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Abstract

Motivation: Antibodies play essential roles in the immune system of vertebrates and are powerful tools
in research and diagnostics. While hypervariable regions of antibodies, which are responsible for binding,
can be readily identified from their amino acid sequence, it remains challenging to accurately pinpoint
which amino acids will be in contact with the antigen (the paratope).

Results: In this work, we present a sequence-based probabilistic machine learning algorithm for paratope
prediction, named Parapred. Parapred uses a deep-learning architecture to leverage features from both
local residue neighbourhoods and across the entire sequence. The method significantly improves on the
current state-of-the-art methodology, and only requires a stretch of amino acid sequence corresponding
to a hypervariable region as an input, without any information about the antigen. We further show that our
predictions can be used to improve both speed and accuracy of a rigid docking algorithm.

Availability: The Parapred method is freely available as a webserver at http://www-mvsoftware.ch
.cam.ac.uk/ and for download at https://github.com/eliberis/parapred.

Contact: e1398@cam.ac.uk (E. L.), ps589@cam.ac.uk (P. S.)

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction sequences allows antibodies to form complexes with virtually any antigen.

Antibodies are a special class of proteins produced by the immune system This binding malleability of antibodies is increasingly harnessed by the

of vertebrates to neutralize pathogens, such as bacteria or viruses. They
act by binding tightly to a unique molecule of the foreign agent, called the
antigen. Antibody binding can mark it for future destruction by the immune
system or, in some instances, neutralize it directly (e.g. by blocking a part of

biotechnological and biopharmaceutical industry; indeed, monoclonal
antibodies are currently the fastest growing class of therapeutics on the
market (Ecker et al., 2015; Reichert, 2017).

Novel antibodies that bind a target of interest can be obtained

avirus essential for cell invasion). Typical antibodies are tetrameric—made using well-established methods based on animal immunisation or on

of two immunoglobulin (Ig) heavy chains and two Ig light chains—and
have a Y-shaped structure, where each of the two identical tips contains
a binding site (paratope). The base of the Y mediates the ability of an
antibody to communicate with other components of the immune system.

in vitro technologies for screening large laboratory-constructed libraries
(Leavy, 2010). However, for applications in research, diagnostics, and
therapeutics, some degree of engineering is required to optimise certain
properties, such as binding affinity, stability, solubility, or expression
yield (Chiu et al., 2016). Rational engineering decisions become easier
if detailed knowledge about an antibody under scrutiny is obtained (Chiu
et al.,2016; Sormanni et al., 2017). However, especially at the early stages

The paratope is typically contained within the hypervariable regions
of the antibody which are also referred to as complementarity determining
regions (CDRs). In the structure of an antibody, CDRs are located ) ) ’ '
within binding loops, three on each heavy chain (H1, H2, H3) and of an antibody discovery campaign, only the sequence and an estimate

three on each light chain (L1, L2, L3). The variability of the CDR of the binding affinity are usually available. Therefore, computational

methods that can accurately predict molecular traits using just the amino
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acid sequence have a great potential for accelerating antibody discovery
by assisting lead selection or facilitating property engineering.
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Fig. 1. An example of an antibody-antigen complex (PDB ID 2VXQ) where the antibody
CDR loops are colour-coded according to the binding probabilities calculated by Parapred.
Docking was performed using PatchDock with binding site constraints supplied by Parapred.

For instance, hypervariable regions contain 40—50 amino acid residues,
whereas typically less than 20 actually participate in binding (Esmaielbeiki
etal.,2016), and some may even fall outside of the traditional definition of
the CDRs (Kunik et al., 2012). The ability to accurately map the paratope
would enable to pinpoint residues that are involved in binding, leaving
others as candidate mutation sites that can be exploited to optimise other
molecular traits, such as solubility or stability, without compromising the
binding activity. In addition, as we show in this work, accurate paratope
prediction can improve accuracy and speed of docking simulations, making
structural models more reliable and easier to obtain (see Figure 1 for an
example).

In this work, we introduce the Parapred method for sequence-based
prediction of paratope residues. Parapred improves on earlier methods for
paratope prediction (Krawczyk et al., 2013; Kunik et al., 2012; Olimpieri
etal.,2013; Peng et al., 2014; Tsuchiya et al., 2016) by using deep learning
methods and larger antibody datasets. In particular, we compared Parapred
against the following 2 methods:

e ProABC. Olimpieri et al. (2013) designed a method for processing
antibodies as amino acid residue sequences, obviating the need for a
3D structure. A random forest classifier consisting of 1500 trees was
used to predict the probability of a residue being in the paratope. This
is the most accurate paratope classifier up to date.

e Antibody i-Patch. Krawczyk er al. (2013) adapted the i-Patch
algorithm (Hamer et al., 2010) to cope with antibody-antigen binding
specifics. The method computes binding statistics for different areas
(patches) of a protein and uses this information to predict the likelihood
of each amino acid residue participating in binding.

Our method only requires the amino acid sequence of a CDR and four
adjacent residues as its input, which, in contrast to structural data, can be
readily obtained experimentally. For simplicity, we only consider antigens
that are themselves proteins, which are the vast majority of known antibody
targets.

“Deep learning” specifically refers to the process of building
machine learning models consisting of multiple layers of non-linear
operations, where each successive layer automatically learns more abstract
representations (features) of the data using the features extracted by the

previous layer (Goodfellow et al., 2016, p. 1). A key advantage of deep
learning over traditional machine learning methods is that it can perform
automated feature extraction directly from raw input data, thus eliminating
the need for a domain expert to manually engineer features (Goodfellow
et al., 2016, p. 4). Automatically learned features are often found to be
superior to manually engineered ones, contributing to the widespread
success of deep learning in a range of fields. In particular, Parapred
builds upon convolutional and recurrent neural networks, which achieved
state-of-the-art results in object recognition (Krizhevsky et al., 2012) and
machine translation (Wu et al., 2016) tasks, among others. Deep learning
has already been successfully applied to address problems in protein
science, including the prediction of structure (Li et al., 2016), function
(Tavanaei et al., 2016) or binding sites (Alipanahi et al., 2015). To the
best of our knowledge, this work is the first application of modern deep
learning to antibody-antigen interactions.

2 System and methods
2.1 Data acquisition and preprocessing

To train and test our models, we used a subset of the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014), which contains antibody and
antigen crystal structures. Entries in SAbDab were filtered to obtain a non-
redundant set of antibody-antigen complexes with the following properties:
(1) antibodies have variable domains of the heavy (V) and light (V1)
chains, (2) structure resolution is better than 3A, (3) no two antibody
sequences have > 95% sequence identity, and (4) each antibody has at
least 5 residues in contact with the antigen. The final dataset contains 277
bound complexes (Supplementary Information, Section A). Residues in
the antibody sequence with missing electron density (i.e. non-resolved in
the structure) were assumed to be non-binding, as missing electron density
is typically associated with highly dynamic regions.

To construct the input, we identify the CDRs within the sequence
of each antibody using the Chothia numbering scheme (Al-Lazikani
et al., 1997). We extend the CDR sequences with two extra residues
at both ends, as these residues are also known to sometimes engage in
binding (Krawczyk et al.,, 2013; Kunik et al., 2012). These extended
CDR sequences are the input of the Parapred method and are processed
individually. As our initial dataset of antibody-antigen complexes was
assembled using a sequence identity cut-off applied to the full antibody
sequence, we carried out a sequence identity analysis on the individual
CDRs. The results in Figure S1 (Supplementary Information, Section
B) show that the sequence identity is always below 80% (median ~
40%) when comparing whole hypervariable regions and below 90% at
the individual loop type level (median across loops of the same type ~
30-45%, median across all loop types < 20%).

Amino acid sequences have to be encoded as tensors prior to being
processed by the model (Figure 2):

e Each amino acid sequence is encoded as a ‘row’ in a 3D matrix. As
CDR sequences are usually of different length, during training they
are padded with zero vectors to the length of the longest sequence.
This is necessary for fast batch tensor processing provided by deep
learning frameworks. Padding is not required when the model is used
for prediction, as the architecture of our neural network does not
impose an upper limit on the number of residues in the input sequence.
This enables Parapred to process CDRs of arbitrary length, including
ones longer than CDRs of sequences from the training set.

e Each element in a matrix encodes an amino acid residue and is itself
a vector consisting of two concatenated parts:
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e One-hot encoding of the type of the residue (20 possible amino acid
types + 1 extra, representing an unknown type). The type is encoded
using a 21-dimensional vector, where all elements are set to O and
one element, corresponding to the actual type of the amino acid, is
setto 1.

e Seven additional features, summarised by Meiler e/ al. (2001), which
represent physical, chemical and structural properties of each type of
amino acid residue (Supplementary Information, Section C).

The final dataset contains 1662 sequences for the algorithm to learn
from (277 antibody/antigen complexes X 6 CDRs each).
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Fig. 2. An example of encoded amino acid sequences. An amino acid residue is represented
by afeature vector which consists of one-hot encoding and some extra features. To efficiently
process multiple sequences of different lengths during training, each sequence is padded to

the length of the longest one. In general, Parapred can process arbitrarily long sequences.

2.2 Building a deep learning model

The paratope prediction problem can be formalised as a binary
classification problem between two classes of residues: those that do not
participate in binding (Class 0) and those that do (Class 1). Following
previous conventions (Krawczyk et al., 2013), we define binding residues
as those with at least one atom found within 4.5A of any of the antigen
atoms. The algorithm will output the probability of binding (p) for each
residue in the input CDR(s) plus two extra residues per side.

Our model uses several prominent architectural developments in deep
learning.

2.2.1 Multilayer perceptrons (MLP)
Neural networks can be thought of as a set of interconnected units, called
neurons or perceptrons, each of which performs a simple computation.

Neurons are typically arranged in layers, where each neuron in a layer
is connected to the output of every neuron in the previous layer. A layer
with this kind of connection is called fully-connected. The neural network
itself is constructed as a series of such layers—the data is transformed in
turn by every layer as it flows through the network. This architecture is
known as a deep feed-forward neural network or a multilayer perceptron
(MLP).

Neural network architectures are extensively used for machine learning
tasks that can be reformulated as function approximation problems. We
would like a network to learn to approximate some target function f :
X — Y using a set of known input / output pairs for it (supervised
learning setup). For example, for paratope prediction, z € X could be a
vector encoding a residue and y € Y = {0, 1} could indicate whether
the residue participates in binding.

The signals between neurons are real numbers and the neuron computes
its output as follows:

e Aneuron computes a weighted sum of its inputs (x) and adds a constant
term to it. The coefficients by which every input is scaled are called

weights (W) and the constant term is called the bias (b). The weights
and bias constitute a set of adjustable parameters of a neuron.

e Some non-linear activation function o is applied to the sum to produce
the output. The activation function introduces a non-linearity necessary
to model complex functions.

We can compactly write the transformation performed by all neurons
in a layer as a single weight matrix multiplication and bias vector addition:

y =0(WTx +b) )

2.2.2 Recurrent Neural Networks (RNN)

We can design a neural network which processes every element in a
sequence in turn. The key idea behind RNNs is to iteratively apply a simple
processing block, called RNN cell, to obtain a summarised representation
of a sequence up to any point. Figure 3 shows a computation graph of an
RNN—the cell iteratively consumes inputs (x) by computing a function
of x and the previous state of the cell s.

We use the Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) cell which is able to learn long-range dependencies
in sequences. The computation performed by an LSTM cell consists of the
following steps:

e An LSTM cell holds the state s in two vectors: C ("memory") and h
(previous output). Input x and state vector h are concatenated before
being processed in four steps:

fr =o(WFhi_1,%x:] + by) )
C; = tanh(WZ& [ht—1,x¢] + bo) 3)
it = o(W [hy—1,%:] + b;) “)
ot = o(WX[hy—1,%¢] + by) )

where tanh is the element-wise hyperbolic tangent and o is the logistic

1 .
m)' Matrices W and vectors b
are parameters learned by the network.

e The new cell state C; and h¢, as well as the output y; is given by:

sigmoid function (o (z) =

Cr=Cy_1 % fr + Cf =iy (6)

yt = hy = tanh(Ct) * o4 (@)
where * is the element-wise vector multiplication.

Capturing dependencies between an output and later inputs is necessary
for amino acid sequences because they don’t have a canonical direction
(reading a sequence left to right is equivalent to reading it right to left).
To achieve this, we use a bidirectional RNN (Schuster et al., 1997) which
introduces a second pass going in the opposite direction (see Figure 3).
RNNs enable the model to capture features which span the entire input
sequence.

2.2.3 Convolutional Neural Networks (CNN)
Amino acid residues are known to interact with other residues and prefer
some kinds of amino acids more than others as their neighbours (Xia
et al.,2002). A paratope prediction model can exploit such preferences by
processing every residue together with its neighbourhood to learn useful
local patterns first and only then use an RNN to learn aggregate features
of the entire sequence.

Spatially local features can be extracted using convolutional layers,
typically found in convolutional neural networks (CNNs).
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A convolutional layer is similar to a single-layer MLP discussed
previously, only it uses a convolution operation instead of matrix
multiplication. A convolution operation for sequences is defined as:

K/
fe = Z Kper 14 e ®)

i=—K’

where i; and f; are elements of the input and output sequences at position
t, respectively, and k € RE*C is a kernel of size K = 2K’ +1 (w.l.o.g
assume that the kernel has an odd number of elements; C refers to the
dimensionality of the input). This computation is visualised in Figure 3.
The kernel is applied this way at every position of the input sequence to
produce the output sequence. For positions where kernel spans beyond the
input sequence, we assume the input is padded with zero vectors: iz = 0
fort < O0ort > T'. The input and kernel elements themselves are vectors
with multiple channels—name comes from an analogy with images: each
pixel in an image has 3 dimensions: red, green and blue channels—e.g. an
encoded residue would have 28 dimensions / channels (20 + 1 amino acid
type one-hot encoding + extra 7 features, as described earlier).
Convolution performs a weighted summation over all dimensions of
input elements to produce a single number (the sum of vector dot products).
The fact that the same small kernel is applied to every position in the input
sequence allows it to detect input patterns regardless of their position.
Learnable parameters of a convolutional layer are its kernels; multiple
output channels can be produced by using several different kernels (filters).

2.2.4 Residual Connections

Residual connections (He ef al., 2015) act as a shortcut connection between
inputs and outputs of some part of a network by adding inputs to outputs.
Such shortcut can be added around the convolutional feature extractor—if
the local feature extractor is supposed to learn some function h(x), with
the shortcut connection it only has to learn the residual A(x) — x which is
often easier to optimise for. The shortcut also enables the rest of the model
to learn both from original inputs and extracted local features, and acts as

A @ @

RNN RNN RNN RNN
C cell e 2 el [ cell [ cell

Unrolled

. > RNN_, |->{RNN_, |- RNN_, |-

T RNN_ T RNN_ T RNN_ [« ... <[ s

© ©

a complexity controller by effectively allowing the network to adjust its
depth.

2.2.5 Exponential linear units as activation functions

Activation functions introduce a non-linearity which is necessary to model
complex functions. Experimenting with the activation function’s behaviour
can improve the training process. We use the Exponential Linear Unit
(ELU) (Clevert et al., 2015) activation function which makes the network
more robust to noise and faster to train. The function is given by:

T ifx >0,

ale® —1) ifz <0. ©

ELU(z) = {

Weuse o = 1.

2.2.6 Model regularisation

Deep learning models often have to be regularised to prevent overfitting—
a phenomenon where a network memorises training examples (and noise)
instead of modelling the underlying relationship. We use two regularisation
methods:

e Dropout (Srivastava et al., 2014) is a computationally efficient
regularisation method. The main idea of Dropout is to discard some
intermediate results of the network at every training iteration with a
certain probability p. This discourages the network from learning to
rely on a particular subset of inputs.

e Lo regularisation (aka weight decay) adds an extra term—an Lo
norm of a layer’s weights—to network’s optimisation objective, which
penalises weights if they grow too large during training.

3 Algorithm and implementation

The software was developed in Python using TensorFlow deep learning
framework (Abadi ef al., 2016) and Keras API (Chollet et al., 2015).

Summation over all s £ P
. . . n 2 3
input dimensions i

Multiple output
dimensions produced
by different kernels

'""""""""-128 channels

Fig. 3. Neural network constructs used in this work. A—the computation graph of an RNN before (left) and after (right) unrolling. The same RNN cell is used to process every element

of the input sequence. B—unrolled graph of a bidirectional RNN. The inputs are passed through two different RNN cells (one for each direction) and the network’s output at time ¢ is an

aggregation (here—concatenation) of the two cells’ outputs. C—an example of 1D convolution with kernel size 3. Outputs are computed by applying a kernel at each position in the input

sequence.
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Overall, the network’s computation consists of the following steps (Figure
4):

1. Encoded sequences (CDRs with 2 extra residues) are processed by
a convolutional layer (regularised with an Lo term scaled by 0.01)
with 28 kernels, each spanning a neighbourhood of 3 residues. ELU
activation is applied to the convolution results.

2. Residual connection is implemented by adding the original input
sequences to the convolution output.

3. Resulting features are processed by a bidirectional LSTM with state
size 256. The network applies Dropout with p = 0.15 to RNNs input
and Dropout with p = 0.2 to RNNs recurrent connections.

4. Dropout with p = 0.3 is applied to the RNNs output and individual
feature vectors are processed by a single-output fully-connected
network with logistic sigmoid activation function (to bring the output
to the range of probabilities). Network’s weights are regularised using
an Lo term scaled by 0.01.

The model’s architecture could be easily augmented with layers that
are able to process the 3D structure of an antibody in conjunction with
its amino acid sequence. However, such sophisticated architectures would
require a much larger training dataset (at least 10x more 3D structures)
which is not available at this time. Training this kind of model would
also require a way of efficiently exploiting cross-modality during feature
extraction (Veli¢kovié et al., 2016).

All architectural parameters (aka hyperparameters), such as LSTM
state size, convolutional layer span, Dropout probabilities, efc. were
chosen by evaluating network’s performance on a special validation set
(subset of the training set not shown to the network during training).

Neural network training is a function optimisation problem, where
we aim to find a local or global optimum of the optimisation target (aka
loss) with respect to network’s parameters. This should be a differentiable
measure of how well the neural network approximates the target function.
We use the binary cross-entropy loss, a popular choice for binary
classification problems:

ws (—y; log(fo(xi))

£©) = — >

X;i,Y; €ETrS

—(1—yi)log(l — fo(x;))) (10)

where TrS is the training set of size m, f@ is the function computed by
the network with parameters © and w; is the sample weight (described
later).

To find aloss minima, we use the Adam (Kingma et al., 2014) optimiser
with base learning rate setting of 0.01 for the first 10 epochs and 0.001
otherwise. The network is trained with 32 samples at once (aka batch size)
for 16 epochs (iterations over the entire training set).

The dataset has an uneven number of binding (positive) and non-
binding (negative) residues—3.4x more negative samples. The cross-
entropy loss function (Equation 10) equally penalises misclassified positive
and negative samples, which allows the model to keep the overall loss low
by preferring to predict that residues will not bind. This achieves good
classification accuracy but hinders the model’s ability to learn to identify
positive samples. This can be improved by penalising misclassified positive
samples more—the per-sample loss is scaled by the sample weight w}
which we set to a 2.5x higher value for positive samples.

‘We made Parapred available as a webserverathttp: //www-mvsoft
ware.ch.cam.ac.uk/. For convenience, the online interface accepts
full Vg and V7, amino acid sequences and uses ANARCI (Dunbar et al.,
2015) to extract the CDRs.
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Fig. 4. The architecture of the Parapred method.

4 Results
4.1 Model results

To ensure an unbiased evaluation, the model has to be tested on data it has
not seen during training. To obtain statistically significant results using
our small dataset (277 complexes), we used the 10-fold cross-validation
technique to assess the model performance on multiple dataset splits. This
technique randomly partitions the complexes into ten subsets and trains
the model ten times. Each time, a different subset is chosen as the test set,
and the model is trained from scratch on the complexes belonging to the
other nine.

To measure the performance of the binary classifier we use a number
of standard metrics, such as MCC, F-score, and precision-recall and ROC
curves. Because evaluation results may vary due to the random partitioning
of the data, the random initialisation of the network parameters, and
Dropout, the cross-validation process itself is repeated ten times, which
enables us to calculate confidence interval of the mean values of each
performance indicator.

Figure 5a shows the precision/recall curve of the Parapred method
which indicates a statistically significant improvement over Antibody i-
Patch for recall values > 0.1. This improvement is particularly relevant
given that, in contrast to Parapred, Antibody i-Patch requires a structure
or a homology model of the antibody and the antigen it binds to.
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(A) Precision-recall curves of Parapred when trained on our dataset and
Antibody i-Patch’s dataset, together with the PR values reported by the authors
of Antibody i-Patch. Errors show 95% confidence bounds (2 standard dev.).

Fig. 5. Performance characteristics of Parapred.

Figure 5b shows the F-score, MCC and ROC AUC performance
metrics of Parapred. Narrow confidence intervals indicate consistent
performance across cross-validation rounds. Furthermore, the results show
that our model performs significantly better than the current state-of-the-
art predictor, proABC (Olimpieri et al., 2013) (both MCC and ROC AUC
are statistically significantly better), without needing the entire antibody
sequence or extra features such as the germline family or antigen volume.

We investigated to what extent the performance improvement
originates from using a larger dataset (277 complexes vs. 148 of Antibody
i-Patch) and to what from the deep-learning-based architecture of Parapred.
To assess this, we measured Parapred’s performance when trained on the
Antibody i-Patch’s dataset (Figure 5a). We find that our method achieves
significant precision improvements for recall values > 0.5, which is
typically the most useful range. We conclude that the deep-learning-based
architecture of Parapred is able to capture a richer set of features leading
to better classification, even though it uses less explicit information about
the antibody (Parapred does not require structural data or any information
about the antigen it binds to). The leap in performance, observed when
increasing the dataset size, is discussed in Supplementary Information,
Section D and is in agreement with the observation that deep models thrive
in environments with a larger number of more varied data points to learn
from (Goodfellow et al., 2016, p. 430).

Our encoding of an amino acid sequence does not include information
about the CDR loop type it originated from, so the model may not be
able to capture loop type-specific features. Figure Sc shows the ROC AUC
values of our model’s predictions, separated by CDR types. The data shows
that the model’s performance varies slightly depending on the loop type,
however our initial attempts at including the loop type information made
no appreciable difference to the performance (data not shown).

4.2 Docking improvements

‘We show the usefulness of Parapred by integrating its predictions with the
PatchDock rigid protein docking algorithm (Duhovny et al., 2002).
PatchDock works with 2 protein molecules in the PDB format
and searches for suitable orientations for one of the molecules—
conventionally, the antigen—"“onto” the other. The algorithm produces
several hundred candidate orientations of the antigen, called decoys, which
are ranked in the output by an internal scoring function. The algorithm also

Model F-score MCC ROC AUC
Parapred 0.690 + 0.006 0.554 £+ 0.009 0.878 + 0.004
proABC — 0.522 0.851

(B) Performance indicators of the Parapred with 95% confidence intervals
(top row) and of the proABC method (bottom row). To convert predicted
binding probabilities to binary labels, we used a threshold of 0.488 (obtained
by maximising Youden’s index (Youden et al., 1950)); the labels were used
to compute the F-score and MCC metrics.

Loop type ROC AUC Loop type ROC AUC
HI 0.860 £ 0.004 Ll 0.910 £ 0.005
H2 0.768 £ 0.013 L2 0.789 £ 0.010
H3 0.871 £ 0.006 L3 0.912 £ 0.006

(C) ROC AUC values of Parapred, separated by loop type. Errors show 95%
confidence bounds.

provides facility to guide the search process by pre-specifying potential
binding site residues.

Decoys can be classified into 4 quality classes—high (¥*%), medium
(**), low (*) or unclassed—based on how close the computed orientation of
the antigen is to the true (native) orientation recorded in the dataset. The
classification uses the CAPRI criteria (see Supplementary Information,
Section E).

The usefulness of Parapred was measured by running PatchDock with
three potential binding sites of the antibody molecule: (1) the full CDRs,
(2) the actual paratope and (3) binding residues predicted by Parapred.
We picked 30 antibody-antigen complexes at random (highlighted in
Supplementary Information, Section A) to be run through the docking
algorithm and, to ensure that the model is not tested on data it has been
trained on, we used only the remaining structures as the training set for the
model (247 structures). For a docking run with Parapred’s predictions,
residues were assumed to be binding if they scored above 0.67. This
threshold was determined as the cut-off value that best recapitulates the
total number of residues comprising the predicted binding site with that
observed in the actual paratopes of antibodies within the aforementioned
247 structures. To avoid estimating this threshold from structures used
in training, its value was determined using the test sets of an extra
cross-validation run on just the 247 structures.

We recorded the best class decoy in the top 10 and top 200 decoys,
as ranked by PatchDock, for each of the 30 structures. As a hint, we also
supplied the antigen’s binding region as residues within 5A of the real
epitope. PatchDock was run with default parameters.

Top 10 Top 200

Running time
seokosk sk ES skoksk sk *

Binding site

CDRs 0 2 0 1 14 0 3h50min 19.72s
Paratope 0 7 1 1 21 3 2h02min 22.50s
Parapred 0 7 0 1 19 2 2h 15min 52.26s

(1) vs (3) speedup: 1.70x

Table 1. The number of high, medium and low quality decoys obtained by
running PatchDock with different constraints on a test set of 30 structures.
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Docking results are shown in Table 1—supplying just the CDR
gives the worst performance, however, supplying our model’s predictions
achieves performance comparable to that obtained when supplying the
actual paratope. We conclude that for docking simulations Parapred’s
predictions are almost as informative as the actual paratope.

We also measured the time taken by PatchDock to produce decoys
on a machine with an “Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz”
processor. We found that specifying Parapred’s predictions as a potential
binding site produces a 1.70x speedup in PatchDock’s computations
compared to specifying just the CDRs.

We also attempt to interpret local neighbourhood features learned by
the model in Supplementary Information, Section F.

4.3 Concluding remarks

To the best of our knowledge, this work is the first application of modern
deep learning (CNN- and RNN-based neural networks) to the paratope
prediction problem. Our model is able to generalise using only antibody
sequence stretches corresponding to the CDRs (with 2 extra residues on the
either side) and improves on the current state-of-the-art by a statistically
significant margin. We also showed that the model’s predictions provide
speed and quality gains for the PatchDock rigid docking algorithm—decoy
quality and time-to-dock were comparable to those obtained when the
docking algorithm has knowledge of the actual paratope as assessed from
the complex crystal structure.

One of the main benefits of Parapred is that it does not rely on
any higher-level antibody features: no full sequence, homology model,
crystal structure or antigen information is required. We envisage that the
Parapred method, which is freely available to the scientific community, will
become a powerful tool in the growing fields of antibody engineering and
computational design. In particular, when a bound structure of the antibody
is not available, Parapred will enable the accurate identification of residues
that are the most important in determining the antibody’s activity, leaving
other residue positions as available mutation sites, which can be exploited
to engineer other essential molecular traits, such as stability or solubility.
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