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Metastatic tumours often invade healthy neighbouring tissues

by forming multicellular finger-like protrusions emerging from

the cancer mass. To understand the mechanical context behind

this phenomenon, we here develop a minimalist fluid model of

a self-propelled, growing biological tissue. The theory involves

only four mechanical parameters and remains analytically

trackable in various settings. As an application of the model,

we study the evolution of a two-dimensional circular droplet

made of our active and expanding fluid, and embedded in a

passive non-growing tissue. This system could be used to

model the evolution of a carcinoma in an epithelial layer. We

find that our description can explain the propensity of

tumour tissues to fingering instabilities, as conditioned by

the magnitude of active traction and the growth kinetics. We

are also able to derive predictions for the tumour size at the

onset of metastasis, and for the number of subsequent

invasive fingers. Our active fluid model may help describe a

wider range of biological processes, including wound healing

and developmental patterning.
1. Introduction
Spreading tumours often do not maintain a straight front while

expanding. They instead display an interface patterned with

multicellular protrusions, which are commonly referred to as

fingers [1,2], invading the surrounding tissue [1–6]. Their

formation generally initiates cancer metastasis [2–4,7,8], which

is responsible for the vast majority of cancer-related deaths [9].

Similar structures form during wound healing, where fingers

accompany re-epithelization [10,11]. In the case of glioblastoma

brain tumours, these fingers usually consist of disconnected,

diffusing cells [1,12]. But in carcinomas and epithelial wound

healing, they tend to remain condensed, with a well-defined

boundary [5,10].

What causes the formation of such fingers? Studying cancer

has traditionally focused on a large number of biological

(especially genetic and biochemical) cues [13]. Yet, these
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essentially operate by collectively affecting a smaller number of physical properties of the tissues and

environments involved [1]. How these physical alterations can, in turn, lead to fingering has been

investigated by several models. Various causal mechanisms, differing in their assumptions on the

mechanical properties adopted for the tissues, have been proposed [14–20]. For example, reaction–

diffusion models of nutrient-limited growth have been used [1,21] because the accessibility of

diffusing chemicals is necessary for tumour growth. But, other models have treated the fingers’

emergence as a consequence of a mechanical instability [14,15,17,22]. Support for the latter approach

was provided by experiments conducted to prevent biochemical signalling, but in which fingering

occurred nevertheless [23]. Mechanical processes proposed by these models include: fracturing of an

elastic surrounding medium (extracellular matrix, healthy tissue) upon pressure from a growing solid

inclusion (tumour), leading to subsequent infiltration of the cracks by malignant cells [22]; branching

instabilities caused by the tumour’s confinement pressure, analogous to the corona splash of a drop

impacting a solid surface [24]; mechanical frustrations between an outer, proliferating ring of a

growing tumour and its necrotic core [15]; buckling due to swelling of a spatially restricted gel-like

tissue [17]; instability resulting from the interplay between spatially non-uniform cell division/death

rates and shear in viscous tissues [14]; or a pulling mechanism by a subpopulation of leader cells at

the tumour’s edges [10,25].

Many of the above mechanisms have been successfully described using continuum, analytically

solvable models [14–17], thus providing deep insights into the physical context involved in tissue

fingering. However, these continuum models of tumours have, in most cases, omitted one

fundamental component of live tissues: cells actively apply forces (via the conversion of chemical

energy into mechanical energy) to their surroundings [10,26–30]. Yet, the onset of fingering at tissue

boundaries is often correlated with the dense presence of these so-called active forces and the

occurrence of the resulting self-propelled motion [10,29]. In discrete models, the central role of these

forces in triggering tissue fingering has been verified by simulations within several different

frameworks [18,25]. But, to the best of our knowledge, only few continuum models of fingering have

studied the consequences of self-propelling forces: the effect of an active rim at the boundary of the

tissue has been studied by Mark et al. [31] and by Nagilla et al. [32], while the role of active forces in

the tissue bulk has been discussed in wound healing models by Zimmermann et al. [33] and by

Nesbitt et al. [34]. However, the analyses in the two latter works are limited to a non-dividing,

rectangular tissue, either in a static state or somehow pushed on one side by a rigid barrier.

We here investigate the role of tissue bulk activity for the emergence of fingers in more general

situations. We first construct a continuum mechanical model of an active and growing tissue,

supported by experimental evidence, and that is analytically solvable and that involves only four

physical parameters: friction, activity, growth and surface tension. We next investigate the role of

activity in promoting fingering. Provided with experimentally derived estimates of the physical

parameters, our model notably produces realistic predictions for the number and evolution of the fingers.
2. Model
2.1. Assumptions and equations
In our model of an active and growing tissue, the evolutions of the pressure p(r, t) and velocity v(r, t)

fields at a position r and time t are governed by the following force balance and mass conservation

equations,

rp ¼ �bvþ a
v

jvj (2:1a)

and

r � v ¼ k, (2:1b)

respectively, with r the nabla operator, and where a and b are positive parameters, specifying the

strength of the interaction between the tissue and a substrate: a describes the magnitude of the active

traction, while b describes the magnitude of the effective passive friction (proportional to the tissue

viscosity). In equation (2.1b), k is the net rate of growth (we are here interested in regimes in which it

is also positive) of an incompressible tissue, undergoing cell division (or individual cell growth). The
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a-term in equation (2.1a), which accounts for the tissue activity, is discussed in detail in §2.2. The

evaluation of the various parameters is examined in §2.3.

Ignoring the a-term, equation (2.1a) reduces to Darcy’s Law rp ¼ �bv (originally used to describe

viscous flows in porous materials and Hele–Shaw apparatus [35]), which has been widely employed

to model the passive behaviour of tissues [1,36–38]. Darcy’s Law notably assumes a viscous and

quasi-two-dimensional dynamics for the deformations of a tissue layer, by considering that the effects

of friction against a substrate are much stronger than those of viscous shear within the plane of

the layer.

Using two-dimensional models is experimentally justified by the large prevalence of in vitro
tissue culture monolayers, and also because many in vivo soft tissues, including epithelium in

which carcinomas develop, tend to spontaneously form quasi-two-dimensional monolayers

[10,29,39]. Consequently, two-dimensional descriptions are often employed in tissue mechanics

models [14,17,25].

The mechanical properties of live tissues at short timescales, up to the order of minutes, are

generally dominated by an elastic constitutive behaviour. At longer timescales, however, a viscous

description is better suited [30]. The crossover between the two regimes is probably related to the

turnover rates of intercellular adherent junctions [40,41]. Hence, epithelial tissues become fluidized

by a reduction in the number of adherent junctions, and a concomitant increase in the magnitude

of active traction when becoming malignant. This well-known ‘melting’ process is often referred to

as the ‘epithelial to mesenchymal transition’ [3,5,42]. Moreover, cell division and apoptosis are also

known to further contribute to the fluidization of tissues [43]. As we here model the behaviour of

the tissue at timescales on which it experiences substantial growth (that is, on the order of several

hours at least [4]), the viscous constitutive behaviour implied by Darcy’s Law is justified. Many

existing continuum models of epithelial tissues indeed make the same assumption [14,30,38,44].

Note that, by writing equations (2.1), we further assume that inertial terms are negligible on

these timescales.

2.2. Tissue activity
The second term on the right-hand side of equation (2.1a) accounts for cells actively propelling

themselves by exerting traction against the substrate. It will subsequently be referred to as the active

term, and a specifies its strength.

We consider here that the direction of the net local active force acting on the tissue layer from the

substrate is aligned with the direction of the local flow velocity. This assumption was made in

previous studies modelling active tissues [18,45]. It is a consequence of cells attempting to maintain

their direction of motility, as illustrated in figure 1a, and also manifested by the persistent Brownian

motion of individual cells in vitro [47]. On a subcellular level, it probably results from the friction

destabilizing lamellipodia [11,48] that are not aligned with the cell’s velocity [18]. It has further been

shown to be consistent with experimental data [18,49,50], although this directionality is not universal

[51] and other models have been proposed where the direction of the active force is treated as an

independent internal variable, coupled to stress and velocity fields [44,52].

Equation (2.1a) also assumes that the active traction does not depend on the magnitude of the

velocity. This assumption has been made in several numerical models of motile cells [18,53,54], and

enables a distinct analysis of the role played by activity.

In the classic theory derived by Toner & Tu [55,56], often used to model active fluids [33,34,57], the net

force per unit volume acting on the active fluid from the substrate, in a spatially uniform flow, follows FT(v) ¼

aTv 2 bTjvj2v (ignoring here additional inertial and gradient terms; with aT and bT positive parameters).

In comparison, our model, equation (2.1a), gives this force the expression F(v) ¼ av/jvj 2 bv. In both

cases, the fluid has a ‘preferred’ spontaneous magnitude of velocity jvsj ¼ a/b (¼ (aT/bT) 1/2 in the

Toner–Tu model), which it would select when moving in unbounded space without being driven

by an external pressure gradient or growth. For magnitudes of velocity lower than jvsj, the fluid would

be driven to move faster by the a-term, while above it, it would be slowed down by the friction

(the b-term). This fluid’s constitutive behaviour may be described in terms of a Landau-type

‘velocity potential’ [46], shown in figure 1b. Although our model has a discontinuity in the direction of

F(v) at v ¼ 0 which does not exist in FT(v), we have verified that this singularity does not significantly

affect our subsequent results.

The Toner–Tu model, however, assumes that the friction force grows as jvj3 and that the active force

varies linearly with jvj. Both assumptions are unrealistic when describing biological tissues. Our model,
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Figure 1. Assumptions of the active traction model. Panel (a) is a schematic illustrating how the active traction of a mesenchymal
tumour cell acts in the direction of its migration velocity; filopodia and/or lamellipodia are protruding at the leading edge of the cell,
which translocates in the same direction. Panel (b) compares (in one dimension) the Landau-type ‘velocity potential’ [46], U(v) such
that the volumic traction force F ¼ 2@vU, of our description with the Toner – Tu model; both potentials select an intrinsic velocity
vs (see text), but our model introduces a discontinuity at v ¼ 0 which has no effect on our results.
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however, retains the physical interpretation of b as the friction coefficient of Darcy’s Law, and of a as the

magnitude of the active force of the tissue against the substrate (per unit volume). Our approach also

enables a direct comparison with classical results for viscous fingering [58], readily obtained from our

model by taking the limit a! 0.

2.3. Estimation of parameters
Based on in vivo microscopy observations [4] of the time necessary for doubling a carcinoma’s size, which

is on the order of a few hours, we estimate that the growth rate k is about 1024 s21.

The passive friction b can be estimated based on in vitro force measurements of epithelial tissues

against substrates [29,30,59] (admittedly, inferences about in vivo systems from these in vitro
experiments are arguable). Following Pompe et al. [59], we assume that friction with the substrate is

primarily the consequence of cell-substrate ligands, numbering 200–300 per cell, each of which exerts

a force of about 10212 N. We thus estimate the total friction force per cellular volume to be about

106 N m23 for a 1025 m cell size. From in vivo microscopy of micrometastasis growth [4], the typical

velocity v of the cells falls within 10210 to 1029 m s21. Hence, dividing the volumic friction force by

this velocity provides an estimate b � 1015–1016 Pa s m22.

There is no lower limit on a, as epithelial cells may not exert any active force against the substrate. The

upper limit can be estimated on the basis of force tracking microscopy applied to spreading epithelial

monolayers in vitro [29,30]. It is observed that traction forces are actively exerted through the

monolayers and peak at their edges, giving rise to a gradient of the stress tensor’s diagonal terms,

which is up to 107 Pa m21 in the study by Trepat et al. [29], and 108 Pa m21 in the work of Blanch-

Mercader et al. [30]. Balancing a with this typical stress gradient, one can place an upper estimate on

a at approximately 108 Pa m21. In agreement, the traction exerted by single fibroblasts has been

reported as up to 1027–1025 N per cell [60], which would correspond to a � 108–1010 Pa m21 when

dividing by the cell’s volume.

The effective surface tension of the tissue g will also play a role in our further considerations.

Its magnitude depends on the strength of intercellular adhesion and behaviour of cortical actin

networks [61,62]. The surface tension was evaluated indirectly by Foty et al. [63] by measuring the

energetic penalty of compression of embryonic multicellular spheroids, revealing values on the order

of 3–9 mPa m. We thus presume that g � 1023–1022 Pa m is a realistic range for our system.

A summary of the estimates for the physical parameters is presented in table 1.

2.4. Model system
The tumour is modelled as an initially circular, two-dimensional droplet of a growing active fluid

described by equations (2.1), with an unperturbed, time-dependent radius r0(t) (figure 2). The

surrounding healthy tissue is modelled as a passive, non-dividing fluid, whose pressure p0(r, t) and
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Figure 2. Model system of a tumour growing in an external tissue: a two-dimensional circular droplet with radius r0 and made of
an active fluid described by equations (2.1), is expanding in a passive fluid modelled by equations (2.2). The interface undergoes
periodic perturbations whose linear stability is investigated in §3.

Table 1. Estimates of the physical parameters.

parameter symbol unit value

growth rate k s21 1024

passive friction b Pa s m22 1015 to 1016

active traction a Pa m21 0 to 1010

surface tension g Pa m 1023 to 1022
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velocity v0(r, t) fields follow the equations:

rp0 ¼ �b0v0 (2:2a)

and

r � v0 ¼ 0, (2:2b)

where b0 is the friction parameter (analogous to b in the active fluid). In writing equation (2.2b), we

effectively assume that growth in the passive fluid can be neglected on the timescale of metastasis

initiation.

We assume that the activity a and the growth rate k are constant (independent of r and t) through

the active tissue. Constant magnitude of the active force has been assumed in models of active

matter before [64,65]. While not correct in all situations [30,66], it is a convenient assumption to

evaluate the influence of its magnitude in fingering. Extensions to non-uniform and time-dependent

behaviours of these parameters are readily possible, and we investigate a case of evolving growth

rate in §3.4 (see also appendix B.2). Similarly, we assume that b and b0 are uniform within their

respective regions.

We study the system in polar coordinates r ¼ (r, u) and write vector fields’ components in this system

with appropriate subscripts, such as v ¼ (vr, vu). The perturbed interface between the active and passive

fluids, described by the line r(t, u), must satisfy two boundary conditions. First, the continuity of the

radial components of velocities is expressed as follows:

vrjr¼r ¼ v0rjr¼r ¼ @tr: (2:3)
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Second, the pressure difference across the interface separating the two tissues must equal the

Laplace pressure,

pjr¼r � p0jr¼r ¼ �g
r2 þ 2(@ur)2 � r@2

uur

[r2 þ (@ur)2]3=2
, (2:4)

with g the surface tension, and the fraction being the expression of the local interfacial curvature in polar

coordinates [67]. Note that our description does not account for an interfacial bending force [31,68]. We

indeed assume that the corresponding energetic cost, which involves a higher order dependency in

interfacial curvature when compared with surface tension [31], is negligible at the length scales

considered for the linear stability analysis presented in §3.

Unless stated otherwise, we use the dimensionless variables defined as follows. Distances are re-scaled

by the characteristic length ‘ ¼ ð2g
bkÞ

1=3, which can be interpreted as a capillary length at which growth

balances interfacial tension (on the order of 10 mm, based on the estimates of table 1). Times are re-

scaled by k21, and we further define f ¼ b0/b the relative viscosity of the displaced tissue compared

to the active growing droplet. We introduce a reference activity a� ¼ b‘k � 107 Pa m�1 to make the

active traction a dimensionless, a=a� ! a. Pressures and velocities are made dimensionless by

p� = b‘2k � 102 Pa and v� = ‘k � 10�9 m s�1, respectively. We will use the same letters for the

dimensionless versions of the variables as for their dimensional counterparts.

The droplet of the active tissue grows due to a positive k, as required by equation (2.1b), and the

passive fluid is displaced by it. As long as the interface between the two tissues remains circular (with

the unperturbed radius r0), hydrodynamic fields in both regions remain symmetric under rotations

and are given by

v0 ¼
r

2
, 0

� �
, p0 ¼ a(r� r0)� 1

4
(r2 � r2

0)þ pjr¼r0
(2:5a)

and

v00 ¼
r2

0

2r
, 0

� �
, p00 ¼ �

fr2
0

2
ln

r

r0

� �
� 1

2r0
þ pjr¼r0

, (2:5b)

as obtained by solving equations (2.1)–(2.4) and using the dimensionless quantities defined above.
3. Results and discussion
3.1. Linear stability analysis
We investigate under which conditions the active, circular droplet of radius r0 would start to form finger-

like protrusions at its edge, while undergoing uniform growth. To do this, we perform a linear stability

analysis around the circular solution given in equations (2.5), by investigating infinitesimal interfacial

perturbations of the form r ¼ r0 þ dr, with

dr/ fn(t) einu, (3:1)

for an integer n corresponding to the mode of the periodic perturbations, and where fn(t) is a function

describing its time evolution (with lim t!0 fn(t) ¼ 1 for all n). An analogous ansatz of periodicity in u

is made for the perturbations of hydrodynamic fields in both fluids, (dp, dp0, dv, dv0)/ fn(t) einu,

around the solution given by equations (2.5). Note that our stability analysis concerns small

perturbations around solutions that are themselves time-dependent. Applying the evolution equations,

equations (2.1)–(2.4), to these perturbed fields provides an expression for the n-mode’s rate of growth

defined by

sn(r0) ¼ lim
t!0

@tfn(t)
fn(t)

: (3:2)

Positive values of sn(r0) correspond to unstable, growing modes n, which may become the basis for the

formation of fingers. We derive in appendix A the following expression for sn(r0):

sn(r0) ¼ 1

2

(f� 1)(n� 1)� n(n2 � 1)=r3
0 þ Ln( 2a

r0
)

fþ 1þ Ln( 2a
r0

)� n 2a
r0

, (3:3)
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Figure 3. Growth rate sn(r0 ¼ 5) of periodic interfacial perturbations as a function of the number of fingers n, for a droplet of size
r0 ¼ 5, made of a passive (a ¼ 0; dashed lines) or an active (a ¼ 2; solid lines) fluid, with varying f.
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where Ln(x) is the function

Ln(x) ¼ nx� 1þ n

Pn
k¼0

(�1) j

nþj
nþj

j

� �
n
j

� �
x�j

Pn
j¼0 j (�1) j

nþj
nþj

j

� �
n
j

� �
x�j

, (3:4)

with n
j

� �
the binomial coefficient ‘n choose j’. Equation (3.3) holds provided a , r0/2 (see §3.2 for a

discussion). The first term in the numerator of equation (3.3) represents the effects of the viscosity

mismatch, the second term embodies the effects of surface tension, while the final term shows the

effects of activity.

As Ln(0) ¼ 0 for all n, we obtain the following expression of sn(r0) in the passive limit a! 0:

sn(r0)ja¼0 ¼
1

2

n(f� 1)

fþ 1
� 1� n(n2 � 1)

r3
0(fþ 1)

� �
þ 1

fþ 1
: (3:5)

The first term (square brackets) of equation (3.5) is equivalent to the landmark result obtained by

Paterson [58] for viscous fingering in a radial geometry (eqn. (10) in [58]), upon imposing the injection

rate Q in Paterson’s formula equal to the total amount of the droplet’s growth per unit time in our

setting (that is, Q ¼ pr2
0 in dimensionless variables). The last term 1/(f þ 1), however, distinguishes

our result from Paterson’s, and stems from the fact that, here, the invading fluid also grows within

the fingers.

Figure 3 shows sn(r0) versus n for various values of f and a, and for an unperturbed droplet radius

r0 ¼ 5. Only integer values of n (circles in figure 3) have a physical interpretation. The first mode n ¼ 1

corresponds to a translation of the droplet, and as L1(x) ¼ 0 for all x, s1(r0) ¼ 0 for all values of r0, a and

f. Higher modes n � 2 correspond to the formation of n fingers on the interface of the active droplet and,

if unstable (that is, if sn(r0) . 0), could potentially initiate the multicellular protrusions observed in

tumours [4].

In passive fluids, f . 1 (that is, the invaded fluid is more viscous than the invading one) is a

necessary condition for fingering to be initiated, as instabilities can only grow when the pressure

gradient near the interface is lower in the invading fluid [69]. However, we observe that sn(r0)

increases with a, so that modes that are stable when a ¼ 0 may become unstable in the presence of

activity a . 0 (compare the dashed and solid blue curves, obtained with f ¼ 0.5, in figure 3).

Therefore, activity can trigger fingering in systems that are stable otherwise, as well as enhance

and/or change the dominant modes in droplets that are already unstable.

Activity lowers the pressure gradient of the invading fluid near the interface, hence promoting

instabilities. Using the expression of p0 and p0
0 given in equations (2.5), we find that the condition for

fingering, rpjr¼r0
, rp0jr¼r0

, is equivalent to f þ 2a/r0 . 1 when the effects of surface tension are

negligible.
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3.2. High-activity regime
As already mentioned, jvsj ¼ a/b � 1029 m s21 is a characteristic velocity at which the active fluid would

move in an unbounded space, under uniform pressure and without growth. If jvsj exceeds the growth-

generated velocity at the interface, the active fluid’s motion is frustrated and further instabilities occur

across its entire area. We call this regime, for which dimensionless a . r0/2, ‘high activity’. In this

case, the derivation of equation (3.3) presented in the appendix, which assumes that perturbations are

only arising at the interface and decaying away from it, is not valid. This regime is potentially

relevant in the behaviour of real epithelial tissues, in which fingering at the boundaries is

accompanied by velocity swirls forming across the entire area of the tissue [23].

Hence, equation (3.3) is only valid for the ‘low activity’ regime (a , r0/2). Yet, even in this regime, the active

droplet may feature a region of instabilities near its centre r , 2a, where the velocity magnitude jv0j (given by

equation (2.5a)) is less than jvsj. In particular, this situation would have also occurred in the history of the system

considered in figure 3. In practice, a separate simulation-based study would be most appropriate to obtain the

velocity field throughout the whole active region and to further examine the high-activity regime. In further

sections of this paper, we only examine the system’s behaviour in the low-activity regime.

3.3. Onset of fingering
For small enough radii, surface tension stabilizes the active droplet, but its strength decreases as that droplet

grows. Therefore, there exists a critical radius for the onset of fingering, below which the active droplet

grows circular and unperturbed. As n ¼ 2 is always the first mode to become unstable, rc(a, f) defined

by the conditions s2(r0 ¼ rc) ¼ 0 and @r0s2(r0)jr0¼rc
. 0 provides an estimate of that critical radius. Using

equation (3.3) with L2(x) ¼ x(3x 2 4)/(2x 2 3), these conditions are equivalent to finding a polynomial

root (first condition) within a subdomain (second condition), and have a unique positive solution.

We plot rc(a, f ) versus a in figure 4, which shows that increasing activity decreases the minimum

radius for fingering. When f , 1 (blue curve in figure 4), there exists a minimum value of a, below

which fingering cannot occur, because the higher viscosity of the invading droplet has a stabilizing

effect. When f ¼ 1 (green curve in figure 4), a moderate increase of a may decrease rc multiple times.

The impact of a in fingering is, however, reduced when f . 1 (the red curve in figure 4), because in

that case the interface would be unstable even without activity.

The range of dimensionless rc, presented in figure 4, would correspond to a radius of 10–100 mm; however,

it can be much higher for lower values of a. This range of rc is nevertheless in qualitative agreement with

the tumour size at which the onset of fingering occurred in experimentally studied carcinomas [4].

3.4. Dominant mode
We now address the question of how many fingers are visible in practice, or, technically speaking, the

question of which perturbation mode dominates during growth. Viscous fingering studies suggest
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Figure 5. Numerical estimation of the dominant mode nd(r0) observed in an active droplet of radius r0, undergoing exponential
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the dominant mode is the one satisfying the so-called maximum-amplitude criterion [70]. The criterion is

satisfied by the mode nd experiencing the largest total aggregated growth in amplitude zn over the entire

history of the system [70]. Following [70], we obtain zn by integrating the rate of the perturbation’s

growth, as predicted by our linear stability analysis, over that history,

zn(r0) ¼ exp

ðr0

Rn

sn(r)
dt
dr

dr
� �

, (3:6)

where Rn is the radius at which mode n is first destabilized (i.e. the minimum radius at which sn(Rn)

becomes positive). The dominant mode nd is then obtained for each r0 from the conditions,

@nzn(r0)jn¼nd
¼ 0 (3:7a)

and

@2
nnzn(r0)jn¼nd

, 0, (3:7b)

used to locate the maximum aggregated growth.

As we shall see, the selection of the dominant mode depends on the particular kinetics of the tumour

growth. Some experimental studies have shown that an initially exponential growth [71] (corresponding

to a constant k) subsequently slows down with time (implying a decrease in average k) as the tumour

enlarges and its resource supply becomes a limiting factor [72–74]. Other kinetics have been

measured for various tumours and phases of growth, including sigmoidal regimes in which the

growth stalls [72–74]. The kinetics where the tumour’s radius grows linearly with time also naturally

emerges when the tumour proliferates only within an outer rim [74]. Such growth can also occur as a

temporary feature in a sigmoidal kinetics.

We thus proceed to discuss in detail the selection of dominant modes in two kinetic models of

tumour growth: an exponentially growing tumour, where k is uniform and independent of time and

r0(t) ¼ ri ek(t�ti)=2 (from equation (2.1b) at the interface, and with dimensional variables; ri being the

initial radius at time ti); and a tumour with a radius growing linearly with time, r0(t) ¼ ri þ n(t 2 ti),

with n the constant and uniform velocity of the unperturbed interface. In the latter case, the growth

rate k appearing in equation (2.1b) evolves with time.

3.4.1. Exponential growth

The integral given in equation (3.6) cannot be expressed analytically for all values of f and a, and we plot in

figure 5 the relationship nd(r0) obtained from numerical evaluation. When f . 1, and for low radii close to

the onset of fingering, we observe that the activity has only a moderate influence on the selection of the

dominant mode. For later growth, when r0 becomes large, the viscosity mismatch is the governing cause

of fingering and the activity plays no role in the selection of the dominant mode. We numerically

observe the power-law variations nd / r3=2
0 , independent of a. When f ¼ 1, higher activities promote the

selection of higher modes. We obtain numerically, and for large r0, the scaling nd / r1=2
0 , where the 1

2
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power law is independent of a. When f , 1 and a is sufficiently high, some low-n modes will become

destabilized. However, these perturbations will re-stabilize and decay as r0 increases further, because the

stabilization from viscosity mismatch dominates as the radius of the droplet grows: active terms of

equation (3.3) vanish when r0!1, while terms involving f remain constant in this limit.

We may recover analytically the observed scalings for large nd and r0, and for f � 1. We derive in

appendix B.1 the following results when r0!1: nd � (f� 1)1=2 � r3=2
0 for f . 1 and

nd � [(a=2)2 þ (a=2)1=2]1=2 � r1=2
0 for f ¼ 1, which we give below in dimensional variables to highlight

the influence of the various physical parameters:

nd �
c1=2 kðb0 � bÞ

2g

� �1=2

� r3=2
0 for b0.b; ð3:8aÞ

2g

bk
a

4g

� �2

þ a

4g

� �1=2
" #1=2

� r1=2
0 for b0 ¼b; ð3:8bÞ

8>>>><
>>>>:

when r0� ð2gbkÞ
1=3, and with c � 0.06 defined as the smaller of the two solutions to 3c ¼ 3 þ lnc.

3.4.2. Linear growth

We also investigate pattern selection for a tumour with a radius growing linearly with time. The derivation

of sn(r0) proceeds along identical lines, although in this case, the integral in equation (3.6) can be expressed

analytically. Details of this calculation are given in appendix B.2, and in this case we find that nd � c(a þ
f 2 1) 1/2 � r0 is valid for all values of the physical parameters in the low activity regime when r0!1,

and where c � 0.06 is the constant defined previously. We thus write, in dimensional form,

nd � c
aþ n(b0 � b)

g

� �1=2

�r0, (3:9)

when r0� ð gbnÞ
1=2 (note that the dimensionless variables are defined differently in the linear growth, as

explained in appendix B.2). The difference in the nd versus r0 power-law dependency between equations

(3.8) and (3.9) highlights the role of the growth kinetics in the fingering pattern, and is discussed with

more details in the following.

3.4.3. Comparison and discussion

We now examine the evolution of the tumour’s shape in the two growth kinetics studied above. An

initially circular droplet is allowed to evolve, with the n-mode perturbation starting when the radius

r0 reaches Rn, and with an initial amplitude of 0.2 (corresponding to approx. 2 mm). The perturbation

is subsequently allowed to grow according to equation (3.6), such that zn(r0) represents the weight of

the n-mode at the unperturbed droplet radius r0. We further assigned a random phase difference

between each n-mode perturbation.

We present in figure 6 examples of droplet patterns obtained with this procedure, where fingering is

driven by either viscosity mismatch (left) or by activity (right), in both the exponential (top) and linear

(bottom) growth regimes. In the linear growth, activity-driven fingers emerge more distinctively than in

the passive droplet; the opposite is observed in the exponential growth. These results, as well as the

analytical scalings presented above, demonstrate that the role of activity in fingering depends on the

kinetics of the tumour’s growth, and is indeed enhanced in the slower, linear growth kinetics. This

assessment could potentially provide a basis for the mechanism behind the onset of metastasis, when

the bulk growth of the primary tumour slows down or saturates.

The results presented in figures 5 and 6 relate direct observables of the tumour’s geometry, and such

measurements should indeed be envisaged by experimentalists. Note, however, from figure 6 that the

number of fingers (approx. 10) visible at r0 � 100 mm when f ¼ 1 is in agreement with the

experimental observations shown by Cheung et al. [4].
4. Conclusion
We have devised a model of a growing and self-propelled tissue that isolates the role of four mechanical

parameters (summarized in table 1) on its dynamics. The theory is based on experimental evidence and is

analytically trackable. We used it to describe the evolution of an embedded two-dimensional circular



r0

linear
growth

exponential
growth

passive droplet
f = 2, a = 0 f = 1, a = 0.7

active droplet

1
2
5
10

Figure 6. Evolution of a droplet, undergoing exponential (upper row) or linear (lower row) growth, made of a passive (left column) or
active (right column) fluid. For comparison, the patterns are shown at the indicated values of the unperturbed radii r0 (see the scale of
shades), even though these are reached at different times in each growth regime. We used the initial amplitude 0.2 for all modes and,
to facilitate the morphological comparison, equate the characteristic lengths introduced for each growth kinetics (see ‘ defined in §2.4

for the exponential growth, and in appendix B.2 for the linear growth): ð2g
bkÞ

1=3
¼ ð g

bvÞ
1=2 , 4bn3 ¼ gk2.
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droplet that could model a carcinoma in an epithelial layer. In this example, we were able to highlight the

basic mechanical conditioning required to form interfacial instabilities, reminiscent of the classical

viscous fingering, and that could explain the tumour protrusions observed at the onset of metastasis.

We notably find that the tissue’s active traction and growth kinetics are central to shape the

instabilities’ pattern and evolution.

Our model, and the example of its application presented here, could further help predict the

minimum tumour size for metastasis, as well as the number of subsequent invasive fingers emerging

from the initial mass. To the best of our knowledge, these observable geometric quantities have yet to

be measured systematically in experimental studies.

The relative analytical simplicity of our model allows the investigation of more complex settings, such

as heterogeneous tumours where active forces and/or growth are not uniform, or processes where these

parameters are evolving with time or are dependent on one another. It also offers constitutive equations

that can be used in simulations, and we envisage such studies for systems with high traction forces,

where active motions are faster than the growth velocity, and which may indeed be relevant in

aggressive forms of cancer.

Data accessibility. This article has no additional data.

Authors’ contributions. Both authors contributed equally to the research, wrote the manuscript and gave final approval for

publication.

Competing interests. The authors declare no competing interests.

Funding. M.J.B. was supported by the Engineering and Physical Sciences Research Council and the Cambridge

Commonwealth, European and International Trust to perform this study.

Acknowledgements. The authors thank Drs J. Prost, S. Lira, A. Hallou and P. Szymczak for their insightful comments.
Appendix A. Linear stability analysis
We here follow the lines of the demonstration given by Paterson [58]. We substitute the linearized

perturbations to the hydrodynamic fields in both fluids, (dp, dp0, dv, dv0), into equations (2.1)–(2.2)

and obtain, to linear order

@rdp ¼ �dvr, (A 1a)

vr@udp ¼ ardvu � rvrdvu (A 1b)
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and

@r(rdvr) ¼ �@udvu, (A 1c)

in the active fluid, and

@rdp0 ¼ �fdv0r, (A 2a)

@udp ¼ �rfdv0u (A 2b)

and

@r(rdv0r) ¼ �@udv0u, (A 2c)

in the passive fluid.

Introducing the ansatz of periodicity in u, that is (dp, dp0, dv, dv0)/ einu, in equations (A 1)–(A 2)

allows us to calculate the partial derivatives with respect to u. Combining the resulting equations, and

using the expression of v0 of equation (2.5a), leads to second-order differential equations for the

pressure perturbations in both fluids,

n2dp ¼ (r� 2a)@r(r@rdp) (A 3a)

and

n2dp0 ¼ r@r(r@rdp0): (A 3b)

We now assume a , r0/2 (see §3.2). Equations (A 3) are both solved by linear combinations of two

functions. One function in each of these combinations has incorrect asymptotic behaviour (diverging,

instead of decaying away from the interface) and is removed. The retained functions serve to

formulate the allowed forms of pressure perturbations,

dp ¼ q(t)
Xn

j¼0

(�1) j

nþ j
nþ j

j

� �
n
j

� �
2a

r

� ��j
2
4

3
5einu (A 4a)

and

dp0 ¼ q0(t)
r

r0

� ��n

einu: (A 4b)

The functions q(t) and q0(t) are then obtained by finding dvr (using equation (A 4a) in equation (A 1a))

and dv0r (using equation (A 4b) in equation (A 2a)), and substituting the resulting expressions into the

kinematic boundary conditions, equation (2.3). One obtains the following:

dp ¼ r0

n
@tdr� dr

2

� �
1þ 2a

r0
� Ln

2a
r

� �
� (n� 1)

2a
r

� �
(A 5a)

and

dp0 ¼ fr0

n
@tdrþ dr

2

� �
r

r0

� ��n

, (A 5b)

with Ln the function defined by equation (3.4), and where the u-dependency einu has been incorporated

into dr. Using both expressions in the pressure boundary condition, equation (2.4) linearized to first order

in dr, and substituting dr/ fn(t) einu leads to an expression for @tfn/fn. Upon using the definition of sn(r0),

equation (3.2), we finally obtain equation (3.3).
Appendix B. Scaling laws for the dominant modes
B.1. Exponential growth
We obtain the scaling of equation (3.8a) for the viscosity-controlled fingering, f . 1, by only considering

the passive case (a ¼ 0). The result is valid even when a . 0, as effects of the viscosity mismatch

dominate effects of activity when r0!1, as also indicated by the numerical results shown in figure 5.

We then use the expression sn(r0)ja¼0 given by equation (3.5) into equation (3.6), in which we

substitute dt ¼ 2dr/r for exponential growth. We calculate

zn(r0)ja¼0 ¼ [An exp (A�1
n � 1)]Bn ,
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with An ¼ f�1
n(nþ1) r3

0 and Bn ¼ ðn�1Þðf�1Þ
3(fþ1) , by using the expression of Rn obtained from solving sn(Rn)ja¼0 ¼ 0.

The dominant mode nd is calculated for each r0 from the conditions of equations (3.7). Taking the limit r0

!1, and reintroducing dimensional variables, lead to equation (3.8a).

When f ¼ 1, the selection of the dominant mode depends on the activity a. We first Taylor expand

Ln(x) to first order in x,

Ln(x) � 2n(n� 1)

2n� 1
x: (B 1)

This term grows linearly with n for n! 1, while higher order coefficients in x plateau in this limit.

Therefore, this expression of Ln is efficient even for x � 1, and we use it to approximate

Rn � ðnþ1Þð2n�1Þ
4a

h i1=2
and sn(r0) � n(n�1)

4r3
0

a(n2þn�4r3
0
)

(2n�1)r0
� n� 1

h i
. Upon substituting these approximations

into equation (3.6), the dominant mode conditions equations (3.7) lead to equation (3.8b) for r0!1.
.open
sci.5:181579
B.2. Linear growth
In this kinetics, the growth rate k is not a constant, as opposed to the velocity n of the unperturbed

interface which is now the adequate growth parameter. We thus use a different set of dimensionless

variables, based on n. The characteristic length is now ‘ ¼ ( g
bn

)1=2, and times are re-scaled by ‘/n,

activities by a� ¼ bn, pressures by p� ¼ b‘n and velocities by n. The derivation presented in appendix

A proceeds similarly, and we find that the rate of perturbation’s growth sn(r0) in this system of

variables is written as

sn(r0) ¼ 1

r0

(f� 1)(n� 1)� n(n2 � 1)=r2
0 þ Ln(a)

fþ 1þ Ln(a)� na
: (B 2)

The integral of equation (3.6), with the change of variables now written dt ¼ dr, may then be calculated

analytically and we obtain the following:

zn(r0) ¼ [An exp (A�1
n � 1)]Bn (B 3)

with An ¼ (f�1)(n�1)þLn(a)
n(n2�1) r2

0 and Bn ¼ 1
2

(f�1)(n�1)þLn(a)
fþ1þLn(a)�na . Upon using the approximation of Ln(x) given by

equation (B 1), the conditions equations (3.7) now imply equation (3.9) in the limit r0! 1.
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WS, Cao Y, Czirók A. 2010 Collective cell motion
in endothelial monolayers. Phys. Biol. 7,
046007. (doi:10.1088/1478-3975/7/4/046007)

46. Wensink HH, Dunkel J, Heidenreich S, Drescher
K, Goldstein RE, Lowen H, Yeomans JM. 2012
Meso-scale turbulence in living fluids. Proc. Natl
Acad. Sci. USA 109, 14 308 – 14 313. (doi:10.
1073/pnas.1202032109)

47. Selmeczi D, Mosler S, Hagedorn PH, Larsen NB,
Flyvbjerg H. 2005 Cell motility as persistent
random motion: theories from experiments.
Biophys. J. 89, 912 – 931. (doi:10.1529/biophysj.
105.061150)

48. Farooqui R, Fenteany G. 2004 Multiple rows of
cells behind an epithelial wound edge extend
cryptic lamellipodia to collectively drive cell-
sheet movement. J. Cell Sci. 118, 51 – 63.
(doi:10.1242/jcs.01577)

49. Zaritsky A, Kaplan D, Hecht I, Natan S, Wolf L,
Gov NS, Ben-Jacob E, Tsarfaty I. 2014
Propagating waves of directionality and
coordination orchestrate collective cell
migration. PLoS Comput. Biol. 10, e1003747.
(doi:10.1371/journal.pcbi.1003747)
50. Zaritsky A, Welf ES, Tseng YY, Angeles Rabadán
M, Serra-Picamal X, Trepat X, Danuser G.
2015 Seeds of locally aligned motion and
stress coordinate a collective cell migration.
Biophys. J. 109, 2492– 2500. (doi:10.1016/j.bpj.
2015.11.001)

51. Notbohm J et al. 2016 Cellular contraction and
polarization drive collective cellular motion.
Biophys. J. 110, 2729 – 2738. (doi:10.1016/j.bpj.
2016.05.019)

52. Banerjee S, Utuje KJC, Marchetti MC.
2015 Propagating stress waves during
epithelial expansion. Phys. Rev. Lett.
114, 228101. (doi:10.1103/PhysRevLett.114.
228101)
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