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Abstract 

A path-tracking controller is presented for automating the reversing of multiply-

articulated vehicles.  This uses a state feedback approach and steers the wheels of the 

front axle to ensure the rearmost vehicle unit tracks a specified path.  Linear closed-loop 

analysis is performed and shows that the controller is stable for vehicles with up to six 

trailers.  The controller is implemented on three full-size, experimental heavy vehicles: 

a ‘Tractor-Semitrailer’, ‘B-double’ and ‘B-triple’ which have one, two and three trailers 

respectively.  Experimental results are presented and the controller performance is 

evaluated.  All test vehicles were able to track paths to within 400mm of the desired 

path. 

Keywords: reversing, articulated vehicle, path-tracking, control, trailer 

1  Introduction 

Using longer heavy vehicles can give reductions in fuel consumption (up to 30%), road 

wear (40%) and the number of heavy vehicles on the roads (44%) (1, 2).  Multiply-
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articulated heavy vehicles are used in Scandinavian countries, the Netherlands, much of 

the USA, South Africa, Canada and Australia. 

Examples of multiply-articulated vehicles found in the road-freight industry include the 

‘B-double’ and the ‘B-triple’ (Figure 1(b) and (c)), which have two and three trailers 

respectively.  These are collectively known as ‘B-trains’, which are vehicles with a 

tractor unit at the front, a semitrailer at the rear and a number of ‘B-trailers’ in between.  

A ‘B-trailer’ is a special trailer with an additional fifth wheel coupling which enables 

connection of another semitrailer.  A more conventional, shorter heavy vehicle is a 

‘Tractor-Semitrailer’ (Figure 1(a)), which has one trailer. 

Reversing multiply-articulated heavy vehicles is challenging for professional drivers 

and tends to be avoided where possible (3).  Therefore, a semi-autonomous system for 

reversing these vehicles would prove useful.  In order to introduce such a system, a 

path-tracking controller for reversing multiply-articulated vehicles is required. 

The problem of reversing an articulated vehicle to follow a desired path has been 

investigated in the literature.  There are examples of reversing controllers for the 

multiple-trailer case (4-12), but there is a lack of formal controller performance 

evaluation.  No previous research has included the tyre scrubbing characteristics of 

multiple-axle trailers on heavy vehicles.  The most significant shortcoming in the 

literature, however, is that none of the approaches have been tested on a full-size heavy 

vehicle.  

This paper aims to address these shortcomings by conducting field tests on three full-

size experimental heavy vehicles, as shown in Figure 1.  A state feedback path-tracking 

controller (13) is presented for the general n-trailer vehicle.  Theoretical analysis is 
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conducted on B-train vehicle combinations.  The controller is tested on a Tractor-

Semitrailer, a B-double and a B-triple, which have one, two and three trailers 

respectively.  Test results are presented and the performance of the path-tracking 

controller on all three test vehicles is evaluated.  The work presented here is part of a 

larger study investigating reversing of multiply-articulated vehicles (13). 

2  Control Theory 

The objective of the path-tracking controller is to make a specified axle on the rear 

trailer follow a desired path (13).  In Figure 2, which shows a schematic of the vehicle 

for the two-trailer case, this means point VA should follow the desired path.  If the rear 

trailer has multiple axles, Winkler’s approach (14) can be used to calculate the 

‘equivalent’ trailer wheelbase, shown as l on Figure 2, which is then used to define the 

position of VA.  Details of the equivalent wheelbase calculations can be found in (13). 

2.1  Performance Criteria 

In order to make a formal assessment of a path-tracking controller, a set of performance 

criteria was defined: 

(i) The ‘path offset’ is the distance of the equivalent axle on the rear trailer from the 

specified path.  Minimising ‘path offset’ was the primary control objective.  RMS 

and maximum values were evaluated. 

(ii) The ‘steer integral’ is the integral of absolute steer angle with respect to distance, 

�|δ| ds.  This is a measure of steer effort. 

(iii) The ‘RMS steer rate’.  This has a limit based on the steering actuation hardware 

of the vehicle. 
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(iv) The ‘swept path’ of the vehicle.  The area the vehicle sweeps through as it 

manoeuvres the path was recorded and the width of this area relative to the path 

was calculated.  RMS and maximum values were evaluated. 

2.2  Vehicle Modelling 

In order to develop a reversing controller, it was necessary to derive a mathematical 

model of a multiply-articulated heavy vehicle.  A general dynamic vehicle model was 

implemented in MATLAB®.  This modelled lateral tyre forces and inertial forces on the 

vehicle and was used to calculate yaw-sideslip motion.  This model was an extension of 

the standard bicycle model (15) with an arbitrary number of trailers (n), each having 

any number of axles.  By appropriate choice of parameters, this general model can be 

used to model the low-speed behaviour of essentially any multiply-articulated vehicle.  

A schematic diagram of the model is shown in Figure 2 for the two-trailer case (n = 2). 

Assumptions 

The following was assumed when deriving the model: 

(i) The longitudinal velocity of the tractor unit is constant 

(ii) Yaw and sideslip motion only included; the effects of vehicle roll and pitch are 

neglected 

(iii) The effects of lateral load transfer are neglected 

(iv) The front axle of the tractor unit has perfect Ackerman geometry 

(v) No sensor noise or other sensor imperfections 

(vi) No saturation or rate limits 
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(vii) Each axle can be modelled by a single wheel, whose lateral tyre forces are 

calculated using an appropriate tyre model. 

Tyre Modelling 

A nonlinear tyre model (16) suitable for truck tyres (from (17)) was used to calculate 

the lateral tyre forces.  For a given slip angle,	�, the lateral tyre force (F ) can be 

calculated: 

F

μZ
=

���
��C	

μ
α – 

C	  2

3μ2
|α|α+

C	  3

27μ3
α3

sign
α�
 

|α|< 3μ

C	  

 

(1) 

C	 = C1 + C2Z  (2) 

Here, Z is the vertical load at the wheel; C1	and C2 are tyre model coefficients and μ is the 

coefficient of friction between the tyre and the road. 

The vertical tyre loads were calculated using static analyses of the vehicles.  For a trailer 

with multiple axles, it was assumed that all tyres in the axle group carried equal vertical 

loads.  The tyre parameters are shown in Table 1 (as used in (18)). 

Vehicle Model Derivation 

For the entire vehicle, the state vector, z, was defined as: 

 z = v1 Ω1 Γj Γ�� �� j����T, 	z�  =	v� 1 Ω� 1 Γ� j Γ� j�T	, 	j = 1, 2…n (3) 

Here, v1 and Ω1 are the lateral velocity and yaw rate at the centre of gravity of the 

tractor unit, and Γj is the articulation angle between the jth and j+1th vehicle units, see 

Figure 2. 
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For each vehicle unit, velocities and accelerations at the centre of gravity can be 

calculated in terms of the state vector using kinematics.  The slip angles for each wheel 

can then be calculated, and the lateral tyre forces can be calculated from the slip angles 

using Equation (1).  The resulting equations of motion for the vehicle are shown in the 

Appendix. 

The equations of motion can be rearranged into the following form: 

fm
δ, z, z� � = 0 

� 
 �
(4) 

z�  = fd
δ, z� (5) 

Here, δ is the front axle steer angle of the tractor unit and f
m

 is a nonlinear function 

containing all equations of motion from (A.1) to (A.5) from the Appendix and equating 

all articulation angle rates from the state vector and its derivative.  f
d
 is the rearranged 

nonlinear function to be used with an Ordinary Differential Equation (ODE) solver. 

Vehicle parameters for common heavy vehicle units are shown in Table 1 and Figure 2.  

Geometries, masses and inertias were obtained from previous research (18, 19) and 

measured from the Cambridge Vehicle Dynamics Consortium’s test vehicles (20). 
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Table 1: Vehicle and tyre model parameters 

Parameter 

Tract

or 

Denby  

‘Extra’ 

B-trailer 

CVDC 

‘Modula

r 

Vehicle’ 

B-trailer 

Semitrailer 

Definition 

 S
y

m
b

o
l 

 U
n

it 

Front axle or hitch to centre of 

gravity 

a m 1.13 5.00 7 6.00 

First rear axle to centre of 

gravity 

b m 2.58 2.90 2.32 0.420 

First rear axle to hitch c m -0.16 0.64 0.81 4.8 

Number of axles na  2 2 2 3 

Axle spacing e m - 1.80 1.46 1.30 

Front overhang fo m 1.40 1.80 1.94 1.50 

Rear overhang ro m 1.25 2.50 2.33 5.00 

Vehicle width (excluding 

mirrors) 

d m 2.40 2.50 2.5 2.38 

Mass m kg 6988 10500 15000 8800 

Yaw Inertia I kgm2 

4214

7 

156860 156860 156860 
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Tyre Cornering Coefficient C1 1/rad -8.78 -6.28 

Tyre Curvature Coefficient C2 1/Nrad 

494e-

5 

3.4e-6 

Coefficient of friction μ - 0.8 

Equivalent wheelbase l m - - - 7.85 

 

Linearisation 

The vehicle model was linearised for the straight line case (all states set to zero) using 

Jacobian linearisation (21).  Equation (4) can be expressed in linear form for small 

variations from the equilibrium position: 

�M�z�+�N�z+�H�δ = 0	 (6) 

where	�M� = 
∂fm

∂z� , �N�	=	 ∂fm

∂z
 and �H�	=	 ∂fm

∂δ
 

2.3  Path-Tracking Controller 

A state feedback controller was used for the path-tracking control problem.  It included 

feedback control on articulation angles, lateral offset and heading error at the 

equivalent axle on the rear trailer (i.e. point VA).  Some features of the controller are 

illustrated in Figure 3 for a two-trailer vehicle.  

The steer angle was calculated as follows: 

 δ = δe+Kya	ya
+Kθa

�θp– θt�+�KΓj
�Γej

	– Γj�
n

j =1

	 (7) 
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Here, 	y
a
 is the lateral offset from the equivalent axle to the path.  θt is the heading of the 

rear trailer and θp is the heading of the path.  Γej
 is the jth equilibrium articulation angle 

and δe is the equilibrium steer angle which are all calculated from the steady-state value 

corresponding to the current curvature of the path.  Kya	, Kθa
 and KΓj

 are the controller 

gains corresponding to the axle offset, heading error, and jth articulation angle 

respectively. 

When articulated vehicles travel in reverse, it takes some distance for the steering at the 

front of the vehicle to take effect at the rear trailer.  A ‘look-ahead’ approach was used to 

compensate for this delay.  Instead of calculating the path curvature at the point where 

the axle offset is measured, PA on Figure 3, the curvature was calculated at point PL a 

certain ‘look-ahead’ distance (LLA) along the path.  This curvature was then used to 

calculate the equilibrium steer angle and articulation angles used in the controller.  The 

‘look-ahead’ distance allows some distance for the vehicle to reposition if the path 

curvature is changing, but it makes no difference to the steady-state performance. 

For an n-trailer vehicle, the state feedback controller has n+3 parameters to tune: lateral 

offset gain (Kya	), heading offset gain (Kθa
), n articulation angle gains (KΓj

�, and the ‘look-

ahead’ distance (LLA).  The control loop in Figure 4 shows the measurement of the 

lateral and heading offsets at the equivalent axle of the rear trailer and the calculation of 

the equilibrium articulation angles corresponding to the path curvature.  Proportional 

gains are applied to all errors (lateral offset, heading offset and articulation angle error) 

and added to the corresponding equilibrium steer angle.   
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2.4  Controller Tuning 

Linear Analysis 

Linear control analysis was performed to assist with controller gain tuning.  For 

simplicity, this analysis was carried out for small perturbations from a straight line, 

which was sufficient to capture the closed-loop stability characteristics of the system. 

In order to represent the position of the vehicle in linear form, two observer states were 

added to the linear vehicle model; the lateral position of the tractor unit CoG (	y
1
)	and 

the heading of the tractor unit (θ1).  These additional states were calculated as follows: 

θ� 1 = Ω1           

 

(8) 

 
y�

1
	=	v1+u1θ1           

 

(9) 

 

where u1 is the longitudinal speed of the tractor unit. 

Equation (6) can be extended to include the additional states: 

�Ma
�z�a + �Na

�za + �Ha
�δ = 0           

 

(10) 

 

Here, za	is the state vector with two additional states: za= zT y
1

θ1�T.		�Ma� and �Na� 
are modified versions of �M				� and �N				� which implement Equations (8) and (9).  �Ha

� is 

simply �H 0 0�T as the new states are not directly dependent on tractor unit steer 

angle. 

The state feedback controller (Equation (7)) was linearised into the form: 

 δ =	[K ]za           (11) 

Where [K ] is a gain matrix: 
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�K�=

��
��
��
��
��
��

0

0	–Kya

h2+…+hn+l�	–K1	–Kθa

⋮	–Kya
l	–Kn	–Kθa

0

⋮

0

Kya	–Kya

b1+c1+h2+…+hn+l�	–Kθa��

��
��
��
��
��

T

  

(12) 

 

Here, b1 and c1 are centre of gravity to rear axle and rear axle to hitch point distances on 

the tractor unit (as shown on Figure 2) and hi is the hitch to hitch distance of the ith 

vehicle unit. 

For the linearised model, the closed-loop system can be written as: 

z�a = �A�za          (13) 

where 

�A� =	– �Ma
�-1
�Na

� + �Ha
��K��	 (14) 

The eigenvalues of �A� can be used to determine the stability characteristics of the 

closed-loop response.  The damping ratio for an eigenvalue is defined as (21): 

 ζ =	–Re!eig
�A��"|eig
�A��| 	          for          	Re!eig
�A��"	≤	0 (15) 

For a general n-trailer vehicle, the number of eigenvalues will equal the number of 

model states (2n+4).  The eigenvalue with the lowest damping ratio was chosen for 

analysis because this will dominate the system response characteristics. 
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Controller Gain Selection 

An LQR (Linear Quadratic Regulator) approach (22) has been used before to tune 

similar controllers (23, 24).  This is an optimal control technique which calculates the 

control input sequence to minimise a given cost function.  For the path-tracking 

controller, the cost function was defined as: 

 J = # �wy
a

2+δ
2�∞

0

dt	  (16) 

where w represents a weighting which can be used to tune how much emphasis is 

placed on the path offset of the equivalent axle on the rear trailer versus the steering 

effort. 

The linear equivalent of Equation (16) was derived and a Ricatti equation was formed 

for the quadratic optimisation problem and solved numerically in MATLAB® (this was 

done offline).  The optimum control action was calculated in terms of the state vector 

and expressed as gain matrix [K]. 

From the LQR gain matrix, the equivalent gains for the state feedback controller 

(Kya 
, Kθa

, etc.) were calculated analytically using the vehicle geometry.  This was done 

by defining a relationship between the equivalent axle on the rear trailer and the tractor 

unit for the heading and lateral offsets.  The relationship was evaluated in matrix form: 

$% =	 �'�$(  (17) 

Here, �'� is a co-ordinate transformation matrix, purely based on the vehicle geometry, 

which converts the location states on the tractor unit to those on the last trailer.  $( is 

the state vector with two additional states: $( = 	 �$) *+ ,-�) 
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This meant the equivalent gains could be calculated simply by multiplying the gain 

matrix generated from the LQR calculation by the co-ordinate transformation matrix. 

�./0� = �.��'�  (18) 

where �./0� = �0 0 234 … 236 0 … 0 27 28� 
Another parameter which required tuning was the ‘look-ahead’ distance (LLA) for the 

state feedback controller.  The ‘look-ahead’ distance was calculated using linear analysis 

for the articulation angle control loop (with desired last articulation angle as the input 

and last articulation angle as the output).  The closed-loop system was defined with the 

articulation angle gains (KΓj
) calculated for the state feedback controller for a specified 

weighting (w).  The closed-loop frequency response was calculated and the phase was 

divided by the frequency to give a time between the demanded articulation angle and 

the actual articulation angle.  For a conventional stable system, this time would be 

negative, indicating a time delay. 

The maximum delay (most negative time) was selected to calculate the ‘look-ahead’ 

distance parameter.  During the simulation, the ‘look-ahead’ distance was computed 

online by multiplying the maximum time delay by the trailer speed.  This was necessary 

because the tractor unit has constant longitudinal speed but the longitudinal speed of 

the rear trailer varies depending on the manoeuvre. 

The controller gains are shown in Table 2 for an LQR weighting of 5 for a Tractor-

Semitrailer, B-double and B-triple.  These gains correspond to the vehicle model 

parameters in Table 1. 

Table 2: Controller gains used in implementation on test vehicles 

Weighting (w) Kθa
 Kya	 KΓ1

 KΓ2
 KΓ3

 LLA 
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Tractor-Semitrailer 11.2 2.24 3.90 - - 1.09 

B-double -21.0 -2.24 4.33 -17.1 - 2.77 

B-triple -31.0 2.24 4.75 -22.5 50.0 5.82 

 

2.5  Closed-Loop Stability of B-trains 

The linear analysis and the LQR tuning approach were used to develop linear models of 

the closed-loop system for B-train vehicles with various numbers of trailers, starting 

with the Tractor-Semitrailer, the B-double and so on.  The LQR gains for each vehicle 

combination were computed and the lowest damping ratio of the closed loop poles was 

calculated for weightings, w, ranging from 0.1 to 10. 

Figure 5 shows the damping ratio against controller weighting (w) for B-trains of up to 

six trailers.  This shows that it is not possible to stably control a B-train with more than 

six trailers using this method.  It also shows the damping ratio decreases as the number 

of vehicle units increases, as expected. 

3  Controller Implementation 

The path-tracking controller was implemented on a Tractor-Semitrailer, a B-double and 

a B-triple, shown in Figure 1.  Most of the hardware was mounted on the tractor unit 

and the rear trailer (tanker), which were used in all three vehicle combinations.  In this 

section, the hardware is explained in the context of the B-double test vehicle. 
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3.1  Test Equipment 

Figure 6 shows a schematic of the test hardware including the sensors, actuators and 

computers on the vehicle, along with their approximate locations and connections.  A 

CAN bus (Controller Area Network) using the ISO 11898 protocol was used to 

communicate digital signals between sensors on each vehicle unit and the ‘global 

controller’ (shown as the ‘xPC’ block).  The global controller was operated using a 

laptop, connected via Ethernet. 

A string potentiometer was used to measure the steer angle of the tractor unit’s front 

wheels.  The sensor was mounted to the underside of the chassis and the string was 

attached to the front left steering radius arm.  The articulation angles were measured 

using specially modified kingpins, which have angle sensors mounted on them, made by 

V.S.E. (25, 26).  All analogue signals were low-pass filtered and digitised, using 

analogue-to-digital converters (ADCs), and transmitted over the CAN bus to the 

controller.  The zero positions of the string pot and articulation angle sensors were 

updated at the start of each test session to remove small signal offsets due to 

temperature and other drift.  In the case of the B-triple, one further articulation angle 

sensor was used at the third hitch point. 

A vehicle-based Oxford Technical Solutions (OxTS) RT3022 (GNSS and inertial sensor) 

(27) was used, with a base station and dual antennas, to measure position.  The RT3022 

was placed on the roof of the second trailer (tanker).  The RT3022 signals were 

transmitted to the global controller using a CAN bus.  The offset between the heading of 

the RT3022 and the heading of the trailer was measured at the start of each test session 

by driving in a straight line and determining the difference between the heading 

calculated from the position and the measured heading. 
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The quoted accuracies for the RT3022 in the configuration used in these experiments 

are 200mm for position and 0.1° for heading (27).  The measured accuracies were 

around 40mm for latitude and longitude and 0.08° for heading.  Line-tracking cameras 

were used to confirm the use of the RT3022 for assessing controller performance (see 

(13) for more details). 

An Anthony Best Dynamics SR30 steering robot (28) was attached to the steering 

column (in place of the steering wheel) and used to actuate the demanded hand wheel 

angle.  The robot was set to follow an external demand from the global controller via the 

CAN bus.  The path-tracking controller presented in Section 2.3 was used to determine 

the front axle steer angle of the tractor unit, required to track a path.  The relationship 

between the hand wheel and the road wheel was measured, stored in a lookup table, 

and used to generate the hand wheel angle from the desired front axle steer angle. 

3.2  Global Controller 

The control algorithms were implemented in real-time using the MATLAB® ‘xPC target’ 

toolbox.  The global controller consisted of an ‘xPC unit’ which was a 500MHz PC with 

the hard drive removed, set up to boot from a floppy disc drive.  It had Softing AC2-PCI 

dual CAN bus cards in the PCI slots. 

The global controller code was written in the MATLAB® block diagram code 

environment, Simulink, which could then be automatically compiled and downloaded 

onto the xPC unit.  This compilation was done using the Simulink Coder (formerly 

known as ‘Real Time Workshop’) to generate the C code and using the Microsoft Visual 

Studio C compiler to create an executable file. 
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A block diagram highlighting the main features of the global controller software is 

shown in Figure 7.  The global position and heading of the equivalent axle on the rear 

trailer were calculated using the RT3022 measurements and its known location on the 

vehicle.  At the start of each run, a path was set up to start in alignment with the 

position and heading of the equivalent axle on the rear trailer.  The offsets from the path 

were then calculated for the equivalent axle and fed into the controller, along with 

articulation angles.  The desired front axle steer angle was saturated with the known 

tractor steer limits and rate limited according to the vehicle speed, to prevent any dry 

steering when the vehicle was stationary.  An overall rate limit was also imposed to 

prevent the demand angle rate exceeding the steering robot’s range.  The demand was 

converted to hand wheel angle and sent to the steering robot.   

All measured and computed quantities were logged.  The code ran at a frequency of 

100Hz, which was compatible with all the hardware used and was sufficient to meet the 

bandwidth requirements of the controller.   

The controller presented in Section 2 requires knowledge of the steady-state cornering 

equilibrium states (including front axle steer angle, δe, and articulation angles, Γej
).  

These were measured at the start of each testing day.  It was thought that using a set of 

equilibrium values measured from the vehicle would give better performance than 

simulated values, particularly in steady-state cornering (13).  The reason for measuring 

the equilibrium states at the start of each day was due to the nonlinear tyre scrubbing 

behaviours of multiple-axle trailers.  Nonlinear tyre properties can be affected by 

changes in temperature, humidity and other features of the surface that can vary from 

day to day (16).  A test procedure was created to efficiently obtain the vehicle 
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equilibrium states by setting the steering robot to various steer angles and measuring 

the subsequent vehicle motion. 

4  Field Tests 

Lane change and roundabout paths, shown in Figure 8 and Figure 9 respectively, were 

used as desired paths for all three test vehicles.  The roundabout path had a radius of 

10m and both paths had continuous second derivative of curvature.  The paths were 

designed to ensure the vehicles could negotiate the paths without violating the steer 

rate limits (see (13) for details). 

An intermediate value of the LQR weighting (‘w’ in Equation 14) of 5 was used to tune 

the controller gains for all vehicles, shown in Table 2 (see (13) for a detailed discussion 

of the effect of this parameter).  Three repeat tests were performed for each test 

configuration (path type and vehicle combination).  The results were found to be 

repeatable apart from small random errors (see (13)) and so they were averaged with 

respect to distance. 

All tests were conducted with the tractor unit travelling at -1m/s, starting from 

stationary.  The effects of varying tractor unit speed were analysed and found to be 

negligible.  It was possible to stop the vehicles part-way through a manoeuvre and 

continue without issue. 

4.1  Experimental Results 

The measured equivalent axle positions of all three test vehicles are shown in Figure 8 

and Figure 9 for the lane change and roundabout manoeuvres respectively.  This shows 
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the B-triple has a small, but noticable devation from the desired path, while the B-

double and Tractor-Semitrailer track the path almost exactly. 

The experimental results for all three vehicles are shown in Figure 10 for the lane 

change manoeuvre for (a) offsets of the equivalent axle on the rear trailer, (b) steer 

angles, (c) heading offsets of the equivalent axle, and (d)-(f) articulation angles.  The last 

(nth) articulation angles (Figure 10 (d)) are very similar for all vehicles, as expected.  

The penultimate (n-1th) articulation angles (Figure 10 (e)) show similar trends between 

the B-double and B-triple vehicles.   

The offsets of the equivalent axle on the rear trailer increase with the number of trailers 

(n) but still show good performance in all cases: less than 350mm offset for the B-triple, 

120mm for the B-double and 60mm for the Tractor-Semitrailer.  The heading offsets 

also increase with the number of trailers (n) but they are all less than 2 degrees in 

magnitude.  The steer angles are much larger for the B-triple than the Tractor-

Semitrailer and are closely related to the first articulation angle of each vehicle.  The 

Tractor-Semitrailer settles out of the manoeuvre more quickly than the B-triple, 

because it is much shorter and it takes much less time to reach steady state.  

Results for the roundabout manoeuvre are shown in Figure 11 and show similar trends 

to the lane change manoeuvre with slightly larger offsets (up to 400mm for the B-

triple).  There is strong agreement between all vehicles for the last and penultimate 

articulation angles for this manoeuvre (Figure 11 (d) and (e)). 

A significant feature of these experimental results is the presence of small-amplitude 

oscillations (seen in the equivalent axle offsets and steer angles).  The oscillations had 

an amplitude of approximately 50-200mm, which is less than a truck tyre width 
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(approximately 400mm).  The amplitude of the oscillations increased with the number 

of trailers.  All closed-loop experimental results from this research showed this 

phenomenon, which is particularly noticeable in steady-state parts of manoeuvres.  A 

thorough investigation into the root cause of these oscillations was conducted in (13).  It 

was found that a closed-loop system pole was being driven by lateral tyre force 

disturbances (probably caused by cross-slope on the rough test track surface), with 

propagation delays between axles.  With some retuning of controller gains, it was 

possible to reduce the size of the oscillations slightly (for more details, see (13)). 

4.2  Performance Criteria 

Table 3: Summary of performance criteria metrics for all three test vehicles when state feedback controllers 

are implemented on lane change and roundabout manoeuvres.  TST = Tractor-Semitrailer; BD = B-double; BT = 

B-triple. 

Manoeuvre Roundabout Lane Change 

Weighting (w) 5 5 

Vehicle (n) TST (1) BD (2) BT (3) TST (1) BD (2) BT (3) 

Axle offset RMS [m] 0.027 0.050 0.135 0.020  0.034 0.128 

Axle offset max [m] 0.085 0.137 0.389 0.059  0.112 0.321 

Steer integral [radm] 19.71 18.85 22.24 5.66 8.75 23.80 

RMS steer rate [deg/m] 2.60 3.65 8.08 1.26 1.90 6.44 

Swept path RMS [m] 4.46 6.36 11.97 2.83 3.51 7.22 

Swept path max [m] 6.06 8.80 15.47 3.59 5.26 10.56 
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The experimental results for all three test vehicles on both paths, in terms of the 

performance criteria outlined in Section 2.2, are shown in Table 3.  These metrics were 

calculated individually for each run and then averaged for the three repeats, to avoid 

any biasing effect of averaging the time histories.  The performance metrics all show an 

increase with the number of trailers on both paths, as would be expected.  An exception 

is the steer integral for the Tractor-Semitrailer on the roundabout path, which is higher 

than the value for the B-double.  This is because the steady-state front axle steer angle is 

higher for this case, due to the smaller radius of the tractor unit.  This exception has no 

significance in terms of controller performance. 

In most cases, the performance metrics worsen slightly when comparing the B-double 

to the Tractor-Semitrailer.  There is, however, a significant reduction in performance 

when the B-triple combination is evaluated.  The RMS equivalent axle offsets of the B-

double are less than double those of the Tractor-Semitrailer.  The RMS equivalent axle 

offsets of the B-triple are a factor of approximately 3 to 4 worse than the B-double.  This 

is also seen on the RMS steer rate, which shows a 40-50% increase when comparing the 

Tractor-Semitrailer and B-double and a 120-240% increase when comparing the B-

double and B-triple. 

In all cases, the path-tracking performance is considered to be sufficiently accurate as to 

be applicable in a practical implementation of this technology. 

5  Conclusions 

(i) A general path-tracking controller has been implemented on full-size HGVs with 

one, two and three trailers. 
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(ii) The path-tracking controller presented in this paper can be used to control the 

path of the rear end of an articulated vehicle with one, two or three trailers with 

a path error of less than 400mm in all cases.  This is thought to be sufficiently 

accurate for practical implementation. 

(iii) All aspects of path-tracking controller performance worsen as the number of 

trailers increases.  This is most significant for the B-triple (three trailers). 

(iv) All experimental results show the presence of small steady-state oscillations 

(less than one tyre width), which increase with the number of trailers.  These are 

due to a closed-loop system pole being driven by vehicle disturbances. 
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6  Figures 

Figure 1: The test vehicles: (a) Tractor-Semitrailer, (b) B-double and (c) B-triple.  The Denby ‘Extra’ Eco-Link B-

trailer was loaned by Denby transport.  All other vehicle units are part of the CVDC test vehicle fleet.  Distances 

shown between the front axle and the hitch point for the tractor unit, hitch to hitch for B-trailers and hitch to 

equivalent rear axle for the tanker. 

 

Figure 2: Vehicle model schematic, shown here for a two-trailer vehicle.  (Definitions of dimensions in Table 1 

and Nomenclature section) 

 

Figure 3: Vehicle diagram illustrating state feedback controller, for a two-trailer vehicle 

 

Figure 4: Control loop for state feedback controller shown for the general n-trailer case.  Here, κ denotes the 

curvature of the path. 

 

Figure 5: Damping ratio variation with weighting, w, for B-trains with n trailers when path tracking controller is 

used (tuned using LQR) 

 

Figure 6: Diagram of test equipment for B-double test vehicle (vehicles separated for clarity) 

 

Figure 7: Block diagram representing global controller software code.  The implementation of the ‘controller’ is 

the path-tracking state feedback controller. 

 

Figure 8: Lane change manoeuvre showing the measured positions of the equivalent axle of the rear trailer for 

all three test vehicles, when state feedback control is used.  On this plot, the width of the path is 1m. 

 

Figure 9: Roundabout manoeuvre showing the measured positions of the equivalent axle of the rear trailer for 

all three test vehicles, when state feedback control is used.  On this plot, the width of the path is 1m. 

 

Figure 10: Comparison of Tractor-Semitrailer (TST), B-double (BD) and B-triple (BT) vehicle testing 

measurements for state feedback controller on gentle lane change path for a weighting (w) of 5, showing (a) 

offsets of the equivalent axle on the rear trailer, (b) front axle steer angle, (c) heading offsets of the equivalent 

axle, (d) last articulation angle, (e) penultimate articulation angle and (f) first articulation angle (for the B-

triple). 

 

Figure 11: Comparison of Tractor-Semitrailer (TST), B-double (BD) and B-triple (BT) vehicle testing 

measurements for state feedback controller on roundabout path for a weighting (w) of 5, showing (a) offsets 

of the equivalent axle on the rear trailer, (b) front axle steer angle, (c) heading offsets of the equivalent axle, 

(d) last articulation angle, (e) penultimate articulation angle and (f) first articulation angle (for the B-triple). 

 

Figure A1: General vehicle model showing (a) tractor unit and (b) a general trailer – free body diagrams 
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8  Nomenclature 

a Distance from CoG to front axle of tractor unit or front hitch point of trailer 

[m] 

b Distance from CoG to rear axle of tractor unit or first axle of trailer [m] 

d Width of vehicle unit [m] 

c Distance from rear axle of tractor unit or first axle of trailer to rear hitch point 

[m] 

e Distance between adjacent axles on trailers [m] 

fd Ordinary differential equation function for dynamic vehicle model 

fm Equations of motion function for dynamic vehicle model 

fo Distance from front axle or front hitch point to front of vehicle unit [m] 

h Distance from leading hitch point to rear hitch point on trailer [m] 
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l Equivalent wheelbase of vehicle unit [m] 

m Mass of vehicle unit [kg] 

n Number of trailers 

na Number of axles on vehicle unit 

ro Distance from rear axle of tractor unit or first axle of trailer to rear of vehicle 

unit[m] 

s Distance along the path [m] 

u Longitudinal velocity of vehicle unit [m/s] 

v Lateral velocity of vehicle unit at the rear axle for the kinematic model or at 

the CoG for the dynamic model [m/s] 

w Cost function weighting 

ya Lateral offset of the equivalent axle of the rear trailer to the desired path [m] 

z State vector of vehicle model 

C1 Tyre cornering coefficient [rad-1] 

C2 Tyre curvature coefficient [N-1rad-1] 

F Lateral tyre force [N] 

I Yaw moment of inertia of vehicle unit, about the CoG [kgm2] 

J Cost function for controller tuning 
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K Controller gain 

LLA Look-ahead distance for state feedback controller [m] 

PA Equivalent axle of rear trailer point on path 

PL Look-ahead point on path 

VA Equivalent axle of rear trailer 

X Longitudinal hitch force at the rear hitch of the vehicle unit [N] 

Y Lateral hitch force at the rear hitch of the vehicle unit [N] 

Z Vertical tyre force [N] 

α Tyre sideslip angle [rad] 

δ Tractor unit front axle steer angle [rad] 

ζ Damping ratio of closed-loop linear system 

θ Heading angle of vehicle unit [rad] 

θp Heading angle of path [rad] 

μ Coefficient of friction between the tyre and the road surface 

Γ Articulation angle [rad] 

Ω Yaw angular velocity [rad/s] 

�9� Closed-loop system matrix 
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�:� Linear vehicle model equations of motion matrix 

�.� Linear gain matrix 

�;� Linear vehicle model equations of motion matrix 

�<� Linear vehicle model equations of motion matrix 

Subscripts and Superscripts 

�   First derivative with respect to time 

�   Second derivative with respect to time 

+  The addition of observer states in the vehicle model 

=  Equilibrium value 

>  Front axle 

?  Corresponding to ith vehicle unit 

@   Corresponding to articulation joint between jth and j+1th vehicle unit 

A  Corresponding to the last articulation joint 

B  Rear axle 

-C  Axle of ith trailer 

7  Corresponding to the lateral path error 

D  Corresponding to the articulation angle error 
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9  Appendix: Vehicle Model Equations of Motion 

A tractor unit with n trailers has n+1 units.  Index ‘i’ is used to denote the unit number, 

where i = 1 is used for the tractor unit, i = 2 for the first trailer etc. 

From Figure A1(b), it can be seen that for all trailers (i = 2, 3,…, n+1), the moments of 

each trailer about the leading hitch point can be calculated from: 

IiΩ� i	–m
i

v� i + uiΩi�ai –Fti


ai + bi� + Yi
ai + bi + ci� = 0 (A.1) 

Here, Ii and mi are the yaw inertia and mass, ui, vi and Ωi are the longitudinal velocity, 

lateral velocity and yaw rate at the centre of mass and u� i, v� i and Ω� i are their derivatives.  

Fti
 are the lateral tyre forces.  ai, bi and ci are front axle to CoG, CoG to rear axle and rear 

axle to hitch distances, as shown in Figure 2 (l = an+1 + bn+1).  Yi is the lateral hitch force 

at the rear hitch of the ith vehicle unit.   

To enable moments of the vehicle unit ahead to be calculated, the coupling forces at the 

rear hitch point, perpendicular and parallel to each trailer are required: 

Yi-1 = �Yi	–m
i

v� i + uiΩi�	– Fti

�cos
Γi-1�	– �Xi + m
i

u� i	– viΩi�� sin
Γi-1� (A.2) 

Xi-1 = �Yi	–m
i

v� i + uiΩi�	– Fti

�sin
Γi-1� + �Xi + m
i

u� i	– viΩi�� cos
Γi-1� (A.3) 

where Xi is the longitudinal hitch force at the rear hitch of the ith vehicle unit. 

Balancing the lateral forces on the tractor unit: 

m1
v�1 + u1Ω1� + Ff cos
δ� + Fr	–Y1 = 0 (A.4) 

where Ff and Fr are the lateral tyre forces on the tractor unit front and rear axles. 

The moments of the tractor unit about its hitch point can also be calculated: 
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m1
v�1 + u1Ω1�
b1 + c1� + Ff cos
δ�
a1 + b1 + c1� + Frc1 + I1Ω� 1 = 0 (A.5) 

With the addition of calculations of the sideslip angles of the tyres and the lateral tyre 

force model (Equations 1 and 2), these equations are sufficient to calculate the motion 

of the vehicle in forward or reverse directions. 
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Figure 1: The test vehicles: (a) Tractor-Semitrailer, (b) B-double and (c) B-triple.  The Denby ‘Extra’ Eco-
Link B-trailer was loaned by Denby transport.  All other vehicle units are part of the CVDC test vehicle 

fleet.  Distances shown between the front axle and the hitch point for the tractor unit, hitch to hitch for B-

trailers and hitch to equivalent rear axle for the tanker.  
76x73mm (300 x 300 DPI)  
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Figure 2: Vehicle model schematic, shown here for a two-trailer vehicle.  (Definitions of dimensions in Table 
1 and Nomenclature section)  
297x146mm (150 x 150 DPI)  
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Figure 3: Vehicle diagram illustrating state feedback controller, for a two-trailer vehicle  
321x199mm (150 x 150 DPI)  

 

 

Page 35 of 44

http://mc.manuscriptcentral.com/jauto

Journal of Automobile Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4: Control loop for state feedback controller shown for the general n-trailer case.  Here, κ denotes the 
curvature of the path.  
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Figure 5: Damping ratio variation with weighting, w, for B-trains with n trailers when path tracking controller 
is used (tuned using LQR)  
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Figure 6: Diagram of test equipment for B-double test vehicle (vehicles separated for clarity)  
254x173mm (150 x 150 DPI)  

 

 

Page 38 of 44

http://mc.manuscriptcentral.com/jauto

Journal of Automobile Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 7: Block diagram representing global controller software code.  The implementation of the ‘controller’ 
is the path-tracking state feedback controller.  
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Figure 8: Lane change manoeuvre showing the measured positions of the equivalent axle of the rear trailer 
for all three test vehicles, when state feedback control is used.  On this plot, the width of the path is 1m.  

180x120mm (300 x 300 DPI)  
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Figure 9: Roundabout manoeuvre showing the measured positions of the equivalent axle of the rear trailer 
for all three test vehicles, when state feedback control is used.  On this plot, the width of the path is 1m.  
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Figure 10: Comparison of Tractor-Semitrailer (TST), B-double (BD) and B-triple (BT) vehicle testing 
measurements for state feedback controller on gentle lane change path for a weighting (w) of 5, showing 
(a) offsets of the equivalent axle on the rear trailer, (b) front axle steer angle, (c) heading offsets of the 

equivalent axle, (d) last articulation angle, (e) penultimate articulation angle and (f) first articulation angle 
(for the B-triple).  
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Figure 11: Comparison of Tractor-Semitrailer (TST), B-double (BD) and B-triple (BT) vehicle testing 
measurements for state feedback controller on roundabout path for a weighting (w) of 5, showing (a) offsets 
of the equivalent axle on the rear trailer, (b) front axle steer angle, (c) heading offsets of the equivalent 

axle, (d) last articulation angle, (e) penultimate articulation angle and (f) first articulation angle (for the B-
triple).  
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Figure A1: General vehicle model showing free body diagrams: (a) tractor unit and (b) a general trailer  
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