
Balanced Allocations with Incomplete Information:
The Power of Two Queries
Dimitrios Los #

Department of Computer Science & Technology, University of Cambridge, UK

Thomas Sauerwald #

Department of Computer Science & Technology, University of Cambridge, UK

Abstract
We consider the allocation of m balls into n bins with incomplete information. In the classical
Two-Choice process a ball first queries the load of two randomly chosen bins and is then placed in
the least loaded bin. In our setting, each ball also samples two random bins but can only estimate a
bin’s load by sending binary queries of the form “Is the load at least the median?” or “Is the load at
least 100?”.

For the lightly loaded case m = O(n), Feldheim and Gurel-Gurevich (2021) showed that with
one query it is possible to achieve a maximum load of O(

√
log n/ log log n), and they also pose the

question whether a maximum load of m/n + O(
√

log n/ log log n) is possible for any m = Ω(n). In
this work, we resolve this open problem by proving a lower bound of m/n + Ω(

√
log n) for a fixed

m = Θ(n
√

log n), and a lower bound of m/n + Ω(log n/ log log n) for some m depending on the used
strategy.

We complement this negative result by proving a positive result for multiple queries. In particular,
we show that with only two binary queries per chosen bin, there is an oblivious strategy which ensures
a maximum load of m/n + O(

√
log n) for any m ≥ 1. Further, for any number of k = O(log log n)

binary queries, the upper bound on the maximum load improves to m/n + O(k(log n)1/k) for any
m ≥ 1.

This result for k queries has several interesting consequences: (i) it implies new bounds for the
(1 + β)-process introduced by Peres, Talwar and Wieder (2015), (ii) it leads to new bounds for the
graphical balanced allocation process on dense expander graphs, and (iii) it recovers and generalizes
the bound of m/n + O(log log n) on the maximum load achieved by the Two-Choice process,
including the heavily loaded case m = Ω(n) which was derived in previous works by Berenbrink et
al. (2006) as well as Talwar and Wieder (2014).

One novel aspect of our proofs is the use of multiple super-exponential potential functions, which
might be of use in future work.

2012 ACM Subject Classification Mathematics of computing → Probability and statistics; Mathem-
atics of computing → Discrete mathematics; Theory of computation → Randomness, geometry and
discrete structures; Theory of computation → Design and analysis of algorithms

Keywords and phrases power-of-two-choices, balanced allocations, potential functions, thinning

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.103

Related Version Full Version: https://arxiv.org/abs/2107.03916

Funding Thomas Sauerwald: The author was supported by the ERC grant “Dynamic March”. Part
of this work was done while visiting Hasso-Plattner Institute, Potsdam, Germany.

1 Introduction

We study balls-and-bins processes where the goal is to allocate m balls (jobs) sequentially
into n bins (servers). The balls-and-bins framework a.k.a. balanced allocations [5] is a very
popular and simple framework for various resource allocation and storage problems such as

© Dimitrios Los and Thomas Sauerwald;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 103; pp. 103:1–103:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dimitrios.los@cl.cam.ac.uk
mailto:thomas.sauerwald@cl.cam.ac.uk
https://orcid.org/0000-0002-0882-283X
https://doi.org/10.4230/LIPIcs.ITCS.2022.103
https://arxiv.org/abs/2107.03916
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

103:2 Balanced Allocations with Incomplete Information: The Power of Two Queries

load balancing, scheduling or hashing (see surveys [27, 34] for more details). In most of these
settings, the goal is to find a simple allocation strategy that results in an allocation that is
as balanced as possible.

It is a classical result that if each ball is placed in a random bin chosen independently
and uniformly (called One-Choice), then the maximum load is Θ(log n/ log log n) w.h.p.1
for m = n, and m/n + Θ(

√
(m/n) log n) w.h.p. for m ≫ n. Azar et al. [5] (and implicitly

Karp et al. [21]) proved that if each ball is placed in the lesser loaded of two randomly
chosen bins, then the maximum load drops to log2 log n + O(1) w.h.p., if m = n. This
dramatic improvement of Two-Choice is widely known as “power of two choices”, and
similar ideas have been applied to other problems including routing, hashing and randomized
rounding [27].

While for m = n a wide range of different proof techniques have been employed, the heavily
loaded case m ≫ n turns out to be much more challenging. In a seminal paper [9], Berenbrink
et al. proved a maximum load of m/n + log2 log n + O(1) w.h.p. using a sophisticated Markov
chain analysis. A simpler and more self-contained proof was recently found by Talwar and
Wieder [32], giving a slightly weaker upper bound of m/n + log2 log n + O(log log log n) for
the maximum load and at the cost of a larger error probability.

In light of the dramatic improvement of Two-Choice (or d-Choice) over One-Choice,
it is important to understand the robustness of these processes. For example, in a concur-
rent environment, information about the load of a bin might quickly become outdated or
communication with bins might be restricted. Also, acquiring always d ≥ 2 uncorrelated
choices might be costly in practice. Motivated by this, Peres et al. [28] introduced the
(1 + β)-process, in which two choices are available with probability β, and otherwise only one.
Thus, the (1 + β)-process interpolates nicely between Two-Choice and One-Choice, and
surprisingly, a bound on the gap between maximum and average load of O(log n/β) w.h.p.
was shown, which also holds in the heavily loaded case where m = Ω(n). The (1 + β)-process
has been also connected to other processes, including population protocols [2], balls-and-bins
with weights [31, 32] and, most notably, graphical balanced allocation [22, 28, 3, 6]. In this
graphical model, bins correspond to vertices of a graph, and for each ball we sample an edge
uniformly at random and place the ball in the lesser loaded bin of the two endpoints.

Our Model. In this work, we will investigate the following model. At each step, a ball is
allowed to sample two random bins chosen independently and uniformly, however, the load
comparison between the two bins will be performed under incomplete information. This may
capture scenarios in which it is costly to communicate or maintain the exact load of a bin.

Specifically, we assume that each ball is allowed to send up to k binary queries to each
of the two bins, inquiring about their current load. These queries can either be about the
absolute load (i.e., is the load at least 100?), which we call threshold processes, or about the
relative load (i.e., is the load at least the median?), which we call quantile processes.

We will distinguish between oblivious and adaptive allocation strategies. For an adaptive
strategy, the queries may depend on the current load configuration (i.e., the full history
of the process), whereas in the oblivious setting, queries may depend only on the current
time-step.

Our Results. For the case of k = 1 query, Feldheim and Gurel-Gurevich [16] proved a
bound of O(

√
log n/ log log n) on the gap (between the maximum and average load) in the

lightly loaded case m = O(n). In the same work, the authors suggest that the same bound

1 In general, with high probability refers to probability of at least 1 − n−c for some constant c > 0.

D. Los and T. Sauerwald 103:3

might be also true in the heavily loaded case [16, Problem 1.3]. In this work, we disprove
this by showing a lower bound of Ω(

√
log n) on the gap for m = Θ(n

√
log n) (Theorem 4.4).

We also prove a lower bound of Ω(log n/ log log n) on the gap, which holds for at least
Ω(n log n/ log log n) of the time-steps in [1, n log2 n] (Corollary 4.2). These two lower bounds
hold even for the more general class of adaptive strategies.

It is natural to ask whether we can get an improved performance by allowing more, say
two queries per bin. We prove that this is indeed the case, establishing a “power of two
queries” result. Specifically, we show in Theorem 6.1 that for any k = O(log log n), there is
an allocation process with k uniform quantiles (i.e., queries only depend on n, but not on
the time t) that achieves for any m ≥ 1:

Pr
[

Gap(m) = O
(

k · (log n)1/k
)]

≥ 1 − n−3.

Comparing this for k = 2 to the lower bounds for k = 1, we indeed observe a “power
of two queries” effect. For k = Θ(log log n), the gap even becomes O(log log n), which
matches the Two-Choice result up to a multiplicative constant [9, 32]. Hence, for large
values of k, the process approximates Two-Choice, whereas for k = 1 it resembles the
(1 + β)-process. Indeed, the same upper bound of O(log n) follows from the analysis of the
(1 + β)-process (Theorem 5.2).

We also prove new upper bounds on the gap of the (1 + β) process with β close to 1 by
relating it to a relaxed quantile process (Theorem 7.1). We show that these in turn imply
new upper bounds on the graphical balanced allocation on dense expander graphs, making
progress towards Open Question 2 in [28] (Corollary 7.2).

Our Upper Bound Techniques. We use the following two techniques in our upper bounds:
1. For upper bounding the gap for k queries, where k ≥ 2, we use a series of k super-

exponential potential functions of the form:

Φ(s)
j :=

n∑
i=1

exp
(

α · (log n)j/k ·
(

x
(s)
i − s

n
− κ · j(log n)1/k

)+)
,

for 0 ≤ j < k and some constants α, κ > 0. Next, in the spirit of layered induction, we
show that when Φ(s)

j = O(n), then Φ(s)
j+1 drops in expectation when large. Ultimately, for

j = k − 1, we obtain the desired bound on the gap. Similar to the analysis in [32] for
Two-Choice, the base case of this induction follows by the (1 + β)-process for constant
β.

2. The techniques of [28] show that the drop in expectation implies that the expectation of
Φj is O(n). From this, by Markov’s inequality one can obtain that w.h.p. Φ(s)

j = poly(n).
However, in the layered induction we need that w.h.p. Φ(s)

j = O(n). To obtain the high
probability, we use a second instance Ψj of the potential function of the same form as
Φj , but with larger (constant) α̃ instead of α. Then conditioning on Ψ(s)

j = poly(n),
the change |Φ(s+1)

j − Φ(s)
j | is bounded and so we can apply a variant of the method of

bounded differences (Theorem 2.1).

Applications and Implications on other Models. A direct implementation of the k-quantile
protocol in practice requires to maintain some global information about the load configuration
(that is, the exact, or at least the approximate, values of the quantiles). If this can be achieved,
then the results of k-quantile for k ≥ 2 demonstrate that a sub-logarithmic gap is possible –
even with very limited local information about the individual bin loads.

ITCS 2022

103:4 Balanced Allocations with Incomplete Information: The Power of Two Queries

In addition, our study of the k-quantile process also leads to new results for some
previously studied allocation processes. We demonstrate that a (1 + β)-process for β close
to 1 is majorized by a (relaxed version of the) k-quantile process. For any β = 1 − o(1),
this leads to a sub-logarithmic bound on the gap, and if β = 1 − 1/ poly(n), we recover the
O(log log n) gap from the Two-Choice process. Secondly, we use a similar majorization
argument to analyze graphical balanced allocation, which has been studied in several works
on different graphs [28, 22, 3, 6]. Specifically, we prove for dense and strong expander graphs
(including random d-regular graphs for d = poly(n)) a gap of O(log log n). To the best of
our knowledge, these are the first sub-logarithmic gap bounds in the heavily loaded case for
the (1 + β)-process and graphical balanced allocation (apart from β = 1 or the graph being
a clique, both equivalent to Two-Choice).

Further Related Work. Our model for k = 1 is equivalent to the d-Thinning process for
d = 2, where for each ball, a random bin is “suggested” and based on the bin’s load, the ball
is either allocated there or it is allocated to a second bin chosen uniformly and independently.
Generalizing the results of [16] for d = 2, Feldheim and Li [18] also analyzed an extension of
2-Thinning, called d-Thinning. For m = O(n), they proved tight lower and upper bounds,
resulting into an achievable gap of (d + o(1)) · (d log n/ log log n)1/d. Iwama and Kawachi [19]
analyzed a special case of the threshold process for m = n and for k equally-spaced thresholds,
proving a gap of (k + O(1)) k+1

√
(k + 1) log n

log((k+1) log n) . Mitzenmacher [26, Section 5] coined
the term weak threshold process for the two threshold process in a queuing setting, where a
customer chooses two queues uniformly at random and enters the first one iff it is shorter
than T . This and previous work [14, 20, 35] analyze the case of a fixed threshold for queues
and they do not directly imply results for the heavily loaded case.

In another related work, Alon et al. [4] established for the case m = Θ(n) a trade-off
between the number of bits used for the representation of the load and the number of d bin
choices. This is a more restricted case of having a fixed number of non-adaptive queries. For
d = 2, Benjamini and Makarychev [7] obtained tight results for the gap, using a process very
similar to the threshold process, but considering the case m = Θ(n) only.

Czumaj and Stemann [13] investigated general allocation processes, in which the decision
whether to take a second (or further) sample depends on the load of the lightest sampled
bin. They obtained strong and tight guarantees, but they assume the full information model
and also m = O(n) (see [10] for some results for m ≥ n). Other processes with inaccurate
(or outdated) information about the load of a bin have been studied in an asynchronous
environment [1] or a batch-based allocation [8]. However, the obtained bounds on the gap
are only O(log n). Other protocols that study the communication between balls and bins in
more detail are [24, 23, 15, 30], but they assume that a ball can sample more than two bins.

After an earlier version of this paper was made available, Feldheim, Gurel-Gurevich and
Li [17] extended the lower bounds for 2-Thinning when m = O(n log2 n) and also provided
an adaptive thinning process that matches the Ω(log n/ log log n) lower bound proved in
this paper. Also, Los, Sauerwald and Sylvester [25] proved that Threshold(m/n) (or
equivalently 2-Thinning where the threshold is m/n) achieves w.h.p. a Θ(log n) gap.

Organization. In Section 2, we introduce our model more formally in addition to some
notation used in the analysis. In Section 4, we present our lower bounds on processes with
one query. In Section 5, we present the upper bound for the quantile process with one query.
In Section 6, we present a generalized upper bound for k ≥ 2 queries. Section 7 contains our
applications to (1 + β)-process and graphical balanced allocations. We close in Section 8 by

D. Los and T. Sauerwald 103:5

j1 j2

1 2

3 4

5 6

f4

f3

f2

f1

f0

j1 j2

1 2

3 4

5 6

f4

f3

f2

f1

f0

Figure 1 Example allocation using two 3-threshold processes (f1, f2, f3). (Left): The ball is
allocated in j2, since i1 = 2 and i2 = 3. (Right): For a different choice of thresholds, the process
may not be able to differentiate the two loaded bins, so the ball will be allocated at random.

summarizing our main results and pointing to some open problems. We also briefly present
some experimental results in Section 9. In Section 3, we formally relate the new quantile
(and threshold) processes to each other and to other processes studied before (see Figure 2
for an overview).

2 Notation, Definitions and Preliminaries

We sequentially allocate m balls (jobs) into n bins (servers). The load vector at step t is x(t) =
(x(t)

1 , x
(t)
2 , . . . , x

(t)
n) and in the beginning, x

(0)
i = 0 for i ∈ [n]. Also y(t) = (y(t)

1 , y
(t)
2 , . . . , y

(t)
n)

will be the permuted load vector, sorted decreasingly in load. This can be described by
ranks, which form a permutation of [n] that satisfies r = Rank(t)(i) ⇒ y

(t)
r = x

(t)
i . Following

previous work, we analyze allocation processes in terms of the

Gap(t) := max
1≤i≤n

x
(t)
i − t

n
= y

(t)
1 − t

n
,

i.e., the difference between maximum and average load at time t ≥ 0. It is well-known that
even for Two-Choice, the gap between maximum and minimum load is Ω(log n) for large
m (e.g. [28]). Here our focus is on sequential allocation processes based on binary queries.
That is, at each step t:
1. Sample two bins independently and uniformly at random (with replacement).
2. Send the same k binary queries to each of the two bins about their load.
3. Allocate the ball in the lesser loaded one of the two bins (based on the answers to the

queries), breaking ties randomly.

We first describe threshold-based processes, where queries to each bin j are of the
type “Is x

(t)
j ≥ f(t)” for some function f that maps into N. For example, we could ask

whether the load of a bin is at least the average load. Formally, we denote such a process
with two choices and k queries by Threshold(f1, f2, . . . , fk), where f1 > f2 > . . . > fk are
k different load thresholds, that may depend on the time t, in which case we write fi(t).
After sending all k queries to a bin j, we receive the correct answers to all these queries and
then we determine the i (0 ≤ i ≤ k) for which,

x
(t)
j ∈ (fi+1(t), fi(t)],

where f0(t) = +∞ and fk+1(t) = −∞ (see Figure 1). After having obtained two such
numbers i1, i2 ∈ {0, 1, . . . , k}, one for each bin j1 and j2, we will allocate the ball “greedily”,
i.e., into j1 if i1 < i2 and into j2 if i1 > i2. If i1 = i2, then we will break ties randomly.

ITCS 2022

103:6 Balanced Allocations with Incomplete Information: The Power of Two Queries

We proceed to define quantile-based processes. In this process, queries to a bin j are
of the type “Is x

(t)
j ≥ y

(t)
δ(t)·n?”, for some function δ that maps t into {1/n, 2/n, . . . , 1}. For

example if δ = 1/2, we are querying whether the load of a bin is at most the median load.
We denote such a process with two choices and k queries by Quantile(δ1, δ2, . . . , δk), where
δ1 < δ2 < . . . < δk are k different quantiles, which may depend on the time t. After sending
all k queries to a bin j in step t, we receive the correct answers and then we determine the i

(0 ≤ i ≤ k) for which,

Rank(t)(j) ∈ (δi(t) · n, δi+1(t) · n],

where δ0(t) = 0 and δk+1(t) = 1. As before, we allocate the ball to the bin with smaller
i-value and break ties randomly.

Quantile and Threshold processes can be classified into oblivious processes and
adaptive processes, depending on the type of queries. In an oblivious process, the queries
f1, f2, . . . (or δ1, δ2, . . .) may only depend on t (as well as n) – a special case is a uniform
process where δ1, δ2, . . . are constants (independent of t), and the fi’s are of the form
t/n + fi(n). In an adaptive process, queries in step t may depend on the full history of the
process, i.e., the load vector x(t−1), so each query i involves a function fi(x(t−1)), but this
must be specified before receiving any answers. In the adaptive setting, a k-quantile process
can simulate any k-threshold process, by setting the quantile to the largest δi(t) such that
yδi(t)·n ≤ fi(t) (Lemma 3.7).

The d-Thinning process [16] works as follows. For each ball to be allocated, an overseer
can inspect up to d randomly sampled bins in an online fashion, and based on all previous
history, can accept or reject each bin (however, one of the d proposed bins must be accepted).

The d-Choice process [5] (sometimes also called Greedy[d]) is the process where, for
each ball, d bins are chosen uniformly at random and the ball is placed in the least loaded
bin. We will refer to the special case d = 1 as the One-Choice process, and d = 2 as
the Two-Choice process. The (1 + β)-process [28] is the process where each ball is
placed with probability β according to Two-Choice and with probability 1 − β according
to One-Choice.

Finally, in graphical balanced allocation [22, 28], we are given an undirected graph
G with n vertices corresponding to n bins. For each ball to be allocated, we select an edge
{u, v} ∈ E(G) uniformly at random, and place the ball in the lesser loaded bin among {u, v}.

Following [28] and generalizing the processes above, an allocation process can be
described by a probability vector p(t) = (p(t)

1 , p
(t)
2 , . . . , p

(t)
n) for step t, where p

(t)
i is the

probability for incrementing the load of the i-th most loaded bin. Following the idea of
majorization, if two processes with (time-invariant) probability vectors p and q, for all
i ∈ [n] satisfy

∑
j≤i pj ≤

∑
j≤i qj , then there is a coupling between the allocation processes

with sorted load vectors y(p) and y(q) such that
∑

j≤i y
(t)
i (p) ≤

∑
j≤i y

(t)
i (q) for all i ∈ [n]

(q majorizes p).
Finally, we define the height of a ball as i ≥ 1 if it is the ith ball added to the bin.
Many statements in this work hold only for sufficiently large n, and several constants are

chosen generously with the intention of making it easier to verify some technical inequalities.

2.1 Probabilistic Tools
In order to state the concentration inequality for supermartingales conditional on a bad event
not occurring, we introduce the following definitions from [11]. Consider any r.v. X (in our
case it will be the Φj and the Γ1 potentials) that can be evaluated by a sequence of decisions

D. Los and T. Sauerwald 103:7

Y1, Y2, . . . , YN of finitely many outputs (the allocated balls). We can describe the process by
a decision tree T , a complete rooted tree with depth n with vertex set V (T). Each edge uv

of T is associated with a probability puv depending on the decision made from u to v.
We say f : V (T) → R satisfies an admissible condition P if P = {Pv} holds for every

vertex v. For an admissible condition P , the associated bad set Bi over the Xi is defined to
be

Bi = {v | the depth of v is i, and Pu does not hold for some ancestor u of v}.

▶ Theorem 2.1 (Theorem 8.5 from [11]). For a filter F , {∅, Ω} = F (0) ⊂ F (1) ⊂ . . . ⊂
F (N) = F , suppose that a random variable X(s) is F (s)-measurable, for 0 ≤ s ≤ N . Let B

be the bad set associated with the following admissible conditions:

E
[

X(s) | F (s−1)
]

≤ X(s−1),

Var
[

X(s) | F (s−1)
]

≤ σ2
s ,

X(s) − E
[

X(s) | F (s−1)
]

≤ as + M,

for fixed σs > 0 and as > 0. Then, we have for any λ > 0,

Pr
[

X(N) ≥ X(0) + λ
]

≤ exp
(

− λ2

2(
∑N

s=1(σ2
s + a2

s) + Mλ/3)

)
+ Pr [B] .

3 Basic Relations between Allocation Processes

In this section we collect several basic relations between allocation processes, following the
notion of majorization [28]. Figure 2 gives a high-level overview of some of these relations,
along the with the derived and implied gap bounds.

Recall that the Two-Choice probability vector is given by pi = 2i−1
n2 , for i ∈ [n]:

The (1 + β) probability vector [28] interpolates between those of One-Choice and
Two-Choice, so for any i ∈ [n], pi = (1 − β) · 1

n + β · 2i−1
n2 .

For the process Quantile(δ1, . . . , δk), it is straightforward to verify that the probability
vector satisfies for any i ∈ [n]:

pi =



δ1
n 1 ≤ i ≤ δ1 · n,
δ1+δ2

n δ1 · n < i ≤ δ2 · n,
...

δk−1+δk

n δk−1 · n < i ≤ δk · n,
1+δk

n δk · n < i.

(3.1)

We start by making some simple observations for the quantile processes:

▶ Observation 3.1. For any n ≥ 0, the Quantile(1
n , 2

n . . . , n−1
n) process is equivalent to

the Two-Choice process.

▶ Observation 3.2. For k < n − 1, for any δ′, δ1, . . . , δk quantiles, the Quantile(δ1, . . . , δk)
process majorizes Quantile(δ1, . . . , δi, δ′, δi+1, . . . , δk).

By combining Observation 3.1 and Observation 3.2, we get:

ITCS 2022

103:8 Balanced Allocations with Incomplete Information: The Power of Two Queries

One-Choice
=

(1 + β) (β = 0)
=

Quantile (δ1 = 1)

Gap(m) = Θ
(√

m

n
log(n)

)

Two-Choice
=

(1 + β) (β = 1)
=

Quantile (1
n , 2

n , . . . , n−1
n)

Gap(m) = log log n+Θ(1)

(1 + β) (β = o(1))

Gap(m) = Θ
(

log n

β

)

(1 + β) (β ∈ (0, 1))

Gap(m) = Θ (log n)

(1 + β) (β = 1 − 2−0.5(log n))

Gap(m) = O
(√

log n
)

(1 + β) (β = 1 − 2−0.5(log n)2/3)

Gap(m) = O
(

(log n)1/3
)

(1 + β) (β = 1 − 1
poly(n))

Gap(m) = Θ(log log n)

Quantile (δ1), δ1 ∈ (0, 1))
=

2-Thinning

Gap(m) = O (log n)

Gap(m) = Ω
(

log n

log log n

)

Quantile (2−0.5
√

log n, 2−1)

Gap(m) = O(
√

log n)

Quantile (2−0.5(log n)2/3
, 2−0.5(log n)1/3

, 2−1)

Gap(m) = O((log n)1/3)

Quantile (δ1, . . . , δΘ(log log n))

Gap(m) = Θ(log log n)

PowerofTwo
Choices

PowerofTwo
Q

ueries
majorizes

majorizes

majorizes

majorizes

increase probability

of having a second choice increase number of binary

queries to estimate bin load

Figure 2 Overview of bounds on Gap(m) for various allocation processes that interpolate between
One-Choice and Two-Choice. All stated upper bounds are valid for any m ≥ 1, while lower
bounds may only hold for certain ranges of m. Some of the majorization results in the figure only
hold for a suitable Relaxed-Quantile process.

▶ Corollary 3.3. Any Quantile(δ1, . . . , δk) process majorizes Two-Choice.

Further, we show that we can always execute the Quantile(δ) and Threshold(f)
processes in the same way as 2-Thinning:

▶ Lemma 3.4. Consider a quantile process Quantile(δ) with one query. This process can
always be transformed into an equivalent instance of 2-Thinning: Sample a bin, if its rank is
greater than n · δ(t), then place the ball there; otherwise, place the ball in a randomly chosen
bin.

▶ Lemma 3.5. Consider a threshold process Threshold(f) with one query. This process
can be always transformed into the following equivalent process: For the first sampled bin i,
if its load is smaller than f(t), place the ball; otherwise, place the ball in another randomly
chosen bin j.

D. Los and T. Sauerwald 103:9

2 4 6 8 100

0.1

0.2

0.3
Two-Choice

(1 + β), β = 0.4
Quantile(0.6)

2 4 6 8 100

0.2

0.4

0.6

0.8

1 Two-Choice
(1 + β), β = 0.4
Quantile(0.6)

Figure 3 Illustration of the probability vector (p1, p2, . . . , p10) and cumulative probability dis-
tribution of Two-Choice, (1 + β) with β = 0.4 and Quantile (0.6), which is sandwiched by the
other two processes.

▶ Lemma 3.6. For any δ ∈ (0, 1) and any β ∈ (0, 1) with β ≤ δ ≤ 1 − β, the process
Quantile (δ) is majorized by a (1 + β)-process. In particular, the gap of the quantile process
is stochastically smaller than that of the (1 + β)-process.

Note that for any given δ ∈ (0, 1), β := min{δ, 1 − δ} always satisfies the precondition
of the lemma. Conversely, for any given β ≤ 1/2, we have β ≤ 1/2 ≤ (1 − β), and thus we
can set δ := 1/2. The majorization results in Corollary 3.3 and Lemma 3.6 are illustrated in
Figure 3 for n = 10.

Next, we establish that any Threshold(f1, . . . , fk) can be simulated by an adaptive
Quantile process with k quantiles, and similarly, any Quantile(δ1, . . . , δk) process can be
simulated by an adaptive randomised Threshold process with k thresholds.

▶ Lemma 3.7. Any Threshold(f1, . . . , fk) process can be simulated by an adaptive quantile
process with k queries.

▶ Lemma 3.8. Any step t of a Quantile(δ1, . . . , δk) process can be simulated by first
choosing f1(t), f2(t), . . . , fk(t) randomly (from a suitable distribution depending on x(t) and
δ1(t), . . . , δk(t)) and then running Threshold(f1, f2, . . . , fk).

Finally, we establish the following relation between Quantile and (2k)-Thinning:

▶ Lemma 3.9. For any k ≥ 1, a Quantile (δ1, . . . , δk) process can be simulated by an
adaptive (and randomized) (2k)-Thinning process.

4 Lower Bounds for One Quantile and One Threshold

In the lightly loaded case (i.e., m = n), [16] proved an upper bound of (2 + o(1)) ·
(
√

2 log n/ log log n) on the maximum load for a uniform Threshold(f)-process with f =√
2 log n/ log log n ([18] extended this to d > 2). They also proved that this strategy is asymp-

totically optimal. In [16, Problem 1.3], the authors suggest that the O(
√

log n/ log log n)
bound on the gap extends to the heavily loaded case. Here we will disprove this, establishing
a slightly larger lower bound of Ω(

√
log n) (Theorem 4.4). We also derive additional lower

bounds (Theorem 4.1 and Corollary 4.2) that demonstrate that any Quantile or Threshold
process will “frequently” attain a gap which is even as large as Ω(log n/ log log n).

Let us describe the intuition behind this bound in case of uniform quantiles, neglecting
technicalities. Consider Quantile(δ) and the equivalent 2-Thinning instance where a ball
is placed in the first bin if its load is among the (1 − δ) · n lightest bins, and otherwise it is
placed in a new (second) bin chosen uniformly at random (Lemma 3.4). We have two cases:

ITCS 2022

103:10 Balanced Allocations with Incomplete Information: The Power of Two Queries

Case 1: We choose most times a “large” δ. Then we allocate approximately m · δ balls
to their second bin choice which is uniform over all n bins. This will lead to a behavior
close to One-Choice.
Case 2: We choose most times a “small” δ. Then we allocate approximately m · (1 − δ)
balls with the first bin choice, which is a One-Choice process over the n · (1 − δ) lightest
bins. For small δ there are simply “too many” light bins that will reach a high load level,
so the process is again close to One-Choice.

▶ Theorem 4.1. For any adaptive Quantile(δ) (or Threshold(f)) process,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Let us also observe a slightly stronger statement which follows directly from Theorem 4.1:

▶ Corollary 4.2. Any adaptive process Quantile(δ) satisfies:

Pr

 ⋃
t∈[0,n log2 n]

min
s∈[t,t+ 1

16 n log n
log log n)

Gap(s) ≥ 1
16 · log n

log log n

 ≥ 1 − n−2.

In other words, the corollary states that for at least Ω(n log n/ log log n) (consecutive)
steps in [1, Θ(n log2 n)], the gap is Ω(log n/ log log n). This is in contrast to the behavior
of the process Quantile(δ1, δ2), for which our result in Section 6 implies that with high
probability the gap is always below O(

√
log n) during any time-interval of the same length.

Further for uniform Quantile(δ), we are always either in Case 1 or Case 2, so the
following strengthened version of Theorem 4.1 holds:

▶ Corollary 4.3. For any uniform Quantile(δ) process for m = n log2 n balls,

Pr
[

Gap(m) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

We also show a lower bound for fixed m, which is derived in a similar way as Theorem 4.1,
but with a different parameterization of “large” and “small” quantiles:

▶ Theorem 4.4. For any adaptive Quantile(δ) (or Threshold(f)) process, with m =
K · n

√
log n balls for K = 1/10, it holds that

Pr
[

Gap(m) ≥ 1
20
√

log n

]
≥ 1 − o(n−2).

5 Upper Bounds for One Quantile

In this section we study the Quantile(δ) process for constant δ ∈ (0, 1). This analysis will
also serve as the basis for the k-quantile case with k > 1 in Section 6. First, we define the
following exponential potential function (similarly to [28]): For any time-step s ≥ 0,

Φ(s)
0 :=

n∑
i=1

exp
(

α2 · (x(s)
i − s

n
)+
)

,

where z+ = max(z, 0) and α2 > 0 to be specified later. We first remark that with the results
in [28], a bound on the expected value of Φ0 can be easily derived:

D. Los and T. Sauerwald 103:11

▶ Theorem 5.1 (cf. Theorem 2.10 in [28]). Consider any allocation process with probability
vector p that is (i) non-decreasing in i, pi ≤ pi+1 and (ii) for some 0 < ϵ < 1/4,

pn/3 ≤ 1 − 4ϵ

n
and p2n/3 ≥ 1 + 4ϵ

n
.

Then, for 0 < α2 < ϵ/6, we have for any s ≥ 0, E
[

Φ(s)
0

]
≤ cn, where c = 40·1283

ϵ5 .

In particular, by verifying the condition on the probability vector and applying Markov’s
inequality, we immediately obtain an upper bound of O(log n) on the gap.

▶ Theorem 5.2. For the quantile process Quantile(δ) with δ ∈ [1/3, 2/3] and any m ≥ 1,

Pr [Gap(m) ≤ 300 log n] ≥ 1 − O(n−2).

However, to analyze the process with more than one quantile in the next section, we will
need a tighter analysis. We prove the following refined version of Theorem 5.1:

▶ Theorem 5.3. Consider any probability vector p that is (i) non-decreasing in i, i.e.,
pi ≤ pi+1 and (ii) for ϵ = 1/12,

pn/3 ≤ 1 − 4ϵ

n
and p2n/3 ≥ 1 + 4ϵ

n
.

Then, for any t ≥ 0 and α2 := 0.0002, c := cϵ,α2 := 2 · 40 · 1283 · ϵ−7 · 4 · α−1
2 ,

Pr

 ⋂
s∈[t,t+n log5 n]

Φ(s)
0 ≤ 2cn

 ≥ 1 − n−3.

Note that Theorem 5.3 not only implies a gap of O(log n) using Markov’s inequality
(as Theorem 5.1), but also that for any fixed time s, the number of bins with load at least
s/n + λ is at most 2cn/ exp(α2 · λ) for any λ ≥ 0. In particular, for any λ = Θ(log n), only a
polynomially small fraction of all bins have load at least s/n + λ.

Proof Outline of Theorem 5.3. In order to prove that Φ0 is small, we will reduce it to the
potential function Γ used in [28]:

Γ(s) :=
n∑

i=1

(
exp
(
α(x(s)

i − s/n)
)

+ exp
(
−α(x(s)

i − s/n)
))

,

for some constant 0 < α < 1/(6 · 12). Note that if α = α2, then Φ(s)
0 ≤ Γ(s), so it suffices to

upper bound Γ(s). It is crucial that this potential includes both the exp(α(·)) and exp(−α(·))
terms, as otherwise the potential may not decrease, even if it is large (see [28, Appendix]).

▶ Lemma 5.4 (Theorem 2.9 and 2.10 in [28]). For any process satisfying the conditions of
Theorem 5.3, (i) for any t ≥ 0,

E
[

Γ(t+1) | Γ(t)
]

≤
(

1 − ϵ′
α

n

)
· Γ(t) + c′,

where ϵ′
α := αϵ

4 and c′ := 40·1283

ϵ5 . Furthermore, (ii) for any t ≥ 0, E
[

Γ(t)] ≤ cn.

ITCS 2022

103:12 Balanced Allocations with Incomplete Information: The Power of Two Queries

To obtain the stronger statement that Γ(t) = O(n) w.h.p., we will be using two instances
of the potential function: Γ1 with α1 = 0.01 and Γ2 with α2 = 0.0002; so Γ1 ≥ Γ2. The
interplay between these two potentials is shown in Figure 4. We pick α1 such that 12.1· α1

α2
< 1

3
and hence the additive change of Γ2 (given Γ1 is small) is n1/3:

t t + n log2 n t + n log5 n

Γ(s)
1 ≤ cn9 for all s ∈ [t, t + n log5 n] (Lemma 5.4 (ii)+Markov’s Inequality)

Γ(t)
2 ≤ n4/3

∃s0 : Γ(s0)
2 ≤ cn w.h.p.

Γ(s)
2 ≤ cn for all s ∈ [s0, t + n log5 n]

Lemma 5.5 (ii)

Lemma 5.6

Starting point

Bounded difference
(Lemma 5.5 (iii))

Expectation drop
(Lemma 5.4 (i))

Proof of Theorem 5.3

Figure 4 Outline for the proof of Theorem 5.3. Results in green are used in the application of
the concentration inequality (Theorem 2.1) in Theorem 5.3.

▶ Lemma 5.5. For any t ≥ 0, if Γ(t)
1 ≤ cn9, then, (i)

∣∣x(t)
i − t

n

∣∣ ≤ 9.1
α1

log n for all i ∈ [n],
(ii) Γ(t)

2 ≤ n4/3, and, (iii) |Γ(t+1)
2 − Γ(t)

2 | ≤ n1/3.

The precondition of Lemma 5.5 is easy to satisfy thanks to Lemma 5.4 and Markov’s
inequality. The next lemma proves a weaker version of Theorem 5.3, in the sense that the
potential Γ(s)

2 is small in at least one step. Note that due to the choice of α1 and α2, we have
c > 2c′

ϵ′
α2

.

▶ Lemma 5.6. For any t ≥ n log2 n, for constants c′ > 0, ϵ′
α2

> 0 defined as above,

Pr

 ⋃
s∈[t−n log2 n,t]

Γ(s)
2 ≤ 2c′

ϵ′
α2

· n

 ≥ 1 − 2cn−8.

To prove the strong version that Γ(s)
2 is small at all time-steps, we use Lemma 5.6 to

obtain a starting point s0. For the following time-steps, we bound the expected value of Γ(s)
2

for s ≥ s0, using Lemma 5.4. Then we apply a concentration inequality for supermartin-
gales (Theorem 2.1), and use the bounded difference |Γ(s+1)

2 − Γ(s)
2 | ≤ n1/3 for all s ≥ t

(Lemma 5.5).

6 Upper Bounds for More Than One Quantile

6.1 Upper Bounds on the Original Quantile Process and Consequences
We now generalize the analysis from Section 5 for one quantile to 2 ≤ k ≤ κ · log log n

quantiles, where κ := 1/ log(104). We emphasize that our chosen quantiles are oblivious and
even uniform, i.e., independent of t (but dependent on n). Specifically, we define

δ̃i =
{

1
2 for i = k,

2−0.5(log n)(k−i)/k for 1 ≤ i < k ,

D. Los and T. Sauerwald 103:13

and let each δi be δ̃i rounded up to the nearest multiple of 1
n . The intuition is that the

largest quantile δk = 1
2 ensures that the load distribution is at least “coarsely” balanced,

analogous to the (1 + β)-process. All smaller quantiles δ1, δ2, . . . , δk−1 almost always return
a negative answer, but they gradually reduce the probability of allocating to a heavy bin.

▶ Theorem 6.1 (Theorem 6.5 simplified). For any integer 2 ≤ k ≤ κ log log n, consider the
Quantile(δ1, δ2, . . . , δk) process with the δi’s defined above. Then for any m ≥ 1,

Pr
[

Gap(m) ≤ 1000 · k · (log n)1/k
]

≥ 1 − n−3.

For k = 2 and k = 3, Theorem 6.1 directly implies the following corollary:

▶ Corollary 6.2. For k = 2, the process Quantile(2−0.5
√

log n, 1
2) satisfies for any m ≥ 1,

Pr
[

Gap(m) ≤ 2000 ·
√

log n
]

≥ 1 − n−3.

For k = 3 the process Quantile(2−0.5(log n)2/3
, 2−0.5(log n)1/3

, 1
2) satisfies for any m ≥ 1,

Pr
[

Gap(m) ≤ 3000 · (log n)1/3
]

≥ 1 − n−3.

Using the fact that any allocation process with k quantiles majorizes a suitable adaptive
(and randomized) 2k-Thinning process (Lemma 3.9), we also obtain:

▶ Corollary 6.3. For any even d ≤ 2
κ log log n, there is an (adaptive and randomized) d-

Thinning process, satisfying for any m ≥ 1, Pr
[

Gap(m) ≤ 2000 · d · (log n)(2/d)] ≥ 1−n−3.

This is an extension of [18, Theorem 1.1] to d-Thinning to the heavily-loaded case, but with
an exponent of 2/d instead of 1/d.

Finally, for k = Θ(log log n), the bound on the gap in Theorem 6.1 is C · log log n for some
(large) constant C > 0. Surprisingly, this matches the gap of the full information setting
(Two-Choice process), even though the Quantile process behaves quite differently. For
instance, Quantile cannot discriminate among the n/2 most lightly loaded bins. Also since
any Quantile process majorizes Two-Choice (see Corollary 3.3), we deduce:

▶ Corollary 6.4. For Two-Choice, there is a constant C > 0 such that for any m ≥ 1,
Pr [Gap(m) ≤ C log log n] ≥ 1 − n−3.

This result originally shown in [9] proved the tighter bound Gap(m) = log2 log n ± O(1),
w.h.p. However, their analysis combines sophisticated tools from Markov chain theory and
computer-aided calculations. The simpler analysis in [32] derives the same gap bound up to an
additive O(log log log n) term, but the error probability is much larger, i.e., Θ((log log n)−4).
In comparison to their bound, our result achieves a much smaller error probability of O(n−3),
but it comes at the cost of a multiplicative constant in the gap bound.

6.2 Relaxed Quantile Process and Outline of the Inductive Step
We now define a class of processes Relaxed-Quantileγ(δ1, . . . , δk), which relaxes the
definition of Quantile(δ1, . . . , δk), with 1 ≤ k ≤ κ log log n and a relaxation factor γ ≥ 1.
The probability vector p of such a process satisfies four conditions: (i), for each i ∈ [n],

pi ≤


γ · δ1

n 1 ≤ i ≤ δ1 · n,

γ · δ1+δ2
n δ1 · n < i ≤ δ2 · n,

...
γ · δk−1+δk

n δk−1 · n < i ≤ δk · n,

ITCS 2022

103:14 Balanced Allocations with Incomplete Information: The Power of Two Queries

(ii) the probability vector p is non-decreasing in i, (iii) pn/3 ≤ 1−4ϵ
n and, (iv) p2n/3 ≥ 1+4ϵ

n

for some 0 < ϵ < 1/4. Note that the process Quantile(δ1, δ2, . . . , δk) with the δi’s as defined
above falls into this class with γ = 1 (cf. Equation (3.1)).

▶ Theorem 6.5 (Theorem 6.1 generalized). Consider a Relaxed-Quantileγ(δ1, δ2, . . . , δk)
process with the δi’s above. Let 2 ≤ k ≤ κ log log n and 1 ≤ γ ≤ 6. Then for any m ≥ 1,

Pr
[

Gap(m) ≤ 1000 · k · (log n)1/k
]

≥ 1 − n−3.

Reduction of Theorem 6.5 to Lemma 6.6. The proof of Theorem 6.5 employs some type
of layered induction over k different, super-exponential potential functions. Generalizing the
definition of Φ(s)

0 from Section 5, for any 0 ≤ j ≤ k − 1:

Φ(s)
j :=

n∑
i=1

exp
(

α2 · (log n)j/k ·
(

x
(s)
i − s

n
− 2

α2
j(log n)1/k

)+)
,

where α2 = 0.0002 (recall z+ = max{z, 0}). We will then employ this series of potential
functions j = 0, 1, . . . , k −1 to analyze the process over the time-interval s ∈ [m−n log5 n, m].

The next lemma (Lemma 6.6) formalizes this inductive argument. It shows that if
for all steps s within some suitable time-interval, the number of balls of height at least
s
n + 2

α2
j(log n)1/k is small, then the number of balls of height at least s

n + 2
α2

(j + 1)(log n)1/k

is even smaller. This “even smaller” is encapsulated by the (non-constant) base of Φj , which
increases in j; however, this comes at the cost of reducing the time-interval slightly by a
Θ(n log3 n) term. Finally, for j = k − 1, we can conclude that at step s = m, there are no
balls of height s

n + 2
α2

k(log n)1/k. Hence we can infer that the gap is O(k · (log n)1/k).

▶ Lemma 6.6 (Inductive Step). Assume that for some 1 ≤ j ≤ k ≤ 1
log(104) log log n, the

process Relaxed-Quantileγ(δ1, . . . , δk) with the δi’s above, and γ ≤ 6 and t ≥ 0 satisfies:

Pr

 ⋂
s∈[βj−1,t+n log5 n]

Φ(s)
j−1 ≤ 2cn

 ≥ 1 − (log n)8(j−1)

n4 ,

where βj := t + 2jn log3 n and c = c1/12,α2 (see Theorem 5.3). Then, it also satisfies:

Pr

 ⋂
s∈[βj ,t+n log5 n]

Φ(s)
j ≤ 2cn

 ≥ 1 − (log n)8j

n4 .

As in Section 5, we will also use a second version of the potential function to extend an
expected bound on the potential into a w.h.p. bound. Intuitively, we exploit the property
that potential functions will have linear expectations for a range of coefficients. With this in
mind, we define the following potential function for any 0 ≤ j ≤ k − 1,

Ψ(s)
j :=

n∑
i=1

exp
(

α1 · (log n)j/k ·
(

x
(s)
i − s

n
− 2

α2
j(log n)1/k

)+)
,

where α1 = 0.01. Note that Ψj is defined in the same way as Φj with the only difference that
α1 is significantly larger α2. The interplay between Ψj and Φj is similar to the interplay
between Γ1 and Γ2 in the proof of Theorem 5.3, but some extra care is needed. In particular,
while underloaded bins with load of m/n − Θ(log n) contribute heavily to Γ1 (or Γ2), their
contribution has to be eliminated here in order to derive a gap bound better than O(log n).

D. Los and T. Sauerwald 103:15

6.3 Proof Outline of Lemma 6.6
We will now give a summary of the main technical steps in the proof of Lemma 6.6 (an
illustration of the key steps is shown in Figure 5). On a high level, the proof mirrors the
proof of Theorem 5.3; however, there are some differences, especially in the final part.

First, fix any 1 ≤ j ≤ k − 1. Then the inductive hypothesis ensures that Φ(r)
j−1 is small for

r ∈ [βj−1, t + n log5 n]. From that, it follows by a simple estimate that Ψ(βj−1)
j ≤ e0.01 log3 n

(Claim 6.13). Using a multiplicative drop (Lemma 6.8) repeatedly, it follows that there
exists u ∈ [βj−1, βj−1 + n log3 n], E[Ψ(u)

j] ≤ cn (Lemma 6.10). Then by Lemma 6.11,
this statement is extended to the time-interval [βj−1 + n log3 n, t + n log5 n]. By simply
using Markov’s inequality and a union bound, we can deduce that Ψ(r)

j ≤ cn12 for all
r ∈ [βj−1 + n log3 n, t + n log5 n]. By a simple relation between two potentials, this implies
Φ(r)

j ≤ n4/3 (Claim 6.14 (ii)). Now using a multiplicative drop (Lemma 6.8) guarantees that
this becomes Φ(r)

j ≤ cn w.h.p. for a single time-step r ∈ [βj−1, βj] (Lemma 6.12).
To obtain the stronger statement which holds for all time-steps r ∈ [βi−1, βj], we will use

a concentration inequality. The key point is that whenever Ψ(s)
j ≤ cn12, then the absolute

difference |Φ(s+1)
j − Φ(s)

j | is at most n1/3, because 12.1α2
α1

< 1/3 (Claim 6.14 (ii)). This is
crucial so that applying the supermartingale concentration bound Theorem 2.1 from [11] to
Φj yields an O(n) guarantee for the entire time interval.

βj−1 βj−1 + n log3 n βj t + n log5 n

Φ(s)
j−1 ≤ 2cn for all s ∈ [βj−1, t + n log5 n] (Inductive hypothesis)

Ψ(βj−1)
j ≤ e0.01 log3 n

∃s0 : E[Ψ̃(s0)
j] ≤ cn

E[Ψ̃(s)
j] ≤ cn for all s ∈ [s0, t + n log5 n]

Ψ̃(s)
j ≤ cn12 w.h.p. for all s ∈ [βj−1 + n log3 n, t + n log5 n]

Φ̃(βj−1+n log3 n)
j ≤ n4/3

∃r0 : Φ̃(r0)
j ≤ cn w.h.p.

Φ(s)
j ≤ 2cn for all s ∈ [r0, t + n log5 n] (Inductive step)

Claim 6.13

Lemma 6.10

Lemma 6.11

Markov & U.-Bound

Claim 6.14 (ii)

Lemma 6.12

Starting point

Bounded difference
(Claim 6.14 (i))

Expectation drop
using Lemma 6.8

Completion of the Proof of Lemma 6.6;

Figure 5 Outline for the proof of Lemma 6.6. Results in blue are given in Section 6.4, while
results in green are used in the application of the concentration inequality (Theorem 2.1).

6.4 Auxiliary Definitions and Claims for the proof of Lemma 6.6
In the following, we will always implicitly assume that 1 ≤ j ≤ k − 1, as the case j = 0 has
already been done. We define the following event, which will be used frequently in the proof:

E(s)
j−1 :=

{
Φ(s)

j−1 ≤ 2cn
}

.

ITCS 2022

103:16 Balanced Allocations with Incomplete Information: The Power of Two Queries

Recall that the induction hypothesis asserts that E(s)
j−1 holds for all steps s ∈ [βj−1, t+n log5 n].

In the following arguments we will be working frequently with the “killed” versions of the
potentials, i.e., we condition on E(s)

j−1 holding on all time steps:

Φ̃(s)
j := Φ(s)

j · 1∩r∈[βj−1,s]E
(r)
j−1

and Ψ̃(s)
j := Ψ(s)

j · 1∩r∈[βj−1,s]E
(r)
j−1

.

As the proof of Lemma 6.6 requires several claims and lemmas, the remainder of this
section is divided further in:
1. Analysis of the (expected) drop of the potentials Φj and Ψj . (Section 6.4.1)
2. Auxiliary (Probabilistic) lemmas based on these drop results. (Section 6.4.2)
3. (Deterministic) inequalities that involve one or two potentials. (Section 6.4.3)

6.4.1 Analysis of the Drop of the Potentials Φj and Ψj

We define α
(s)
j := s

n + 2
α2

· j(log n)1/k, so that when E(s)
j−1 holds, then y

(s)
n·δk−j

≤ α
(s)
j − 1; this

will be established in the next lemma below.

▶ Lemma 6.7. For any step s ≥ 1, if E(s)
j−1 holds then y

(s)
n·δk−j

≤ α
(s)
j − 1.

▶ Lemma 6.8. For any step s ≥ βj−1 = t + 2jn log3 n, E
[

Φ(s+1)
j

∣∣ E(s)
j−1, Φ(s)

j

]
≤
(

1 − 1
n

)
·

Φ(s)
j + 2, and E

[
Ψ(s+1)

j

∣∣ E(s)
j−1, Ψ(s)

j

]
≤
(

1 − 1
n

)
· Ψ(s)

j + 2.

▷ Claim 6.9. Let Φ̃(s)
j , E(s)

j−1 and α
(s)
j be defined as in Lemma 6.8. Then for any bin i ∈ [n]

with x
(s)
i ≥ α

(s)
j , we get Pr

[
x

(s+1)
i = x

(s)
i + 1

∣∣ Φ̃(s)
j , E(s)

j−1, x
(s)
i ≥ α

(s)
j

]
≤ γδ

n .

6.4.2 Auxiliary Probabilistic Lemmas on the Potential Functions

The first lemma proves that Ψ̃(s)
j is small in expectation for at at least one time-step. It

relies on the multiplicative drop (Lemma 6.8), and the fact that precondition ∩r∈[βj−1,s]E
(r)
j−1

holds due to the definition of the killed potential Ψ̃j−1.

▶ Lemma 6.10. There exists s ∈ [βj−1, βj−1 + n log3 n] such that E[Ψ̃(s)
j] ≤ cn.

Generalizing the previous lemma, and again exploiting the conditioning on ∩r∈[βj−1,s]E
(r)
j−1

of Ψ(s)
j , we know prove that Ψ̃(s)

j is small in expectation for the entire time interval.

▶ Lemma 6.11. For all s ∈ [βj−1 + n log3 n, t + n log5 n], E[Ψ̃(s)
j] ≤ cn.

We now switch to the other potential function Φ̃(s)
j , and prove that if it is polynomial in

at least one step, then it is also linear in at least one step (not much later).

▶ Lemma 6.12. For all 1 ≤ j < k it holds that,

Pr

 ⋃
s∈[βj−1,βj]

{Φ̃(s)
j ≤ cn}

∣∣∣ ⋃
r∈[βj−1,βj−1+n log3 n]

{Φ̃(r)
j ≤ n4/3}

 ≥ 1 − n−5.

D. Los and T. Sauerwald 103:17

6.4.3 Deterministic Relations between the Potential Functions
We collect several basic facts about the potential functions Φ(s)

j and Ψ(s)
j .

▷ Claim 6.13. For any s ≥ 0, Φ(s)
j ≤ 2cn implies Ψ(s)

j+1 ≤ exp(0.01 · log3 n).

The next claim is crucial for applying the concentration inequality, since the third
statement bounds the maximum additive change of Φ(s) (assuming Ψ(s) is small enough:

▷ Claim 6.14. For any s ≥ 0, if Ψ(s)
j ≤ cn12, then (i) x

(s)
i ≤ s

n + 12.1
α1

·(log n)
k−j

k + 2
α2

j(log n)1/k

for all i ∈ [n], (ii) Φ(s)
j ≤ n4/3 and (iii) |Φ(s+1)

j − Φ(s)
j | ≤ n1/3.

The next claim is a simple “smoothness” argument showing that the potential cannot
decrease quickly within n/ log2 n steps. The derivation is elementary and relies on the fact
that average load does not change by more than 1/ log2 n.

▷ Claim 6.15. For any s ≥ 0 and any r ∈ [s, s + n/ log2 n], we have Φ(r)
j ≥ 0.99 · Φ(s)

j .

7 Applications of the Relaxed Quantile Process

In this section we present two implications of our analysis in Section 6, exploiting the
flexibility of the relaxed version of the k-quantile process. The first implication is based on
majorizing the (1 + β)-process by a suitable relaxed k-quantile process, where k depends on
β (see Lemma 7.3).

▶ Theorem 7.1. Consider a (1 + β)-process with β ≥ 1 − 2−0.5(log n)(k−1)/k for some integer
1 ≤ k ≤ κ · log log n. Then for any m ≥ 1,

Pr
[

Gap(m) ≤ 1000 · k · (log n)1/k
]

≥ 1 − n−3.

In particular, if β ≥ 1 − n−c1 , for any (small) constant c1 > 0, then there is a constant
c2 = c2(c1) > 0 such that the gap is at most c2 · log log n w.h.p..

We can also derive an almost matching lower bound, showing that 1−β has to be (almost)
polynomially small in order to achieve a gap of O(log log n) (Remark 7.4 in the appendix).

Our result for k quantiles can be also applied to graphical balanced allocations, where
the graph is parameterized by its spectral expansion λ ∈ [0, 1). Similar to the derivation
of Theorem 7.1, the idea is to show that the graphical balanced allocation process can be
majorized by a suitable relaxed k-quantile process.

▶ Corollary 7.2 (special case of Theorem 7.8). Consider graphical balanced allocation on a
d-regular graph with spectral expansion λ ≤ n−c1 for a constant c1 > 0. Then there is a
constant c2 = c2(c1) > 0 such that for any m ≥ 1, Pr [Gap(m) ≤ c2 · log log n] ≥ 1 − n−3.

As shown in [33], for any d = poly(n), a random d-regular graph satisfies λ = O(1/
√

d)
w.h.p., and thus the gap bound above applies. For the lightly loaded case, [22] proved that
any regular graph with degree at least nΩ(1/ log log n) achieves a gap O(log log n), and they
also showed that this density is necessary. For the heavily loaded case, [28] proved a gap
bound of O(log n) for any expander. Hence Corollary 7.2 combines these lines of work, and
establishes that the O(log log n) gap bound extends from complete graphs to dense and
(strong) expanders.

ITCS 2022

103:18 Balanced Allocations with Incomplete Information: The Power of Two Queries

7.1 (1 + β)-Process for large β

We first relate the (1 + β)-process to a relaxed quantile process.

▶ Lemma 7.3. Consider a (1 + β)-process with β ≥ 1 − 2−0.5(log n)(k−1)/k = 1 − δ̃1 for some
integer k ≥ 1. Then this (1+β)-process is a Relaxed-Quantileγ(δ1, . . . , δk) process, where
each δi is δ̃i being rounded up to the nearest multiple of 1

n and γ = 3.

Using the above lemma, majorization and Theorem 6.5 yields immediately:

▶ Theorem 7.1. Consider a (1 + β)-process with β ≥ 1 − 2−0.5(log n)(k−1)/k for some integer
1 ≤ k ≤ κ · log log n. Then for any m ≥ 1,

Pr
[

Gap(m) ≤ 1000 · k · (log n)1/k
]

≥ 1 − n−3.

In particular, if β ≥ 1 − n−c1 , for any (small) constant c1 > 0, then there is a constant
c2 = c2(c1) > 0 such that the gap is at most c2 · log log n w.h.p..

It is straightforward to derive an almost matching lower bound on the gap, showing that
1 − β has to be (almost) polynomially small in order to achieve a gap of O(log log n):

▶ Remark 7.4. Consider a (1 + β)-process with β ≤ 1 − n−c3/ log log n for some c3 > 0 (not
necessarily constant). Then, Pr

[
Gap(n) ≥ 2

c3
log log n

]
≥ 1 − o(1).

7.2 Graphical Balanced Allocation
We now analyze the graphical balanced allocation process, with a focus on dense expander
graphs. To this end, we first recall some basic notation of spectral graph theory and expansion.
For an undirected graph G, the normalized Laplacian Matrix of G is an n × n-matrix defined
by L = I − D−1/2 · A · D1/2, where I is the identity matrix, A is the adjacency matrix
and D is the diagonal matrix where Du,u = deg(u) for any vertex u ∈ V . Further, let
λ1 ≤ λ2 ≤ · · · ≤ λn be the n eigenvalues of L, and let λ := maxi∈[2,n] |1 − λi| be the spectral
expansion of G. Further, for any set U ⊆ V define vol(U) :=

∑
v∈U deg(v). Note that for a

d-regular graph, we have vol(U) = d · |U | and vol(V) = dn.
We now recall the following (stronger) version of the Expander Mixing Lemma (cf. [12]):

▶ Lemma 7.5 (Expander Mixing Lemma). For any subsets X, Y ⊆ V ,

∣∣∣∣|E(X, Y)| − vol(X) · vol(Y)
vol(V)

∣∣∣∣ ≤ λ ·

√
vol(X) · vol(X) · vol(Y) · vol(Y)

vol(V) ,

where vol(X) = vol(V \ X).

In the following, we consider G to be a d-regular graph.

▶ Proposition 7.6. Consider the probability vector pt
i, 1 ≤ i ≤ n of a graphical balanced

allocation process on a d-regular graph G with spectral expansion λ. Then this vector satisfies
for any load configuration at any time t the following three inequalities.
1. For any 1 ≤ j ≤ λ · n,

∑j
i=1 pt

i ≤ 2λ · j
n .

2. For any λ · n ≤ j,
∑j

i=1 pt
i ≤ 2 ·

(
j
n

)2
.

3. For any 1 ≤ j ≤ n,
∑j

i=1 pt
i ≤ j

n ·
(
1 − (1 − λ) · n−j

n

)
.

D. Los and T. Sauerwald 103:19

▶ Lemma 7.7. Consider a graphical balanced allocation process on a connected, d-regular
graph on G with spectral expansion λ ≤ 1/2. Further, let 2−0.5(log n)(k−1)/k ≥ λ for an integer
k ≥ 1. Then there exists a process in the class Relaxed-Quantileγ(δ1, . . . , δk), where
each δi is δ̃i being rounded up to the nearest multiple of 1

n and γ = 2, which majorizes the
probability vector of the graphical balanced allocation process in each round t ≥ 1, for any
possible load configuration.

▶ Theorem 7.8. Consider a graphical balanced allocation process on a connected, d-regular
graph on G with spectral expansion λ ≤ 1/2. Further, let k ∈ [1, k ≤ κ · log log n] be the
largest integer such that 2−0.5(log n)(k−1)/k ≥ λ̃ := max{λ, n−0.00005}. Then for any m ≥ 1,

Pr

Gap(m) ≤ 1000 · k ·

(
log n

log(1/λ̃)

)(k+1)/k
 ≥ 1 − n−3.

From the general bound in the above corollary, we can deduce the following two bounds:

▶ Remark 7.9. Under the assumptions of Theorem 7.8, we have the following more explicit
(but slightly weaker) bound for any 2 ≤ k ≤ κ · log log n,

Pr

Gap(m) ≤ 1000 · log log n

log log n − log log(1/λ̃) + log(0.5)
·

(
log n

log(1/λ̃)

)3/2
 ≥ 1 − n−3.

Also if λ ≤ 1/2(log n)c1 for some constant 0 < c1 < 1, then

Pr
[

Gap(m) ≤ 1000 · 1
log(104) log log n · (log n)(3/2)·(1−c1)

]
≥ 1 − n−3.

Finally, let us consider the case where λ decays polynomially in n.

▶ Corollary 7.2 (special case of Theorem 7.8). Consider graphical balanced allocation on a
d-regular graph with spectral expansion λ ≤ n−c1 for a constant c1 > 0. Then there is a
constant c2 = c2(c1) > 0 such that for any m ≥ 1, Pr [Gap(m) ≤ c2 · log log n] ≥ 1 − n−3.

Note that λ ≤ n−c1 captures a relaxed, multiplicative approximation of Ramanujan graphs
(it is in fact more relaxed than the existing notion “weakly Ramanujan”). Recently, [33]
proved that for any poly(n) ≤ d ≤ n/2, a random d-regular graph satisfies the constraint on
λ with probability at least 1 − n−1.

Further, we remark that the above result extends one of the main results of [22] which
states that for any graph with degree n1/ log log n, graphical balanced allocation achieves a
gap of at most Θ(log log n) in the lightly loaded case (m = n). Our result above also refines
a previous result of [28] which states that for any expander graph, a gap bound of O(log n)
holds (even in the heavily loaded case m ≥ n). In conclusion, we see that the gap bound of
O(log log n) extends from the complete graph (which is the Two-Choice process) to other
graphs, provided we have a strong expansion and high density.

8 Conclusions

In this work, we introduced a new framework of balls-and-bins with incomplete information.
The main contributions are as follows:

ITCS 2022

103:20 Balanced Allocations with Incomplete Information: The Power of Two Queries

1. A lower bound of Ω(
√

log n) for a fixed m = Θ(n
√

log n) for one adaptive query
(Theorem 4.4), disproving Problem 1.3 in [16]. Also, a stronger lower bound of
Ω(log n/ log log n) for “many” time-steps in [1, n log2 n] (Corollary 4.2), again for one
adaptive query.

2. Design and analysis of an instance of the k-quantile process for any k ≥ 1. This process
performs well empirically (Section 9), and achieves w.h.p. an O(k · (log n)1/k) gap for
any m ≥ 1 and k = O(log log n) (Theorem 6.1). This theoretical result has several
implications:

A “power of two queries” phenomenon: reduction of the gap from Ω(log n/ log log n)
to O(

√
log n) by increasing the number of queries from one to two.

For k = Θ(log log n), a gap bound of O(log log n) which matches the gap of the process
with full information (Two-Choice) up to multiplicative constants.
New upper bounds on the gap of the (1 + β) process with β close to 1 by relating it to
a Relaxed-Quantile process (Theorem 7.1).
New upper bounds on the graphical balanced allocation on dense expander graphs,
making progress towards Open Question 2 in [28] (Corollary 7.2).

3. Several majorizations and reductions between the processes Quantile, Threshold,
Relaxed-Quantile, Thinning, (1 + β) and Two-Choice (see Figure 2 for a high-level
outline, and Section 3 for more details).

One natural open question is whether we can prove matching lower bounds, in particular,
the case k ≥ 2 is wide open. Another interesting direction is to investigate other allocation
processes with limited information, e.g., where a sampled bin reports its actual load perturbed
by some random or deterministic noise function.

9 Experimental Results

In Table 1 and Figure 6a, we also recorded the empirical distribution of the gap for m = 1000·n
balls for the (1 + β) with β = 1/2, the k-Quantile (for k = 1, 2, 3, 4) of the form defined in
Section 6, and the Two-Choice process. The experiments show a large improvement of
k = 2 over k = 1 (“Power of Two Queries”). Figure 6b shows empirical evidence that the gap
decreases (and approaching closely the Two-Choice gap) in regular graphs as the degree
increases.

0.2 0.4 0.6 0.8 1

·105

0

10

20

Number of bins n

G
ap

at
m

=
10

00
·n

(1 + β)

Quantile(δ1)
Quantile(δ1, δ2)

Quantile(δ1, δ2, δ3)
Quantile(δ1, δ2, δ3, δ4)

Two-Choice

(a) Balanced allocation on complete graphs.

101 102

101

102

Degree d of graph

G
ap

at
m

=
10
00

·n

n = 50.000
n = 10.000
n = 1.000

(b) Balanced allocation on random d-regular
graphs.

Figure 6 (a) Average Gap vs. n ∈ {103, 104, 5 · 104, 105} for the experimental setup of Table 1
and (b) Average Gap vs. n ∈ {103, 104, 5 · 104} for regular graphs generated using [29].

D. Los and T. Sauerwald 103:21

Table 1 Summary of our Experimental Results (m = 1000 · n).

n (1 + β), for β = 0.5 k = 1 k = 2 k = 3 k = 4 Two-Choice

103

12 : 5%
13 : 15%
14 : 31%
15 : 21%
16 : 15%
17 : 5%
18 : 4%
19 : 2%
20 : 1%
21 : 1%

3 : 1%
4 : 11%
5 : 46%
6 : 33%
7 : 6%
8 : 2%

10 : 1%

2 : 4%
3 : 80%
4 : 16%

2 : 24%
3 : 74%
4 : 2%

2 : 50%
3 : 49%
4 : 1%

2 : 93%
3 : 7%

104

16 : 3%
17 : 21%
18 : 19%
19 : 10%
20 : 23%
21 : 11%
22 : 10%
23 : 2%
24 : 1%

6 : 14%
7 : 42%
8 : 25%
9 : 15%

10 : 2%
11 : 1%
12 : 1%

3 : 27%
4 : 65%
5 : 8%

3 : 83%
4 : 17%

3 : 95%
4 : 5%

2 : 46%
3 : 54%

105

20 : 2%
21 : 7%
22 : 9%
23 : 26%
24 : 27%
25 : 14%
26 : 6%
27 : 3%
28 : 4%
29 : 1%
34 : 1%

8 : 28%
9 : 42%

10 : 18%
11 : 7%
12 : 3%
14 : 1%
15 : 1%

4 : 72%
5 : 26%
6 : 2%

3 : 46%
4 : 54%

3 : 79%
4 : 21% 3 : 100%

References

1 Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Zheng Li, and Giorgi Nadiradze. Distribu-
tionally linearizable data structures. In Proceedings of 30th on Symposium on Parallelism in Al-
gorithms and Architectures (SPAA’18), pages 133–142, 2018. doi:10.1145/3210377.3210411.

2 Dan Alistarh, Rati Gelashvili, and Joel Rybicki. Fast graphical population protocols, 2021.
arXiv:2102.08808.

3 Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour. Dynamic averaging load balancing
on cycles. In Proceedings of the 47th International Colloquium on Automata, Languages, and
Programming (ICALP’20), volume 168, pages 7:1–7:16, 2020. doi:10.4230/LIPIcs.ICALP.
2020.7.

4 Noga Alon, Ori Gurel-Gurevich, and Eyal Lubetzky. Choice-memory tradeoff in allocations.
Ann. Appl. Probab., 20(4):1470–1511, 2010. doi:10.1214/09-AAP656.

5 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 1999. doi:10.1137/S0097539795288490.

6 Nikhil Bansal and Ohad Feldheim. Well-balanced allocation on general graphs, 2021. arXiv:
2106.06051.

7 Itai Benjamini and Yury Makarychev. Balanced allocation: memory performance tradeoffs.
Ann. Appl. Probab., 22(4):1642–1649, 2012. doi:10.1214/11-AAP804.

ITCS 2022

https://doi.org/10.1145/3210377.3210411
http://arxiv.org/abs/2102.08808
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.1214/09-AAP656
https://doi.org/10.1137/S0097539795288490
http://arxiv.org/abs/2106.06051
http://arxiv.org/abs/2106.06051
https://doi.org/10.1214/11-AAP804

103:22 Balanced Allocations with Incomplete Information: The Power of Two Queries

8 Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel. Multiple-
choice balanced allocation in (almost) parallel. In Proceedings of 16th International Workshop
on Approximation, Randomization, and Combinatorial Optimization (RANDOM’12), pages
411–422, 2012. doi:10.1007/978-3-642-32512-0_35.

9 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced al-
locations: the heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006. doi:
10.1137/S009753970444435X.

10 Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
into-bins with nearly optimal load distribution. In Proceedings of 25th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’13), pages 326–335, 2013. doi:10.1145/
2486159.2486191.

11 Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey.
Internet Math., 3(1):79–127, 2006. doi:10.1080/15427951.2006.10129115.

12 Fan R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in
Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington,
DC; by the American Mathematical Society, Providence, RI, 1997. doi:10.1090/cbms/092.

13 Artur Czumaj and Volker Stemann. Randomized allocation processes. Random Structures
Algorithms, 18(4):297–331, 2001. doi:10.1002/rsa.1011.

14 D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous
distributed systems. IEEE Transactions on Software Engineering, SE-12(5):662–675, 1986.
doi:10.1109/TSE.1986.6312961.

15 Guy Even and Moti Medina. Parallel randomized load balancing: a lower bound for a more
general model. Theoret. Comput. Sci., 412(22):2398–2408, 2011. doi:10.1016/j.tcs.2011.
01.033.

16 Ohad N. Feldheim and Ori Gurel-Gurevich. The power of thinning in balanced allocation.
Electron. Commun. Probab., 26:Paper No. 34, 8, 2021. doi:10.1214/21-ecp400.

17 Ohad N. Feldheim, Ori Gurel-Gurevich, and Jiange Li. Long-term balanced allocation via
thinning, 2021. arXiv:2110.05009.

18 Ohad Noy Feldheim and Jiange Li. Load balancing under d-thinning. Electronic Communica-
tions in Probability, 25:Paper No. 1, 13, 2020. doi:10.1214/19-ecp282.

19 Kazuo Iwama and Akinori Kawachi. Approximated two choices in randomized load balancing.
In Proceedings of 15th International Symposium on Algorithms and Computation (ISAAC’04),
volume 3341, pages 545–557. Springer-Verlag, 2004. doi:10.1007/978-3-540-30551-4_48.

20 Y. Kanizo, D. Raz, and A. Zlotnik. Efficient use of geographically spread cloud resources.
In Proceedings of 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 450–457, 2013. doi:10.1109/CCGrid.2013.18.

21 R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a distributed
memory machine. Algorithmica, 16(4-5):517–542, 1996. doi:10.1007/BF01940878.

22 Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on graphs. In Proceedings
of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 434–443, 2006.
doi:10.1145/1109557.1109606.

23 Christoph Lenzen, Merav Parter, and Eylon Yogev. Parallel balanced allocations: The heavily
loaded case. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and
Architectures (SPAA’19), pages 313–322. ACM, 2019. doi:10.1145/3323165.3323203.

24 Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balancing
[extended abstract]. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC’11), pages 11–20, 2011. doi:10.1145/1993636.1993639.

25 Dimitrios Los, Thomas Sauerwald, and John Sylvester. Balanced allocations: Caching and
packing, twinning and thinning, 2021. arXiv:2110.10759.

26 M. Mitzenmacher. On the analysis of randomized load balancing schemes. Theory Comput.
Syst., 32(3):361–386, 1999. doi:10.1007/s002240000122.

https://doi.org/10.1007/978-3-642-32512-0_35
https://doi.org/10.1137/S009753970444435X
https://doi.org/10.1137/S009753970444435X
https://doi.org/10.1145/2486159.2486191
https://doi.org/10.1145/2486159.2486191
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1090/cbms/092
https://doi.org/10.1002/rsa.1011
https://doi.org/10.1109/TSE.1986.6312961
https://doi.org/10.1016/j.tcs.2011.01.033
https://doi.org/10.1016/j.tcs.2011.01.033
https://doi.org/10.1214/21-ecp400
http://arxiv.org/abs/2110.05009
https://doi.org/10.1214/19-ecp282
https://doi.org/10.1007/978-3-540-30551-4_48
https://doi.org/10.1109/CCGrid.2013.18
https://doi.org/10.1007/BF01940878
https://doi.org/10.1145/1109557.1109606
https://doi.org/10.1145/3323165.3323203
https://doi.org/10.1145/1993636.1993639
http://arxiv.org/abs/2110.10759
https://doi.org/10.1007/s002240000122

D. Los and T. Sauerwald 103:23

27 Michael Mitzenmacher, Andréa W. Richa, and Ramesh Sitaraman. The power of two random
choices: a survey of techniques and results. In Handbook of randomized computing, Vol.
I, II, volume 9 of Comb. Optim., pages 255–312. Kluwer Acad. Publ., Dordrecht, 2001.
doi:10.1007/978-1-4615-0013-1_9.

28 Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the (1 + β)-
choice process. Random Structures Algorithms, 47(4):760–775, 2015. doi:10.1002/rsa.20558.

29 A. Steger and N. C. Wormald. Generating random regular graphs quickly. Combinatorics,
Probability and Computing, 8(4):377–396, 1999. doi:10.1017/S0963548399003867.

30 Volker Stemann. Parallel balanced allocations. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’96), pages 261–269, 1996. doi:
10.1145/237502.237565.

31 Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case. In Proceedings
of 39th ACM Symposium on Theory of Computing (STOC’07), pages 256–265, 2007. doi:
10.1145/1250790.1250829.

32 Kunal Talwar and Udi Wieder. Balanced allocations: a simple proof for the heavily loaded case.
In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), volume 8572, pages 979–990, 2014. doi:10.1007/978-3-662-43948-7_81.

33 Konstantin Tikhomirov and Pierre Youssef. The spectral gap of dense random regular graphs.
Ann. Probab., 47(1):362–419, 2019. doi:10.1214/18-AOP1263.

34 Udi Wieder. Hashing, load balancing and multiple choice. Found. Trends Theor. Comput.
Sci., 12(3-4):275–379, 2017. doi:10.1561/0400000070.

35 S. Zhou. A trace-driven simulation study of dynamic load balancing. IEEE Transactions on
Software Engineering, 14(9):1327–1341, 1988. doi:10.1109/32.6176.

ITCS 2022

https://doi.org/10.1007/978-1-4615-0013-1_9
https://doi.org/10.1002/rsa.20558
https://doi.org/10.1017/S0963548399003867
https://doi.org/10.1145/237502.237565
https://doi.org/10.1145/237502.237565
https://doi.org/10.1145/1250790.1250829
https://doi.org/10.1145/1250790.1250829
https://doi.org/10.1007/978-3-662-43948-7_81
https://doi.org/10.1214/18-AOP1263
https://doi.org/10.1561/0400000070
https://doi.org/10.1109/32.6176

	1 Introduction
	2 Notation, Definitions and Preliminaries
	2.1 Probabilistic Tools

	3 Basic Relations between Allocation Processes
	4 Lower Bounds for One Quantile and One Threshold
	5 Upper Bounds for One Quantile
	6 Upper Bounds for More Than One Quantile
	6.1 Upper Bounds on the Original Quantile Process and Consequences
	6.2 Relaxed Quantile Process and Outline of the Inductive Step
	6.3 Proof Outline of Lemma 6.6
	6.4 Auxiliary Definitions and Claims for the proof of Lemma 6.6
	6.4.1 Analysis of the Drop of the Potentials Phi_j and Psi_j
	6.4.2 Auxiliary Probabilistic Lemmas on the Potential Functions
	6.4.3 Deterministic Relations between the Potential Functions

	7 Applications of the Relaxed Quantile Process
	7.1 (1+beta)-Process for large beta
	7.2 Graphical Balanced Allocation

	8 Conclusions
	9 Experimental Results
	References

