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Abstract—Engagement is crucial to designing intelligent sys-
tems that can adapt to the characteristics of their users. This
paper focuses on automatic analysis and classification of engage-
ment based on humans’ and robot’s personality profiles in a
triadic human-human-robot interaction setting. More explicitly,
we present a study that involves two participants interacting with
a humanoid robot, and investigate how participants’ personalities
can be used together with the robot’s personality to predict
the engagement state of each participant. The fully automatic
system is firstly trained to predict the Big Five personality traits
of each participant by extracting individual and interpersonal
features from their nonverbal behavioural cues. Secondly, the
output of the personality prediction system is used as an input
to the engagement classification system. Thirdly, we focus on
the concept of “group engagement”, which we define as the
collective engagement of the participants with the robot, and
analyse the impact of similar and dissimilar personalities on
the engagement classification. Our experimental results show
that (i) using the automatically predicted personality labels
for engagement classification yields an F-measure on par with
using the manually annotated personality labels, demonstrating
the effectiveness of the automatic personality prediction module
proposed; (ii) using the individual and interpersonal features
without utilising personality information is not sufficient for
engagement classification, instead incorporating the participants’
and robot’s personalities with individual/interpersonal features
increases engagement classification performance; and (iii) the
best classification performance is achieved when the participants
and the robot are extroverted, while the worst results are obtained
when all are introverted.

Index Terms—Human-Robot Interaction, Engagement Clas-
sification, Personality Prediction, Affective Computing, Person-
Adaptive Systems

I. INTRODUCTION

Social interactions between humans are governed by mul-
tiple personal and contextual factors [1]. People interact in a
certain manner with others because 1) they are characterized
by a certain personality which affects their perception and
actual behavior [2]; and 2) their are able to draw certain
judgments about the characteristics (e.g., personality) of the
person they are interacting with, which allows them to adapt
their behaviour to others and leads to more engaging expe-
riences. To create such human-like natural interactions in a
human-robot interaction context, a humanoid robot needs to
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be endowed with the ability to infer its user’s personality. The
more the robot is aware of the person it is interacting with,
the better it will be able to adapt its behaviour to him/her and
will be able to engage the user in the interaction.

In applications ranging from interaction with embodied
conversational agents to robots, one of the main challenges is
to maintain users’ sense of engagement [3]. Different strategies
to foster users’ behavioural engagement have been proposed
in the literature, for example, backchannel responses [4],
feedback [5], politeness [6], endowing the agent with hu-
mor [7], and managing the agent’s surprise [8] or alignment [9]
strategies. These studies focused on analysing the effect of
these strategies on the engagement of the user, however, they
ignored the relationship between the user’s personality and
engagement.

In light of these, there arises the need to question whether
implementing the aforementioned strategies increases the en-
gagement of the user, or whether the user’s personality is such
that he/she already is able to engage easily with technology.
To be able to answer these questions, we need to integrate
an understanding of the user’s personality, predict the user’s
behavioural engagement and examine the relationship between
personality similarity/dissimilarity and engagement.

There is an increasing interest in the literature in studying
groups! (e.g., group cohesion [10] in the context of task-
oriented groups). Similarly, in multi-party human-robot in-
teraction where the robot’s goal is to engage more than one
participant, it would be more appropriate to study how engaged
a single person is together with the engagement state of
multiple people.

Despite its importance, there has been relatively a few works
focusing on engagement and/or its relationship to personality
in social interaction settings. In a human-human interaction
setting, Oertel and Salvi [11] manually annotated speech
activity and eye gaze patterns to describe the participants’
behaviours with respect to each other and model individual
engagement and group involvement in groups of human parti-
cipants, however they didn’t take into account the participants’
personalities. In a human-robot interaction setting, Aly and
Tapus [12] made a robot to manifest two different personality
types, namely, extroverted and introverted, and investigated
whether people prefer a robot matching their personalities
based on self-asessments, in other words, without conducting

! According to Meriam Webster dictionary, a group is defined as a number
of people who are connected by some shared activity, interest, or quality.
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any automatic engagement prediction. In a human-virtual
agent interaction setting, Cerekovic et al. [13] incorporated
a set of multimodal features with personality traits to predict
an individual’s experience of interaction, however they relied
on self-assessed, manually annotated personality traits.

This paper aims at filling in the above-mentioned gaps
by presenting a fully automatic analysis algorithm in the
context of human-robot interaction. Our contributions can be
summarised as follows. Differently from [11], [12], [13], we
focus on understanding engagement and its relationship to
personality in a triadic human-robot interaction scenario where
two participants are involved in an interaction with a small
humanoid robot. We propose an approach to model group
engagement that is defined as the joint engagement state of
two participants interacting with each other and a humanoid
robot [14]. In order to predict individual engagement and
group engagement, we exploit nonverbal visual features that
are computed automatically in contrast to [11] that uses manu-
ally annotated features. Unlike [13], we predict the personality
of each participant from the extracted features and further
predict participants’ engagement states using these automat-
ically predicted personality labels since manually annotated
personality labels might not be available in the course of an
interaction in a real-life situation.

We examine the impact of human participants’ personality
traits on their engagement with the robot across two robot
conditions (i.e., extroverted robot versus introverted robot) as
introduced in Section I'V. The role of the robot is to vary the
context of the interaction and lead the conversation by asking
the participants a set of questions. In Section V, we investigate
two sets of non-verbal visual features: individual features and
interpersonal features. While individual features describe each
of the participants’ individual behaviours (e.g., body activity),
interpersonal features model the participants’ interpersonal
behaviours (e.g., relative distance, attention given and re-
ceived) with respect to the other parties in the interaction
(robot and other participant). In Section VI, we examine rela-
tionships between the extracted features and personality labels
and engagement labels. In Section VII, we first utilize these
features to predict the personality of each participant. We then
perform engagement classification using the extracted features
together with the automatically predicted personality labels
and demonstrate how classification performance changes when
the automatically predicted personality labels are used instead
of the manually annotated personality labels. For classifying
group engagement, we combine the sets of extracted features
from both participants.

II. RELATED WORK
A. Engagement

In the context of Human-Robot Interaction (HRI), engage-
ment is defined by Sidner er al. [15] as “the process by
which two (or more) participants establish, maintain and end
their perceived connection”. Previous research on engagement
attempted to underpin the underlying components of engage-
ment. Corrigan et al. [16] demonstrated that engagement is
mainly composed of two components: cognitive and affective.
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While the cognitive component is manifested mainly by at-
tention, the affective component is embodied by enjoyment.
In their extensive review on engagement definition, Glas et
al. [17] have discussed a set of concepts that are strongly
related to engagement and sometimes even used interchange-
ably. These concepts include attention, involvement, interest,
immersion, rapport, empathy and stance.

Computational methods of engagement prediction aimed
at detecting different phases of engagement: (1) intention to
engage; (2) engagement level and (3) disengagement. Foster et
al. [18] focused on the detection of the user’s intention to
engage. Leite er al. [19] investigated the detection of disen-
gagement in individual and group interactions. Benkaouar et
al. [20] built a multi-class model for the recognition of all three
phases of engagement (i.e., intention to engage, engaged and
disengaged). Peters et al. [21] defined three quality levels of
engagement: engaged in the interaction, superficially engaged
with the scene and action space and uninterested in the scene
or action space. Others deal with the detection of the levels of
engagement. Castellano et al. [22] defined two classes, i.e.,
medium-high to high engagement and medium-low to low
engagement. Michalowski et al. [23] differentiated between
the different levels of engagement according to if the user is
present, interacting, engaged or just attending. To build models
that predict the different stages of engagement, various features
were proposed in the literature. These include contextual [14],
[22], [24], attentional [25], [26], affective [18], [22], physio-
logical [27], motion [28], and proxemics features [23].

Bohus & Horvitz [29] pioneered research on engagement
in multi-party interactions. They implemented engagement
strategies which enable a robot to deal with situations where
multiple users were present. However, they did not model
personality of the participants and engagement of the group.
Leite et al. [19] investigated how a model trained on data
collected from participants interacting individually with a
robot performs on test data collected from group interactions,
and vice-versa. Salam and Chetouani [14] conducted a study
in a triadic HRI scenario to investigate to what extent it is
possible to infer an entity’s engagement state starting from
the cues of the other entities in the interaction. Their results
showed that in a multi-party interaction, the cues of the other
entities in the interaction can be used to infer the engagement
state of the entity in question, which suggests that we act as
one entity when we are in the context of a group. However,
they have not performed any automatic analysis of personality
or group engagement as we do in this paper. Oertel and
Salvi [11] dealt with modelling individual engagement and
group involvement as well as their relationship using manually
annotated features based on speech activity and gaze patterns
only. In particular, they summarised the gaze and speech
behaviour of the participants individually and with respect to
each other. But they did not take into account the participants’
personalities.

B. Personality

Personality computing has been one of the hottest topics
in the last few years [30]. While most of the works have
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focused on single-person scenarios, there have been several
works studying personality analysis in multi-party social in-
teractions [31], [32], [33]. Although these works are not within
the scope of Human-Robot Interaction, we briefly review them
due to their relevance in terms of used features and personality
prediction approaches.

In a collaborative context, Staiano et al. [31] asked four
participants to perform Mission Survival task [34]. Recorded
meetings were divided into short clips and each was assessed
by external observers with respect to the Big Five personality
traits [35] (extroversion, neuroticism, openness, conscientious-
ness, and agreeableness) independently. To characterise the
social interaction, they extracted a set of vocal and visual
features such as speaking activity, variation in prosody and
attention features (e.g., attention given and attention received
based on head pose and eye gaze). Clip-level classification
results showed a better accuracy for extroversion and neuroti-
cism, where social attention features and speaking energy were
the prominent features.

Aran and Gatica-Perez [32] used recordings from ELEA
corpus [36], which is similar to [34] in terms of the num-
ber of participants and the task. They combined audio and
motion features with a set of high level features based on
head, body, speaking activity and focus of attention. The best
classification results were achieved with feature-level fusion
for extroversion (74.5%). In their follow-up study [33], they
took into account similar features using the same recordings
from [32]. In addition to individual-level features, they pro-
posed a method to detect temporal co-occurrence patterns
in the target’s features and the group’s features (e.g., the
others change their postures as the target speaks) and used
these co-occurrence features to predict the personality of the
target. While agreeableness was the trait most benefiting from
co-occurrence features, the best classification accuracy was
achieved with individual-level features for openness.

Within the scope of HRI, Rahbar et al. [37] used individual
features (i.e., quantity of motion) and interpersonal features
(i.e., synchrony, dominance and proxemics) to predict the ex-
troversion trait. They achieved the best F-measure when they
fused individual and interpersonal features at the feature level
using Logistic Regression.

Differently from the works summarised above, in this paper,
we focus on understanding personality in a multi-party HRI
scenario where two participants are involved in an interaction
with a small humanoid robot and investigate the use of indi-
vidual features (e.g., body activity) and interpersonal features
(e.g., relative distance, attention given and received) to predict
Big Five personality traits in this context.

C. Interplay between Engagement and Personality

Various research studies were conducted on the interplay
between the users’ engagement states and their personalities.
For instance, Ivaldi et al. [38] assessed the influence of extro-
version and negative attitude towards robots on the duration
and frequency of gaze and speech cues during a cooperative
task, where a human had to physically manipulate a robot to
assemble an object. Two prominent findings were: (i) the more
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people are extrovert, the more and longer they tend to talk with
the robot; (ii) the more people have a negative attitude towards
robots, the less they look at the robot’s face but the more they
look at the robot hands where the assembly and the contact
occur. Their results provided evidence that the engagement
models widely used in HRI can significantly benefit from the
users’ attitudes towards robots and their personality traits.

Some studies examined the effect of personality match
(similar or complementary personality types) on the engage-
ment state of the participants. For example, Park et al. [39]
conducted a study using robots that were programmed to
mimic humans’ personality types (i.e., introverted, extroverted
or intermediate). The results indicated that participants who
interacted with a robot exhibiting a similar personality to
theirs were more comfortable than those who were exposed
to a robot having a complementary personality. A similar
phenomenon was observed by Aly and Tapus in [12] where
they manipulated robot’s behaviours to display either an extro-
verted personality or an introverted personality and matched
the participants with the robot exhibiting a personality similar
to theirs. Celiktutan and Gunes [40] studied the relationship
between the interaction experience (measured in terms of the
level of enjoyment), the personality of the robot and the
personalities of participants using first-person vision features.
Their results showed that, for the extroverted robot condition,
perceived enjoyment with the robot was found to be signif-
icantly correlated with participants’ extroversion and agree-
ableness traits. However, for the introverted robot condition,
such a relationship could not be found.

While these HRI studies were in line with the similarity
rule, in the context of Human-Agent Interaction (HAI) the
experimental results in [13] supported the complementarity
rule [41]. Cerekovic et al. [13] considered two virtual agents
from the SEMAINE System [42]. While one agent (Obadiah)
was gloomy and neurotic with low variation in speech and a
flat tone, the other one (Poppy) was cheerful and extroverted
with frequent gestures and head nods. Each participant evalu-
ated their interaction with both agents along three dimensions:
quality, rapport and likeness. In order to predict the levels of
these three dimensions, they took into account both visual fea-
tures and manually annotated personality trait labels collected
from external observers. While the personality scores alone
did not yield good results, they boosted the performance when
combined with the visual features. They found that extroverted
people tended to like the neurotic agent, whereas people that
score high on neuroticism liked the cheerful agent.

In this paper we examine the relationships between en-
gagement and personality as in [12] but in a triadic HRI
scenario as in [40]. While [40] only focuses on personality
classification, we perform both individual engagement and
group engagement classification on top of the personality
prediction, where we incorporate personality traits as a feature
to classify engagement. Unlike [13], we predict personality of
each participant from visual features and perform engagement
prediction using these automatically predicted personality la-
bels.
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Fig. 1. Overview of our proposed approach.

III. OVERVIEW OF THE PROPOSED WORK

Our approach can be divided into three phases. As shown
on the left hand side of Figure 1, we deal with a triadic
HRI scenario consisting of two participants and a robot (cf.
Section IV-A). The motivation behind using a triadic HRI
scenario comes from the assumption that people tend to show
a different facet of their personalities when they are in a multi-
party interaction context. This leads to a better analysis of the
engagement state or the personality of each participant in the
presence of other entities in the interaction.

We first extract a set of individual and interpersonal features
that describe non-verbal behaviours of the participants at the
individual-level as well as their behaviours with respect to each
other and with respect to the robot as illustrated in the middle
of Figure 1 (cf. Section V). We then perform engagement
classification (i.e., engaged versus non-engaged) using a two
stage approach as shown on the right hand side of Figure 1.
We train automatic regressors for each personality trait and use
these regressors to predict participants’ Big Five personality
traits (cf. Section VII-B). Personality predictions are used
together with a rich set of individual and interpersonal features
and the robot’s personality to train the engagement classifier
(cf. Section VII-C), which offers insight into the impact of
personality on the prediction of individual engagement. Fi-
nally, we model group engagement by combining the extracted
features from both participants.

IV. DATA AND LABELS

The goal of this study is to analyse the role of personality
in the prediction of human participants’ engagement states in
Human-Human-Robot Interactions. In order to vary the inter-
action context and observe different participants’ behaviours,
we use a robot that is made to alternately portray two different
personalities, namely, extroverted and introverted, in each
interaction session.

A. Data

We used the Wizard of Oz setup introduced in [40] with the
humanoid robot NAO [43]. NAO was remotely controlled to
ask a set of pre-scripted questions to two participants regarding
their memories, occupations as well as their feelings towards
robots. In order to obtain various combinations of personality
types (e.g., an extroverted participant, an introverted partic-
ipant and an extroverted robot), we implemented different
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behaviours on the robot associated with extroversion and
introversion. The extroverted robot displayed hand gestures
and talked faster and louder. On the other hand, the introverted
robot sounded hesitant, less energetic and exhibited a still
posture in the course of the interaction.

A total of 18 participants took part in our study and 12
triadic interactions between the robot and two participants
were recorded using a Kinect Xbox 360 depth sensor > as
shown in Figure 1. Four of the participants took part in the
experience more than once provided that they were exposed to
different robot personalities (extroverted or introverted). The
participants were also asked to wear ego-centric cameras to
record the interaction from first-person perspective. However,
in this study we exclusively focus on the recordings from the
Kinect sensor apart from the sound. Sound was recorded by
the microphones built in the ego-centric cameras and then was
synchronised and combined with the Kinect RGB recordings.
This procedure resulted in approximately 3 hours of audio-
visual recordings.

For engagement and personality annotation and automatic
analysis, we segmented each recording into short clips. Each
clip contains the robot asking a question to one of the
participants and the target participant responding. This yielded
on average 19 episodes per participant, per session and a total
of 248 clips. Each clip has a duration ranging from 20 to 120
seconds.

B. Labels

We collected annotations for the level of engagement and
Big Five personality traits using an online crowdsourcing
platform as explained in Section IV-B1. In section IV-B2, we
analyse the obtained annotations.

1) Annotation of Clips: Crowdsourcing is a model of labor
production that outsources work to large, loosely defined
groups of people [44]. Collecting ground truth labels through
crowdsourcing for affective computing has recently gained
popularity as it enables collecting responses from a large
group of people within a short period of time. Due to its
efficiency and rapidity, we used a crowdsourcing service
called Crowdflower [45] to collect labels for the level of
engagement and the personality traits of participants.

Current research in crowdsourcing demonstrates that the
number of untrustworthy users is usually not large [46].

Zhttp://www.microsoft.com/en-us/kinectforwindows/



JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

There is evidence of a number of different techniques (“hon-
eypots") used to guard against malicious or lazy labellers.
A commonly used “honeypot" technique consists of asking
explicitly verifiable questions to reduce invalid responses [47].
Even though CrowdFlower platform provides its own workers
selection mechanisms to ensure trustworthiness and reliability
on the test participants, a “honeypot" extra question was added
to both engagement and personality questionnaires. In this
multiple-choice question, participants were asked about the
main dialogue topic in the clip. Only one of the answers was
true, while the remaining answers had no relation at all to the
clip’s content as shown in Table I (see Part 1).

For each clip, we designed two different jobs, namely,
engagement assessment and personality assessment. For en-
gagement assessment, in line with the state of the art (see
Section II-A), we considered engagement as a construct which
is composed of involvement, interest and enjoyment, and used
the Temple Presence Inventory (TPI) questionnaire [48] to
have the engagement levels of the participants (low engage-
ment vs. high engagement) annotated by external observers.
This questionnaire aims at measuring a person’s immersive
tendency, or presence, in a virtual environment. It was previ-
ously used in the context of an interactive gaming environment
(SimCity Classic and The Sims 3) [48] and in the context
of human-robot interaction to assess user’s engagement [49].
As recommended in [48], we selected individual items that
were useful and appropriate for our study, and we adapted
the selected items to a human-robot interaction context. The
questionnaire used in our study is presented in Table I (see Part
2-a) where we also added a supplementary item on the general
liking of the interaction (the fourth item). For personality
assessment, we used the widely known Big Five Inventory
personality questionnaire [50].

Since each clip contained two participants, we divided the
questionnaires into two parts, i.e., one part for assessing the
participant to the right of the robot and another part for
assessing the participant to its left. For both engagement
and personality, each job consisting of one clip was assessed
by a total of 10 judges. For engagement, each judge was
reimbursed with 5 cents per job, while for personality, 10 cents
were reimbursed per job as the personality questionnaire was
longer than the engagement questionnaire. In order to prevent
repeated rating effects, jobs containing clips of the same target
were launched on a delay basis. All the jobs were restricted
to 12 selected European countries, USA, Canada and South
Africa, and were completed by a total of 166 and 183 different
workers within a duration of two weeks for engagement and
personality, respectively.

Group Engagement Labels. We propose a definition of en-
gagement that concerns group interactions. We define “group
engagement" as the engagement state of two entities in the
interaction together with another entity. Looking at the illus-
tration in Figure 2, the entities of the interaction are the two
humans and the robot. In this case, the group engagement
represents the engagement state of both participants with the
robot. In other words, group engagement occurs when both
participants are engaged with the robot. Similar notions in
group interactions are found in the literature and should not
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TABLE I
ENGAGEMENT AND PERSONALITY QUESTIONNAIRES USED IN OUR STUDY

Part 1 — “Honeypot' Question

Tick the right answer

The Robot asks the people:

1. about their feelings and thoughts towards robots.

2. about their favorite football team.

3. personal questions, for example, about their memories.
4. about the places they recently visited.

Part 2-a — Engagement by the Temple Presence Inventory
(TPI) [48]

Rating scale: Not at all - Very much (10 points)

The person to my left/right:

1. is engaged/involved in the interaction with the robot.
2. is bored.

3. is interested by what the robot is saying.

4. likes this interaction.

Part 2-b —Personality by the Big-Five Inventory [S0]

Rating scale: Not at all - Very much (10 points)

The person to my left/right:

1. is reserved.

2. is generally trusting.
3. is relaxed, handles stress well.
4. tends to be lazy.

5. has few artistic interests.

6. is outgoing, sociable.

7. tends to find fault with others.
8. does a through job.

9. gets nervous easily.

10. has an active imagination.
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Fig. 2. Illustration of group engagement.

be mixed up with the notion of group engagement as defined in
“Cohesion" and “Mutual Engagement". According to Casey-
Campbell [51], cohesion is defined as “the group members’
inclinations to forge social bonds, resulting in the group
sticking together and remaining united". On the other hand, in
the context of music improvisation, mutual engagement occurs
when people creatively spark together and enter a state of
group flow [52].

In this paper, we refer to the engagement of a single partici-
pant with the robot as “individual engagement" to differentiate
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it from “group engagement". To obtain ground-truth labels
for group engagement, we follow a bottom-up approach and
move from individual-level assessments by simply assigning
one of the two labels, i.e., similar and dissimilar, to each
clip. While similar refers to the cases where both participants
are either engaged or non-engaged, dissimilar corresponds to
cases where only one of the participants is engaged.

2) Analysis of Annotations: In Table II, we present inter-
agreement and intra-agreement for individual engagement an-
notations. For inter-agreement, the level of consensus between
different raters was measured by the Intra-Class Correla-
tion [53]. We used ICC(1,1) and ICC(1,k) as in our exper-
iments each target participant was rated by a different set
of k raters (k = 10 in our case). While ICC(1,1) measures
the extent to which any two raters agree with each other,
ICC(1,k) measures the degree of agreement for annotations
that are averages of k independent annotations on the tar-
get participants. The ICC(1,1) shows lower correlations for
single rater (0.03 < ICC(1,1) < 0.27), whereas ICC(1,k)
display large correlations for the averaged annotations (0.20 <
ICC(1,k) < 0.79) (all measures are at a significance level
of p < 0.001). Intra-agreement was measured in terms of
standardised Cronbach’s «. For engagement annotations (see
Table II), we obtained v = 0.76 for all raters, over all items,
which is widely accepted as a good level of agreement [54].
Note that we presented these values for all the clips and for 10
raters per clip as we could not observe any large differences
in our analyses with respect to different robot personalities
(extroverted vs. introverted).

We repeated the same experiment for personality annota-
tions and presented the results in Table III. Our initial analysis
of personality annotations showed that ICC and Cronbach’s «
values were significantly smaller as compared to individual
engagement annotations. We conclude that personality anno-
tation is more challenging than engagement annotation, and
requires more social and cognitive skills. Assessing personality
also depends on many different criteria such as the rater’s
personality, rater’s unique perspective etc. [55], which renders
it more subjective to reach a high level of agreement between
different raters. Therefore, prior to any analysis, we selected 8
raters with the highest agreement out of 10 raters per clip. This
procedure resulted in a total of 219 clips and 8 annotations
per clip. For the remaining clips, inter- and intra-agreement in
terms of ICC and Cronbach’s « are presented in Table III-(a).

We implemented a ranking-based method to see whether any
low quality raters remained. Such methods were previously
employed in the literature of personality computing. For
instance, [56] used a method which ranked raters based on
pairwise correlations of raters’ responses measuring different
traits. In this study, we approached this problem similarly. We
first computed the weighted mean of the raters’ responses. The
raters were then ranked according to the distances between
their responses and the weighted mean. The top raters having
the least distance from the weighted mean were kept for further
analysis. For assessing the reliability of this approach, we com-
puted the ICC(1,1) and ICC(1,k) for different judge numbers
ranging from k = 8 (without elimination) to k = 3 (eliminating
the 5 least ranked raters). Our results showed that setting
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TABLE II
ANALYSIS OF ENGAGEMENT ANNOTATIONS: INTER-AGREEMENT IN
TERMS OF ICC (AT A SIGNIFICANCE LEVEL OF p < 0.001) AND
INTRA-AGREEMENT IN TERMS OF CRONBACH’S &

Inter Intra
ICC(1,1) ICC(l1,k) | Cronbach’s «
Engaged 0.27 0.79 -
Bored 0.03 0.20 -
Interested 0.10 0.51 -
Liked 0.10 0.54 -
Overall 0.20 0.71 0.76

the number of raters to 5 (k=5) provided a good trade-off
between inter- and intra-rater agreement. Additionally 5 is the
typical number of raters used in the related literature. It also
increased the inter-agreement from the range of 0.28 — 0.41
(at a significance level of p < 0.001) to 0.52 — 0.64 (at
a significance level of p < 0.001), where the highest level
of agreement was obtained for conscientiousness. Selecting
5 raters out of 8 raters did not affect the intra-agreement
for agreeableness, conscientiousness and neuroticism, how-
ever, improved the intra-agreement significantly for extrover-
sion (see Table III-(b)).

To generate ground-truth labels per clip, we aggregated
engagement and personality annotations of multiple raters by
taking their average. We used these labels for computational
analysis as explained in Section VII.

V. FEATURE EXTRACTION

We explored a rich set of features to model the behaviours
of the participants in the interaction. The extracted features
can be divided into two groups: individual features and inter-
personal features. Individual features describe the individual
behaviours of each participant, e.g., body activity computed
from articulated pose and motion energy images, body appear-
ance, etc. Interpersonal features characterize the inter-personal
behaviours of the participants with respect to each other and
the robot. These include the visual focus of attention (VFOA),
the global quantity of movement, the relative orientation of the
participants, the relative distance between the participants, and
the relative orientation of the participants with respect to the
robot.

As shown in Figure 3, our feature extraction pipeline starts
with the detection of the group in the clip, i.e., the region
of interest (ROI) comprising the robot and both participants.
The ROI is further used to localize the robot and the two
participants by fusing RGB and depth sequences. Once we
locate the human participants, we use this information to
estimate the articulated pose (skeleton) of the human parti-
cipants and detect their heads/faces. These outputs are further
used to compute individual features (see Section V-B) and
interpersonal features (see section V-C).

A. Group, Participant and Robot Detection

1) ROI/Group Detection: In a given clip, we extract the
ROI that contains the participants and the robot. The ROI
allows us to avoid false positives during feature extraction.
To detect the ROI, a binary mask as illustrated in Figure 4 is
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TABLE III
ANALYSIS OF PERSONALITY ANNOTATIONS: (A) RESULTS AFTER THE FIRST STEP OF ELIMINATION WHERE THE NUMBER OF RATERS IS 8 (K=8); (B)
RESULTS AFTER THE SECOND STEP OF ELIMINATION WHERE NUMBER OF RATERS IS SET TO 5 (K=5). WHILE INTER-AGREEMENT IS MEASURED IN
TERMS OF ICC (AT A SIGNIFICANCE LEVEL OF p < 0.001), INTRA-AGREEMENT IS MEASURED IN TERMS OF CRONBACH’S c. (EX:EXTROVERSION, AG:
AGREEABLENESS, CO: CONSCIENTIOUSNESS, NE: NEUROTICISM, OP: OPENNESS).

(a) k=8 Inter Intra b)k=5 Inter Intra
ICC(1,1) ICC(1,k) | Cronbach’s « ICC(1,1) ICC(1,k) | Cronbach’s
EX 0.07 0.36 0.04 EX 0.19 0.54 0.40
AG 0.05 0.28 0.40 AG 0.21 0.57 0.41
CO 0.08 0.41 0.39 CO 0.27 0.64 0.41
NE 0.05 0.32 0.51 NE 0.24 0.61 0.57
OP 0.06 0.35 - OP 0.18 0.52 0.11
TRACKING FEATURES
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Fig. 3. Overview of the feature extraction pipeline.

computed by differencing consecutive frames and accumulat-
ing the differences over the whole clip. This mask is further
used to define a box bounding the three entities (i.e., group)
as shown in Figure 4.

2) Upper Body Detection: We use the upper body detector
developed in [57] to fit a bounding box to the head and the
upper half of the torso of each participant. This method is
based on the Deformable Part-based Models (DPMs) [58].
In [57], Viola-Jones face detector [59] was used to improve
the upper body detection outputs from DPM. In this paper,
we further improved this method by combining it with depth
information. We created a human mask using simple heuristics
(i.e., distance from the camera) and applied it to each frame
prior to applying the upper body detector in order to reduce
the search space.

3) Robot Detection: To track the robot in the clips, we
perform Otsu’s [60] thresholding method combined with a
Kalman filter on the depth data. The method constitutes three
stages where each stage corresponds to the computation of a

global Otsu threshold level on the resulting depth frame. A
mask of the robot is obtained for every frame from which
we extract the bounding box of the mask to localize the robot.
Figure 5 shows some results of the robot extraction procedure.

4) Skeleton Joint Detection: We used a body pose es-
timation method [57] to detect skeleton joints (e.g., hand,
elbow, shoulder etc.) within the detected upper body in RGB
sequences. Once skeleton joints were estimated, we applied
normalisation in order to render each skeleton independent
from position and body size. For each frame, we scaled the
Euclidean distance between connected skeleton joints so that
the inner distance between the hip and the centre of shoulders
was set to the unit length, and then we translated joint positions
so that the centre of shoulders coincided with the origin of
the coordinate system. We computed individual features from
these skeleton joints as explained in Section V-B.

5) Head/Face Detection: We detected each participant’s
facial ROI from the Kinect RGB videos. To take into account
frequently occurring out-of-plane head rotations, we combined
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Examples of robot detection results.

different frontal and profile face detection models based on
the OpenCV version of Viola and Jones Haar Cascade algo-
rithm [59]. Once each participant’s facial ROI was detected,
Intraface library [61] was applied to compute and track head
roll-pitch-yaw angles. This head pose information was used
afterwards to compute visual focus of attention as explained
in Section V-C.

B. Individual Features

We extract a set of individual features from each partic-
ipant separately. These features are grouped under (i) mo-
tion/activity features extracted from depth sequences, detected
upper body boxes and skeletons; (ii) appearance features (i.e.,
gradient and optical flow) extracted from detected upper body
boxes and detected faces; and (iii) high level features such as
visual focus attention.

1) Motion/Activity Features: Motion features can be di-
vided into three sets based on the information source used,
i.e., motion from depth images, upper body boxes and skeleton
joints from RGB images.

Motion from Depth Images. In order to compute the quantity
of motion of each participant in the clips, we firstly perform a
pre-processing step to remove the robot and the background.
The robot is removed using a mask which is obtained by
summing up the robot’s masks from the robot localization
step over all the frames. The background is removed by simple
thresholding of the high values of the depth image since parti-
cipants and the robot are closer to the Kinect. Secondly, motion
is computed by taking the difference between consecutive
images and the pixels that are moving the most are identified.
From the salient pixels, we compute three features as below.

e Motion Average Image. This represents an image that
shows the average motion over the whole clip. It is
computed by averaging the motion per frame over the
whole clip.

o Motion History Image. This represents a map with in-
creasing indices trailing motion where brighter pixels
indicate older motion [62].

o Motion Average Signal. This represents a temporal se-
quence showing the average motion of each frame.

For the whole clip, we summarize motion features (i.e.,
motion average image and motion history image) mentioned
above by computing simple statistics such as minimum, max-
imum, mean, median, standard deviation, entropy, kurtosis
and skewness. In addition, the quantity of motion from the
motion average image is computed by counting the number of
salient pixels normalized by the image size. We also compute
the normalized histogram in 6 bins from the motion average
signal.

Body Activity from Upper Body Bounding Boxes. Body ac-
tivity is represented in two steps. Firstly, for each clip, vertical
and horizontal trajectories of the body are computed, where
center of the upper body bounding box is considered as a ref-
erence point. Spatial coordinates of the box center in the first
frame are subtracted from the spatial coordinates of the body
boxes in the subsequent frames to make trajectories position
independent. In other words, we computed the displacements
along vertical and horizontal directions for conjugate frames.
Secondly, we compute the standard deviation of body activity
in vertical and horizontal directions over the whole sequence.

Body Activity from Skeleton Joints. We compute the speed
of the joints for each of the participants. This corresponds to
the distance between the joint positions in two consecutive
frames.

2) Appearance Features: As appearance features, we com-
pute Histogram of Gradient (HOG) and Histogram of Optical
Flow (HOF) from the detected upper body boxes and the
detected faces per frame and transform these histograms into
a single representation for the whole clip using the widely
known Bag of Words (BoW) approach.

Upper Body. Firstly, we extract HOG and HOF features
from the detected body boxes per participant, per frame. Each
body box has a size of 120 x 120 and we compute 72 bin HOG
and HOF using a dense grid. This results in 169 x 72 = 12168
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TABLE IV
AUTOMATICALLY EXTRACTED NON-VERBAL FEATURES. INDIVIDUAL FEATURES CORRESPOND TO THE NON-VERBAL BEHAVIOUR OF EACH PARTICIPANT
INDIVIDUALLY. INTERPERSONAL FEATURES DESCRIBE THE BEHAVIOUR OF THE PARTICIPANTS WITH RESPECT TO EACH OTHER AND WITH RESPECT TO

THE ROBOT.
[ Type ][ Acronym Description [ Dim. |
BOW-HOG Histogram of Gradient is computed within the box bounding a participant’s upper body. 64
= A bag-of-words representation is then computed for each participant.
= BOW-HOF Above is repeated for Histogram of Optical Flow. 64
= B-ACT Body Activity is measured in terms of mean and standard deviation of the body bounding 2
e box center along horizontal and vertical directions over time.
= J-SPEED Joint speed is computed as the distance between the joint positions in consecutive 84
frames.
MA-NH Motion Average Signal Normalized Histogram in 6 bins. 6
MHI-STATS Motion History Image statistics (min, max, mean, median, std, skewness, and kurtosis). 7
MAI-STATS Motion Average Image statistics (same as MHI). 7
I-QoM Image Quantity of Motion is computed by counting the number of moving pixels in 1
the motion average image normalized by the image size.
— P-RO Participants’ relative orientation with respect each other. 7
g P-RDIST Participants’ relative distance. 7
é RO-ROBOT Relative orientation w.r.t robot. 7
2 RO-ROBOT-NH  Relative orientation w.r.t robot Normalized Histogram. 3
E ATT-R Attention given to robot. 1
= ATT-P Attention given to the other participant. 1
ATT-U Attention unknown. 1
G-QOM Global Quantity of Movement. 1

length HOG and HOF feature vectors. Using these feature, we
build two separate dictionaries for HOG and HOF using K-
means algorithm implemented in [63]. Then each sequence is
represented as BoW, where the number of histogram bin is set
to 64. Similarly to [64] we assume that each participant in a
frame is a word in the Bag of Word representation.

C. Interpersonal Features

Interpersonal features can be divided into two groups,
namely, dyadic and triadic features. Dyadic features comprise
the participant’s orientation with respect to each other, each
participant’s orientation with respect to the robot and the
distance between the participants. Triadic features include the
attention of the participants and the quantity of movement of
the participants and the robot together.

Visual Focus of Attention. Gaze in human-human social
interactions is considered as the primary cue of attention [65].
Sidner [66] stated that “looking at the speaking conversational
partner is evidence of engagement, while looking around
that room, for more than very brief moments, is evidence
of disinterest in the interaction and possibly the intention to
disengage”. Visual Focus Of Attention (VFOA) is the discrete
version of gaze that indicates who is looking at whom or
what [67].

In order to detect the VFOA of each of the participants, we
implement a geometry-based method. This method is inspired
by the human field of view. The approximate field of view of
an individual human eye (measured from the fixation point,
i.e., the point at which one’s gaze is directed) is 95 — 110°
temporal (away from the nose and towards the temple) [68].
The immediate field of view is around 35°. For both eyes
the combined visual field is 130 — 135° vertical and 200°
horizontal [69] (see Figure 6 for an illustration).

We make use of the bounding boxes of the robot and the two
participants and the participants’ head orientation in addition

to the skeleton fitting of the two participants. A semi-infinite
ray is also issued from the nose of the participants in the
direction of the 3D pose vector detected. We issue another
semi-infinite ray perpendicular to the shoulder’s line together
with two rays +/—35° from the shoulder’s perpendicular (see
figure 6) which approximates the human’s field of view in
the image when the head pose information is not available.
Furthermore, we detect the intersections of these rays with
the bounding boxes of the other participants and the robot to
infer the VFOA of the participant in question. The details of
the VFOA detection method is presented in Algorithm 1. In
every frame, VFOA of each participant is assigned to one of
three labels: Robot, Other and Unknown. The label “Robot"
corresponds to when the participant gives his attention to
the robot, “Other" is assigned when the participant is giving
attention to the other participant and “Unknown" label is
set when information are not sufficient to detect the VFOA.
To summarize the VFOA feature per clip, we compute the
percentage of time the participant gives attention to the robot
and to the other in the clip.

Algorithm 1 VFOA detection algorithm.

1: procedure VFOA DETECTION

2: RectR < Bounding Box of Robot

3: RectP <— Bounding Box of Participant

4: RectOP < Bounding Box of Other Participant

5: HPRayP < Head pose vector issued from participant’s nose

6: ShouldRay < Participant’s shoulders rays

7 VFOA < Participant’s detected Visual Focus of Attention

8: Algorithm:

9 if RectRNRectP OR HPRayPNRectOPN Rect R OR HPRayPNRectR
OR HPRayP N RectR OR ShouldRay N RectR then

10: VFOA < Robot

11: if HPRayP N RectOP OR ShouldRay N RectOP then

12: VFOA < Other

13: else

14: VFOA <+ Unknown

Global Quantity of Movement. This feature represents the
relative quantity of motion of all the entities in the interaction:
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Fig. 6. Left: Illustration of the human’s field of view. Right: Examples of VFOA extraction results. To the left, VFOA is approximated by the shoulders
orientation due to the lack of head orientation results. To the right, the VFOA of the left person is approximated by the head orientation ray issued from the

participant’s nose.

both participants and the robot. It is computed based on image
differencing of the entities silhouettes over the whole clip as
explained in section V-Al. The percentage of moving pixels
is computed from the resulting mask.

Relative orientation of the participants. Starting from the
skeletons of the participants, we compute the angle between
the shoulders lines of the two participants in each frame. This
represents the relative orientation of the two participants with
respect to each other. Such feature has been employed in
the work of Leclere et al. [70] for studying mother / infant
interpersonal interaction.

Relative distance between the participants. To compute the
relative distance between the participants, we compute the
distance between the centers of the shoulders of the two
participants obtained by the skeleton fitting step.

Relative orientation with respect to the robot. For each
participant, we compute the angle between the shoulders line
and the robot. Assuming that the robot’s shoulders are always
horizontal, we approximate the robot’s shoulders line by the
horizontal.

To summarise the relative distance between the participants
and the relative orientation with respect to the robot features
over the whole clip, we compute the mean, max, min, median,
standard deviation, kurtosis and skewness. We also compute
the normalized histogram of the relative orientation with
respect to the robot feature in three bins centered at —30,
0 and 30. This is another way to quantify the VFOA of each
participant.

VI. CORRELATION ANALYSIS OF LABELS AND FEATURES

Prior to training any automatic classifiers, we examined
the relationships between engagement and personality labels
and the extracted features. We computed Pearson correlation
and tested the significance of correlations using Student’s t
distribution.

Individual Engagement. We first investigated the possible
relationships between the five personality traits of extrover-
sion, agreeableness, conscientiousness, neuroticism, and open-
ness, and the engagement dimensions of engaged, bored, in-
terested, liked and overall. Correlation values are tabulated in
Table V. We only present the correlations between engagement
labels and personality labels generated from 5 selected raters

TABLE V
CORRELATIONS BETWEEN THE FIVE PERSONALITY TRAITS AND THE
ENGAGEMENT DIMENSIONS (AT A SIGNIFICANCE LEVEL * < 0.001 AND
** < 0.05). CORRELATION VALUES > 0.29 ARE HIGHLIGHTED.

Engaged Bored Interested Liked Overall
EX 0.40* -0.29* 0.37* 0.38* 0.44*
AG 0.02 -0.11%* 0.11** 0.09 0.11**
CcO 0.19* -0.18* 0.22* 0.20* 0.24*
NE -0.04 0.07 -0.08 -0.10**  -0.11**
OP 0.01 -0.04 0.05 0.03 0.05

(K = 5). Extroversion is found to be significantly corre-
lated with all the engagement dimensions as well as overall
engagement which was calculated by taking the average of
the four engagement dimensions (engaged, bored, interested
and liked). Although not as large as for extroversion, we
also obtained significant correlations between conscientious-
ness , agreeableness and neuroticism and all the engagement
dimensions. However, there was no significant correlation
found for openness.

Group Engagement. We investigated the relationship be-
tween personality and engagement labels with respect to
different robot personalities in Figure 7. Figure 7-(a-b) present
the personality pairs with respect to the different robot person-
alities. As can be seen when the robot was extroverted, raters
tended to perceive the human participants less extroverted
as we obtained less number of occurrences of EX-EX (two
extroverted participants) pairs as compared to IN-EX (one
introverted and one extroverted participant) and IN-IN (two
introverted participants) pairs. Similarly, when the robot was
introverted, raters tended to perceive the participants less
extroverted (see Figure 7-(b)). This might be due to the fact
that when the robot behaves less energetic, participants also
appear to be less energetic and more introverted. In Figure 7-
(c-d), we present the engagement patterns with respect to the
different robot personalities. These are (i) both participants are
non-engaged (NEN-NEN); (ii) one of the participants is non-
engaged, whereas the other is engaged (NEN-EN); (iii) both
participants are perceived to be engaged (EN-EN). In both
robot conditions, we observed less number of occurrences of
non-engaged pairs and also NEN-EN was more frequent than
EN-EN. This might be due to the fact that in each clip the
robot asked a question to one of the participants, i.e., while
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one of the participants was talking and interacting with the
robot, the other participant was listening to the conversation
between the robot and her/his interaction partner. Therefore
raters perceived one of the participants more engaged as
compared to the other one.

We also computed correlations between 6 triplets of per-
sonality (all extroverted including the robot, extroverted robot
+ two introverted participants, extroverted robot + one extro-
verted and one introverted participant, etc.) and 3 engagement
pairs (two non-engaged participants, one non-engaged and one
engaged participant, two engaged participants). We obtained
a correlation of 0.16 (at a significance level of p < 0.05).
We investigated the correlations regarding the different robot
personalities where we obtained 0.20 (p < 0.05) and 0.17
(p < 0.5) for extroverted robot condition and introverted
robot condition, respectively. These results show that, although
not large, we obtained a significant relationship between
personality triplets (EX-EX-EX, EX-IN-IN, EX-IN-EX, etc.)
and engagement pairs (NEN-NEN, NEN-EN, EN-EN).

Labels and Features. Finally, we investigated possible re-
lationships between each individual feature introduced in
Section V and personality traits as well as overall engage-
ment. The largest correlation values (at a significance level
of p < 0.05) are presented with respect to different robot
personalities (i.e., extroverted vs. introverted) in Table VI. As
we can see from the table, the best correlation values were
obtained between the features based on histogram of optical
flow and the studied constructs (personality and engagement).

VII. EXPERIMENTS AND RESULTS
A. Experimental Setup

Since one of our main goals is to investigate the impact
of personality traits on the prediction of engagement, we first
focus on the prediction of Big Five personality traits and then
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present engagement classification results. We formulated the
personality prediction task as a regression problem, where we
aim at predicting personality labels ranging from 1 to 10. For
this purpose, we applied Gaussian Process regression with an
RBF kernel of the WEKA Data Mining tool [71]. We trained
a separate regressor for each personality trait. We used the
default parameters as we observe that the default parameters
yield the best prediction performance using 10-fold cross
validation. We performed the personality prediction using the
two groups of features (i.e., individual and interpersonal) as
well as their combinations.

We formulated automatic engagement prediction as a two-
class classification problem. Given the labels ranging from 1 to
10, we binarised the labels with respect to the mean computed
over training samples and grouped the participants into two
classes, e.g., engaged vs. nonengaged. For classification, we
compared two different methods. These are Support Vector
Machines (SVM) with a linear kernel and Random Forests
(RF) of the WEKA [71]. For SVM, we again used the default
parameters as they yield the best results. For RF, setting
the number of trees to twice the number features yields the
best performance, which are 500 and 1000 in the prediction
of individual engagement and in the prediction of group
engagement, respectively.

Given the personality labels, we performed the classification
of engagement by considering 7 different combinations of
features: (1) Individual; (2) Interpersonal; (3) Personality; (4)
Individual + Interpersonal; (5) Individual 4 Personality; (6)
Interpersonal + Personality; (7) All features. We compared the
classification results when manually annotated personality la-
bels are used against when automatically predicted personality
labels are used. For predicting group engagement, we followed
a similar procedure. More explicitly, we took into account the
same feature combinations listed above. However, differently
from individual-level analysis, we combined features from
both participants into a single feature vector for group-level
analysis.

For personality prediction and engagement classification, we
evaluated performance using 10 fold cross validation strategy
in a subject-independent fashion. Each time we randomly
divided the samples into 10 groups of which we used 9 groups
for training and then tested the trained predictors/ classifiers
on the remaining group. We repeated this procedure 10 times
and took the average over all iterations to calculate the mean
performance.

B. Personality Regression Results

We presented the personality prediction results for each
feature set, for each personality trait in Table VII. The best
results were obtained using individual features as they yielded
the minimum square error (MSE) and the maximum coefficient
of determination (R?) value for all the personality traits. On
the other hand, interpersonal features yielded poor prediction
results as compared to individual features and deteriorated the
prediction results when combined with individual features (see
the last row in Table VII) except for the openness trait. Look-
ing at the R? values, we noted adequate regression results with
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TABLE VI

BEST CORRELATIONS (> 0.14, p < 0.05) BETWEEN FEATURES AND PERSONALITY LABELS AS WELL AS OVERALL ENGAGEMENT LABEL WITH RESPECT
TO DIFFERENT ROBOT PERSONALITIES.

Feature Type Extroverted Robot Introverted Robot
EX AG CcO NE OP EN EX AG CcO NE OP EN
BOW-HOG 0.14 - 0.16 0.14 0.19 | 0.14 || 0.5 0.16 0.15 0.15 0.16 | 0.17

. BOW-HOF 031 019 0.18 0.17 0.17 | 0.23 024 021 021 015 0.17 | 0.24

E J-SPEED 0.17 - - - - | o019 - - - - - -
MA-NH 0.15 0.15 0.15 - 0.17 | 0.18 - 0.19 0.15 - - -
MAI-STATS - - - - - 0.14 - - - - - -

. RO-ROBOT - 0.15 - 0.18  0.14 - - - - - - -
g ATT-R - - - - - - 0.16 - - - - -
= ATT-P -0.17 - - 0.16 - - - - - - - -

G-QOM - - - -0.15  0.15 - - - - - - -

individual features for all the traits where extroversion was
the easiest trait to predict (R?> = 0.18) and openness the
most challenging one (R? = 0.10). These results motivated
us to perform engagement classification with the automati-
cally predicted personality labels in addition to engagement
classification with the manually annotated personality labels.

C. Engagement Classification Results

Individual Engagement. In Table VIII, we present the clas-
sification results of individual engagement using SVM and RF.
A paired t-test was conducted to test for the significant dif-
ferences between the results of the different classifiers taking
the RF as the base classifier. The paired t-test signifies that
the same cross-validation folds are used for all the classifiers
in order to obtain a matched pair of results. We observe that,
in general, RF performs better than SVM in the classification
of individual engagement.

Looking at the performance with manually annotated per-
sonality labels (see the left hand side of Table VIII), per-
sonality labels in conjunction with SVM performed better
than both individual and interpersonal features with an F-
measure of 0.69. Combining personality labels with individual
and interpersonal features further improved the performance
from 0.67 to 0.76 in the case of individual features and
from 0.52 to 0.68 in the case of interpersonal features. How-
ever, combining individual and interpersonal features without
personality labels did not improve the performance as com-
pared to using individual features alone (F-measure= 0.67).
Combining all the features did not improve the performance
with respect to combining personality and individual features
either. Using RF classifier boosted the F-measure to 0.81. We
noted a similar trend in performance with respect to different
feature sets. More explicitly, personality labels (F-measure=
0.75) alone performed better than interpersonal features (F-
measure= (0.66) and slightly worse than individual features (F-
measure= 0.77). In addition to combining all the features with
personality labels, individual features together with personality
labels yielded the best results (F-measure= (0.81).

As a next step we used the best prediction outputs of
personality regression framework to detect individual engage-
ment, which was achieved with individual features. Using
the automatically predicted personality labels yielded an F-
measure on par with using the manually annotated personality
labels (see the right hand side of Table VIII). We again

obtained the best results by combining individual features with
personality labels as well as combining all the features with
personality labels (F-measure = 0.80).

In order to better understand the effect of similar and
dissimilar personalities, we examined the classification results
with the features yielding the best results (i.e, individual
features + personality labels) and RF in more detail. We
presented these results with respect to different personality
types of the robot and the participants in Table IX, where
we divided the participants into two groups: extroverted and
introverted. We achieved the best classification performance
when both the participant and the robot were extroverted (F-
measure=0.92), while the worst results were obtained when
all were introverted (F-measure=0.69).

Group Engagement. In Table X, we presented the classifi-
cation results of group engagement using SVM and RF with
10-fold cross validation. Recall that, in group engagement
classification, our goal is to discriminate between three classes:
(i) both participants are engaged (EN-EN); (ii) only one of
participants is engaged (EN-NEN); and (iii) both participants
are nonengaged (NEN-NEN). However, since we have a small
number of samples from NEN-NEN class, we only considered
EN-EN and EN-NEN classes in group engagement classifica-
tion. We also presented the results with the manually annotated
personality labels due to the fact that they resulted in slightly
better performance than using the automatically predicted per-
sonality labels in predicting individual engagement. As seen in
Table X, while we achieved the best F-measure (0.60) using
only individual features in conjunction with RF, combining
individual features and interpersonal features or combining
individual features and personality labels also led to a similar
performance.

D. Discussion

Previous methods for personality prediction significantly
varied in the interaction scenarios, the databases used, the clas-
sification methods applied, which did not allow us to provide a
fair comparison. However, we still provided a comparison to
give an insight into what features were found to be useful
to predict each of the personality traits. Aran and Gatica-
Perez [32] handled the prediction of extroversion trait as a
regression problem. For the extroversion trait, they achieved
the best results with the weighted Motion Energy Images
(MEIs, MSE = 1.28, R? = 0.31). However, Visual Focus of
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TABLE VII

PERSONALITY REGRESSION RESULTS USING GAUSSIAN PROCESSES IN TERMS OF MEAN SQUARE ERROR (MSE) AND COEFFICIENT OF DETERMINATION
(R?). EX: EXTROVERSION; AG: AGREEABLENESS; CO: CONSCIENTIOUSNESS; NE: NEUROTICISM; OP: OPENNESS.

EX AG CO NE OP

Feature Set MSE R2 | MSE R?2 | MSE R? | MSE R? | MSE R?

Individual 047 0.18 | 048 0.5 | 049 0.15 | 055 0.15 | 0.30 0.10

Interpersonal || 052  0.09 | 052 008 | 052 0.10 | 059 0.09 | 033 0.01

All 048 017 | 049 0.4 | 050 0.14 | 056 0.14 | 030 0.10
TABLE VIII

INDIVIDUAL ENGAGEMENT CLASSIFICATION RESULTS IN TERMS OF F-MEASURE FOR DIFFERENT FEATURE COMBINATIONS. THE RESULTS ARE
PRESENTED USING BOTH MANUALLY ANNOTATED PERSONALITY LABELS AND AUTOMATICALLY PREDICTED PERSONALITY LABELS. SVM: SUPPORT
VECTOR MACHINES, RF: RANDOM FORESTS.

Manual. Annot. Personality Labels Auto. Pred. Personality Labels

Feature Set SVM RF SVM RF
Individual 0.67 0.77° - -
Interpersonal 0.52* 0.66° - -
Personality 0.69 0.75° 0.75 0.75
Individual 4 Interpersonal 0.67 0.78°¢ - -
Individual + Personality 0.76v 0.81° 0.64* 0.80%v
Interpersonal + Personality 0.68 0.79°¢ 0.70* 0.77°¢

All 0.75" 0.81°v 0.64* 0.80%v

e, o statistically significant improvement or degradation if comparing SVM and RE.
v, * statistically significant improvement or degradation if comparing different features combinations.

TABLE IX
INDIVIDUAL ENGAGEMENT RESULTS WITH REGARDS TO ROBOT
PERSONALITY AND PARTICIPANT’S PERSONALITY.

Rahbar et al. [37] also achieved the best results by com-
bining individual and interpersonal features. In contrast, our
results showed that individual features always worked better
than interpersonal features as well as their combination (see

Robot Table VII). This might be due to the fact that, by definition,
. Personaliy |} px N personality refers to individual differences in patterns of

Participant
Personality behaving. The judges might have assessed target participants
EX 092 087 by detaching them from the group without utilising their social
IN 072 0.69 communication cues. Table VI supported this assumption as
we obtained more significant correlations between individual
features and personality traits both in quantity and in absolute

TABLE X values.

GROUP ENGAGEMENT CLASSIFICATION RESULTS WITH THE MANUALLY
ANNOTATED PERSONALITY LABELS IN TERMS OF F-MEASURE FOR
DIFFERENT FEATURE COMBINATIONS. SVM: SUPPORT VECTOR
MACHINES, RF: RANDOM FORESTS.

e, o statistically significant improvement or degradation

Attention (VFOA) features resulted in worse results (M SE =
1.61, R? = 0.13). Similarly, we took into account MEIs
and VFOA in the set of individual and interpersonal features,
respectively. Our regression results also bore similarities in the
sense that we obtained better results with individual features
(MSE = 0.47, R? = 0.18) as compared to the interpersonal
features (MSE = 0.52, R?> = 0.09) for extroversion. We
observed the same phenomenon for the rest of the personality
traits.

On the other hand, Staiano er al. [31] found that social
attention features worked better for predicting extroversion.

For the classification of individual engagement, individual
features again provided better performance as compared to
interpersonal features in conjunction with both SVM and RF.

fe(‘;‘.“‘.rg Slet %‘2}4 OIZIS_ For example, looking at the results using RF, while F-measure
ndividua . A . . .. . .
Interpersonal 057 0.54 was 0.77 with individual features, it decreased to 0.66 with
Personality 0.58 0.53 interpersonal features (see Table VIII). This result was not
Individual & Interpersonal | 0.48 0.60* in line with our expectations as, differently from personality,
Individual & Personality 0.44 0.60° .

Interpersonal & Personality | 0.48 0.54 we assumed that engagement was an interpersonal construct
ALL 0.60 0.46° rather than an individual construct. This finding might be due

to the challenges in the used clips such as occlusion, low
resolution. Head pose estimation and skeleton fitting methods
were unable to perform successfully in some of the frames.
Interpersonal features such as relative orientation, visual focus
of attention that solely rely on these erroneous estimations
might deteriorate the performance. However, using personality
labels remedied these errors and significantly increased the
performance to 0.81 when the manually annotated personality
labels were used, and to 0.80 when the automatically predicted
labels were used. We showed that classification results with the
automatically predicted personality labels were as good as with
the manually annotated personality labels, which demonstrated
that automatically predicted personality labels can be a reliable
substitute for manually annotated personality labels.
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We examined our individual engagement classification re-
sults with respect to both different personality types of the
robot and the participants (see Table IX). Unlike the previous
works [12] or [13], we could not link any finding to either
the similarity rule or the complementary rule. On the other
hand, we found that in general it was easier to detect the
engagement state of extroverted participants regardless of
the robot’s personality as F-measure was found to be 0.92
and 0.87 in the case of extroverted robot and introverted
robot, respectively. Extroverted robot provided a slightly better
test bed to discriminate between engaged and non-engaged
participants. We compared our results with [13], as they also
presented their rapport classification results with respect to
different virtual agents (an extroverted one and a neurotic
one). They obtained slightly better classification results with
the gloomy, neurotic agent (Obadiah). This shows that context
created by a robot or a virtual agent has an impact on the
classification performance.

For the classification of group engagement, we combined
both participants’ features to predict similar and dissimilar
patterns, i.e., either both were engaged or only one of them was
engaged. We obtained the best results using individual features
with RF, similarly to personality prediction and individual
engagement classification results. Including interpersonal fea-
tures or personality labels did not improve the performance
further. This can be explained by the fact that we adopted
a bottom-up approach to generate group engagement labels,
i.e., we computed group engagement labels from individual
engagement labels. Therefore combining participants’ indi-
vidual features were sufficient to model group engagement.
We conclude that in order to achieve better performance with
the interpersonal features, one might need to ask the external
observers to assess group engagement by considering the
group as a whole rather than using hand-crafted labels.

VIII. CONCLUSION AND FUTURE WORK

In this paper we aimed at examining the impact of person-
ality on individual engagement as well as group engagement.
We implemented automatic feature extractors and classifiers,
which can be directly utilised on a robotic platform. We
investigated the performance of combining personality labels
with a set of individual and interpersonal features. Our results
showed that, for detecting individual engagement, participants’
personalities play an important role. Using only the personality
traits of a user, we were able to predict his/her engagement
state to a high extent, and combining them with individual fea-
tures improved the performance of the engagement classifier.
We also found that it is easier to detect engagement state of
extroverted people as compared to introverted people.

The proposed framework can be improved in several ways.
To mitigate the effect of erroneous head pose and skeleton
joint estimations, features based on Kinect v2.0 skeleton joints
detection can be used to improve the results with interpersonal
features as it is known that Kinect v2.0 gives reliable results
due to the enhanced depth sensor with respect to Kinect v1.0
used in this work. Moreover, in this study, we exclusively
focused on the recordings captured from static, third-person
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perspective due to the challenges in processing ego-centric
recordings, but alternatively head pose can be estimated jointly
from Kinect recordings and ego-centric recordings for en-
hancing the performance of interpersonal features. For group
engagement, instead of asking external observers to assess
the participants independently, it would be better to collect
annotations for both participants together, possibly by asking
the external observers to rank and compare different clips
containing different participant pairs with respect to their
group engagement. Furthermore, in this paper, we presented
experimental results for 248 clips collected from a total of 18
participants. Although the number of clips is adequate, the
limitation of the study is the small participant size, which
is typical in human-robot interaction studies (e.g., [12]). As
a future work, we plan to extend the personality prediction
and engagement classification experiments with a dataset
comprising of higher number of participants and clips.
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