RDF) describes the average separation between the centroids of 

particles. The minRDF is defined herein as an RDF for particles detected in an image. This 

distinction is important since the omission of just a couple of particles from a conventional RDF 

can drastically alter it, while perfect particle detection in microscopy images cannot be 

guaranteed.  

 

Thereby, the minRDF is calculated by counting the number of detected particles at a 

certain radial distance away from another, repeating for every particle. For each particle pair, the 

bounding rectangle of the secondary particle is identified via the presence of circles of various 

radii originating at the centre of mass of the primary particle. The radii of these circles range 

from:	[𝑑 − 1.5	 ×	𝑟K, 𝑑	 + 	1.5	 × 𝑟K], where d is the distance between the centres of mass of the 

particles and r2 is the radius of the enclosing circle of the secondary particle. The default 

increment is set to 2 pixels. The radii of the circles which do intersect with the secondary particle 

are noted and added to a running list of intersections to radii. The process is repeated for each 

particle pair to generate the minRDF.  

 

This process is depicted in Figure 3.20, using a particle pair from the running example 

image108 used throughout this chapter. This visualisation also helps illustrate how, in addition to 

their distribution, an RDF can also provide insight into the shapes and sizes of particles.  
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Figure 3.20 Visualizing the determination of the bounding rectangle of the secondary particle in 
the minRDF generation process, using the particle pair 15 (red outline) and 1 (filled green) of 
the running example image 108 as labelled in Figure 3.16 (see inset) for the purposes of 
illustration. The radial distances analysed are shown as blue circles.  

 

Figure 3.21 presents the minRDF that is generated by ImageDataExtractor for the 

running example image108 used throughout this chapter. Thus, the separation between particles in 

this case study ranges from 0.6 to 10.77 μm. The most common particle separation is 4.37 μm, 

while peak separations appear at 1.86, 2.89, 4.37, 5.06 and 6.09 μm. 
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Figure 3.21 The minRDF generated by ImageDataExtractor for the running example image 108 
used throughout this chapter.  

 

Output Files from ImageDataExtractor. The minRDF is displayed in the 

ImageDataExtractor output, alongside its originating image that has been annotated with the 

particle detection results from Step 2 of its system pipeline. ImageDataExtractor also outputs the 

histogram of particle sizes for each image, the data of the minRDF in the form of a two-column 

text file and a textual summary of salient results from the quantitative analysis of each image. 

The corresponding textual output associated with this running example image is given in Figure 

3.22.   
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Figure 3.22 Textual output of ImageDataExtractor for the running example image 108 used 
throughout this chapter. 

 

3.4 Technical Evaluation 

 

The evaluation metrics, precision and recall, were calculated for four key stages of the 

ImageDataExtractor tool, according to: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 LM
LM9NM

                                                       (3.12) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	 LM
LM9NO

                                                          (3.13) 

 

where TP (true positives) are defined as the number of accurate outputs, FP (false 

positives) are the number of inaccurate outputs and FN (false negatives) are the number of null 

outputs which should not have been null.  

 

Four stages of the ImageDataExtractor system pipeline were assessed by this evaluation. 

These were naturally partitioned according to its aforementioned distinct steps of image 
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processing: the figure splitting (Step 1), scale identification (the first distinct sequence of 

operations in Step 2), particle detection (the initial part of the second distinct sequence of 

operations in Step 2), and individual particle accuracy (the remaining sequence of operations in 

Step 2). These terms were defined earlier except for the individual particle accuracy; this is a 

measure of the success of detection on the individual particle level and describes how close the 

detected borders of the particle are to the true borders. It is calculated by manually counting the 

number of pixels included within the borders which are either correct or incorrect and any pixels 

that are falsely excluded. 

 

The test set used for the evaluation consisted of 298 images that were sourced from 

papers in the academic literature and which all present therein as figure panels. 

ChemDataExtractor13 was used to extract these images from a corpus of scientific articles 

comprising 6807 documents from the Royal Society of Chemistry (RSC) publisher. The 

extraction process employed a search query across all RSC journals for the words ‘SEM’, ‘TiO2’ 

and ‘nano’. It should be noted that this query was meant to merely guide the collection process 

towards imaging-related scientific articles and did not limit the scope of imaging techniques or 

sample materials in question, since the criteria were not enforced on individual figure captions. 

The query was performed using RSC’s ‘Advanced Search’ API which selects articles most 

appropriate to the query using its own relevance metric. These articles were then scanned for 

microscopy images using the parser provided in ChemDataExtractor for ImageDataExtractor 

and the first 3000 figures were downloaded – this was then filtered down to 298 individual 

images. The filter comprised a manual pre-processing stage that imposed three acceptance 

criteria whereby at least one image in the figure must: (i) include at least one discernible discrete 

particle fully included within the frame of the image; (ii) include a legible scale bar, scale value 

and unit; (iii) not be obscured by large overlays or image insets. These image content criteria, as 

well as an image resolution floor of 50000 square pixels, were enforced as required throughout 

the evaluation steps. DOIs for the 298 filtered images and their original Figure numbers, within 

the documents from which they were obtained, can be found at: 

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00734/suppl_file/ci9b00734_si_001.xlsx 
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Table 3.1 Evaluation metrics for key steps of the ImageDataExtractor system pipeline. 

Evaluation Step Precision Recall 

figure splitting 73.9% 80.2% 

scale identification 81.1% 72.3% 

particle detection 82.9% 61.1% 

individual particle accuracy 99.5% 80.5% 

 

 

Table 3.1 summarises the overall results of this evaluation for each of the four assessed 

steps of the ImageDataExtractor system pipeline. The precision is over 80% for all processing 

steps of individual images, while the precision of the figure splitting algorithm (73.9%) that 

generates these images for ImageDataExtractor processing is almost as good. The precision is 

generally considered to be the most important evaluation metric in this field of study, since the 

literature is so vast that there is safety in numbers: a high precision means that what is accepted 

is highly likely to be correct, and there are so many images available in the literature that one can 

deal with some shortfall in information where images are not assessed. Nonetheless, the recall 

which refers to the latter issue is still above 80% in two of the stages and decent (72.3%) for 

scale identification. The slightly lower recall for the particle detection stage is expected as this is, 

by far, the trickiest image processing step to perform, especially with regards to the segmentation 

and fitting steps. Overall, the results are very encouraging as the majority of the evaluation 

metrics exceed those of human error which is generally considered to be about 80%; while 

human labour is manual and tedious, ImageDataExtractor is a tool that has been tailored 

specifically to suit high-throughput image extraction and quantitative analysis tasks for 

microscopy. A more detailed breakdown of the evaluation, showing calculations of each metric 

for each figure in the evaluation test set, as well as source material, can be found at the link 

provided above.  
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3.5 Examples of Application 

 

The running example image 108 used throughout this study contained near-spherical 

particles. However, it is important to demonstrate that ImageDataExtractor can work equally 

well on the processing of images containing a range of particle sizes and shapes. Figures 3.23-

3.26 present the image input and ImageDataExtractor output for four further case studies to 

showcase the wider application of this software tool. Note that the original image in each case 

formed part of a collage of images but the full image panel is not shown for purposes of brevity. 

The original image panels are of course available in the cited article in the literature. 

 

  
Figure 3.23 (top left) The original SEM image of silver nanorods captured from panel ‘E’ of the 
original figure that comprised a 2 x 3 panel of images. 125 (bottom left) the particles detected by 
ImageDataExtractor in green, with their corresponding labels in red. (top right) Histogram of 
representative particle sizes. (bottom right) Textual output of ImageDataExtractor showing data 
source information and quantitative particle analysis.  Note that no minRDF was calculated in 
this case since less than 10 particles were detected. 
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Figure 3.24 (top left) The original SEM image of Ce-based precursors of 
asparagine:Ce3+:oxalate, captured from panel ‘d’ of the original figure that comprised a 2 x 3 
panel of images 121 (bottom left) the particles detected by ImageDataExtractor in green, with 
their corresponding labels in red. (top right) Histogram and minRDF of representative particle 
sizes and particle separations, respectively. (bottom right) Textual output of ImageDataExtractor 
showing data source information and quantitative particle analysis.    
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Figure 3.25 (top left) The original SEM image of BiOBr, captured from panel ‘(a)’ of the 
original figure that comprised a 2 x 2 panel of images. 126 (bottom left) the particles detected by 
ImageDataExtractor in green, with their corresponding labels in red. (top right) Histogram and 
minRDF of representative particle sizes and particle separations, respectively. (bottom right) 
Textual output of ImageDataExtractor showing data source information and quantitative 
particle analysis.    
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Figure 3.26 (top left) The original SEM image of Bi-based carbonate clusters made up of 
nanosheets with a thickness of 5–15 nm obtained at 60 °C, captured from panel ‘c’ of the 
original figure that comprised a 2 x 3 panel of images. 127 (bottom left) the particles detected by 
ImageDataExtractor in green, with their corresponding labels in red. (top right) Histogram of 
representative particle sizes. (bottom right) Textual output of ImageDataExtractor showing data 
source information and quantitative particle analysis.  Note that no minRDF was calculated in 
this case since less than 10 particles were detected. 

 

3.6 Conclusions 

ImageDataExtractor is a software tool that auto-extracts microscopy images and analyses 

their content in a fashion that affords quantitative information about the shape, size and 

distribution of the 2-D projections of particles held within the image. The operational pipeline of 

the tool comprises three distinct steps: (Step 1) auto-identification and auto-extraction of 

microscopy images from documents whereby ImageDataExtractor calls upon its complementary 

text-mining tool, ChemDataExtractor, 13 for its data-mining capabilities; alternatively, it can act 

as a stand-alone tool on individual images. For cases where microscopy images are held within a 

collage of images within the figure of a document, this step also involves a separation process to 
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split the microscopy image from a panel of images. (Step 2) Decoding the scale information 

within a microscopy image using optical character recognition with help from super-resolution 

convolutional neural networks where required; and detecting the individual particles held in the 

image using various thresholding, segmentation, polygon fitting, and edge correction routines. 

(Step 3) Quantitative analysis of the detected particles within an image, afford statistical 

information about particle shape, size and separation. In contrast to other image-recognition 

based tools designed for microscopy images, ImageDataExtractor is capable of operating 

autonomously, in a high-throughput mode, and on a wide range of images. The tool and cognate 

code are also open source. Evaluation metrics calculated herein have shown that the tool 

performs well at all stages of image processing, and better than human error associated with 

manual image processing for the majority of its steps.  

The high-throughput image extraction and quantitative analysis options of 

ImageDataExtractor mean that this tool is inherently poised toward our ultimate goal of auto-

generating material databases of information on particles. Our applications for microscopy image 

information are naturally geared towards the expansive field of nanotechnology, given the 

particle sizes involved. Naturally, the tool has some limitations in its first incarnation; for 

example, it struggles with processing images that exhibit heavy depth cueing or highly 

heterogeneous contents and it only processes images that contain particles rather than bespoke 

objects (such as the microscopy imprint of an insect). Indeed, improvements in depth cueing and 

the ability to access heterogeneous content would improve the overall precision and recall of the 

tool. However, the generic design of our tool and the open-source image-recognition framework 

that it provides, with an interface that welcomes community contributions, means that it is highly 

adaptable. Indeed, with fairly modest additional effort, ImageDataExtractor could be extended to 

interrogate all sorts of ‘particles’ that are portrayed in 2-D images. Such extensions could 

involve highly disparate fields of scientific application, given that the tool could essentially be 

made relevant to any form of science that use 2-D images in their investigate armoury; from 

counting blood cells in medicine, to analysing biological specimens, to unlocking biochemical 

processes within organisms. 
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4. Glancing-angle PDF Analysis of DSSC Working Electrodes 
 

This chapter outlines the development of a novel experimental technique called glancing-

angle PDF (gaPDF), which allows PDF analysis of samples in the form of thin films. It also 

describes the experimental application of this technique to working electrodes of dye-sensitised 

solar cells (DSSCs) and the afforded conclusions regarding this interfacial structure. This chapter 

is based on a paper being prepared for publication. 

 

My PhD supervisor, Jacqueline Cole, and I conceived and designed the research. Philip 

Chater of the Diamond Light Source, Jacqueline Cole and I developed the experimental 

methodology and led the experiments, with assistance from Othman Al Bahri and Apoorv Jain 

on the final experiment. Philip Chater performed the data reduction. Philip Chater and I 

conducted the data analysis with assistance from Jacqueline Cole. All density functional theory 

calculations were performed by Leon Devereux. Jacqueline Cole and I interpreted the results.   

 

4.1 Summary 

 

The efficient transport of electrons from the sunlight-harvesting dye molecules into the 

electrical circuit of a dye-sensitised solar cell (DSSC) is imperative to its effective operation. A 

dye···semiconductor interface comprises the working electrode of a DSSC. Dye molecules 

adsorb onto the semiconductor surface, whereupon they transfer electronic charge into the 

conduction band of the semiconductor; this process initiates the electrical circuit. It is therefore 

important to characterise this interfacial structure in order to understand how efficiently the dye 

binds, or anchors, onto the semiconductor surface and imparts charge transfer to it. Armed with 

such knowledge, the performance of DSSCs may then be improved systematically. The structural 

determination of a thin-film interface is nonetheless a challenging task. We herein report the 

results of a glancing-angle pair distribution function (gaPDF) experiment that generated 

synchrotron X-ray diffraction patterns of N3- and N749-sensitised DSSC working electrodes. 
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This gaPDF experimental approach represents the first diffraction-based strategy for the 

characterisation of intact DSSC working electrodes. The gaPDF structural signatures were 

compared with PDFs simulated from interfacial structures that were computed using density 

functional theory (DFT); these simulated structures showed the dyes anchoring in two distinct 

modes: a bridging bidentate and a monodentate ester configuration. The differences between the 

experimental observation and these simulated structures revealed a preference for each dye, N3 

and N749, to adopt a bidentate bridging dye anchoring mode when sensitised onto TiO2. This 

work not only demonstrates the successful application of the gaPDF method to DSSC research, it 

also advocates the applicability of gaPDF to many types of thin-film samples.    

 

4.2 Introduction 

 

Dye-sensitised solar cells (DSSCs) represent promise for next-generation photovoltaic 

technology.20 In particular, their transparency stimulates their development in solar-powered 

windows 21,22 for energy-sustainable buildings in future cities. In addition to representing the 

only truly transparent building-integrated photovoltaic technology, DSSCs excel in poor or 

ambient sunlight conditions. This stands in sharp contrast to other photovoltaic devices.23,24 

DSSCs also hold prospects as passive energy harvesters in wearable devices and textiles, 128-131 

given their ability to be manufactured on flexible substrates or as fibres. More generally, the fact 

that DSSCs can be fabricated from cheap raw materials and undergo straightforward 

manufacturing processes means that their price-to-performance ratio exceeds that of fossil fuels, 

thus rendering DSSCs commercially competitive with more traditional energy sources. 132 
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Figure 4.1 General operational mechanism of DSSCs (left) and the four elementary steps that 
complete the circuit in DSSCs (right). 

 

The working electrode of a DSSC device usually adopts the form of a thin film whose 

thickness is typically of the order of 5-10 µm, depending on the manufacturing method. This film 

comprises a dye…semiconductor composite. The semiconductor is typically an oxide, most 

commonly, TiO2  (anatase); as such, TiO2 will be assumed to be the semiconductor for the rest of 

this chapter. The composite is prepared by depositing TiO2 onto transparent conducting glass 

plates, and then sensitizing the resulting TiO2 substrates for 24 hours with sunlight-harvesting 

dye molecules (Figure 4.1). 

The adsorption of dye molecules onto the TiO2 substrate is generally achieved via certain 

chemical substituents of the dye, which can act as anchoring groups to bind the dye molecules to 

the TiO2 surface. These substituents are often carboxylic or cyanoacrylic acid groups.133 The 

anchoring groups also facilitate the transfer of electrons from the photo-excited dye into the 

conduction band (CB) of the semiconductor, which initiates the electrical circuit. The 

performance of the anchoring group is therefore fundamental to the function of the DSSC, both 

in terms of its capacity of physical adsorption and in terms of its electron transfer characteristics. 

The structural determination of a dye…TiO2 interface, including a resolution of its preferred 
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anchoring mode configuration, is thus essential for the strategic improvement of DSSC 

technology. 25-27 

 

The structural nature of dye…TiO2 interfaces has already been investigated using various 

materials characterisation methods. For example, vibrational spectroscopy (infra-red and Raman) 

has been used to identify changes in dye…TiO2 binding strengths or anchoring configurations via 

analysis of associated bond stretching or bending mode modulations.28-31 X-ray photoelectron 

spectroscopy can detect if a dye is anchoring to a TiO2 surface; if so, it can also quantify the 

corresponding dye…TiO2 binding strengths.7,32,33 X-ray absorption spectroscopy can identify 

oxidation states in dyes adsorbed onto TiO2 surfaces. 33 Optical metrology, such as UV-vis 

absorption and emission spectroscopy, can be used to survey the propensity for a dye to 

aggregate on TiO2 surfaces and determine if the dyes form H- or J-aggregates. 31,34 X-ray 

reflectometry can enumerate the thickness of the dye on a TiO2 surface.8,35-38 Neutron 

reflectometry can determine dye-layer thicknesses of a dye…TiO2 interfacial structure while this 

DSSC working electrode is assembled with the device environment. 39 Concerted scanning 

tunnelling microscopy and scanning tunnelling spectroscopy (STM/STS) techniques have been 

used to demonstrate that multiple dye anchoring configurations can co-exist on a TiO2 surface.40-

41 Atomic force microscopy (AFM) can be used to elucidate the spatial distribution of dye 

molecules on a TiO2 surface. Accordingly, the extent to which dyes may aggregate on a TiO2 

surface can be estimated from AFM. 8,42,43 Complementary calculations using DFT and time-

dependent (TD)-DFT calculations 27,134 are commonly performed. These calculations may be 

carried out using a dye…TiO2 interface, or just the dye molecule, as the structural model. Such 

calculations are not only important for corroborating experimental findings; they can also 

provide uniquely accessible data about a material to help characterise its molecular properties, 

especially regarding its quantum energy levels and thermodynamics. Single-crystal X-ray 

diffraction has also been used to realise high-definition structural features about the dye 

molecules themselves. 135-137 
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Despite this plethora of materials characterisation efforts, the DSSC field still lacks a 

consistent, quantitative and reliable method to probe the local atomic structure of dyes on TiO2. 

Local atomic structure provides a geometric measure of the short-range order held within a 

material. A structural quantification of the short-range order contained within dye…TiO2 

interfaces would be particularly valuable with regards to unravelling the binding configuration of 

dye molecules that adsorb onto TiO2 surfaces. This is especially pertinent in light of the recent 

STM/STS studies 40,41 which show that dye molecules can exist in multiple dye conformations on 

certain dye…TiO2 interfacial structures; yet their atomic resolution could not be established by 

STM imaging. Several recent theoretical studies31,138 have also corroborated this notion that more 

than one type of dye…TiO2 binding configuration may co-exist. This evidence of dye-

conformation multiplicity is an important finding since it presents fundamental implications for 

much of the modelling and experimental materials characterisation work done to date on 

dye…TiO2 interfaces, whose analysis implicitly assumes one binding mode.  

 

Moreover, structural data from a method that probes the short-range order of dyes on 

TiO2 with atomic resolution would be highly complementary to the nanoscopically-resolved 

local structure of dye self-assemblies that has recently become available from grazing-incidence 

small-angle X-ray scattering (GI-SAXS) and AFM studies on DSSC working electrodes. 139,140 

Indeed, dye-self assemblies on TiO2 surfaces appear to exhibit short, medium and long-range 

order.   

 

This study explores the feasibility of probing the local atomic structure of DSSC working 

electrodes with atomic pair distribution function (PDF) analysis. PDF analysis has become a 

powerful technique for the characterisation of nanostructures, 1 having been borne out of a field 

of materials characterisation on liquids 44-47  and glasses 44,48,49 that exclusively exhibit local 

atomic structure. PDF analysis has previously been applied to bulk powder constituents of 

perovskite solar cell working electrodes. There, the light-sensitive perovskite, methylammonium 

lead iodide (MAPbI3), is held within a mesoporous TiO2 matrix, whereby this composite is called 

“meso-MAPbI3”. Bulk powder samples were prepared by scraping off a sufficient amount of 
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meso-MAPbI3 material from many thin film electrodes of perovskite solar cells. 50 The study 

revealed a two-component nanostructure and underscored the need for a full characterisation in 

order to systematically improve cell performance. PDF analysis has also successfully been used 

to investigate the structure of FeSb3 thin films, using a technique called thin film PDF (tfPDF). 51 

However, PDF analysis has not yet been used for the investigation of the thin-film working 

electrodes of DSSCs.  

 

This study herewith investigates the structure of DSSC working electrodes, which 

comprises a dye···TiO2 interface in the form of a thin film. We have a particular focus on 

determining local atomic structure associated with the dye anchoring modes on TiO2 surfaces. 

We employ two dyes as case studies for this study, which are the quintessential ruthenium-based 

DSSC dyes, N3 and N749 (Black Dye). These dyes serve the DSSC field as an industry standard 

and to provide wide spectral capture, respectively. The molecular structures of cis-

bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N3) and tris(N,N,N-

tributyl-1-butanaminium) [[2,2′′6′,2′′-terpyridine]-4,4′,4′′-tricarboxylato(3-

)N1,N1′,N1′′]tris(thiocyanato-N) hydrogen ruthenate (N749) are illustrated in Figure 4.2.  

 

 
 

Figure 4 2 Molecular structures of N3 (left) and N749 (right). 
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N3 bears four carboxylic acid groups while N749 furnishes three such substituents. 

Carboxylic acid groups are generally considered to provide the best anchoring groups for 

adsorbing dyes onto TiO2 surfaces, 24,141 once they have been deprotonated to afford their 

carboxylate forms. However, the binding mode configuration(s) of these carboxylate ions on 

TiO2 are contended for ruthenium-bipyridyl based dyes. Some optical 142 and vibrational142-143 

spectroscopy studies suggest that the dyes bind via the bidentate chelating or bidentate bridging 

mode shown in Figure 4.3, middle and right, respectively. Other optical and vibrational studies 

142 argue that a monodentate ester binding mode (Figure 4.3, left) as well as bidentate bridging 

and chelating modes exist in dye…TiO2 interfacial structures. Meanwhile, DFT calculations 144 

report a strongly unfavourable adsorption energy associated with the bidentate chelating mode, 

suggesting that monodentate ester and bidentate bridging are the two possible anchoring modes. 

The aim of our study is to demonstrate that PDF analysis of DSSC working electrodes can be 

applied to dispel this contention by realizing direct evidence from the local atomic structure of 

dye…TiO2 interfaces. 

 

 
 

Figure 4.3 Possible binding modes for carboxylate group anchors onto TiO2.  

 

DSSC working electrodes containing N3 or N749 dye adsorbed onto mesoporous TiO2 

were examined via PDF analysis of synchrotron X-ray diffraction data collected at the beamline, 

I15-1, of the Diamond Light Source, UK, using a novel setup that we have termed glancing-
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angle PDF (gaPDF) (Figure 4.4). Complementary density functional theory (DFT) calculations 

were employed to provide structural models of N3…TiO2 and N749…TiO2 interfaces where the 

dyes adsorb in both the monodentate ester and bidentate bridging mode. These structural models 

were also used to simulate PDFs of the corresponding dye···TiO2 interfacial structures for the 

purposes of comparison.  

 

Figure 4.4 Schematic illustration of the experimental setup for the glancing-angle PDF (gaPDF) 
analysis. The working electrode (dye sensitised TiO2 thin film, shown in red) is deposited on a 
transparent conducting glass plate (white) then placed on a sample stage (shown in textured 
grey). The schematic is not to scale.  

 

4.3 Experimental Methods 

 

Sample Preparation. The samples were prepared following traditional DSSC fabrication 

methods, up until the point before the addition of electrolyte and sealing with the counter 

electrode. Thereby, Delta Technologies CB-90IN-10X10/0.5 glass slides (10 x 10 x 0.5 mm3 

boro-aluminosilicate glass slide coated with indium tin oxide on one side) were cleaned in a 

James Products Sonic 4D 120W ultrasonic bath using an aqueous solution of Decon (5%; 15 
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min), deionised water (15 min), and ethanol (15 min). Then, Dyesol 18NR-T transparent titania 

paste (anatase nanoparticles) was doctor-bladed onto the conductive faces of the glass substrates, 

which were subsequently sintered (500 oC; 30 min). Using the equipment in our laboratory, each 

application is expected to result in a layer of ~10 µm thickness. The doctor-blading step was 

repeated once more to increase the thickness of the TiO2 layer to approximately ~20 µm. 

Unsensitised TiO2 samples were ready at this stage. The remaining samples were divided and 

immersed (24 h; covered petri dishes) in 0.5 mM solutions (t-BuOH/MeCN, 1:1, v/v) of 

Solaronix Ruthenizer 535 (N3) or Solaronix Ruthenizer 620-1H3TBA (N749). The samples were 

then rinsed using pure acetonitrile and briefly dried under a flow of nitrogen.  

 

gaPDF X-ray Diffraction Setup. Synchrotron-based X-ray diffraction data were collected at the 

Diamond Light Source XPDF beamline, I15-1, using a photon wavelength of  l = 0.1611 Å and 

a Perkin Elmer XRD 1611 CP3 area detector. An experimental setup for gaPDF is possible due 

to the vertically narrow focused beam of I15-1 (full width at half maximum at its focus: 9 µm). 

This setup allows placing only the thin film, which comprises the dye···TiO2 interface, into the 

beam path, so that the working electrode can be observed in its intact form, rather than as a 

powder sample.  

 

Such a refined experimental setup requires multiple calibration steps. Initially, a vertical 

calibration was carried out in order to ensure maximum sample exposure, while concomitantly 

excluding the substrate from the beam path. This was accomplished by recording multiple short 

exposures across a range of sample stage y-positions (starting from ±50 µm from the assumed 

centre position, narrowing the range down until the precision limit of ±5 µm was reached), and 

selecting the position that led to the highest overall scattering intensity under concomitant 

preservation of the resolution of the Bragg peaks. The beam was half-cut with the sample in 

order to exclude the substrate from the beam path. Subsequently, a rotational calibration was 

carried out. The sample was oriented in parallel to the incoming beam to ensure that the entire 

length of the sample was placed in the beam path; this results in increased scattering and 
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consistency across the samples. This was accomplished by carrying out another set of short 

exposure scans, this time across a small range of rotational positions relative to the z-axis, 

starting at the assumed parallel position. These two steps were repeated with increasingly precise 

scans. Figure 4.5 illustrates the aforementioned steps of the calibration process. 

 

 
 

Figure 4.5 (1) Improper vertical alignment; (2) improper rotational alignment; (3) optimum 
alignment. 

 

The subtraction of background contributions in the gaPDF setup is non-trivial. As the 

alignment process was carried out in reference to the thin film (working electrode), the exact 

relative position of the substrate (glass slide) is unknown. Therefore, background substrate 

measurements were taken over a range of vertical positions, starting from half-cutting the beam 

(maximum expected substrate scattering) to further away than the maximum expected thickness 

for the film (~20 µm; determined from a visual analysis of the scans). The most accurate 

background measurement was determined by visually comparing the raw diffraction intensity Iexp 

of each measurement to that of the sample and selecting the best fitting one.  
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Iexp data were processed using the Gudrun package 145 while experimental and simulated 

PDFs, D(r), were calculated using Gudrun 145 and Topas 146. We use D(r), as defined by Keen, 93 

which in effect describes the average number density of atoms at a given interatomic distance r, 

according to:  

 

                                       𝑖(𝑄) = 	 D"%/)
〈50〉

〈5〉0
                                                      (4.1) 

 

                   

𝐷(𝑟) = 	 K
R ∫ 𝑄𝑖(𝑄) sin(𝑄𝑟) 𝑑𝑄S

0                                           (4.2) 

 

Fourier transforms were performed at various values of Qmax in order to understand the 

extent of artefacts that might manifest in D(r) owing to Fourier series termination effects. The 

D(r) presented below is from the most suitable value of Qmax = 25 Å-1. It can be seen in the full 

range of Qmax values tested (provided in Appendix A1) that artefacts owing to Fourier series 

termination effects dissipated >1.4 Å. 

 

Conventional PDF X-ray Diffraction Setup for Control Experiments. This study seeks to 

identify the anchoring modes in these dye···TiO2 interfacial structures. Therefore, contributions 

to the gaPDF scattering pattern that arise specifically from dye molecules are needed as a 

reference.  

 

PDF data on these pure dyes were collected in their bulk material form as part of a mail-

in experiment during the commissioning of beamline I15-1 using a spinning capillary setup. 

Solaronix 535 (N3) dye was loaded into a 1 mm quartz glass capillary and measurements were 

performed using a photon wavelength of  l = 0.1583 Å. Using the Gudrun package 145, the 2-D 

data were corrected for polarisation and flat-field, then integrated to 1D and processed into PDFs 

using Qmin = 1.0 Å-1 and Qmax = 23.5 Å-1. A Lorch Function 147 (∆1 = 0.1) was applied to suppress 

spurious low-r features.  
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Density Functional Theory Calculations. The scattering contributions of dye molecules to the 

gaPDF scattering pattern are given by the aforementioned conventional PDF experiments. 

However, these contributions from measurements on the pure dyes naturally exclude any 

dye…TiO2 interactions. Dye…TiO2 interfacial structures need to be simulated in order to obtain 

the closest comparison of the gaPDF data. Accordingly, geometrically-optimised structures of 

N3 and N749 on the [101] surface of anatase TiO2 were computed using DFT, within the 

NWChem computational chemistry package.148 All calculations employed the B3LYP functional 

149,150 and the 3-21G(d) basis set for elements H, C, N, O and S, while the LANL2DZ effective 

core potential and basis set were used for Ti and Ru.151 

 

A geometric model of the N3 molecule and a (TiO2)38 slab in vacuo was initially 

optimised. This size of TiO2 slab was selected since other studies 152-154 have shown that it is 

large enough to allow a scientifically realistic simulation while maintaining computational 

efficiency. Then, one anchoring COOH group of N3 was deprotonated and anchored onto the 

[101] surface of the TiO2 slab via a bidentate-bridging (BB) mode (Figure 4.2, right) to five-

coordinate Ti atoms. The surplus H+ that results from this adsorption process was bound to a 

two-coordinate oxygen atom on the TiO2 surface for charge-balancing. The compound-slab-

adsorbate structure was optimised until all forces on atoms were below 0.023 eV Å-1 and the 

root-mean-square (RMS) force was below 0.015 eV Å-1. The N3…TiO2 interfacial structure 

afforded from this optimisation process (Figure 4.6) featured two anchoring modes: bidentate-

bridging (BB) via the carboxylate ion, which has been generated via the simulated deprotonation 

of N3 in this calculation, and monodentate binding via a carboxyl group in the carboxylic acid of 

N3 that shares the same bipyridyl ligand as the carboxylate ion.   

 

The starting structure for the adsorbed N749 model was built by modifying the final 

structure of the adsorbed N3 dye. This was subsequently optimised until the same convergence 

criteria were met.  
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The geometries of these DFT-generated dye…TiO2 structural models were imported into 

Topas 146 in order to simulate D(r) and thence ΔD(r) profiles that describe a theoretical model of 

a PDF that pertains to a structural configuration utilizing both possible binding modes (BB and 

monodentate ester). Appropriate peak widths for the PDF simulations were determined from 

observed PDF data of the pure dyes. This allowed accurate comparisons with the data, which had 

to be ensured given the extended beam path (1 cm) imposed by the sample geometry. These 

models are shown in Figure 4.7, together with the experimentally-generated PDF profiles, for the 

purposes of comparison. 

 

           

 
 

Figure 4.6 Optimised structures of N3···(TiO2)38 (left) and N749···(TiO2)38 (right). Only the 
titanium atoms that the dyes are anchored on were included in the calculation of the simulated 
PDF. Therefore, only these are shown in the diagrams above.  
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4.4 Results and Discussion 

 

The ∆PDFs [∆𝐷(𝑟) = 	𝐷(𝑟).!A.%(%T!*
!"# −	𝐷(𝑟)UA.!A.%(%T!*

!"# ] yield the background-adjusted 

subtraction of data on unsensitised TiO2 films from those of the dye-sensitised TiO2 films. These 

represent the structural features of the dye···TiO2 interface and the dye molecules. Figure 4.7 

shows these ∆PDFs, together with the simulated D(r)sim profiles of the corresponding dye 

molecules on TiO2.  
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Figure 4.7 (Red) Simulated and (blue) experimental ∆D(r) profiles representing the dye···TiO2 
interface of N3- and N749-sensitised TiO2 substrates. (Black) Normalised D(r) of pure N3 dye. 

  

Figure 4.7 (top) also shows the normalised D(r) signature of the pure N3 dye, collected in 

a capillary setup during a previous experimental run at beamline I15-1. There is good agreement 

between features in r, for the results on the dye···TiO2 interfaces from the gaPDF experimental 

setup and this independent measurement on the pure dye using a standard capillary setup. This 
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level of agreement evidences good overall validity of the simulated PDF as well as the gaPDF 

experimental setup for the dye···TiO2 interfacial measurements. The 1-5 Å range displayed is 

where the anchoring interactions are expected to reside.  

 

Statistical Analysis of the Obtained Results. Pearson correlation coefficients were calculated 

for N3- (0.55) and N749-sensitised TiO2 (0.47) between 1 and 5 Å in order to quantify the 

agreement between the experimental and simulated ∆D(r). Such coefficients can range from -1 to 

1 (-1: perfect anti-correlation; 0: no correlation; 1: perfect correlation).95 Figures 4.2 and 4.3 

show that the model structures of both dyes are quite similar, as one might expect given their 

similar dye···TiO2 interfacial structures calculated from DFT, that are shown in Figure 4.6. This 

good level of similarity is corroborated by the comparable Pearson correlation coefficients (0.93) 

calculated over the same range of r, using the simulated D(r)sim from each model. The 

comparable value calculated using ∆D(r)exp also indicates good internal agreement in the 

experimental data (0.87), which is indicative of good reproducibility. This level of similarity 

should be even more apparent over the range of r that relates to the direct dye…TiO2 interactions, 

since both dyes are expected to anchor using either the bidentate bridging or the monodentate 

ester mode (Figure 4.2), or both of them. This is indeed the case: between 1.9 and 3 Å, the 

simulated D(r)sim from the two dye models compare favourably with a Pearson correlation 

coefficient of 0.91. The corresponding value from the comparison of the cognate experimental 

∆PDFs shows an even better agreement, with a Pearson correlation coefficient of 0.94. These 

high Pearson correlation coefficients are strong indicators of good quality experimental data; 

they also offer promise to the success of the gaPDF set up. However, the Pearson coefficients for 

the experiment-minus-model data pairs are markedly lower over the same range (1.9-3 Å; N3: 

0.65; N749: 0.73). Given that a high robustness of the experimental data has been assured, this 

poorer agreement indicates that there may be imperfections in the model. 

 

Interpretation of the Results. It should be noted here that a perfect correlation between the 

experimental data and the theoretical model is not expected, as it is precisely the deviations from 

the simulated structure that we set out to investigate. The moderate level of correlation of ∆D(r) 
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between experiment and simulation over the full range 1-5 Å, given by the Pearson correlation 

coefficients, 0.55 (N3-sensitised TiO2) and 0.47 (N749-sensitised TiO2), suggests that: (a) the 

gaPDF technique and associated experimental setup is indeed able to observe the dye…TiO2 

interface; and (b) the simulated models of these interfacial structures requires a modest level of 

refinement, perhaps to consider the fuller range of options for anchoring modes.  However, 

certain inferences can still be made from these differences using the current models. 

 

This process of inference is aided by first considering which pairwise atomic correlations 

can contribute to the experimental and simulated ∆D(r) profiles. Those contributing to the 

observed experimental ∆D(r)exp arise from the direct dye…TiO2 interactions responsible for 

absorption, bonds within the dye molecules themselves, dye…dye interactions and nth neighbour 

dye…TiO2 interactions. The D(r)sim profiles from the simulated models are also able to emulate 

direct dye…TiO2 interactions and bonds within the dye molecules themselves, but they cannot 

account dye…dye interactions and nth neighbour dye…TiO2 interactions. These absences in the 

model arise because the model was simulated using only a single dye molecule on a TiO2 slab, 

whereby most of the (TiO2)38 cluster was removed to prevent the D(r)sim signal from being 

overwhelmed by the larger TiO2 slab.  

 

However, dye…dye interactions and nth neighbour dye…TiO2 interactions are not expected 

to manifest < 3 Å, where the contributions from the adsorbing bonds can be observed. Moreover, 

the core structure of each dye molecule is not expected to change, so bonds within the dye 

molecules themselves are most likely irrelevant to the ∆D(r). Thus, the deviations between the 

experimental and simulated ∆D(r) below 3 Å should be attributed exclusively to anchoring 

behaviour that has not been modelled. As mentioned before, the simulated model features one 

instance each of the two anchoring modes (BB and monodentate ester) per dye molecule (Figure 

4.8).   

 

Comparing Competing Binding Modes. The strongest contributions from the anchoring groups 

are expected to be the average of the relevant direct dye…TiO2 interactions (Odye…Ti) that are 
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shown in Figure 4.8 (N3: 2.07 Å; N749: 2.02 Å). These lengths correspond to the second peak in 

each ∆D(r). Pairwise atomic correlations from these direct dye…TiO2 interactions are thus likely 

to be the cause deviations between experimental data and the simulation within this peak at ~2 

Å. Indeed, this second peak in each ∆D(r) is the location in r that exhibits the most striking 

difference between the experimental data and simulated model, i.e., a shift to shorter distances 

from the simulation to the experiment for both samples (N3: 2.06 Å ® 2.00 Å; N749: 2.04 Å ® 

1.96 Å). This is attributed to the shorter-than-expected average length of the direct dye…TiO2 

interaction in the experimental ∆D(r)exp, which suggests a prevalence of the BB mode, i.e., the 

mode with shorter direct dye…TiO2 interactions. 

 

 
Figure 4.8 Relevant carboxylic group bond lengths (in Å) associated with monodentate ester 
(left) and bidentate bridging (right) anchoring modes as calculated in the models of N3 and 
N749 on (TiO2)38.  
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The other most striking differences between the experimental data and simulated model 

occur at the peaks centred at ~3.6 Å, a separation that is also associated with the second 

neighbour Odye…Ti interaction in the bidentate bridging mode (see Figure 4.8). At this separation, 

signal appears much stronger in the experimental data than in the model, for both dyes, implying 

a higher abundance of pairwise atomic correlations than expected in the model. The second 

neighbour Odye…Ti interaction expected in a monodentate ester binding mode, lies at ~4 Å and no 

discrepancy between the data and model at this separation is observed in the D(r). These results 

thus suggest a preference for the BB mode, which is consistent with attribution of the peak at 2 Å 

to BB anchoring correlations as per the findings discussed above . These deductions are aligned 

with other research on these dyes, where optical spectroscopy, vibrational spectroscopy and DFT 

likewise suggest a relative preference for the bidentate bridging mode. 26,142-144 

 

4.5 Conclusions 

 

The thin-film working electrodes of N3- and N749-sensitised DSSCs, comprising a 

dye…TiO2 interface, were probed using PDF analysis of synchrotron-based X-ray diffraction 

data. The thin-film nature of this study required the development of a novel experimental setup 

for PDF data acquisition, glancing-angle PDF (gaPDF).  Analogous data were collected on 

unsensitised DSSCs, allowing us to employ ∆PDF analysis to isolate the interfacial structure, by 

subtracting out PDF contributions from the bare TiO2 substrate. These ∆D(r)exp profiles were 

compared to ∆D(r)sim, which were generated from simulated models of the interfacial structure,  

using DFT calculations. Pearson correlation coefficients between experimental ∆D(r) and 

simulated ∆D(r) were only moderate, implying that although it is possible to observe the 

interface from the data, our models require refinement. Closer examination of the deviations of 

the experimental data from the models implied shorter-than-expected average bond lengths at 

values of r associated with anchoring groups. This suggests a prevalence of the BB mode since it 

features shorter dye…TiO2 interactions relative to the alternative monodentate ester binding 

mode. This study demonstrates the successful application of the gaPDF method to DSSCs and 

underscores the need of further investigation into DSSC anchoring groups.    
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5. Gd…Gd Separations in Amorphous (Gd2O3)0.230(P2O5)0.770 
 

PDF and statistical analysis were performed on data gathered from an anomalous X-ray 

scattering (AXS) study on a Gd-doped rare-earth phosphate glass (REPG) with composition 

(Gd2O3)0.230(P2O5)0.770. The aim was to investigate its local structure with a specific interest in 

the closest Gd···Gd separations. This chapter is based on a paper published in Physical Review 

Materials 100 (see Publications on page II). All figures and tables were reproduced in accordance 

with the guidelines set by the publisher. 

 

My contribution to this project was the analysis of ∆PDFs and the subsequent application 

of various statistical techniques, which allowed various structural conclusions to be drawn, 

including the sought-after Gd···Gd separations. 

 

5.1 Summary 

 

A Gd K-edge anomalous X-ray scattering (AXS) study is performed on the rare-earth (R) 

phosphate glass, (Gd2O3)0.230(P2O5)0.770, in order to determine Gd…Gd separations in its local 

structure. The minimum rare-earth separation is of particular interest given that the optical 

properties of these glasses can quench when rare-earth ions become too close to each other. To 

this end, a weak Gd…Gd pairwise correlation is located at 4.2(1) Å which is representative of a 

meta-phosphate R…R separation. More intense first neighbour Gd…Gd pairwise correlations are 

found at the larger radial distributions, 4.8(1) Å, 5.1(1) Å and 5.4(1) Å. These reflect a mixed 

ultra-phosphate and meta-phosphate structural character, respectively. A second neighbour 

Gd…Gd pairwise correlation lies at 6.6(1) Å which is indicative of meta-phosphate structures. 

Meta- and ultra-phosphate classifications are made by comparing the R…R separations against 

those of rare-earth phosphate crystal structures, R(PO3)3 and RP5O14 respectively, or difference 

pair distribution function (DPDF) features determined on similar glasses using difference neutron 

scattering methods. The local structure of this glass is therefore found to display multiple rare-
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earth ion environments, presumably because its composition lies between these two 

stoichiometric formulae. These Gd…Gd separations are well resolved in the DPDFs that represent 

the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of 

R…X (X = R, P, O) pairwise correlations up to r ~ 9 Å; their average separations lie at r ~ 7.1(1) 

Å, 7.6(1) Å 7.9(1) Å, 8.4(1) Å and 8.7(1) Å. This is the first report of a Gd K-edge AXS study on 

an amorphous material. Its demonstrated ability to characterise the local structure of a glass up to 

such a long-range of r, heralds exciting prospects for AXS studies on other ternary non-

crystalline materials. However, the technical challenge of such an experiment should not be 

underestimated, as is highlighted in this work where probing AXS signal near the Gd K-edge is 

found to produce inelastic X-ray scattering that precludes the normal AXS methods of data 

processing. Nonetheless, it is shown that AXS results are not only tractable, but they also reveal 

local structure of rare-earth phosphate glasses that is important from a materials-centred 

perspective and which could not be obtained by other materials characterisation methods. 

 

5.2 Introduction 

 

REPGs show great promise for applications in the laser and optoelectronics industry,52-56 

as rare-earth ions exhibit the required energy levels for successful population inversion, and as 

the nonlinear refractive index of the phosphate glass is sufficiently high to generate the desired 

effects without causing beam breakup. Particularly interesting are REPGs of the type 

(R2O3)x(P2O5)1-x (x = 0.167 (ultraphosphate) to x = 0.25 (metaphosphate)). REPGs in this 

stoichiometric range exhibit various attractive properties at low temperatures (T < 20 K), 

including acoustic mode softening, which results in negative thermal expansion coefficients 57 

and bulk moduli,58 as well as unprecedented magnetic, optomagnetic, and optoacoustic 

phenomena.59 

 

A proper understanding the structure-property relationships of REPGs would help to 

significantly advance research and development in this area. The atomic structures of 

(R2O3)x(P2O5)1-x (x = 0.167−0.250; R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) have 
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been probed by a variety of spectroscopy and diffraction techniques, including conventional X-

ray60-67 and neutron61,63,65,68 diffraction, as well as rare-earth K-edge69 and LIII-edge60,70-72 X-ray 

absorption spectroscopy (XAS), 27Al and 31P solid-state NMR,62,68 and Fourier transform infrared 

spectroscopy (FTIR).73 The combination of results from these previous studies has afforded a 

model of the local atomic structure of such REPGs, comprehensive only out to r ~ 3.8 Å. 

However, the closest R···R separations cannot be discerned by these conventional techniques, 

implying this separation must lie at r > 3.8 Å. This structural feature is particularly important to 

define, given that rare-earth ion clustering can inhibit certain optical properties through 

quenching. 

 

Figure 5.1 Local structure of rare-earth (R) phosphate glasses, (R2O3)x (P2O5)1-x, showing its 
modelled geometry up to a radial distribution of r = 3.8 Å. 

 

5.3 AXS Method 

 

The anomalous X-ray scattering technique relies on wavelength-dependent real (f’(l)) 

and imaginary (f’’(l)) terms of the atomic scattering factor, f, presenting anomalous scattering 

contributions to the overall X-ray scattering when diffraction studies are conducted in the 

vicinity of the X-ray absorption edge of one of the elements (R) in a sample under study. These 

anomalous scattering contributions augment the wavelength-independent Thomson scattering 

factor, f0, to afford the overall atomic scattering factor for X-ray diffraction according to 
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fR = f0 + f’(l) + if’’(l)               (5.1) 

 

The difference between X-ray diffraction data collected at two X-ray energies, one on 

and one far from the X-ray absorption edge of the element of interest (R) within a sample, 

affords exclusively the anomalous scattering contributions of R. For an amorphous material, 

these are present as pairwise R…X (X = any element) correlations.  

 

Moreover, f’ and f’’ are related via a Kramers-Kronig transformation: 155,156 

 

    𝑓V =	 K
R ∫

W1511(W1)
W0)W10

𝑑𝐸VS
0                     (5.2) 

 

This shows that the largest f’ values will be obtained in cases where the energy difference 

between the pair of X-ray diffraction measurements that comprise an AXS experiment is 

maximised. X-ray absorption K-edges are therefore favoured for AXS experiments as they offer 

the highest possible energy for an X-ray absorption edge of a given element, assuming that there 

is no interference from other X-ray absorption edges in this energy regime.  

 

As contributions from the Gd atoms in the sample (Gd2O3)0.230(P2O5)0.770 were of specific 

interest, the AXS method was deemed particularly suitable. The nature of this method affords 

∆PDFs by subtracting a data set with an X-ray energy far from the Gd K-edge from that of one 

on the Gd K-edge. Thus, the ∆PDFs theoretically feature exclusively Gd…X (X = any other 

element in the sample) atomic pairwise correlations.  

 

 

As with any ∆PDF study, the relatively low signal-to-noise ratio was a challenge that 

required resolving. In this aggravated case, contributions from all other (non-Gd…X) atomic pairs 

have to be disregarded along with the experimental noise.  
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My contribution to the project was to calculate and analyse statistical correlations 

between all possible pairs of ∆PDFs using three figures of merit, i.e., the Pearson, Spearman, and 

Kendall rank coefficients 95 in order to reliably isolate the Gd…Gd signal.   

 

5.4 AXS Experiment 

 

The (Gd2O3)0.232(P2O5)0.768 sample was synthesized using the method described by 

Mierzejewski et al. 157 

 

A disk (thickness: 0.5 mm) of finely powdered (Gd2O3)0.232(P2O5)0.768 was held within an 

aluminium annulus and between two Kapton windows; the assembly was mounted onto a six-

circle diffractometer in flat-plate geometry. This diffractometer was housed on the synchrotron 

beam line 1-BM at the Advanced Photon Source, Argonne National Laboratory, IL, USA. X-rays 

were delivered to the instrument via a Si(400) crystal monochromator and detected using an 

energy-dispersive germanium detector. X-ray slits were optimised to afford a 0.1 Å-1 resolution 

with a usable dynamic range (Q = 0.4 - 30 Å-1). Diffraction scans were performed using 2q/q 

geometry, at X-ray energies of 10 eV, 40 eV, 300 eV, and 500 eV below the gadolinium K-edge 

(50.239 keV) which was calibrated using a gadolinium foil. 

 

5.5 Data Analysis 

 

∆PDFs were calculated using all possible combinations of the four T(r) (K-10 eV, K-40 

eV, K-300 eV, K-500 eV) functions provided by my collaborators. Such pairings enabled a 

validation of the self-consistency of the AXS signal within the PDF. For example, the largest 

AXS contribution should arise in a DPDF produced by the subtraction of a PDF associated with 

an X-ray energy far from the Gd K-edge from the one whose energy lies closest to this edge, i.e., 

maximizing Df(l). Given the four X-ray energies where data were acquired, PDF[(K-300 eV) – 

(K-10 eV)] and PDF[(K-500 eV) – (K-10 eV)] should show the largest AXS contributions and 
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thus the most noticeable R…X correlations; these two difference pairs should show comparable 

results given that 300 eV and 500 eV are sufficiently far from the Gd K-edge.  

 

Conversely, the DPDF corresponding to PDF[(K-500 eV) – (K-300 eV)] should 

essentially feature ‘noise’, given that both data sets were collected at energies far from the Gd K-

edge, i.e., Df(l) =0. DPDFs generated from PDF[(K-300 eV) – (K-40 eV)] and PDF[(K-500 eV) 

– (K-40 eV)] should show comparable results, with an AXS signal that is less intense than that of 

cognate differences involving the K-10eV data set. 
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Figure 5.2 All six possible DPDFs created by combining every unique pair of diffraction data 
sets on (Gd2O3)0.230(P2O5)0.770 collected at X-ray energies of K-10 eV, K-40 eV, K-300 eV, and K-
500 eV.  
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Statistical correlation indexes were employed to provide a quantitative basis for this 

observation. To this end, statistical correlations between all possible pairs of DPDFs were 

calculated using three figures of merit, i.e., Pearson, Spearman, and Kendall rank coefficients.95 

Data for these calculations were restricted to the range, r = 2-7 Å. Below this range, only noise is 

expected, as R…X correlations do not manifest at r = 0-2 Å. At r > 7 Å, the high number of 

overlapping R…X correlations will render them non-resolvable. Moreover, statistical noise will 

already be significant in data at r ~ 7 Å or beyond, and both of these problems will only worsen 

as a function of increasing r. If AXS signals arising from R…X correlations are present in both of 

the DPDF signatures, these established statistical qualifiers should afford positive coefficients 

between 0 and 1, whereby 1 represents a perfect correlation and 0 should represent the absence 

of any AXS signal in both data sets. Negative coefficients signify a level of anti-correlation up to 

a maximum of -1.  

 

The results of these calculations are summarised in Table 5.1. All three sets of 

coefficients are consistent in their trends, with the Pearson coefficients demonstrating slightly 

stronger trends than the other two metrics, judging from their slightly higher values overall.  
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Table 5.1 Statistical correlations between DPDF signatures, calculated in the range r = 2-7 Å, 
using Pearson, Spearman, and Kendall rank coefficients; these three figures of merit range 
between 1 and -1 for pure correlation and anti-correlation, respectively (0 represents a null 
correlation).  

 
 

The largest observed positive correlation is between the data sets DPDF[(K-500 eV) – 

(K-10 eV)] and DPDF[(K-300 eV) – (K-10 eV)]. This is expected, given that these pairs of 

DPDFs issue the same maximum possible AXS signal of all data sets by virtue of having the K-

10 eV data set in common, which possesses the greatest Df(l) value, and the K-300 eV and K-

500 eV data counterparts, which are comparable since both of their X-ray energies are 

sufficiently removed from the Gd K-edge so that Df(l) = 0. The statistical correlation that places 

second highest in rank order of coefficients for each of the three figures of merit is, on average, 

that pertaining to the relation between DPDF[(K-300 eV) – (K-40 eV)] and DPDF[(K-500 eV) – 

(K-40 eV)], i.e., the same comparative data as the highest statistical correlation found, except 

that the K-40 eV data set replaces the K-10 eV data set in each DPDF. This ranking order makes 

sense once two factors are considered: firstly, while Df(l) will be lower for the K-40 eV data set 
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than that for K-10 eV data set, it will not be zero, and yet Df(l) will be zero for both the K-300 

eV and the K-500 eV data sets; secondly, each DPDF component of this correlation will be 

comparable in signal given that Df(K-300 eV) = Df(K-500 eV) = 0, and the strength of the 

statistical correlations employed herein is based on not only signal intensity between DPDFs but 

also on the relative values of the DPDF signals, whereby the more comparable values afford 

higher statistical correlation. The third- and fourth-highest-ranked correlations relate closely to 

each other, i.e., they both feature DPDF[(K-40 eV) – (K-10 eV)], while its two counterparts are 

DPDF[Efarfromedge – (K-10 eV)] where Efarfromedge = (K-300 eV) or (K-500 eV), respectively, i.e., 

those data sets whose X-ray energies are far from the Gd K-edge. The high ranking of these 

correlations suggests that the K-40 eV data set maps well to its cognate difference pairs K-300 

eV and K-500 eV, where Df(l) = 0, i.e., that the signal intensities of the DPDF pair  must be 

comparable. However, the second-highest-ranked correlation indicated that Df ≠ 0 for the K-40 

eV data set. Taking these two factors into account, the prevailing assumption must then be that 

Df(K-10 eV)  >> Df(K-40 eV) and that Df(K-40 eV) is small but not negligible. The fifth- and 

sixth-highest-ranked correlations are also related, and assess the level of similarity between 

DPDF[Efarfromedge – (K-10 eV)] and DPDF[Efarfromedge – (K-40 eV)], i.e., the cognate pairs of data 

sets collected at X-ray energies far from and on the Gd K-edge, where the two energies on the 

edge are cross-correlated. These are ~ 50% correlated, based on the Pearson and Spearman 

coefficients, which stands in contrast to the 80% correlation observed between the 

DPDF[Efarfromedge – (K-10 eV)] cognate pairs, these fifth and sixth-ranked coefficients effectively 

measure the cross-correlation between the K-10 eV and K-40 eV. As indicated in discussions 

above, Df(K-10 eV) >> Df(K-40 eV), i.e., this drop in correlation by 30% reflects this 

inequality. 

 

There is a distinct drop in coefficient value between this pair of fifth- and sixth-highest-

ranked correlations and the seventh- and eighth-highest-ranked correlations. These represent the 

two-way cross-correlation, comparing DPDF[(K-300 eV) – Eontheedge] against DPDF[(K-500 eV) 

– Eontheedge] where Eontheedge for each comparison pair corresponds to a mix of the K-10 eV and K-
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40 eV data sets. Given that no subtraction components have a single energy in common, their 

coefficients are both comparable to noise levels (± 30% correlation) as judged by the coefficients 

that involve DPDF[(K-500 eV) – (K-300 eV)], for which Df = 0. Any DPDF correlating against 

this one will accordingly be comparing against noise (cf. the consistently low values of 

coefficients in the right-hand column of Table 5.1).  

 

In summary, these statistical findings are as expected, i.e., DPDF[Efarfromedge– (K-10 eV)] 

signatures exhibit the largest AXS signal, while DPDF[Efarfromedge – (K-40 eV)] profiles show a 

modest but significant AXS contribution. All other DPDF pairings of data sets acquired at the 

four X-ray energies manifest negligible AXS signals.  

 

These four DPDF data sets that display confirmed AXS signals were taken forward as the 

essential results of this work, based on which R…X pairwise correlations were determined. 

 

 

5.6 Scientific Results 

 

Figures 5.3 and 5.4 show overlays of the four DPDF signatures that feature confirmed 

AXS signals, for r = 2-5 Å and r = 4-10 Å, respectively. These data have been partitioned into 

these two specific regions in order to distinguish structural information that displays R…X 

correlations, whose average separation, r, is too low for X = R (Figure 5.3), from that that 

contains R…X correlations, which must involve the R…R separations sought by this AXS study 

(Figure 5.4). 

 

All four data sets, which contain AXS signals, are presented, rather than just showing the 

two with largest AXS signal, since all four signals are weak by virtue of being a difference PDF 

from the diffuse scattering associated with an amorphous material. Moreover, the overarching 

consideration of the challenging nature of an AXS experiment and its associated data analysis 
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should be remembered. Accordingly, it was deemed important to display all four sets with an 

AXS signal, which should present the same AXS signature. Since the results manifest with low 

signal-to-noise ratio, greater confidence was given to peaks that were present in all four data sets 

to represent real structural correlations. Peaks from the two strongest AXS signals that overlap 

with each other (cf. those that involve K-10 eV data) but do not correlate with peaks in the 

cognate K-40 eV pair of data, are nevertheless also considered. Conversely, peak overlap present 

only in the two AXS signatures that involve K-40 eV data ought not to be considered unless 

there is independent scientific support for making an exception.  

 

 

Figure 5.3 DPDFs of the four sets of AXS signals that occur in the range r = 2-5 Å. 
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Figure 5.4 DPDFs of the four sets of AXS signals that occur in the range r = 4-10 Å.  

 

Figure 5.3 should contain R…X (X = P, O) correlations that have already been observed 

in previous conventional diffraction studies on REPGs,60-68 where the modelling of atomic 

pairwise correlations could account for all structural features in the PDF up to r ~ 4 Å. Based on 

those results, selecting the case where a Gd phosphate glass of a very similar composition (x = 

0.229) to the subject sample (x = 0.230) was studied,62 the following Gd…X correlations should 

be present in the DPDF shown in Figure 5.3: Gd-O at 2.30(2) Å; Gd-(O)-P at 3.64(1) Å. 

Encouragingly, the DPDFs provide evidence for these two pairwise correlations, via the 

consistent reproduction of peaks at these R…X separations across three or four DPDF signatures, 

respectively. This corroboration between the DPDF peak assignments in Figure 5.3 and those 

from previous conventional diffraction data provide more direct assurance regarding the quality 

of the AXS data and the analysis methods that afforded them. Moreover, a statistical uncertainty 

of Dr = 0.1 Å was estimated from the spread of peak values observed between the regions of 

these DPDF profiles that reveal a confirmed pairwise correlation.   

 

 

Figure 5.4 shows potentially more exciting data since the DPDFs therein contain R…X 

correlations in the region r > 4 Å where we anticipate evidence for R…R separations, the nearest 
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of which was considered sufficiently important from a materials-centred perspective to motivate 

this AXS study. Peaks from R…X correlations at 5.1(1) Å and 5.4(1) Å are indicated by the good 

peak overlap of their AXS signals from all four data sets. Other peaks are suggested at 4.8(1) Å, 

6.6(1) Å, 7.1(1) Å, 7.6(1) Å, 7.9(1) Å, 8.4(1) Å and 8.7(1) Å, and their invariance in r with 

changing Qmax (Figure 5.5) suggests that they represent the true local structure.  

 

A weak Gd…Gd pairwise correlation is located at 4.2(1) A, which is representative of a 

metaphosphate R…R separation. More intense first-neighbour Gd…Gd pairwise correlations are 

found at the larger radial distributions, 4.8(1), 5.1(1), and 5.4(1) A. These reflect a mixed 

ultraphosphate and metaphosphate structural character, respectively. These agree with structures 

of gadolinium ultra-phosphate and gadolinium meta-phosphate, respectively, (cf. reference 

values in Table 5.2). 

 

Table 5.2 Minimum R…R separations found in crystal structures of rare-earth meta- and ultra- 
phosphates, references provided in table.  

Rare-earth Meta-phosphate Crystals Rare-earth Ultra-phosphate Crystals 

R (Ref) min R…R (Å) R (Ref) min R…R (Å) 

Gd 158 4.174 Gd 159 5.171 

Gd 160 5.287 Gd 161 5.163 

  Gd 162 5.156 
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Figure 5.5 Difference pair distribution functions, ∆PDF [500-10 eV] (top) and ∆PDF [300-
10eV] (bottom) with varying Qmax: 15 Å-1 (black), 20 Å-1 (green), 25 Å-1 (blue), and 30 Å-1 (red). 
The peak values of r with varying Qmax remain unchanged, except at low r, where Fourier 
series termination effects may persist; this suggests that the features assigned to atomic pairwise 
correlations in this study are real.  
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5.7 Conclusions 

 

The AXS results presented in this study are consistent with findings from other studies 

and suggest that the examined rare-earth phosphate glasses (REPGs) show mixed ultra- and 

meta-phosphate structural character when their rare-earth composition lies between the two 

stoichiometric boundaries of RP5O14 and R(PO3)3 (x = 0.167 and x = 0.250, respectively, 

according to the aforementioned formula (R2O3)x(P2O5)1−x). 

 

The findings of this study have confirmed previous peak assignments and related certain 

R…R correlations to archetypal meta- or ultra-phosphate structural characteristics: 4.2(1) Å 

(meta), 4.8(1) Å (ultra/meta), 5.1(1) Å (ultra), 5.4(1) Å (meta), 6.6(1) Å (meta). Moreover, the 

AXS results have provided the first resolved peak signatures of R…X correlations that lie at 

average separations of 7.1(1) Å, 7.6(1) Å, 7.9(1) Å, 8.4(1) Å and 8.7(1) Å. These separations 

could only be classified and quantified by virtue of the high spatial resolution enabled by 

anomalous X-ray scattering at energies in the region of the Gd K-edge, in contrast to the very 

broad distributions of REPGs that have previously been observed in the context of two other 

difference atomic scattering studies,163,164 both of which use neutrons as the atomic probe. 

Moreover, the majority of the well-resolved peaks in this study were observed in all four DPDFs 

that each represent the AXS signal, as determined by subtracting X-ray diffraction data collected 

at an X-ray energy that lies far from the Gd K-edge from a cognate data set acquired at an energy 

on the edge. Four X-ray energies were employed to obtain the diffraction data for these 

subtracted pairings, which lie at 10 eV, 40 eV, 300 eV and 500 eV from the Gd K-edge; DPDFs 

involving the K-10 eV data set afforded, as expected, the most intense and reliable AXS signal. 
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6. Local Structure of SO2 Photo-isomers in Ruthenium Coordination 

Complexes 
 

∆PDF and statistical analysis were performed on data gathered from a synchrotron-based 

X-ray diffraction experiment on four ruthenium-sulfur dioxide based complexes with a specific 

interest in light induced structural changes. This chapter is based on a paper being prepared for 

publication. 

 

My contribution to this project was the analysis and processing of X-ray diffraction data 

and the interpretation of results, with supervision from my PhD supervisor Jacqueline Cole.  

 

6.1 Summary 

 

SO2 linkage photo-isomerisation in crystalline ruthenium-based complexes has 

demonstrated nanophotonic phenomena such as optical switching and nano-optomechanical 

transduction. Molecular insights into these materials have been explored largely via the 

characterisation of their photo-induced crystal structures, via in situ single-crystal X-ray 

diffraction, known as photo-crystallography. Photo-induced molecular disorder is present which 

photo-crystallography can model this to the extent that it is confined within the periodic 

boundary of a unit cell. However, non-periodic molecular disorder is suspected to exist as well. 

In situ total scattering experiments were therefore carried out, on finely powdered crystals of 

four ruthenium-sulfur dioxide complexes. Data were modelled using ‘light-minus-dark’ 

difference pair distribution function analysis, which afforded photo-induced structural changes 

exclusively. This revealed structural features that were first compared against models of photo-

induced crystal structures known a priori from photo-crystallography. Statistical inference was 

then employed which evidenced generally good agreement between the total scattering data and 

the photo-crystallographic models, while revealing real differences that are indicative of 

structure with only short-range order. Overall, our findings demonstrate that in situ light-induced 
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total scattering experiments on finely powdered crystals are able to reveal photo-induced 

structure. The evidence suggests that such structure could include short-range order as well as 

photo-crystallographic content. Our demonstration experiment offers a pathway to develop 

studies that capture short-range order in linkage photo-isomers, while we have outlined the 

procedure for testing the validity of associated structural models. 

 

6.2 Introduction 

 

Crystalline materials that exhibit linkage photo-isomerism hold prospects for next-

generation photonic and quantum device technologies, given their optical switching74 and nano-

optomechanical transduction75 characteristics, respectively. These property characteristics are 

rare in crystalline materials.165,166 Their origins stem from optically accessible energy levels of 

linkage photo-isomers in certain coordination complexes that can be induced within a crystal 

lattice and be maintained in a metastable state once photo-excited. As such, the dark and light-

induced states of the photo-active ligand can act as a binary switch: the dark-state ligand 

configuration signifies “0” and the metastable state isomer signifies “1”.74 Photo-isomerisation 

within a crystal lattice can have a quite disruptive effect on its immediate crystalline 

environment, since ligand photo-activation is generally associated with a substantial spatial 

modulation.79 Its steric and electronic consequences can be so severe that the photo-activation 

process triggers a secondary phenomenon within the crystal lattice. For example, the photo-

isomerisation of a ligand in the cation of a coordination complex can result in interactions with 

its neighbouring anion that are so close that the anion moves away in response. Such nano-

mechanical transduction has been witnessed in single crystals of a series of ruthenium-sulfur 

dioxide complexes.78 

 

More generally, a wider series of ruthenium-sulfur dioxide complexes have been found to 

behave as single-crystal optical actuators, exhibiting optical switching79-85 or nano-

optomechanical transduction78,86 in their single-crystal form. While nanoscopic in its origins, the 

optical actuation in these complexes often manifests macroscopically in various forms. Its most 
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commonly observed form is a photo-chromic change in the single crystal, although more 

dramatic effects such as the light-induced peeling of single crystals have been discovered.83 

 

The generic formula of these complexes is [Ru(SO2)(NH3)4X]Y, where X is the ligand 

that lies in the trans position to the photo-active SO2 ligand. Thereby, up to three distinct SO2 

configurations may co-exist within a crystal structure in different fractions: the η1-S-bound SO2 

dark state (‘GS’), the most thermally stable photo-isomer, an η2-(O/S)-side-bound SO2 photo-

isomer (‘MS2’) and the η1-O-bound SO2 photo-isomer (‘MS1’). Y may be one or more counter-

ions, sometimes accompanied by water of crystallisation.  (Figure 6.1) 

 

 

Figure 6.1 (A) A schematic display of the SO2 geometries. The (MS1) h1-O-bound geometry 
(left), (GS) h1-S-bound geometry (centre), (MS2) h2-S,O-bound geometry (right). (B) Structure 
of the cation to which the photo-isomerisable SO2 ligand is attached. H atoms are displayed in 
white but remain unlabelled for purposes of clarity. (C) A table presenting the exact 
compositions of the cation and counterion for each sample studied.   

 

The materials behave as optical switches when they are cryogenically trapped. The dark 

state represents “0” while either the MS1 or MS2 (or both) photo-isomeric states can typically be 

generated at 100 K to represent a “1”. MS1 only tends to be stable up to about 120 K, whereupon 
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it converts into the MS2 state. Meanwhile, MS2 is thermally stable to heat up to around 180-220 

K where it reverts to the dark state, GS.80 

 

Some of the complexes that exhibit MS1 also act as nano-optomechanical transducers at 

100 K. This is because of the η1-O-bound nature of the MS1 photo-isomer: one of its oxygen 

atoms tends to extrude from its cation, such that it comes unbearably close to some of its 

neighbouring anions. In certain cases,78,86 when Y is one or more para-methylbenzenesulfonate 

(‘p-tosylate’) or para-chlorobenzenesulfonate anions, the arene ring of one of these counter-ions 

will rotate about its molecular axis in order to manoeuvre itself away from its neighbouring 

oxygen atom of the η1-O-bound SO2 ligand. This mechanical response alleviates the strain in the 

arene ring caused by its close proximity to the MS1 SO2 ligand. The nano-optomechanical 

transduction process thus manifests as an arene ring rotation that is photo-triggered by the 

formation of the η1-O-bound SO2 ligand. 

 

In situ light-induced single-crystal X-ray diffraction, known as photo-crystallography,87-90 

has been the primary metrological method used to characterise the photo-induced crystal 

structures of these complexes and to understand the molecular origins of their linkage photo-

isomerism. The analysis of photo-crystallographic data uses the well-established strategies for 

modelling molecular disorder within a periodic boundary of a crystallographic unit cell, to 

determine the average spatial distributions and photo-conversion fractions of the photo-induced 

species. Structural perturbations resulting from photo-isomerisation can be determined with sub-

angstrom resolution. This has afforded a direct relationship between the photo-induced molecular 

structures and the corresponding optical properties of these materials.  

 

However, photo-crystallography does not appear to tell the whole story about the 

structure. Correlated effects between light-induced atomic units are often indicated in photo-

crystallographic studies, which cannot properly be modelled as periodic phenomena. Such 

indications include subtle levels of X-ray diffuse scattering, which typically appears as no more 

than a small broadening of Bragg peaks; the ostensible splitting of Bragg peaks which can 



 

 

 

 

 

111 

readily masquerade as twinning; synergic photo-induced mean-square displacements of atoms 

between (not necessarily bonded) atoms. Such correlated effects are thought to be localised and 

are expected to show structural signatures at the atomic scale. The short-range order associated 

with this local atomic structure thus needs probing as well as the crystallographic structure.  

 

The underpinning goal of this study is to probe this structure using pair distribution 

function analysis of total X-ray scattering data. This method has risen as a technique to solve 

important problems in nanotechnology, where local atomic structure is key to its understanding. 

1An in-situ total X-ray scattering experiment was performed on finely-powdered single crystals 

of four [Ru(SO2)(NH3)4X]Y complexes, in order to obtain pair distribution functions (PDFs) of 

their dark- and light-induced structures. More specifically, light-minus-dark difference pair 

distribution functions were sought since these would yield exclusively the light-induced 

structural changes in these complexes, while cancelling out various non-structural scattering 

effects and any systematic errors in the datasets. Difference pair distribution functions are 

analysed with recourse to two assessments: their structural consistency with photo-

crystallography findings so as to explore if pair distribution function analysis could at least 

reproduce those that stem from this established method; statistical inference of the difference 

pair distribution functions based on Pearson correlation coefficients to gain insights into purely 

local atomic structure in these linkage photo-isomeric complexes. The four complexes were 

chosen as case studies, on the basis of their structural distinctions: (I) is the simplest complex in 

the family, with a single ion in use for X = Y = Cl; it only forms one photo-isomer, MS2, at 100 

K; (II) is the most stable complex in the series with X = H2O, Y = p-tosylate, whereby Y is not 

photo-active, and it forms one photo-isomer, MS2, at 100 K. (III) contains a substantially larger 

trans ligand (X = 4-Cl-pyridine) while maintaining small anions; it forms one photo-isomer, 

MS2, at 100 K. (IV) contains the 3-substituted analogue of X in (III) which enables it to form 

predominantly an MS1 SO2 photo-isomer which triggers nano-optomechanical transduction in its 

anion, Y = p-tosylate, at 100 K. The study will demonstrate that total X-ray scattering 

experiments on powdered samples of these complexes are able to yield linkage photo-isomerism. 

We will also show that these results are corroborated by those from photo-crystallography; and 



 

 

 

 

 

112 

we shall see additional structural features that evidence only short-range order, which may be 

due to the correlated effects that we seek.  

 

6.3 Methods 

 

All sample preparation and data acquisitions were performed by collaborators.  

 

X-ray diffraction Data Analysis 

 

The 2-D data synchrotron powder diffraction data were integrated and converted to 

intensity as a function Q using the software, Fit2D 167. The data were then Fourier transformed to 

the pair distribution function, G(r), via use of local program that applied a Hanning window to 

taper the intensity function to zero before the Fourier transform in order to minimise the effects 

of Fourier termination artefacts, with Qmax values of: I: 19.41, II: 17.67, III: 14.84 and IV: 16.88 

Å-1. G(r) profiles for sample IV were calculated using xPDFSuite 168, since these data did not 

require use of a Hanning window. This pair distribution function (PDF), G(r) relates to the real-

space correlation function, ρPDF, and is defined according to: 93 

 

𝐺(𝑟) = 	 [Y
234(,))	Y+]

Y+
Q∑ 𝑐%𝑓%̅A

%FE SK                                          (6.1) 

 

where 𝜌0 is the average number density of the subject material (in Atoms Å-3), c is the 

composition of species, i, in the material, f is the X-ray atomic scattering factor, and 𝜌MCN(𝑟) is a 

real-space correlation function, such that: 

 

𝜌MCN(𝑟) −	𝜌0 =	
E

KR0, ∫ 𝑄[𝑆(𝑄) − 1]𝑠𝑖𝑛𝑄𝑟𝑑𝑄S
0                           (6.2) 
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where 𝑄 = (4𝜋 sin 𝜃)/𝜆	is the X-ray scattering vector that affords the structure factor, 

S(Q), that has an associated atomic distance, r, in real space. 

 

Data Model Simulations 

 

Simulating G(r) Models 

 

Simulated models of G(r) were created for each compound before and after photo-

irradiation for the purpose of comparison with the experimental findings.  

 

Model structures of each sample were created using their dark and light-state atomic 

coordinates 80,81,86 that have been determined previously via photo-crystallography.89,90 Their 

crystal structures afforded from photo-crystallography were refined within the periodic boundary 

of their respective unit cell; as such, their co-existing dark and light components were modelled 

as molecular disorder, using a fractional occupancy parameter to refine the population of each 

light-induced species and the residual dark state. Thus, the SO2 ligand in samples I-III was 

modelled as disorder with its dark state (“GS”) and one light-induced state (“MS2”) atomic 

coordinates being refined with a population, x% GS and (1-x)% MS2. Sample IV exhibits two 

light-induced states, “MS1” as well as MS2; thus, its SO2 ligand is refined with three sets of 

atomic coordinates and occupancy factors, GS, MS1 and MS2, whose overall population sums to 

100%. Light-induced molecular transduction also occurs in sample IV, whereby one of its 

tosylate counterions is also disordered in its MS1 state. The molecular transduction phenomenon 

is triggered by the formation of MS1 SO2 species. Yet, the disorder in the affected tosylate ion is 

refined independently from the SO2 disorder model, since its onset and delay is not proportional 

to that of MS1.78 As such, the population of this tosylate ion in the light-state y% is balanced by 

its (1-y)% dark-state structure.  

 

The first step in the construction of these new models was separating the atomic 

coordinates of each of the constituent parts of this molecular disorder model for GS, MS2 (and 
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where present, MS1) and appending these to the atomic coordinates of the rest of the 

coordination complex to generate molecular structures of each sample in each SO2 configuration. 

The molecular structures of the MS1 and MS2 states were then manually expanded into 

supercells (4 x 4) using VESTA 3 169. This manual intervention was required since the molecular 

disorder of the fractional light-induced states prevented xPDFSuite 168 from automatically using 

the crystallographic symmetry of the structures to afford the task at hand. The use of supercells 

ensured that inter-ionic interactions could also be incorporated into each light-induced structural 

model. The dark-state models did not feature molecular disorder or fractional occupancies and so 

they did not require manual expansion into supercells. The resulting structures were used as the 

inputs for xPDFSuite 168, to simulate 𝐺.%/(𝑟) profiles, without modification by any refinement 

with respect to lattice parameters, atomic displacement parameters, or correction due to 

instrumental artefacts, such as peak dampening or broadening. This afforded simulated G(r) 

profiles in the form of 𝐺.%/(𝑟)GS and 𝐺.%/(𝑟)MS2 for each sample in each state, and additionally 

𝐺.%/(𝑟)MS1 for the MS1 state of sample IV. 

 

Simulating ∆𝐺&'((𝑟))'*+,-./01 Models 

 

The difference pair distribution function, ∆𝐺.%/(𝑟)$%&'()*+,-, was also calculated by 

subtracting the dark-state G(r) contribution from that of the light-induced state. In theory, all of 

the signal in this difference should represent changes in local atomic structure that occur 

exclusively as a result of photo-irradiation; as such, the difference could be calculated according 

to: 

 

∆𝐺&'((𝑟))'*+, = 𝐴[𝐺&'((𝑟)234] + 𝐵[𝐺&'((𝑟)235] + [1 − (𝐴 + 𝐵)]	[𝐺&'((𝑟)63]              (6.3) 

𝐺&'((𝑟)./01 = 𝐺&'((𝑟)63                                                       (6.4) 

∆𝐺&'((𝑟))'*+,-./01 = 𝐴	[𝐺&'((𝑟)234 − 𝐺&'((𝑟)63] + 𝐵	[𝐺&'((𝑟)235 − 𝐺&'((𝑟)63]     (6.5) 

 

For samples I-III, an MS1 state does not exist, so B = 0 and these equations simplify to: 
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∆𝐺&'((𝑟))'*+, = 𝐴[𝐺&'((𝑟)234] +	(1 − 𝐴)[𝐺&'((𝑟)63]                                        (6.6) 

 

𝐺&'((𝑟)./01 = 𝐺&'((𝑟)63                                                    (6.7) 

 

∆𝐺&'((𝑟))'*+,-./01 = 𝐴	[𝐺&'((𝑟)234 − 𝐺&'((𝑟)63]                                                  (6.8) 

 

Within the scope of this theoretical construct, these coefficients A and B could be thought 

of as population parameters for each dark or light-state configuration of a sample that could be 

refined against the experimental data to afford a structural model. However, this construct 

assumes that contributions of dark and light-induced states to the scattering intensity are kept 

equal and constant throughout data collection. This would require constant beam flux as well as 

strict control of factors such as exposure time, detector response time and background artefacts. 

In other words, one would have to be sure that any change in the number of counts reported by 

the detector before and after sample irradiation is due to a physical change in the material and is 

unaffected by experimental artefacts. Otherwise, light-induced state structure is contaminated by 

some residual scattering intensity in its ∆𝐺.%/(𝑟)$%&'()*+,- profile. 

 

It was not possible to satisfy such a mandate for this experiment, in part because this 

study represents the first reported attempt of a PDF-based photo-crystallographic experiment 

which was already challenging in its own right. Nonetheless, ∆𝐺&'((𝑟))'*+,-./01 could be 

calculated using a similar form of equations, which correct for these experimental artefacts by 

normalizing the contributions of each dark and light-induced state, using coefficients: 

 

∆𝐺.%/(𝑟)$%&'()*+,- = 𝐶E	[𝐶K(𝐺.%/(𝑟)[\K) − 𝐺.%/(𝑟)]\]                                 (6.9) 

 

where only GS and MS2 states are present, as is the case for samples I-III, while:  
 

∆𝐺.%/(𝑟)$%&'()*+,- = 𝐶E[𝐶K(𝐺.%/(𝑟)[\K) + 𝐶:(𝐺.%/(𝑟)[\E) − 𝐺.%/(𝑟)]\]     (6.10) 
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for cases such as sample IV, where GS, MS2 and MS1 states are present. 

 

The coefficients 𝐶E, 	𝐶K, 	𝐶: were calculated by maximizing the Pearson correlation 

coefficients 95 between ∆𝐺.%/(𝑟)$%&'()*+,- and ∆𝐺!"#(𝑟)$%&'()*+,- 	 using the generalised 

reduced gradient method of Microsoft Excel Solver 170, over a low-r region (Region 1 in Table 2) 

which describes the bond lengths most closely associated with the SO2 ligand. Pearson 

correlation coefficients, ρ, are statistical measures that have previously been used to quantify the 

agreement between difference pair distribution functions 98-100. ρ can range between -1 and 1, the 

former signifying a perfectly negative correlation and the latter a perfectly positive correlation. A 

coefficient of 0 signifies no correlation at all. 95 

 

The construction of ∆𝐺.%/(𝑟)$%&'()*+,- in this manner, using independent structural 

configuration models of pure GS, MS1 or MS2 states, is analogous to having a completely 

heterogeneous partially photo-isomerised sample. This model reproduces atomic pairwise 

correlations within the ionic structures, as well as inter-ionic interactions that feature ‘like-for-

like’ SO2 configurations in neighbouring cations (MS2…MS2, MS1…MS1, GS…GS). However, it 

does not account for inter-ionic interactions between cations whose neighbours have ‘mixed’ 

SO2 configurations, i.e. pairwise correlations that relate to different SO2 configurations that are 

neighbours of each other such that MS2…GS, MS1…GS or MS1…MS2 inter-ionic interactions 

form. However, since the spatial distribution of photo-isomerised molecules throughout a sample 

is unknown, it is not possible to construct a model that incorporates these inter-ionic interactions 

from complexes with disparate SO2 configurations. The effects of inter-ionic interactions on the 

∆G(r) are discussed in the Results section.  
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6.4 Results and Discussion 

 

Figure 6.2 	𝐺!"#(𝑟)$%&'( (orange) and 	𝐺!"#(𝑟)*+,- (blue) for sample I. 

 

As can be seen in Figure 6.2, the	𝐺!"#(𝑟) profiles for the dark and light-induced state of 

sample I look very similar, with a Pearson correlation coefficient of ρ = 0.99964 over the range r 

= [1.5 – 5] Å, where a value of 1 would indicate a perfect correlation. Analogous G(r) profiles 

for the other three samples showed similarly small differences; their profiles are given in 

Appendix A2. Given these very subtle differences, and the intrinsic nature of this experiment 

which seeks a difference between light and dark-state structure, data analysis via the use of 

difference pair distribution functions presents an attractive option. Moreover, ∆𝐺(𝑟)$%&'()*+,- 

profiles will only afford atomic pairwise correlations that are due to the light-induced structural 

changes. So, this substantially simplifies what would otherwise be a set of G(r) profiles that 

display heavily overlapping atomic pairwise correlations from all possible structural detail in 

these ruthenium-based complexes. An analysis of ∆𝐺(𝑟)$%&'()*+,- rather than G(r) profiles also 

circumvents the need to correct the data for effects such as X-ray absorption or Compton 

scattering or systematic bias, which are likely to be present judging from the slight off-sets of 
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these curves. These effects can be considered to be equally present in the light-induced and dark-

state data of these samples within the margin of experimental error, and will thus cancel upon 

producing the difference pair distribution function. 

 

Accordingly, ∆𝐺(𝑟)$%&'()*+,- profiles were determined for samples I-IV, as shown in 

Figure 6.3.  
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Figure 6.3 ∆𝐺(𝑟))'*+,-./01 for samples I-IV generated from experimental data (blue) and from 
simulated models (orange) that account for the local structural changes accompanying photo-
isomerisation that are also present in photo-crystallographic models. The r-range below 1.5 Å is 
omitted since it predominantly features artefacts arising from Fourier transform series 
termination effects. 
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Prior to any quantitative analysis, it is worth noting that the pure existence of structural 

features in the experimental	∆𝐺789(𝑟))'*+,-./01 	(blue profiles in Figure 6.3) can be used to 

evidence the existence of local atomic structure in these samples as well as demonstrate that 

photo-isomerisation is achievable in these compounds in their polycrystalline form; even when 

single-crystal samples are crushed into powders and measured in a spinning capillary setup.  

 

Quantitative analysis of the	∆𝐺789(𝑟))'*+,-./01 profiles can be considered in terms of two 

types of structural changes: those that display both short- and long-range order; and those that 

exhibit only local atomic structure. The former type is expected to arise from the well-known 

light-induced molecular disorder that causes bond-geometry changes between dark- and light-

induced crystal structures of this series of ruthenium-sulfur dioxide complexes, as determined via 

photo-crystallography. The dark and light-induced crystal structures of I-IV thus formed the 

basis of construction for the simulated models, 	∆𝐺&'((𝑟))'*+,-./01, in this study. The regions of 

the crystal structures of samples I-IV which are most affected by the photo-isomerisation are 

particularly helpful in identifying first (direct) and second-neighbour atomic pairwise 

correlations that are associated with this molecular disorder. These regions essentially envelop 

the immediate ruthenium core environment for samples I-III; the same situation befits sample 

IV, except that one of the p-tosylate counterions of IV is also affected substantially by photo-

isomerisation. Figures 6.4 and 6.5 depict the first (direct) and second-neighbour atomic pairwise 

corrections that are expected to arise in these ruthenium core environments of samples I-IV, 

based on constructions from the photo-crystallography results.  
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Figure 6.4. Direct (black) and second-neighbour (red) atomic pairwise separations (Å) of the 
immediate ruthenium core environment of samples I-III, in their dark (GS) and light-induced 
(MS2) state configurations; this core is the structural region of I-III that is most affected by 
photo-isomerisation, judging from photo-crystallographic results. 80,81 Atomic pairwise 
correlations that are less affected by photo-isomerisation are omitted for purposes of clarity. 
Presented bond geometries were taken from light-induced single-crystal structures of I: 80, II: 80, 
III: 81, determined by photo-crystallography. 
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Figure 6.5 Direct (black) and second-neighbour (red) atomic pairwise separations (Å) of the 
immediate ruthenium core environment of sample IV, in its dark (GS) and light-induced (MS2 
and MS1) state configurations; this core is the structural region of IV that is most affected by 
photo-isomerisation, judging from photo-crystallographic results. 86 Atomic pairwise 
correlations that are less affected by photo-isomerisation are omitted for purposes of clarity. 
Presented bond geometries were taken from the light-induced single-crystal structure of IV: 86, 
determined by photo-crystallography. 

 

Figures 6.4 and 6.5 show a large number of atomic separations of similar length. This 

number is sufficiently large to render unfeasible the assignment of individual peaks in the 

	∆𝐺!"#(𝑟)$%&'()*+,- profiles to specific pairwise corrections. Moreover, some of the atomic 

separations in Samples I-IV contract while others expand upon photo-irradiation. Thus, light-

induced structural changes will manifest as a complicated set of negative and positive features in 

a 	∆𝐺!"#(𝑟)$%&'()*+,- profile, some of which may partially or wholly cancel another. This makes 

the ability to even observe individual peak contributions challenging qualitatively, let alone 

unravel quantitative information about any atomic pairwise correlation. Nonetheless, the light-

induced changes responsible for certain low-r features in these profiles can still be rationalised 

on the basis of the relative level of consistency between atomic pairwise correlations shown in 
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the 	∆𝐺!"#(𝑟)$%&'()*+,- profiles and cognate light-induced structural changes deduced previously 

via photo-crystallography; or on the basis of various common structural features that co-exist 

among the samples.  

 

Structural consistency between 	∆𝑮𝒆𝒙𝒑(𝒓)𝒍𝒊𝒈𝒉𝒕)𝒅𝒂𝒓𝒌 and photo-crystallography findings 

 

The 	∆𝐺!"#(𝑟)$%&'()*+,- of sample I displays a negative peak centred at 2.05 Å and a 

positive peak centred at 2.39 Å. These peaks are consistent with photo-crystallography results, 

whereby light-induced depletion of the 2.09 Å Ru–S bond (GS), yields two 2.37 Å Ru–O and 

2.43 Å Ru–S bonds (MS2) and a concomitant shortening of the Ru–Cl bond from 2.42 Å (GS) to 

2.24 Å (MS2).  The positive peak centred at 2.71 Å and negative peak centred at 3.16 Å could be 

attributed to the respective emergence and depletion of structural features due to photo-

irradiation that result in an overall shortening of second-neighbour atomic pairwise correlations; 

cf. on average, the value of such correlations for sample I is 2.88 Å for MS2 and 3.09 Å for GS.  

 

These low-r structural features in 	∆𝐺(𝑟)$%&'()*+,- are broadly similar across samples I-

III, and are consistent with their cognate photo-crystallographic findings, as shown in Figures 

6.3 and 6.4 respectively. Therefore, it can be surmised that samples II and III exhibit analogous 

structural changes. However, subtle differences do exist. 

 

For example, the 	∆𝐺!"#(𝑟)$%&'()*+,- 	profile of sample II within the range [2-2.5] Å is 

similar to that of sample I, albeit with a smaller amplitude and greater breadth. This stands to 

reason since the 2.09 Å Ru–S bond (GS) in sample II gives way to 2.08 Å Ru–O bonds (as 

opposed to 2.37 Å Ru-O bonds in sample I) and 2.37 Å Ru–S bonds (MS2) upon photo-

irradiation, resulting in an analogous, but wider peak profile of a lesser magnitude.  

 

Over the [2.5-3] Å range, the 	∆𝐺!"#(𝑟)$%&'()*+,- profile of sample II ostensibly appears 

quite different to that of sample I. However, the averages of its second neighbour atomic 
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pairwise correlations shown in Figure 6.4 are 3.02 Å for GS and 2.80 Å for MS2, which is 

essentially in line with those of sample I. These values are slightly shorter for sample II than 

sample I, which is presumably a simple consequence of the smaller trans influence in sample II; 

cf. the ligand trans to SO2 is Cl and OH2 in samples I and II, respectively. The visual 

discrepancy observed between sample I and II is thus the result of a distinct left-shifting of the 

associated negative and positive peaks that arise from these two respective correlations. 

Correspondingly, the 	∆𝐺!"#(𝑟)$%&'()*+,- 	profile of sample II in this range of r drops off as a 

function of increasing r much sooner than it does in sample I, while the compensatory negative 

peak that emerges in sample II, centred at 3.06 Å, follows suit with sample I.   

 

The 	∆𝐺!"#(𝑟)$%&'()*+,- 	profile of sample III is consistent with the photo-

crystallographic observation that a 2.11 Å Ru–S bond (GS) gives way to 2.40 Å Ru–O and 2.57 

Å Ru–S bonds (MS2) upon photo-irradiation. This structural change is also analogous to that 

observed for samples I and II, except that the Ru-O and Ru-S bonds in the MS2 configuration of 

sample III are distinctly longer than those in samples I and II. The somewhat different (N-

substituted 4-chloropyridine) trans-ligand to SO2 for sample III is presumably a significant 

cause of its weaker SO2 linkage photo-isomer. 81 The 	∆𝐺!"#(𝑟)$%&'()*+,- profile of sample III in 

the 2.0-2.5 Å region correspondingly exhibits a negative peak at 2.08 Å, and a positive peak at 

2.48 Å that is distinctly right-shifted relative to those of samples I and II. Over the [2.5-3] Å 

range, the ∆G(r) profile of sample III is quite similar to that of sample II, evidencing a broad 

peak that drops off as a function of increasing r until its compensatory negative peak emerges as 

the dominant feature, centred at 3.17 Å. 

 

The 	∆𝐺(𝑟)$%&'()*+,- profile of sample IV appears somewhat contrary, when compared 

against those of samples I-III. Its 	∆𝐺!"#(𝑟)$%&'()*+,- 	similarly dips at 2.06 Å, but to a far 

greater extent than seen in samples I-III; its negative peak also displays a greater span, reaching a 

distinctly higher value of r before 	∆𝐺!"#(𝑟)$%&'()*+,-	becomes positive at 2.45 Å. This net 

positive 	∆𝐺!"#(𝑟)$%&'()*+,- 	contribution does not peak until 2.56 Å, which is significantly 
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higher in r, compared with the 	∆𝐺(𝑟)$%&'()*+,- profiles of samples I-III. This contrary finding 

stands to reason given that the linkage photo-isomerisation results are markedly different in 

sample IV. In particular, the MS1 SO2 photo-isomer predominates in the light-induced form of 

sample IV, judging from the photoconversion fractions that were observed from photo-

crystallography, cf. 36.2% MS1, 6.9% MS2, 56.9% GS at 100 K.78 The MS2 SO2 configuration 

seen in samples I-III is also present in sample IV, but it appears in a modest quantity. The 

	∆𝐺!"#(𝑟)$%&'()*+,- 	profile of sample IV corroborates the photo-crystallography findings by 

manifesting a similar predominance of MS1 photo-isomerisation: the marked dip in ∆G(r) at 

2.06 Å is consistent with a light-dark bond contraction that results from a depletion of the 2.11 Å 

Ru-S bond (GS) and the concurrent emergence of a 1.99 Å Ru-O bond (MS1). The nature of this 

dip suggests that the MS1 SO2 configuration forms with a similarly high photoconversion 

fraction to that which was observed by photo-crystallography. 78 The observation 

that	∆𝐺!"#(𝑟)$%&'()*+,- 	only becomes net positive by 2.45 A, and does not peak until 2.56 Å, is 

symptomatic of a predominantly MS1 SO2 photo-isomerisation. Notwithstanding minor 

contributions from MS2 bond geometry that might arise, Figure 6.5 shows that there are no 

direct bonds in the immediate ruthenium core environment of sample IV above 2.13 Å which are 

significantly affected by photo-isomerisation; meanwhile, any atomic pairwise correlation at or 

below 2.13 Å will be masked by the aforementioned ∆G(r) contributions of the 2.11 Å Ru-S 

bond and the 1.99 Å Ru-O bond (MS1). The shortest second-neighbour atomic pairwise 

correlation, from the GS and MS1 SO2 configurations of sample IV shown in Figure 6.5, will 

present a positive ∆G(r) contribution is centred at 2.72 Å. This value of r is precisely where the 

	∆𝐺!"#(𝑟)$%&'()*+,- 	profile finally shows a positive peak within its 2-3 Å region.  

 

The next part of the ∆G(r) profile is also different to samples I-III since the structural 

features of the average second-neighbour atomic pairwise correlations which manifest in samples 

I-III in the region of about 2.5-3.1 Å differ owing to the presence of the MS1 SO2 configuration. 
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All four samples in this study will exhibit third-neighbour intra-ionic pairwise 

correlations as well as inter-ionic interactions above ~ 3 Å. Thus, any further analysis of this 

comparative type between 	∆𝐺!"#(𝑟)$%&'()*+,- 	and photo-crystallography findings was 

precluded beyond this value of r.  

 

In any case, this type of comparative analysis against photo-crystallographic models can 

only serve the data analysis so far, since it justifies 	∆𝐺!"#(𝑟)$%&'()*+,- based on light-induced 

molecular disorder that exhibits both short and long-range order. These comparisons are 

important since they provide good consistency between the results for samples I-IV. They thus 

provide assurance that the experimental data are legitimate. They also confirm that photo-

isomerisation can indeed take place in a polycrystalline powder, and do so in a fashion that is 

similar to that which one expects in photo-crystallography experiments. However, it has yet to be 

assessed if there are atomic pairwise correlations in samples I-IV which exhibit only local 

structure order. One way to gain some insights towards such an assessment is to analyse the level 

of statistical agreement between the experimental data and the simulated models of ∆G(r). This 

works because the models were drawn from the photo-crystallography results, while the data 

herein may yield not only short- and long-range order that is characteristic of photo-

crystallography findings; it may also potentially exhibit 	∆𝐺!"#(𝑟)$%&'()*+,-	contributions that 

are due solely to short-range order. 

 

A form of statistical inference which correlates the level of agreement between the 

∆𝐺.%/(𝑟) and ∆𝐺!"#(𝑟)  is now employed to analyse the ∆G(r) profiles of samples I-IV, across a 

wider range of r than the ~ 3 Å limit mentioned in the approach described above. Moreover, it is 

demonstrated that this statistical inference method can identify differences between 

	∆𝐺!"#(𝑟)$%&'()*+,- and 	∆𝐺.%/(𝑟)$%&'()*+,- that can provide insights into local atomic structure 

that may only exhibit short-range order. 
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Statistical inference of ∆G(r) profiles based on Pearson correlation coefficients 

  

This analytical method is performed by dividing the ∆G(r) into three regions. The exact 

range of each region is sample dependent, with the first (~ [2-3] Å) encompassing direct bonds 

that are associated with the SO2 and its trans-ligand, where the effects of photo-isomerisation are 

most evident. The second region (~ [3-4] Å) incorporates second-neighbour atomic pairwise 

correlations from intra-ionic interactions, some higher-order neighbour intra-ionic correlations, 

as well as correlations from close inter-ionic interactions. The third (~ [4-5] Å) envelops the 

longest intra-ionic as well as most remaining inter-ionic atomic pairwise correlations. The ranges 

are set with the intention of preventing the splitting of peaks across separate regions, as far as 

this is possible.  

 

Table 2. Exact ranges of sample-dependent ∆G(r) subdivisions.  

 

 

Dividing ∆G(r) in this manner facilitates the identification of the complex structural 

changes associated with photo-isomerisation, as well as enabling a validation of the constructed 

models. The validity each simulated model was quantified by calculating Pearson correlation 

coefficients over each region. The resulting Pearson coefficients can be seen in Table 2 and as 

annotations in Figure 6.3. 
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Table 3. Pearson correlation coefficients (𝜌) between experimental data and simulated models of 
∆G(r) presented over three regions of interest as well as providing the overall value. 

 

Sample  𝜌1  𝜌2 𝜌3 𝜌ovr 

I 0.98 0.79 0.94 0.72 

II 0.94 0.84 0.49 0.46 

III 0.98 0.95 0.26 0.42 

IV 0.86 0.69 0.67 0.70 

 

As can be seen from the values in Table 2, good agreement can be observed in the two 

low-r regions (~ [2-3] Å and ~ [3-4] Å,  𝝆1, 𝝆2 in Table 2) for all samples, except for 𝝆2 of 

sample IV. These are the two regions where the bonds most representative of the structural 

change of photo-isomerisation are expected to manifest themselves (Table 3). The physical 

significances of the features in Region 1 were described earlier in this chapter.  

 

The low 𝜌 values in Region 3 may well be due to the greater difficulty in modelling data 

in this higher range of r where the photo-induced structural changes of many pairwise 

correlations will manifest. However, there is another possible interpretation to consider, 

particularly since the 𝜌 value in Region 2 of sample IV is also damped, as we now discuss. 

 

Regions 2 and, especially, 3 are expected to be influenced by atomic pairwise 

correlations that stem from inter-ionic interactions. As previously mentioned, the simulated 

∆𝐺.%/(𝑟) profiles were created using models of supercells, featuring either solely photo-

isomerised (MS1/MS2) or non-photo-isomerised (GS) molecules. This unavoidable limit in the 

models led to their absence of most types of ‘mixed’ inter-ionic interactions that are expected to 

exist in the samples; the models accounted only for like-like type (GS-GS, MS1-MS1 or MS2-

MS2) inter-ionic interactions. The impact of this issue on 𝜌, arising from a lack of agreement 
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between experimental data and models, would be minimised if photo-isomerisation were to 

occur in the samples in large domains. This is because most inter-ionic interactions would be of 

the ‘like-like’ type within the large domain of a crystal structure whilst ‘mixed’ types of 

interactions (GS-MS1, GS-MS2, MS1-MS2) would exist only on the periphery of these domains, 

thus being minimal in quantity and barely measurable. However, the low 𝜌 values observed 

suggest that this may not be the case; rather, domains could be sufficiently small to allow 

‘mixed’ type inter-ionic interactions to have a significant effect on ∆𝐺!"#(𝑟).  

 

The markedly poorer agreement between experimental data and the models for sample 

IV, as manifested by low 𝜌 values in both Regions 2 and 3, somewhat substantiates the 

interpretation of an influence of structure with short-range order arising from ‘mixed’ types of 

inter-ionic interactions. Such an influence would be especially prominent in sample IV, since it 

is the only sample that exhibits both the MS1 and MS2 light-induced states, thus featuring all 

three ‘mixed’ types of inter-ionic interactions. Moreover, the MS1 state is by far the most 

populous, judging from the 36.2 : 6.9 MS1 : MS2 photo-conversion fractions observed by photo-

crystallography.  

 

Additionally, the formation of the MS1 state triggers a phenomenon referred to as a light-

induced nano-optomechanical transduction, which leads to a complementary rotation in one of 

the p-tosylate counterions. This introduces an entirely new set of light-induced structural changes 

at the low-r region, in addition to those associated with the SO2 ligand. These additional changes 

are particularly difficult to analyse because they are primarily inter-ionic, between an SO2 ligand 

in its MS1 state and its closest neighbouring p-tosylate counterion. These inter-ionic interactions 

are especially hard to model in such compounds, for reasons discussed above. Additionally, the 

disorder in the affected p-tosylate ions has an kinetic onset and delay that is not directly 

proportional to that of MS1,78 further complicating the modelling of nano-optomechanical 

transducers such as sample IV. 
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6.5 Conclusions 

 

Structural changes from solid-state SO2 linkage photo-isomerism in four ruthenium-

sulfur dioxide based complexes have been investigated via pair distribution function analysis. 

Synchrotron-based X-ray diffraction provided the experimental data which were collected on 

finely powdered crystals, before and after sample photo-irradiation. Structural models of 

𝐺.%/(𝑟)$%&'( and 𝐺.%/(𝑟)*+,- profiles were simulated from light-induced crystal structures that 

had been determined previously via photo-crystallography. ∆𝐺(𝑟)$%&'()*+,- profiles were used 

to isolate light-induced structural changes. These profiles showed good consistency between 

experimental data and the simulated structural models from photo-crystallography, especially in 

the 2-3 Å region. This is where the direct and second-neighbour pairwise atomic correlations 

associated with SO2 linkage photo-isomerism are expected to be most evident. Statistical 

inference was employed to corroborate these findings. An average Pearson correlation 

coefficient of 0.94 was observed over this 2-3 Å region, showing that ∆𝐺.%/(𝑟)$%&'()*+,- 	 

profiles constructed from photo-crystallography results describe well the experimental data, 

∆𝐺!"#(𝑟)$%&'()*+,-, in this low-r region. Pearson correlation coefficients were lower in higher 

regions of r in ∆𝐺(𝑟)$%&'()*+,-, especially for the sample (IV) which displays nano-

optomechanical transduction. This poorer agreement indicated that some structural features were 

lacking in the photo-crystallography model of IV. Light-induced local atomic structure described 

exclusively by short-range order could be responsible for some of this deficit. This is because 

SO2 photo-isomerisation may induce inhomogeneous spatial distributions of ruthenium-based 

cations that contain various mixes of dark state and photo-isomerised SO2 configurations, while 

mechanical motion of some of the p-tosylate anions may mechanically move to avoid 

uncomfortably close proximity to the η1-O-bound SO2 photoisomer in IV. More generally, this 

study has shown that the single-crystal nature of the linkage photo-isomerism, already known in 

these samples, can persist once their crystals have been crushed into fine powders. Moreover, we 

have outlined an experimental procedure that paves the way for developing structural 

investigations on these types of materials using pair distribution function analysis.  
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7. Conclusions and Future Work 
 

The work presented in thesis is centred around the application of radial and pair 

distribution function analysis to materials science problems, in the form of: an image-recognition 

based software tool that extracts information about particles from microscopy data; the 

development and application of a novel X-ray diffraction based experimental setup that affords 

PDF data on thin-film samples; and PDF and statistical correlation analysis, as applied to X-ray 

diffraction data that had been acquired on three types of complex materials.  

 

The conclusions of these projects, along with suggested new avenues for further research 

that they have uncovered, are presented in the associated sections below.  

 

7.1 ImageDataExtractor 

 

ImageDataExtractor is a new software tool that auto-extracts microscopy images and 

analyses them quantitatively to extract information such as the shape, size and distribution of the 

particles contained in the image. It can be used as a stand-alone tool, on individual images, or as 

part of a larger framework which performs auto-extraction of relevant images from scientific 

documents. 

 

In contrast to other image-recognition based tools designed for microscopy images, it is 

capable of autonomous, high-throughput operation. Calculation of evaluation metrics show that 

the tool performs well at all stages of image processing, and better than human error associated 

with manual image processing for the majority of its steps. The tool and cognate code are also 

open source.  
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The high-throughput image extraction and quantitative analysis options of 

ImageDataExtractor mean that this tool is inherently poised toward our ultimate goal of auto-

generating material databases of information on particles.  

 

Although ImageDataExtractor can provide useful, quantitative information regarding the 

particles in an image, its capabilities are currently limited to two dimensions. Expanding its 

capabilities so that it can draw conclusions in three dimensions could be done through the 

incorporation of depth cueing. Its accounting for 3-D factors would improve the accuracy of the 

calculated metrics of the tool. This may be accomplished by using the mean colour of the 

particles (a value already calculated in the ImageDataExtractor pipeline) to estimate the 3-D 

distance between given particles, since the pixel intensity is inversely related to 3-D depth.  

 

Another possible improvement would be the training of an OCR library, specialised on 

fonts and characters used in imaging techniques, to use in scale recognition in order to improve 

the precision and recall of the scale detection step.  

 

Lastly, after a sufficiently large particle database has been built, machine-learning 

techniques could be applied to help guide detection in new samples containing materials that are 

already in the database, and possibly even predict particle properties using similar compounds or 

synthesis processes from the materials database.  

 

7.2 Glancing-angle PDF Analysis of DSSC Working Electrodes 

 

The thin-film working electrodes of N3- and N749-sensitised DSSCs, comprising a 

dye…TiO2 interface, were probed using PDF analysis of synchrotron-based X-ray diffraction 

data. The thin-film nature of this study required the development of a novel experimental setup 

for PDF data acquisition, glancing-angle PDF (gaPDF).  ∆PDF analysis was employed to isolate 

the structure of this interface, by subtracting D(r) profiles collected on unsensitised DSSCs from 

those of sensitised DSSCs.  
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The resulting ∆D(r)exp profiles, that represent the interfacial structure, were compared to 

∆D(r)sim profiles that were generated from simulated structural models of the interface using 

DFT calculations. Moderately good correlations with the simulations implied that, although we 

were able to observe the interface, our models require refinement. Closer examination of the 

deviations of the experimental data from those of the models revealed shorter-than-expected 

average bond lengths at values of r that are associated with anchoring groups. This suggests a 

prevalence of the BB mode, which features shorter anchoring bonds relative to the monodentate 

ester mode that is also included in the DFT model. This study demonstrates the successful 

application of the gaPDF method to DSSCs. 

 

Moving forward, this method could be applied to all kinds of DSSCs, prepared with 

varying dyes or substrates. This would allow further insight to the structure of working 

electrodes in DSSCs, guiding subsequent research and development.  Studies that use dyes which 

are known to anchor through different anchoring groups, such as pyridine, phosphonic acid or 

tetracyanate groups,133 would be especially interesting for comparison of the interfacial 

structures that they form.  

 

Additionally, this method is certainly not limited to the realm of DSSCs and could also be 

applied to a wide-range of thin-film samples.  

 

7.3 Gd…Gd Separations in Amorphous (Gd2O3)0.230(P2O5)0.770 

 

∆PDF analysis of AXS results on (Gd2O3)0.230(P2O5)0.770 were carried out in concert with 

various statistical techniques and corroboration with findings from other studies. This evidenced 

that rare-earth phosphate glasses show mixed ultra- and metaphosphate structural character, 

when their rare-earth composition lies between the two stoichiometric boundaries of RP5O14 and 

R(PO3)3 [x = 0.167 and x = 0.250, respectively, according to the aforementioned formula 

(R2O3)x(P2O5)1−x]. The findings have confirmed previous peak assignments and related certain 

R…R correlations to archetypal meta- or ultraphosphate structural characteristics: 4.2(1)Å (meta), 
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4.8(1) Å (ultra/meta), 5.1(1) Å (ultra), 5.4(1) Å (meta), and 6.6(1) Å (meta). R…X correlations 

lying at average separations of 7.1(1), 7.6(1), 7.9(1), 8.4(1) and 8.7(1) Å were also resolved, 

thanks to the high spatial resolution enabled by anomalous X-ray scattering.  

 

The majority of the well-resolved peaks in this study were observed in all four ∆PDFs 

that each represent the AXS signal, as determined by subtracting X-ray diffraction data collected 

at an X-ray energy that lies far from the Gd K-edge from a cognate data set acquired at an energy 

on the edge. Four X-ray energies were employed to obtain the diffraction data for these 

subtracted pairings, which lie at 10 eV, 40 eV, 300 eV and 500 eV from the Gd K-edge; ∆PDFs 

involving the K-10 eV data set afforded the most intense and reliable AXS signal, as expected.  

 

These findings demonstrate exciting prospects for future AXS studies on other 

amorphous materials of similar nature.  

 

7.4 Local Structure of SO2 Photo-isomers in Ruthenium Coordination Complexes 

  

 Light-induced structural changes in four ruthenium-sulfur dioxide based complexes have 

been investigated via PDF analysis. Synchrotron-based X-ray diffraction data collected before 

and after sample photo-irradiation were compared to structural models of 𝐺.%/(𝑟)$%&'( and 

𝐺.%/(𝑟)*+,- profiles that were simulated from previous photo-crystallographic results. 

∆𝐺(𝑟)$%&'()*+,- profiles were used to isolate light-induced structural changes. 

 

 The profiles showed good consistency, especially in the 2-3 Å region where direct and 

second-neighbour pairwise atomic correlations associated with the SO2 linkage photo-isomerism 

are expected to manifest. An average Pearson correlation coefficient of 0.94 across all four 

samples over the 2-3 Å region corroborated these results.  
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 Poorer agreement in the higher-r regions, accompanied by lower Pearson correlation 

coefficients, indicated an absence of certain structural features in the photo-crystallographic 

models. Light-induced local atomic structure described exclusively by short-range order may be 

partially responsible for this disagreement. The disparities were found to be more severe for 

sample IV, which is known to display the phenomenon of nano-optomechanical transduction. 

The mechanical motion of some of the p-tosylate anions in this sample would contribute to such 

short-range order.  

 

 This study showed that the linkage photo-isomerism, already observed in these samples 

in single-crystal form, was also achievable in powder form. Additionally, this study outlines an 

experimental procedure paving the way for similar structural investigations on these types of 

compounds. Continuing investigations on a wider range of such materials, aided by more 

complex models that incorporate inter-ionic interactions over larger domains, are possible areas 

of further research in this direction.   
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Appendix 
 

Appendix A1 

 
Figure A1.1 Experimental ∆D(r) profiles, representing the dye···TiO2 interface in N3- and 
N749-sensitised TiO2 substrates with varying values of Qmax. 

 

 Figure A1.1 shows the ∆D(r) representing the dye…TiO2 interface in both cases, with 

varying Qmax. The limited effect that this testing imparts on the ∆D(r) shows how minimally the 

features were affected by Fourier transform artefacts, such as Fourier series termination errors.  
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Appendix A2 

 

 
Figure A2.1 The experimental G(r) profiles of the raw data of Samples II-IV, collected before 
and after sample photo-irradiation. The slightly different appearance of the G(r) for sample IV 
is attributed to the different software used for its processing. 
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