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Abstract  

Extrinsic regulation of fate choice in mouse haematopoietic stem cells 

The mechanisms regulating stem cell self-renewal, proliferation, and differentiation are still not 

fully understood. Improving our knowledge of these processes will not only provide greater 

insight into stem cell biology but will also have major implications in the understanding of 

cancer development, since numerous cancers can trace their origins back to single stem cells.  

It has previously been shown that variations in culture conditions can alter fate choice in 

haematopoietic stem cells (HSCs). For decades cytokines have been used to maintain and 

expand mouse and human HSCs in vitro, with a number of studies demonstrating that cytokines 

directly influence HSCs fate choice. In this thesis, I explored the extrinsic regulation of mouse 

HSCs fate choice using three different approaches:  

1) Modulation of cytokine concentration 

2) Establishment of minimal conditions to retain HSCs function in vitro 

3) Development of 3D matrices to provide physical support beyond liquid culture 

 

The first results chapter (3.1) identifies that the amount of Stem Cell Factor (SCF) signalling 

does not alter the number of functional HSCs retained, but may alter the degree of clonal 

expansion post transplantation. Chapter 3.2 demonstrates that minimal cell culture conditions 

depending solely on gp130 signalling can maintain HSCs as single cells for an extended period 

of time. These cells retain full functional repopulation potential but present with a myeloid 

differentiation bias. Finally, Chapter 3.3 represents a first proof-of-principle series of 

experiments showing that HSCs are better supported on soft substrates, implicating physical 

forces in influencing HSCs maintenance ex vivo.  

In conclusion, these findings further confirm that SCF is a key regulator of HSCs fate, but is 

not essential for the retention of HSCs function. The newly established minimal cell culture 

medium allows the specific investigation of various molecules affecting HSCs fate choice at 

the single cell level. Furthermore, it offers a new platform for studying exit from quiescence in 

a controlled manner over several days. This latter aspect could have major implications for the 

delivery of gene therapy and for HSCs expansion efforts in the future. 
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1 Introduction 

1.1 Haematopoiesis and haematopoietic stem cells 

Haematopoiesis is the process by which all mature blood cells are produced1. In the bone 

marrow of a healthy adult, an estimated 1011–1012 blood cells are produced every day2,3.  

Maintaining the balance between continuous blood cell production and depletion is essential, 

as disruption of homeostasis can result in, among others, anaemia, myeloproliferative 

neoplasms, and leukaemia4.  

Blood is a tissue consisting of an aqueous plasma and a cellular component5. Blood plasma 

makes up 55% of the total blood volume. It consist mainly of water (95%) and contains soluble 

proteins, circulating nucleic acids, electrolytes as well as metabolites such as glucose, vitamins, 

and amino acids6. The cellular component is composed of erythrocytes, thrombocytes, and 

white blood cells (leukocytes) such as lymphocytes (B and T cells), monocytes/macrophages, 

and granulocytes. There are four types of granulocytes, which are neutrophils, eosinophils, 

basophils and mast cells. Erythrocytes are involved in gas exchange between tissue and lungs, 

mainly transporting oxygen to the tissues. Megakaryocytes in the bone marrow produce 

thrombocytes (platelets), which play an important role in haemostasis by mediating blood 

coagulation and tissue repair. Leukocytes function in the defence of the immune system against 

infectious agents1,5.  

All cellular blood components are derived from a very rare subset of haematopoietic stem cells 

(HSCs) at the apex of the haematopoietic hierarchy. HSCs are multipotent, therefore can give 

rise to cells of all blood lineages, and have the ability to self-renew, thus give rise to one or two 

equally potent daughter cells upon division2,7. 

In human, it is estimated that 1 in 3x106 bone marrow cells is an HSCs, which is > 2-fold more 

frequent than in peripheral blood. In cord blood 1 in 0.93x106 cells is an HSCs, as determined 

by limiting dilution analysis in a xenograft mouse model8. This differs from mouse, in which 

functional studies of whole bone marrow have shown, that approximately 1x105 of total bone 

marrow cells are HSCs9,10.  

 

1.1.1 Developmental haematopoiesis 

The majority of studies defining vertebrate developmental haematopoiesis have used mouse, 

chicken, and zebrafish as model organisms. However, the underlying processes are broadly 

applicable to other vertebrates including humans11,12. 
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In vertebrates, blood cell development occurs in two separate waves; the primitive wave and 

the definitive wave. In mice, during the primitive wave, erythroid progenitors appear in so-

called blood islands that line the extra-embryonic yolk sac at embryonic day E7.5 (E17 in 

human)11,13-15. Their main function is to oxygenate the surrounding tissue in the rapidly 

developing embryo11. These haemangioblast-derived primitive cells form large nucleated 

erythrocytes that lack self-renewal capacity and as a consequence, the primitive wave is of a 

transient nature11,13,14.  

 

 
 

Figure 1:  Comparison of developmental stages in haematopoiesis between the mouse and 

human embryo15.  

A) Mouse haematopoietic development. Mesoderm forms during gastrulation at E6.5, followed by the 

development of blood islands in the yolk sac at E7.5. At 10.5 HSCs emerge in the AGM region, 

placenta and arteries (only AGM shown). At E14.5 haematopoiesis has moved to the liver, followed 

by bone marrow colonisation shortly before birth at E18.5.  

B) Human haematopoietic development. At embryonic day 17, haematopoiesis originates in the yolk 

sack. The liver is first colonised around day 23. Arterial clusters appear between day 27 and day 40, 

3 days before a second hepatic colonisation by CD34+ progenitors. At 10.5 weeks the bone marrow 

is colonised. Figure taken from Baron et al. Blood (2012) 

 

The definitive wave begins at E8.25 in mouse and E21 in human with the establishment of 

circulation15,16. Definitive erythromyeloid progenitors first arise in the extraembryonic yolk sac 

followed by the placenta at E9.5. The aorta-gonad-mesonephros (AGM) region is the first 

intraembryonic region to harbour haematopoietic progenitors at E10 but vitelline and umbilical 

arteries are also sites of development11,13,14,16. 
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Starting at E9 in mice the foetal liver (FL) is colonised by haematopoietic cells that were 

generated in other tissues such as the placenta, yolk sac and AGM13,14,16. Between E11 and E12, 

the foetal liver becomes the main region for definitive haematopoiesis until the formation of 

bone marrow (BM) cavities shortly before birth around E15. In human, the first hepatic 

colonisation occurs at E23, followed by a second colonisation at E30. At around 10.5 weeks, 

the bone marrow is colonised11,15. Throughout adulthood the bone marrow is the primary 

haematopoietic organ13,14,16. 

 

1.1.2 The bone marrow niche 

In 1978, Raymond Schofield coined the term “niche” for the unique environment in which 

interactions of the stem cell with other cells ensures its ability to self-renew and stay in a largely 

dormant state17. As discussed above, shortly before birth, HSCs begin to migrate from the foetal 

liver to the bone marrow where they remain and continue to proliferate during adulthood13,14,16. 

 

The bone marrow is a highly vascularised organ comprised of a medullary cavity encased in 

cortical bone. The endosteum lines the inside of the bone. Trabecular bone, also referred to as 

spongy bone, forms the internal bone tissue. Protrusions create a honeycomb or sponge-like 

structure enlarging the bone surface and ensuring that cells in this area are in close proximity 

to the bone in this area18. Bone itself is produced by osteoblasts which are highly active in the 

trabecular region19,20. Longitudinal arteries in the cortical bone branch into radial arteries and 

arterioles in the endosteum, which in turn drain into sinusoids and eventually coalesce into a 

central sinus forming the venous circulation, which allows entry and exit of HSCs and other 

haematopoietic cells into and from the blood circulation18,21,22. 

Historically, it was thought that the endosteal zone was home to HSCs23,24, which was supported 

by findings that phenotypic HSCs associate with the bone surface in vitro25 and in vivo26, in 

addition to observed functional changes in HSCs upon ablation of osteoblasts or other bone 

components27-29. This view of the endosteal stem cell niche was first called into question by 

findings that showed that deletion of key cytokines such as CXCL12 and SCF in osteoblasts 

did not alter HSCs function30,31. In more recent years the potential existence of a vascular niche 

has been investigated. 

 

Besides osteoblasts20,27,32, the bone marrow contains a variety of different cell types such as, 

endothelial cells31,33, CXCL12-abendunt reticular (CAR) cells34, Leptin receptor-expressing 
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(LepR+) perivascular cells35, Nestin-expressing mesenchymal cells (Nes+)36, and NG2+ 

pericytes which overlap in their expression with LepR+ and Nes+ stromal cells37 (Figure 2).  

It has been shown that these cells are involved in the regulation of HSCs quiescence, 

proliferation, and differentiation through the production of cytokines and other molecules 

including stem cell factor (SCF)31,33,37, osteopontin20,27, stromal cell derived factor 1 (SDF1 or 

CXCL12)34-37 G-CSF (granulocyte colony stimulating factor)38, interleukin-639, and 

angiopoietin25,36.  

 

Immunophenotypic HSCs have been found to be in close proximity to sinusoids which are 

surrounded by perivascular cells that show high expression of SCF and CXCL12. A common 

observation is that upon ablation of these cells or disruption of their cytokine production, HSCs 

numbers are greatly reduced. This supports the notion that these cells play an important role in 

HSCs maintenance and challenges the view of specific and restricted geographical space for 

HSCs along the endosteal surface of the bone31,34-36,40,41. 

 

 
Figure 2:  The adult bone marrow niche42. 

HSCs in the bone marrow can be found around arterioles as well as sinusoids receiving cytokine 

signals such as SCF and CXCL12 secreted by endothelial cells and perivascular cells as well as 

TGF-β1 produced by Schwann cells and megakaryocytes.  

 

It remains unclear if there is one particular bone marrow niche location or if different niches 

can support quiescent and/or actively cycling HSCs32,43-45. A recent report suggests that 

phenotypically, HSCs seem to be randomly localised among the bone marrow with sinusoids 

being the sole site of egression into circulation46. Therefore, live in vivo imaging supported by 
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distinct and reliable HSCs markers is necessary to gain further insight into where HSCs localise 

under homeostatic conditions. Several reporters have recently been described (α-catulin47, 

Hoxb548, and Fgd549) with varying levels of success, however none of these mark HSCs 

exclusively. 

 

1.1.3 Early evidence for the existence of a haematopoietic stem cell 

In the early 1950s it was discovered that the intravenous injection of whole bone marrow cells 

could recover the irradiated haematopoietic system of a recipient mouse50,51. This research 

inspired the first successful human bone marrow transplant for the treatment of a leukaemic 

patient in 1956, where multipotency and self-renewal capacity of HSCs were formally 

demonstrated for the first time in a human7,50,51. 

 

In 1961, pioneering experiments by Till and McCulloch described the formation of colonies 

consisting of haematopoietic tissue in the spleens of mice that had previously been transplanted 

with isolated bone marrow. These colonies were termed colony forming unit-spleen (CFU-S), 

and each colony was suggested to be derived from a small number of cells or even one single 

cell. This represented the first formal evidence for the existence of an HSCs in the bone 

marrow52. Shortly after that, the same group established that the haematopoietic system consists 

of three compartments: i) the stem cell compartment with multipotent cells of extensive 

proliferative capacity, ii) the differentiated cell compartment containing cells with limited 

proliferative capacity and iii) a mature cell compartment consisting of specialised cells.  

Additionally, tritiated thymidine uptake experiments provided early evidence that colony-

forming cells are quiescent53, which will be further be discussed in 1.2. 

The clonality and self-renewal ability of CFU-S was further shown by serial transplantation of 

CFU-S. Interestingly, colony-forming cells gave rise to colonies with widely differing 

characteristics as judged by morphology and the distribution of colony-forming cells among 

colonies. This was early evidence for heterogeneity in the stem cell compartment54, which will 

be discussed at length in section 1.3.  

Complementing these in vivo studies, clonal in vitro assays were established to analyse function 

and differentiation capacity of single cells. Short-term semi-solid culture, based on agar or 

methylcellulose medium mixtures, were used to analyse single cell clonality and differentiation 

capacity55,56. Later, long-term cell initiating culture (LTC-IC) assays were developed to 

measure self-renewal potential and differentiation capacity of the input cell by their ability to 

produce myeloid and or lymphoid progeny for a minimum period of 5 weeks56-60.  
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For many decades since, the haematopoietic system has been intensely studied through in vitro 

limiting dilution colony formation assays as well as in vivo tracking of haematopoietic clones, 

using retroviral marking, cellular barcoding, fluorescently tagged cells or single cell 

transplantation7,61,62. Ultimately, this has resulted in the identification and characterisation of 

the HSCs, which is to date, the best characterised adult mammalian tissue specific stem cell2,7.  

 

1.1.4 Isolation of adult mouse and human HSCs 

The gold standard to definitively prove that a purified HSCs is indeed a long-term repopulating 

cell with durable self-renewal activity is serial transplantation into irradiated recipient mice 

with long-term multi-lineage reconstitution in primary (≥16 weeks) and secondary (≥16 weeks) 

recipient animals. This contribution is usually measured by the presence of granulocytes (G), 

monocytes (M), B- and T-cells in the peripheral blood. To be considered successfully 

reconstituted, the contribution of donor cells typically must account for at least 1% of the total 

whole blood count at the later stages of this assay63. Interestingly, some HSCs do not contribute 

to >1% of lymphoid lineages in primary transplants but can generate an adequate amount of 

GM, B- and T-cells in secondary recipients64. These findings, and the late appearance of some 

single cell-derived clones64,65 call the above mentioned gold standard into question. 

 

HSCs with different self-renewal potential and repopulating kinetics can be identified and 

isolated based on size, granularity, cell surface antigen profile and different enzymatic activity, 

such as the cells’ ability to efflux Rhodamine123 (Rho123) or Hoechst 33342 (Side population, 

SP)7,66. Antibodies most commonly used for HSCs identification include those raised against 

CD117 (c-Kit), Stem cell antigen-1 (Sca-1), CD201 (EPCR), the SLAM markers CD48 

(negative) and CD150, CD135 (negative, fms like tyrosine kinase 3 (Flt3) or Foetal liver kinase 

2 (Flk2)), CD49b (negative) and CD34 (negative)7,67,68. Notably, relatively few of the surface 

markers used for identification are required for HSCs function7. 

 

In the mouse system, several groups have reported HSCs purities of >50% through different 

sorting strategies10,41,69, with a recent report showing that single cell transplantation using HSCs 

defined by the surface marker combination CD45+CD150+CD48-EPCRhigHSCsa-1high yields a 

purity of 67% in primary recipients68 and 50% in secondary transplantation (unpublished, Kent 

lab).  
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As mentioned above, novel gene reporter mice such as α-catulin47, Hoxb548, and Fgd549 have 

been generated to aid in the FACS (fluorescent activated cell sorting) isolation of HSCs and the 

detection of HSCs in their putative niche in vivo. HSCs are enriched in the positive population 

of each of these reporters, with estimated HSCs frequencies of 14.9%, 47.6% (in combination 

with other HSCs surface markers), and 31.2% for α-catulin, Hoxb5 and Fgd5 respectively, in 

primary transplantation. Only α-catulin+ cells were transplanted as single cells with 15.4% of 

recipients showing multi-lineage reconstitution, which could be improved by co-staining with 

c-Kit to 28.6%48. Recent single cell expression profiling of the HSPC compartment confirms 

that Hoxb5, Fgd5, and α-catulin are indeed predominantly expressed in the long-term HSCs 

cluster70.  

 

Even though these sorting strategies result in a relatively pure population of HSCs, they each 

exclude cells that are functional stem cells because some HSCs are detectable in the non-

phenotypic cell fraction – a striking example of which was described for CD15041,71,72. It 

therefore remains unclear whether HSCs transit between phenotypes, but irrespective of this, it 

is evident that there are less rigorous phenotypes that include more HSCs at lower purities. 

Differences in these contaminating cell fractions has a significant impact on the interpretation 

of gene expression studies, especially those at the single cell level.  

 

Mouse HSCs are more extensively characterised than their human counterparts. While both 

systems share many conceptual similarities (e.g. rare HSCs, hierarchically organised, stepwise 

differentiation into mature cells), there are a number of differences which make it challenging 

to translate all of the research findings. In particular, there are major differences in the cell 

surface marker combinations used for purification and the governing signalling pathway3. One 

such example is the expression of CD34 (absent on mouse HSCs), which is the primary marker 

for enriching human HSCs. CD34 expression enriches for LTC-IC, which for human cells is a 

reliable read out for multipotency but not necessarily in vivo repopulation potential3,73. 

However, similar to CD150neg in mouse71, it has been shown that cells lacking CD34 expression 

are capable of multi-lineage, long-term repopulation in recipient animals74,75. Interestingly, 

engraftment in mice with CD34negCD38neg HSCs, is detectable at later stages than that of 

CD34+CD38neg HSCs75, suggesting that the former represents a specific HSCs subtype similar 

to mouse alpha-HSCs, which will be discussed in 1.3. 
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In addition to the absence of lineage markers, another potent marker that enriches for human 

HSCs is CD90 (Thy-1), which is expressed on human foetal liver, cord blood, and bone marrow 

HSCs76-78. Absence of CD38 expression further enriches for LTC-ICs as well as cells capable 

of multi-lineage repopulation in nonobese diabetic/severe combined immuno-deficient 

(NOD/SCID) mice. CD38 expression is also correlated with increased differentiation and 

CD34+CD38+ contain a higher proportion of actively cycling cells than CD34+CD38neg 

Haematopoietic Stem and Progenitor cells (HSPCs)78-80. 

To date, the combined expression of Lin-CD34+CD38−CD45RA−CD90+CD49f+ is used to 

obtain a population of HSCs from umbilical cord blood, which are capable of reconstituting the 

haematopoietic lineages in nearly 10% of recipient immuno-deficient mice81. Notably, the 

xenograft setting of these experiments may restrict the ability of all LT-HSCs to successfully 

repopulate, thereby potentially under-estimating the frequency in various cell preparations. This 

is supported by the higher percentage observed in long-term multi-lineage in vitro assays81.  

 

1.2 The cell cycle and quiescence in haematopoietic stem cells 

1.2.1 Mammalian cell cycle regulation  

The mammalian cell cycle is tightly regulated through a network of cyclins, cyclin dependent 

kinases (CDKs), as well as their antagonists, the cyclin-dependent kinase inhibitors 

(CDKIs)82,83. Cyclins bind to CDKs leading to the phosphorylation of downstream target 

proteins involved in the progression of one cell cycle phase to the next83. The cell cycle can be 

subdivided into 4 phases: i) A Gap phase (G1) which proceeds to the ii) DNA synthesis (S) 

phase, followed by a iii) second Gap phase (G2), which in turn progresses to the iv) mitosis (M) 

phase84. Each phase is characterised by the specific families of cyclins and their corresponding 

CDKs, with different cyclin D family members playing a pivotal role in G1 to S phase 

progression84. Importantly, in each phase cell cycle checkpoints are in place to ensure proper 

cell division84,85. These checkpoints are mediated by CDKIs, which inhibit CDKs and in doing 

so cause cell cycle arrest. Depending on their target specificity CDKIs can be subdivided into 

two families, the Cip/Kip family and the Ink4 family. The former is able to inhibit several 

different CDKs, whereas the latter inhibits CDK4 and CDK6 specifically82,84.  

The checkpoint in G1 that needs to be overcome to progress into S phase and thus into the 

mitotic cell cycle, is referred to as the Restriction point (R)84,85. Here, the tumour-suppressor 

Retinoblastoma (Rb) becomes fully phosphorylated by CDK4/6. In its hyper-phosphorylated 

form, Rb no longer binds and inhibits, members of the E2F transcription factor family which in 

turn activate gene transcription84,86. Upon exit from M phase, Rb becomes hypo-phosphorylated 
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and regains its inhibitory role in G1
84. Differential levels of CDK6 in human HSCs have been 

implicated in the accelerated exit from quiescence in ST-HSCs compared to LT-HSCs87. 

 

1.2.2 Quiescence is a distinct protective cell cycle state 

If conditions are unfavourable, cells may remain in G1 prior to R and become non-cycling85. 

Upon exiting the cell cycle, the cell is considered to reside in a state termed G0. In case of 

senescent or terminally differentiated cells this state is irreversible. Quiescent cells however, 

reside in G0 and are able to re-enter the cell cycle84,85. Quiescence is suggested to be a protective 

mechanism for the cells to prevent potential mutagenic events occurring during DNA 

replication and cell division2,88-90, the accumulation of which in HSCs, could lead to 

haematological malignancies such as leukaemia91 or myeloproliferative neoplasms92,93. 

Nonetheless, due to the longevity of HSCs and a prolonged G0 phase, DNA damage still 

accumulates. Therefore, quiescent HSCs require distinct DNA damage responses, a specialised 

DNA repair machinery, and a high drugs efflux capacity90,94. 

Thus, the vast majority of HSCs remain in the metabolically inactive G0 phase of the cell cycle 

and in doing so preserves a rare population of quiescent HSCs under homeostatic 

conditions2,69,95-98. 

 

1.2.3 Loss of function mouse models allow analysis of cell cycle regulators 

Various mouse models have been generated to investigate key regulatory molecules that control 

HSCs cell cycle and quiescence88,99-104.  

p53 Is a key regulator of cellular responses to stress stimuli, including DNA damage, 

culminating in senescence, apoptosis or cell cycle arrest83,105. A knock-out study in mice has 

demonstrated that p53 also plays an important role in maintaining HSCs self-renewal and 

quiescence and p53 has been shown to be highly expressed in the HSCs-enriched fraction (LSK, 

LineagenegSca-1+c-Kit+) compartment99,106,107. Mice lacking p53 expression have 2-fold more 

phenotypic HSCs with a higher proliferation rate than their WT counterparts. p53-/- LSK cells 

have the ability to reconstitute an irradiated recipient mouse; however, recipients develop and 

die of lymphoma within 4 months99. It has previously been shown that KO of the ETS 

transcription factor MEF increases HSCs quiescence and number but does not affect their 

repopulation capacity108. To assess if p53 regulates the increased quiescence in Mef-/- double 

knock-out (DKO) p53-/-Mef-/- were generated. DKO LSK outcompeted WT bone marrow cells 

in transplantation assays similar to Mef-/-, thus demonstrating that p53 does not give Mef-/- cells 
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a self-renewal advantage. DKO mice do show a higher percentage of SP cells, pointing to the 

role of p53 in maintaining quiescence in Mef-/- mice99.  

 

One of p53’s downstream target is p2199,105. Ablation of p21 results in the expansion of the 

HSPC pool but subsequent exhaustion of mutant HSCs, as cell cycle entry is no longer 

inhibited88. However, under homeostatic conditions, no accelerated turn-over of labelled HSCs 

was seen in p21-/- HSCs which calls into question the importance of p21 as a key regulator of 

quiescence96. Similar results to these p21-/- experiments were obtained in mice lacking 

expression of the CDKI p57, which under homeostatic conditions is highly expressed in LT-

HSCs and to a lesser extent in ST-HSCs and MPPs. Lack of p57 reduced HSCs repopulation 

ability in serial transplantation indicating impaired self-renewal capacity100,101. p57-/- LSK cells 

show an increase in the cell fraction that has entered the cell cycle100, however no alteration in 

cell cycle was observed in the LT-HSCs compartment101.  

 

 
Figure 3:  Regulation of the cell cycle in HSCs. 

Adapted from Rossi et al., Cell stem cell (2012). 

 

Both p21100 and p27101 expression are increased upon p57 deletion, indicating a compensatory 

role for these CDKIs. Indeed, p57 knock-down (KD) in the LSK fraction of p27-/- mice results 

in an increase of cycling LSK, reduced repopulation activity in primary transplants 

accompanied by a reduction of the LSK pool in primary recipients101. Thus, both p27 and p57 

play an important role in the maintenance of quiescence and self-renewal. Co-

immunoprecipitation experiments have shown that this is mediated by the binding of p27 and/or 
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p57 to HSCs70, which is a member of the heat shock protein 70 family. HSCs70 acts as a 

chaperon for cyclin D1 nuclear translocation and accelerates its binding to CDK4/6. p27/p57 

binding to HSCs70 inhibit nuclear import of cyclin D1 and, in doing so, prevents 

phosphorylation of Rb in the nucleus101. 

In contrast to loss of p21 and p57, ablation of the INK4 family member p18 leads to a 

competitive repopulation advantage of mutant HSCs over WT without HSCs exhaustion in 

serial transplantation102. This suggest that extrinsic modulation of p18, possibly using a specific 

inhibitor, may be key for HSCs expansion in vitro. 

 

Other members of the INK4 family are p16 and p1982,109. Ectopic expression of p16 in HSCs 

largely inhibits proliferation, whereas p19 overexpression completely abrogates proliferation. 

Both p16 and p19 expression levels are elevated in Bmi-1-/- mice, which present with reduced 

phenotypic HSCs number and hypocellular bone marrow. Bmi-1-/- bone marrow cells fail to 

reconstitute recipient mice, suggesting that suppression of p16 and p19 by Bmi-1 is necessary 

for HSCs to enter the cell cycle109. 

 

Interestingly, disruption of expression of single members of the Rb family (Rb, p107, and p130) 

does not result in severely dysfunctional HSCs. Viatour et al. therefore generated triple knock-

out mice (TKO) to assess their role in haematopoiesis103. TKO mice died within 12 weeks of 

Cre-induction. Animals analysed displayed splenomegaly with extramedullary haematopoiesis, 

as well as increased numbers of HSCs, LSKs and GMPs accompanied by a substantial 

expansion of mature myeloid cells. Transplantation of TKO unfractionated BM resulted in 

short-term reconstitution (4 weeks), outcompeting all WT competitors. However, TKO HSCs 

were not capable of long-term reconstitution, with recipients dying within 5 weeks post-

transplantation. This indicates that TKO HSCs are primed to differentiate into cells of the 

myeloid lineage but are accompanied by loss of HSCs self-renewal. Interestingly, 

reintroduction of one WT allele of p107 repressed the excessive myeloproliferation seen in 

TKO but did not compensate for deficient lymphoid cell production103. This shows that 

members of the Rb family can partially compensate for the loss of another member, but also 

underscore the need to better understand the molecular mechanism driving cell cycle 

progression and differentiation.  

 

Functional redundancy can also be observed in cyclin D1-/-, D2-/-, and D3-/- mice which exhibit 

only a mild haematopoietic phenotype. Combined knock-out of all three cyclin D molecules is 
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embryonic lethal after E13.5. Conditional TKO mice present with reduction of HSCs and 

impaired repopulating ability, showing the importance of cyclin D for normal 

haematopoiesis104. Presence of cyclin D marks the G1 phase of the cell cycle, where cyclin  

A2 – cyclin A1 is testes specific – is present in S and G2 phase84,110. Double knock-out of cyclin 

A1 and A2 in an A1-/-A2fl/fl mouse results in death within 30 days of Cre-induction. 

Administration of pI-pC after bone marrow transplantation of A1-/-A2fl/fl BM results in reduction 

of cells among all haematopoietic lineages, showing that cyclin A2 is required for normal 

proliferation in haematopoietic cells110.  

 

Aside from the molecules directly involved in the cell cycle progression with well-described 

roles in model organisms, a number of pathways have been implicated in modulating HSCs 

quiescence and proliferation83. These include, but are not limited to, the TGF-β pathway, the 

PI3K/PTEN/AKT pathway, and the Wnt pathway83,111-116. 

 

The Transforming Growth Factor-β (TGF-β) superfamily signals through binding of the ligands 

to TGF-β type receptor II which forms a complex with TGF-β receptor I. This is followed by 

the phosphorylation of SMADs (SMAD-1, -3, -5, and -8), which then form a heterodimer with 

SMAD4 before translocating into the nucleus, where the complex recruits transcriptional 

cofactors to activate gene expression111,117.  

Yamazaki et al. showed that that pre-treatment of HSCs with TGF-β1 in vitro inhibits lipid raft 

clustering and in doing so keeps the majority of HSCs in a hibernating state111,118. Upon removal 

of TGF-β1, the cells were able to generate colonies and 20% of the surviving cells were able to 

reconstitute recipient mice in single cell transplants. Interestingly, SMAD2 and SMAD3 are 

phosphorylated in HSCs but become dephosphorylated upon cytokine stimulation. Pre-

treatment with TGF-β seems to protect SMAD2/3 from dephosphorylation, indicating that 

SMAD2/3 regulate quiescence in HSCs111. The same group later showed that non-myelinating 

Schwann cells in the bone marrow secrete TGF-β and that HSCs lacking the TGF-β type II 

receptor have impaired long-term repopulation ability. Interestingly, Tgfbr2∆/- show a decrease 

in Smad2/3 phosphorylation and increased cell cycling, suggesting that pSmad2/3 is important 

for HSCs self-renewal and quiescence119. 

Other Smad molecules have been investigated as well, with conditional KO of Smad5 failing 

to result in a haematopoietic phenotype with HSCs that have reconstitution ability and lineage 

output comparable with wild type, suggesting that SMAD5 is functionally redundant117. 
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Deletion of Smad4 on the other hand results in a mild haematopoietic phenotype with impaired 

self-renewal activity but normal lineage differentiation and cell cycle regulation120.  

Altogether, these findings suggest that some, but not all SMADs, are functionally redundant in 

HSCs, activating the same downstream pathways. 

 

The PI3K (phosphatidylinositide 3-kinases)/AKT (Protein kinase B) pathway has been 

implicated in the regulation of cell proliferation, differentiation, resistance to stress, survival, 

and migration83,113. PTEN (Phosphatase and tensin homologue) is a negative regulator of 

PI3K/AKT112,113. Ablation of PTEN results in a reduction of phenotypic LT-HSCs, whereas the 

ST-HSCs pool is not significantly affected113. PTEN-/- LT-HSCs are more proliferative 

compared to WT control and can only transiently repopulate irradiated recipients112,113. 

Interestingly, multi-lineage reconstitution capacity of PTEN-/- HSCs can be restored using the 

drug Rapamycin, which selectively inhibits mTOR kinase activity, which is a downstream 

target of PI3K112. PTEN-/- does not affect the homing ability of HSCs but it does lead to an 

increase in mobilisation to the peripheral blood and spleen113. Loss of PTEN in HSCs results in 

decreased numbers of lymphoid progenitors and B220+ B lymphocytes, whereas the myeloid 

lineage is not affected113. These findings show that PTEN expression is necessary to maintain 

self-renewal in HSCs and plays a role in directing lineage choice.  

 

Downstream genes of PTEN include those encoding for AKT and Forkhead O (FoxO) 

proteins83. Akt1-/- and Akt2-/- mice only show a mild haematopoietic phenotype, suggesting 

functional redundancy. In contrast, DKO Akt1-/-Akt2-/- mice have defective haematopoiesis with 

mutant HSCs entering cell cycle less frequently and impaired differentiation potential114. 

AKT directly phosphorylates FOXO1, O3 and O4 and inhibits their activity resulting in their 

exclusion from the nucleus, where they can no longer act as transcription factors leading to cell 

cycle arrest through activation of p27, p130 and p21 as well as inhibition of cyclin D 

expression83,115,116. As seen before, single knock-out of FoxO1/3/4 does not yield a severe 

haematopoietic phenotype, suggesting functional redundancy116. However, upon serial 

transplantation of FoxO3a-/- bone marrow, an HSCs self-renewal defect becomes apparent115. 

Double knock-out of FoxO1/3 results in an increase in apoptosis116. FoxO3a-/- HSCs have 

elevated ROS levels, likely driving the observed increase in phosphorylation of p38MAPK115. 

FOXO1/3/4 deficiency increases myeloid cell production concomitant with a reduction in BM 

HSCs and LSK116. Mutant HSCs have impaired long–term repopulating capacity and proliferate 
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faster. This cell cycle phenotype is further reflected in the reduced expression levels of p21, 

p27, and p130 in these TKO HSCs, whereas Cyclin E1 and D2 expression is elevated116.  

 

1.2.4 Upstream regulators of proliferation 

Activation of above mentioned pathways is mediated by receptor binding of growth factors, 

insulin, or cytokines such as SCF (stem cell factor)121,122, TPO (thrombopoietin)121,123, Ang-1 

(Angiopoietin)101, and G-CSF124 each of which have been shown to promote HSCs proliferation 

in vivo and in vitro. In vitro, these are often used in conjunction with Interleukin (IL)-3125-127, 

IL-6126,128 and IL-11125,129 which have synergistic mitogenic effects on HSCs proliferation125,130. 

 

Furthermore, inflammatory signalling has been shown to stimulate HSCs proliferation131. These 

can involve type I132 or type II133 interferons (interferon-α and interferon-γ respectively), Tumor 

Necrosis Factor (TNF)134,135, and lipopolysaccharide (LPS)136. 

 

More recently, posttranscriptional regulation of genes through micro-RNA (miRNA) have been 

shown to alter gene expression through mRNA destabilisation and translational inhibition137. 

Ablation of miR-126 expands human and mouse HSCs and improves engraftment and homing 

ability137. In contrast, deletion of the global miRNA regulator Dicer results in the loss of 

functional HSCs138. Overexpression of miR-125a drives an increase in stem cell frequency and 

gives mouse HSCs a competitive advantage in reconstitution assay compared to wild-type139. 

This observation is in accordance with the finding that miR-125a deficient mice have reduced 

self-renewal capacity138. Inhibition of the micro-RNA Let7 leads to an increase in HMGA2 

expression concomitant with in an increased frequency of HSCs self-renewal as well breast 

cancer initiating cells140,141. In HSCs, it has been shown that this is regulated via the Let7 

inhibitor LIN28b and the Let7 negative target HMGA2, overexpression of both these molecules 

increase donor cell contribution in irradiated recipients over WT141.  

 

The above discussed regulatory molecules and pathways are only a small sample of the complex 

machinery that is the cell cycle. Much is still not understood and even less is known about cell 

type-specific mechanisms of action. Further gene perturbation studies are therefore necessary 

to gain a better understanding of how the cell cycle, and in particular the process of G0 exit, is 

regulated in both mouse and human HSCs. 
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1.3 HSCs heterogeneity 

The existence of heterogeneity within the HSCs compartment was shown as early as 1964, 

when Till et al. reported highly variable spleen-colony formation with respect to number and 

types of daughter cells within the colonies54,62. Subsequently, haematopoietic progenitor 

heterogeneity was also noted in in vitro colony forming assays62. In the 1980s, retroviral 

marking of HSCs derived from different haematopoietic tissues allowed the identification and 

tracking of clones in vivo over extended periods of time61,62. Through clonal tracking of 

transplanted single HSCs it was shown that HSCs are heterogeneous with respect to self-

renewal activity, life span, repopulation pattern, and fate commitment63,142. An HSCs can self-

renew through symmetric or asymmetric cell division143,144, it can undergo apoptosis or it can 

exit quiescence and differentiate, the latter two both leading to a decline in the HSCs pool  

(Figure 4)7.  

 

 
Figure 4:  Putative HSCs fate choices. 

HSCs can make different fate choices throughout their lifetime. An HSCs can remain in the G0 phase 

of the cell cycle or it can self-renew symmetrically leading to an expansion of the HSCs pool. 

Additionally, the HSCs can proliferate and give rise to a differentiated daughter cell and another 

HSCs through asymmetric cell division, with the HSCs returning to a quiescent state. Alternatively, 

the stem cell can produce two differentiated cells or undergo apoptosis leading to a decline in the 

HSCs pool.  

 

1.3.1 HSCs heterogeneity in self-renewal activity and life span 

The HSCs population is commonly subdivided into long-term HSCs (LT-HSCs), also referred 

to as long-term repopulating cells (LTRCs), and short-term HSCs (ST-HSCs)7. LT-HSCs are 
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considered to be more primitive, giving rise to larger clones with greater lineage potential and 

often associated with delayed detection of mature progeny in peripheral blood upon 

transplantation1,145. 

Most importantly, LT-HSCs but not ST-HSCs can repopulate mice in a serial transplantation 

setting68, a formal demonstration of their ability to create daughter HSCs.  

 

The proliferative stress exerted on LT-HSCs would be tremendous if all mature blood cells 

were directly derived from this rare population of cells. HSCs are relieved from this burden by 

multipotent, oligo-potent and lineage-restricted progenitor cells, which are highly proliferative 

and possess extensive developmental potential2,146. A recent study using in situ Doxycyclin 

(Dox) induced transposon labelling, has attempted to quantify the dynamics of lineage 

replacement by multipotent progenitors (MPPs) over time. Nearly 20% of erythromyeloid 

clones were derived from an MPP population at 8 weeks post Dox administration. However, 

the caveat of this tracking method is that not all progenitor populations are labelled, thus the 

actual number of contributing MPP may be underestimated. In addition, cell recovery and 

sequencing depths may not be equal among populations, introducing technical bias146. 

 

Another study estimated that that LT-HSCs divide approximately once every 145 days based 

on the computational modelling of BrdU (Bromodeoxyuridine) label retention95. Studies using 

doxycycline induced histone 2B-GFP reporter mice have shown 80% of HSCs have divided 

within a 24 week chase period; however 5% of stem cells retain the label past 72 weeks. Using 

a model in which 80% of HSCs cycle fast and 20% of cells divide less often, it was estimated 

that 5.3–11.1% of fast proliferating HSCs divide daily and only 0.8–1.8% per day of the slow 

population divide96. The former observation is in agreement with findings from other groups in 

which 4.7%147 or 6%148 of BrdU-labelled HSCs divided daily. However, as BrdU incorporation 

over the 10-day treatment time was linear, the authors concluded that all HSCs proliferate at a 

similar rate. This conclusion however, does not consider the extent of functional heterogeneity 

in the HSCs population. Of note, only 45.9% of phenotypic LT-HSCs (LSK SLAM CD41neg) 

incorporated the label at 10 days148. Another report found 87.8% BrdU-labelled HSCs (LSK 

cKit+) at day 10 and >99% labelling after 180 days of continuous BrdU administration147. Thus, 

label incorporation in the HSCs pool is dependent on the different purities of the HSCs isolation 

phenotype.  
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The proliferation rate of the slow population mentioned above would be equivalent to once 

every 55–125 days in the slow cycling HSCs population, which is consistent with the lower end 

estimate of the previously reported 145 days95,96. In contrast, ST-HSCs exhibit finite self-

renewal and cannot repopulate a mouse past the primary transplantation. ST-HSCs divide 

approximately 4 times more often than LT-HSCs and exit cell cycle faster87,95,142. 

Since BrdU has been shown to have a mitogenic effect on HSCs95,148, another study employed 

CFSE (carboxyfluorescein succinimidyl ester) labelling, which is diluted to undetectable levels 

after 5 cell divisions. Using this method, transplanted cells were tracked for 3–21 weeks. The 

authors found that only few cells had not divided by at the end of the chase period. Serial 

transplantation of non-divided LSK or LSK that had divided >5x between 12–14 weeks post 

primary transplantation were able to engraft secondary recipients. Interestingly, cells that had 

divided >5x as early as 3 weeks post primary transplantation failed to repopulate. These 

findings show that serially transplantable LT-HSCs are present in both the cycling and 

quiescent fraction. Extrapolating from their data the authors estimate that HSCs divide every 

39 days on average totalling in 18 cell divisions during the lifetime of a mouse149. It is important 

to note that this estimation relies on the reliable and comprehensive labelling of all stem cells 

prior to the primary transplant. Therefore, it is currently impossible to conclude with absolute 

certainty what the average life span of an HSCs is and how many cell division it will undergo 

before exhaustion of its progeny as labelling and recovery of all HSCs is not feasible with the 

presently available technology.  

 

1.3.2 HSCs heterogeneity in numbers and cell types produced post-transplantation 

The spleen colony formation assays described above inferred heterogeneity, but in the 21st 

century, clonal and single cell approaches in purified stem and progenitor cell populations 

revolutionised the field by formally documenting HSCs heterogeneity. These started with the 

work of Muller-Sieburg et al., who showed through serial transplantations of HSCs clones from 

limiting dilution assays (LDA) that daughter HSCs behave similarly to their parents with regard 

to self-renewal, primitiveness and lineage contribution142. Interestingly, it was observed that 

approximately 30% of all clones expressed a lineage bias towards the myeloid or lymphoid 

lineage, which was maintained through serial transplantation. These findings led to the 

conclusion that the lineage dominance is due to an “inherited”, cell intrinsic mechanism142,150. 

The HSCs clones were classified as myeloid biased (my-bi), lymphoid biased (ly-bi) or 

balanced (bala) based on the ratio of lymphoid to myeloid lineage142. 
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Similar findings were classified differently in a large study of single HSCs transplantations64 

where the inaccurate term of “myeloid-biased” was avoided since it which incorrectly implies 

that the myeloid output from the my-bi clones differed from that of balanced clones. Rather, 

these cells produce the same amount of myeloid cells but are deficient in lymphoid potential7,64. 

Dykstra et al. present this unbiased categorisation of HSCs based on the relative amounts of 

mature cell production, with HSCs giving rise to primarily myeloid cells as alpha-HSCs and 

those clones that have a balanced lymphoid and myeloid lineage output as beta-HSCs. Both 

populations are characterised by robust self-renewal and a constant repopulation pattern in 

primary and secondary transplantations64. The lymphoid progenitor cells (CLPs) derived from 

alpha-HSCs are quantitatively and qualitatively deficient when compared to CLPs generated 

from beta-HSCs64,151. This is consistent with accounts from Muller-Sieburg et al., which 

reported that lymphoid progeny generated from my-bi HSCs have impaired responses to IL-7, 

a cytokine important for B- and T-cell development150. Single HSCs with finite  

self-renewal activity (e.g., those that could not repopulate secondary recipients) were classified 

as gamma and delta-HSCs. Gamma-HSCs are largely lymphoid biased but can produce myeloid 

cells, whereas delta-HSCs only produce lymphoid cells 16–20 weeks post transplantation64,151. 

Benveniste et al. suggested that these should be categorized as intermediate HSCs (IT-HSCs), 

a transitional HSCs between LT- and ST-HSCs, since these cells show prolonged (>8 months) 

reconstitution after transplantation152. There is significant overlap between the HSCs 

subcategorisation used by different labs as summarised by Ema et al. and shown in Table 1 and 

Figure 5, emphasising the need of a unified standard to detect and describe HSCs subtypes63. 

 

Table 1:  Variations in HSCs subcategorisation 

HSCs subtype 
Repopulation in weeks post 
transplantation 

Ratios of mature progeny 

Long-term >52 weeks not assessed 

intermediate-term >32 weeks <52 not assessed 

short-term <24 weeks not assessed 
   
myeloid-biased 20 weeks Lymphoid:Myeloid: <3 

balanced 20 weeks Lymphoid:Myeloid: <10, >3 

lymphoid-biased 20 weeks Lymphoid:Myeloid: >10 
   
alpha 16 weeks Myeloid:Lymphoid: >2 

beta 16 weeks Myeloid:Lymphoid: >0.25, <2 

gamma 16 weeks Myeloid:Lymphoid: <0.25 
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Figure 5:  HSCs subtypes classified by different labs largely overlap.  

Adapted from Ema et al., Exp Hematol (2014). Venn diagram shows the relationship between the 

different classified HSCs subtypes. Data was used from 30 single cell transplantations. A) 14 My-bi 

HSCs, 8 LT-HSCs, and 10 α-HSCs were identified. B) 4 Bala-HSCs, 10 IT-HSCs, and 7 β-HSCs 

were categorised. C) 12 ST-HSCs, 12 Ly-bi HSCs, and 13 γ-HSCs were identified. My-bi=myeloid 

biased. Ly-bi=lymphoid biased. Bala=balances. LT=Long-term HSCs. IT=Intermediate-term HSCs. 

ST=Short-term HSCs. α=alpha-HSCs. β=beta-HSCs. γ=gamma-HSCs. Numbers indicate positive 

transplant outcomes categorised in accordance to the criteria displayed in Table 1.  

 

Interestingly, the relative proportion of alpha and beta-HSCs changes throughout mouse 

development. In the mouse foetal liver (E14.5) beta-HSCs account for the majority of HSCs, 

with only 5−10% being alpha-HSCs. Both populations increase at similar rates until E18.5 with 

alpha-HSCs becoming more frequent in the postnatal and young bone marrow. In the older 

adult bone marrow (>1 year) alpha-HSCs (ESLAM) are the dominant cell type151 and this 

accumulation continues into old age. This is consistent with previous findings that my-bi HSCs 

are enriched in aged mice89,153-155 and that myeloid chimaerism is increased in mice transplanted 

with donor HSCs derived from aged (18 months) mice155,156. The phenotypic HSCs (pHSCs) 

frequency increases with age in the mouse bone marrow89,151,155,157. However when this 

population is further subdivided into CD150+CD41neg, the HSCs compartment is significantly 

decreased157, whereas a vast increase is observed in the CD150+CD41+ population154,157,158. 

This is also reflected in the recent finding by Yamamoto et al. where aged HSCs produced a 

significantly lower amount of T lymphoid cells in both primary and secondary transplantation 

when compared to young HSCs indicating that aged HSCs may become lymphoid-deficient157. 

 

1.3.3 HSCs heterogeneity in fate commitment 

Currently available methods for HSCs isolation are unable to prospectively discriminate 

between distinct HSCs subtypes, which makes the study of their differences at the molecular 

level particularly difficult62. With emerging tools in the field of single cell biology, many 

studies have now attempted to uncover what mechanisms and molecules link transcriptional 

and phenotypic variations in HSCs159-161.  
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In a high-throughput single cell gene expression analysis of 18 key haematopoietic transcription 

factors, Moignard et al. found that transcription factor expression is heterogeneous in HSCs and 

progenitors, with some genes exhibiting a bimodal expression, thus potentially generating three 

different expression states: i) high, ii) medium or iii) no expression162. This confirmed previous 

findings by Glotzbach et al. who used microfluidic-based high-throughput single cell qPCR to 

analyse the gene expression state of LT-HSCs163. The authors reported that some genes 

displayed asymmetric transcriptional gene distribution, which may be due to transcriptional 

bursts. Using their approach, Glotzbach et al. could provide evidence for subpopulations within 

the LT-HSCs compartment based on their transcriptional fingerprint163. However, a unique 

molecular signature that identifies a distinct functional HSCs state, such as an alpha or beta-

HSCs, has yet to be identified68,164. 

 

1.4 Refining the haematopoietic hierarchy 

Historically, it was thought that the differentiation into mature blood cells was achieved in a 

stepwise fashion through multiple rounds of differentiation via a large number of increasingly 

more committed progenitor cells63. The classical bifurcation model proposed that apical LT-

HSCs give rise to ST-HSCs, which in turn give rise to restricted progenitor cells of the lymphoid 

or myeloid lineages via common lymphoid progenitors (CLPs) and common myeloid 

progenitors (CMPs) respectively (Figure 6A). The latter progenitor pool then bifurcates into 

granulocyte/macrophage progenitors (GMPs) and megakaryocyte/erythrocyte progenitors 

(MEPs). CLPs give rise to dendritic cells (DCs), pro-B, pro-T, and pro-natural killer (NK) cells 

which then mature into various specialised B-cells, T-cells and NK cells91,165,166.  

 

This classical model was first challenged by Adolfsson et al. who reported a multipotent 

progenitor population that failed to produce cells of the erythrocytic/megakaryocytic lineage. 

These were termed lymphoid-primed multipotent progenitors (LMPP)167. The revised model 

proposed that HSCs give rise to a megakaryocyte/erythroid progenitor (MkEP) cell and 

alternatively, loss of the Mk and E potential would generate an LMPP. Another possibility is 

that the ST-HSCs give rise to CMPs and LMPPs followed by bifurcation of CMPs into MkEPs 

and GMPs, while the LMPPs would give rise to GMPs and CLPs (Figure 6B)63,167.  

This model received further input by Arinobu et al., who suggested that lineage commitment 

takes place at the MPP stage through the differential expression and mutual inhibition of PU.1, 

and GATA-1, a transcription factor required for megakaryocyte and erythrocyte development, 
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thereby regulating the generation of CMPs and progenitors or both myeloid and lymphoid 

lineage (GMLPs). Multipotent progenitor cells (MPPs) which upregulated PU.1 would give rise 

to GMLPs which then in turn bifurcate into CLPs and GMPs, while MPPs with increased 

GATA-1 expression generate exclusively CMPs that then generate MEP and GMP  

(Figure 6D)168. The observation that dendritic cells can be derived from both myeloid and 

lymphoid origin implied that they originate from both GMPs and CLPs, supporting the 

hypothesis that a progenitor exists with both lymphoid and myeloid differentiation potential 

such as the GMLP91,169.  

 

However, second generation cellular barcoding experiments have shown that the LMPP 

compartment is in fact also heterogeneous and is largely comprised of unipotent progenitors 

generating predominantly dendritic cells (DC, ~50%), and to a lesser extent B-lymphocytes and 

myeloid cells. Only 3% of LMPP were observed to have a multi-lineage outcome, although 

barcoding experiments are always limited by their detection ability, due to low sampling. Paired 

daughter transplantations of LMPPs have shown that the heterogeneity in lineage output is 

largely maintained suggesting a cell intrinsic or “imprinted” mechanism170. Using a Gata1-GFP 

reporter mouse line, Drissen et al. investigated lineage potential in both the phenotypic LMPP 

and preGM/GMP compartment. Gata1-GFP+ pre-GMs do not give rise to B- and T-

lymphocytes and only produce few monocytes but have high mast cell out and generate Mks, 

erythrocytes and eosinophils171. Interestingly, 2–3% of LMPP do express Gata1 which 

corresponds to a similar percentage of Mks generated from LMPPs167,171. The authors 

concluded that lineage segregation occurs as early as the HSCs/MPP stage based on Gata1 

expression171. In contrast to this finding, recent work using long-term, continuous single cell 

quantification of GATA1 and PU.1 expression has shown that cells that differentiated into the 

GM lineage increased PU.1 expression over time but never expressed GATA-1 during the 

differentiation process172. This implies that GATA-1 does not play a significant role in GM 

lineage commitment. It was furthermore shown that cells differentiating into the MegE lineage 

always expressed GATA-1 independent of PU.1 levels, leading to the conclusion that lineage 

choice is reinforced by transcription factor expression but not initiated172 and disputing the 

mutual inhibition hypothesis previously stated by Arinobu et al168. 

 

Using a combination of index-FACS and MARS-seq, Paul et al. aimed to unravel the 

heterogeneity within the myeloid progenitor compartment. Transcriptional profiling showed 

that the CMP pool could be subdivided into subpopulations primed to adopt one of 7 myeloid 
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cell fates, namely erythrocytes, megakaryocytes, dendritic cells, monocytes, neutrophil, 

eosinophil or basophil. Surface marker expression of CD135 and CD115 (both positive) 

identified cells that did not give rise to cells of the Mk/E lineage173. This is partially consistent 

with previous single cell qPCR data generated by Guo et al., showing that phenotypic CMPs 

are shared between the Mk/E and lymphomyeloid differentiation trajectory. CD55 is a potent 

marker to enrich for cells differentiating towards the Mk/E lineages, with CD115 subdividing 

the CD55+ CMP compartment further. CD115 also subdivides the GMP compartment but no 

functional studies on these subpopulations were performed so it is unclear whether the 

molecular subsets described relate to functionally heterogeneous cell populations174.  

Overall, the generally accepted model has been that restricted progenitors are derived from 

more multipotent progenitors, which originate from the HSCs compartment. However, recent 

experiments have also called this concept into question, suggesting that the differentiation of 

HSCs into certain lineages does not always occur via stages of progenitors, but that HSCs could 

give rise to lineage-restricted progenitors directly, such as repopulating common mega-

karyocyte progenitors (rCMP), which retain limited self-renewing potential (Figure 6C)175,176. 

Of late, the existence of a long-term repopulating megakaryocyte restricted stem cell (LT-

MkSC) has been discussed. However, the frequency of this putative cell is lower than 10-6 and 

its reconstitution never exceeds 0.1% donor chimaerism, i.e. 50 cells if 5x104 platelets were 

acquired157. Thus, it is challenging to draw firm conclusions from such low numbers of cells. 

This putative LT-MkSC was not detected in aged animals157, even though >80% of single aged 

HSCs show a platelet bias177. This is also reflected in increased Mk/E lineage specific genes 

compared to HSCs obtained from young mice177. Yet, no secondary transplants on these 

supposed platelet-biased aged HSCs were performed. Thus, it is unclear if these putative HSCs 

were in fact HSCs or were contaminated with MkP177. The latter possibility is supported by an 

in vitro single cell tracking experiment, which showed that ~15% of phenotypic LT-HSCs give 

rise to megakaryocytes largely without prior cell division, suggesting that the input cells were 

in fact MkP178.  

 

To address the existence of a purely megakaryocyte restricted long-term self-renewing HSCs 

in situ, Rodriguez-Fraticelli et al. made use of a Sleeping Beauty lineage tracing model 

combined with TARIS, an improved transposon integration sequencing technique. Eight weeks 

after in situ labelling, cells of different lineages were isolated and their transposon tags 

analysed. Only ~10% of tags found in megakaryocyte progenitor (MkPs) were shared with 

multiple other lineages, suggesting that the vast majority of the megakaryocyte lineage arises 
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independently from other blood lineages. Interestingly, none of the isolated MkP clones shared 

tags solely with erythroblasts, suggesting that the MEP lies downstream of a progenitor with 

erythromyeloid and/or lympho-erythromyeloid potential. However, it needs to be taken into 

account that MkPs may be far more numerous than other cell types, thus detection limits need 

to be adjusted accordingly and conclusions are difficult to make without deeper sampling.  

To assess long-term repopulation potential of Mk-restricted HSCs, cells were transplanted and 

their progeny assessed at four and 30 weeks post transplantation. Six out of eight recipients 

contained donor-derived multi-lineage progeny. This suggests that the majority of 

megakaryocyte producing clones within the phenotypic LT-HSCs compartment are not MkP 

lineage restricted. However, the findings of a Mk-primed cluster within the phenotypic LT-

HSCs population as well as the detection of in situ labelled Mk clones lacking overlapping 

labels with other lineages, suggest that the megakaryocyte lineage is the earliest to branch off. 

Notably, MPP2 also produce Mks suggesting that there may be two distinct pathways for Mk 

production146.  

 

Distinct CD45 isotypes are commonly used to distinguish between donor and recipient cells in 

peripheral blood, however this does not allow for the assessment of erythrocytes and platelets 

as these do not express this surface marker. Carrelha et al. have overcome this limitation by 

using transgenic mice co-expressing Gata1-eGFP and Vwf-tdTomato, which fluorescently label 

erythrocytes and platelets respectively, as donor mice. Following single cell transplantation 

~11% of mice showed only platelet reconstitution. These donor cells were termed platelet-

restricted (P-restricted). Of note, few subsequent secondary transplants were carried out, with 

recipients showing low levels of erythrocyte, myeloid and lymphocyte lineage reconstitution. 

In addition, isolated Vwf+ HSCs (LSK SLAM) from primary recipients showed multi-lineage 

potential in in vitro assays179. This argues against an exclusive platelet-restricted HSCs but is 

in accordance with previously discussed findings146. However, it is possible that these tools 

simply track platelets and erythrocytes in alpha-HSCs. In addition to P-restricted donor cells, 

the authors also found platelet+erythrocyte, platelet+erythrocyte+myeloid, and platelet+ 

erythrocyte+myeloid+B cell restricted repopulation patterns. This indicates that 

megakaryocytes are situated higher up in the haematopoietic hierarchy than previously thought 

and may indeed be derived via two separate developmental pathways146,179.  

 

Transcriptional overlap between the megakaryocyte and the LT-HSCs population is a consistent 

feature arising in single cell transcriptomic analysis, through multiplexed qPCR or single cell 
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RNA sequencing (RNA seq) profiling of the HSPC compartment. Different clustering methods 

suggest a close relationship between the Mk/E and long-term HSCs branch70,146,174,180. It is 

important to note however, that many genes are shared between megakaryocytes and HSCs, 

again highlighting their close connection70. Yet, the possibility cannot be excluded that shared 

gene expression between MKs and HSCs may be due to contaminating MkPs within the HSCs 

branch.  

 

Interestingly, similar observations of an early exclusive Mk differentiation branch separating 

from the HSCs pool were also made within the human system181,182. Human haematopoiesis is 

considered to follow a similar developmental pattern as seen in mouse, with MPPs 

(CD34+CD38negCD90negCD45RAnegCD49fneg) giving rise to multi-lymphoid progenitors 

(MLP) that have both lymphoid and myeloid potential171. Notta et al. aimed to improve 

resolution by subdividing the MPP pool using the surface markers CD71 (Transferrin receptor) 

and CD110 (Thrombopoietin receptor, MPL). Only MPPs negative for these markers (termed 

MPP1) and long-term HSCs (CD34+CD38negCD90negCD45RAnegCD49f+) were able to give rise 

to multi-lineage progeny. By comparing lineage output from progenitors derived from foetal 

liver, cord blood and adult bone marrow, the authors were able to show that the ratio of 

progenitors with multi-lineage or uni-lineage capacity changes throughout development, with 

more cells adopting a uni-lineage fate in adult bone marrow (82% uni-lineage) compared to 

foetal liver and cord blood (60% and 73%, respectively). Additionally, within the putatively 

unprimed HSCs/MPP compartment, a subset of cells expressing both CD71 and CD110 was 

detected identifying cells seemingly primed to adopt megakaryocyte/erythroid fate. These 

findings suggest an early branching point for the Mk/E lineage separating from the multipotent 

cell compartment181.  

 

This is also in line with recent finding by Velten et al. where human bone marrow cells from 

two individuals were index-sorted and RNA sequencing was performed. Clustering of the 

libraries showed that progression from a multi-lineage state to a distinct primed population is 

concurrent with the upregulation of CD38 on the cell surface. Functionally, the majority of 

phenotypic oligopotent progenitor populations gave rise to uni-lineage progeny, which was also 

reflected in their gene expression profiles. Based on gene expression clustering, the authors 

suggest that priming for the earliest lineage segregation occurs within the HSCs compartment 

between the lymphoid/myeloid and megakaryocyte/erythrocyte lineage. The cells then 
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transition through a CMP stage and bifurcate into GMP and MEP with CD71 enriching for cells 

of the erythroid lineage182.  

 

 

In contrast to Velten et al. who used an unbiased sorting approach with retrospective lineage 

assignment built on gene expression data, Karamitros et al., immuno-phenotypically isolated 

HSCs, MPPs and several oligopotent progenitor populations from both human cord blood and 

bone marrow. As observed by others, most progenitors had only uni-lineage progeny, although 

 

Figure 6:  Different models depicting the haematopoietic hierarchy. 

A) Bifurcation model. B) LMPP model. C) Direct lineage differentiation model. A-C) modified from 

Ema et al., Exp Hematol (2014). D) Lineage differentiation into lymphoid or myeloid lineage is 

dependent on reciprocal activation of Gata-1 and PU.1. Pink background reflects increase in Gata-

1 expression, while blue depicts the increase of PU.1 in progenitors. Overlapping region represents 

progenitor priming. Modified from Arinobu et al., Cell stem cell (2007). E) Continuum of differentiation 

model. Modified from Laurenti, E. & Göttgens, Nature (2018)183. MPP = multipotent progenitor; CMP 

= common myeloid progenitor; CLP = common lymphoid progenitor; MEP = megakaryocyte and 

erythrocyte progenitor; LMPP = lymphoid-primed multipotent progenitor; GMP = granulocyte and 

macrophage progenitor; IT-HSCs= intermediate HSCs; MyB = myeloid progenitor with B cell 

potential; ST-HSCs= short-term HSCs; MyT = myeloid progenitor with T cell potential; DC = Dendritic 

cell; NK = Natural Killer cell; ILC = Innate Lymphoid cells. 
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bi-lineage and multi-lineage outcomes were observed. GMP and MLP lacked erythroid output 

and MLP only generating unilineage lymphoid cells. LMPP had the capacity to generate 

monocytes, granulocytes and lymphoid cells but failed to generate erythrocytes and 

megakaryocytes, with high expression of CD10 enriching for LMPPs with lymphoid potential. 

Single cells of the LMPP, MLP and GMP compartment were sequenced and, like Velten et al., 

the authors found that cells typically defined as the above mentioned progenitor populations do 

not segregate from each other but rather are part of a continuum of lympho-myeloid 

differentiation (Figure 6E)184. However, in the interpretation of this data it is important to 

remember that due to the greater resolution of inter-cell differences and technical drop-outs, 

single cell RNA seq data is likely to present as a continuum in contrast to data obtained from 

bulk RNA seq. 

 

Since cell surface marker expression does not faithfully reflect the transcriptional state of a 

given cell174, unbiased approaches capturing vast numbers of cells without predefining them by 

phenotype, with possible retrospective lineage assignment through either functional outcome 

or gene expression profile, may aid in the understanding of lineage priming and 

differentiation70,185. For instance, Dahlin et al. has shown that single cell sequencing of 

> 44,000 mouse HSPC can determine the entry point of 8 individual lineage trajectories186.  

 

With recent findings in mind and the advances of single cell profiling technologies, several 

groups have proposed a more fluent continuum of transitional stages in blood cell development 

to replace the binary commitment model. Major amendments to the old models are that  

lineage priming occurs earlier than previously thought in both the mouse and human 

system70,171,181,182,184,187, and that the hitherto believed oligopotent progenitor pools in fact give 

rise to mainly uni-potent progeny146,173,182,184. However, as shown for seemingly Mk-primed 

HSCs, when submitted to the stress of transplantations, these cells did reveal multi-lineage 

potential146,179. It is therefore necessary to keep in mind that just because a progenitor is 

observed to produce a single lineage, it is not necessarily true that this cell does not have oligo-

lineage potential.  

 

In this context, “potential” encompasses several lineage outcome possibilities, whereas “fate” 

insinuates that the cell is irreversibly committed to differentiate into a particular lineage guided 

by external stimuli. Hence, it is important to consider if a terminally differentiated blood cell 

has adopted its fate because it only possessed uni-potential capacity or because it was stimulated 
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to do so by extrinsic factors. In vivo, it still needs to be determined if fate commitment is a 

stochastic event or if location within the niche is an essential factor. In particular because many 

external stimuli are soluble factors, which may make niche location partially irrelevant. One of 

the external stimuli known to be produced by cells from the bone marrow niche and extensively 

studied for its effects on HSCs is the cytokine stem cell factor, further described in 1.5.  

 

1.5 Stem cell factor, a cytokine involved in regulating haematopoiesis 

Stem Cell Factor (SCF), also known as Mast Cell Growth Factor (MGF)188, Kit-Ligand (KL)189, 

and Steel Factor (SF)190, is a cytokine encoded by the Steel (Sl) locus on mouse chromosome 

10 and human chromosome 12191. In the bone marrow, SCF is produced by endothelial and 

mesenchymal stromal cells, including LEPR-expressing perivascular cells and adipocytes31,192.  

 

SCF is the ligand of the proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase and 

member of the Platelet Derived Growth Factor (PDGF) receptor subfamily188,189,193,194. In 1956, 

it was first hypothesised that SCF and c-Kit may be complementary to each other based on the 

striking similarities between the phenotypes of both mutant Steel (Sl) and white-spotting (W) 

mice195, the latter locus encoding Kit196,197. Mutant Steel mice are characterised by anaemia, 

reduced gonad size, and diluted hair pigmentation including white spotting. The majority of 

homozygous mutant mice die perinatally due to macrocytic anemia195. Similarly, the few 

surviving W homozygous mutant mice have white coats with black eyes, are severely anaemic, 

have a reduced number of mast cells and are sterile198,199. These findings implicate that both c-

kit and SCF play an important role in the regulation of haematopoiesis, gametogenesis as well 

as melanogenesis195. SCF has moreover been found to be important for development of the 

interstitial cells of Cajal in the intestine where it is produced by smooth muscle cells200,201. 

Furthermore, research suggests a role for secreted SCF in neurogenesis by stimulating the 

proliferation of neuronal precursor cells in vitro and in vivo202. 

 

1.5.1 The SCF-KIT complex 

SCF is encoded by 9 exons in human, mouse and rat191. It exists in both a membrane-anchored 

and a soluble form as the result of alternative splicing of exon 6 and proteolytic processing191,203-

205. SCF binds Kit with high affinity and in a species-specific manner. Human SCF (HSCsF) 

does not bind mouse Kit (dissociation constant Kd >700nM), while rat SCF binds to human Kit 

(hKit) with 100-fold lower affinity than HSCsF to hKit (Kd 10-50nM vs. 0.5-1nM 

respectively)206. This is likely due to structural discrepancies between human and murine SCF.  
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SCF is a noncovalent homodimeric glycoprotein consisting of four-helix bundles, or 

protomers206,207. Soluble SCF contains 165 amino acids, with the first 141 residues being 

essential for receptor binding207. SCF forms a dimer through polar and nonpolar head-to-head 

interactions between the protomers207,208. SCF binding to Kit is driven by charge 

complementarity, and both human SCF/KIT and mouse SCF/KIT are expected to display the 

same overall binding configuration. However, the interspecies incompatibility is possibly due 

to the highly hydrophobic patches in mouse SCF (Ile50, Leu54, Val87, and Leu88), binding to 

the hydrophobic mouse KIT (Pro124 and Phe126), not being complementary to the less 

hydrophobic Ser123 and Tyr125 in human KIT208. Another report has argued that the 

substitution of Tyr125 by phenylalanine in mouse substituted may have resulted in the loss of 

a hydrogen bond leading to diminished binding affinity209.  

 

 
Figure 7:  Stem cell factor binding to its receptor c-Kit. 

Stem cell factor monomers form a homodimer and bind as such to extracellular domains 1-3 of two 

Kit monomers, bringing domain 4 and 5 in close proximity and causing a conformational change. 

Both Kit monomers bind bivalently to each other leading, enabling auto-phosphorylation on Kit.  

 

The KIT protein is a type III tyrosine kinase receptor, which are characterised by a split tyrosine 

kinase domain210. Its glycosylated extracellular region contains five immunoglobulin-like (Ig-

like) domains. KIT is anchored in the cell membrane by a single transmembrane domain, 

flanking the first of the bisected tyrosine kinase domains, which is separated from the second 
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domain by a kinase-insert region (Figure 7)209,210. In vitro binding analysis of SCF to a truncated 

KIT lacking both the transmembrane and cytoplasmic domains, have shown that KIT receptor 

binding is dependent on the ectodomain alone210.  

 

1.5.2 The SCF-KIT signalling pathway 

Upon ligand binding, individual SCF protomers bind to the immunoglobulin-like domains D1, 

D2 and D3 of an individual KIT protomer208,209. In doing so, the monomeric KIT receptor 

undergoes a conformational change, allowing the interaction between the Ig-like domains D4-

D4 and D5-D5 to allow dimerisation with another KIT monomer209, followed by the bivalent 

binding of the ligand and in doing so stabilising the conformation (Figure 7)209,210. This 

dimerisation facilitates auto-phosphorylation of KIT 206,209. This is followed by ubiquitination 

of the receptor, marking it for internalisation and lysosomal degradation211. Binding of soluble 

SCF causes a rapid and transient activation of c-KIT, while the membrane-bound isoform 

activates the receptor in a more sustained manner. This might be because the complex cannot 

be internalised as rapidly in this case211,212. 

 

Upon activation of the receptor, intracellular proteins bind the kinase domains of Kit directly 

and undergo tyrosine phosphorylation. Several groups have demonstrated that members of the 

STAT (Signal Transducer and Activator of Transcription) family (STAT1, STAT3, STAT5), 

the PI3K family (AKT, RSK1, RPS6) as well as the MAP (mitogen-activated protein) kinase 

family (ERK, MEK, p38, c-RAF) are phosphorylated as a result of SCF/KIT complex 

formation191,206,210,213,214. 

 

1.5.3 SCF directly affects HSCs and can act synergistically with a variety of other 

growth factors  

Transplantation experiments performed by McCulloch, Siminovitch and Till in the early 1960’s 

provided the earliest evidence that SCF may act directly on HSCs. Bone marrow and spleen 

derived haematopoietic cells of the genotype Sl/Sld or Sld/Sld, carrying heterozygous or 

homozygous mutations in the region encoding stem cell factor, were transplanted into wild type 

mice and vice versa and their spleens were examined shortly after for colony forming units 

(CFU-S). It was found that upon transplantation into wild type recipients no differences in 

colony forming efficiency could be observed. However, the opposite was true for the 

transplantation of wild-type (WT) cells into mutant recipients. Upon examination, spleens were 

significantly smaller and had only few colonies when compared to a wild-type recipient. Thus, 
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the defect exerted by the Sl mutation is not intrinsic to the colony-forming cells but affects the 

haematopoietic microenvironment215.  

 

Transplantation of WT foetal liver cells into the c-Kit mutant W/Wv recipients can partially or 

entirely cure the anaemic phenotype, with red blood cell counts returning to normal levels. 

Changes of the haemoglobin pattern to that of the donor cells, proves that the implanted cells 

are indeed the source of the newly generated erythrocytes216. Transplantation of Sl/Sld bone 

marrow cells into W recipients also restored blood values to normal215. 

McCulloch and Till also showed that W/Wv recipient mice do not require irradiation prior to 

transplanting haematopoietic cells derived from non-mutant litter mates (ww). They 

hypothesized that the WWv cells either are deficient in their colony-forming ability or require a 

stimulus for colony formation217. It is now known that the loss of Kit function, thus the inability 

to respond to environmental stimuli, is the cause for WWv cells’ inability to compete with wild 

type cells218. These results strongly suggest that SCF, produced by cells of the haematopoietic 

microenvironment, directly acts on HSCs, whereas the W mutation affects the stem cells 

directly215,216. 

 

SCF has been shown to stimulate proliferation of human, non-human primate, and mouse 

haematopoietic stem and progenitor cells219-221. When SCF stimulated bone marrow cells are 

transferred into medium lacking SCF, clones that have already begun to proliferate will stop 

proliferating and die. This suggests that SCF has a direct effect on the colony initiating cells in 

the bone marrow128. In both humans and mice, SCF acts as a radioprotective agent when 

administered in vivo prior to chemotherapy (human) or irradiation (mice)213,222-224. However, 

due to its functional pleiotropy, SCF also activates melanocytes and mast cells leading to 

hyperpigmentation and severe allergic or anaphylactic responses, respectively199,213,225.  

Colony formation is greatly enhanced when SCF is used synergistically with a number of other 

growth factors and cytokines, such as IL-3, IL-6, IL-11, Erythropoietin (EPO), granulocyte-

macrophage colony-stimulating factor (GM-CSF), granulocyte-colony stimulating factor  

(G-CSF)125-128,219,220. 

 

When SCF is administered in vivo, peripheral blood and bone marrow cellularity increases 

within the first 7 days in both mice126 and baboons220 but returns to baseline levels by week 

three of treatment. This effect is enhanced in mice when G-CSF is used synergistically but not 

with G-CSF alone126. Contrary to these findings, it has also been reported that SCF does not 
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synergise with GM-CSF, macrophage colony stimulating factor (M-CSF), IL-1, IL-4, Il-5, 

tumour necrosis factor (TNF), and leukaemia inhibitory factor (LIF)226. Colony formation 

assays performed on HSCs (Lin-Rho123loSca-1+) only stimulated with SCF failed to generate 

any colonies. However, in combination with IL-3, IL-6 or G-CSF, colonies could be 

obtained226. When used alone, SCF increased survival compared to medium without any 

cytokines. SCF in synergy with other cytokines stimulates cell proliferation and retains HSCs 

repopulating ability in vitro for up to 7 days. However, when competitively transplanted with 

fresh bone marrow, stimulated cells repopulated a significantly lower amount of recipient 

mice125,226. Thus, SCF clearly affects haematopoietic cells in vivo and in vitro, although its 

effects on cell division, survival and differentiation needs to be teased apart and further 

investigated. 

 

Since these experiments (which spanned several decades), it has been of great interest to 

establish cytokine cocktails that could selectively expand HSCs by stimulating self-renewal, 

proliferation, and survival whilst inhibiting differentiation ex vivo. Several groups have shown 

that a combination of IL-3, IL-6 and SCF expands HSPCs in culture and maintains engrafting 

capability for up to 14 days227-230. Similar results have been published for IL-11 and SCF129,231-

233. Interestingly, IL-3 has also been reported to have a negative effect on proliferation and the 

reconstitution capacity of HSCs when used without IL-6229,230. Conflicting reports have been 

published whether or not SCF synergizes with Flt3-ligand (FL)231,232. Failure to reconstitute the 

haematopoietic system after 14 day culture of LSK cells with SCF and FL alone232 suggests 

that IL-6 or IL-11 is necessary to retain HSCs stemness. Contrary to this, observations have 

been made that stimulation of single cells (LSK) with FL and SCF leads to colony formation, 

which was not enhanced by IL-6 addition. However, transplantation data to confirm 

engraftment capabilities of these cells are missing from this study231. Subsequent research by 

the same group has shown that IL-11 and SCF in combination have a significant positive effects 

on the number of colony forming cells (CFC), long-term culture initiating cells (LTC-ICs), total 

cellular output, and most importantly competitive repopulating units (CRU). Addition of FL to 

these two cytokines does not change CRU expansion124, suggesting that FL is not essential, 

which is consistent with the absence of the FLT3 receptor (CD135) on the surface of mouse 

LT-HSCs.  

 

Yet, all studies listed above mainly have used bulk population of haematopoietic stem and 

progenitor cells (i.e. LSK or LinnegSca-1+CD34neg). Thus, any effect SCF may have on HSCs 
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cannot necessarily be distinguished from its effect on progenitor cells. Single cell in vitro 

studies have addressed this problem. While Audet et al. and Miller et al. both used very low 

cell numbers to initiate colonies, the sorted populations of LS+ and LSK only contain 

approximately 0.053% and 0.397% stem cells respectively124,234. 

 

Single cell studies with LT-HSCs have shown that the concentration of SCF differentially 

affects HSCs (LinnegCD45midRhonegSP) in their engrafting capabilities. A high concentration 

promotes HSCs self-renewal with 25% of cells being able to engraft, whereas HSCs cultured 

in 30-fold lower amount of SCF show a 3-fold reduction in reconstitution capacity from as early 

as 16h in culture. This reduction is maintained in 4-day clones. Interestingly, cell cycle kinetics 

and survival were not affected10. Another study showed that inhibition of lipid raft clustering 

of c-Kit results in the abrogation of SCF/KIT signalling, with HSCs (LSK CD34neg) remaining 

as single cells in vitro for up to 10 days. Interestingly, some of these cells retained the ability 

to reconstitute all lineages in primary transplantation recipients121. These finding suggest that 

SCF may not be necessary for the maintenance of “stemness” per se, but rather it is required 

for HSCs proliferation and self-renewal.  

 

1.6 In vitro expansion of haematopoietic stem cells 

The ability to self-renew while retaining multipotency makes HSCs an ideal candidate for the 

treatment of haematologic disorders such as leukaemia. Since the patient’s own haematopoietic 

system has been severely compromised by chemo- or radiotherapy, in an effort to eliminate all 

malignant cells, a bone marrow transplant is necessary to rebuild the blood system. Common 

sources of HSCs for transplantation are bone marrow (BM), mobilised peripheral blood (mPB) 

and umbilical cord blood (UCB) from human leukocyte antigen (HLA) matched donors. 

However the availability of HLA compatible donors is limited, with only 60–70% of patients 

finding a suitable donor and UCBs do not always contain sufficient numbers of HSCs for 

transplantation into an adult patient235,236. Developing a quality- controlled protocol for the in 

vitro expansion of (autologous) HSCs would guarantee on-demand availability of HSCs for the 

treatment of haematological disorders. In order to do this, we need to understand the 

mechanisms driving symmetric self-renewal divisions of HSCs and apply them outside the 

body236.  

Extensive research has been conducted into intrinsic and extrinsic regulators of HSCs 

expansion236,237 (some of which were described above). The strongest intrinsic determinants to 
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date include Hox genes, epigenetic regulators such as the Polycomb-group proteins and 

miRNAs139,236,237. However, introduction of genetic material is undesirable in clinical protocols 

since the potential of malignant transformations or stem cell exhaustion cannot be excluded236. 

Therefore, much research in HSCs expansion has focused on extrinsic regulators including 

cytokines and developmental regulators such as known players in the Wnt signalling pathway, 

Shh signalling pathway, and the Notch pathway236-238. In addition, small molecules have 

recently been shown to modulate in vitro HSCs expansion236,239, most notably are 

StemRegenin1 (SR1)123,235 and UM171 which lead to a 2-fold and 13-fold increase in human 

LT-HSCs respectively after 7 day culture and in combination lead to a nearly 30-fold expansion 

of LT-HSCs measured by their frequency at 20 weeks following transplantation compared to 

uncultured BM235. Another promising molecule for the expansion of human HSCs is 

Prostaglandin E2 (PGE2). Pretreatment of cord blood cells with PGE2 prior to transplantation 

into patients has been shown to improve multi-lineage engraftment over those transplanted with 

untreated cord blood. However, its efficacy on in vitro expansion on human HSCs has not yet 

been assessed240,241. 

 

One of the major reasons for this may be that most HSCs expansion efforts take place in 

isolation, ignoring any potential contribution of the physical niche in which they typically 

reside. Adult HSCs reside in the bone marrow microenvironment, where they encounter 

cytokines, growth factors and chemokines, which are largely but not exclusively produced by 

niche cells18,242. These factors can be present in either soluble form or as insoluble, tethered 

transmembrane receptor ligands and extracellular matrix (ECM) molecules. The 

microenvironment therefore is a combination of differentiated cells, key soluble molecules and 

a tissue specific matrix, all potentially influencing stem cell fate choice in a complex spatially 

and temporally controlled manner243,244. Whereas the effects of soluble factors on HSCs self-

renewal and differentiation have been extensively studied, very little is known about how 

mechanical forces within the stem cell niche instruct HSCs fate choice and only a few studies 

have attempted to answer these questions242,244. What is clear, is that HSCs express surface 

adhesion receptors (e.g., integrins) and are able to sense mechanical forces through cytoskeletal 

components244. Moreover, the bone marrow microenvironment is relatively soft with an 

elasticity measured at approximately 300 Pa245 compared to tissue culture plastic which ranges 

in stiffness between 2–4 GPa, several orders of magnitude stiffer246. One study has suggested 

that stiffness affects HSCs fate choice as measured by HSCs (LSK CD150+) to progenitor 

(LSK) ratio, which was maintained or increased on soft tropoelastin coated plates when 
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compared to non-coated controls247. Another pioneering study in human HSCs reported that 

Myosin II (MyoII) is involved in adhesion and matrix sensing, as its polarisation is supressed 

in CD34+ stem and progenitor cells cultured on soft substrate but promoted on stiff matrices. 

MyoII is asymmetrically segregated upon cell division and remains high in CD34+ cells 

whereas the MyoII low daughter cells differentiates245. Overall however, this remains a 

significantly under-explored area of HSCs expansion efforts.  

 

This is in contrast to a number of other stem and progenitor cell systems where substrate 

stiffness has been shown to influence lineage differentiation243,244. Mesenchymal stromal cells 

(MSCs) are multipotent with osteogenic, chondrogenic and adipogenic potential. On stiff 

substrate MSCs preferentially differentiate into cells of the osteogenic lineage, whereas culture 

on a soft matrix leads to adipocyte differentiation244,248. In the liver, hepatocyte differentiation 

has been shown to be regulated by the composition of the extracellular matrix249 and reports 

show that hepatic stellate cells remain quiescent on soft matrices and differentiate into 

myofibroblasts when cultured on stiff substrates similar to that of a fibrotic liver243. In skin, 

keratinocytes grown on small, circular ECM islands, which restrict cell spreading, terminally 

differentiated, whereas those seeded on larger island remained immature. This was due to 

impaired actin disassembly and remodelling, indicating cell shape is the key factor determining 

cell fate250. The same group later reported that keratinocyte morphology, spreading and 

differentiation was influenced by substrate stiffness. Keratinocytes on soft matrices failed to 

form focal adhesions necessary for the activation of downstream pathways such as the ERK 

pathway251. However, it is important to note that the anchoring points for collagen were the 

main determinants for these differences as opposed to matrix stiffness itself. The authors found 

that differentially spaced anchoring points for collagen lead to changes in cell behaviour 

comparable to changes when cultured on matrices of varying stiffness251. It is therefore 

necessary to consider not only the composition of the matrix itself but also the geometry (two 

dimensional or three-dimensional (3D)) and elasticity, all of which impact cytoskeletal 

tension242,244.  

 

HSCs traditionally have been cultured in a two-dimensional fashion on rigid tissue-culture 

plastic sometimes coated with ECM proteins such as collagen or laminin, on feeder cell layers 

or on ECM derived hydrogels such as Matrigel242. To tease apart the mechanical effects from 

the biochemical stimulus on HSCs fate choice, cells need to be grown in a 3D matrix of defined 

composition mimicking the natural tissue as closely as possible. Thus, naturally derived 
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hydrogels such as Matrigel and co-culture on feeder layers are undesirable due to the undefined 

nature of the material itself242,244. In addition, the substrate needs to allow for sufficient gas 

exchange and nutrient supply to guarantee maximal cell viability and the matrix must not be 

physically constraining thus inhibiting proliferation, migration and morphogenesis242. The 

development of scalable, artificial 3D niches would allow for high-throughput screening of 

optimal conditions supporting HSCs self-renewal in vitro leading to the expansion of human 

HSCs for clinical applications.  
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1.7 The aims of this PhD thesis 

Haematopoietic stem cells have been studied for more than half a century but only in the last 

two decades have major advances in technology allowed us to begin studying HSCs at the single 

cell level in extreme detail. These advances include index-FACS, single cell RNA sequencing, 

single cell in vivo imaging, single cell transplantation, and the construction of microfluidic 

devices. 

 

Yet, much of what has been described on the population level has never been verified on the 

single cell level and at the purity level that we can investigate today. For instance, it has been 

shown on the population level that SCF increases cell survival but does not stimulate self-

renewal when not used in synergy with other cytokines. Yet, virtually all culture conditions 

aimed at the maintenance and expansion of HSCs include SCF under the premise that it 

enhances self-renewal.  

 

Therefore, the first aim of this PhD thesis was to investigate if short-term SCF stimulation alters 

HSCs fate choice on the functional as well as the transcriptional level in single HSCs and if any 

changes occur in a dose dependent fashion. The second objective was to assess how the absence 

of SCF/KIT signalling affects HSCs functionality in vitro. Finally, I explored how alterations 

in matrix stiffness affect HSCs survival in vitro.  
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2 Methods 

2.1 Mice 

C57BL/6-Ly5.2 (WT) were purchased from Charles River Laboratories (Saffron Walden, 

Essex, UK) and maintained at the University of Cambridge animal facility. Congenic C57BL/6-

Ly5.1 (WT-CD45.1) and C57BL/6w41/w41-Ly5.1 (W41) were bred and maintained at the 

University of Cambridge. All mice were housed in specified pathogen-free microisolator cages 

and were continuously provided with sterile food, water, and bedding. All procedures 

performed in this thesis were in compliance with the guidance on the operation of ASPA 

(Animals Scientific Procedures Act 1986) and performed under project license PPL 70/8406. 

 

2.2 Phenotypic mouse haematopoietic stem cell isolation 

2.2.1 Bone marrow harvest 

Mice were sacrificed by cervical dislocation. Bone marrow was harvested from femur and tibiae 

of both hind legs, pelvic bones, sternum and the spine. All of the following procedures were 

carried out under sterile conditions. Bone marrow (BM) was obtained by crushing the bones 

using mortar and pestle in PBS (phosphate-buffered saline, Sigma-Aldrich, St. Louis, MO, USA 

(Sigma)) supplemented with 2% foetal calf serum (FCS, Sigma or STEMCELL Technologies, 

Vancouver, CA (SCT)) and 50mM EDTA (Ethylenediaminetetraacetic acid, Sigma), from now 

on referred to as PBSFE.  

 

2.2.2 Erythrocyte depletion 

Erythrocyte depletion was achieved using ammonium chloride (NH4Cl, SCT). 3 mL cell 

suspension in PBSFE was treated with 5 mL NH4Cl and incubated on ice for 10 minutes (min), 

vortexing the sample after 5 min. Cells were then washed with 7 mL PBSFE and resuspended 

in 500 µL PBSFE per mouse in preparation for lineage depletion. 

 

2.2.3 HSPC enrichment 

The red blood cell depleted cell suspension was subsequently enriched using either the 

discontinued 3-step or the currently available 2-step negative EasySep Mouse Hematopoietic 

Progenitor Cell Isolation Kit (1976A SCT) with the following modifications:  

Per mouse, cells were resuspended in 500 µL PBSFE and incubated with 10 µL (1/50) EasySep 

Mouse Hematopoietic Progenitor Cell (HSPC) Isolation cocktail for 15 min. on ice.  
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20 µL (1/25) EasySep Streptavidin RapidSpheres 50001 were added and the cell suspension 

incubated for 15 min. on ice.  

For the discontinued 3-step kit, EasySep Biotin Selection Cocktail was added (1/10), followed 

by a 15 min. incubation on ice. Subsequently, magnetic particles were added (1/20) and the mix 

incubated on ice for another 10 min. PBSFE was added to a total of 2500 µL followed by a 3 

min. incubation in the EasySep Magnet at room temperature (RT). The supernatant was 

transferred into a new tube and the magnet incubation step was repeated one additional time.  

 

2.2.4 Fluorescence-activated cell isolation 

HSCs were isolated from the HSPC enriched cell suspension using fluorescence-activated cell 

sorting (FACS) following antibody staining. The cell suspension was incubated with antibody 

solution for 30 min. on ice, followed by a 20 min. incubation on ice with streptavidin (SAV) 

labelled secondary antibodies when necessary. The DNA intercalating dye 7-AAD (7-amino-

actinomycin D, Life Technologies, Carlsbad, CA, USA, (Life Technologies)) was used to 

exclude non-viable cells. Antibodies used for HSCs isolation are listed in Table 2, p. 39. HSCs 

were defined as EPCRhigh, CD45+, Sca-1high, CD48low/neg, CD150+. HSCs were sorted on a BD 

Influx cell sorter (BD Biosciences, San Jose, CA, USA (BD)) using the following filter sets 488 

530/40 (for FITC), 561 585/29 (for PE), 405 460/50 (for BV421), 640 670/30 (for APC),  

561 750LP (for PE/Cy7), 640 750LP (for APC/Cy7), 405 520/35 (for BV510), 640 720/40 

(for AF700), and 561 670/30 (for 7-AAD). Cells were sorted in either purity or single sort mode. 

Single HSCs were isolated using the single-cell deposition unit of the sorter placing 1 cell into 

the wells of round bottom 96-well plates, each well having been preloaded with 50 µL medium 

(described below). Cells were sorted at the Cambridge Institute for Medical Research Flow 

Cytometry Core Facility. 
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Table 2: Antibodies used for phenotypic mouse HSCs isolation.  

Antibody Clone Fluorophore Manufacturer 

Biotinylated HSPC cocktail 

145-2C11; M1/70; 

6D5; RA3-6B2; 

RB6-8C5; TER-119 

N/A SCT 

CD150 TC15-12F12.2 PE/Cy7 Biolegend 

CD34 RAM34 Alexa Fluor 700 Biolegend 

CD45 30-F11 FITC Biolegend 

CD48 HM48-1 APC Biolegend 

CD117/c-Kit 2B8 APC/Cy7 Biolegend 

EPCR RMEPCR1560 PE SCT 

SCA-1 D7 BV421 Biolegend 

SCA-1 D7 BV605 Biolegend 

Streptavidin NA BV510 Biolegend 

 

2.3 Phenotypic human haematopoietic stem cell isolation 

2.3.1 Isolation of mononuclear cells 

Cord blood was obtained from Cambridge Blood and Stem Cell Biobank with informed consent 

from healthy donors and collected in accordance with regulated procedures approved by the 

relevant Research and Ethics Committees. Mononuclear cells (MNC) were isolated by using 

Pancoll lymphocyte separating medium (Pancoll, PAN Biotech, Aidenbach, Germany). Cord 

blood was mixed with equal parts of PBS and layered on Pancoll. Layered blood was then 

centrifuged at 500 g for 25 min. at RT with the brake turned off. The MNC layer was 

subsequently carefully aspirated and transferred to a new tube.  

 

2.3.2 Erythrocyte depletion 

The MNC cell fraction was subsequently treated with red blood cell lysis buffer (Biolegend, 

San Diego, CA, USA (Biolegend)) for 15 min. at 4°C to deplete erythrocytes.  

 

2.3.3 CD34 enrichment 

Erythrocyte depleted cord blood MNCs were enriched for CD34 using the human CD34 

microbead kit (Miltenyi Biotec, Bergisch Gladbach, Germany) with the following quantity 

modifications: 30 µL/108 cells CD34 Microbeads, FcR Blocking Reagent 30 µL/108 cells, 

PBS+3% FCS 90 µL/108 cells. Cells were separated using the AutoMACS cell separation 

technology (Miltenyi Biotec).  
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2.3.4 Fluorescent-activated cell isolation 

CD34+ enriched cells were subsequently stained for the antibodies listed in Table 3 for 20 min. 

at RT. Cells were then washed and taken up in PBS + 2% FCS. Zombie Aqua (Biolegend) was 

used as a cell viability marker. HSCs (CD34+CD38negCD45RAnegCD19negCD49f+CD90+) were 

then sorted on a BD FACS Aria III or on BD FACS Aria Fusion sorters available at the NIHR 

Cambridge BRC Cell Phenotyping Hub facility.  

 

Table 3: Antibodies used for phenotypic human HSCs isolation.  

Antibody Clone Fluorophore Manufacturer 

CD19 SJ25-C1 Alexa Fluor 700 Biolegend 

CD34 561 APC/Cy7 Biolegend 

CD38 HIT2 Pe/Cy7 Biolegend 

CD45RA HI100 FITC Biolegend 

CD45RA HI100 PE Biolegend 

CD90 5E10 APC Biolegend 

CD90 5E10 PE Biosciences 

CD49f GoH3 Pe/Cy5 Biosciences 

 

Cells were sorted in single sort mode. Single HSCs were isolated using the single-cell 

deposition unit of the sorter placing 1 cell into the wells of round bottom 96-well plates, each 

well having been preloaded with 50 µL StemSpan medium (described below). 

 

2.4 In vitro culture of HSCs  

2.4.1 Liquid cell culture 

Phenotypic HSCs were sorted and culture into StemSpan serum-free expansion medium 

(StemSpan SFEM, SCT) supplemented with 20 ng/mL human Interleukin-11 (IL-11, R&D 

Systems, Bio-Techne, Minneapolis, MI, USA, (R&D)), 300 ng/mL Stem Cell Factor (SCF, 

R&D or SCT), 2 mM L-Glutamine (Sigma), 1000 U/mL-100 µg/mL Penicillin-Streptomycin 

(Sigma), 100 µM 2-Mercaptoethanol (Life Technologies).  

Standard SCF concentration was 300 ng/mL unless stated otherwise. In SCF-free conditions, 

StemSpan SFEM was additionally supplemented with 10% FCS.  

As FCS is of undefined nature and has been shown to differ significantly from batch to batch, 

a serum-free alternative medium was implemented: Cells were sorted into Ham’s F12 nutrient 

mixture (Gibco, ThermoFisher, Waltham, MA, USA (Gibco)) supplemented with 20 ng/mL 

human IL-11 (R&D), 300 ng/mL SCF (SCT or R&D), 2 mM L-Glutamine (Sigma), 1000 

U/mL-100 µg/mL Penicillin-Streptomycin (Sigma), 1% ITS-X (Insulin-Transferrin-Selenium-
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Ethanolamine, Gibco), 100 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 

Sigma), 100 mg/mL human serum albumin (HSA, Albumin Bioscience, Huntsville, AL, USA).  

 

2.4.2 Single cell kinetics and clone size determination 

Single phenotypic HSCs were sorted and cultured as described above. Cells were counted by 

visual inspection every 22–24 h to assess kinetics of cell division. On day 10 of culture, clone 

size was scored as follows: Very small (VS, <50 cells), small (S, 50–500 cells), medium  

(M, 501–5,000 cells), large (L, 5,001–10,000), and extra-large (XL, >10,001 cells), and the 

clone size estimation was previously validated using fluorescent counting beads as described in 

Kent et al. 2013252. 

 

2.4.3 Short-term liquid culture for RNA sequencing  

To minimise cell transferring steps, which would lead to loss of cells, phenotypic HSCs were 

sorted into a 5 mL polypropylene tube containing 500 µL of StemSpan supplemented with 

either 30 ng/mL or 300 ng/mL SCF in addition to 20 ng/mL human IL-11, 2 mM L-Glutamine, 

1000 U/mL-100 µg/mL Penicillin-Streptomycin, and 100 µM 2-mercaptoethanol. The tube was 

closed with a blue filter cap allowing air exchange. The 5 mL tube was subsequently placed 

into a 50 mL tube containing 5 mL of prewarmed PBS.  

A lid was loosely placed on the larger tube and it was 

subsequently placed into a humidified incubator at 37°C for 16h 

(Figure 8). 15 min. prior to the end of incubation, CD45-FITC 

antibody was added to the cells. After the incubation time, the 

cells were washed with 2 mL PBS. The remaining cells were 

resuspended in PBSFE containing DAPI (4′,6-diamidino-2-

phenylindole, Cambridge Bioscience, Cambridge, UK) and 

resorted for viable CD45+ cells into a 96 well PCR plate 

containing lysis buffer (see below).  

 

 

 
Figure 8: Schematic of 

16h culture method prior 

to RNA sequencing. 
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Table 4: Antibodies used to analyse colony forming units. 

Antibody Clone Fluorophore Detected lineage 

CD41 MWReg30 FITC Megakaryocytes/Platelets 

CD61 2C9.G2 (HMβ3-1) PE Megakaryocytes/Platelets 

Ter119 TER-119 PE/Cy7 Erythrocytes 

CD45.2 104 APC/Cy7 Haematopoietic cells 

Ly6G/Gr1 1A8 BV421 Granulocytes 

CD11b/Mac1 M1/70 APC Monocytes/Granulocytes 

 

2.4.4 Colony-forming assays 

To assess viability and multi-lineage differentiation capacity of single cells, cells were 

transferred from liquid culture into 600 µL of semi-solid MethoCult GF M3434 (SCT).  

Cells were cultured for 14 days and colony type scored either manually by morphology or by 

antibody staining. Antibodies used are listed in Table 4. All antibodies were purchased from 

Biolegend). Samples were acquired on BD LSRFortessa cell analysers. Laser and filter 

configurations for analysers used are listed in Table 5. Flow cytometry data was analysed using 

FlowJo v10 (FLOWJO LLC, Ashland, OR, USA).  

 

Table 5: Laser and filter configurations of LSRFortessa cell analysers. 

Fluorophore LSRFortessa 1 LSRFortessa 2 

7-AAD 561 670/30 532 710/50 

AF700 640 730/45 640 730/45 

APC 640 670/14 640 670/14 

APC/Cy7 640 780/60 640 780/60 

BV421 405 450/50 405 450/50 

BV605 405 610/20 405 610/20 

FITC 488 530/30 488 515/20 

PE 561 585/15 532 585/15 

PE/Cy7 561 780/60 532 780/60 

 

2.4.5 Culture in agarose-based gels.  

Hydrogels were made by heating SeaPrep agarose (Lonza, Basel, CH) in IMDM (Iscove's 

Modified Dulbecco's Medium, Gibco) until dissolved and adding thrombin from human plasma 

(Sigma) to the agarose solution once cooled down to 40oC. The mixture is then kept at 40oC. 

Fibrinogen from human plasma (Sigma) dissolved in IMDM was added to IMDM and mixed 

with either Laminin (Sigma) or human plasma Fibronectin (Merck Millipore, Burlington, MA, 

USA). All mixtures were made at 2X concentration. The thrombin containing solution was then 

quickly added to the fibrinogen containing solution in a 96 well plate and left to polymerise  

on ice. Figure 9 shows the layout of the 96 well plate to produce 96 individual gels. The gels 

were subsequently topped up with 50 µL of culture medium. Single or multiple cells were sorted 
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as described onto the gels and cultured for up to 21 days. Cells were isolated from the gels by 

digestion with trypsin (Gibco) at 37°C for 30 min. The trypsin reaction was stopped with 

PBSFE and subsequently stained as described in 2.4.4.  

 

 
 
Figure 9:  Plate layout for the production of agarose based hydrogels. 

Combination of agarose, Fibrinogen, Thrombin and ECM proteins are used to generate 96 different 

hydrogels. 

 

2.5 Atomic force microscopy 

Bone marrow plugs were obtained by flushing the bone marrow of Nestin-GFP+ mice (gifted 

by Mendez-Ferrer lab36) with a 21 gauge hypodermic needle and 3 mL IMDM. Bone marrow 

plugs were mounted in a well in a 10% agarose plate and covered with IMDM.  

Stiffness measurements of bone marrow plugs were carried out using an atomic force 

microscope (AFM, JPK Instruments, Berlin, Germany). Samples of exposed bone marrow were 

transferred onto an x/y motorised stage (AxioObserver A1, Zeiss, Jena, Germany) under an 

inverted microscope onto which the AFM was mounted. Tipless silicon cantilevers (0.1 to 0.3 

N/m, Sicon-tl, Nanosensors, Neuchâtel, Switzerland) with a polystyrene bead glued at their tip 

(radius r = 18.64 µm ± 0.17 µm, microParticles GmbH, Berlin, Germany) were used to perform 

indentations on the bone marrow, with an approach speed of 10 µm/s and a set force of 10 nN. 

Cantilever position relative to the tissue was monitored using a CCD camera (The Imaging 

Source, Bremen, Germany) mounted on top of the setup. Indentations were converted into 

stiffness values (K) by applying the Hertz model to the recorded force-distance curves:  

F = 4/3 K r1/2 δ3/2, for an indentation depth of δ = 2 µm; using a custom written automated 

algorithm based in Matlab (Mathworks, Natick, MA, USA). 
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2.6 Generation of haematopoietic chimaeras 

Donor cells were obtained from either WT or WT-CD45.1 mice. All donor mice were between 

8 and 16 weeks of age. Recipient mice were either WT or W41. All singe cell transplants were 

carried out using W41 as recipient mice. The mice carry a mutation in the SCF receptor c-Kit, 

giving WT donor cells a competitive advantage218. 

Recipient W41 mice were sublethally irradiated with a single dose 400cGy using a caesium 

source. Recipient C57BL/6-Ly5.2 were lethally irradiated with split doses of 550 cGy  

(total = 1100 cGy), with at least 3h between doses. All recipients were >8 weeks of age.  

Transplantations were performed by intravenous tail vein injection using a 29.5G insulin 

syringe. Limiting dilution transplantations were carried out into WT recipients by mixing the 

desired amount of WT-HSCs with 200,000 CD45.1/.2 whole bone marrow helper cells and 

subsequently transplanting the cell suspension.  

For single cell transplants, single cells were sorted into 100 µL of medium in a 96-well U-

bottom plate. 100 µL of PBS is mixed with the well content, all liquid is subsequently aspirated 

into the insulin syringe avoiding any air bubbles and injected into the tail vein.  

For secondary transplantations, bone marrow was harvest from the primary recipient by 

flushing tibiae and femurs with PBSFE followed by red blood cell lysis. An equivalent of one 

femur was transplanted per mouse. Each primary donor mouse was transplanted into at least 

two secondary recipients.  

In case of early death or sacrifice of the primary recipient, bone marrow was obtained from 

tibiae and femurs by crushing or flushing and subsequently frozen in 10% DMSO (Dimethyl 

sulfoxide, Fisher Scientific, Hampton, NH, USA) in FCS. On the day of transplantation, frozen 

cells are gently thawed in a water bath set to 37°C. The freshly thawed cell suspension is then 

added to 20 mL prewarmed IMDM in a dropwise fashion. Cells were washed to remove any 

DMSO and all remaining cells were transplanted into two recipients.  

 

2.7 Peripheral blood analysis 

Recipient mice were considered successfully repopulated when overall donor chimaerism >1% 

in the peripheral blood at 16 weeks post transplantation or later.  

To assess donor chimaerism in recipient mice, peripheral blood (PB) samples were obtained 

from the tail vein every 4 weeks, starting 8 weeks post transplantation up to 28 weeks, unless 

otherwise stated. Blood was collected in EDTA coated microvette tubes (Sarstedt AG & Co, 

Nuembrecht, Germany). Blood samples were treated with NH4Cl to deplete erythrocytes and 
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subsequently stained for lineage markers using the antibodies listed in Table 6 p.45. All 

antibodies were obtained from Biolegend. Samples were acquired on BD LSRFortessa cell 

analysers. Filter configurations for analysers used are listed in Table 5, p. 42. Cells of the B cell 

lineage were defined as viable single cells, myeloid negative (CD11bneg, Ly6gneg), CD3eneg, 

B220+. Cells of the T cell lineage were defined as viable single cells, myeloid negative 

(CD11bneg, Ly6gneg), B220neg, CD3e+. Cells of the myeloid lineage (GM, Granulocyte/ 

Monocyte) were defined as viable single cells, lymphoid negative (B220neg, CD3eneg), CD11b+, 

Ly6g+ or CD11b+, Ly6glow/neg. All flow cytometry data was analysed using FlowJo v10. An 

example of the gating strategy is displayed in Figure 10, p. 46. 

 

Table 6: Antibodies used to analyse donor chimaerism in peripheral blood. 

Antibody Clone Fluorophore Detected lineage 

B220 RA3-6B2 APC B cells 

CD11b/Mac1 M1/70 PE/Cy7 Monocytes/Granulocytes 

CD11b/Mac1 M1/70 BV605 Monocytes/Granulocytes 

CD3e 17A2 PE T cells 

CD45.1 A20 AF700 Recipient/Donor 

CD45.2 104 FITC Recipient/Donor 

Ly6G/Gr1 1A8 BV421 Granulocytes 
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Figure 10: Gating strategy to assess donor chimaerism in peripheral blood. 
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2.8 RNA sequencing 

2.8.1 Single cell RNA sequencing analysis 

Single cell RNA sequencing (scRNA seq) analysis was carried out as previously described in 

Picelli et al. 2014 (Smart-seq2). Briefly, single cells were sorted by FACS directly into 96-well 

PCR plates containing lysis buffer. Lysis buffer contained 0.2% Triton X-100 (Sigma) and 

Rnase inhibitor (SUPERase, Thermofisher) in nuclease-free water (Thermo Fisher).  

Libraries were prepared using the Illumina Nextera XT DNA preparation kit. Libraries were 

pooled and run on the Illumina Hi-Seq4000 at the CRUK Cambridge Institute Genomics Core.  

scRNAseq data was analysed by Dr. Fiona Hamey, Rebecca Hannah, and Evangelia Diamanti 

(all Goettgens’ lab), and Hugo Bastos (Kent lab). Quality control settings for single cell data 

was as follows:  

To exclude cells from which low quality libraries with insufficient sequencing depths were 

generated, the threshold of number of mapped reads was set to >2*105, with mapped reads 

encompassing nuclear genes, mitochondrial genes and ERCCs. Empty wells and dead cells 

were excluded by setting a minimum threshold of 20% for reads mapping to known genes. 

Additionally, the threshold for reads mapping to mitochondrial genes was >0.2 ensuring that a 

minimum of 20% of reads map to non-mitochondrial genes. As shown by in Appx-A Figure 1 

and Appx-A Figure 2 in Appendix A, setting further threshold using other parameters would 

not eliminate any more cells than those mentioned above and thus were not applied. For 

example, setting the threshold ratio of “ERCC” to “mapped genes” to <1 was not necessary as 

to exclude more empty wells and dead cells than those excluded by above used parameters.  

 

2.8.2 Bulk RNA sequencing analysis 

Bulk RNA sequencing was carried out at the Genomics core facility of the Cambridge Stem 

Cell Institute upon submission of sample RNA. Libraries were prepared as described above 

using the Smart-seq2 protocol.  

RNA was extracted from the samples using the PicoPure RNA Isolation Kit (Thermo Fisher) 

according to protocol. RNA sequencing data was analysed by Dr. Fiona Hamey (Goettgens lab) 

and Hugo Bastos (Kent lab). 

 

2.9 Normalisation of single cell index-sorting data 

Surface marker intensity of single HSCs across different experiments were normalised and 

batch corrected using the flowCore (version 1.42.3) and sva (version 3.24.4) R packages. Single 
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HSCs were sorted in 96-well format and each plate was classified as an independent batch prior 

to batch correction. All recorded surface markers were arranged in a flow frame and 

subsequently subject to logicle transformation prior to batch correction. The analysis and all 

resulting figures were computed in R (version 3.4.2).  

Normalisation was performed by Daniel Bode (Kent lab). The original script was developed by 

Blanca Pijuan Sala in Elisa Laurenti's lab.  

 

2.10 Statistical analyses 

Extreme limiting dilution analysis (ELDA) was carried out using the ELDA software provided 

by the Walter and Elisabeth Hall Institute of Medical Research Bioinformatic resources, as 

described in Hu, Y, and Smyth, GK (2009)253. Gene ontology annotation was carried out using 

Enrichr254,255. Statistical data visualisation through violin plots was carried out using Python 

Seaborn. All other statistical analyses was performed using Graphpad Prism 6.07 for Windows 

(GraphPad Software, San Diego, CA, USA). 
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3 Results 

3.1 Differential SCF stimulation in vitro does not affect engraftment capability 

but alters HSCs expansion in vivo 

Stem cell factor (SCF) is a cytokine widely used as part of various cytokine and growth factor 

cocktails aimed at human and mouse haematopoietic stem cell (HSCs) maintenance and 

expansion10,256,257. Research has shown that SCF independently can alter HSCs fate choice10.  

In 300 ng/mL supplemented with human Interleukin-11 (IL-11), nearly 20% of 4-day single 

cell derived clones are able to long-term reconstitute the haematopoietic system of recipient 

mice, whereas 10 day clones fail to repopulate secondary recipients64. Interestingly, the 

concentration of SCF has been shown to affect maintenance of HSCs activity, with a 30-fold 

reduction in SCF resulting in a 3-fold reduction of repopulation ability in 4-day clones. 

Importantly, this change in stem cell activity appears to occur prior to the first division between 

8 and 16h of culture (Figure 11), without concurrent changes in division kinetics or survival10. 

Notably, a low concentration of SCF was shown to promote differentiation whereas a high 

concentration stimulated HSCs self-renewal. These experiments were performed on HSCs 

isolated based on the phenotype CD45midLin-Rho-SP, which contain ~30% long-term 

repopulating cells64. 

 

 

Figure 11:  Differential Stem Cell factor stimulation alters HSCs activity. 

Single cell HSCs (CD45midLin-Rho-SP) were transplanted directly harvested from the bone marrow 

or following 8h, 16h or 96h in culture. A 30-fold reduction of SCF reduces HSCs activity 3-fold within 

16h of culture, when compared to unstimulated, uncultured HSCs. This reduction is maintained 

throughout the remaining culture period terminating at 96h. Modified from Kent et al. 2008, Blood.  
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It is of interest to advance our understanding of the underlying molecular mechanisms driving 

these different fate choices. Furthering our knowledge about molecular drivers of HSCs self-

renewal may be applied to human HSCs leading to the establishment of culture conditions 

aimed at the expansion of human HSCs. These can ultimately be used in HSCs transplantation 

for the treatment of malignant or non-malignant blood disorders such as leukaemia or 

anaemia235,239.  

In addition, understanding the involvement of key molecules instructing specific lineage 

differentiation may aid in the targeted generation of mature blood types such as erythrocytes 

and megakaryocytes from either human embryonic stem cells, induced pluripotent stem cells 

or primary HSCs258.  

Therefore, my aim was to assess how HSCs self-renewal and differentiation is controlled by 

stem cell factor signalling. For this purpose an improved HSCs isolation phenotype was used 

as input material: Sca-1highEPCRhighCD45+CD48lo/-CD150+ (Figure 12), isolating HSCs at 67% 

purity in primary68 and ~50% secondary (unpublished) transplantations. This more highly 

purified HSCs population did not respond in the same way, resulting in significant differences 

in cell cycle kinetics and lower overall survival of HSCs. SCF concentrations were therefore 

adjusted to accommodate only a 10-fold difference between the high and low SCF dose. To 

assess functional differences between HSCs, single cell transplantations of differentially 

stimulated HSCs were carried out. The functional data was complemented by single cell RNA 

sequencing to detect any alterations in the cell’s transcriptome. All transplanted HSCs were 

index-sorted, allowing the linking of functional output to surface marker profile. 
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Figure 12: Representative gating layout to purify phenotypic S-ESLAM HSCs. 

Sca-1highEPCRhighCD45+CD48lo/-CD150+ HSCs are isolated from lineage-depleted bone marrow 

using FACS. The dotted line indicates that further gating is not part of the standard gating strategy 

for E-SLAM HSCs.  

 

3.1.1 Low concentration of stem cell factor negatively affects cell survival and division 

kinetics of highly purified HSCs in vitro 

FACS isolated single HSCs were cultured for a period of 10 days in serum-free medium (SFM) 

containing human IL-11 and mouse stem cell factor (SCF). SCF was used at three different 

concentrations: 10 ng/mL, 30 ng/mL and 300 ng/mL. To assess the effect of alteration of SCF 

concentration on single HSCs clone survival, cell division kinetics, and clone size were 

monitored daily for 10 days.  

 

In contrast to a previous report using a less purified HSCs populations (~30% vs 67%), 

differences in cell survival were observed across the three SCF concentrations. Day 10 clone 

survival was 1.3x and 2.6x higher in medium containing 300 ng/mL mSCF (35.6% ± SD 

15.83%) when compared to 30 ng/mL (25.6%, ± SD 12.8%) and 10 ng/mL (13.6%, ± SD 3.9%) 

respectively (Figure 13A). While these differences were not significant, they did represent a 



RESULTS 

52 

nearly 3-fold reduction in cell survival, making future molecular experiments more challenging 

and potentially introducing an element of cell selection. Supporting this latter possibility, the 

surviving HSCs treated with 10 ng/mL SCF were significantly delayed in the time to first 

division and subsequent divisions showed significant delays at day 3, day 4, and day 7. In 

contrast, divisional kinetics between 300 ng/mL and 30 ng/mL were similar at all time points 

(Figure 13B, C, D). Consequently, single HSCs stimulated with 10 ng/mL almost exclusively 

made very small (VS) and small (S) clones, at the expense of larger clones (Figure 13E and 

Table 7). While HSCs treated with 30 ng/mL did give rise to a significantly higher proportion 

of VS clones than those stimulated with 300 ng/mL (p=0.0248, see Table 7), the percentages of 

small, medium, large, and very large clones did not differ between the two treatments  

(Figure 13E).  

As there were virtually no differences in cell survival, cell cycle entry and cell cycle kinetics in 

HSCs stimulated with 30 ng/mL and 300 ng/mL SCF, these conditions were chosen to further 

investigate the molecular and functional changes in HSCs following differential SCF 

stimulation.  

 

Table 7: Percentage of very small and small clones after SCF treatment. 

Clone size 300 ng/mL SCF 30 ng/mL SCF 10 ng/mL SCF 

VS 21.6%, ± SEM 5.0%) 45.1%, ± SEM 6.0% 65.2%, ± SEM 10.3% 

S 36.6%, ± SEM 6.8% 45.0%, ± SEM 7.9% 33.3%, ± SEM10.5% 
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Figure 13:  A 10 fold reduction in stem cell factor concentration does not alter HSCs kinetics 

or survival in vitro.  

A) Survival of clones treated with different concentration of SCF. B-D) Division kinetics of cells treated 

with different concentration of SCF: E) Clone size distribution of 10 days after treatment with different 

concentration of SCF, n= 4 exp. F) Exemplary micrographs of different clone sizes. Scale bar = 100 

µm. Error bars show standard error of the mean (SEM). 2way ANOVA, Tukey’s multiple comparison 

test. Dashed line represents non-linear regression fit, [Agonist] vs. response, variable slope (four 

parameters). VS=very small, S=small, M=medium, L=large, XL=very large. 300ng: n=180, 4 exp; 

30ng: n=128, 4 exp; 10ng: n=49, 4 exp. 
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3.1.2 Limiting dilution analysis does not reveal significant functional differences 

between short-term differentially stimulated HSCs. 

To investigate the effect of different concentrations of SCF on the functional output of HSCs, 

50 LT-HSCs were bulk sorted followed by a 16h treatment with high (300 ng/mL) or  

low (30 ng/mL) concentrations of SCF. Sublethally irradiated W41 mice were transplanted with 

3 cells or 6 cells of the culture from each treatment and compared post-transplantation for their 

contribution to mature cell production. As seen in Figure 14A,B in both conditions 2 of 3 mice 

transplanted with 3 cells and 3 of 3 mice transplanted with 6 HSCs showed donor chimaerism 

>1% up to 20 weeks post transplantation, equivalent to an estimated stem cell frequency of 1 

in 2.64 (i.e. 37.9%). At 16 weeks, all mice show multi-lineage repopulation (Figure 14C,D) 

with a possible tendency to have a less balanced lineage output from HSCs stimulated with a 

low concentration of SCF. In both mouse m1.4 and mouse m1.8 a biased lineage production 

towards myeloid cells can be observed, in contrast to mouse m1.9 which seems to generate 

exclusively lymphoid cells.  

 

 
Figure 14:  Primary transplantation of differentially treated HSCs. 

A-B) Donor chimaerism in peripheral blood of W41 recipient mice over the course of 20 weeks post 

primary transplant. Blue: treatment with 300 ng/mL SCF. Red: treatment with 30 ng/mL SCF. Star 

indicates that this mouse was sacrificed for non-experimental reasons. C-D) Ratio of myeloid (GM) 

to lymphoid (B:T) lineage at 16 weeks post primary transplantation. All ratios were determined from 

peripheral blood samples. 
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As these results are not conclusive, a limiting dilution assay was performed at a 1, 3 and 10 

donor cell doses.  

At 20 weeks post transplantation, none of the mice transplanted (0 of 5) with 1 cell equivalent 

doses showed any repopulation (Figure 15A), whereas 2/6 (high SCF) and 2/7 (low SCF) mice 

that received 3 cells were repopulated (Figure 15B). All mice transplanted with 10 cells showed 

repopulation at 20 weeks (3/3, high SCF. 2/2 low SCF, Figure 15C). These results represent a 

non-significant (p=0.592) 1.2-fold difference in stem cell frequency between cells that were 

treated with 300 ng/mL SCF (1/6.69) and 30 ng/mL SCF (1/8.18, Figure 15D). 

 

 
Figure 15:  Limiting dilution transplantation of 16h stimulated HSCs.  

A-C) Peripheral blood donor chimaerism in WT recipient mice. Recipients were transplanted with 

different cell doses of either 300 ng/mL or 30 ng/mL 16h treated HSCs in addition to 2*105 whole 

bone marrow helper cells. Chimaerism at 4, 8, 12, and 20 weeks post primary transplant is displayed. 

D) Extreme Limiting Dilution Analysis (ELDA) plot, estimating stem cell frequency. 

 

When comparing the lineage composition of the two differentially treated input HSCs, in both 

treatments unbalanced lineage contribution could be observed, independent from the cell dose 

(Figure 16A-D). In a bulk transplantation setting it is probable that multiple HSCs contribute 

to the repopulation in the recipient mouse and a balanced repopulation pattern should be 
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observed. Therefore, in mice receiving 10 HSCs, a balanced lineage output (like m3.3 in Figure 

16C) would be expected as the pooled contribution of multiple HSCs subtypes. Yet, only 1 of 

3 mice in high SCF and 1 of 2 mice in low SCF (m3.3 and m3.20, Figure 16C-D) display a 

balanced lineage output suggesting that one or a few HSCs dominate the lineage production in 

the other recipients.  

 

From these data it can be concluded that low cell dose transplantations do not offer a high 

enough resolution to assess any functional changes between highly purified HSCs treated with 

different doses of SCF. This is likely due to the high reconstitution capabilities of Sca-1high-

ESLAM HSCs as well as their cell intrinsic heterogeneity64,68. Furthermore, transplanting 2% 

of the total culture as an equivalent of a single cell may result in none of the cells being 

physically transplanted. Therefore, it was necessary to perform single cell transplantation of 

HSCs to eliminate the possibility of comparing recipients that have multiple or only one 

dominant HSCs contributing to the lineage production. 

 

 
Figure 16:  Ratio of lineage contribution in recipients of 16h stimulated HSCs.  

A-B) Ratio of myeloid (GM) to lymphoid (B:T) lineage 20 weeks post primary transplantation in 

recipient of 3 treated HSCs. C-D) Ratio of myeloid (GM) to lymphoid (B:T) lineage 20 weeks post 

primary transplantation in recipient of 10 treated HSCs. All ratios were determined from peripheral 

blood samples. 
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3.1.3 Single cell transplantation shows that SCF does not alter HSCs frequency but may 

impact clonal expansion post-transplantation.  

For the single cell transplants, single HSCs were sorted and stimulated for 16h with a high or 

low concentration of SCF in individual wells of a 96 well plate and presence of a single cell 

was confirmed prior to transplant. This approach removes the uncertainty associated with 

transplanting a proportion of total liquid and ensures that 1 single cell is delivered per recipient 

animal. The number of recipients successfully repopulated in primary transplantation does not 

differ between those from HSCs treated with 300 ng/mL SCF to those treated with 30 ng/mL 

with 14/40 (37.5%, Figure 17A and B) and 15/40 (35%, Figure 17C and D) respectively, from 

two separate experiments. In both settings, one mouse showed >0.5% and <1.0% donor 

chimaerism but was also serially transplantable, indicating the presence of functional HSCs. In 

secondary recipients 8 of 40 and 10 of 40 mice for high and low dose treated HSCs respectively, 

displayed multi-lineage repopulation. Notably the levels of donor contribution were 

significantly higher (p=0.0274) in secondary recipients of HSCs receiving a high dose of SCF, 

suggesting that more (or more potent) daughter HSCs were generated in the primary recipient 

compared to cells treated with a low dose of SCF (Figure 17E). In both treatments, one mouse 

retrospectively determined to have been transplanted with a gamma-HSCs (m7.14 and m10.23) 

showed repopulation in secondary recipients. However, only lymphoid lineages were detected 

and chimaerism steadily decreased over time (Figure 17A&D). It can therefore be assumed that 

the secondary engraftment is due to lymphocyte progenitors and long-lived lymphocytes. 

This data does not reflect previous findings in that low SCF reduces HSCs frequency however, 

it does suggest that the concentration of initial SCF stimulation alters HSCs biology resulting 

in differential stem cell expansion post-transplantation. It is possible that this has not been 

observed previously due to the less pure population of HSCs. Alternatively, the lower dose of 

10 ng/mL may exacerbate the reduction in HSCs activity not only resulting in lower HSCs 

expansion (as seen in 30 ng/mL) but also leading to loss of self-renewal activity. This may 

indicate that 30 ng/mL SCF is sufficient to maintain HSCs activity but not enough to stimulate 

HSCs expansion. To fully understand the impact of SCF signalling on HSCs fate choice, it 

would be necessary to perform dose response studies in combination with timed exposure.  
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Figure 17:  Stem cell activity but not secondary donor chimaerism is nearly identical between 

recipients of differentially treated HSCs. 

A-B) Peripheral blood donor chimaerism in W41 mice transplanted with 300 ng/mL, 16h treated 

HSCs. 14/40 mice were positive in primary transplantation >1% (35%), 8/14 repopulated secondary 

recipients. C-D) Donor chimaerism in mice transplanted with 30 ng/mL, 16h treated HSCs. 15/40 

mice were positive in primary transplantation >1% (37.5%), 10/15 engrafted in secondary recipients. 

n=80, 2 experiments. Star indicates recipient animal was sacrificed for non-experimental reasons. E) 

Donor chimaerism in primary and secondary recipients of differentially treated HSCs. Unpaired t-test, 

*=p<0.05, ns= not significant. Error bars represent data ± SEM. 
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3.1.4 Single cell transplantations reveal that in vitro SCF stimulation does not alter 

HSCs subtype  

Single cell transplantation allows the classification of donor HSCs based on their lineage 

outcome at 16 weeks. According to findings from the Eaves lab, HSCs can be categorised into 

alpha, beta, gamma and delta, as determined by the ratio of GM to B/T-cells. Alpha-HSCs are 

lymphoid deficient, whereas beta-HSCs give rise to an equal amount of myeloid and lymphoid 

cells. Both alpha and beta-HSCs subtypes are capable of long-term lineage reconstitution in 

secondary recipients. In contrast, gamma and delta-HSCs primarily produce lymphoid cells 

with delta-HSCs completely lacking myeloid lineage contribution past 16 weeks in primary 

transplantation. These two HSCs subtypes typically fail to reconstitute the haematopoietic 

system in secondary recipients64.  

As can be seen from Table 8 and Figure 18 both treatments result in a similar distribution of 

HSCs subtypes with a tendency of a more balanced lineage production from those HSCs treated 

with a low concentration of SCF. More single cell transplants will be necessary to confirm this 

trend. Interestingly, in the low SCF treated mice 3 out of 6 retrospectively assigned beta-HSCs 

failed to reconstitute secondary recipients which would be expected. This is again supports the 

hypothesis that a high SCF concentration stimulates more self-renewal divisions. 

 

Table 8: HSCs subtype distribution in primary recipients of differentially stimulated single 

HSCs 

HSCs subtype 
16h stimulation of single HSCs 

300 ng/mL SCF 30 ng/mL SCF 

Alpha 5 5 

Beta 2 6 

Gamma 2 2 

Delta 5 2 

 

At present, from the data it can be concluded that there are no significant differences in primary 

lineage reconstitution ability and lineage production between HSCs stimulated with a high or 

low concentration of SCF. This shows that the amount of 30 ng/mL is sufficient to retain HSCs 

stemness within the first 16h of culture. Longer time-courses will be necessary to determine if 

changes arise after HSCs have undergone several cell divisions.  
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Figure 18:  Peripheral blood donor cell ratio of myeloid to lymphoid progeny from single cell 

primary and secondary recipients at 16 weeks post transplantation. 

A) Recipients of single 300 ng/mL, 16h treated HSCs. B) Recipients of single 30 ng/mL, 16h treated 

HSCs. <1% indicates unsuccessful secondary transplants. X indicates sacrifice of the recipient for 

non-experimental reasons before any data could be obtained. Legend continued on next page. 
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Figure 18: Peripheral blood donor cell ratio of myeloid to lymphoid progeny from single cell 

primary and secondary recipients at 16 weeks post transplantation.  

α (alpha), β (beta), γ (gamma), δ (delta) indicate the HSCs subtype determined at 16 weeks based 

on peripheral blood myeloid (M) to lymphoid (L) ratio. M/L>2 = alpha-HSCs. M/L>0.25,<2 = beta-

HSCs. M/L<0.25 = gamma/delta-HSCs. Gamma HSCs that fail to contribute to the myeloid lineage at 

20 weeks are categorised as delta-HSCs.  
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3.1.5 Single cell RNA sequencing of cultured and stimulated HSCs shows that cell cycle 

activation signature drives main differences between cell populations  

To assess transcriptional changes between freshly isolated HSCs and those that were stimulated 

with a high or low dose of SCF, single cell RNA sequencing was carried out. 191 freshly 

isolated cells were sequenced of which passed 127 quality control. For both 300 ng/mL and  

30 ng/mL SCF treated conditions 96 cells were processed of which 63 and 80 passed the 

thresholds set for quality control (Figure 19, Appx-A Figure 1 and Appx-A Figure 2). 

 

Figure 19:  Quality control of raw read data in single cells. 

RNA sequencing ran in two lanes SLX-12565 and SLX-12566 with libraries prepared from single 

freshly isolated HSCs divided up into both lanes at molarity equal to that of the libraries from treated 

single HSCs (SLX-12565= 300 ng/mL treatment, SLX-12566= 30 ng/mL treatment). Red depicts cells 

that did not pass thresholds set for the respective QC criteria listed on the y-axis of each graph. A-

B) Mapped reads including nuclear genes, mitochondrial genes and ERCC (>2*105). C-D) Reads 

mapping to genes (>0.2). E-F) Reads mapping to mitochondrial genes (<0.2). Cells that did not pass 

quality control were excluded from analysis. The black dots depict cells that passed quality control.  
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A total of 21,616 gene transcripts were analysed, with 2480 genes being differentially expressed 

(p<0.01) between freshly isolated and 300 ng/mL SCF stimulated cells (1780 upregulated, 700 

downregulated). Gene expression of 2103 transcripts was altered between naïve HSCs and 

those stimulated with 30 ng/mL SCF (951 upregulated, 1152 downregulated). 

Of note, 824 upregulated and 554 downregulated genes were found significantly differentially 

expressed from naïve HSCs in both treated cell populations as depicted in the venn diagram of 

Figure 20. 

 

 

Figure 20: Venn diagram of differentially expressed genes between freshly isolated HSCs 

and SCF stimulated HSCs.  

Freshly isolated BM HSCs were sorted directly into lysis buffer. Cultured HSCs were stimulated 16h 

with high (300 ng/mL) or low (30 ng/mL) concentration of SCF. The top left cluster shows that 33 

genes were differentially expressed (DEX) between HSCs treated with 300 ng/mL and 30 ng/mL 

SCF. Of these 33 DEX genes, 30 were upregulated and 3 downregulated. 20 of those upregulated 

genes were also upregulated when compared to freshly isolated HSCs in the top right cluster. The 

top right cluster shows 2480 DEX genes between freshly isolated and 300 ng/mL SCF treated HSCs. 

Of those genes 1780 transcripts were upregulated in high SCF treated HSCs and 700 were 

downregulated. The bottom cluster displays the differential gene expression between freshly isolated 

HSCs and 30 ng/mL SCF treated HSCs. Of the 1378 DEX genes, 824 are found upregulated and 

554 downregulated in treated HSCs.  

 

Not surprisingly, gene ontology (GO) terms observed in SCF stimulated cells upregulated genes 

functionally clustered were mostly involved in initiation of proliferation, such as DNA 

replication initiation, DNA synthesis and repair, G1/S transition and DNA repair (Figure 21, 

Appx-B Table 1, and Appx-B Table 2). In contrast, none of the downregulated genes in SCF 

stimulated genes were significantly enriched in any GO terms. This indicates that SCF treated 
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cells are stimulated to divide, preparing the necessary machinery to do so, while shutting down 

other cellular processes that might be related to preserving the quiescence programme. 

 

  

Figure 21: Clustergram of gene ontology displaying biological processes upregulated in 

treated HSCs.  

The first 10 significant enriched terms are displayed in the columns, and the first 20 enriched genes 

in the rows. Red matrix indicate the association of the input gene with the respective ontology term. 

 

When comparing the transcriptome of high and low SCF treated HSCs 33 genes were 

differentially expressed (Figure 20). 30 if these 33 genes being significantly upregulated and 3 

downregulated (Table 9 and Table 10) in HSCs treated with a high dose of SCF compared to a 

low dose. As shown in Table 10, all significantly upregulated genes in HSCs treated with 30 

ng/mL SCF encompassed predicted genes. Therefore, the analysis was restricted to protein 

coding annotated genes leaving 12,831 transcript to be analysed. However, following exclusion 

of pseudogenes, no transcripts were found to be significantly overexpressed in low SCF treated 

HSCs. This suggests that the activation from quiescence is a much more dominant set of 

molecular changes than differential SCF signalling. 
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Table 9: Upregulated genes in HSCs stimulated with 300 ng/mL SCF for 16h compared to 

HSCs stimulated with 30 ng/mL SCF for 16h. 

Gene name ENSEMBLE gene ID Adjusted P-value Log2 fold change 

Zfp385a ENSMUSG00000000552 0.00596 3.08476 

Nabp1 ENSMUSG00000026107 0.00581 2.56111 

Gm12420 ENSMUSG00000081775 0.00001 2.04650 

Fahd2a ENSMUSG00000027371 0.00002 1.90934 

Cav2 ENSMUSG00000000058 0.00752 1.65520 

Tmem120a ENSMUSG00000039886 0.00012 1.47429 

Tubb6 ENSMUSG00000001473 0.00415 1.46703 

Plek ENSMUSG00000020120 0.00752 1.30837 

Gem ENSMUSG00000028214 0.00021 1.28827 

Pidd1 ENSMUSG00000025507 0.00626 1.26505 

Ash2l ENSMUSG00000031575 0.00596 1.10319 

Zdhhc13 ENSMUSG00000030471 0.00862 1.04585 

Lyn ENSMUSG00000042228 0.00720 1.03073 

Tap1 ENSMUSG00000037321 0.00720 1.02628 

Myadm ENSMUSG00000068566 0.00596 0.97459 

Hmgcr ENSMUSG00000021670 0.00596 0.97231 

Naa40 ENSMUSG00000024764 0.00752 0.96858 

Galk1 ENSMUSG00000020766 0.00752 0.96756 

Ndrg3 ENSMUSG00000027634 0.00539 0.90353 

2810474O19Rik ENSMUSG00000032712 0.00596 0.86782 

Lypla1 ENSMUSG00000025903 0.00720 0.84400 

Ctnna1 ENSMUSG00000037815 0.00563 0.81197 

Serinc1 ENSMUSG00000019877 0.00720 0.79858 

Pafah1b2 ENSMUSG00000003131 0.00720 0.74582 

Vps35 ENSMUSG00000031696 0.00539 0.68410 

Kdelr2 ENSMUSG00000079111 0.00752 0.65759 

Rnf187 ENSMUSG00000020496 0.00596 0.49646 

Msn ENSMUSG00000031207 0.00019 0.45594 

Bzw1 ENSMUSG00000051223 0.00626 0.41193 

Serinc3 ENSMUSG00000017707 2.75E-07 0.37956 

 

Table 10: Differential gene expression in cells treated 16h with 30 ng/mL compared to 

300 ng/mL SCF 

Gene name ENSEMBLE gene ID Adjusted P-value Log2 fold change 

Gm3511 ENSMUSG00000105031 0.002582 0.163444 

Gm28437 ENSMUSG00000101111 0.00744 0.335708 

Gm12967 ENSMUSG00000080944 0.008061 0.547697 

 

The close relationship between these two treated cell populations is visualised in Figure 22A 

by principle component analysis (PCA). Here, differentially treated single cells clearly cluster 

together and away from freshly isolated cells. To test if the short culture period drives this 

separation, a total of 1378 genes with shared differential expression in treated and freshly 

isolated HSCs were excluded from the PCA. However, cultured cells still clustered together 
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(Figure 22B). Therefore, genes involved in cell cycle activation are the most likely to drive this 

clustering.  

 

 

 

Figure 22:  PCA clustering of freshly isolated BM HSCs and cultured, SCF treated HSCs. 

Freshly isolated, untreated HSCs are depicted in grey and cluster away from HSCs treated for 16h 

with 300 ng/mL SCF (blue) and 30 ng/mL SCF (red). A) Highly variable genes are plotted without 

additional filtering. B) Clustering of cells following exclusion of genes differentially expressed in 

treated cells compared to untreated.  

 

Of the 30 genes upregulated in high vs. low SCF treated HSCs, 20 were also upregulated in 

high vs freshly isolated HSCs (Appx-B Table 3). Analysis of transcription factor occurrence 

shows that Lyn, Tubb6, Cav2, Plek, and Msn are significantly associated with the transcription 

factor Elf4 (Table 11 and Figure 23). 

 

Table 11: Transcription factor-gene occurrence of genes upregulated in high SCF treated 

HSCs 

Term P-value Adjusted P-value Input genes 

ELF4 9.31E-06 0.00421 LYN;TUBB6;CAV2;PLEK;MSN 

ETS1 0.000196 0.01775 LYN;TUBB6;CAV2;MSN 

ELK3 0.000196 0.01775 TUBB6;CAV2;MSN;GEM 

NFKB2 0.000196 0.01775 LYN;TUBB6;PLEK;GEM 

STAT3 0.000196 0.01775 LYN;TUBB6;CTNNA1;MSN 

KLF6 0.003123 0.042776 TUBB6;MSN;GEM 

PRDM1 0.003123 0.042776 LYN;PLEK;GEM 

REL 0.003123 0.042776 LYN;PLEK;GEM 

CBFB 0.003123 0.042776 TUBB6;MSN;BZW1 

LARP6 0.003123 0.042776 TUBB6;CAV2;GEM 
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Figure 23: Clustergram of transcription factor-gene occurrence of genes upregulated in high 

SCF treated HSCs. 

The transcription factor Elf4 has the strongest association with the input genes that were upregulated 

in high SCF treated HSCs compared to low SCF treated and unstimulated HSCs. 

 

As seen in Figure 24 Plek, Tubb6, and Cav2 but not Msn and Lyn are indeed higher expressed 

in the majority of cells treated with a high dose of SCF.  

Plek encodes for the phosphoprotein Pleckstrin, which is the main substrate for phosphorylation 

by protein kinase C in thrombocytes, following platelet activation. Over-expression of 

Pleckstrin in cell lines has been shown to alter their actin cytoskeleton and cell spreading259-261. 

Little is known about its role in haematopoiesis although its expression seems to be enriched in 

myeloid progenitor cells262. 

The class V β-tubulin subtype 6 is encoded by Tubb6. It is a vital component of the cell’s 

cytoskeleton and required for orchestrating DNA segregation during cell division. β6 Tubulin 

is thought to be restricted to megakaryocytes and platelets, however not much is known about 

its expression in HSCs263,264. 

Caveolin-2 (Cav2) is a component of the caveolae, which are situated within lipid rafts and 

mediate signal transduction to intracellular space and in doing so facilitate signal activation of 

a variety of pathways265. 
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Figure 24:  Violin plots displaying gene expression distribution among differentially treated 

HSCs.  

 

The ETS transcription factor Elf-4 (E74-like factor, also known as Myeloid Elf-1-like factor 

(MEF) is known to play a crucial role in HSCs cell cycle entry and proliferation show increased 

quiescence and radioprotection108,266,267. The common co-occurrence of Plek, Tubb6, and Cav2 

with Mef suggests that these genes are activated upon entry into cell cycle. This is in congruent 

with the finding that HSCs are stimulated to proliferate which may occur in a dose dependent 

fashion (Figure 24). 

 

Overall, in this chapter my aim was to investigate how differential SCF stimulation alters HSCs 

fate choice on a functional and molecular level. Functionally, I was able to show through single 

cell transplantation of differentially stimulated HSCs that a higher concentration of SCF results 

in an increased level of donor cell contribution in secondary but not primary recipients. This is 
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suggests that HSCs are programmed to undergo more self-renewal divisions when stimulated 

with a high concentration of SCF in vitro. To assess if a high concentration indeed stimulates 

more self-renewal divisions in vivo, the transcriptome of freshly isolated single HSCs was 

compared to that obtained from single differentially treated HSCs. The results clearly show that 

SCF stimulates HSCs to enter cell cycle regardless of the concentration tested. However, treated 

HSCs were transcriptionally very similar thus only few genes were differentially expressed. 

Genes that were upregulated in HSCs treated with a high concentration of SCF associated with 

the transcription factor Mef, known to positively regulate exit from quiescence and cell 

proliferation and differentiation108. Therefore, it is necessary to investigate if Mef regulates self-

renewal and differentiation in a dose dependent manner or if a negative regulator of Mef is 

overrepresented in high SCF treated HSCs. 

Additionally, further self-renewal regulators need to be identified and their putative differential 

expression analysed. Furthermore, downstream activation of SCF/KIT signalling needs to be 

investigated to evaluate if differential SCF treatment modulates the response, for instance by 

activation of different members of the STAT family. It would also be interesting to assess how 

cell cycle regulators are altered in response to differential SCF stimulation. In conclusion, for 

statistically relevant analysis, more biological replicates need to be processed to provide insight 

into the optimal conditions promoting HSCs self-renewal and expansion. 
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3.2 HSCs remain in state of hibernation in vitro in the absence of stem cell factor 

The results above have shown that stimulation of HSCs with different doses of SCF prior to 

first division does not impact HSCs retention, but instead alters their expansion capacity post-

transplantation. A previous study has also shown that single phenotypic HSCs can be 

maintained as single cells for 5–7 days in the presence of SCF when lipid-raft clustering is 

inhibited resulting in abrogated SCF signalling. In this same study and supported by additional 

studies, it has been demonstrated that complete absence of cytokines resulted in HSCs death 

within 24h111,121. Collectively, these findings suggest that SCF signalling is necessary for HSCs 

self-renewal and proliferation but it is potentially dispensable for maintenance of stemness. 

Understanding the molecular mechanisms underlying HSCs dormancy and exit from 

quiescence may aid in the optimisation of HSCs maintenance and expansion ex vivo. 

Additionally, these findings may be applied to therapy resistant leukaemic cells termed minimal 

residual disease, which is often cause for relapse after a patient went into remission268.  

Therefore, I set out to investigate whether SCF was essential for retaining HSCs function in 

vitro. To this end, I established a minimal cytokine culture medium without SCF in which HSCs 

function and survival can be maintained for an extended period of time. As it has previously 

been shown that gp130 signalling is indispensable for effective haematopoiesis and that 

activation of the gp130 receptor by IL-6 or IL-11 augments HSCs expansion in vitro, IL-11 was 

chosen as the sole stimulatory cytokine in this minimal culture set up231,269. In this chapter, I 

was able to show that fully functional serially transplantable HSCs can be maintained for up to 

7 days in vitro in the absence of SCF signalling. These HSCs can serially reconstitute recipient 

mice but display a bias towards myeloid differentiation. Gene expression analysis indicates that 

the majority of known HSCs regulators are expressed in these cultured HSCs, validating their 

stem cell identity on the molecular level. Yet, differences can be observed making this culture 

condition an intriguing system to investigate several biological questions. 

 

3.2.1 In vitro maintenance of single HSCs in the absence of SCF 

To assess the importance of SCF for HSCs self-renewal and survival, single HSCs were 

cultured in the absence of SCF but in presence of human IL-11. In standard culture conditions, 

none of the cells survived past 3 days in culture. The medium was therefore supplemented with 

10% FCS (serum-supplemented medium, SSM) resulting in 25.5% (± SD 18.9%) survival 

despite continuous cell death (Figure 25A-B). Modified serum-free medium (SFM) conditions 

yielded 32.6% (± SD 3.6%) survival (Figure 25B), compared to 94.8% (± SD 5.2%) in SCF, 

IL-11 and serum containing culture. Survival in SCF-deprived conditions was exclusive to 
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HSCs, as single sorted progenitor fractions (LSK or SLAM (CD48-CD150+)) cells did not 

survive past 2 days in culture (data not shown). Together, this shows that a proportion of 

phenotypic HSCs are more resilient in culture, demonstrating that the HSCs population is 

heterogeneous in cell survival in stressed conditions. 

The average clone size in standard SCF containing conditions would amount to ~400 cells after 

7 days in culture252. Interestingly, 99.3% of surviving HSCs did so without undergoing cell 

division. Any cell that did divide would either remain as 2 cells or subsequently die. Altogether 

this minimal culture condition allows the culture of single HSCs for an extended time in the 

absence of any notable proliferation. Thus, these HSCs from here on referred to as hibernating 

HSCs.  

 

3.2.2 Heterogeneity in HSCs cell cycle kinetics is maintained in minimal cytokine culture 

At the time of bone marrow isolation, the vast majority of HSCs are in G0 of the cell cycle and 

are subsequently activated by cytokine stimulation in vitro95. Time to first division typically 

comprises 24–48h252. 

To investigate the viability of these hibernating HSCs and to assess if SCF deprivation leads to 

synchronisation of the cell cycle state, cell division was stimulated by reintroduction of SCF on 

day 7 of culture. Surprisingly, heterogeneity in time to first division, cell division kinetics, and 

clone size distribution is maintained and close to identical to that of freshly stimulated HSCs 

(Figure 25C-D). Thus, these hibernating HSCs are not synchronised and do not selectively 

survive based on cell cycle state.  

 

To test if these cells maintain multipotency, single cells were transferred into cytokine-rich 

semi-solid medium supporting colony formation. 67.9% (± SD 13.9%) and 81.4% (± SD 

17.2%) of single cells from SSM and SFM culture respectively, generate clones. This is 

comparable to HSCs cultured for 20h (prior to first division) in standard conditions 85.4%9 (± 

SD 2.9%) (Figure 25E). The vast majority (79.4% ± SD 6.6% in SSM and in 83.5% ± SD 5.8% 

SFM) of cells retain multipotency and generate clones of at least three different lineages as seen 

in Figure 25F. These results provide the first evidence that phenotypic HSCs can be cultured 

long-term without undergoing differentiation.  
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Figure 25:  HSCs remain viable single cells and retain their multipotency in minimal cytokine 

culture. 

A-B) SCF deprivation decreased HSCs survival in culture but ~25-35% remain viable single cells up 

to 7 days in culture. C) Cell division kinetics following cell division directly after sort (day 0, n=418, 5 

exp.) or following 7 days of culture (day7, n=180, 5 exp.). Lines show non-linear regression fit, 

[Agonist] vs. response, variable slope (four parameters). D) Heterogeneity in clone size on day 10 

following SCF addition is maintained throughout 7 day of SCF deprivation. E) ~65-80% of single cells 

can generate a clone in CFU assays after 7 days of SCF deprivation (-/- n=121, 5 exp., -/+ n=230, 6 

repeats, +/+ n=48, 2 exp.). F) The majority of single cells (~80%) make colonies of at least three 

lineages in CFU assays showing their retention of multipotency (-/-, n=70, 4 exp., -/+ 166, 5 exp.). 

Paired t-test. Error bars represent SEM.  

 

3.2.3 Hibernating single HSCs retain full in vivo functionality 

The CFU assay does not measure the cell’s capacity to differentiate into the lymphoid lineage 

and has limited capacity to assess self-renewal. Therefore, hibernating HSCs were transplanted 
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into sublethally irradiated mice either as single cells or at a 3-cell dose (3 pooled single cells). 

Figure 26 shows the experimental set up for the transplantation. 

 

 

Figure 26:  Experimental design for the transplantation of one or three hibernating HSCs. 

HSCs were cultured 7 days in minimal cytokine conditions and subsequently transplanted into W41 

recipients as either single cells or three pooled unstimulated single cells or three pooled single cells 

that were stimulated 16h with SCF. 10 mice per condition. 

 

4 of 10 mice transplanted with 3 cells showed donor chimaerism of >1.0% in peripheral blood. 

One of the mice transplanted with 3 cells (m6.6) presented exclusively lymphoid lineage 

reconstitution at 16 weeks and failed to engraft a secondary recipient, as would be expected. 

Overall, 2/10 mice successfully engrafted secondary recipients. Similarly, 3/10 mice were 

successfully engrafted from primary recipients of single HSCs. All of these (3 of 3) were 

serially transplantable. This demonstrates that at least 30% of cells surviving 7 days in culture 

without SCF stimulation are indeed stem cells capable of multi-lineage long-term reconstitution 

and durable self-renewal.  

 

Interestingly, all three secondary repopulating single HSCs predominantly exhibited myeloid 

lineage output 16–28 weeks post primary transplant and would be classified as alpha-HSCs 

based on the definition published by Dykstra et al. Importantly, this potential lineage bias was 

retained in 2/3 secondary transplants, in accordance with the 50% rate of alpha programme 

retention observed in Dykstra et al. Possible bias towards the myeloid lineage is partially 

obscured in the 3 cell transplants since multiple HSCs would contribute but even so, the myeloid 

cell bias is observed in 2/5 recipients, suggesting an over-representation of alpha-HSCs. 
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Of note, m6.25 (Figure 27E-F) did not show any donor chimaerism >0.5% at 16 weeks post 

transplantation and therefore would have been excluded from further analysis and serial 

transplantation by many standard definitions of LT-HSCs. By week 28 however, 13.6% donor 

chimaerism was observed in the primary recipient and subsequent secondary animals were 

successfully reconstituted. This emphasises the need for longer term assessment of donor 

chimaerism in single cell transplantation studies in particular.  

 

To investigate if short-term SCF stimulation after 7 days of minimal culture alters HSCs 

chimaerism, mice were also transplanted at a 3-cell dose with HSCs that were stimulated 16h 

with SCF. As seen in Figure 27C, 4/10 mice showed donor chimaerism >1.0% in peripheral 

blood, comparable to the reconstitution efficiency seen from non-stimulated cells. However, 

the overall chimaerism was higher in mice reconstituted with 3x16h stimulated HSCs compared 

those transplanted with 3 non-stimulated HSCs in both primary (32.2% ± SD 32.7% vs. 12.8% 

± SD 9.1%) and secondary recipients (41.2% ± SD 46.0% vs. 15.0% ± SD 13.0%). The 

possibility cannot be excluded, that any of the recipients have not received all 3 cells however. 

Therefore, single cell transplants of stimulated compared to non-stimulated HSCs would need 

to be carried out to verify that short-term SCF stimulation indeed improves donor chimaerism. 
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Figure 27: Donor chimaerism in W41 recipients of 7 day cultured HSCs.  

Donor chimaerism in peripheral blood of primary and secondary recipients of 3 pooled HSCs cultured 

for 7 days in the absence of SCF. B) Donor myeloid to lymphoid ratio at 16 weeks in primary recipients 

of A. C) Donor chimaerism in primary and secondary recipients of 3 pooled HSCs cultured for 7 days 

in absence of SCF followed by 16h stimulation of SCF. D) Donor myeloid to lymphoid ratio at 16 

weeks in primary recipients of C E) Donor chimaerism in primary and secondary recipients of single 

HSCs cultured for 7 days in the absence of SCF. F) Donor myeloid to lymphoid ratio at 16 and 28 

weeks in primary recipients and at 16 weeks in secondary recipients of E. Error bars represent SEM. 

n=30 mice, 10 primary recipients per condition. Star indicates mouse was culled for non-experimental 

reasons. 



RESULTS 

76 

3.2.4 HSCs that tolerate SCF deprivation are predominantly alpha subtype HSCs 

Despite low numbers, these results suggest that SCF deprivation selects for HSCs with a robust 

myeloid lineage output in both primary and secondary transplants, which may need longer than 

average to contribute significantly to the production of all lineages. This would be in accordance 

with previous data reporting a delayed onset of lineage production by alpha-HSCs64,65. To test 

this hypothesis, further single cell transplants were carried out of HSCs cultured for 7 days in 

both serum containing (SSM) and serum free (SFM) conditions as depicted in Figure 28. 

 

 

Figure 28:  Experimental design for the transplantation of single serum-free or serum-

supplemented, cultured HSCs. 

HSCs were cultured 7 days in minimal cytokine conditions in either serum-supplemented StemSpan 

(21 recipients) or serum-free Ham’s F12 (22 recipients) base medium.  

 

12/21 Mice (57.1%) transplanted with SSM cultured HSCs, successfully repopulated primary 

recipients (Figure 29A) with >1% overall donor contribution at some point post transplantation. 

One mouse (m12.10) was culled for non-experimental reasons before 16 week data could be 

obtained but serial transplantation of its bone marrow showed secondary reconstitution. At 8 

weeks in the primary transplantation, this mouse displayed an exclusively myeloid phenotype. 

5/11 (45.4%) transplanted HSCs were classified as alpha-HSCs, with a predominant myeloid 

lineage output, which is a significantly higher ratio of alpha-HSCs compared to freshly isolated 

HSCs. 4/11 were characterised as beta-HSCs, displaying a balanced lineage production of both 

myeloid and lymphoid cells (Figure 29B). Data from secondary transplants (16 weeks) show 

that 10/21 (47.6%) mice are successfully engrafted. As expected, gamma and delta-HSCs did 

not serially transplant. Again, one recipient (m12.22) did not exhibit donor chimaerism >1% at 

16 weeks (0.52%) in the primary recipient and very low contribution (4.4%) at 20 weeks.  

Yet, this mouse successfully serially engrafted (16 weeks: 29.2% ± SD 6.9%, 3 secondary 
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recipients). Out of 22 mice transplanted with SFM cultured HSCs, 14 (63.6%) showed >1% 

donor contribution at 16 weeks (Figure 29C). Again, the majority (9/14, 64.2%) were classified 

as alpha-HSCs (Figure 29D). In secondary recipients, 11/22 (50%) successfully engrafted at 12 

weeks. Overall, half of single cultured HSCs (50.2%, ± SD 14.6%) repopulated primary 

recipients. Since one of the caveats of single cell transplantation is that the cell may remain in 

the syringe at the time of transplantation, this percentage may even be slightly higher. These 

results show that the established minimal cytokine culture is able to maintain fully functional 

HSCs for an extended period of time, allowing the manipulation at the single cell level as well 

as providing a platform to study exit from quiescence.  

 

 
Figure 29:  Donor chimaerism in W41 recipients of single 7 day cultured HSCs. 

A) Overall donor contribution in peripheral blood of primary and secondary recipients of single HSCs 

cultured for 7 days in SSM without SCF. The star indicates that this mouse had to be sacrificed for 

non-experimental reasons. Recipient bone marrow was then secondary transplanted. n=22 primary 

recipient mice. B) Donor myeloid to lymphoid ratio at 16 weeks in primary recipients, subdividing the 

input HSCs into α (alpha), β (beta), γ (gamma), δ (delta) based on myeloid to lymphoid ratio. C) Overall 

donor contribution in primary and secondary recipients of single HSCs cultured for 7 days in SFM 

deprived of SCF. n=21 primary recipient mice D) Donor myeloid to lymphoid ratio at 16 weeks in 

primary recipients, subdividing the input HSCs into the classes discussed in B. Error bars represent 

SEM. Star indicates that this mouse was culled for non-experimental reasons and bone marrow was 

successfully serially transplanted.  
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Interestingly, repopulated recipients predominantly displayed an alpha-HSCs lineage output 

(54.9%, ± SD 13.3%, Figure 30B-C). All mice received HSCs that were obtained from mice 

between 8 and 16 weeks of age. Strikingly, when comparing the frequency of alpha-HSCs 

present in our recipients, it resembles the lineage output of HSCs derived from aged mice  

(38–46 weeks) as seen in Figure 30B-E. Cultured HSCs consists of significantly more alpha-

HSCs at the expense of beta-HSCs (p=0.031), whereas the ratio to gamma/delta-HSCs 

remains unchanged (p=1.0). This indicates that the alpha-HSCs subtype is more resilient both 

in vitro and in vivo. Possibly, alpha-HSCs represent the most primitive stem cell that only 

convert to beta-HSCs when lymphoid cell production is required. This hypothesis can only 

be investigated by comparing purified alpha and beta-HSCs, which to date is not possible 

based on their surface marker profile.  

 

 

Figure 30:  Lineage differentiation of 7 day cultured HSCs is more similar to those derived 

from aged mouse HSCs. 

A) Distribution of HSCs subtypes in mice transplanted with freshly isolated HSCs obtained from mice 

aged 8–12 weeks. B) Distribution of HSCs subtypes in mice transplanted with 7 day HSCs cultured 

in serum-supplemented minimal medium and obtained from mice aged 8–16 weeks. C) Distribution 

of HSCs subtypes in mice transplanted with 7 day HSCs cultured in serum-free medium and obtained 

from mice aged 8–16 weeks. D) Combined data from B and C. E) Distribution of HSCs subtypes in 

mice transplanted with freshly isolated HSCs obtained from mice aged 38–46 weeks. A/E) modified 

from Benz et al. 2012. α (alpha), β (beta), γ (gamma), δ (delta) HSCs. *=P<0.05, Fisher’s exact test. 

 



RESULTS 

79 

3.2.5 High CD150 expression enriches for HSCs able to tolerate SCF deprivation 

Since all HSCs were index-sorted, it was possible to analyse their surface marker profile in 

order to try and prospectively isolate alpha-HSCs with robust in vitro survival. Most 

strikingly, higher levels of CD150 expression correlated with surviving HSCs. Other markers 

that were modestly but significantly different on hibernating HSCs include higher CD45 and 

EPCR expression, as well as lower CD48 expression. Interestingly, expression levels of the 

SCF receptor c-Kit did not select for surviving HSCs (Figure 32). 

To verify the use of CD150 as a selective marker for hibernating HSCs, Sca-1high-ESLAM 

HSCs were sorted from CD150mid or CD150high population (Figure 31A) and cultured in 

absence of SCF. As seen in Figure 31B, day 7 survival of CD150high HSCs is significantly 

higher (44.2% ± SD 14.6%) than that of CD150mid HSCs (18.2% ± SD 17.7%), confirming 

that adjustment of the sorting gate selects for HSCs with a higher propensity to survive in 

minimal culture conditions. These results and the correlating enrichment in alpha-subtype 

HSCs after 7 day culture suggest that alpha-HSCs may prospectively be so isolated based on 

their higher than average expression of CD150. This would also be agreement with previous 

findings by two other groups65,270 who demonstrated an enrichment of alpha-HSCs in 

CD150high cell fractions. To assess if these cultured alpha-HSCs are different from those 

freshly isolated, more single cell bone marrow transplantations will need to be performed.  

 

 
Figure 31:  CD150high expression correlates with higher survival of single HSCs in minimal 

culture. 

A) Gating strategy for the isolation of CD150mid or CD150high ESLAM Sca-1high HSCs. First gate 

shows viable single lineage depleted bone marrow cells. B) Survival of prospectively sorted 

CD150high HSCs is 5-fold higher than that of CD150mid HSCs. n=480, 5 exp. ***=P<0.01, Paired 

two-tailed t-test. 
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Figure 32:  Surface marker expression on single HSCs at time of sort. 

Normalised fluorescent intensity for the respective cell surface markers at the time of sort. Cells 

surviving 7 days in culture have elevated expression of CD150, EPCR and CD45 and lower 

expression of CD48. 
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Higher expression of CD150 is also observed in cells that survive 7 days in culture and are 

ultimately candidates for transplantation, as shown in Figure 33A-B. When investigating 

CD150 expression on transplanted HSCs, no bias can be observed between those that 

successfully repopulate the recipient and those that do not. Equally, no evident clustering in the 

CD150 high fraction can be observed of those HSCs that are retrospectively determined to be 

an alpha-HSCs (blue diamonds). In both conditions, mice repopulated with short-term 

gamma/delta-HSCs have a CD150 expression below average (squares), potentially indicating 

their lower self-renewal potential. 

 

 
Figure 33:  Normalised CD150 expression on single HSCs at the time of sort. 

Surviving HSCs (green) generally have a higher than average expression of CD150 in both serum 

supplemented (A) and serum free culture (B). Repopulating (blue) and non-repopulating cells (black) 

do not cluster to a specific region of CD150 intensity. Blue diamonds represent repopulated alpha-

HSCs. Dark blue squares represent HSCs that were retrospectively assigned a gamma or delta 

subtype.  

 

3.2.6 Human HSCs can be maintained as single cells in minimal culture conditions 

Altogether, these findings demonstrate that the cytokine stem cell factor is not essential for the 

maintenance of HSCs in culture but enhances survival in vitro and promotes proliferation. In 

the absence of SCF HSCs remain in a hibernating state retaining full in vivo functionality as 

shown by single cell transplant. These hibernating HSCs can be induced to proliferate and self-

renew and may be isolated based on a higher than average expression of CD150. Transcriptional 

analysis of these hibernating HSCs may provide insight into the underlying mechanisms of exit 

from quiescence as well as self-renewal. 
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These results may have major clinical implications if they can be applied to human HSCs, with 

regard to HSCs isolation and retention, and study of exit from quiescence. A better 

understanding of what drives human HSC proliferation and differentiation may aid in the 

development of culture conditions aimed at the expansion of HSCs for bone marrow 

transplantation as well as contribute to establishing protocols for the ex vivo production of 

specialised mature blood cells.  

Therefore, human HSCs (CD34+CD38negCD45RAnegCD19negCD49f+CD90+, at 10% purity81) 

were single-cell sorted and cultured in StemSpan with or without serum supplementation. 

Preliminary results depicted in Figure 34A-B show that 79.1% survived in FCS supplemented 

minimal culture conditions, with 97.3% remaining single cells. As expected, survival was lower 

in serum-free conditions (33.3%) but 100% of surviving cells remained undivided. Notably, 

even in SCF stimulated culture a small proportion of cells did not enter the cell cycle (Figure 

34C-D). Next, I assessed cell cycle kinetics following SCF stimulation after 7 days of 

deprivation in HSCs cultured in serum-supplemented minimal conditions. HSCs did enter cell 

cycle within the first 24h of stimulation, albeit at a slower rate than the control which received 

SCF from day 0. This indicates that human HSCs need a longer stimulation period to become 

activated than mouse HSCs. However, minimal culture conditions will need to be optimised 

and more repeats carried out to confirm and validate this observation. These results may provide 

an exciting opportunity to study exit from quiescence in human HSCs, without the need for 

induction of quiescence through chemical inhibitors such as the specific CDK4-CDK6 inhibitor 

PD033299 (PD). PD blocks G1 to S phase transition, however these non-dividing HSCs are not 

truly reflective of quiescent HSCs87. 

 

In conclusion, I was able to show that single mouse HSCs can be cultured for a period of up to 

7 days without undergoing cell division while maintaining the capacity to self-renew and 

serially repopulate recipients with multi-lineage reconstitution. The majority of these 

hibernating HSCs exhibit an alpha phenotype and may be prospectively identified using high 

CD150 expression. These findings may allow the study of how extrinsic stimulants effect cell 

survival and exit from quiescence on the single cell level. In addition, molecular changes within 

freshly isolated and cultured HSCs can be assessed including transcriptional changes using 

RNA sequencing. The latter may allow the identification of genes that are dispensable for HSCs 

stemness and possibly detect genes that are overrepresented in the alpha-HSCs subtype. Finally, 

a proof-of-principle experiment in human HSCs demonstrates that this phenomenon may not 
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be restricted to mouse HSCs, making it particularly important to validate whether single human 

HSCs maintained in culture still retain the functional properties of input HSCs. 

 

 

Figure 34: Distribution of quiescent and proliferating human HSCs in minimal culture 

conditions.  

A) Percentage of cells that remain undivided in serum-supplemented minimal culture conditions. B) 

Percentage of cells that remain undivided in serum-free minimal culture conditions. C) Percentage 

of cells that remain undivided in serum-supplemented standard conditions. D) Percentage of cells 

that remain undivided in serum-free standard conditions. E) Cell division kinetics following cell 

division directly after sort (dashed curve, n=30, 1 exp.) or following 7 days of culture (solid line, n=35, 

1 exp.). Lines show non-linear regression fit, [Agonist] vs. response, variable slope (four parameters). 
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3.2.7 RNA sequencing of cultured HSCs reveals genes potentially driving myeloid 

lineage choice and maintenance of HSCs activity 

Functionally, the results have conclusively shown that the majority of hibernating HSCs retain 

their stem cell activity and thus are able to reconstitute the haematopoietic system of primary 

and secondary recipients. Investigation of the transcriptome of these cells may aid in the 

identification of genes that are indispensable for HSC function, under the premise that those 

genes shared between freshly isolated HSCs and hibernating HSCs are essential for the 

maintenance of stemness.  

To this end, RNA sequencing was performed on a small bulk population (200–300 cells) of 

hibernating HSCs and compared to freshly isolated cells. In total 17,860 gene transcripts were 

analysed of which 2,067 were significantly differentially expressed (p<0.01). 1107 genes were 

upregulated in the cultured cell population, which clustered mainly with GO terms usually 

associated with synaptic signalling activity such as excitatory extracellular ligand-gated ion 

channel activity, acetylcholine receptor activity, neurotransmitter:sodium symporter activity, 

and acetylcholine-gated cation-selective channel activity (Table 12). GO analysis of the 960 

downregulated genes indicates that the majority are involved in protein and small molecule 

binding (Table 13). 

 

Table 12: Gene ontology associated terms based on upregulated genes in hibernating 

HSCs compared to naïve BM HSCs. 

Annotation cluster Gene count P-value elimFisher 

calcium ion binding 695 9.10E-06 

actin binding 370 0.00168 

heme binding 170 0.01830 

motor activity 136 0.00918 

excitatory extracellular ligand-gated ion channel activity 52 0.00128 

calcium channel activity 98 0.00803 

peptide hormone binding 38 0.00204 

acetylcholine receptor activity 24 0.00134 

neurotransmitter:sodium symporter activity 21 0.00070 

acetylcholine-gated cation-selective channel activity 17 0.00024 
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Table 13: Gene ontology associated terms based on downregulated genes in hibernating 

HSCs compared to naïve BM HSCs. 

Annotation cluster Gene count P-value elimFisher  

protein binding 504 0.00028 

organic cyclic compound binding 261 0.00630 

heterocyclic compound binding 260 0.00415 

metal ion binding 189 8.50E-05 

transferase activity 117 0.00085 

GTP binding 29 0.00017 

carboxylic acid binding 13 0.00192 

protein kinase inhibitor activity 8 0.00830 

transferase activity, transferring pentosyl groups  6 0.01341 

peroxidase activity 6 0.00257 

 

As GO terms are inconclusive and meant to guide research questions rather than answer them 

directly, normalised tag counts were also compared between freshly isolated and hibernating 

HSC samples in two biological replicates. Most significant differences were due to very low or 

undetectable gene transcripts in one of the replicates, which may be true absence, but could also 

be due to RNA degradation prior to library preparation. Upon exclusion of these genes, a list 

was generated with the most reliably differentially expressed genes listed in Table 14.  

 

Table 14: Manually curated list of genes that are downregulated in hibernating HSCs  

Gene ID BaseMean log2FoldChange P-value Adjusted P-value 

Fos 21784.53 -14.24 -5.16044 2.46E-07 

Jun 11497.15 -16.76 -5.01921 5.19E-07 

Ier2 10827.07 -11.72 -4.27136 1.94E-05 

Ifi44 2804.25 -14.72 -4.40949 1.04E-05 

Adck5 2794.90 -14.72 -4.40575 1.05E-05 

Fes 2609.28 -14.62 -4.37729 1.20E-05 

Hn1 2006.60 -14.24 -4.26249 2.02E-05 

Cx3cl1 1984.74 -14.22 -4.25883 2.06E-05 

Dfna5 1802.99 -14.08 -4.21785 2.47E-05 

Prdx4 1735.20 -14.03 -4.197 2.70E-05 

Anxa1 1672.70 -13.98 -4.17868 2.93E-05 

Retnlg 1488.00 -13.81 -4.13012 3.63E-05 

Atl3 1438.01 -13.76 -4.11912 3.80E-05 

Ptger3 1432.09 -13.75 -4.11715 3.84E-05 

Slc25a13 1356.67 -13.67 -4.08802 4.35E-05 

Sestd1 1350.56 -13.67 -4.08552 4.40E-05 

Slc25a24 1298.69 -13.61 -4.07234 4.65E-05 

 

The two most downregulated genes in this list are Fos and Jun whose gene products form the 

transcription factor complex Activator Protein-1 (AP-1). Little is known about the role of  
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AP-1 in the regulation of HSCs fate choice. c-Fos-/- mice have severe defects in bone formation, 

and by proxy aberrant deficient haematopoiesis. Jun-B has more intensively been studied and 

has been shown to be involved the regulation of myelopoiesis and HSCs expansion. 

Overexpression of JunB in mouse HSCs leads to loss of HSCs and vice versa, loss of JunB 

results in the expansion of HSCs and myeloid progenitors ultimately leading to the development 

of myeloproliferative disease. However, JunB deficiency does not affect HSCs self-renewal 

activity in vivo271,272. These findings indicate that AP-1 activity may be essential to drive HSCs 

proliferation in vitro. However, more extensive gene analysis need be carried out to verify these 

findings and potentially uncover the network in which AP-1 plays a regulatory role. Potential 

targets need to be verified by qPCR and single cell RNA seq could be employed to provide a 

greater resolution into the transcriptional networks that drive myeloid differentiation.  

 

As hibernating HSCs retain their long-term, multipotent lineage engraftment abilities, 

investigating genes that are not expressed in this population may provide insight into the genes 

that are not essential for HSCs self-renewal. Since α-catulin47, Hoxb548, and Fgd549 are used as 

in vivo HSCs reporters, their differential expression was assessed in freshly isolated BM HSCs 

and HSCs cultured for 7 days in minimal cytokine conditions. Both Ctnnal1 and Fgd5 are not 

differentially expressed, while Hoxb5 is significantly downregulated in cultured HSCs  

(log2fold change 12.1506, p-adj. 0.005024) suggesting that Hoxb5 may not be suitable for the 

identification for HSCs in vitro or at least not the alpha-HSCs subtype. 

 

Wilson et al. recently identified a gene signature shared between phenotypic HSCs isolated 

based on different isolation strategies. These HSCs were termed MolO (Molecular overlapping) 

cells. The MolO signature was proposed to identify LT-HSCs on the molecular level and 

comprises transcription factors involved in differentiation and self-renewal, epigenetic 

regulators, as well as surface markers. Therefore, the expression data of cultured HSCs was 

probed for the presence or differential expression of MolO genes. 

 

As can be seen in Table 15, normalised tag counts widely differ between biological replicates 

in some samples. This may be due to RNA integrity or read depth during sequencing. However, 

this data is indicative of significant transcriptional changes occurring in cultured HSCs without 

a change in their functional output, thereby allowing us to better resolve the key molecules 

involved in the self-renewal machinery.  
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Table 15:  Tag counts and log2fold change of MolO genes in hibernating HSCs 

Gene 

ID 

Freshly isolated Cultured Log2Fold 

change in 

cultured 

Adjusted P-

value 
tag counts tag counts 

Repeat 1 Repeat 2 Repeat 1 Repeat 2 

Ets1 1.456 0.000 653.527 0.000 8.411 0.1060 

Etv6 6320.094 2890.007 31397.328 665.283 1.666 0.9941 

Vwf 3387.897 6059.953 38414.486 150.164 1.588 0.9998 

Tal1 1131.240 5796.241 15291.860 818.774 1.319 0.9998 

Pbx1 4519.137 6656.346 16027.903 1725.935 1.229 0.9998 

Mecom 1485.026 7309.539 12763.571 1393.293 1.209 0.9998 

Cbfa2t3 11022.675 12137.487 24395.022 2754.273 0.838 0.9998 

Kit 34406.005 76182.844 184013.921 7165.575 0.779 0.9998 

Lyl1 28206.751 10809.463 47360.868 2850.263 0.643 0.9998 

Nfe2 35352.345 27032.448 65367.504 4256.862 0.446 0.9998 

Erg 8610.237 3030.653 13108.488 643.899 0.422 0.9998 

Fli1 22879.586 5715.100 18716.273 1681.741 0.041 0.9998 

Gata2 10917.850 19067.011 20133.897 1646.576 -0.085 0.9998 

Mpl 125234.247 76769.771 132221.945 9628.549 -0.148 0.9998 

Lmo2 78483.603 89618.603 158273.888 3730.338 -0.205 0.9998 

Meis1 22141.441 20063.705 29184.249 1490.234 -0.307 0.9998 

Tet2 2330.908 2357.174 1113.966 117.850 -1.359 0.9998 

Procr 26705.710 15603.601 16966.934 159.668 -1.607 0.9998 

Prdm16 2153.287 2270.623 670.030 97.892 -1.732 0.9775 

Ets2 5372.299 490.909 0.000 139.234 -2.185 0.9846 

Gata3 1595.675 2489.706 1.650 19.483 -4.611 0.3110 

Hoxb4 69.884 0.000 0.000 0.000 -6.310 NA 

Gfi1b 5183.031 5539.292 0.000 2.851 -8.799 0.0230 

 

The transcription factor Ets1 is upregulated in HSCs cultured in minimal culture condition, 

although it was only detected in one replicate in each condition making it difficult to make 

robust claims about its involvement. Conversely, the Ets transcription factor family members 

Fli-1 and Erg273 were not differentially expressed. Ets1 plays a known role in megakaryocyte 

differentiation and is highly expressed in embryonic endothelial cells where it potentially is 

involved in co-regulation the endothelial to haematopoietic transition via Runx-1. Little is 

known about Ets1 function in HSCs274. 

 

On the other hand, the negative transcriptional regulator Gfi1b is significantly downregulated 

in cultured HSCs, suggesting that this gene is not necessary for the maintenance of stem cell 

identity. This is in accordance to published data that shows Gfi1b is predominantly expressed 

in MEP and not the HSCs population, which suggests that Gfi1b is involved in driving 

differentiation in HSCs70,275. This is in agreement with reports suggesting that Gfi1b is involved 

in megakaryocyte/erythrocyte lineage specification68. It cannot be excluded however, that bulk 
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RNA sequencing does not provide a high enough resolution to detect changes in certain cells, 

despite the low amount of input cells.  

 

These first data from HSCs cultured in minimal conditions demonstrate that transcriptional 

differences can be observed between naïve and hibernating HSCs with fully retained functional 

capacity. Targets identified through RNA sequencing would need to be verified using RT-qPCR 

and potentially modulated to demonstrate their role in HSCs biology. Single cell RNA 

sequencing could further provide intercellular differences in cultured HSCs, where only 20-

40% retain a beta-HSCs programme. scRNA seq would also provide a better understanding of 

the molecular drivers of HSCs activity and exit from quiescence if performed in a defined time 

course post 7 day culture. Most intriguingly, it will enable the investigation of the 

transcriptional program of myeloid biased HSCs, potentially identifying novel markers for the 

specific isolation of alpha-HSCs. This may also be of clinical interest as myeloid cancers are 

suspect to arise from HSCs which are deregulated in their ability to generate lymphoid cells.  

 

3.2.8 Optimisation of serum-free culture to ensure single cell survival in absence 

of SCF 

As virtually no cells survived in StemSpan based medium without SCF stimulation in absence 

of foetal calf serum (FCS), I sought to improve survival in serum-free culture conditions to 

exclude the possibility that the described phenomenon is due to an unidentified molecule 

present in FCS. Literature searches showed that the addition of Collagen I (Col I) and nerve 

growth factor (NGF) to the standard conditions commonly used in our lab resulted in 97% 

viability of clones over a period of 7 days, with 74% or 9% of clones retaining short-term or 

long-term repopulating activity after transplantation respectively164. However, I was unable to 

replicate these findings in multiple experiments. HSCs were cultured as single cells in 

StemSpan supplemented with either 10% FCS (SSM) or NGF plus 10% Collagen I (NCM).  

By day 4, only 21.4%, ± SEM 6.8% of cells had generated viable clones in NCM compared 

nearly 80% in SSM (79.1%, ± SEM 10.3%) as seen in Figure 35A. From day 1 in culture, cell 

cycle entry of HSCs in NCM was delayed compared to SSM, with entry into second and third 

division being significantly later on day 2 and 3 respectively (Figure 35B-D). To assess if NGF 

is in fact cytotoxic, cells were cultured in SSM with the addition of NGF but not Collagen I. 

Only 16.5% of clones survived in these conditions, compared to 80-90% in SSM (data not 

shown). Thus, it seems that NGF adversely affects HSCs survival and proliferation in vitro. 

These findings do not exclude the possibility that Col I still has beneficial effect on cultured 
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HSCs, concealed by the overpowering negative effects of NGF. I therefore opted to test 

conditions suggested by Adam Wilkinson (Nakauchi lab, unpublished) which are described in 

3.2.1, p. 70. 

 

 
Figure 35:  NGF and Collagen supplementation does not improve HSCs survival or 

proliferation in vitro. 

A) 4 Day clonal survival in medium either supplemented with serum or NGF+Collagen I. B) 

Percentage of cells that have undergone a1st division. C) Percentage of cells that have undergone 

a 2nd division. D) Percentage of cells that have undergone a 3rd division. Serum: 10% FCS in standard 

medium supplemented with SCF and IL-11. n=274, 3 exp. NGF+Collagen I: 10% Collagen I + 250 

ng/mL NGF in standard medium + SCF + IL11. n=282, 3 exp. *=p<0.05, **=p<0.001. Error bars 

represent data ± SEM. 

 

  



RESULTS 

90 

3.3 Investigating physical forces supporting HSCs survival and expansion 

ex vivo 

Adult HSCs reside in the bone marrow niche, which is a complex microenvironment comprising 

soluble factors, transmembrane receptor ligands and extracellular matrix molecules, as well as 

differentiated cells18,242. Besides collagen type II and III, collagen type I is part of the of the 

extracellular matrix in the bone marrow276, suggesting that mimicking the mechanical 

properties of the HSCs microenvironment is likely to influence HSCs survival and proliferation 

in vitro. Additionally, defined conditions that mimic the 3D architecture of the bone marrow 

niche in vitro would allow the teasing apart of mechanical effects from biochemical cues and 

enable us to study how HSCs biology is affected by matrices of different elasticity or 

stiffness242,244. Therefore, I set out to first estimate the stiffness in the stem cell niche followed 

by the construction of agarose/ECM composite gels that would mimic a range of stiffness close 

to this value. 

 

Material or tissue stiffness can be measured using micro-indentation atomic force microscopy 

(AFM)277. In a preliminary experiment, AFM was used to narrow down the range of elasticity 

within the bone marrow using bone marrow plugs obtained from Nestin-GFP+ mice. Areas close 

to GFP positive cells were measured, as Nestin-GFP expressing mesenchymal stromal cells 

(MSCs) are considered to be important HSCs niche cells278 (described in 1.1.2, p. 3). These 

measurements indicated that the BM elastic stiffness ranged from 300 to 450 Pa (data not 

shown), with areas of Nes-GFP+ being slightly stiffer than GFP-negative areas. This range is 

consistent with previous findings reporting a stiffness of 0.3 kPa245 and several orders of 

magnitude softer than tissue culture plastics (2–4 GPa)246. I therefore moved forward with this 

range in mind for the first screen of supportive substrates.  

 

3.3.1 HSCs can be cultured on agarose-based matrix gels  

To screen for optimal substrate stiffness conditions retaining and expanding HSCs in vitro, 

agarose based hydrogels were made covering a stiffness range of approximately 100 Pa–1 kPa. 

ECM proteins laminin and fibronectin were added to some of the gels to test whether 

extracellular matrix (ECM) components influence HSCs retention in vitro. Agarose was chosen 

for its neutral, biocompatible and scalable properties. It is non-cytotoxic in its single component 

prior to polymerisation in contrast to synthetic polymers such as poly(vinyl alcohol or 

polyacrylamide. Additionally, it is stable for extended periods of time in vitro, and importantly, 
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it is tuneable in its mechanical properties. Agarose can be functionalised with peptides and other 

small molecules and allows their diffusion-controlled release. Therefore, agarose can be used 

to form functionalised droplets encapsulating single cells to perform high throughput screenings 

of various factors279,280. 

 

In a pilot experiment 3 cells were sorted onto the agarose hydrogel. However, as seen in  

Figure 36, in some wells all three sorted cells were viable and generate clones with different 

cell cycle kinetics and diverse cell compositions, as can be determined by the different 

granularity and clone size. Furthermore, in this setting it cannot be excluded that cells of one 

clone do not produce factors that affect another clone. Additionally, it was not possible to 

physically separate these clones and analyse them individually. To avoid these caveats, single 

cells were sorted onto the hydrogels for all future experiments. Our usual liquid culture follows 

single cells for up to 10 days, from which time on cells begin to undergo apoptosis. By culturing 

cells for 14 days, I aimed to assess if softer gel mechanics extends viability compared to stiff 

tissue culture plastic.  

 

Figure 36:  Representative well that supported the development of three separate clones.  

One well at different time points shows the development of three separate clones that heterogeneous 

in cell composition as well as cell cycle kinetics. A) Day 7. B) Day 10. C) Day 14 in culture. Arrow 

heads point out the clones  

 

The proportion of HSPCs (as measured by the LSK markers), relative to the amount of viable 

cells was used as the readout for HSCs stemness retention (i.e., cultures that retain HSCs should 

also retain more primitive progenitors relative to the more mature progeny). 

Single HSCs were sorted and clonal growth was followed over time by visual inspection. Due 

to the opacity of the gel, cell division kinetics could not be carried out. As seen Figure 37 broad 

changes in clone size could be observed across the 96 different conditions on day 14.  

In liquid culture, small clone size generally correlates with retention of HSPCs. However, in 

this setting small clone size does not equate to HSPC retention as seen from clone E1 when 

compared to clone F1, with the former containing only very few LSK cells. Another factor to 
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consider, is that gel digestion conditions (30 min. trypsin at 37°C) may result in cell death of 

some cells before flow cytometry is carried out, although analysed cell number broadly 

correlated with size of colonies. 

 

The screening also gave an indication whether any of the conditions are detrimental to HSCs 

survival as no clone would grow from the single cell (e.g. well F2 in Figure 37). However, none 

of the tested conditions consistently had empty wells, suggesting that survival was not 

negatively affected as seen from Figure 38. When comparing the average survival of each well, 

60 out of 96 wells had consistently a cell survival rate >50%. A consistent >70% survival rate 

was only observed in 18 of 96 wells. Survival was enriched in lane 10 and 12, which contained 

the lowest concentration of agarose (0.5%). In both cases 3 of 18 wells had the highest survival. 

In addition both row B and F contained each 4/18 wells with >70% survival. Both these rows 

contained 0.2 mg/mL fibrinogen but differed in the amount of thrombin. Thus, softer substrate 

seems to support cell survival better than stiffer gels, while extracellular matrix components do 

not greatly affect survival.  
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Figure 37:  Day 14 visualisation of clones grown on 96 different matrix gels in Plate D. 

Broad changes in clonal growth and survival can be observed. Clone size is not necessarily 

proportional to HSPC content. The depicted LSK percentage is frequency of parent. LSK are gated 

from lineage-negative viable cells. 
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Figure 38:  Day 10 visualisation of clones grown on 96 different matrix gels in Plate A. 

 

 

 

Figure 39:  Day 10 visualisation of clones grown on 96 different matrix gels in Plate B. 

  



RESULTS 

95 

 

 

Figure 40:  Day 14 visualisation of clones grown on 96 different matrix gels in Plate C. 

 

On day 10 of culture, 28 of 96 wells contained clones with >70% LSK in at least one of the two 

repeats, whereas on day 21 none of the wells was found to comprise >50% LSK. Row A and F 

contained most wells (4 of 16) with an LSK content >70% on day 10. Both rows contain higher 

amounts of fibrinogen, which also enriched for improved cell survival. Lane 10 (4/16) and lane 

11 (3/16) contain most wells with LSK retention >70%, both wells are manufactured with the 

lowest concentration of agarose. These results suggest that low concentration of agarose 

supports cell survival and HSPC maintenance retention.  

 

To compare HSPC retention in 96 different conditions, LSK frequencies were displayed in a 

heat map like fashion. When focussing on the influence of agarose concentration on HSPC 

retention on day 10 it becomes evident that lower concentrations of agarose, thus gels of lower 

mechanic stiffness, tended to favour the production of HSPCs. The addition of the ECM 

proteins laminin and fibronectin seem to have a positive effect on HSPC retention but not 

consistently, this may be due to HSCs heterogeneity (Figure 41B). When the protease thrombin 

is mixed with the plasma protein fibrinogen the mixture polymerises forming a fibrin gel281. As 

seen in Figure 41C-D, it appears that gels containing a higher concentration of both thrombin 

and fibrinogen have an overall slightly higher proportion of clones retaining LSK. Altogether, 
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the main driver of differences between clonal LSK proportions seems to be the agarose 

concentration. 

 

These results indicate that matrix composition and stiffness affect HSCs fate choice and that 

soft matrices containing ECM proteins may benefit HSCs expansion. To date, very little 

research has investigated the effect of mechanical property changes on HSCs. This screen 

provides the first evidence on the single cell level, that substrate stiffness can indeed effect 

HSCs fate choice. Heterogeneity within the HSCs compartment hamper the analysis of different 

conditions on single cells as many replicates are needed to compensate for this. This concern 

may be resolved through the development of high throughput screening devices, for instance 

microfluidic chips. Nevertheless, these experiments set the stage for future experiments, which 

could test individual factor combinations to narrow down specific conditions that are optimal 

for HSCs expansion and testing of these best candidates by in vivo transplantation assays. It 

might also be possible to use the minimal medium conditions described in Chapter 3.2 to help 

identify conditions that would support in vitro survival. In the long term, beyond the scope of 

my PhD work, such HSCs expansion conditions (physical and molecular) could be applied to 

the culture of human HSCs with the goal of expanding human HSCs for clinical applications.  
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Figure 41:  Day 10 LSK retention in clones grown from single cells in 96 different matrix 

conditions. 

A-D all show the same plate but ordered according to the matrix component in focus. A) Agarose 

concentration. B) ECM additives. C) Thrombin concentration. D) Fibrinogen concentration. LSK 

percentage equals the LSK frequency within the viable singlets pool. 
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4 Discussion 

Haematopoietic stem cells (HSCs) have been studied for decades. In this time a great number 

of genes have been implicated as intrinsic regulators of HSCs self-renewal and differentiation, 

yet little is known about their effects on HSCs self-renewal99-102,282. Overexpression screening 

has demonstrated that some of these genes are able to expand HSCs ex vivo, including Hoxb4, 

Fos, Prdm16 and Smarcc1283. 

Additionally, numerous extrinsic regulators, including cytokines, growth factors, and 

chemokines have been studied for their effects on HSCs123-125,128,130. Yet, there is little evidence 

on how extrinsic regulators enhance HSCs self-renewal and the molecular regulators driving 

HSCs fate choice are still poorly understood. A better understanding of the machinery that 

drives lineage priming, self-renewal, and differentiation is of medical importance as this could 

aid in the development of protocols for ex vivo HSCs expansion, production of specific mature 

cell types such as platelets, and gene therapy258. Moreover, improving our knowledge of genes 

involved in lineage differentiation may elucidate which pathways are perturbed in the 

development of blood cancers.  

 

Even though the study of HSCs has made vast progress in recent years, especially through the 

development of single cell tools, there are still many challenges to overcome to uncover what 

drives HSCs fate choice.  

For one, it is virtually impossible to study HSCs over extended periods in vitro, due to their 

propensity to differentiate. Freshly isolated HSCs only offer a snap-shot of native 

haematopoiesis and rely on the purity of the isolation strategy and the stability of the cellular 

state being assessed. Any phenotypically isolated HSCs population contains contaminating 

non-HSCs cells and vice versa, true LT-HSCs may be lost through rigid gating strategies and 

may skew interpretation if this is non-random75. In addition, even a highly purified population 

of phenotypic HSCs displays extensive heterogeneity in lineage choice and as of yet it is not 

possible to isolate specific HSCs subtypes specifically based on their surface marker expression 

alone. Moreover, any sort of gene perturbation ex vivo relies on HSCs culture, which inevitably 

alters HSCs biology.  

In vivo, the lack of reliable markers that exclusively label HSCs as well as the lack of clarity on 

the actual location and cell types comprising the HSCs niche challenge all available imaging 

technologies. In vivo gene perturbation studies using gene specific promoters are at present the 

closest we can get to understand the roles of individual genes in haematopoiesis in situ but these 
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strategies rely on targeting all HSCs and excluding any off-target effects, which is not 

necessarily possible.  

 

When studying HSCs fate choice at the single cell level, it is therefore advantageous to control 

and minimise as many variables as possible. In this thesis, I show in Chapter 3.1 that in vitro 

activation of SCF/KIT signalling in HSCs prior to first division alters clonal stem cell expansion 

without affecting initial HSCs engraftment ability. Furthermore, in Chapter 3.2 I could show 

that absence of SCF/KIT signalling can maintain HSCs function in vitro for extended periods 

of time. Finally, in Chapter 3.3, I explore the role of physical forces on HSCs retention, 

demonstrating that changes in the composition and stiffness of various matrices can also alter 

HSCs fate. 

 

Differential SCF stimulation prior to first division alters HSCs clonal expansion in 

vivo without affecting initial HSCs repopulation potential 

It has long been known that the SCF/KIT signalling pathway is crucial for functional 

haematopoiesis195 and as one of the key players in this, SCF has been one of the primary 

standard cytokines used in various growth factor combinations to maintain and expand stem 

and progenitor cells in vitro124,125,130,284. Furthermore, it has been shown that changes in SCF 

concentration in vitro can alter HSCs fate choice (self-renewal versus differentiation) in vivo 

prior to first division, with altered self-renewal frequency10. 

In this thesis, I was able to show that a concentration as low as 10 ng/mL has a negative effect 

on HSCs survival and proliferation in vitro, whereas there is virtually no difference when HSCs 

are treated with 30 ng/mL or 300 ng/mL. While this is different from previously published data, 

the input HSCs fraction I used in this thesis are a more highly purified population of HSCs with 

durable self-renewal, suggesting that the effects previously described were primarily on HSCs 

with finite self-renewal.  

In both limiting dilution and single cell transplants, no significant differences in repopulation 

ability were detected in cells treated with a high (300 ng/mL) or low (30 ng/mL) dose of SCF 

prior to first division. In both settings, ~35% of single transplanted HSCs were able to 

reconstitute the recipient mouse with similar proportions of HSCs subtypes as defined by their 

lineage output at 16 weeks. Thus 30 ng/mL SCF is sufficient to maintain HSCs function in 

culture prior to a first division. Interestingly, donor chimaerism was significantly higher in 

secondary recipients of HSCs that were stimulated with a high dose of SCF. This indicates that 
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prior to a first division, SCF stimulation alters the self-renewal activity in single cells, with 

HSCs producing more daughter HSCs following treatment with a higher dose of SCF, 

presumably in the early stages post-transplantation.  

To thoroughly assess if the increase in self-renewal activity indeed occurs in a dose-dependent 

manner, more single cell transplantations need to be carried out at different doses of SCF and 

within different time windows. HSCs expansion and number in recipients of differentially 

treated bone marrow can be quantitatively assessed by limiting dilution transplantation of the 

primary recipients bone marrow at different weekly time points within the first month of 

transplantation256. These experiments will narrow down which functional changes occur and 

when this is most evident. Concurrent RNA sequencing of these differentially treated HSCs 

may pinpoint which transcriptional changes occur driving these self-renewal divisions. SCF 

stimulation leads to the clustering of c-Kit in membrane lipid rafts121. Potentially, this occurs 

in a dose-dependent fashion and high concentrations of SCF therefore augment SCF/KIT 

signalling more than lower doses. However, it has been shown that lipid raft clustering in HSCs 

occurs as early as 30 minutes post in vitro SCF stimulation121, suggesting that after 16h lipid 

raft clustering should have reached its saturation point, even at low doses. Transplantation of 

single cells beforehand stimulated at a high dose of SCF in the presence of an inhibitor of lipid 

raft clustering may be useful to investigate if this mechanism is indeed essential for the 

improved self-renewal outcome.  

Another possibility could be that HSCs homing ability is differentially affected by SCF 

stimulation, with cells stimulated with a higher amount of SCF homing to the bone marrow at 

earlier time points thus having an earlier opportunity to undergo self-renewal divisions. This 

may happen under the assumption that SCF induces c-Kit expression on the cell surface making 

them more receptive for signals from the bone marrow, such as more SCF produced by BM 

MSCs. However, a role of SCF in bone marrow homing has not been described, in contrast to 

the CXCL12/CXCR4 axis285. Thus it would be interesting to investigate if these cells preferably 

home to putative niche cells that secrete SCF. One possible way to examine this would be the 

use of recipient transgenic mice that express fluorescent reporters in their bone marrow niche 

cells such as the Nestin-GFP+ mouse. The main caveat of this approach is the necessity of a 

high number of labelled, purified donor stem cells as only the calvarium can be imaged in a live 

animal, which represents only a small proportion of the total BM36,286.  

Another potentially more feasible approach to answer questions surrounding alterations in c-

Kit level post SCF stimulation is flow cytometric analysis or immunocytochemistry as shown 

by Yamazaki et al.121, with flow cytometry having a higher and more quantitative throughput 
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but with the caveat of requiring significantly more input material of an already rare population 

of cells. 

Measuring the levels of c-Kit on the HSCs post SCF stimulation may answer the question 

whether differentially treated cells have distinct levels of c-Kit expression that positively 

correlate with stimulation dose. Contradictory to this hypothesis would be the finding that W41 

mice, which carry a c-Kit mutation, are not reported to display any homing defects but this was 

not assessed in LT-HSCs shortly after transplantation218. A simpler way to assess the relative 

homing capacities would be to investigate this putative increased bone marrow translocation by 

transplanting differentially stimulated and labelled HSCs and assessing their homing to the 

bone marrow tracked in first days post transplantation.  

SCF has been shown to be radioprotective with the drawback that patients display severe 

allergic reactions mediated by the activation of mast cells223,225. The discussed findings show 

that on the single cell level, SCF may indeed exert some radioprotective measure onto 

transplanted HSCs in a dose dependent manner. This may be of clinical relevance, firstly in the 

pre-treatment of patients prior to stem cell transplant and secondly in stimulation of HSCs prior 

to the transplant. In patients, allergic responses may be mitigated through the use of engineered 

recombined SCF featuring an altered dimerisation interface213, which selectively activates 

HSPCs but not mast cells.  

Encouraging results from an ongoing clinical trial using stabilized Prostaglandin E2 (PGE2) 

demonstrates that treatment of HSCs prior to allogeneic transplant can indeed positively 

influence the engraftment capability of these cells. In this phase I trial it was shown that HSCs 

derived from umbilical cord blood (CB) that were pre-treated with PGE2 have higher multi-

lineage engraftment than HSCs obtained from a co-transplanted untreated umbilical cord241. 

Prior to this study, it had been shown that PGE2 enhances mouse HSCs self-renewal following 

2h ex vivo pre-treatment, but its effect on adult human HSCs has not been assessed240. 

Therefore, it is of interest to assess if pre-treatment of cord blood as well as human adult HSCs 

with SCF would yield a similar increase in self-renewal division in vivo as seen in mouse HSCs 

and PGE2 treated CB HSCs.  
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LT-HSCs can be maintained as single cells in vitro in the absence of SCF 

stimulation and independent of serum-supplementation 

The results discussed above suggest that the concentration of SCF does not affect the ability of 

HSCs to repopulate recipients. It was therefore of interest to investigate how SCF deprivation 

would influence HSCs survival, proliferation, and maintenance.  

It has previously been shown that activation of the gp130 receptor by IL-6 or IL-11 enhances 

HSCs expansion in vivo and in vitro231,269. The importance of gp130 signalling in stem cells has 

also been demonstrated in embryonic stem cells (ESC) and induced pluripotent stem cells 

(iPSC), where the IL-6 family member LIF (Leukaemia Inhibitory Factor) facilitates the 

maintenance of stem cell pluripotency and morphology as well as the inhibition of 

differentiation287,288. Here we could show that activation of gp130 signalling alone is sufficient 

to maintain LT-HSCs as single cells in culture for a period of 7 days. Interestingly, serum 

supplementation does not drive differentiation as is commonly believed. While 67–75% of 

sorted phenotypic HSCs die in these conditions, those that are resilient show full retention of 

multipotent long-term repopulation ability and do not show upregulation of genes associated 

with apoptosis. These results are comparable to findings showing that inhibition of lipid raft 

clustering prevents HSCs from dividing in vitro, despite activation of the c-Kit receptor111,121.  

While more differentiated progenitor fractions (LSK and SLAM) do not survive in absence of 

SCF, it has not been assessed if multipotent progenitors would survive in these conditions. 

Culture of MPP1, MPP2, MPP3 and MPP4 will determine if resiliency in these conditions is 

exclusive to LT-HSCs. Yamazaki et al. have shown that CD34+LSK do not survive for more 

than 48h in vitro upon inhibition of lipid raft clustering121, suggesting that this resilient 

phenotype may only apply to the most primitive cells.  

Two of 31 mice showed delayed onset of donor contribution, predominantly generating cells of 

the myeloid lineage but capable of producing lymphoid cells in secondary recipients. These 

mice would have been classified as not repopulated at 16 weeks as donor chimaerism was not 

detectable or equalled less than 1%. This was not due to the minimal culture conditions and is 

more likely a cell intrinsic mechanism as it has been observed by several research groups either 

through barcoding experiments or single cell transplantation64,65,289. This emphasises the need 

for new standards in the detection of successfully engrafted mice, in particular in a single cell 

transplantation setting.  

Comparison of the transcriptome of freshly isolated HSCs and those cultured for 7 days in 

absence of SCF may allow the identification of genes that are truly indispensable for the HSCs 



DISCUSSION 

103 

state, under the premise that genes that are not expressed in the cultured population are 

dispensable for HSCs maintenance. A recent study comparing the transcriptome of several 

different phenotypically defined HSCs populations identified an overlapping molecular 

signature (MolO) in a subpopulation of HSCs suggesting that this signature can identify HSCs 

with long-term repopulation potential68. Most genes in this MolO signature were not 

differentially expressed between naïve BM HSCs and cultured HSCs, suggesting that these 

genes among others are indeed likely to be vital for HSCs biology and confirming the HSCs 

identity of cultured HSCs on the transcriptional level. The Ets1 transcription factor was found 

to be upregulated in cultured HSCs. Possibly, Ets1 is involved in stress response to minimal 

cytokine conditions. Alternatively, Ets1 may play a role in the transcriptional regulation of 

myeloid differentiation. In contrast, Gfi1b was downregulated in HSCs suggesting that this 

transcriptional regulator does not play a role in the maintenance of stemness but does not 

exclude its participation in the negative regulation of HSCs self-renewal or differentiation. To 

determine its role, transcriptional changes need to be assessed in HSCs that received SCF 

stimulation after 7 days of culture. Further transcriptional analysis and qPCR will be necessary 

to confirm these findings. Interestingly, Jun and Fos which encode for protein subunits of  

AP-1 were both downregulated in cultured HSCs. This suggests that AP-1 may play a role in 

cell proliferation although contradictory it has been shown that mice lacking JunB expression 

have an increase in cell cycle activity in addition to expansion of HSCs and myeloid cells and 

eventually develop myeloproliferative disease271. Thus, AP-1 regulation of cell proliferation 

may be dependent on the “dose” of Jun and Fos present. To assess how closely 7 day cultured 

HSCs are related to freshly isolated bone marrow HSCs and to investigate what changes occur 

post SCF stimulation, it would be interesting to sequence and compare the transcriptome of 

single cultured HSCs that either were never treated with SCF or received a pulse of SCF 

following 7 day culture. This may allow the identification of genes important for exit from 

quiescence as well as proliferation where self-renewal expansion or maintenance divisions 

occur. The described culture method allows the study of any molecule’s effect on single HSCs. 

For example, due to the discrepancy in the field about the efficacy of SCF in combination with 

TPO it would it may be of interest to study the effect TPO has on HSCs self-renewal and 

proliferation.  

Importantly, it will be essential to test if these culture conditions can be applied to human HSCs. 

As the preliminary results have shown, some phenotypic HSCs can be maintained as single 

cells for 7 days and be subsequently stimulated to proliferate, although they display a delay in 

time to entry into cell cycle. Human HSCs are isolated based on a specific set of surface 
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markers, however to date just 10% of the phenotypic cord blood HSCs population has 

repopulation potential, with even lower capacities in peripheral blood and bone marrow HSCs. 

Thus, if the minimal culture condition indeed enriches for resilient HSCs, which will need to 

be confirmed by xenotransplantation, the transcriptome of surviving HSCs may be compared 

to freshly isolated phenotypic HSCs to assess differentially expressed genes. The gene set 

overexpressed in cultured HSCs may then be probed for molecules such as surface markers that 

can aid further phenotypic enrichment of long-term repopulating human HSCs. Furthermore 

this condition could be used to extend the time window in which cells can be transduced for 

gene editing, while ensuring that exclusively HSCs are targeted. 

 

Cultured single HSCs serially engraft recipient mice and generate predominantly 

myeloid progeny 

The “hibernating” HSCs described by Yamasaki et al. were able to engraft primary recipients 

however, the study did not report if these donor HSCs exhibited any particular lineage bias121. 

In the transplantation data reported in this thesis, a striking tendency of HSCs to produce more 

myeloid cells than lymphoid cells was observed. The ratio of GM:(B+T) was >2, which are 

defined as alpha-HSCs.64. Resilient cells were enriched in the CD150high fraction of the 

phenotypic HSCs pool and prospective gating on CD150high did indeed improve 7 day HSCs 

survival. This suggests that these resilient alpha-HSCs may be phenotypically distinguishable 

from HSCs that have a more balanced lineage ratio (beta-HSCs). This is in agreement with 

previous findings that suggest CD150high enriches for cells with a myeloid lineage bias, whereas 

CD150mid HSCs produce both myeloid and lymphoid cells at similar ratios65,270, and CD150neg 

HSCs have predominantly lymphoid offspring with very little potential to engraft secondary 

recipients65,69,72,290. Additionally, MolO HSCs have been shown to have a higher than average 

expression of CD15068, which again is in line with my findings that minimal culture conditions 

select for true HSCs. 

To verify that CD150high expression indeed enriches for alpha-HSCs, more single cell 

transplantations need to be carried out. However, based on our data, CD150 alone would not be 

sufficient to prospectively isolate highly purified alpha-HSCs. Therefore, it would be useful to 

investigate if any other surface marker molecules or intracellular molecules are enriched in the 

resilient cultured HSCs fraction. This could first be performed by screening for survival in 7 

day cultures and then validated by HSCs transplantation.  
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Previous findings suggest that HSCs with a lymphoid bias proliferate faster than those with a 

predominantly myeloid output69, which may result in their premature death in minimal cytokine 

conditions as the environment is not supportive of proliferation.  

The enrichment in alpha-HSCs after 7 day minimal culture suggests that cells of this subtype 

are more resilient in culture and putatively also in vivo since myeloid-biased HSCs accumulate 

with age151. Interestingly, the distribution between HSCs generating balanced or “myeloid-

biased” HSCs resembles that of HSCs derived from aged donor mice (38–46 weeks) rather than 

young adult mice (8–16 wks) which were used as donors. It would be interesting to assess if 

aged HSCs have generally a better survival outcome in minimal culture conditions as they have 

already proven to be more resilient in vivo. Furthermore, comparison of the transcriptional 

programs in young naïve, aged, and young cultured HSCs could putatively identify pathways 

that are involved in the extended survival of the latter two cell population. 

In agreement with Morita et al. I hypothesise that alpha-HSCs represent the apex of the 

haematopoietic hierarchy, predominantly generating myeloid cells (most cells of the innate 

immune system), and transforming to beta-HSCs when cells of the adaptive immune system 

are required. This hypothesis is formed under the premise that any organism possessing both 

an innate and adaptive immune system should encounter the vast majority of pathogens in the 

early years of life. Therefore, activation of the adaptive immune response with age would be 

mediated through already existing B and T cell progenitors and would not stem from HSCs. In 

contrast, cells of the innate immune system have a limited life span and therefore require regular 

replenishing. Therefore, HSCs capable of producing a vast amount of myeloid cells are required 

until death explaining why these cells accumulate in aged individuals. Tools to test this 

hypothesis in mouse are currently not available, as a system is required in which both lymphoid 

and myeloid progenitors carry different labels, which are also distinct from a label present in 

the common ancestral HSCs and which in turn is altered with ageing. If the hypothesis holds 

true, an aged HSCs specific label should be undetectable in lymphoid cells.  

However, a recent study in an aged, healthy human individual made use of randomly occurring 

somatic mutations in both primitive and differentiated cells to track the population dynamics 

during homeostasis. While this cannot formerly prove the hypothesis on the single cell level, 

the study did show that not all HSCs contribute equally to haematopoiesis and that T cells and 

granulocytes separate earlier in life291.  

Understanding the molecular mechanisms that drive HSCs fate choice, in particular the decision 

to branch into the myeloid or lymphoid lineage may aid in the identification of molecules and 
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pathways aberrantly regulated in the development of leukaemia and present druggable targets 

for treatment.  

 

Softer hydrogels favour HSPC maintenance and survival in vitro  

HSCs reside in the bone marrow niche which is greatly different from the tissue culture plastics 

they are commonly cultured in. These differences comprise extracellular signalling molecules, 

lack of cell-to-cell interaction, and importantly a lack or change in matrix elasticity. Defining 

conditions that mimic the 3D architecture of the bone marrow niche in vitro would allow the 

teasing apart of mechanical effects from biochemical cues and enable us to study how HSCs 

biology is affected by matrices of different stiffness242,244. 

 

To investigate the role physical forces play in HSCs retention, I cultured single HSCs on 

agarose based hydrogels covering a range of matrix elasticity similar to that of the bone marrow. 

HSCs thrived better on matrices that were composed of lower concentrations of agarose, 

making them less stiff. Better retention of the HSPC population was also observed on softer 

hydrogels. This is in agreement with previous reports showing that HSCs are better maintained 

on soft tropoelastin coated plates when compared to non-coated controls247. 

 

However, other gel components such as extracellular matrix proteins and fibrin did have no 

apparent effect on HSCs survival and HPSC retention. Therefore, it may be needed to 

individually assess the impact these factors have on HSCs fate choice. Particularly, the hydrogel 

set up may not be ideal to study the effect of fibrin on HSCs, as this protein may degrade in 

culture. The addition of tranexamic acid or Aprotinin, both anti-fybrinolitic molecules, may 

extend the half-life of the fibrin network292. To assess HSCs survival in a more stringent 

manner, it may be useful to implement the minimal cytokine conditions in the culture of HSCs 

on hydrogels. Due to the great decline of HSCs on tissue culture plastic in minimal culture, any 

conditions significantly improving cell survival would certainly become apparent.  

 

Further screens are necessary to narrow down specific conditions that are optimal for HSCs 

expansion. Ideally, once the optimal conditions have been identified, these then can be 

employed to generate agarose droplets, which can be functionalised for high-throughput 

screening of factors affecting HSCs fate choice. Ultimately, HSCs expansion conditions can be 
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applied to the culture of human HSCs with the target of human HSCs expansion for clinical 

applications.  

 

Overall, in this PhD thesis I was able to show that short term ex vivo stimulation of SCF/KIT 

signalling modulates the clonal expansion of HSCs in vivo without altering HSCs engraftment 

capabilities. This shows that the SCF/KIT signalling axis is vital for HSCs self-renewal but not 

maintenance of stem cell function. The latter is also reflected in the finding that HSCs can be 

maintained as single cells in vitro for extended periods of time in the absence of SCF/KIT 

signalling while maintaining HSCs function. Additionally, I could show that HSCs are better 

retained on hydrogels with a soft matrix, similarly to the elasticity found in the bone marrow 

and thus formally prove that physical forces can alter HSCs fate choice.  

 

These findings may have great implications for the culture of human HSCs aiming at the 

expansion for autologous stem cell transplantation as well as possible pre-treatment 

applications prior to allogenic stem cell transplantations.  
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Appendix A 

 

Appx-A Figure 1: Quality control parameters for single HSCs processed in batch SLX-12565.  

Red dots depicts cells excluded from analysis (62) following thresholds set for mapped reads 

(>2*105), reads mapping to genes (>0.2), and reads mapping to mitochondrial genes (<0.2). Black 

dots depicts cells that passed quality control (129). Additional parameters (individual Y axis) were 

not applied as these would not have excluded further cells and aided in ensuring quality control. Total 

reads were 322,955,793. 
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Appx-A Figure 2: Quality control parameters for single HSCs processed in batch SLX-12566. 

Red dots depicts cells excluded from analysis (50) following thresholds set for mapped reads 

(>2*105), reads mapping to genes (>0.2), and reads mapping to mitochondrial genes (<0.2). Black 

dots depicts cells that passed quality control (141). Additional parameters (individual Y axis) were 

not applied as these would not have excluded further cells and aided in ensuring quality control. Total 

reads were 343,499,048. 
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Appendix B 

 

Appx-B Table 1: Gene ontology terms significantly enriched in HSCs stimulated with  

30 ng/mL SCF compared to freshly isolated HSCs. 

Gene ontology biological process P-value 
Adjusted 

P-value 

DNA metabolic process (GO:0006259) 3.52E-16 4.93E-13 

DNA-dependent DNA replication (GO:0006261) 1.38E-12 9.7E-10 

DNA replication (GO:0006260) 2.09E-12 9.76E-10 

DNA replication initiation (GO:0006270) 4.93E-08 1.15E-05 

G1/S transition of mitotic cell cycle (GO:0000082) 3.04E-12 1.07E-09 

cell cycle G1/S phase transition (GO:0044843) 9.2E-10 2.58E-07 

positive regulation of DNA-directed DNA polymerase activity (GO:1900264) 0.000102 0.009544 

DNA strand elongation involved in DNA replication (GO:0006271) 9E-05 0.009544 

nucleotide-excision repair, DNA incision, 5'-to lesion (GO:0006296) 0.000213 0.015936 

regulation of DNA-directed DNA polymerase activity (GO:1900262) 0.000102 0.009544 

error-prone translesion synthesis (GO:0042276) 0.000216 0.015936 

DNA repair (GO:0006281) 5.65E-06 0.000879 

cellular macromolecule biosynthetic process (GO:0034645) 8.23E-06 0.001153 

regulation of transcription involved in G1/S transition of mitotic cell cycle 

(GO:0000083) 

3.91E-05 0.004567 

nucleotide-excision repair, DNA gap filling (GO:0006297) 2.13E-05 0.002719 

error-free translesion synthesis (GO:0070987) 0.000177 0.015496 
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Appx-B Table 2: Gene ontology terms significantly enriched in HSCs stimulated with  

300 ng/mL SCF compared to freshly isolated HSCs. 

Gene ontology biological process P-value 
Adjusted 

P-value 

DNA replication (GO:0006260) 5.1E-13 2.02E-10 

regulation of transcription involved in G1/S transition of mitotic cell cycle 

(GO:0000083) 1E-10 2.38E-08 

DNA metabolic process (GO:0006259) 2.86E-14 3.41E-11 

strand displacement (GO:0000732) 1.6E-07 2.12E-05 

G1/S transition of mitotic cell cycle (GO:0000082) 6.91E-14 4.11E-11 

DNA-dependent DNA replication (GO:0006261) 1.25E-10 2.47E-08 

DNA replication checkpoint (GO:0000076) 5.4E-07 6.42E-05 

cell cycle G1/S phase transition (GO:0044843) 7.18E-11 2.14E-08 

cellular response to DNA damage stimulus (GO:0006974) 2.38E-09 3.54E-07 

DNA biosynthetic process (GO:0071897) 1.87E-06 0.000186 

mitotic cell cycle phase transition (GO:0044772) 3.46E-10 5.88E-08 

DNA repair (GO:0006281) 6.43E-07 6.96E-05 

cellular macromolecule biosynthetic process (GO:0034645) 2.21E-06 0.000202 

regulation of transcription from RNA polymerase II promoter in response to 

oxidative stress (GO:0043619) 0.00303 0.069333 

regulation of double-strand break repair (GO:2000779) 1.8E-05 0.001258 

positive regulation of mitophagy in response to mitochondrial depolarization 

(GO:0098779) 0.001789 0.048394 

positive regulation of cell cycle arrest (GO:0071158) 1.32E-05 0.001041 

DNA replication initiation (GO:0006270) 8.2E-05 0.004644 

photoperiodism (GO:0009648) 0.001104 0.033671 

double-strand break repair via homologous recombination (GO:0000724) 8.68E-05 0.004696 

DNA replication-dependent nucleosome assembly (GO:0006335) 0.000128 0.005939 

DNA recombination (GO:0006310) 1.4E-05 0.001041 
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Appx-B Table 3: Genes upregulated in HSCs treated with 300 ng/mL SCF compared to both 

30 ng/mL SCF and freshly isolated HSCs. 

Gene ID ENSEMBL ID 

Cav2 ENSMUSG00000000058 

Kdelr2 ENSMUSG00000079111 

Rnf187 ENSMUSG00000020496 

Msn ENSMUSG00000031207 

Gem ENSMUSG00000028214 

Vps35 ENSMUSG00000031696 

2810474O19Rik ENSMUSG00000032712 

Plek ENSMUSG00000020120 

Ctnna1 ENSMUSG00000037815 

Lyn ENSMUSG00000042228 

Bzw1 ENSMUSG00000051223 

Hmgcr ENSMUSG00000021670 

Naa40 ENSMUSG00000024764 

Tubb6 ENSMUSG00000001473 

Ash2l ENSMUSG00000031575 

Zdhhc13 ENSMUSG00000030471 

Galk1 ENSMUSG00000020766 

Pidd1 ENSMUSG00000025507 

Lypla1 ENSMUSG00000025903 

Tmem120a ENSMUSG00000039886 

 


