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Abstract

Title: Complements on Log Canonical Fano Varieties and Index Conjecture
of Log Calabi-Yau Varieties

Author: Yanning Xu

This thesis aims to generalise the theory of complements to log canonical
Fano varieties and relate theory of complements to the index conjecture of
log Calabi-Yau varieties. We mainly work over an algebraically closed field
of characteristic zero, more specifically over C.

We will first introduce some basic background theory for birational ge-
ometry, including notion of singularities, pairs, complements. We will then
cover some backgrounds of (log) Fano and Calabi-Yau varieties. We will also
state the main new results in the introduction.

The majority of work is then split into the following 4 sections: comple-
ments on surfaces, complements on log canonical 3-fold, index conjecture for
log Calabi-Yau varieties, relative 3-fold complements.

For the section about complements on surfaces, we will firstly cover the
known result about the theory for complements and then prove new results
about semi-dlt surfaces. We will extend the notion of complements to semi-
dlt surfaces and then prove a result for "gluing" complements for semi-dlt
surfaces. Then we will move on to prove results about boundedness of com-
plements for global log canonical Fano 3-fold. In other direction, we will
prove the index conjecture for log Calabi-Yau varieties in dimension 3 in full
generality and then prove some new inductive results towards the conjec-
ture. In the last chapter, I will include proof of the boundedness of comple-
ments for log Fano in the relative case in dimension 3. The last chapter is
a part of joint work, with Stefano Filipazzi and Joaquin Moraga, where we
proved a general theorem of boundedness of complements in dimension 3.
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1

Introduction

One key goal in the field of birational geometry is to classify all varieties up
to birational equivalence. The so called minimal model program (MMP) is
a process and a prediction of such classification. It predicts that all varieties
are built up, birationally, from three special types of varieties: Fano vari-
eties (KX negative varieties), Calabi-Yau varieties (KX trivial varieties) and
varieties of general type (KX positive varieties). This generalises the classifi-
cation of smooth projective curves. However, unlike the curve case, in higher
dimension, there isn’t, in general, a canonical smooth element in each bira-
tional equivalence class. However, certain varieties with mild singularities
turn out to be nicer in certain regards. Therefore, the minimal model pro-
gram proposes that we study these varieties with mild singularities, the so
called log canonical singularities. Therefore, it is very important to understand
singularities on the special varieties mentioned above.

A more or less classical result states that smooth Fano varieties in a fixed
dimension forms a bounded family. However its counter part in the singular
case (the so called BAB conjecture) has been a centre conjecture in the field of
birational geometry. Recently, BAB conjecture was proved in full generality
by Birkar. Its proof relies on a powerful tool, namely the theory of com-
plements, which is a way to understand and bound singularities on certain
special varieties.

The idea of complements originates in Shokurov’s paper on the existence
of smooth elements in anticanonical systems of Fano threefolds in the 70’s in
[Sho79]. Given a contraction X → Z of Fano-type over z ∈ Z, the theory of
complements predicts the existence of a positive integer n, so that | − nKX/Z|
contains an element with good singularities around z ∈ Z. Complements
were rigorously defined first in [Sho96]. They also introduced some induc-
tive scheme towards the existence of bounded complements for Fano-type
varieties in [PS01, PS09]. The boundedness of complements for Fano-type
varieties was proved by Birkar in [Bir19], which plays a key role in the proof
of the BAB conjecture.

One of the main motivations for the work in this thesis is to generalise the
theory of complements from Fano-type varieties to log canonical Fano vari-
eties. In this direction, the author has confirmed the boundedness of com-
plements for log canonical Fano varieties both in the global and the relative
cases in dimension 3. In particular, we have the following theorems, which
generalise [Bir19] results to the log canonical case in dimension 3.
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Theorem 1. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists a
natural number n depending only on R satisfying the following. Assume (X, B) is
a projective pair such that

• (X, B) is log canonical of dimension 3,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample.

Then there is an n-complement KX + B+ of KX + B.

Theorem 2. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural number n depending only on d and R satisfying the following. Assume
(X, B) is a quasi-projective pair such that

• (X, B) is log canonical of dimension 3,

• f : X → Z is a projective contraction,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample over z ∈ Z.

Then there is an n-complement KX + B+ of KX + B over z ∈ Z.

While dealing with log canonical Fano varieties, Calabi-Yau varieties show
up naturally. One such example is that a cone over an elliptic curve is a log
canonical Fano variety. Therefore, not surprisingly, the theory of comple-
ments for log canonical Fano varieties is closely related to the aspects of log
Calabi-Yau varieties, in particular, the index conjecture for log Calabi-Yau va-
rieties. In another direction, the author has also worked on the boundedness
of log canonical index for log canonical Calabi-Yau varieties. We will prove
various inductive results towards this conjecture. In particular, concretely,
we have the following theorem.

Theorem 3. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists a
natural number n depending only on R satisfying the following. Assume (X, B) is
a projective pair such that

• (X, B) is log canonical of dimension 3,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

Another important aspect when dealing with log canonical singularities
is that we have to deal with certain type of varieties that are not normal.
Luckily, these varieties are, in some sense, well behaved and form a class of,
the so called, semi log canonical varieties. Therefore, we need to generalise
the theory of complements and index conjecture to these varieties. In this
direction, we will show the following theorem.
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Theorem 4. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists a
natural number n depending only on R satisfying the following. Assume (X, B) is
a projective pair such that

• (X, B) is semi log canonical of dimension 3,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

The main focus of this thesis will be the proofs of the above theorems.
The author hopes that the approach in this thesis can be generalised further
to higher dimensional cases. In particular, a better understanding of the the-
ory of complements for log canonical Fano varieties and the index conjecture
for Calabi-Yau varieties can help to answer problems regarding boundedness
of singularities and certain boundedness questions for Calabi-Yau type vari-
eties. For example, as in [FMX19, Corollary 2], authors applied the theory of
complements to bound the local index for strict log canonical singularities in
dimension 4. Also recently, in [Bir20], the theory of Fano type complements
are used to understand boundedness of certain type of Fano type and log
Calabi-Yau fibration. We hope that the approach presented in this thesis can
maybe be used to extend these results to more general, i.e. non Fano type,
cases.
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Chapter 1

Background and Preliminary
Knowledge

In this chapter, we will introduce some basic terminologies and definitions
that we will use throughout the thesis. Also we will state some well-known
theorems in birational geometry that are of fundamental importance and are
applied repeatedly here. At the end of the chapter, we will state the main
results, whose proofs will be the main focus of this thesis.

1.1 Notations and Basic Definitions

Throughout this thesis, we will work over an algebraically closed field k of
characteristic zero, which in most cases, can be assumed to be C, the field of
complex numbers. All varieties considered here are normal, connected and
irreducible, unless otherwise stated. All divisors considered in this thesis
will be Q-Weil divisors, unless otherwise stated.

1.1.1 Hyperstandard sets

Let R be a subset of [0, 1]. For the rest of this thesis, we will assume that
R will be closed under addition. Then, we define the set of hyperstandard
multiplicities associated toR as

Φ(R) :=
{

1− r
m

∣∣∣ r ∈ R, m ∈N

}
.

When R = {0, 1}, we call it the set of standard multiplicities. Usually, we will
assume 0, 1 ∈ R, so that Φ({0, 1}) ⊂ Φ(R).

Now, assume thatR ⊂ [0, 1] is a finite set of rational numbers. Notice that
the additive closure of R in [0, 1] is also finite and depend only on R. Then,
Φ(R) is a set of rational numbers satisfying the descending chain condition
(DCC in short) whose only accumulation point is 1. We define I(R) to be the
smallest positive integer such that I(R) · R ⊂N. These coefficients will play
a natural and important role throughout this thesis.
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1.2 Birational Geometry

In this section, we will introduce some basic terminology and convention
for birational geometry that we will use throughout this thesis. Most of the
details on this section can be found in [KM98].

1.2.1 Contractions

In this thesis a contraction is a projective morphism of quasi-projective va-
rieties f : X → Z with f∗OX = OZ. In particular, f is surjective and has
connected fibers. Notice that, if X is normal, then so is Z.

Given any projective morphism f : X → Y between quasi-projective vari-

eties, we have the Stein factorization of f = h ◦ g, where X
g−→ Y′ h−→ Y with g

being a contraction and h being a finite morphism.

1.2.2 Birational Maps

A birational map f : X L99 Y is a rational map with a rational inverse between
varieties. In particular, X and Y have isomorphic open subsets. A birational
morphism is a birational map that is also a morphism.

1.2.3 Divisors

Let X be a normal variety, and let M be an R-divisor on X. We denote the
coefficient of a prime divisor D in M by µD M. If every non-zero coefficient
of M belongs to a set Φ ⊆ R, we write M ∈ Φ. Writing M = ∑ mi Mi
where Mi are the distinct irreducible components, the notation M≥a means
∑mi≥a mi Mi, that is, we ignore the components with coefficients < a. One
similarly defines M≤a, M>a, and M<a. Also bMc means rounding down all
coefficients of M.

Now let f : X → Z be a morphism to a normal variety. We say M is
horizontal over Z if the induced map Supp M→ Z is dominant, otherwise we
say M is vertical over Z.

Again let f : X → Z be a morphism to a normal variety, and let M and
L be Q-Cartier divisors on X. We say M ∼ L over Z (resp. M ∼Q L over Z)
if there is a Cartier (resp. Q-Cartier) divisor N on Z such that M− L ∼ f ∗N
(resp. M− L ∼Q f ∗N). For a point z ∈ Z, we say M ∼ L over z if M ∼ L over
Z possibly after shrinking Z around z. The properties M ∼Q L and M ∼Q L
over z are similarly defined.

1.2.4 Divisorial Sheaves

We will also introduce the notion of a divisorial sheaf. Let X be an S2 scheme.
A divisorial sheaf is a rank one reflexive sheaf. Note that if L is a divisorial
sheaf, then we can define L[m] := (Lm)∗∗, since tensor powers of a reflexive
sheaf may not be reflexive. We also note that if X is a normal variety, then
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divisorial sheaves correspond one to one to Weil divisors on X modulo linear
equivalence, via a Weil divisor D corresponding to the sheaf OX(D).

1.2.5 Pairs and Singularities

Here we will introduce the notion of a pair for normal varieties.

A sub-pair (X, B) is the datum of a normal quasi-projective variety and
a divisor B such that KX + B is Q-Cartier. If B≤1 = B, we say that B is
a sub-boundary, and if in addition B ≥ 0, we call it boundary. A sub-pair
(X, B) is called a pair if B ≥ 0. A sub-pair (X, B) is simple normal crossing
(or log smooth) if X is smooth, every irreducible component of Supp(B) is
smooth, and locally analytically Supp(B) ⊂ X is isomorphic to the intersec-
tion of r ≤ n coordinate hyperplanes in An. A log resolution of a sub-pair
(X, B) is a birational contraction π : X′ → X such that Ex(π) is a divisor and
(X′, π−1

∗ Supp(B) + Ex(π)) is log smooth. Here Ex(π) ⊂ X′ is the exceptional
locus of π, i.e., the reduced subscheme of X′ consisting of the points where π
is not an isomoprhism.

Let (X, B) be a sub-pair, and let π : X′ → X be a birational contraction
from a normal variety X′. Then, we can define a sub-pair (X′, B′) on X′ via
the identity

KX′ + B′ = π∗(KX + B),

where we assume that π∗KX′ = KX as Weil divisors. We call (X′, B′) the log
pull-back of (X, B) on X′. The log discrepancy of a prime divisor E on X′ with
respect to (X, B) is defined as aE(X, B) := 1− µE(B′). We say that a sub-pair
(X, B) is sub-log canonical (resp. sub-klt) if aE(X, B) ≥ 0 (resp. aE(X, B) > 0)
for every π and every E as above. When (X, B) is a pair, we say that (X, B)
is log canonical or klt, respectively. Notice that, if (X, B) is log canonical (resp.
klt), we have 0 ≤ B = B≤1 (resp. 0 ≤ B = B<1). Also in the case that B = 0,
we say X is canonical (resp. terminal) if aE(X, 0) ≥ 1 (resp. aE(X, B) > 1)
for every π and every E as above. We say (X, B) is strictly log canonical if it
is log canonical but not klt. The local version of these definitions are defined
similarly.

Let (X, B) be a sub-pair. A non-klt place is a prime divisor E on a bira-
tional model of X such that aE(X, B) < 0. A non-klt center is the image of
a non-klt place. If aE(X, B) = 0, we say that E is a log canonical place, and
the corresponding center is said to be a log canonical center. The non-klt locus
Nklt(X, B) is defined as the union of all the non-klt centers of (X, B). Sim-
ilarly, the non-log canonical locus Nlc(X, B) is defined as the union of all the
non-klt centers of (X, B) that are not log canonical centers. Notice that the
non-klt locus of (X, B) is the same as the union of log canonical centers on
(X, B) if (X, B) is a log canonical pair.
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Given a sub-pair (X, B) and an effective Q-Cartier divisor D, we define
the log canonical threshold of D with respect to (X, B) as

lct(X, B; D) := sup{t ≥ 0|(X, B + tD) is sub-log canonical}.

Now we will introduce the notion of a dlt pair. An lc pair (X, B) is called

divisorial log terminal or dlt if there exists a log resolution (Y, BY)
f−→ X with

KY + BY := f ∗(KX + B) such that µEBY < 1 for every exceptional divisor
E over X. Such resolutions are sometimes called Szabo resolutions. It is well
known that the above definition of dlt is equivalent to that there exists a
closed subset Z ⊂ X such that (X \ Z, B|X\Z) is log smooth and every di-
visor E on a birational model whose center on X is contained in Z satisfies
aE(X, B) > 0. In some sense, a dlt pair is klt pair with some simple normal
crossing singularities.

Q-factorial dlt model

Recall that a normal variety is called Q-factorial if every Weil divisor is Q-
Cartier. As a corollary of the famous result in [BCHM10], we have the fol-
lowing. If (X, B) is an lc pair, then there exists a Q-factorial dlt model (X′, B′)
and a birational morphism f : X′ → X such that f ∗(KX + B) := KX′ + B′.
Furthermore, the Ex( f ) is given by the union of bBc, i.e. all exceptional divi-
sors appear as coefficient 1 in B. Such (X′, B′) is called a Q-factorial dlt model
for (X, B).

1.2.6 B-divisors

This is an introduction to the notion of B-divisors. This is mostly taken from
[FMX19, Section 3.9]. Roughly speaking, a B-divisor on X is some divisor
defined compatibly on all birational models of X. More precisely, we have
the following. We will first define everything rigorously and then use a sim-
plified notation.

Let X be a normal variety, and consider the set of all proper birational
morphisms π : Xπ → X, where Xπ is normal. This is a partially ordered set,
where π′ ≥ π if π′ factors through π. We define the space of Weil b-divisors
as the inverse limit

Div(X) := lim←−
π

Div(Xπ), (1.2.1)

where Div(Xπ) denotes the space of Weil divisors on Xπ. Then, we define
the space of Q-Weil b-divisors DivQ(X) := Div(X)⊗Q. In the following, by
b-divisor we will mean a Q-Weil b-divisor. Equivalently, a b-divisor D can
be described as a (possibly infinite) sum of geometric valuations Vi of k(X)
with coefficients in Q,

D = ∑
i∈I

biVi, bi ∈ Q,
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such that for every normal variety X′ birational to X, only a finite number of
the Vi can be realized by divisors on X′. The trace DX′ of D on X′ is defined
as

DX′ := ∑
{i∈I | cX′ (Vi)=Di, codimX′ (Di)=1}

biDi

where cX′(Vi) denotes the center of the valuation on X′.
Given a b-divisor D over X, we say that D is a b-Q-Cartier b-divisor if

there exists a birational model X′ of X such that DX′ is Q-Cartier on X′, and
for any model r : X′′ → X′, we have DX′′ = r∗DX′ . When this is the case, we
will say that D descends to X′ and write D = DX′ . We say that D is b-effective,
if DX′ is effective for any model X′. We say that D is b-nef, if it is b-Q-Cartier
and, moreover, there exists a model X′ of X such that D = DX′ and DX′ is
nef on X′. The notion of b-nef b-divisor can be extended analogously to the
relative case.

Example 1.2.1. Let (X, B) be a sub-pair. The discrepancy b-divisor A(X, B) is
defined as follows: on a birational model π : X′ → X, its trace A(X, B)X′ is
given by the identity KX′ = π∗(KX + B) + A(X, B)X′ . Then, the b-divisor
A∗(X, B) is defined by taking its trace A∗(X, B)X′ on X′ to be A(X, B)X′ :=
∑ai>−1 aiDi, where A(X, B)X′ = ∑i aiDi.

We note that a b-divisor can just be thought of as a uniform system of
divisors on all birational models that is compatible with pushforward maps.
For simplicity, from now on we will simply use M instead of M to represent
certain b-divisors.

1.2.7 Generalized pairs

Due to technical reasons, it is natural to generalise the notion of a pair to in-
clude a B-divisor. These pairs are firstly formally introduced in [BZ16] and
nowadays, it is natural to consider these pairs when working with Fano va-
rieties as shown in the famous proof of BAB theorem in [Bir19]. Again most
of this section is taken from [FMX19].

A generalized sub-pair (X, B, M)/Z over Z is the datum of:

• a normal variety X → Z projective over Z;

• a divisor B on X;

• a b-Q-Cartier b-divisor M over X which descends to a nef/Z Cartier
divisor MX′ on some birational model X′ → X.

Moreover, we require that KX + B + M is Q-Cartier. If B is effective, we say
that (X, B, M)/Z is a generalized pair. The divisor B is called the boundary
part of (X, B, M)/Z, and M is called the moduli part. In the definition, we
can replace X′ with a higher birational model X′′ and M with MX′′ without
changing the generalized pair. Whenever MX′′ descends on X′′, then the da-
tum of the rational map X′′ 99K X, B, and MX′′ encodes all the information
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of the generalized pair.

Let (X, B, M)/Z be a generalized sub-pair and π : Y → X be a projective
birational morphism. Then, we may write

KY + BY + MY = π∗(KX + B + MX).

Given a prime divisor E on Y, we define the generalized log discrepancy of E
with respect to (X, B, M)/Z to be aE(X, B, M) := 1−multE(B′). If aE(X, B, M) ≥
0 for all divisors E over X, we say that (X, B, M)/Z is generalized sub-log
canonical. Similarly, if aE(X, B+ M) > 0 for all divisors E over X and bBc ≤ 0,
we say that (X, B, M)/Z is generalized sub-klt. When B ≥ 0, we say that
(X, B, M)/Z is generalized log canonical or generalized klt, respectively.

1.2.8 Canonical Bundle Formula

An important reason that we are interested in the generalised pairs above is
that they appear naturally in the so called canonical bundle formula. Canon-
ical bundle formula relates the information of the total space of a fibration to
the base of the fibration. We will here cover an overview of canonical bundle
formula. For more details, please refer to [FG14a].

An algebraic fiber space f : X → Z with a given log canonical divisor KX + B
which is Q-linearly trivial over Z is called an lc-trivial fibration. The following
canonical bundle formula for lc-trivial fibration from [FG14a] will be used.

Theorem 1.2.2. ([FG14a, Theorem 1.1], [PS09, Theorem 8.1]) Let f : (X, B)→
Z be a projective morphism from a log pair to a normal variety Z with connected
fibers, B be a Q-boundary divisor. Assume that (X, B) is sub-lc and it is lc on the
generic fiber and KX + B ∼Q 0/Z. Then there exists a boundary Q-divisor BZ and
a Q-divisor MZ on Z satisfying the following properties.

(i). (Z, BZ + MZ) is a generalized pair,
(ii). MZ is b-nef.
(iii). KX + B ∼Q f ∗(KZ + BZ + MZ).
Furthermore, Let I be a positive integer such that I(KX + B) ∼ 0 along the

generic fiber of f . Then, by [PS09, Construction 7.5], we may choose MZ in its
Q-linear equivalence class so that

I(KX + B) ∼ I f ∗(KZ + BZ + MZ). (1.2.2)

Furthermore, if the general fibers are curves, then I only depends on the coefficients
of B and, there exists n, depending only on coefficients of B such that nMZ is base-
point free.

Under the above notations, BZ is called the discriminant part and MZ is the
moduli part. We add a few words on the construction of BZ. For each prime
divisor D on Z we let tD be the lc threshold of f ∗D with respect to (X, B) over
the generic point of D, that is, tD is the largest number so that (X, B+ tD f ∗D)
is sub-lc over the generic point of D. Of course f ∗D may not be well-defined
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everywhere but at least it is defined over the smooth locus of Z, in particular,
near the generic point of D, and that is all we need. Next let bD = 1− tD, and
then define BZ = ∑ bDD where the sum runs over all the prime divisors on Z.

We also have the following constrains on the coefficients of BZ and MZ
if the fibers are Fano-type. We will generalise this to some non-Fano type
fibrations in later chapters.

Theorem 1.2.3 (Effective Canonical Bundle Formula for Fano-type Fibration).
[Bir19, Proposition 6.3] Let d ∈ N be a natural number and R ⊂ [0, 1] be a finite
set of rational numbers, then there exists q ∈ N and S depending only on d,R
satisfying the following. Assuming f : (X, B)→ Z is a projective contraction such
that

• (X, B) is projective lc of dimension d, and dim Z > 0,

• KX + B ∼Q 0/Z and B ∈ Φ(R),

• X is Fano type over some non-empty open subset U ⊂ Z, and

• the generic point of each non-klt centre of (X, B) maps into U.

Then we have
q(KX + B) ∼ q f ∗(KZ + BZ + MZ),

where BZ and MZ are the discriminant part and moduli part of canonical bundle for-
mula. Furthermore, we have BZ ∈ Φ(S) and qMZ is b-nef b-Cartier. In particular,
qMZ is an integral Weil divisor.

The above theorem is of huge importance because it allows to keep con-
trolling coefficients while using canonical bundle formula. It is expected that
the following conjecture (called semi-ample conjecture) will hold in the canon-
ical bundle formula.

Conjecture 1.2.4. [PS09, Conjecture 7.13.3] Let d ∈ N be a natural number and
R ⊂ [0, 1] be a finite set of rational numbers, then there exists q ∈ N and S
depending only on d,R satisfying the following. Assuming f : (X, B) → Z is a
projective contraction such that

• (X, B) is projective lc of dimension d, and dim Z > 0,

• KX + B ∼Q 0/Z and B ∈ Φ(R).

Then we have
q(KX + B) ∼ q f ∗(KZ + BZ + MZ),

where BZ and MZ are the discriminant part and moduli part of canonical bundle
formula. Furthermore, qMZ is b-base point free.

Remark 1.2.5. By [PS09, Theorem 8.1], the above conjecture holds when the
relative dimension is 1 and some other special cases are known when relative
dimension is 2.
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1.2.9 Minimal Model Program

Throughout this thesis, we will be using the well-known theorems about
Minimal Model Program (MMP). Due to the restriction of length, we will not
give a detailed overview of all results about minimal model program and all
its terminologies. For more details, please refer to [BCHM10].

1.2.10 Bounded Family

Here we will quickly review some facts about bounded families of couples.
A couple (X, B) consists of a normal projective variety X and B a reduced di-
visor on X. We note that here we are not assuming that KX + B is Q-Cartier,
hence we are not considering pairs.

An example of a couple is (X, Supp(B)) for any sub pair (X, B). Let P
be a set of couples. We say P forms a bounded family if there exists finitely
many projective morphisms Vi → Ti and reduced divisor Ci on Vi such that
for each (X, B) ∈ P , there exists i and t ∈ Ti a closed point, such that there
exists an isomorphism φ : X → Vi

t with φ(B) ≤ Ci
t. Here Vi

t and Ci
t represent

fibers over t ∈ Ti. We say that a set of pairs (X, B) is log bounded or forms a
bounded family if (X, Supp(B)) forms a bounded family.

Finally, we note some basic properties of log bounded family. If P form a
bounded family, then the varieties inP are clearly bounded in complex topol-
ogy hence bounded topologically. In particular, almost all numerical constant
regarding X are bounded (e.g. bn(X), the nth Betti-number is bounded). Also
if (X, B) is log bounded, then there exists a (Y, BY) that is also log bounded
for some (Y, BY), a log resolution of (X, B).
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1.3 Fano Varieties

We will introduce the notion of Fano varieties, which will be one of the ob-
jects to study in this thesis.

Let (X, B) be a pair and X → Z be a contraction. We say (X, B) is log
canonical Fano over Z if it is lc and −(KX + B) is ample over Z; if B = 0 we
just say X is Fano over Z. We say X is of Fano type over Z if (X, B) is klt
and −(KX + B) is nef and big/Z for some choice of B; it is easy to see this is
equivalent to the existence of a big/Z Q-boundary Γ so that (X, Γ) is klt and
KX + Γ ∼Q 0/Z.

We will give some examples of log canonical Fano and Fano type vari-
eties.

Example 1.3.1. X := Pn is Fano type with B = 0 for every n.

Example 1.3.2. Here we give an example of log canonical Fano but not Fano
type. This is a well-known construction. One such reference is in [Gon09,
Construction 5.1]. Let n ∈ N and S be a smooth (or terminal) variety with
KS ∼Q 0. Let S ⊂ Pn be some projective normal embedding. Let X0 be
the cone over S and φ : X → X0 be the blow-up at the vertex. It can be
shown that X = PS(OS

⊕OS(−H)), where H is a hyperplane section on
S ⊂ Pn and the φ-exceptional divisor E is isomorphic to S. It can be shown
that φ∗(KX0) = KX + E, hence X0 is log canonical. Also it can be shown by
[Gon09, Construction 5.1], that −KX0 ∼Q OX0(1) is ample. Therefore (X0, 0)
is a log canonical Fano variety that is not Fano type since it is not klt.

Classification of Fano varieties is one of the key topics in birational geom-
etry. Recently, we have the following theorem (so called the BAB conjecture).

Theorem 1.3.3. [Bir16, Theorem 1.1] Let d be a natural number and ε be a positive
real number. Then the projective varieties X such that

• (X, B) is ε-lc of dimension d for some boundary B,

• −(KX + B) is nef and big

forms a bounded family.

If we have some control over the coefficients of B, we have the following
stronger result, which will play a key role later in the thesis.

Theorem 1.3.4. [Bir20, Theorem 1.3] Let d be a natural number and ε, δ be a
positive real number. Then the set of pairs (X, B) such that

• (X, B) is ε-lc of dimension d,

• B ≥ δ,

• KX + B ∼Q 0 and B is big

form a log bounded family.

For Fano type or log canonical Fano varieties, it is natural to consider the
anti-pluricanonical linear system | − n(KX + B)|, and the study of these linear
systems is precisely summed up in the idea of complements.



14 Chapter 1. Background and Preliminary Knowledge

1.4 Complements

Now we are ready to introduce complements, the centre of interest in this
thesis. It is of centre of interest in the field of minimal model program. It is
used and played a crucial role in the recent famous proof of BAB theorem in
[Bir19]. The following definitions are taken from [FMX19]. Let (X, B) be a
log canonical pair, X → T a contraction, and n a positive integer. We say that
the divisor B+ is a Q-complement over t ∈ T if the following conditions hold
over some neighborhood of t ∈ T:

(i) (X, B+) is a log canonical pair;

(ii) KX + B+ ∼Q 0 over t ∈ T; and

(iii) B+ ≥ B.

Furthermore, we say that B+ is an n-complement for (X, B) over t ∈ T if the
following stronger version of condition (ii) holds:

(ii)′ n(KX + B+) ∼ 0 over t ∈ T.

In particular, if B+ is an n-complement, nB is an integral Weil divisor.

Remark 1.4.1. Notice that more general complements, where the above con-
dition (iii) is weakened, are used in the literature. See for example [Bir19,
2.18]. Since in this thesis condition (iii) is always satisfied, we will use this
stronger definition of complement, in order to avoid redundant terminol-
ogy and notation. The complements defined here are sometimes called good
complements in the literature.

Remark 1.4.2. If T = Spec C is a single point, then we call it the global case,
else we refer to it as the relative case . Also when T is not mentioned explicitly,
we assume that we are talking about the global case.

Remark 1.4.3. We also note that if B+ is an n-complement for (X, B), then
indeed, we have

0 ≤ n(B+ − B) ∼ −n(KX + B).

In particular, we have n(B+ − B) ∈ | − n(KX + B)| and it is a "nice" element
in the linear system since (X, B + (B+ − B)) is still lc. Therefore the comple-
ments can be viewed as "nice" elements in the plur-anticanonical log linear
system.

Now we give some basic examples of complements.

Example 1.4.4. Let X := P1, and P, Q, R, S be 4 distinct points on X. Let
B := 1

3(P + Q + R), then a 3-complement for (X, B) is B+ := B + S. Indeed,
we have 3(KX + B+) ∼ 0 and (X, B+) is lc.

Example 1.4.5. Let X be a normal variety such that KX ∼Q 0. Assuming
nKX ∼ 0, we see that (X, 0) is n-complemented with B+ = 0. This rather
trivial example will be of interest later in this thesis.
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Following the work of Birkar [Bir19], we can extend the notion of com-
plement to generalized pairs. Let (X, B, M)/Z be a generalized log canonical
pair, X → T a contraction over Z, and n a positive integer. We say that the
divisor B+ is a Q-complement over t ∈ T if the following conditions hold over
some neighborhood of t ∈ T:

(i) (X, B+, M) is a generalized log canonical pair;

(ii) KX + B+ + MX ∼Q 0 over t ∈ T; and

(iii) B+ ≥ B.

As above, we say that B+ is an n-complement for (X, B, M)/Z over t ∈ T if
the following stronger version of condition (ii) holds:

(ii)′ n(KX + B+ + MX) ∼ 0 over t ∈ T.

In particular, if B+ is an n-complement, and nM is an integral b-divisor, then
nB is an integral Weil divisor.

We will state the famous theorem on the existence of boundedness of com-
plements for Fano type varieties as in [Bir19].

Theorem 1.4.6. [Bir19, Theorem 1.8] Let d be a natural number and R ⊂ [0, 1]
be a finite set of rational numbers. Then there exists a natural number n depending
only on d and R satisfying the following. Assume (X, B) is a pair and X → Z is a
contraction such that

• (X, B) is lc of dimension d and dim Z > 0,

• B ∈ Φ(R),

• X is of Fano type over Z, and

• −(KX + B) is nef over Z.

Then for any point z ∈ Z, there is an n-complement KX + B+ of KX + B over z.

Theorem 1.4.7. [Bir19, Theorem 1.10] Let d and p be natural numbers and R ⊂
[0, 1] be a finite set of rational numbers. Then there exists a natural number n de-
pending only on d, p, and R satisfying the following. Assume (X′, B′ + M′) is a
projective generalized polarised pair with data φ : X → X′ and M such that

• (X′, B′ + M′) is generalized lc of dimension d,

• B′ ∈ Φ(R) and pM is b-Cartier,

• X′ is of Fano type, and

• −(KX′ + B′ + M′) is nef.

Then there is an n-complement KX′ + B′+ + M′ of KX′ + B′ + M′.

The goal and focus of the majorities to this thesis will be to generalise the
above theorem to varieties that possibly are not Fano-type.
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1.5 Calabi-Yau Varieties

As shown in example 1.3.2, log canonical Fano varieties that are not Fano
type are closely related to KX trivial varieties. Therefore, another centre ob-
ject of interest for this thesis will be the so called log Calabi-Yau varieties.
Hence we will introduce some basics of Calabi-Yau varieties here. In later
chapters, we will focus on some properties in more detail.

We will use a very general sense of Calabi-Yau varieties in this thesis. We
say (X, B) is log Calabi-Yau/Z if (X, B) is lc and KX + B ∼Q 0/Z. If B = 0,
then we say X is Calabi-Yau/Z. The minimal n such that n(KX + B) ∼ 0/Z is
called the index of the pair (X, B).

Example 1.5.1. Clearly if (X, B) is log canonical Fano, then there exists bound-
ary B′ such that (X, B′) is log Calabi-Yau. Examples of non Fano-type Calabi-
Yau varieties include elliptic curves, K3 surfaces, etc.

Also the index above is closely related to the boundedness of comple-
ments, in the sense that if (X, B) is log Calabi-Yau with index m, then m is
clearly the minimal n such that an n-complement exists for the pair (X, B)
(since all Q-complements for a log Calabi-Yau pair are trivial). One impor-
tant fact of log Calabi-Yau pairs is the following theorem on the coefficients of
the boundary. The following theorem is called ACC theorem for numerically
trivial pairs.

Theorem 1.5.2. [HMX14, Thoerem D] Fix a positive integer n and a set I ⊂ [0, 1],
which satisfies the DCC. Then there is a finite set I0 ⊂ I with the following property:

If (X, ∆) is a log canonical pair such that

• X is projective of dimension n,

• the coefficients of ∆ belong to I, and

• KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

We also have the following for generalised pairs. When (X′, B′ + M′) is
representing a generalised pair, we sometimes write M as the divisor in the
b-divisor class on a sufficiently high birational model of X′. Then in the spirit
of this notation, we have the following theorem.

Theorem 1.5.3. [BZ16, Theorem 1.6] Let Λ be a DCC set of nonnegative real
numbers and d a natural number. Then there is a finite subset Λ0 ⊂ Λ depending
only on Λ, d such that if (X′, B′ + M′) and M satisfy

(i) (X′, B′ + M′) is generalized lc of dimension d,
(ii) M = ∑ µjMj where Mj are nef Cartier divisors and µj ∈ Λ,
(iii) µj = 0 if Mj ≡ 0,
(iv) the coefficients of B′ belong to Λ, and
(v) KX′ + B′ + M′ ≡ 0,
then the coefficients of B′ and the µj belong to Λ0.
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Notice that a more or less trivial consequence of the above theorem is the
following corollary.

Corollary 1.5.4. Let Λ be a DCC set of nonnegative real numbers and d a natural
number. Then there is a finite subset Λ0 ⊂ Λ depending only on Λ such that if
(X′, B′ + M′) and M satisfy

(i) (X′, B′ + M′) is generalized lc of dimension d,
(ii) M = ∑ µjMj where Mj are nef Cartier divisors and µj ∈ Λ,
(iii) the coefficients of B′ belong to Λ, and
(iv) KX′ + B′ + M′ ≡ 0,
then the coefficients of B′ belong to Λ0.

Proof. Here we simply apply Theorem 1.5.3 and replace M by

N := ∑
Mj 6≡0

µjMj.

Then the conclusion follows from Theorem 1.5.3.
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1.6 B-birational Maps and B-representations

We introduce the notion of B-birational as in [Fuj00]. Let (X, B), (X′, B′) be
sub-pairs, we say f : (X, B) 99K (X′, B′) is B-birational if there is a common
resolution α : (Y, BY) → (X, B), β : (Y, BY) → (X′, B′) such that KY + BY =
α∗(KX + B) = β∗(KX′ + B′) and a commuting diagram as the following.

(Y, BY)

(X, B) (X′, B′)

α β

f

Let
Bir(X, B) := { f | f : (X, B) 99K (X, B) is B-birational}.

Let n be a positive integer such that n(KX + B) is Cartier. Then we define

ρn : Bir(X, B)→ Aut(H0(X, n(KX + B)))

to be the representation of the natural action of Bir(X, B) on H0(X, n(KX +
B)) by pulling back sections.

We have the following theorem on B-birational representations.

Theorem 1.6.1. [FG14b, Theorem 1.1] Let (X, B) be a projective dlt pair with
n(KX + B) ∼ 0 and n being even, then ρn(Bir(X, B)) is finite.

We also note that the above notions of B-birational map and B-representation
easily generalise to potentially disconnected pairs, (i.e. a disjoint union of lc
pairs).

We will discuss properties of this B-representation in much more detail
in later chapters. This representation turns out to be the key to study com-
plements on log canonical Fano varieties. In particular, it will be a vital tool
when we consider gluing sections on certain "nice" non-normal pairs, which
we will introduce in the next section.
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1.7 Slc Pairs

One key difficulty when working with log canonical singularities is that we
are forced to deal with certain non-normal varieties. Nevertheless, they be-
have nicely in some sense. It turns out we need to work with a broader class
of pairs called semi log canonical pairs. We will introduce the basic definition
and give some basic yet crucial examples here. More details of slc and sdlt
pairs will be introduced in much more detail later.

First we introduce demi-normal schemes as in [Kol13]. A demi-normal
scheme is a reduced scheme that is S2 and normal crossing in codimensional
1. Let ∆ be an effective Q-divisor whose support does not contain any irre-
ducible components of the conductor of X. The pair (X, ∆) is called a semi-log
canonical pair (an slc pair, for short) if

• KX + ∆ is Q-Cartier, and

• (X′, Θ) is log canonical, where π : X′ → X is the normalization and
KX′ + Θ = π∗(KX + ∆).

Remark 1.7.1. The definition in [FG14b] is compatible with the definition
used in [Kol13]. Furthermore, we remark that we will only be interested in
such X that is an algebraic variety and pure n-dimensional.

Remark 1.7.2. 1. Note that Θ = ∆′ + D′, where D′ is the conductor on
the normalisation and ∆′ is the divisorial part of the preimage of ∆ on
X′. For more detailed treatment, see [Kol13, Chapter 5]. We will also
discuss this in more detail in Chapter 2.

2. We also note that if X := ∪Xi where Xi are irreducible components of
X, and let X′i → Xi be their normalisations, then we have X′ = tX′i .

Similarly one defines a semi-divisorial log terminal pair (an sdlt pair, for
short). An slc pair (X, B) is said to be sdlt if the normalisation (X′, Θ) is
dlt in the usual sense and π : X′i → Xi is isomorphism. Note that here we
are using the definition in [Fuj00] instead of [Kol13]. This is fine since we
will only use semi dlt in the following setting. We remark that if (X, B) is a
usual dlt pair, then (bBc , Diff(B− bBc)) is semi-dlt. Also for sdlt pair (X, B)
it is clear that (KX + B)|Xi = KXi + Θi, where Θi := Θ|Xi . We also have the
following examples of demi-normal schemes, sdlt and slc pairs.

Example 1.7.3. A nodal curve given by y2z = x2(x− z) in P2 is an example
of a demi-normal scheme. However, a cuspidal curve y2z = x3 in P2 is not a
demi-normal scheme.

Example 1.7.4. Let (X, B) be a dlt pair and let S := bBc, then (S, Diff(B− S))
is sdlt.

Example 1.7.5. [FG14b, Example 2.6] Let (X, B) be Q-factorial lc with B a Q-
divisor. Let S := bBc and assume (X, B − εS) is klt for 0 < ε << 1. Then
(S, Diff(B − S)) is slc. In particular, if Si is an irreducible component of S,
then (Si, Diff(B− Si)) is also slc.
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1.8 Statement of the Main Results

In this section of the thesis, I will state the main results that will be presented
in this thesis. Firstly, I will state a few conjectures.

Conjecture 1.8.1. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is lc of dimension d,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample.

Then there is an n complement KX + B+ of KX + B.

Also we have the following conjecture in the relative case.

Conjecture 1.8.2. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is lc of dimension d,

• f : X → Z is a contraction,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample over z ∈ Z.

Then there is an n-complement KX + B+ of KX + B over z ∈ Z.

In a related direction, we have the boundedness of index conjecture.

Conjecture 1.8.3. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is lc of dimension d,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

Also we have the similar version of index conjecture, but for slc pairs.

Conjecture 1.8.4. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is slc of dimension d,
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• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

As we will see the index conjecture plays an important role in the proof of
log canonical Fano complements conjecture. Now the remaining of the thesis
will be devoted to the proofs of the following theorems. We will show that
all of the conjectures above hold in dimension d ≤ 3.

Theorem 1.8.5. [Xu19a, Theorem 1.2] Conjecture 1.8.1 holds when d ≤ 3.

Theorem 1.8.6. [FMX19, Proposition 10.1] Conjecture 1.8.2 holds when d = 3.

Theorem 1.8.7. [Xu19b] Conjecture 1.8.3 holds when d ≤ 3. Also Conjecture 1.8.3
holds when d = 4 with B 6= 0 and (X, B) klt . Conjecture 1.8.4 holds when d ≤ 2.

Theorem 1.8.8. [Xu19b] Conjecture 1.8.4 holds when d = 3 and Conjecture 1.8.3
holds when d = 4 and B 6= 0.

Remark 1.8.9. It is well-known that Conjecture 1.8.3 holds in dimension 2.
One possible reference would be [PS09]. We will include the proof later for
completeness.

The proof will be following from [Xu19a], [Xu19b] and [FMX19]. Finally,
the following theorem will be stated and only given outline of the proof. It
is proved in [FMX19] and due to the length and amount of technicalities in
the proof, this thesis will only go through a brief summary and outline of the
proof.

Theorem 1.8.10. [FMX19, Theorem 1] Let Λ ⊂ Q be a set satisfying the de-
scending chain condition with rational accumulation points. There exists a natural
number n only depending on Λ which satisfies the following. Let X → T be a
projective contraction between normal quasi-projective varieties so that

• (X, B) is a log canonical 3-fold,

• (X, B) is Q-complemented over t ∈ T, and

• the coefficients of B belong to Λ.

Then, up to shrinking T around t, we can find

Γ ∼T −n(KX + B)

such that (X, B + Γ/n) is a log canonical pair, i.e. there exists an n-complement
B+ := B + Γ/n for KX + B over t ∈ T.

Notice that although the result in Theorem 1.8.10 is much stronger than
the results in Theorem 1.8.5 and Theorem 1.8.6. However, the proof of The-
orem 1.8.10 uses both the results and proofs of Theorem 1.8.5 and Theorem
1.8.6, which is the main results that we will present in this thesis. The remain-
ing of this thesis will be devoted to the proof of the above new theorems.
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Chapter 2

Sdlt Complements and Surface
Complements

The goal of this chapter is to develop many necessary theories for later chap-
ters. As an immediate application, we will tackle the main conjectures in the
surface case, i.e. Conjecture 1.8.1 and Conjecture 1.8.4 in dimension 2. Firstly,
we will revisit the notion of divisorial adjunction for pairs. Then we will dis-
cuss some properties of sdlt complements.

Most of this chapter contains material in [Xu19a]. Background material
is taken mostly from [Kol13], [Bir19] and [Fuj00]. Most of the new results
proved by the author are taken from [Xu19a].

2.1 Adjunction

In this section, we review several kinds of adjunction and prove some ad-
junction formulae, especially for surfaces, which will be needed in the subse-
quent sections. In general, adjunction is relating the (log) canonical divisors
of two varieties that are somehow related. We are particularly interested in
how the (hyperstandard) coefficients of the boundaries are related.

We will start with a quick review on the theory of divisorial adjunction.

2.1.1 Divisorial Adjunction on a Prime Divisor

We briefly review [Bir19, Section 3.1]. We consider adjunction for a prime
divisor on a variety.

Let (X′, B′) be a pair such that KX′ + B′ is Q-Cartier with log resolution
φ : (X, B) → (X′, B′) where KX + B = φ∗(KX′ + B′). Assume that S′ is
the normalisation of a component of B′ with coefficient 1, and that S is its
birational transform on X. Let BS = (B− S)|S. We get

KS + BS = (KX + B)|S.
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Let ψ be the induced morphism S→ S′ and let BS′ = ψ∗BS. Then we get

KS′ + BS′ = (KX′ + B′)|S′

which we refer to as divisorial adjunction. Note that KS + BS = ψ∗(KS′ + BS′).

Remark 2.1.1. We sometimes write BS′ as Diff(S′, B′ − S′). If the reference
for S′ is clear, we sometime just write Diff(B′ − S′). Also note that if C′ is Q-
Cartier that doesn’t contain S′, then Diff(B′+C′− S′) = Diff(B′− S′) +C′|S′ .

Remark 2.1.2. We also note that KS′ + BS′ is determined up to linear equiva-
lence and BS′ is determined as a Q-Weil divisor.

Remark 2.1.3. This definition is the same as the definition given in [Kol13,
Chapter 4].

Remark 2.1.4. Assume (X′, B′) is lc. Then the coefficients of BS′ belong to
[0, 1] [[BZ16], Remark 4.8] and we have (S′, BS′) is also lc.

We also have a version of inversion of adjunction.

Lemma 2.1.5 (inversion of adjunction,[Kol13]). Let (X′, B′) be a Q-factorial pair
with KX′ + B′ being Q-Cartier. Assume S′ is a component of B′ with coefficient 1
and assume S′ is klt. Let

KS′ + BS′ = (KX′ + B′)|S′

be given by adjunction. If (S′, BS′) is lc, then (X′, B′) is lc near S′.

The next lemma is quite a well-known result, for example see [KA92,
Proposition 16.6], [MP03, Lemma 4.3]. We will state it as in [Bir19, Lemma
3.3]. It allows us to control coefficients when applying divisorial adjunction.

Lemma 2.1.6. [KA92, Proposition 16.6][MP03, Lemma 4.3][Bir19, Lemma 3.3]
Let R ⊂ [0, 1] be a finite set of rational numbers. Then there is a finite set of rational
numbers S ⊂ [0, 1] depending only on R satisfying the following. Assume

• (X′, B′) is lc of dimension d,

• S′ is the normalisation of a component of bB′c,

• B′ ∈ Φ(R), and

• (S′, BS′) is the pair determined by adjunction

KS′ + BS′ = (KX′ + B′)|S′ .

Then BS′ ∈ Φ(S).

We will later define a similar notion for slc adjunction.
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2.2 Properties of Slc and Sdlt Pairs and Adjunc-
tion

Here we will review some fundamental properties of slc and sdlt pairs. The
goal here is to develop a rigorous approach for adjunction, which we will use
later to prove a new form of adjunction to sdlt pairs. Most of this section is
based on [Kol13, Chapter 5] and [Fuj00].

2.2.1 Divisors on Deminormal Schemes

Starting with the standard notation, let (X, B) be an slc pair with normalisa-
tion X′. The conductor idealHomX(π∗OX′ ,OX) ⊂ OX is the largest ideal sheaf
on X that is also an ideal sheaf on X′. Therefore, it defines two subschemes
D ⊂ X and D′ ⊂ X′, which are called conductor divisors.

Then we can write the normalisation π : (X′, B′ + D′) → (X, B), where
B′ is the divisorial part of the inverse image of B and D′ is the conductor on
X′. We will firstly introduce the notion of divisors on X. There is a closed
subset Z ⊂ X of codimension at least 2 such that X0 := X\Z has only regular
and normal crossing points. We denote j : X0 → X to be the inclusion. Let
C be an integral Weil divisor on X such that its support doesn’t contain any
irreducible components of D, then

OX(C) := j∗(OX0(C|X0))

is a divisorial sheaf since C|X0 is Cartier on X0 [Kol13, Section 5.6.3]. It is also
clear that OX(C)[n] is the sheaf corresponding to the Weil divisor nC since X
is S2. Similarly we can define KX to be the pushforward of the canonical divi-
sor on X0. Now for C as above, we can confuse the notation ofOX(mKX +C)
with ω

[m]
X (C).

By [Kol13, Section 5.7.3], we know if mB is a Weil divisor on X, then we
have a canonical isomorphism

(π∗ω
[m]
X (mB))∗∗ ∼= ωX′(mD′ + mB)

and when m(KX + B) is Cartier, this simplifies to π∗ω
[m]
X (mB) ∼= ωX′(mD′ +

mB), hence we can write KX′ + B′ + D′ = π∗(KX + B). This explains the
notation we have in Chapter 1.

2.2.2 Conductor, Involution and Adjunction

Using the notation of an slc pair (X, B) with conductor divisor D and nor-
malisation (X′, B′ + D′). Let Dn be the normalisation of D′, then there is a
natural Galois involution τ : Dn → Dn induced by separating the nodes on
X. By divisorial adjunction we can write KDn + BDn := (KX′ + B′ + D′)|Dn .
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Rigorously we mean if we let ν : Dn → X′ be the natural morphism, and by
[Kol13, Chapter 4] , we have a natural isomorphism

Rn : ν∗(ω
[n]
X′ (nB′ + nD′)) ∼= ω

[n]
Dn(nBDn).

We also have the following lemma.

Lemma 2.2.1. [Kol13, Proposition 5.38] Let X be a quasi-projective deminormal
scheme and let π : X′ → X be normalisation. Let B be a Q-divisor on X and
define B′, D′, Dn, τ as above. Then (X, B) is slc if and only if (X′, B′+ D′) is lc and
DiffDn(B′) is τ-invariant.

the sdlt case

If (X, B) is sdlt, then we can use a much easier notation. Again let (X′, B′ +
D′) be its normalisation and X′ := tXi with Xi being the irreducible com-
ponents of X. Also denote KXi + Bi + Di := (KX′ + B′ + D′)|Xi . Then we
have

Dn := ti(tE a component of Di E).

Also note that since (X′, B′ + D′) is dlt, all components of D′ are normal
therefore the above adjunction is really just the restriction of divisors (for
some properly chosen KXi). In this case the above Rn map becomes

Rn : OX′(nKX′ + nB′ + nD′)|Dn → ODn(nKDn + nBDn)

sending
(si)i 7→ ((si|E)E a component of Di)i .

Therefore for the dlt case, it is fine to confuse Rn(s) with just s|Dn .
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2.3 Adjunction from Normal pairs to Sdlt Pairs

Now we are ready to define general adjunction to an sdlt boundary. We will
prove new results regarding the inversion of adjunction for this part. We will
start by talking about the log smooth case, then the strict dlt case and then
the general case.

Firstly assume (X, B) is log smooth and B is reduced. Since B is a normal
crossing divisor, we have ωB is a Cartier divisor, hence it corresponds to a
Weil divisor KB, whose support doesn’t contain any conductor of B. Follow-
ing [Kol13, Section 4.2], we see that we have ωX(B) ∼= ωB.

2.3.1 Dlt Adjunction

Let (X′, B′) be a dlt pair, and let S′ := bB′c. Let f : (X, B)→ (X′, B′) be a log
resolution such that any exceptional divisor E of f has a(E, X′, B′) > −1 and
KX + B = f ∗(KX + B). Then we have f is an isomorphism over generic points
of S′. Let S := bBc, and let g : S → S′ be the induced morphism. If we let
BS := (B− S)|S and BS′ = g∗(BS), we see that we have KS + BS = (KX + B)|S
and we have

KS′ + BS′ = (KX′ + B′)|S′ .
Sometimes, we will write BS′ as Diff(B′ − S′). Notice again we have KS +
BS = g∗(KS′ + BS′). It is clear that (S′, BS′) is a semi-dlt pair, see [FG14a].

If we write S′ := ∪iSi, where Si are the irreducible components of S′,
then Si are normal and the normalisation of S′ is simply just Sν := tSi. Let
π : Sν → S′ be the normalisation, let KSν + Bν = π∗(KS′ + BS′) and let
BSi = Bν|Si . Then it is clear KSi + BSi is just the divisorial adjunction of (X, B)
on the Si in the sense that

KSi + BSi = (KX + B)|Si .

Hence it is not hard to see that Lemma 2.1.6 and Lemma 2.1.5 also hold for
this type of adjunction.

2.3.2 General Case

Consider the case where we have a pair (X′, B′ := S′ + R′), with (X′, S′) dlt,
S′ reduced and R′ not containing any conductor divisor of S′. Then we can
define divisorial adjunction similar to the above. We let RS′ := R|S′ (we note
that RS′ is indeed a well defined Q-divisor, whose support doesn’t contain
the components of the conductor divisor on S′). Let KS′ + Diff(0) := (KX′ +
S′)|S′ and BS′ := Diff(0) + RS′ , then we have

KS′ + BS′ = (KX′ + B′)|S′ .
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Hence we have the following new lemma, which is similar to the inversion
of adjunction, but for sdlt adjunction.

Lemma 2.3.1. [Xu19a, Lemma 3.8] Let (X′, B′ := S′ + R′) be a Q-factorial pair
with (X′, S′) dlt, S′ reduced and R′ not containing any irreducible components of
S′. Assume B′, R′ both Q-divisors and write KS′ + BS′ := (KX′ + B′)|S′ . Assume
(S′, BS′) is slc, then (X′, B′) is lc near a neighbourhood of S′.

Proof. Since (X′, S′) is dlt, then all the irreducible components Si of S′ are
normal. Then S̄ := tSi

π−→ S′ is its normalisation. Let

KS̄ + Θ := f ∗(KS′ + BS′).

Then we see that (S̄, Θ) is lc. Therefore, (Si, Θi := Θ|Si) is lc. Notice that we
also have

KSi + Θi = (KX′ + B′)|Si

which is the normal divisorial adjunction. Notice that since (X′, S′) is dlt,
then each Si is klt. Now we can apply Lemma 2.1.5 and conclude that (X′, B′)
is lc near Si for each i. Hence (X′, B′) is lc near S′ as claimed.

The above lemma will be important when lifting complements and trying
to deduce properties of singularities of lifts of complements later on. Now
we have the notion of adjunction to sdlt pairs. Before we can define comple-
ments and show some examples of complements for slc pairs, we first need
to have a better understanding of the sections on slc pairs. This will be the
focus of the next section.
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2.4 Pre-admissible Sections and Admissible Sec-
tions

Here we quickly review the definitions of the preadmissible sections and the
admissible sections for dlt pairs. Most of this background material is from
[Fuj00]. We will continue to use the notation that we have used in Section
2.2.2.

Definition 2.4.1. Let (X, B) be an (possibly disconnected) sdlt pair with di-
mension n and we assume m(KX + B) is Cartier and let (X′, B′ + D′) be its
normalisation and Dn be the normalisation of D′ as in the above section.
Then we have the following notation defined inductively on dimension.

1. We say s ∈ H0(X,OX(m(KX + B)) is preadmissible if

s|Dn ∈ H0(Dn,ODn(m(KDn + BDn))

is admissible. This set is denoted by PA(X, m(KX + B)).
Here ODn(m(KDn + BDn)) := OX′(mKX′ + mB′ + mD′)|Dn

2. We say s ∈ H0(X,OX(m(KX + B)) is admissible if s is preadmissible
and g∗(s|Xj) = s|Xi for every g : (Xi, Bi + Di) 99K (Xj, Bj + Dj) B-
birational map, where X′ := tXi. This set of sections is denoted by
A(X, m(KX + B)).

Remark 2.4.2.

1. It is clear that if s is admissible, then s|Xi is invariant under B-birational
automorphisms for each (Xi, Bi + Di).

2. See [Gon09, Remark 5.2]. Assume (X, B) is sdlt and m(KX + B) is
Cartier. Let π : (X′, B′ + D′) → X be its normalisation. Then it is
clear that s ∈ H0(X, m(KX + B)) is (pre-)admissible if and only if π∗s ∈
H0(X′, m(K′X + B′ + D′)) is (pre-)admissible.

2.4.1 Descending Sections to Slc Pairs from Normalisation

Firstly we start with stating [Kol13, Proposition 5.8]. For simplicity we will
assume that m is even in the original proposition.

Proposition 2.4.3. [Kol13, Proposition 5.8] Let X be a demi-normal scheme and
B a Q-divisor on X such that the support doesn’t contain any components of the
conductor D. Assume m(KX + B) is Cartier and assume that m is even. Let
(X′, B′ + D′) be its normalisation. Then a section φ ∈ ω

[m]
X′ (mB′ + D′) descends

to a section of ω
[m]
X (mB) if and only if Rmφ is τ-invariant where τ : Dn → Dn is

the involution and Rm is the map defined above in Section 2.2.2.

It is easy to deduce the following lemma from the above criteria of gluing
sections.
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Lemma 2.4.4. [Fuj00, Lemma 4.2] Let (X,B) be an slc pair with m(KX + B) in-
tegral. Let π : (X′, B′ + D′) → X be its normalisation. Let X′ := tXi and
let KXi + Bi + Di := (KX′ + B′ + D′)|Xi . Let (Y, BY + DY) be a Q-factorial dlt
model of (X′, B′ + D′) in the sense that Y := tYi and let KYi + BYi + DYi :=
(KY + BY + DY)|Yi then (Yi, BYi + DYi) is a dlt model of (Xi, Bi + Di). Assume
that m(KY + BY + DY) is Cartier.

Now let s ∈ PA(Y, m(KY + BY +DY), then s descends to a section in H0(X, m(KX +
B)).

Now it is time to show that pre-admissible sections give us a way to pass
from linear equivalence to 0 on the normalisation to the linear equivalence to
0 on the slc variety.

Proposition 2.4.5. [Xu19a, Proposition 4.10] Assume (X, B) is an slc pair with
normalisation π : (X′, B′+ D′) and let (Y, BY + DY) be the dlt model for (X′, B′+
D′). Assume that we have n(KY + BY + DY) ∼ 0 and 0 6= s ∈ H0(Y, n(KY +
BY + DY))) is pre-admissible. Then n(KX + B) ∼ 0.

Proof. Firstly note that n(KY + BY + DY) ∼ 0 implies n(KX + B) is integral.
Hence we can apply Lemma 2.4.4 to get a section 0 6= t ∈ H0(X, n(KX + B)).
Also let s′ be the corresponding section on X′. In particular, we see that
n(KX + B) is an integral Weil divisor.

Again let Z be a codimensional 2 subset of X such that X0 := X\Z only
has regular or normal crossing points. Then n(KX + B)|X0 is Cartier. let
X′0 := π−1X0, we have OX′0

(n(KX′ + B′ + D′)|X′0)
∼= OX′0

via s′, hence we
get OX0(n(KX + B)|X0)

∼= OX0 via t. Therefore we conclude that OX(n(KX +
B)) ∼= OX since X is S2.

Now with this new language, it is time to introduce the definition of com-
plements for slc and sdlt pairs in the next section.
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2.5 Complements for Slc Pairs

Now we are ready to define complements for slc pairs.

Let f : (X, B) → Z be a projective contraction and z ∈ Z be a closed
point. We say KX + B+ is an n-complement for KX + B over z if we have the
following properties (potentially after shrinking Z near z):

• (X, B+) is slc,

• n(KX + B+) ∼ 0 over z ∈ Z, and

• B+ ≥ B.

Remark 2.5.1. Notice that this definition guarantees that B+ − B′ is an effec-
tive Q-Cartier divisor that doesn’t include any irreducible components of the
conductor of X.

We will give an easy example of slc complements.

Example 2.5.2. Let X be given by y2z = x2(x − z) in P2 with coordinates
(x : y : z) and B = 0. This is a nodal curve in P2. Then 2KX ∼ 0 and hence
KX is 2-complemented with B+ = 0.

The following is a slightly more involved example.

Example 2.5.3. Let X = V(xy = 0) in P2 with coordinates (x : y : z) and
B = 0. Let P := (0 : 1 : 1) and Q := (1 : 0 : 1) be 2 distinct points on X. Then
a 1-complement for KX is B+ := P + Q. Notice that indeed (X, B+) is slc (in
fact it is sdlt). We also have KX + B+ ∼ 0: Indeed X′ the normalisation of X is
just the disjoint union of P1. Then it can be easily verified that from Lemma
2.4.4, that the section on X′ does descend to a section on X, and hence we
have KX + B+ ∼ 0.

Finally, we will state a result that will give us a big picture of how to
construct slc complements in general.

Theorem 2.5.4. [Kol13, Theorem 5.38] Let X be demi-normal and B a Q-divisor
on X. Let (X′, B′+ D′) being the normalisation of (X, B). Let Dn be the normalisa-
tion of D′ and let τ : Dn → Dn be the corresponding involution. Then the following
are equivalent:

• (X, B) is slc.

• (X′, B′ + D′)is lc and Diff(Dn, B′) is τ-invariant.

Combining all of these, we have the following main result on comple-
ments for sdlt pairs, which is a partial step towards [Xu19a, Proposition 6.1].
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Proposition 2.5.5. Let (X, B) be an sdlt pair with f : (X′, B′+ D′) := t(Xi, Bi +
Di) → X be its normalisation where D′ is the conductor divisor and τ : Dn → Dn

is the involution, with Dn the normalisation of D′. Let n be an even integer. Assume
there is a Q-divisor R′ := tRi ≥ 0 with Ri Q-divisor on Xi, such that:

1. n(KX′ + B′ + R′ + D′) ∼ 0,

2. (Y′, B′ + R′ + D′) is lc (hence it implies that R′ doesn’t contain any compo-
nents of D′),

3. R′|Dn is τ-invariant.

4. there exists 0 6= s ∈ PA(X′, n(KX′ + B′ + R′ + D′)).

Then letting R be the pushforward of R′ to X, we have n(KX + B + R) ∼ 0
and (X, B + R) is still slc. In particular B+ := B + R is an slc n-complement for
(X, B).

Remark 2.5.6. Note that the above proposition essentially gives an essential
and necessary condition for constructing complements for sdlt pairs. It says
the n-complements on each irreducible component give a global n-complement
if the divisors can be glued up in a trivial sense. We also note that the condi-
tion (3) is needed since it is satisfied if R′ is the pullback of an n-complement
from X.

Proof. Firstly, using the assumptions 1,2,3 above, we see that the conditions
in Theorem 2.5.4 are satisfied, therefore (X′, B′ + R′) is indeed an slc pair. In
particular this implies that R′ is Q-Cartier. Furthermore, using condition 4
and by Proposition 2.4.5, we also have n(KX + B + R) ∼ 0. Therefore B+ :=
B + R is an slc n-complement for (X, B) as required.

Therefore, we see that in order to construct complements for sdlt pairs,
we need to construct complements on each irreducible component in a com-
patible way (see condition 3 in the above). Now the goal for the next sec-
tion is to show that subject to some conjectures which we will show for low
dimension, condition 4 (i.e. the existence of pre-admissible sections) can be
derived from the first 3 conditions (potentially we need to increase n by some
bounded number). This will be the focus of the next chapter.

However, before ending the chapter, I will prove some inductive approach
to complements and also prove Conjecture 1.8.1 in dimension 2.
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2.6 Inductive Approach to Global Complements

This is the main inductive step that we will need to prove complements for
log canonical Fano variety in the global case. More technicalities are needed
for the relative case, but the global case is quite straight forward. The fol-
lowing proposition and proof are very similar to that of [Bir19, Proposition
6.7]. However, we need to deal with sdlt adjunction and in particular sdlt
inversion of adjunction, which is the key results that we have derived from
the earlier sections.

Proposition 2.6.1. Let R ⊂ [0, 1] be a finite subset of rationals. Let (X, B) be a
Q-factorial dlt pair with B ∈ Φ(R) and −(KX + B) nef and big. Let S := bBc and
∆ := B− S, and let KS + BS := (KX + B)|S. We have (S, BS) is an sdlt pair. Let
n be a positive integer such that nR ⊂ N. Let ∆S := BS − bBSc, then BS = ∆S.
Suppose further (KS + BS) has an n-complement: More precisely, suppose there is
RS ≥ 0 and B+

S := BS + RS such that

1. (S, B+
S ) is slc ,

2. n(KS + B+
S ) ∼ 0.

Then there is an n-complement KX + B+ := KX + B + R for KX + B with R ≥ 0
and R|S = RS.

Proof. Let f : (Y, BY)→ X be a Szabo log resolution of (X, B), i.e. f is an iso-
morphism over all generic points of all lc centres of (X, B), with KY + BY :=
f ∗(KX + B). let T := B=1

Y and we also use f : T → S as the birational contrac-
tion induced by f . Let ∆Y := BY− T and let KT +∆T := (KY + T)|T +∆Y|T =
(KY + BY)|T. We see that KT + ∆T = f ∗(KS + BS), and since ∆T < 1, we have
BS < 1 and hence BS = ∆S, where ∆S := f∗∆T.

Now let N := −(KY + BY) and define

L := −nKY − nT − b(n + 1)∆Yc = nN + n∆Y − b(n + 1)∆Yc

which is an integral divisor hence Cartier. We see that

L− T = KY+ < (n + 1)∆Y > +(n + 1)N.

Hence we have H1(Y, L− T) = 0 since N is nef and big, (Y,< (n + 1)∆Y >)
is klt. Therefore we have

H0(Y, L)� H0(T, L|T).

Now notice that L|T = nN|T + n∆T − b(n + 1)∆Tc. Since n(KS + B+
S ) ∼ 0,

pulling back to T, we get nN|T = −n(KT + BT) ∼ f ∗(nRS).

Hence L|T ∼ f ∗(nRS) + n∆T − b(n + 1)∆Tc := GT. It is clear that GT is
integral and GT > −1, hence we get GT ≥ 0. By the above, there exists
GY ≥ 0, an integral divisor with GY|T = GT and L ∼ GY. Pushing forward
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to get −n(KX + B) + n∆− b(n + 1)∆c ∼ G ≥ 0, where G = f∗GT, hence we
get n(KX + B + 1

n G− ∆ + 1
n b(n + 1)∆c) ∼ 0. Here we remark that since RS

doesn’t contain any components of the conductor divisor of S and ∆T also
doesn’t contain any components of conductor divisors, we see that GT also
doesn’t contain any components of conductor divisor for T. Therefore, G
doesn’t contain any codim≤ 2 lc centre of (Y, T).

Now let D be a component of ∆ with coefficients 1− r
m with r ∈ R and m ∈

N, then µD(−n∆ + b(n + 1)∆c) = −n + rn
m +

⌊
n + 1− r(n+1)

m

⌋
. If µD(−n∆ +

b(n + 1)∆c) < 0, then we must have n − rn
m = a + b, where a ∈ N and

0 < b < r
m ≤

1
m . This means that rn

m + b is an integer, but this is not possible
since rn ∈N by assumption. Hence we have −n∆ + b(n + 1)∆c ≥ 0.

Letting R := 1
n G − ∆ + 1

n b(n + 1)∆c ≥ 0, we have n(KX + B + R) ∼ 0.
Letting B+ := B + R, we see that n(KX + B+) ∼ 0. Also by earlier remarks,
we see that R doesn’t contain any codim ≤ 2 lc centre of (X, B).

Now −n f ∗(KX + B + R) = nN + n∆Y − b(n + 1)∆Yc − G since nN + n∆Y −
b(n + 1)∆Yc − G = L − G ∼ 0. We also have (nN + n∆Y − b(n + 1)∆Yc −
G)|T = L|T − GT = −n(KT + BT) + n∆T − b(n + 1)∆Tc − ( f ∗(nRS) + n∆T −
b(n + 1)∆Tc) = −n f ∗(KS + BS + RS). Hence we have

(KX + B + R)|S = KS + BS + RS.

Since (S, BS + RS) is slc, we have KX + B+ is lc but not klt near S by sdlt in-
version of adjunction i.e. Lemma 2.3.1. Now applying connectedness lemma
on −(KX + B + (1− ε)R) (note this is nef and big) for some small ε > 0, we
see that KX + B + R is lc globally, which proves the proposition.

Now we will apply this to prove complements for log canonical Fano
varieties in dimension ≤ 2 in the next section.
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2.7 Complements for Log Canonical Fano Varieties
in Dimension ≤ 2

We will finish the chapter by proving some basic and yet important results for
boundedness of complements for lc Fano varieties in dimension ≤ 2. Most
of this section is taken from [Xu19a].

We start by considering the curve and surface case.

2.7.1 The Case for Curves

Firstly we will consider complements on curves. The following is more or
less an obvious fact.

Lemma 2.7.1. Let p ∈ N and R ⊂ [0, 1] be a finite set of rational numbers. Then
there exists a natural number n depending only on p and R satisfying the following.
Assume (X, B + M) is a projective pair such that

• (X, B + M) is generalised lc with X a smooth curve,

• B ∈ Φ(R), and pM is integral,

• −(KX + B + M) is nef.

• M = 0 if X is an elliptic curve.

Then there is an n-complement KX + B+ + M of KX + B + M.

Proof. It is clear that X is either an elliptic curve (which implies B+ = B =
M = 0 and n = 1), or X is a rational curve in which case X is Fano hence we
can use Theorem 1.4.7.

Now we consider the case where (X, B) is an sdlt curve, this means that
X itself is a smooth normal crossing curve.

Proposition 2.7.2. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there
exists a natural number n depending only on R satisfying the following. Assume
(X, B) is a projective pair such that

1. (X, B) is sdlt curve,

2. B ∈ Φ(R), and

3. −(KX + B) is nef.

Then there is an n-complement KX + B+ of KX + B.

Proof. Using Lemma 2.7.1, we see that on each irreducible component, there
is an n-complement for some n depending only on R. We can assume n
is even. Now it is clear that we can choose complements such that they are
disjoint from the double point locus of X (this is clear in the elliptic curve case
and for the rational curve case, this follows from the fact that any two points
on P1 are linearly equivalent). Notice that either X is an elliptic curve or a
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cycle of P1 or a chain of P1. In the first two cases, we have KX ∼ 0 and hence
the result is trivial. For the last case, we can simply choose complements on
the end of 2 chain as in Example 2.5.3. An alternative way (more theoretic
way) to prove the results can be found in the next chapter.

2.7.2 Complements for Log Fano Surfaces

Theorem 2.7.3. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural number n depending only on R satisfying the following. Assume (X′, B′)
is a pair such that

• X′ is a projective surface, (X′, B′) is lc,

• B′ ∈ Φ(R), and

• −(KX′ + B′) is ample.

Then there is an n-complement KX′ + B′+ of KX′ + B′ such that B′+ ≥ B′.

We will also show that

Theorem 2.7.4. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural number n depending only on R satisfying the following. Assume (X′, B′)
is a pair , such that

• X′ is a projective surface, (X′, B′) is lc,

• B′ ∈ Φ(R), and

• −(KX′ + B′) is nef and big.

Then there is an n-complement KX′ + B′+ of KX′ + B′.

Proof of Theorem 2.7.4. By taking small Q-factorization, we can assume (X′, B′)
is Q-factorial dlt. Let S := bB′c and let KS + BS := (KX′ + B′)|S, we see that
(S, BS) is sdlt and −(KS + BS) is nef. Also by Lemma 2.1.6, we see that there
is, S, a finite subset of Q∩ [0, 1], depending only on R, such that BS ∈ Φ(S).
Hence we see that KS + BS has an n-complement KS + B+

S with B+
S ≥ BS for

some bounded n depending only on R. We can also assume nR ∈ N. Now
we are done by applying Proposition 2.6.1.

Proof of Theorem 2.7.3. This follows from Theorem 2.7.4 and considering a Q-
factorial dlt model of (X′, B′).
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Chapter 3

Index Conjecture for Log
Calabi-Yau Pairs

This chapter is dedicated to the following conjectures. Most of this chapter is
from [Xu19b].

Conjecture 3.0.1. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is lc of dimension d,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

Conjecture 3.0.2. Let d be a natural number and R ⊂ [0, 1] be a finite set of
rational numbers. Then there exists a natural number n depending only on d and R
satisfying the following. Assume (X, B) is a projective pair such that

• (X, B) is slc of dimension d,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• KX + B ∼Q 0.

Then n(KX + B) ∼ 0.

Remark 3.0.3. We note that it is obvious that the above 2 conjectures hold in
d = 1.

Our goal is to prove Theorem 1.8.7 in this chapter. Also we will show its
relation with complements as well in this chapter. This chapter will be di-
vided into 2 general themes. Firstly, we will prove some inductive statement
regarding the above 2 conjectures. Then we will spend some time develop-
ing some results in lower dimension regarding the results. Finally, we will
illustrate the relationship with theory of complements.

Remark 3.0.4. By Theorem 1.5.2, it suffices to prove the above conjecture
when coefficients of B belong to R, a finite set of rationals. Therefore, for the
rest of the chapter, we will assume coefficients of B always lie inside some
finite set.
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3.1 Inductive Approach for Normal Pairs

This section will be devoted to developing inductive approach of the conjec-
tures. Firstly, we will state 3 further conjectures: either B = 0 and X is klt, or
(X, B) klt and B 6= 0, or (X, B) is strictly lc (i.e. not klt).

Conjecture 3.1.1. Let d be a natural number. Then there exists n, a positive integer,
depending only on d such that if X is a klt Calabi-Yau of dimension d, i.e. KX ∼Q 0,
then nKX ∼ 0.

Notice that the above conjecture is really related to the mld near 1 for
Calabi-Yau varieites.

Conjecture 3.1.2. Let d be a natural number and R be a finite set of rationals. Then
there exists n, a positive integer, depending only on d,R such that if (X, B) is a klt
log Calabi-Yau of dimension d with B > 0, i.e. KX + B ∼Q 0, and B ∈ R then
n(KX + B) ∼ 0.

Conjecture 3.1.1 together with Conjecture 3.1.2 are called the index con-
jecture for klt log Calabi-Yau pairs.

Conjecture 3.1.3. let d be a natural number and R be a finite set of rationals. Then
there exists n, a positive integer, depending only on d,R such that if (X, B) is a
stricly log canonical log Calabi-Yau of dimension d with KX + B ∼Q 0 and B ∈ R,
then n(KX + B) ∼ 0.

Clearly Conjecture 1.8.3 is equivalent to Conjecture 3.1.1 + Conjecture
3.1.2 + Conjecture 3.1.3. We have the following inductive results in this the-
sis, i.e. index conjecture in lower dimension for slc pairs implies the strict lc
index conjecture for normal pairs.

Theorem 3.1.4. Assuming Conjecture 1.8.4 holds in dimension≤ d− 1, then Con-
jecture 3.1.3 holds in dimension d.

We have the following results.

Theorem 3.1.5. Assuming Conjecture 3.1.1 in dimension≤ d− 1, then Conjecture
3.1.2 holds in dimension ≤ d.

In particular, combining the above, we have the following theorem.

Theorem 3.1.6. Assuming Conjecture 3.1.1 holds in dimension≤ d and Conjecture
1.8.4 holds in dimension ≤ d− 1, then Conjecture 1.8.3 holds in dimension ≤ d.

Proof. This follows from Theorem 3.1.5 and Theorem 3.1.4.

Therefore, we show that the Conjecture 1.8.3 is equivalent to the absolute
klt Calabi-Yau index in the same dimension case (i.e. B = 0 and X is klt) and
slc index conjecture in low dimension.

The remaining of this section will be devoted to the proofs of Theorem
3.1.5 and Theorem 3.1.4.
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3.1.1 Proof of Theorem 3.1.5

Firstly, we show a more or less well-known result. We will include its proof
for reader’s convenience.

Lemma 3.1.7. [HX14, Proposition 3.1] Let d be a natural number and R be a finite
set of rationals. Then there exists ε depending only on d,R such that if (X, B) is a
pair such that (X, B) is klt, B ∈ R and KX + B ∼Q 0, then (X, B) is ε-klt.

Proof. We use ACC Theorem as in [HMX14]. Suppose the lemma is false,
then there exists a sequence εi → 0 such that we have a pair (Xi, Bi) klt of
dimension d with Bi ∈ R, KXi + Bi ∼Q 0 and there exists a divisor Ei such
that a(Ei, Xi, Bi) = εi. In particular, by considering the plt blowup extracting
divisor Ei, there exists a birational morphism fi : X′i → Xi such that KX′i

+

Bi + (1− εi)Ei = f ∗i (KXi + Bi). Also we have KX′i
+ Bi + (1− εi)Ei ∼Q 0. This

is a contradiction to Theorem 1.5.2.

Here we need to use the following Theorem from [DCS16].

Theorem 3.1.8. [DCS16, Theorem 3.2] Let (X, B) be a klt Calabi-Yau pair with
B > 0. Then there exists a birational contraction π : X 99K X′ to a klt Calabi-Yau
pair (X′, B′ := π∗B), B′ > 0 and a tower of morphisms

X′ = X0
p0−→ X1

p1−→ X2
p2−→ . . .

pk−1−−→ Xk

with k ≥ 1 such that

• for any 1 ≤ i < k there exists a boundary Bi 6= 0 on Xi and (Xi, Bi) is a klt
Calabi-Yau Pair.

• for any 0 ≤ i ≤ k, the morphism pi is a KXi Mori fiber space, and

• either dim Xk = 0, i.e. Xk = pt or dim Xk > 0 and KXk ∼Q 0

Now it follows easily from [Bir20, Theorem 1.4] that we have the follow-
ing.

Proposition 3.1.9. Let d be a natural number and R be a finite set of rationals.
Let F be the set of (X, B), dimension d klt Calabi-Yau pair (i.e. (X, B) klt with
KX + B ∼Q 0) with B ∈ R such that the corresponding Xk = pt as in the above
theorem. Let F ′ be the corresponding set of pairs of the form (X′, B′). Then F ′
forms a bounded family hence there is an integer n depending only on d,R such that
n(KX + B) ∼ 0 for any (X, B) ∈ F .

Proof. Notice that, by using the above lemma, we are done by applying [Bir20,
Theorem 1.4] as all conditions are satisfied.

Now we are ready to prove Theorem 3.1.5.
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Proof of Theorem 3.1.5. By the above proposition, it suffices to consider (X, B)
such that after applying Theorem 3.1.8, we end up with dim Xk > 0 and
KXk ∼Q 0. Note that since we only care about the index, we can replace X
with X′. We will denote p : X → Z := Xk to be the composition of all the pi.

Firstly, we note that p is a contraction. Let (F, BF := B|F) be the general
fiber of p. Firstly we note that restricting the morphism pi to F, we can de-
duce that (F, BF) belongs to a bounded family depending only on d,R using
Proposition 3.1.9. Hence, there exists r depending only on d,R such that
r(KF + BF) ∼ 0. We can apply canonical bundle formula and get

r(KX + B) ∼ r f ∗(KZ + BZ + MZ).

We can deduce that KZ + BZ + MZ ∼Q 0. However KZ ∼Q 0. This implies
that BZ = 0 and MZ ≡ 0. Now we can apply [Flo14, Theorem 1.3], to deduce
that there exists m depending only on d,R such that mKZ ∼ 0. We write n :=
mr. Hence, we deduce that n(KX + B) ∼ n f ∗KZ. Now since dim Z < dim X,
by hypothesis, we know that there is a bounded q depending only on d, such
that qKZ ∼ 0. By replacing n with nq, we can deduce that n(KX + B) ∼ 0 for
some n depending only on d,R.
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3.1.2 Proof of Theorem 3.1.4

Proof of Theorem 3.1.4. Since (X, B) is lc but not klt, it suffices to assume that,
after replacing (X, B) with a Q-factorial dlt model, (X, B) is dlt and bBc 6=
0. Choose ε > 0, a small rational number and run an MMP on KX + B −
ε bBc ∼Q −ε bBc. Since it is not pseudo-effective, we will end up with a
Mori-Fiber space f : X′ → V with dim V < dim X . Now replacing X by X′,
we can assume X = X′. Now we consider different cases of the dimension of
V.

1. dim V = 0: In this case, X is a Fano type since KX + B− ε bBc is anti-
ample globally and (X, B − ε bBc) is klt by construction. By bound-
edness of complements applying on KX + B, we see that there is a
bounded n depending only on d,R such that n(KX + B) ∼ 0.

2. dim V = dim X − 1: In this case, we see that the general fiber of f :
X → V is a rational curve. By canonical bundle formula and since X is
Fano type over V, there exists S ⊂ [0, 1] finite and q depending only on
d,R such that

q(KX + B) ∼ q f ∗(KV + BV + MV),

where BV ∈ S and qMV is b-Cartier. Note that since dim V = dim X −
1, by [PS09], we can assume that, by replacing q by a bounded multiple,
we have qMV is b-effective-base-point-free. Hence by possibly replac-
ing S, we can write

q(KX + B) ∼ q f ∗(KV + BV),

where BV ∈ S. Now applying Conjecture 1.8.3 in lower dimension, we
get there exists a bounded n depending only on S, which depends only
on d,R, such that n(KV + BV) ∼ 0. Therefore nq(KX + B) ∼ 0, which
proves the result.

3. dim V > 0 and dim V ≤ dim X − 2: Firstly, we see that f : X → V is a
Fano-type fibration. In this case, the general fiber has dimension ≥ 2.
Now since ε bBc is ample over V, there exists S ∈ bBc that is horizontal
over V. By divisorial adjunction, we can write

KS + BS = (KX + B)|S.

Note that here S may not be normal, but (S, BS) is slc by Example 1.7.5.
Note that coefficients of BS lie in a finite set that depends only on R by
Lemma 2.1.6. Firstly, we argue that S→ V is a contraction.

By stein-factorization, we can write S
f ′−→ V′

g−→ V, where f ′ is con-
traction and g is finite. Since V is normal, it suffices to show the degree
of g is one. Suppose that the degree of g is m > 1. Let x ∈ V be a gen-
eral closed point and let F be the general fiber above x in X → V. Say
x1, x2, . . . , xm are the pre-images of x in V′ and let Gi be the fiber of xi
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in S. Note that Gi are all disconnected. Now S|F = ∪Gi, note that S|F is
well-defined since F is a general fiber and S is horizontal over V. How-
ever, S|F is an ample divisor on F by construction. Since dim F ≥ 2, all
ample divisors on F need to be connected, which is a contradiction.

Now, by abuse of notation, we can also call f : S → V. Then by The-
orem 1.2.3, there exists q and S depending only on d = dim X and R
(coefficients of B), such that

q(KX + B) ∼ f ∗(q(KV + BV + MV)),

where BV ∈ Φ(S) and qMV is an integral Weil b-Cartier b-nef divisor.

Let Vsm be the smooth locus of V. Then we can assume q(KV + BV +
MV)|Vsm is Cartier by Theorem 1.2.3: Indeed, we have q(KV + BV +
MV) ∼Q 0 Now we can apply Corollary 1.5.4 to deduce that there ex-
ists a finite set T depending only on S such that BV ∈ T. Therefore, by
potentially replacing q by a bounded multiple, we can assume qBV is
an integral Weil divisor, and therefore q(KV + BV + MV) is an integral
Weil divisor and hence q(KV + BV + MV)|Vsm is Cartier on Vsm.

Hence we get q(KX + B)| f−1(Vsm)
is Cartier by canonical bundle formula.

Now restricting to S, (since S is horizontal), we have q(KS + BS)| f−1(Vsm)

is also Cartier and we have

q(KS + BS)|( f−1(Vsm))
∼ f ∗(q(KV + BV + MV)|Vsm).

By hypothesis, we can assume Conjecture 1.8.4 in lower dimension. In
particular, (after possibly replacing q by a bounded multiple), we can
assume that q(KS + BS) ∼ 0. Hence there is a rational function α such
that q(KS + BS) = div(α). We can assume that div(α) is vertical over
V. Using that V is normal and f∗OS = OV , we have α| f−1(Vsm)

= βsm ◦
f for some rational function βsm on Vsm. Hence we get q(KV + BV +
MV)|Vsm ∼ 0 via βsm, and therefore q(KV + BV + MV) ∼ 0 (since V is
normal hence S2 and V\Vsm have codimension at least 2). Hence we
have q(KX + B) ∼ 0 by canonical bundle formula.

Remark 3.1.10. We remark that here we only need a much weaker form of
Conjecture 1.8.4 in the sense that we only use the Conjecture 1.8.4 when the
variety is irreducible. However, the author believes that the difficulties in
proving Conjecture 1.8.4 in full generality would be similar to proving it in
the above special case when X is irreducible.
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3.2 Boundedness of B-representation for Klt Calabi-
Yau Pairs

In this section, we will relate the boundedness of B-representation to Conjec-
ture 1.8.4. The conjecture that we will introduce is the so-called boundedness
of B-representation for Klt Calabi-Yau Pairs. We will again take an induc-
tive approach for this section. We will prove some concrete results in later
sections of this chapter. This section is mainly taken from [Xu19a, Section 5].

Conjecture 3.2.1 (Boundedness of B-representation for Klt Calabi-Yau Pairs).
Let n, d be natural numbers and let (X, B) be a d-dimensional projective pair such
that (X, B) is dlt and n(KX + B) ∼ 0. Then Bir(X, B) denotes the B-birational
automorphism group of (X, B). Then there exist m, M ∈ N depending only on
n, d such that ρm(Bir(X, B)) has size bounded by M, where ρm : Bir(X, B) →
H0(X, m(KX + B)) denotes the natural action by pulling back sections.

The goal of the section is to prove the following:

Proposition 3.2.2. Assuming Conjecture 3.2.1 in dimension ≤ d− 1 and Conjec-
ture 1.8.3 in dimension ≤ d, Conjecture 1.8.4 holds in dimension d.

Remark 3.2.3. The proposition 3.2.2 is essentially the same as [Xu19a, Theo-
rem 1.5].

Remark 3.2.4. We note that by [FG14b, Theorem 1.1], ρm(Bir(X, B)) is a finite
group.

Firstly, we will aim to relate the notion of B-representation with admissi-
ble sections.

3.2.1 From Boundedness of B-representation to Existence of
Admissible Sections

We now make the following observation. If the above conjecture holds, then
we in fact have an admissible section in some bounded multiple of KX + B.
i.e. We have the following conjecture on admissible sections.

Conjecture 3.2.5. If (X, B) is connected klt of dimension ≤ d and assume n(KX +
B) ∼ 0, then there exists a constant N(n, d) > 0, such that there is an admissible
section in A(X, N(KX + B)).

For technical reasons, we also need the following conjecture for not nec-
essarily connected klt pairs.

Conjecture 3.2.6. If (X, B) is klt (not necessarily connected) of dimension ≤ d and
assume n(KX + B) ∼ 0, then there exists a constant N(n, d) > 0, such that there
is a nonzero admissible section in A(X, N(KX + B)).

We can relate the conjectures by the following result.
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Proposition 3.2.7. Assuming Conjecture 3.2.1 holds in dimension d, then Conjec-
ture 3.2.5 holds in dimension d.

Proof. Let (X, B), m, N be as in Conjecture 3.2.1. Let G := ρm(Bir(X, B)), and
let 0 6= s ∈ H0(X, m(KX + B)). Then |G| ≤ M. Then clearly

t := ∏
σ∈G

σ∗s ∈ H0(X, m|G|(KX + B))

is Bir(X, B) invariant. Therefore A(X, m|G|(KX + B)) is non-trivial. Also we
note that if A(X, l(KX + B)) is not trivial, then A(X, lp(KX + B)) is not trivial
for every p ∈ N. Now since m, |G| are bounded, the result follows by taking
N(d, n) = (mM)!.

Also we relate the connected case to the disconnected case.

Proposition 3.2.8. Assuming Conjecture 3.2.5 holds in dimension d. then Conjec-
ture 3.2.6 also holds in dimension d.

Proof. Let N = N(d, n) be as in Conjecture 3.2.5. Let (X, B) = t(Xi, Bi)
be a potentially disconnected klt log Calabi-Yau pair of dimension d. Let
s := (λ1s1, λ2s2, ..) ∈ H0(X, N(KX + B)), where si ∈ A(Xi, N(KXi + Bi)) and
λi ∈ C. Now let G := ρN(Bir(X, B)), which is a finite group by [FG14b]: In-
deed, We can see that, by the choice of N, if X has l components, then for all
g ∈ G, ρN(g)l! = I ∈ GL(H0(X, N(KX + B))). Therefore by the well-known
Burnside Theorem, G has finite order since G is a subgroup of general linear
group with finite index.

Define
t := ∑

σ∈G
σ(s).

Then t ∈ A(X, N(KX + B)) by construction. Hence it suffices to show we can
choose λi such that t is not zero in all components. To this end, by consider-
ing orbits of the action, we can assume Bir(X, B) acts on Xi transitively, i.e.
for each i, j there is g ∈ Bir(X, B) mapping Xi into Xj.

Consider H0(X, N(KX + B)) as a vector space over C with basis {(0.., si, .., 0)}.
We notices that ρN(g) can be expressed as a matrix such that the entries on the
diagonal are either 0 or 1 due to the fact that si ∈ A(Xi, N(KXi + Bi)). Hence
we see that ∑σ∈G σ is not the zero matrix. Hence there exists some λi ∈ C

such that t is not zero on all components. Then since Bir(X, B) acts transi-
tively and t is G-invariant, we see that t is non-zero in all components.

Therefore, it is sufficient to relate the existence of (potentially discon-
nected) klt admissible sections to boundedness of slc Calabi-Yau index.

3.2.2 Boundary of Calabi-Yau Pairs

We take a slight detour here to discuss some well-known facts about bound-
ary for Calabi-Yau dlt pairs. Most of this is take from [Fuj00]. Notice that
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the assumption of MMP in [Fuj00] is well known nowadays after the famous
paper of [BCHM10]. For completeness, we will include a brief proof here.

Proposition 3.2.9. ([Fuj00, Proposition 2.1],[Gon10, Claim 5.3]) Let (X, B) be
an n-dimensional connected Q-factorial dlt pair. Assume KX + B ∼Q 0. Then one
of the following holds.

1. bBc is connected.

2. bBc has 2 connected components B1, B2 and there is a rational morphism
(X, B) 99K (V, P) with general fiber P1, such that (V, 0) is lt and (V, P)
is Q-factorial lc of dimension n− 1. Furthermore, there is horizontal compo-
nents Si in Bi such that (Si, Diff(B− Si)) 99K (V, P) is B-birational.

To show the proposition we first show two easy facts about Mori fiber
space.

Lemma 3.2.10. Let (X, B) be a Q-factorial lc n-fold with n ≥ 2 and bBc 6= 0 and
(X, B− ε bBc) is klt for some small positive rational number ε. Let f : X → R be
a projective surjective morphism with connected fibers such that KX + B ∼Q 0/R.
Assume that there is a (KX + B− ε bBc) Mori fiber space g : X → V over R with
dim V = n − 1. Let Bh be the horizontal part of bBc. Then one of the following
holds.

1. Bh = D1, which is irreducible and degree [D1 : V] = 2.

2. Bh = D1, which is irreducible and degree [D1 : V] = 1.

3. Bh = D1 + D2, which is irreducible and degree [Di : V] = 1.

Furthermore, in cases (1) and (3), the number of connected components of bBc ∩
f−1(r) is at most 2 and in case (2), bBc ∩ f−1(r) is connected for every r ∈ R.
Also, (V, 0) is lt and (V, P) is Q-factorial lc (n − 1) fold for some P, such that
KDi + Diff(B− Di) = g∗(KV + P) for i = 1, 2. In case (1), there is a B-birational
involution i : (D1, Diff(B− D1)) 99K (D1, Diff(B− D1)) over V such that i2 =
id. In case (3), there is a crepant birational involution j : (D1, Diff(B− D1)) 99K
(D2, Diff(B− D2)) over V.

Proof of Lemma 3.2.10. We firstly note that the general fiber is P1. Since bBc
is ample over R, we have Bh 6= 0. Also since KX + B ∼Q 0, restricting to
the general fiber, we see that deg(BH, V) ≤ 2. Hence we see that (1),(2),(3)
are the only possibilities. The divisor P can be constructed using generalised
adjunction. We can get a Q-divisor P on V such that KDi + Diff(B − Di) =
g∗(KV + P). In particular (V, P) is lc. We note that V is Q-factorial since X is
and g is extremal.
Finally, in cases (1) and (3), the part about involution follows from the fact
that deg(BH, V) = 2.
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Lemma 3.2.11. Let (X, B) be a Q-factorial lc n-fold with n ≥ 2, bBc 6= 0 and
(X, B− ε bBc) is klt for some small positive rational number ε. Let f : X → R be
a projective surjective morphism with connected fibers such that KX + B ∼Q 0/R.
Assume that there is a (KX + B− ε bBc) Mori fiber space g : X → V over R. Then
either bBc ∩ f−1(r) is connected for every r ∈ R or dimV = n− 1 (i.e. we are in
the case of Lemma 3.2.10).

Proof. Firstly, let’s assume bBc ∩ f−1(r) is not connected for some r ∈ R,
this means that bBc ∩ g−1(v) is not connected for some v ∈ V. Noting that
KX + B ∼Q 0/R we see that bBc is g-ample, and hence Bh, the horizontal
part of bBc, is g-ample. Since ρ(X/V) = 1, we derive that Bh ∩ g−1(v) is
connected unless the general fiber is P1. Now it is also clear that since g is
extremal, the vertical part of bBc is the pullback of a Q-Cartier Q-divisor on
V, hence we get bBc ∩ g−1(v) is connected for each v ∈ V as claimed.

Proof of Prop 3.2.9. Now run an MMP on KX + B− ε bBc for some ε > 0 small
rational number. Since KX + B ∼Q 0, we know that we will terminate with a
Mori Fiber space g : X′ → V/R with X 99K X′ a sequence of flips and diviso-
rial contractions. Let B′ be the pushforward of B to X′. Notice that since bBc
is relatively ample for each divisorial contraction and flip, we know that the
number of connected components of bBc doesn’t change during MMP. We
can replace (X, B) with (X′, B′), since all conditions are preserved (because
we have KX + B ∼Q 0). Notice now (X′, B′) may not be dlt but it is still
lc and Q-factorial. We can finish the proof using Lemma 3.2.11 and Lemma
3.2.10.

Now with this setup we are ready to show the main result of the section.

3.2.3 From Admissible Sections to Slc Index Conjecture

The goal of this subsection is to show Proposition 3.2.2. We will follow simi-
lar ideas as in [Fuj00].

Now we will show 2 statements using induction. Although, we will only
apply them for surfaces and curves. The proofs mostly follows the same
route as in [Fuj00]. However, since in [Fuj00] and [Gon10], there is no bound-
edness consideration, at certain steps in the proof, we need to take extra care
and use results that we proved earlier, for example, in the proof that Ad im-
plies Bd below.

Proposition 3.2.12. (Ad) Assuming Conjecture 3.2.5 in dimension ≤ d− 1. Let
(X, B) be a (not necessarily connected) projective dlt pair of dimension d, with
m(KX + B) ∼ 0 and m being even. Also assume that mN(d − 1, m)|n where
N(d− 1, m) is as in Conjecture 3.2.5, then PA(X, n(KX + B)) is non-trivial.

Proposition 3.2.13. (Bd) Assuming Conjecture 3.2.5 in dimension≤ d. Let (X, B)
be a (not necessarily connected) projective dlt pair of dimension d, with m(KX +
B) ∼ 0 and m being even. Also assume that mN(d, m)|n where N(d, m) is as in
Conjecture 3.2.5, then A(X, n(KX + B)) is non-trivial.
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Before we show the above two propositions, we will show the lemma
below.

Lemma 3.2.14 ([Fuj00] Proposition 4.5, [Gon10] Claim 5.4). Assume (X, B) is
a projective dlt pair (not necessarily connected) with n(KX + B) ∼ 0 and n is even.
Assume s ∈ A(bBc , n(KX + B)|bBc) is non-zero.
Then there exists a nonzero t ∈ PA(X, n(KX + B)) such that t|bBc = s.

Proof. This proof follows the same route as [Fuj00, Proposition 4.5]. Note that
the lemma is trivial if bBc = 0, hence we assume bBc 6= 0. It is clear by def-
inition it suffices to show there is t ∈ H0(X, n(KX + B)) such that t|bBc = s.
Therefore, we can assume that X is connected. By Prop 3.2.9, we have either
bBc is connected or has 2 connected components. If bBc is connected, then
H0(X, n(KX + B)) → H0(bBc ,ObBc(n(KX + B)|bBc)) is injective, hence iso-
morphism since both are 1 dimensional. In this case, we see that the lemma
is clear.

Now we assume the bBc has 2 connected components, B1, B2. In this case
we see that X is generically a P1 bundle over (V, P). More precisely, there
is a sequence of flips and divisorial contractions φ : X → X′ and a Mori
fiber space g : (X′, B′) → (V, P) such that the general fiber of g is P1 and
KX + B = g∗(KV + P). We also remark that (bB′c , Diff(B′ − bB′c)) is slc
by Example 1.7.5. Also there are 2 connected components of B′, B′1, B′2, and
each component has an irreducible component Di such that gi := g|Di :
(Di, Diff(B′ − Di))→ (V, P) is B-birational. Now it is easy to see that

H0(X, n(KX + B)) ∼= H0(X′, n(KX′ + B′)).

Also we have as in [FG14b, Remark 2.15],

H0(bBc , n(KX + B)|bBc) ∼= H0(
⌊

B′
⌋

, n(KX′ + B′)|bB′c).

Hence it suffices to treat (X′, B′). Now let s ∈ A(bB′c , n(KX′ + B′)|bB′c),
and we write B′h and B′v to be the horizontal and vertical parts of bB′c with
respect to V. From Proposition 3.2.9, we see that s|Di is birational invari-
ant in particular, it descends to a section t ∈ H0(V, n(KV + P)). We note
that n(KDi + Diff(B′ − Di)) ∼ 0 is Cartier, hence we get n(KV + P) ∼ 0
and in particular is Cartier. Now since g is contraction and hence we get
H0(X′, n(KX′ + B′)) ∼= H0(V, n(KV + P)), therefore t lifts to a section w ∈
H0(X′, n(KX′ + B′)). It suffices to show w|bB′c = s as remarked before.

Firstly, We note that w|Di and s|Di are different by at most (−1)m by [Fuj00]
and [Kol13] using the theory of P1 linked lc centres. Hence, since we assume
n is even, we have the desired claim on B′h. Next we check on B′v. It is clear
that B′v = ∑i g∗(Fi) for some Fi irreducible divisor in bPc. Let Ei := g∗(Fi).
We will show s|Ei = w|Ei . We let Θi be an irreducible component of Ei ∩ D1
that dominants Fi (can always do this since Ei intersects Di non-trivially).
In particular we see that g|Θi : Θi → Fi is dominant. Hence we have the
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following diagram.

H0(Ei, n(KX′ + B′)|Ei) H0(Θi, n(KX′ + B′)|Θi)

H0(Di, n(KV + P)|Fi) H0(Di, n(KV + P)|Fi)

|Θi

id

∼= i

The right vertical map is injective since Θi → Di is dominant, and left vertical
map is isomorphism since Di is seminormal and g|Ei has connected fibers.
Since we have s|Θi = w|Θi by the horizontal part argument. Hence we have
s|Ei = w|Ei , which proves the claim.

Now we show the following lemma.

Lemma 3.2.15. [Fuj00, Proposition 4.7] Let (X, B) be a connected projective dlt
pair with n(KX + B) ∼ 0 where n is even. Assuming bBc 6= 0, then PA(X, n(KX +
B)) = A(X, n(KX + B)).

Firstly, we will state a well known lemma about crepant birational maps.

Lemma 3.2.16. [Fuj00, Proposition 4.7 Claim An, Bn] (Also see Lemma 2.16 in
[FG14b]])
Let f : (X, B) 99K (X′, B′) be a B-birational map between projective dlt pairs. Let
S be an lc center of (X, B) such that KS + BS := (KX + B)|S. Let α : (Y, BY) →
(X, B), β : (Y, BY) → (X′, B′) be a common log resolution such that KY + BY =
α∗(KX + B) = β∗(KX′ + B′). Then we can find an lc centre V of (X, ∆) contained
in S with KV + BV := (KX + B)|V , an lc center T of (Y, BY) with KT + BT :=
(KY + BY)|T and an lc centre V′ of (X′, B′) with KV′ + BV′ := (KV + BV)|V′ such
that the following holds.

1. α|T : (T, BT) → (V, BV), β|T : (T, BT) → (V′, BV′) are B-birational mor-
phisms. Hence β|T ◦ α|T−1 : (B, BV) 99K (V′, BV′) is B-birational.

2. H0(S, m(KS + BS)) ∼= H0(V, m(KV + BV)) by the natural restriction where
m ∈N+ such that m(KX + B) is Cartier.

Now we will use the above lemma to prove Lemma 3.2.15.

Proof of Lemma 3.2.15. It is clear from the definition that A(X, n(KX + B)) ⊂
PA(X, n(KX + B)). Hence it suffices to show PA(X, n(KX + B)) ⊂ A(X, n(KX +
B)). Let s ∈ PA(X, n(KX + B)), we need to show for any g ∈ Bir(X, B),
g∗(s) = s. Since H0(n(KX + B)) is 1 dimensional, it suffices to show (g∗s)|bBc =
s|bBc (since H0(X, m(KX + B)) → H0(bBc ,ObBc(m(KX + B)|bBc)) is injec-
tive).

Let g ∈ Bir(X, B) and let α, β : (Y, BY) → (X, B) be a Szabo log resolu-
tion such that α := g ◦ β, i.e. α, β are isomorphisms above the generic points
of all lc centres of (X, B). Let Θ := B=1

Y , then by standard theory Θ → bBc
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has connected fibers and hence we have α∗OΘ = β∗OΘ = ObBc. Then α∗, β∗

induce isomorphisms from

H0(bBc ,ObBc(n(KX + B)|bBc)) ∼= H0(Θ,OΘ(n(KY + BY)|Θ)).

Now let E be an irreducible component of Θ and let S be its birational trans-
form on X, which is an irreducible component of bBc, such that E dominates
S, Then it suffices to show (α∗s)|E = (β∗s)|E.

Now we apply Lemma 3.2.16, we see that we can find lc centre V contained
in S and T an lc centre for (Y, BY), such that all the conditions are satis-
fied as in Lemma 3.2.16. Note we can take V′ = V ⊂ S. Then we have
α|∗T(s|V) = β|∗T(s)(s|V) ∈ H0(T, n(KT + BT)) since s ∈ PA(X, n(KX + B)).
However we have

H0(E, n(KE + BE)) ∼= H0(S, n(KS + BS)) ∼= H0(V, n(KV + BV)) ∼= H0(T, n(KT + BT)).

Hence we have α∗(s)|E = β∗(s)|E. Since E is arbitrary, we have α∗(s|bBc) =
βs(s|bBc) on Θ. Hence we get g∗s|bBc = s|bBc, which proves the lemma.

We are now ready to show the above 2 propositions. We will first show
Bd−1 implies Ad.

Proof of Bd−1 implies Ad. This is precisely Proposition 3.2.14.

Finally we show Ad implies Bd.

Proof of Ad implies Bd. We will construct a non-trivial element in A(X, n(KX +
B)). Let G = ρn(Bir(X, B)), which is finite. We can wlog (Xi, Bi) in fact can
be put into 2 different classes: We say (Xi, Bi) is of type 1, if bBic 6= 0, we
denote these pairs as (Xi,1, Bi,1). If (Xi, Bi) is klt, i.e. bBic = 0, then we say
this has type 2 and write (Xi,2, Bi,2). Using this notation, we can assume

(X, B) = (ti(Xi,1, Bi,1)) t (ti(Xi,2, Bi,2)).

It is clear that Bir(X, B) maps type 1 into type 1 and type 2 into type 2.
Also G′ := Bir(t(Xi,2, Bi,2)) ⊂ G is also finite. To this end, we write s =
(s1, s2, s3, .., t1, t2, ...) ∈ PA(X, n(KX + B)), where si ∈ A(Xi,1, n(KXi,1 + Bi,1))
by Lemma 3.2.15 and (ti)i ∈ A(Xi,2, n(KXi,2 + Bi,2) by our assumption on
Conjecture 3.2.6. We can now think of G as acting on (si) and (ti) separately.
Now let s = (si, ti) be the above denoting an element in PA(X, n(KX + B)).

Step 1: We firstly claim that (si) is G-invariant. let σ ∈ G be represented
by g ∈ Bir(X, B), the claim is true if g maps Xi,1 into Xi,1 for all i since si ∈
A(Xi,1, n(KXi,1 + Bi,1)). Therefore, we can assume g maps Xi,1 to Xj,1, with
i 6= j. It suffices to show g∗(sj) = si, where we view g|Xi,1 : (Xi,1, Bi,1) →
(Xj,1, Bj,1) as a B-birational map. Now since we are in type 1, we can assume
that bBi,1c 6= 0. Let S be an lc centre of (Xi,1, Bi,1), we can apply Lemma
3.2.16, we see that we can find lc centre V of (Xi,1, Bi,1) contained in S and V′
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of (Xj,1, Bj,1), such that g induces a B-Birational map from g′ : (V, BV) 99K
(V′, BV′), where KV + BV := (KXi,1+Bi,1)|V and KV′ + BV′ := (KXj,1+Bj,1)|V′ .
Also it is clear that H0(Xi,1, n(KXi,1+Bi,1)) → H0(V, n(KV + BV)) is injective
hence an isomorphism. Hence we have the following commutative diagram.

H0(Xj,1, n(KXj,1+Bj,1)) H0(Xi,1, n(KXi,1+Bi,1))

H0(V′, n(KV′ + BV′)) H0(V, n(KV + BV))

∼
g∗

∼|V′ ∼|V

∼
g′∗

Also since V, V′ have the same codimension in Xi,1 and Xj,1, using the defi-
nition that si, sj are pre-admissible, we see that g′∗(sj|V′) = si|V , which using
the above isomorphism, we get g∗(sj) = si as claimed.

Step 2: Now we deal with the type 2 case. This is done by our assumption
that Conjecture 3.2.6 holds in dimension d.

Remark 3.2.17. We remark that if we only assume Conjecture 3.2.5 in dimen-
sion d− 1, then Bd also holds if no connected component of (X, B) is klt, i.e.
if all (Xi, Bi) has bBic 6= 0.

Now we are ready to prove Proposition 3.2.2.

Proof of Proposition 3.2.2. Let (X, B) be an slc pair such that KX + B ∼Q 0,
B ∈ Φ(R). Using Theorem 1.5.2 and possibly replacing R, we can assume
B ∈ R. Let (X′, B′) := t(X′i , B′i) → (X, B) be its normalisation and let
(Y, Θ) := (Yi, Θi)→ (X′, B′) be a dlt model. Then we have B′ ∈ R and hence
Θ ∈ R. By assumption, we can assume that there is a bounded n such that
n(KY +Θ) ∼ 0 and n(KX + B) is integral. Notice that by Proposition 3.2.7, we
can assume the statement in Conjecture 3.2.5. Hence by Proposition 3.2.12,
possibly replacing n by a bounded multiple, we can find a pre-admissible
section s ∈ PA(Y, n(KY + Θ)). By Proposition 2.4.5, we get n(KX + B) ∼ 0,
as required.
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3.3 Low Dimensional Results and Proof of Theo-
rem 1.8.7

Here we collect some low dimensional results. First, we start with bounded-
ness of B-representation for curves.

Proposition 3.3.1. Conjecture 3.2.1 holds for curves.

Proof of Conjecture 3.2.5 for curves. Let (X, B) be an lc curve where n(KX +
B) ∼ 0. We see that X is either a rational curve or elliptic curve. We can as-
sume that n is even. In either case, we claim that |G|, where G := ρn(Bir(X, B)),
is bounded depending only on n: If X is a rational curve, then we see that
2n ≥ |SuppB| ≥ 3, and hence Bir(X, B) = Aut(X, B) ≤ 6(2n

3 ). If X is an el-
liptic curve then B = 0 and it is well known that ρ12(Aut(X)) is trivial. (For
example, see [KDLJ92, Section 12.2.9.1]).

Now we also show Conjecture 1.8.3 in dimension 1 and 2.

Proposition 3.3.2. Conjecture 1.8.3 holds in dimension 1 and 2

Proof. Dimension 1 case is obvious. Let (X, B) be dimension 2 and KX + B ∼Q

0 and also assume B ∈ R. If B = 0, then by classification of Enrique surfaces,
we see that nKX ∼ 0 for a bounded n (in particular n ≤ 21). Furthermore, if
B 6= 0, then the result follows from the result from curves and Theorem 3.1.5
and Theorem 3.1.4.

Finally, we can show one of the main theorems.

Proof of Theorem 1.8.7. Notice that Conjecture 3.1.1 holds in dimension 3 due
to [CJ19, Theorem 1.7]. Since Conjecture 3.2.1 holds for curves, we have Con-
jecture 1.8.4 holds for dimension 2 by Proposition 3.2.2. Now combining The-
orem 3.1.5 and Theorem 3.1.4, we have Conjecture 1.8.3 holds in dimension
3 in full generality. Furthermore, by Theorem 3.1.5, Conjecture 1.8.3 holds in
dimension 4 with (X, B) klt and B 6= 0.

We make the following corollary relating to theory of sdlt complements.

Corollary 3.3.3. Let (X, B) be an sdlt surface with f : (X′, B′+ D′) := t(Xi, Bi +
Di) → X being its normalisation where D′ is the conductor divisor. Also let
τ : Dn → Dn be the involution, where Dn is the normalisation of D′. Let n be
an even integer. Assume there is a Q-divisor R′ := tRi ≥ 0 with Ri Q-divisor on
Xi, such that:

1. n(KX′ + B′ + R′ + D′) ∼ 0,

2. (Y′, B′ + R′ + D′) is lc (hence it implies that R′ doesn’t contain any compo-
nents of D′),

3. R′|Dn is τ-invariant.
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Then there exists m depending only on n and not on (X, B) such that if we let R
be the pushforward of R′ to X, then we have m(KX + B + R) ∼ 0 and (X, B + R)
is still slc. In particular B+ := B + R is an slc n-complement for (X, B).

Proof. This follows from Proposition 2.5.5 and Theorem 1.8.7.
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3.4 Slc 3-fold Index and B-representation for Bounded
Family

After discussing some low dimensional application of results proved earlier,
we will focus on B-representation for surfaces and bounded family. In par-
ticular, we will show the following:

Theorem 3.4.1. Let d ∈ N and R ⊂ [0, 1] be a finite set of rationals. Let P be a
bounded family. Then there exists m and n depending only on d,R,P such that if
(X, B) is a pair that satisfies the following:

• (X, B) projective klt of dimension d,

• KX + B ∼Q 0 and B ∈ R,

• (X, Supp(B)) ∈ P .

Then |ρm(Bir(X, B))| ≤ n where ρm : Bir(X, B) → GL(H0(X, m(KX + B))) is
the standard B-representation.

We make the following remark.

Remark 3.4.2. Since KX + B ∼Q 0, B ∈ R and (X, Supp(B)) ∈ P , then it is
clear that there exists m depending only on d,R,P such that m(KX + B) ∼ 0.

Now we will discuss the proof of the above theorem in the next few sub-
sections

3.4.1 Proof of Theorem 3.4.1

We follow the ideas and constructions as in the proof in [FG14b, Proposition
3.5, Remark 3.6,Proposition 3.8], [Gon10, Proposition 4.9],[Uen, Proposition
14.4]. For readers’ convenience we will include the construction here.

Proof of Theorem 3.4.1. We will follow the same ideas and notations as in [FG14b,
Proposition 3.5]

Step 0: By taking log resolution and potentially replacing P , we may
assume that (X, Supp(B)) ∈ P where m(KX + B) ∼ 0, (X, B) sub klt of di-
mension d, X is smooth and Supp(B) is a simple normal crossing divisor.
Note that m here depends only on R and P by remark.

Step 1: We let 0 6= ω ∈ H0(X, m(KX + B)) and g ∈ Bir(X, B), we will
show that if g∗ω = λω, then λN = 1 with N < bn(Y′) where bn is the nth

Betti-number and Y′ constructed as in the following. Notice that in particular,
we have the order of ρm(g) is bounded by bn(Y′). Now we will construct Y′.
Let B = B+ − B−, where B+, B− are both effective and contain no common
components. We consider the projective space bundle

π : M := PX(OX(−KX)
⊕
OX)→ X.
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Let {Uα} be coordinate neighbourhood of X with holomorphic coordinates
(z1

α, ..., zd
α). We may write w locally as

w|Uα =
φα

δα
(z1

α ∧ · · · ∧ zd
α)

m,

where φα, δα are holomorphic with no common factors and φα

δα
has poles at

most mB+.
We may assume that {Uα} gives a trivialisation for M, i.e. M|Uα

∼= Uα ×P1.
Let (ξ1

α : ξ2
α) be homogeneous coordinate for P1. Then Set

YUα := {(ξ1
α)

mδα − (ξ2
α)

mφα = 0} ⊂ Uα ×P1.

It can be verified that {YUα} patches to give Y. Notice that Y can have sin-
gularities and maybe reducible. Let f : M′ → M be a log resolution of
(M, Y ∪π−1(Supp B)) such that Y′ (:= strict transform of Y) is smooth. Then
it is shown in [FG14b, Proof of Remark 3.6] and [Uen, Proposition 14.4] that
N < bn(Y′).

Step 3: We finish the proof by noting that if (X, B) is log bounded. Say
(X, B) is the fiber over t ∈ T of the morphism f : V → T. Then we can choose
{Uα} and holomorphic coordinates uniformly in some analytic neighbour-
hood of t ∈ Ti, and such construction would work for a family of varieties (by
considering the relative projective space bundle for the relative canonical di-
visor). Since the construction is analytic, which preserves topological bound-
edness, we derive that Y′ is topologically bounded, hence bn(Y′) is bounded.
Therefore we get that ρm(Bir(X, B)) is uniformly bounded depending only
on P .
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3.5 Application and Proof of Theorem 1.8.8

The goal here is to prove slc index conjecture for dimension 3. Firstly, we will
show the following:

Theorem 3.5.1. Conjecture 3.2.1 holds in dimension 2. i.e. the following holds:

Let R ⊂ [0, 1] be a finite set of rationals. Then there exists n depending only on
R such that if (X, B) is a pair that satisfies the following:

• (X, B) projective klt of dimension 2,

• KX + B ∼Q 0 and B ∈ R.

Let m be such that m(KX + B) ∼ 0, then |ρm(Bir(X, B))| ≤ n where ρm :
Bir(X, B)→ GL(H0(X, m(KX + B))) is the standard B-representation.

Proof. Firstly, we note that m can be chosen depending only on R. By con-
sidering the terminal model of (X, B) we can assume that X is terminal. In
particular X is smooth.

If B = 0, then we are done by applying the same arguments as in [Fuj01,
Proposition 3.6] and noting that all smooth surfaces with KX ∼Q 0 have
bounded second Betti number. Notice that this is not surprising since it is
well-known that KX trivial surfaces are topologically bounded. (Although
they don’t belong to a bounded family in the algebraic sense.)

If B 6= 0, then running an MMP on KX + B− εB ends in a Mori fiber space
where the base is a rational or elliptic curve by canonical bundle formula.
Then by [Bir20, Theorem 1.4], the set of these (X, B) is log bounded. Then we
are done by applying Theorem 3.4.1.

This allows us to prove one of the main theorems.

Proof of Theorem 1.8.8. By Theorem 3.5.1 and Proposition 3.3.1, Conjecture 3.2.1
holds in dimension ≤ 2. Also by Theorem 1.8.7, Conjecture 1.8.3 holds in di-
mension 3. Finally, we get the claimed result by applying Proposition 3.2.2
and Theorem 3.1.4.
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Chapter 4

Complements for Global Log
Canonical Fano Threefolds

This chapter will be devoted to the proof of one of the main theorems, Theo-
rem 1.8.5. For completeness, we will state the theorem again here.

Theorem 4.0.1. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural number n depending only on R satisfying the following. Assume (X, B)
is a projective pair such that

• (X, B) is lc of dimension 3,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample.

Then there is an n-complement KX + B+ of KX + B.

The strategy is the following: We assume (X, B) is dlt by passing to a dlt
model. If bBc = 0, then (X, B) is klt and hence Fano type and we are done
by Theorem 1.4.7. If bBc 6= 0, then we apply adjunction and try to construct
an sdlt complement. Then we lift the complement to a global one.

Before giving the proof, we need to do some preparation work. This chap-
ter is mainly based on [Xu19a].
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4.1 Complements for Finite Morphisms Between
Curves

Here, we will show some basic properties of complements for finite mor-
phisms. Given a finite morphism f : X → Y between normal projective
varieties, we say f is Galois if K(X)/ f ∗(K(Y)) is a Galois extension, where
K(X), K(Y) are the function field of X, Y respectively.

We have the following result.

Lemma 4.1.1. Let R ⊂ [0, 1] be a finite subset of rationals. Let f : C → T be a
finite morphism between smooth curves. Assume f is Galois. Let BC ≥ 0 be a Q-
divisor on C such that −(KC + BC) is ample and assume BC ∈ Φ(R). Also assume
KC + BC is Gal(C/T) invariant. Then there exists BT ≥ 0 such that BT ∈ Φ(R)
and KC + BC = f ∗(KT + BT). In particular, there is an integer n, depending only
on R such that there is an n-complement KT + BT + RT of KT + BT with RT ≥ 0.
In particular, if RC := RT|C, then KC + BC + RC is an n-complement of KC + BC
and RC is Gal(C/T) invariant.

Proof. We apply the Riemann-Hurwitz formula. We have KC = f ∗(KT) +

∑
Q∈C

(eQ − 1)Q where eQ is the ramification index at Q. Now since f is Galois,

we see that eQ = eQ′ if f (Q) = f (Q′). Hence we can define eP := eQ∈ f−1P for
P ∈ T, which is well defined. It is clear that we have f ∗P = eP ∑

Q: f (Q)=P
Q.

Furthermore, the above formula becomes

KC = f ∗(KT + ∑
P∈T

(1− 1
eP

)P).

Now since BC is Gal(C/T) invariant, we can write BC = ∑
P∈T

aP( ∑
Q: f (Q)=P

Q),

where aP ∈ Φ(R). Hence we have BC = f ∗( ∑
P∈T

aP

eP
P). Hence we have

KC + BC = f ∗(KT + ∑
P∈T

(1− 1− aP

eP
)P) =: f ∗(KT + BT).

Now if aP = 1− r
m for some r ∈ R and m ∈ N, then we have µP(BT) =

1 − r
meP
∈ Φ(R). The last part of the claim is clear by taking a general n-

complement on C to be the pullback of an n-complement on T.
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4.2 Complements on Surfaces Fibred over Curves

Here we will discuss various properties of surface complements over curves.
This will be crucial when constructing complements for log canonical Fano
threefolds. The goal of this section is to understand various ways to get com-
plements on surfaces. In particular, we need a version of effective canonical
bundle formula for elliptic fibration, which is our first goal of the section

4.2.1 Effective Canonical Bundle Formula for Surfaces over
Curves

We first start by stating a result by Shokurov.

Proposition 4.2.1. [PS09, Theorem 8.1] Let R ⊂ [0, 1] be a finite set of rational
numbers. Then there exists q ∈ N depending only on R satisfying the following.
Assume (S, B) is a pair and f : S→ C a contraction such that

• S is a projective surface, (S, B) is lc, C is a curve, and

• KS + B ∼Q 0/C and Bh ∈ Φ(R) where Bh is the horizontal part of B over C.

Then we can write
q(KS + B) ∼ q f ∗(KC + BC + MC)

where BC and MC are the discriminant and moduli parts of adjunction, and the
moduli divisor qMC ≥ 0 is base point free and Cartier. In particular, since C is
a curve, we can assume that qMC is effective and Cartier with support in general
position.

We will use it to show the following result on relative complements.

Lemma 4.2.2. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural n ∈ N depending only on R satisfying the following. Assume (S, B) is a
pair and f : S→ C a contraction such that

• S is a surface, (S, B) is lc, C is a rational curve, and

• KS + B ∼Q 0/C and B ∈ Φ(R).

Then for any point z ∈ C, there is an n-complement KS + B+ of KS + B over z such
that B+ ≥ B.

Proof. Firstly, C is normal hence it is smooth. let z ∈ C and let D := f ∗z be a
Cartier divisor. Write

q(KS + B) ∼ q f ∗(KC + BC + MC)

as in Proposition 4.2.1. Note that qKC, qMC are both Cartier hence integral.
Now let t := lct(D, S, B) be the log canonical threshold of D with respect to
KS + B, we see that µz(BC) = 1− t from the definition of canonical bundle
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formula. This is because t is also the log canonical threshold of D with respect
to KS + B over z (as z is Cartier and D is supported in the fiber over z). Hence
if we let B+ := B + tD, we see that (S, B+) is lc by definition and B+ has the
same horizontal components as B. Hence we get

q(KS + B+) ∼ q f ∗(KC + B+
C + MC),

where B+
C := BC + tz. Hence we get B+

C is Cartier near z as µz(B+
C ) = 1.

Therefore, we get q(KC + BC + MC) ∼ 0 in an open neighbourhood of z,
hence we get q(KX + B+) ∼ 0 over an open neighbourhood of z. Now q is
the bounded n that we are looking for. The last claim is clear.

We are now ready to show the following proposition that is similar to
Theorem 1.2.3.

Proposition 4.2.3. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there
exist q ∈ N and a finite set of rational numbers S ⊂ [0, 1] depending only on R
satisfying the following. Assume (S, B) is a pair and f : S → C a contraction such
that

• S is a projective surface, (S, B) is lc, C is a rational curve, and

• KS + B ∼Q 0/C and B ∈ Φ(R).

Then we can write

q(KS + B) ∼ q f ∗(KC + BC + MC).

where BC and MC are the discriminant and moduli parts of adjunction, BC ∈ Φ(S),
and the moduli divisor qMC ≥ 0 is effective, semiample, and Cartier.

Proof. Most parts of the claim are the same as Proposition 4.2.1 except the
coefficients of BC. We will show this using n-complements. The question is
local on C. Pick any z ∈ C. Let B+ ≥ B be an n-complement KX + B over z as
in Lemma 4.2.2. We see that

q(KS + B) ∼ q f ∗(KC + BC + MC).

Now we have µz(BC) = 1− t, where B+ = B + t f ∗z. Let F be a component
of f ∗z and let l := µF( f ∗z) ∈ N and let b := µF(B). We have b = 1− r

m for
some r ∈ R and m ∈ N. Hence we have µF(B+) = 1− r

m + tl. Also we have
nµF(B+) ∈N. Therefore we get

n ≥ n(1− r
m

+ tl) ∈N.

If t = 0, then we have nothing to prove. Hence we can assume t > 0, so by
letting a := n(1− r

m + tl), we have

t =
a
n − 1 + r

m
l

.



4.2. Complements on Surfaces Fibred over Curves 61

Now if a = n, then it is clear that 1− t = 1− r
ml ∈ Φ(R). If a

n < 1, we have
r
m > 1− a

n ≥
1
n as t > 0. Now since r ≤ 1, we have 1

m > 1
n . Therefore m < n,

and hence there are only finitely many choices for r
m , and hence only finitely

many choices for a
n − 1 + r

m . Denote this set union R to be S, we see that
µz(BC) = 1− t ∈ Φ(S), which proves the claim.

4.2.2 Complements on Surface Fibred Curves

Here we consider global complements on surfaces when given a fibration to
a curve. In particular, we will show the following.

Proposition 4.2.4. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there
exists a natural number q depending only on R satisfying the following. Assume
(X, B) is a pair, such that

• X is a projective surface, (X, B) is dlt,

• B ∈ Φ(R), and

• There is a contraction f : X → C such that KX + B ∼Q 0/C and C is rational
curve.

• −(KX + B) is nef.

We write q(KX + B) ∼ q f ∗(KC + BC + MC), where BC ∈ Φ(S), qMC is effective
semiample Cartier divisor and q,S are as in Proposition 4.2.3 depending only on R.
Then any pq-complement KC + B+

C + MC of KC + BC + MC with B+
C ≥ BC lifts

to a pq-complement KX + B+ of KX + B with B+ := B + f ∗(B+
C − BC) ≥ B. In

particular, KX + B has an n-complement for some n depending only on R.

Proof. By Lemma 2.7.1, KC + BC + MC has p-complement for some p depend-
ing only on R. Let B+

C := BC + DC, where DC ≥ 0, be such a p-complement.
Then letting n = pq, we have

n(KX + B + f ∗(DC)) ∼ n f ∗(KC + B+
C + MC) ∼ 0.

Hence it suffices to show (X, B + D) is lc where D := f ∗DC. This follows
from the fact that (C, B+

C + MC) is generalised lc: Indeed, consider a log res-
olution of (X, B + D), g : (Y, BY + DY) → X, where KY + BY = g∗(KX + B)
and DY := g∗D. Now if (X, B + D) is not lc, then there exist an irreducible
component E such that µE(BY + DY) > 1, hence µE(DY) > 0, which means
E is vertical over C. But by the property and the definition of the canonical
bundle formula, we see that KX + B+ D ∼Q f ∗(KC + B+

C + MC) is the canon-
ical bundle formula for the pair (X, B + D), hence if E is mapped to z ∈ C,
then µz(B+

C ) > 1, which is a contradiction.

Remark 4.2.5. The key in the above result is that any complement from base
will lift to a complement on the top.
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Remark 4.2.6. We note that if E ∈ bBc is a vertical lc centre for (X, B) over
C, say, mapping to z ∈ C, then it is clear that µzBC = 1 and hence ( f ∗(B+

C −
BC))|E = 0. This is to say the surface complement is trivial along vertical lc
centres.

However, we need a more delicate result when considering gluing of
complements. The above result will suffice when there is no horizontal lc
centres. We need to consider the case with horizontal lc centres more care-
fully in the next lemma. Firstly, we will state and prove an easy fact for the
criteria for log canonical.

Lemma 4.2.7. Let X → S be a projective contraction from a normal surface to
a smooth curve S. Let (X, B) be a dlt pair such that KX + B ∼Q,S 0. Let E be
an irreducible component of B=1 such that it is horizontal over S. Let (E, BE) be
defined by KE + BE = (KX + B)|E. Let RS ≥ 0 be a Q-divisor on S, R := RS|X be
its pull-back on X, and RE := RS|E. Assume, furthermore, that (E, BE + RE) is log
canonical. Then (X, B + R) is log canonical.

Proof. This is a local question, hence we can work over s ∈ S. Also, we may
assume that mults RS > 0, as the conclusion is trivial over s otherwise. To de-
rive a contradiction, we can assume that (X, B + R) is not log canonical near
the fiber over s, i.e., there exists a vertical non-klt center Z ⊂ Xs mapping to
s that is not a log canoncial center. However, (E, BE + RE) is log canonical.
Hence, by inversion of adjunction, (X, B + R) is log canonical near a neigh-
bourhood of E. Now, since mults(RS) > 0 and (E, BE + RE) is log canonical,
(E, BE) is klt near Xs ∩ E. Therefore, (X, B) is plt near Xs ∩ E. Thus, by con-
sidering (X, Ω := B + aR) for some a < 1 very close to 1, we see that (X, Ω)
is plt near Xs ∩ E. Therefore, Nklt(X, B + aR) is disconnected over s. Indeed,
Z is disjoint from E over s. Hence, by [HH19, Theorem 1.2], we see that
(X, B + aR) is plt near the fiber over s, which is a contradiction.

Remark 4.2.8. We note that the above lemma also works in the local case near
s ∈ S since the proof is local.

The above theorem is crucial when trying to show the following. Notice
that the following is similar to but not the same as canonical bundle formula
since there is no arbitrary moduli part and the boundary divisor on the base
is determined as a Q-divisor. Here notice that we are using the notation of |X
to potentially mean the pull-back to X. The following result is quite technical
and specific. Its use will be clear in later sections of this chapter.

Proposition 4.2.9. Let R be a finite set of rationals. Let f : X → C be a projective
surjective morphism (maybe not a contraction) from a normal surface to a smooth
curve C. Assume the following holds

• (X, B) is a dlt pair such that KX + B ∼Q f ∗A, where −A is ample on C

• B ∈ Φ(R).

• Let D be an irreducible component of B=1 such that it is horizontal over S.



4.2. Complements on Surfaces Fibred over Curves 63

• Let (D, BD) be defined by KD + BD = (KX + B)|D and assume that we can
define, by Riemann Hurwitz, (C, BC) to be such that KE + BE = (KC +
BC)|E.

Furthermore there exists q depending only on R such that q(KX + B) ∼ q(KC +
BC)|X.

In particular, if RC ≥ 0 is such that KC + BC + RC an nq-complement for
KC + BC, then letting R := RC|X, we have KX + B + R is an nq-complement for
KX + B.

Proof. If we let X → E → C be the stein-factorization, then by restricting to
the general fiber of X → E, we have D → E has degree 1 or 2.

By Proposition 4.2.3, there exists bounded q such that

q(KX + B) ∼ qL = q(KE + BE + ME)|X,

where BE and ME are the discriminant and the moduli parts of the canonical
bundle formula, respectively, and L is a vertical divisor over E.

Then we have that

q(KD + BD) ∼ qL|S = q(KE + BE + ME)|D.

Hence, we derive that q(KE + BE + ME)|D ∼ q(KC + BC)|D since KE + BE =
(KC + BC)|E. Now, all curves here are rational curves since (KD + BD) ∼Q

f ∗A, which is anti-ample, therefore D is a rational curve, and hence so are
E and C. Therefore, we see that by replacing q by 2q, we have q(KE + BE +
ME) ∼ q(KC + BC)|E. This will prove the first part of the proposition. The
claim about complements follows from Lemma 4.2.7 and Lemma 4.1.1.

Remark 4.2.10. Notice that at the end of the proof, we have used the follow-
ing more or less obvious fact:
Let f : P1 → P1 be a degree 2 map, and if D, E are Q-divisors on P1 such
that f ∗D ∼ f ∗E, then 2D ∼ 2E: Indeed, if f ∗(D − E) ∼ 0, this implies that
deg(D− E) = 0 and D− E has coefficients in 1

2Z. Therefore 2D− 2E is inte-
gral hence Cartier, and deg(2D− 2E) = 0. Hence we have 2D− 2E ∼ 0 since
Cartier divisor of degree 0 are linear equivalent to 0 on P1.

With this setup we are almost ready to prove the boundedness of comple-
ments for log canonical Fano threefolds.
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4.3 Spring and Source of Log Canonical Centre

For the last bit of preparation for the proof of the main theorem. We need to
quickly cover some important facts about springs and sources of Log canoni-
cal centres. Most of this small section is taken from [Kol13, Theorem-Definition
4.45]. For completeness, we will state the theorem here.

Proposition 4.3.1. [Kol13, Theorem 4.45] Let f : (X, B) → (X′, B′) be a Q-
factorial dlt model, with (X′, B′) lc. Let Z be an lc centre of (X′, B′), and let W be
a minimal lc centre of (X, B) that dominates Z. Let KW + BW := (KX + B)|W ,
and let W → Zs → Z be the stein factorization. Then the isomorphism class of
Zs is independent of the choices of W and X, and Zs is called the spring of Z. Also
the B-birational class of (W, BW) is also independent of W and X and is called the
source of Z. Furthermore, Zs → Z is Galois and BirZ(W, BW) → Gal(Zs/Z) is
surjective. In particular, (W, BW) is Gal(Zs/Z) invariant. Here BirZ denotes the
the set of B-birational automorphisms that preserve Z.

In particular we have the following very important classification of ex-
ceptional divisors for threefold log canonical Fano varieties.

Remark 4.3.2. Let (X′, B′) be an lc threefold with −(KX′ + B′) ample. Let
f : (X, B) → X be a dlt model. Then let S be an irreducible component of
bBc. Write KS + BS := (KX + B)|S. Then one of the following holds:

• f (S) is a surface and hence f |S is birational.

• f (S) is a point and therefore KS + BS ∼Q 0.

• f (S) is a curve C′with normalisation C, then one of the following holds:

– bBSc has no horizontal component over C′. In particular, (S, BS) is
a minimal lc centre over C′ and therefore the B-birational class of
(S, BS) is independent from the choice of S. Furthermore, for any
other S′ ∈ bBc, with f (S′) = C′, the same property holds.

– There exists E ∈ bBSc horizontal over C′. Let KE + BE := (KS +
BS)|E. In particular, E is the minimal lc centre over C′. In this case,
E is the spring of C′ and hence is determined (up to isomorphism)
independent from the choice of S. Also (E, BE) is the source of C′

and therefore the B-birational class of (E, BE) depends only on C′

and not on the choice of S. Furthermore, E→ C is Galois between
smooth curves (as E is normal) and (E, BE), (which only depends
on C′) is Gal(E/C) invariant. In particular, by Riemann Hurwitz,
there exists a well defined pair (C, BC) such that KE + BE = (KC +
BC)|E.

Finally we note that the last case in the above classification is precisely the
assumption as in Proposition 4.2.9, which is why the Proposition is very im-
portant.
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4.4 Proof of Theorem 1.8.5

Now we are ready to show the proof of the main theorem of the paper. For
convenience of the reader, we will restate our result here.

Theorem 4.4.1 (Theorem 1.8.5). Let R ⊂ [0, 1] be a finite set of rational numbers.
Then there exists a natural number n depending only on R satisfying the following.
Assume (X′, B′) is a projective pair such that

• (X′, B′) is lc of dimension 3,

• B′ ∈ Φ(R), that is, the coefficients of B′ are in Φ(R), and

• −(KX′ + B′) is ample.

Then there is an n complement KX′ + B′+ of KX′ + B′.

Proof of Theorem 1.8.5. Let (X′, B′) be as in the Theorem. If (X′, B′) is klt, then
X′ is Fano type and we are done by Theorem 1.4.7. Therefore from now on,
we will assume that (X′, B′) is not klt. Let f : (X, B) → (X′, B′) be a Q-
factorial dlt model of (X′, B′) with KX + B = f ∗(KX′ + B′). Let S := bBc and
write KS + BS := (KX + B)|S. Then by Prop. 2.6.1, it suffices to show KS + BS
has an n-complement with n depending only on R. First we will show there
are complements on each irreducible component of S and then we will use
Corollary 3.3.3 to show they glue to give a complement for KS + BS. We note
that BS ∈ Φ(S) with S a finite set of rationals depending only on R. We note
that S is connected by connectedness theorem since−(KX + B) is nef and big.

Step 0: We first settle the case when S is irreducible. In this case, let T′ be
the image of S on X′ and let S

g−→ T → T′ be the stein factorization. Then
we see that either T is dimension 0, in which case we have KS + BS ∼Q 0 or
T is a curve or a surface. We can apply Theorem 1.8.7 or Proposition 4.2.4 or
Proposition 2.7.3, to show there is an n-complement with n depending only
on R for KS + BS. Now we are done by applying Prop. 2.6.1. Hence from
now on, we will assume S has multiple irreducible components.

Step 1: We first consider complements on curves. Let T be an irreducible
one dimensional lc centre on KX + B. Write KT + BT := (KX + B)|T (note this
is well defined up to sign by [Kol13, Section 4.18] and we will always assume
n to be even). We note that the coefficients of BT lie in Φ(F) with F depending
only on R. Then either T is contracted by f or the image of T is a curve.

1. If T is contracted, then KT + BT ∼Q 0 and hence n(KT + BT) ∼ 0 for
some n depending only on R. In this case, we let RT = 0 be an n-
complement for (T, BT).

2. If T is not contracted by f , let T′ be its image on X, then we have
KT + BT ∼Q f |∗T(−A) for some A ample on T′. Hence we see that T, T′

are rational curves. since T is the minimal lc centre dominating T′, we
see that T → T′ is Galois. Furthermore, by [Kol13, Theorem–Definition
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4.45], If (T̂, BT̂) is another one dimensional lc centre on (X, B) dominat-
ing T′, then (T, BT) is naturally B-birational to (T̂, BT̂) in the sense that
we have a commutative diagram

(T, BT) (T̂, BT̂)

T′

σ

f |T f |T̂

We note that σ is not unique.
If we let T̄ be the normalisation of T′, then T → T̄ is also Galois. Also
note that Gal(T/T̄) = Gal(T/T′). Now since Bir(T, BT) → Gal(T/T′)
is surjective, we see that KT + BT is Gal(T/T̄) invariant. Therefore, by
Riemann Hurwitz, we can define (T̄, BT̄) such that KT + BT = (KT̄ +
BT̄). Notice that (T̄, BT̄) is well-defined and independent from the choice
of T. Furthermore, by Lemma 4.1.1 we can assume that BT̄ ∈ Φ(T).
Therefore, also by Lemma 4.1.1, there exists n, depending only on T
(which in turn, only depends on R), such that there exists n-complements
KT̄ + BT̄ + RT̄, with RT̄ ≥ 0 such that KT + BT + RT is an n-complement
for KT + BT with RT := RT̄|T. Notice that this defines RT for all T map-
ping to T′. Also we note that RT is Gal(T/T′) invariant.

Hence now for each T, dimension 1 irreducible lc centre of (X, B), we have
constructed an n-complement KT + BT + RT with RT ≥ 0 and RT is disjoint
from any other lc centre on (X, B).

Step 2: Now let S := ∪Si, where Si are the irreducible components of S. Then
Si are mapped to either points, curves or surfaces on X′. We distinguish the
3 cases. Let W be a general Si.

1. If W is mapped to a point on X′, then KW + BW := (KX + B)|W ∼Q 0,
and the coefficients of BW are in Φ(S) for some finite set of rationals S
depending only on R. Hence by Theorem 1.8.7, there is n, depending
only on R, such that n(KW + BW) ∼ 0, in this case, the n-complement
RW = 0.

2. If W is mapped to a surface on X′, then −(KW + BW) is nef and big.
Let V := bBWc and KV + BV := (KW + BW)|V , we see that V is an sdlt
curve and−(KV + BV) is nef. In particular, for each irreducible compo-
nent of V, we have already created an n-complement with n depend-
ing only R such that they are disjoint from the non-normal locus of V.
Hence by Proposition 2.7.2, we have already found an n-complement
for KV + BV in the form of KV + BV + RV , with RV ≥ 0. Therefore, by
Proposition 2.6.1, we can lift these complements to an n-complement
KW + BW + RW for KW + BW such that RW |W := RV , i.e. for each irre-
ducible component T in V, we have RW |T = RT defined as above.

3. The last case is that W is mapped to a curve T′ with normalisation T.
Let f : W

g−→ C → T be the stein factorization. By Prop. 4.2.3, we can
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find q depending only on R, such that

q(KW + BW) ∼ q(KC + BC + MC).

We note that−(KC + BC + MC) is Q-linearly equivalent to the pullback
of an ample divisor on T′, hence we see that C is a smooth rational
curve. Now we split into further cases depending on Bh, the horizontal
over C part of bBWc.

(a) Case 1: Bh = 0, then by Lemma 2.7.1,we can simply choose any n-
complement KC + BC + RC + MC for KC + BC + MC. Using Propo-
sition 4.2.4, it lifts to an n-complement KW + BW + RW for KW +
RW with RC ≥ 0 and RW := g∗(RC). Note that in this case, for any
D, an irreducible component of bBWc, we have RW |D = 0 since if
D is mapped to z ∈ C, then µz(BC) = 1 and hence µz(RC) = 0.

(b) Case 2: Bh 6= 0. By Remark 4.3.2, we can apply Proposition 4.2.9.No-
tice that by step 2, we have already constructed an n-complement
KT + BT + RT for KT + BT. Now apply Proposition 4.2.9, after re-
placing n by a possibly bounded multiple, we see that KW + BW +
RW is an n-complement for KW + BW with RW := RT|W . Also we
can easily see that RW |D = 0 for any D, an irreducible vertical
component of bBWc, by similar reasons as in (a). In particular, by
construction, we have RW |Bh = RBh as constructed in step1.

Now summing up, we have found n, depending only on R such that for each
W, an irreducible component of S, there is an n-complement KW + BW + RW
for KW + BW with RW ≥ 0 and for each irreducible component T in bBWc,
we have RW |T = RT defined above in step 1.

Step 3 : We are now done by applying Proposition 3.3.3 and Proposition 2.6.1
again. More precisely, by Proposition 3.3.3, by potentially replacing n by a
bounded multiple, we can get an n-complement for KS + BS, which will lift
to an n-complement for KX + B by Proposition 2.6.1. Pushing forward to X′,
we get an n-complement for KX′ + B′, which finishes the proof.
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Chapter 5

Complements for Relative Log
Canonical Fano Threefolds

This chapter will be devoted to the proof of one of the main theorems, Theo-
rem 1.8.6. We will also give a quick sketch of the slightly more general result
as in Theorem 1.8.10. For completeness, we will state the theorem again here.
Most of this chapter is taken from [FMX19], which is a joint work with Ste-
fano Filipazzi and Joaquin Moraga.

Theorem 5.0.1. Let R ⊂ [0, 1] be a finite set of rational numbers. Then there exists
a natural number n depending only on d and R satisfying the following. Assume
(X, B) is a quasi-projective pair such that

• (X, B) is lc of dimension 3,

• f : X → Z is a projective contraction,

• B ∈ Φ(R), that is, the coefficients of B are in Φ(R), and

• −(KX + B) is ample over z ∈ Z.

Then there is an n-complement KX + B+ of KX + B over z ∈ Z.

We remark that since the result is relative around z ∈ Z, we may shrink Z
around z freely if necessary.

There are a lot of technicalities in the proof. Hence we will first have a
section to prepare for all the results that are needed for the proof. One key
difference to the global case is that we will need to apply a more general form
of vanishing theorem, called Injectivity Theorem. This theorem allows much
more freedom as we will see in the proof. Another key difference is that we
will need to use Kollár gluing theorem instead of pre-admissible sections to
glue sections on sdlt surfaces. We will give a quick review of Kollár gluing
theory as well in the next section.
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5.1 Preparation for the Proof

5.1.1 Kollár Gluing Theorem

Kollár developed a theory of quotients by finite equivalence relations [Kol13,
Chapter 9]. In particular, it is a powerful tool to study a semi-log canonical
pair (X, B) via its normalization (X′, B′ + D′). In particular, the technique is
used in the proof of Theorem 2.5.4. Also in [HX13, HX16], this technique is
used to show the following result for semi-log canonical pairs.

Theorem 5.1.1. [HX16, Theorem 1.4] Let (X, B) be a semi-log canonical pair,
f : X → S be a projective morphism, ν : Xν → X be the normalization. Write
ν∗(KX + B) = KXν + Bν + Dν, where Dν is the double locus. If KXν + Bν + Dν is
semi-ample over S, then KX + B is semi-ample over S.

The idea of the proof of Theorem 5.1.1 is the following. Assume for sim-
plicity that S = Spec(C), B = 0, and (Xν, Bν + Dν) = (X1, D1) t (X2, D2),
where each Di is normal and irreducible. A section ofOXν(m(KXν + Dν)) de-
scends to a section of OX(mKX) if its restriction to Dν is invariant under the
involution τ that exchanges D1 and D2, as in Proposition 2.4.3. Therefore, in
order to show |OX(mKX)| is base point free, i.e. separates x1 and x2 for any
x1 6= x2, it suffices to find two sections s1, s2 ∈ H0(OXν(m(KXν + Dν))) that
separate the preimages of x1 and x2 and such that each si|Dν is τ-invariant.

The theory of finiteness of B-representations ( i.e. [FG14b, Theorem 3.15])
guarantees that we can find the needed τ-invariant sections in |OXν(m(KXν +
Dν))| for some m. As we are interested in n-complements for a bounded n,
we need an effective version of this approach. Therefore, we need to prove
the following.

Proposition 5.1.2. Let X → T be a contraction such that the pair (X, B) is semi-dlt
with dim X ≤ 2. Let (Xν, Bν + Dν) be the normalisation of (X, B). Assume that
we have n(KXν + Bν + Dν) ∼T 0, and n(KXν + Bν + Dν) is Cartier. Then, there
exists m, only depending on n such that m(KX + B) ∼T 0.

Remark 5.1.3. We have already proved this proposition in the case that T is a
point, see Theorem 1.8.7. Here the key difficulty is coming from the relative
setting.

Remark 5.1.4. We note that the above proposition is more or less trivial when
dim X = 1 since in this case, T is either a point (i.e., we are in the projective
case) or T is X, which the claim follows trivially. We also note that it is shown
in [HX16, Theorem 1.4] that such an m exists, and here we need to bound m
depending only on n and R.

Proof of Proposition 5.1.2. By Remark 5.1.4, we can assume dim(X) = 2. There-
fore, if we denote the double locus of Xν → X by Dν, the components of Dν

are curves. In particular, by Proposition 3.3.1, we can choose m depending
only on n such that ρm(Bir(Z, BZ)) is trivial for all Z irreducible components
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of Dν, which is the key for our proof. In particular, we have (M|Dν) is Cartier,
where we set M := m(KXν + Bν + Dν).

Now, we follow the proof in [HX16, Theorem 1.4]. We consider the mor-
phism f : Xν → T, and we have that M = m(KXν + Bν + Dν) ∼T 0 is Cartier.
Hence, f is the morphism induced by n(KXν + Bν + Dν) over T. Let H be the
(very ample over T) line bundle on T such that f ∗H = n(KXν + Bν + Dν). Let
pX : XM → X and pT : TH → T be the total spaces of the line bundles of M
and H, respectively. Define DM := p−1

X (Dν), Y := f (Dν), and YH := p−1
T (Y).

We see that the involution τ : Dν → Dν induces a set relation on YH → TH.
Now following [HX13, Section 3.2], we see that the quotient A with respect
to YH → TH exists. This implies that there is a line bundle A on T whose pull-
back to X is m(KX + B). In particular, this implies that m(KX + B) ∼T 0.

5.1.2 Some Notes on Curves

Firstly we will introduce the notion of semi-normality.

Semi-normal curves

Let X be a scheme, and let f : X′ → X be a finite morphism. The morphism
f is a partial semi-normalization if X′ is reduced, each point x ∈ X has ex-
actly one preimage x′ := f−1(x), and f ∗ : k(x)→ k(x′) is an isomorphism. A
scheme X is called semi-normal if every partial semi-normalization f : X′ → X
is an isomorphism. In particular, a semi-normal scheme is reduced. Over an
algebraically closed field, a curve singularity (0 ∈ C) is semi-normal if and
only if it is analytically isomorphic to the union of n coordinate axes in An

[Kol13, Example 10.12]. We will only be interested in semi-normal curves.

The reason that we are interested in semi-normal curves is because of the
following result: [Kol13, Section 4.20] If (X, B) is an lc pair, then any union
of lc centres of (X, B) is semi-normal.

5.1.3 Some Remarks on Curves

Here we need to state some more or less trivial result for finite morphism be-
tween curves. The following remark is important when considering relative
complements on curves. It will be used a few times in the proof later, so for
readers’ convenience, we will state it here.

Remark 5.1.5. Let C be a smooth curve. Let P1, . . . , Pn be n closed points on
C. Then, for any Cartier divisor D on C, we have D ∼ 0 in a neighbourhood
of Pi, for all i. Indeed, let Q be an arbitrary point on C, away from Pi for all
i. Then, for a sufficiently large m, D + mQ is very-ample. Hence, we can find
0 ≤ R ∼ D + mQ such that Pi is not in Supp(R) for all i. Hence, we get
D ∼ R−mQ ∼ 0, in a neighbourhood of Pi. Note that the exact same result
holds in the relative case via a finite map f : C → E over another curve E,
where E is irreducible but not necessarily smooth.
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5.1.4 Injectivity Theorem

We have the following injectivity theorem, which we will use for the proof.
It is quite technical.

Theorem 5.1.6. [Fuj17, Theorem 2.12] Let (X, Γ) be a log smooth pair with coeff(Γ) ⊂
[0, 1]. Let φ : X → T be a proper morphism between schemes. Let ε be a positive
rational number. Let L be a Cartier divisor on X. Let S be an effective Cartier divisor
on X, which does not contain any log canonical centre of (X, Γ). Assume that

(1) L ∼Q,T KX + Γ + N;

(2) N is a Q-divisor that is semi-ample over T; and

(3) εN ∼Q,T S + S, where S is an effective Q-Cartier Q-divisor which doesn’t
contain any log canonical centre of (X, Γ) in its support.

Then the natural map

Rqφ∗(OX(L))→ Rqφ∗(OX(L + S))

is injective for every q.

Remark 5.1.7. We notice that the above theorem is essentially a generalisa-
tion of relative Kodaria type vanishing for the simple normal crossing case.
It is in general quite difficult to apply this vanishing due the technical condi-
tion (3). Notice that (3) is always true if (X, Γ) is klt and when N is ample,
we recover the standard Kodiara type vanishing theorem.

Now we will give a quick reason why the above vanishing would be use-
ful in the proof here. Since we are working with right derived function of
the push forward functor, we will give a quite detailed explanation here. It
is more or less straight forward for people that are familiar with such state-
ments.

Remark 5.1.8. Assuming the same notation as in the above vanishing theo-
rem and let t ∈ T be a closed point such that t ∈ φ(S). Consider the exact
sequence

0→ OX(L)→ OX(L + S)→ OS(L|S)→ 0.

By pushing forward via φ and taking the right derived function, we arrive at
the following exact sequence

φ∗(OX(L + S))→ φ∗(OS(L|S))→ R1φ∗(OX(L))→ R1φ∗(OX(L + S)).

Therefore, if R1φ∗(OX(L))→ R1φ∗(OX(L + S)) is injective, then

φ∗(OX(L + S))→ φ∗(OS(L|S))

is a surjective morphism of sheaves. Now by the definition of push forward
of sheaves and the fact that a surjective morphism of sheaves is surjective on



5.1. Preparation for the Proof 73

sections on any sufficiently small neighbourhood of t, we have that, poten-
tially by shrinking T near t,

H0(X,OX(L + S))→ H0(S,OS(L|S))

is surjective, which is exactly what we need to lift sections.

As we have mentioned, criteria (3) is quite technical. Luckily, we can
easily satisfy it with the following lemma. Due to the technical nature of
this subject, the following proof is also quite technical. However the idea is
simple, if (X, B) is lc with −(KX + B) ample/T, then if f : (X′, B′) → X is a
dlt model of (X, B) and let N′ := −KX′ + B′, then in some sense N′ is ample
outside Ex( f ). A more precise statement is the following.

Lemma 5.1.9. Let φ : X → T be a projective morphism of normal quasi-projective
varieties. Let (X, B) be a log canonical pair, with −(KX + B) ample over T. Let
π : X′ → X be a Q-factorial dlt modification of (X, B), and define N′ := −π∗(KX +
B). Then, we can write

N′ ∼Q,T A + D,

where A is ample over T, and D is an effective divisor which is semi-ample over T
outside Ex(π).

Proof. First, we prove that the relative augmented base locus of N′ is con-
tained in Ex(π). Let A be an ample divisor on X′, H be a very ample di-
visor on T. Fix a rational number 0 < ε � 1 such that B+(N′/T) =
B(N′ − εA/T). Then, we have

B+(N′/T) =
⋂

m∈N

⋂
n∈N

Bs
∣∣m(N′ − εA) + nφ∗H

∣∣ .

On the other hand, we may choose m and n so that the Cartier divisor mN′+
nφ∗H is big and nef on X′. Moreover, we may further assume that |mN′ +
nφ∗H| defines an isomorphism on the complement of Ex(π). By [BCL14,
Theorem A], we conclude that

B+(mN′ + nφ∗H) ⊂ Ex(π).

This latter inclusion implies that for ε small enough, we have

Bs
∣∣mN′ + nφ∗H −mεA

∣∣ ⊂ Ex(π).

Thus, we conclude that B+(N′/T) ⊂ Ex(π). By the above inclusion, we
conclude that we may write

N′ ∼Q,T A + D,

where A is ample over T, and the base locus of D is contained in Ex(π). We
conclude the claim by replacing D by some general element in its relative
Q-linear system.



74 Chapter 5. Complements for Relative Log Canonical Fano Threefolds

5.2 Relative Sdlt Surface Complements

Notice that here we need to prove a specific type of existence of complements
for sdlt surfaces in the relative case. Notice that since we are still interested
in the threefold case, Remark 4.3.2 still applies. In the light of the remark, we
have the following condition. It may seem a bit strange and technical, but
this is exactly what we need before lifting complements.

By Remark 4.3.2, we need to prove the existence of semi-dlt relative com-
plements in the following setting, which we will call Condition A.

Definition 5.2.1 (Condition A). Let (X, B) → S → T be surjective mor-
phisms between (not necessarily normal) quasi-projective varieties, and let
R ⊂ [0, 1] be a finite set of rational numbers. Assume that X → T is a con-
traction, and let t ∈ T be a closed point. We say that the contraction satisfies
Condition A if the following holds:

• (X, B) is a semi-dlt surface that is Q-complemented over the closed
point t ∈ T;

• the coefficients of B belong to Φ(R);

• S is a possibly reducible semi-normal curve; and

• T is either a possibly reducible semi-normal curve, or T = {t}.

Moreover, given any irreducible component X1 of X, we assume that one of
the following occurs:

1. X1 is mapped to the closed point s ∈ S (where s maps to t), and KX1 +
B1 ∼Q 0;

2. X1 is mapped to S1, a curve in S, S1 is mapped to t, and KX1 + B1 ∼Q

f ∗A, where f : X1 → S1 and −A is globally ample on S1; or

3. X1 is mapped onto S1, a curve on S, and S1 is mapped onto T, and
KX1 + B1 ∼Q,S1 0.

Furthermore, if (2) or (3) occurs (that is, X1 is mapped onto a curve S1 ⊂ S),
we assume the following condition:

• let E be a component of bB1c that dominates S1. Then, E → C is a
Galois finite morphism, where C is the normalisation of S1, KE + BE :=
(KX1 + B1)|E is Gal(E/C) invariant, and the pair (E, BE) is (up to B-
birational automorphism) only dependent on the choice of such S1 and
independent of the choice of X1.

Then we have the following theorem, which is the main result of this
section.

Proposition 5.2.2. [FMX19, Proposition 9.4] Let R ⊂ [0, 1] be a finite set of
rational numbers. Then, there exists a natural number n only depending on R
which satisfies the following. Let X → S → T be a projective contraction between
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quasi-projective varieties that satisfies Condition A. Then, up to shrinking T around
t, we can find

Γ ∼T −n(KX + B),

such that (X, B + Γ/n) is a log canonical pair.

Proof. We will first treat the case when T is a semi-normal curve. We split the
proof in two main steps. We first show how to create complements on each
component of Xi and then show that they can be glued together to form a
global complement.

Step 1: We consider each case above separately using the same number-
ing as in the definition of Condition A. In this step, we will prove the exis-
tence of an n-complement on the component.

1. Assuming X1 is mapped to s ∈ S, then we have KX1 + B1 ∼Q 0. Hence,
by Theorem 1.8.7, there exists a bounded n, such that n(KX1 + B1) ∼ 0.
In particular, the complement is trivial. Also, we note that any comple-
ment of X1 will be trivial on any irreducible component of bB1c.

2. In this case, we apply the canonical bundle formula. Notice that, in
this case, the curve S1 is projective. Therefore, we can consider global
complements. We split into 2 further cases for gluing: this is because
we will construct complements differently depending on the different
cases and we need these specific constructions for gluing the sdlt com-
plements later.

(a) The first case is where bB1c doesn’t contain any horizontal com-
ponent mapping onto S1. Applying the canonical bundle formula,
we get there exists a positive integer q depending only on R such
that

q(KX1 + B1) ∼ q f ∗(KS1 + BS1 + MS1),

where here we possibly replace S1 by its normalisation and its fi-
nite cover in the Stein factorization of X1 → S1. Furthermore, by
Proposition 4.2.3, we can assume that qMS1 is Cartier, base point
free, and the coefficients of BS1 belong to Φ(S), where S ⊂ [0, 1]
is a finite set of rational numbers only depending on R by The-
orem 4.2.3. Now, since −(KS1 + BS1 + MS1) is ample and MS1 is
nef, we conclude that S1 is a rational curve. Hence, there exists an
RS1 ≥ 0 such that

q(KS1 + BS1 + RS1 + MS1) ∼ 0,

possibly after replacing q by a bounded multiple. Pulling RS1 back
and letting R1 := f ∗RS1 , we get

q(KX1 + B1 + R1) ∼ 0.

Furthermore, it is clear that (X1, B1 + R1) is log canonical from the
canonical bundle formula.
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(b) Now assume that D is a component in bB1c mapping onto S1. Let
C be the normalisation of S1. We see that by assumption we have
D → C is Galois. Notice that here both D and C are smooth curves.
Let KD + BD := (KX1 + B1)|D, where BD ∈ Φ(S)and S ⊂ [0, 1]
is a finite subset of rational numbers depending only on R. By
Condition A and Remark 4.3.2, we see that there exists BC ∈ Φ(S),
such that KD + BD = (KC + BC)|D.
Furthermore, we see that by Proposition 4.2.9 there exists a bounded
q such that q(KX1 + B1) ∼ q(KC + BC)|X1 .
We note that such KC + BC is in fact determined independent of the
choice of S1 by [Kol13, Theorem 4.45 (5)]. Hence, since KC + BC is
anti-ample, there exists an RC ≥ 0 such that q(KC + BC + RC) ∼ 0.
Letting R1 := RC|X1 , we see that q(KX1 + B1 + R1) ∼ 0, possibly
after replacing q by a bounded multiple. However, we still need to
show that (X1, B1 + R1) is log canonical. By Lemma 4.1.1, we can
show that, possibly by replacing q, we can assume that (D, BD +
RD) is log canonical, where RD := RC|D. Then, we are done by
Lemma 4.2.7.

3. This case is almost the same as the previous one. Again, we split it into
two further cases to discuss.

(a) The first case is where bB1c does not contain any horizontal com-
ponent mapping onto S1. Applying the canonical bundle formula,
we get there exists a positive integer q, depending only on R,
such that q(KX1 + B1) ∼ q(KS1 + BS1 + MS1)|X1 . Here, we pos-
sibly replace S1 by its normalisation and the Stein factorization of
X1 → S1. Furthermore, by Proposition 4.2.3, we can assume that
qMS1 is Cartier and the coefficients of BS1 belong to Φ(S), where
S ⊂ [0, 1] is a finite set depending only onR. Now, let {s1, . . . , sn}
be the preimage of t ∈ T in S1. We can define

RS1
:= (1−mults1(BS1))s1 + · · ·+ (1−multsn(BS1))sn.

By Remark 5.1.5, we see that q(KS1 + BS1 + RS1 + MS1) ∼ 0 over a
neighbourhood of t. Hence, if we let R1 := RS1 |X1 , we get q(KX1 +
B1 + R1) ∼ 0 over a neighbourhood of t. We note here by the
above linear equivalence,we mean that OX1(q(KX1 + B1 + R1)) ∼=
f ∗OT around a neighbourhood of t. Furthermore, note that, by
inversion of adjunction in canonical bundle formula, (X1, B1 + R1)
is log canonical.

(b) Now assume that D is a component in bB1c mapping onto S1. Let
C be the normalisation of S1. By assumption, we have that D → C
is Galois. Notice that here both D and C are smooth curves. Set
KD + BD := (KX1 + B1)|D. By Condition A, we see that there exists
BC ∈ Φ(R), such that KD + BD = (KC + BC)|D. Furthermore, by
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similar argument as in (2b), there exists a bounded q such that

q(KX1 + B1) ∼ q(KC + BC)|X1 .

We note that, by the assumptions, such KC + BC is in fact deter-
mined, independent of the choice of S1. Hence, we can define
RC := (1−multc1(BC))c1 + · · ·+ (1−multcn(BC))ck ≥ 0, where
{c1, . . . ck} is the preimage of t on C. Then, possibly by shrinking
around t, by Remark 5.1.5, it follows that q(KC + BC + RC) ∼ 0,
where R1 := RC|X1 . Then, we see that q(KX1 + B1 + R1) ∼ 0,
possibly after replacing q by a bounded multiple and shrinking
around t. Furthermore, by Lemma 4.2.7 and Lemma 4.1.1, we see
that (X1, B1 + R1) is log canonical.

Step 2: Now we consider gluing these complements together. Firstly, we
note that, up to shrinking around t, each complement R1 constructed in Step
1 is such that OX1(n(KX1 + B1 + R1)) ∼ f ∗OT, i.e., each n(KX1 + B1 + R1) is
linearly equivalent to the pull-back of the structure sheaf on T. Furthermore,
it can be verified that, given X1, X2, two different irreducible components of
X, and E being a component of X1 ∩ X2, the complements R1 and R2 agree
along E.
Indeed, we have the following cases. Let R1 and R2 be two complements
that we have constructed in Step 1 on X1 and X2, respectively. Now, if E is
mapped to a point on S, then it is clear that R1|E = 0 = R2|E, since R1|E ≥ 0
and KE + BE ∼Q 0. On the other hand, if E is mapped onto S1, an irreducible
component of S, it follows from the construction that R1|E = R2|E, since they
are both pull-backs of a fixed well-defined divisor on C by considering the
finite Galois map E→ C, where C is the normalisation of S1.

Now, we are done applying Proposition 5.1.2. Indeed, we define Rν on
Xν (the normalisation of X) to be such that Rν|Xi = Ri as above. Notice
by the definition, we have n(KXν + Bν + Dν + Rν) ∼ 0, where Dν is the
conductor. In particular, by [Kol13, Theorem 5.39], we see that R is also
Q-Cartier where R is the pushforward of Rν to X. Therefore (X, B + R) is
indeed an slc pair. Now we are done by applying Proposition 5.1.2 to the slc
pair (X, B + R) and deducing that there is a bounded n depending only on
R such that n(KX + B + R) ∼ 0 over t.

Step 3: Now we deal with the case, where T is a single point. The proof
is exactly the same as in the case where T is a semi-normal curve, except that
we only have Case 1 and Case 2.
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5.3 Proof of Theorem 1.8.6

Finally, we are ready to prove the last main theorem of this thesis.

Proof of Theorem 1.8.6. The strategy follows the proof of [Bir19, Proposition
8.1]. The general idea is to create complements on the sdlt surfaces and then
apply injectivity theorem to lift complements to the total space. We proceed
in several steps as in [Bir19, Proposition 8.1].

Step 1: In this step, we define some birational models of X and set some
notations.
Let f : X′′ → X be a log resolution of the pair (X, B) and let X′ → X be the
corresponding Q-factorial dlt model. We can assume that (X, B) is strictly lc
over t, hence we can assume that a log canonical place, whose center on T is
t, is extracted. Furthermore, we can assume that X′′ 99K X′ is a morphism.
Let (X′, B′) and (X′′, B′′) denote the pullbacks of (X, B) on X′ and X′′, re-
spectively. We can further assume that W ′′ :=

⌊
B′′≥0⌋ and W ′ :=

⌊
B′≥0⌋

are birational, i.e. all components of
⌊

B′′≥0⌋ map birationally to its image on⌊
B′≥0⌋. We will use the notation that if Ω′′ is a divisor on X′′, then Ω′ and

Ω will denote the push-forwards on X′ and X, respectively. By assumption,
N := −(KX + B) is ample over T, hence, N′′ := −(KX′′ + B′′) is nef and big
over T. Also define ∆′′ := B′′ −W ′′, and S′′ := W ′′ − π−1

∗ bBc. Observe that
S′′, W ′′ are integral Weil divisors on X′′, and therefore they are Cartier since
X′′ is smooth.

Step 2: In this step, we show that S′ → T′ is a contraction, where T′ ⊂ T
denotes the image of S′ in T.

Note that we have the following exact sequence

0→ OX′(−S′)→ OX′ → OS′ → 0.

We get the following sequence

φ∗OX′ → φ∗OS′ → R1φ∗OX′(−S′)

that is exact in the middle, where we set φ : X′ → T. By Lemma 5.1.9, we can
write

−S′ = KX′ + B′ − S′ + N′

∼Q,T KX′ + B′ − S′ + (1− ε)N′ + εA′ + εD′,

where A′ is ample over T, and D′ is an effective divisor that is semi-ample
over T outside of Ex(X′ → X). By the property of Q-factorial dlt models,
we have that all the log canonical centers of (X′, B′) that are contained in
Ex(X′ → X) are contained in S′. Therefore, if we pick 0 < ε � 1, by Lemma
5.1.9, the pair (X′, B′ − S′ + εD′) is dlt. Moreover, since εA′ is ample over T,
we may pick δ small enough such that (X′, B′ − S′ − δbπ−1

∗ Bc+ εD′) is klt,
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and εA′ + δbπ−1
∗ Bc is ample over T. Hence, we may write

−S′ ∼Q,T (KX′ + B′ − S′ − δbπ−1
∗ Bc+ εD′) + ((1− ε)N′ + εA′ + δbπ−1

∗ Bc),

where the first summand is log divisor of a klt pair, and the second one is
a divisor that is ample over T. Applying the relative version of Kawamata–
Viehweg vanishing, we conclude that

R1φ∗OX′(S′) = 0.

Thus, φ∗OX′ → φ∗OS′ is surjective. Let S′ → S′0 → T be the Stein fac-
torization of S′ → T, and write φ0 : S′0 → T for the induced morphism.
Then we have that φ∗OX′ → φ∗OS′ = φ0∗OS′0

is surjective. The morphism
OT → φ0∗OS′0

factors as OT → OT′ → φ0∗OS′0
. Hence, we conclude that

OT′ → φ0∗OS′0
is surjective. Since S′0 → T′ is finite, then OT′ → φ0∗OS′0

is
indeed an isomorphism. Hence, S′0 → T′ is an isomorphism. Therefore we
can conclude that S′ → T′ is a contraction.

Step 3: In this step, we consider adjunction and complements on S′.
By adjunction [Xu19a, 3.7.1], we can define a semi-dlt surface via

(KX′ + B′)|S′ = KS′ + BS′ .

By Remark 4.3.2, this pair satisfies the conditions of Proposition 5.2.2. In-
deed, by [Xu19a, 3.7.1], there exists a finite set of rational numbers S ⊂ [0, 1],
only depending onR, such that the coefficients of BS′ belong to Φ(S). There-
fore, by potentially replacing R, we can apply Proposition 5.2.2. Hence, by
Proposition 5.2.2, (S′, BS′) has a bounded n-complement B+

S′ = BS′ + RS′ over
t ∈ T, i.e., n(KS′ + BS′ + RS′) ∼T 0, after possibly shrinking around t ∈ T. Fix
n for the rest of the proof. Up to taking a bounded multiple only depending
on n, we may assume that I(R) divides n. From now on the goal is to lift this
complement to X′.

Step 4: In this step, we introduce some line bundles on X′′ that are suit-
able for the use of vanishing theorems.
On X′′, consider the integral, hence Cartier divisor

L′′ := −nKX′′ − nW ′′ − b(n + 1)∆′′c.

The choice is motivated as follows: our goal is to lift the complement B+
S′ from

S′ to X′. Since X′ may be singular, we need to work on the smooth model X′′



80 Chapter 5. Complements for Relative Log Canonical Fano Threefolds

to use the appropriate vanishing theorems. Observe that we may write

L′′ =− nKX′′ − nW ′′ − b(n + 1)∆′′c
=KX′′ + W ′′ + (n + 1)∆′′ − b(n + 1)∆′′c − (n + 1)KX′′ − (n + 1)W ′′ − (n + 1)∆′′

=KX′′ + W ′′ + (n + 1)∆′′ − b(n + 1)∆′′c+ (n + 1)N′′

=KX′′ + B′′ + n∆′′ − b(n + 1)∆′′c+ (n + 1)N′′

=n∆′′ − b(n + 1)∆′′c+ nN′′.

Hence, we can write

L′′ − S′′ = KX′′ + (W ′′ − S′′) + (n + 1)∆′′ − b(n + 1)∆′′c+ (n + 1)N′′.

Step 5: In this step, we introduce divisors Φ′′ and Λ′′ on X′′ and study
their properties.
Let Φ′′ be the unique integral divisor on X′′ so that

Λ′′ := (W ′′ − S′′) + (n + 1)∆′′ − b(n + 1)∆′′c+ Φ′′

is a boundary, (X′′, Λ′′) is dlt, and bΛ′′c = W ′′ − S′′. We note that Φ′′ ex-
ists and is unique since all negative coefficients of (W ′′ − S′′) + (n + 1)∆′′ −
b(n + 1)∆′′c are in the range (−1, 0). By the choices of X′′ and X′, it follows
that Φ′′ is supported on Ex(X′′ → X′) and shares no components with W ′′.

Step 6: In this step, we apply Theorem 5.1.6 to L′′ − S′′ + Φ′′.
Recall that N′′ is semi-ample over T. Let F′′ be an effective divisor on X′′ that
is exceptional and anti-ample for X′′ → X. Hence, N′′ − εF′′ is ample over
T for 0 < ε � 1. Observe that (X′′, Λ′′) is a log smooth pair. By the choice
of X′′, (X′′, Supp(Λ′′ + S′′ + F′′)) is also log smooth. Since bΛ′′c = W ′′ − S′′,
Supp(S′′ + F′′) contains no log canonical center of (X′′, Λ′′). Notice that we
have

L′′ − S′′ + Φ′′ = KX′′ + Λ′′ + (n + 1)N′′.

To apply Theorem 5.1.6, we are left with checking that the third condition of
the statement holds. Fix 0 < δ � 1, so that N′′ − εF′′ − δS′′ is ample over T.
Then, we may write N′′ − εF′′ − δS′′ ∼Q,T G′′ ≥ 0, where G′′ contains no log
canonical center of (X′′, Λ′′). Hence, we have a Q-linear relation

N′′ ∼Q,T G′′ + εF′′ + δS′′,

where G′′ + εF′′ is an effective divisor that does not contain any log canoni-
cal center of (X′′, Λ′′). Also Supp(S′′) also doesn’t contain any log canonical
center of (X′′, Λ′′). Thus, by Theorem 5.1.6, we deduce that there is an injec-
tion

R1ψ∗OX′′(L′′ − S′′ + Φ′′)→ R1ψ∗OX′′(L′′ + Φ′′).

Here, ψ denotes the morphism X′′ → T. Therefore we have a surjection

ψ∗OX′′(L′′ + Φ′′)→ ψ∗OX′′((L′′ + Φ′′)|S′′).
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Since the surjectivity of a morphism between sheaves implies the surjectivity
on a sufficiently small local neighbourhood. After potentially shrinking T
around t ∈ T, we have

H0(OX′′(L′′ + Φ′′))→ H0(OS′′((L′′ + Φ′′)|S′′), (5.3.1)

as desired.

Step 7: In this step, we introduce some divisors on S′′.
In Step 3, we constructed an n-complement B+

S′ = BS′ + RS′ for (S′, BS′) over
t ∈ T. Notice that RS′ is a Q-Cartier divisor not containing any irreducible
component of the conductor of (S′, BS′). We have a birational morphism of
possibly reducible algebraic varieties S′′ → S′. Furthermore, by construction,
every irreducible component of S′′ maps birationally onto its image in S′.
Therefore, RS′ does not contain the image of any component of S′′ on S′, and
its pull-back RS′′ on S′′ is well-defined. Now, we have

n(KS′′ + BS′′ + RS′′) ∼T 0.

By construction, we have BS′′ = (B′′ − S′′)|S′′ , and the restriction preserves
the coefficients, as we are in a log smooth setting. Removing the contribution
of (W ′′ − S′′)|S′′ , which is integral, we realize that n(∆S′′ + RS′′) is integral,
where we have ∆S′′ := ∆′′|S′′ . We define

GS′′ := nRS′′ + n∆S′′ − b(n + 1)∆S′′c+ ΦS′′ ,

where we have ΦS′′ := Φ′′|S′′ . By definition, GS′′ is an integral divisor, and
nRS′′ + ΦS′′ is effective. We claim that GS′′ is effective. Indeed, it suffices to
show that the coefficients of n∆S′′ − b(n + 1)∆S′′c are strictly greater than −1
as GS′′ is integral. Since we are in the log smooth case, we may write

n∆S′′ − b(n + 1)∆S′′c = ((n + 1)∆′′ − b(n + 1)∆′′c − ∆′′)|S′′ ,

where the summand (n + 1)∆′′ − b(n + 1)∆′′c is effective. As the coefficients
of ∆′′ are strictly less than 1 by construction, it follows that the coefficients of
−∆′′ are strictly greater than −1. In particular, GS′′ is effective.

Step 8: In this step, we lift GS′′ to X′′.
We have NS′′ := N′′|S′′ = −(KX′′ + B′′)|S′′ = −(KS′′ + BS′′). Then, it follows
that nRS′′ ∼T nNS′′ . By shrinking T around t, in the following we may drop T
in the linear equivalence. In particular, we have nRS′′ ∼ nNS′′ and therefore,
by definition, we have

0 ≤ GS′′ ∼ nNS′′ + n∆S′′ − b(n + 1)∆S′′c+ ΦS′′ .

Then, observe that in step 4, we showed

L′′ := n∆′′ − b(n + 1)∆′′c+ nN′′.
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Therefore, we have

LS′′ := L′′|S′′ = n∆S′′ − b(n + 1)∆S′′c+ nNS′′ .

Hence, we conclude that

0 ≤ GS′′ ∼ LS′′ + ΦS′′ .

Thus, by the surjectivity of Equation (5.3.1), there exists 0 ≤ G′′ ∼ L′′ + Φ′′

on X′′ such that G′′|S′′ = GS′′ and G′′ is integral.

Step 9: In this step, we study G′, the push-forward of G′′ to X′, and we
introduce (B′)+,which we will soon show that it is a complement for (X′, B′).
By the definition of L′′, we get

0 ≤ G′′ ∼ −nKX′′ − nW ′′ − b(n + 1)∆′′c+ Φ′′.

Let G′ be the push-forward of G′′ to X′. Then, as Φ′′ is exceptional for X′′ →
X′, we have

0 ≤ G′ ∼ −nKX′ − nW ′ − b(n + 1)∆′c. (5.3.2)

Then, we can define

nR′ := G′ + b(n + 1)∆′c − n∆′ ∼ −n(KX′ + B′),

where the linear equivalence follows from Equation (5.3.2). By assumption,
the coefficients of ∆′ are in Φ(R), it follows from easy arithmetic that nR′

is indeed effective. Then, we can define (B′)+ := B′ + R′. Notice that by
construction, we have that n(KX′ + B′+) ∼ 0. Therefore, it suffices to show
(X′, B′+) is lc over t ∈ T.

Step 10: In this step, we will show that (X′, B′+) is log canonical by ap-
plying connectedness principle.
First, we show that R′|S′ = RS′ .
Let

nR′′ := G′′−Φ′′+ b(n+ 1)∆′′c−n∆′′ ∼ L′′+ b(n+ 1)∆′′c−n∆′′ = nN′′ ∼Q,X 0.

As R′′ pushes forward to R′, it follows that R′′ is the pull-back of R′. Observe
that R′′|S′′ = RS′′ . Hence, we have R′|S′ = RS′ . This implies the equality

KS′ + BS′ + RS′ = (KX′ + B′ + R′)|S′ = (KX′ + (B′)+)|S′ .

Therefore, by inversion of adjunction [Xu19a, Lemma 3.8], the pair (X′, (B′)+)
is log canonical in a neighbourhood of S′. If (X′, B′ + R′) is not log canon-
ical in a neighbourhood of φ−1(t), then we can write Nklt(X′, B′ + R′) =
Supp(bB′c) ∪ Z′1 ∪ Z′2, where Z′1 is a union of log canonical centers, and
Nlc(X′, B′ + R′) = Z′2. As (X′, (B′)+) is log canonical in a neighborhood
of S′, we have Supp(S′) ∩ Z′2 = ∅. Then, fix 0 < α� 1, so that Nklt(X′, B′ +
(1− α)R′) = Supp(bB′c) ∪ Z′2, and Nlc(X′, B′ + (1− α)R′) = Z′2. We notice



5.3. Proof of Theorem 1.8.6 83

that
−(KX′ + B′ + (1− α)R′) ∼Q,T αR′ ∼Q,T −α(KX′ + B′)

is nef and big over T. Also by assumption, we have that Nklt(X′, B′ + (1−
α)R′) is disconnected along φ−1(t). Therefore, since dim X = 3 < 4, we can
apply [HH19, Theorem 1.2], and derive that (X′, B′ + (1− α)R′) is plt in a
neighbourhood of φ−1(t) which is a contradiction since (X′, B′ + (1− α)R′)
is not lc at Z2. Therefore this shows that (X′, B′ + R′) is log canonical along
φ−1(t), which concludes the proof.



84 Chapter 5. Complements for Relative Log Canonical Fano Threefolds

5.4 Some Corollaries and Consequences

Here we state some applications of the main result in this chapter. In particu-
lar, we note that the relative case included the identity case and the question
about complements becomes the question about local index for strictly log
canonical singularities. Therefore, we have the following.

Corollary 5.4.1. Let R ⊂ [0, 1] be a finite set of rationals numbers. There exists
a natural number n only depending on R which satisfies the following. Let X be a
projective normal quasi-projective varieties, (x ∈ X) a closed point.

• (x ∈ X, B) is a log canonical 3-fold,

• (x ∈ X, B) is strictly log canonical near x,

• the coefficients of B belong to Φ(R).

Then, perhaps after shrinking X near x, n(KX + B) ∼ 0.

Proof. We apply Theorem 1.8.6 in the case where T = X and f : X → T
is the identity map. Notice that since (X, B) is strictly log canonical near x,
any local n-complement is disjoint from x ∈ X. Therefore, by shrinking X
near x, we see that there is a bounded n, depending only on R, such that
n(KX + B) ∼ 0.
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5.5 Further Research Questions

Here we briefly list some related questions in the field:

• This thesis mainly deals with the threefold case. Therefore it is natu-
ral to try to generalise the approach to higher dimension. However as
shown in Example 1.3.2, the boundedness of complements for global
log canonical Fano variety requires the boundedness of canonical in-
dex for klt Calabi-Yau with KX ∼Q 0. Therefore, one may attempt to
look for a result in the theory of complements in this direction in all di-
mensions assuming the boundedness of certain canonical index for klt
Calabi-Yau varieties.

• Following the above point, another natural question to consider is the
boundedness of canonical index for klt Calabi-Yau with KX ∼Q 0. This
conjecture seems to have relationship with ACC for mld for Calabi-Yau
when X is not canonical. In the case where X is canonical or termi-
nal, maybe the use of analytic techniques is better suited to tackle the
problem.

• Another interesting topic is the boundedness of B-representations for
Calabi-Yau manifolds in higher dimension. This seems hard and is
somehow inter-related to the index conjecture for Calabi-Yau varieties.

• The effective-canonical bundle formula in higher dimension is also of
great interest, in particular, the control the coefficients of the discrim-
inant part and control the base point free index of the moduli part.
These conjectures in higher dimension are mostly open in the case of
Calabi-Yau but non Fano type fibration. Understanding a good version
of effective canonical bundle formula is essential for further study of
complements in higher dimension.
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