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Abstract13

Partially molten materials resist shearing and compaction. This resistance is described14

by a fourth-rank effective viscosity tensor. When the tensor is isotropic, two scalars de-15

termine the resistance: an effective shear and an effective bulk viscosity. Here, calcula-16

tions are presented of the effective viscosity tensor during diffusion creep for a 2D tiling17

of hexagonal unit cells and a 3D tessellation of tetrakaidecahedrons (truncated octahe-18

drons). The geometry of the melt is determined by assuming textural equilibrium. The19

viscosity tensor for the 2D tiling is isotropic, but that for the 3D tessellation is anisotropic.20

Two parameters control the effect of melt on the viscosity tensor: the porosity and the21

dihedral angle. Calculations for both Nabarro-Herring (volume diffusion) and Coble (sur-22

face diffusion) creep are presented. For Nabarro-Herring creep the bulk viscosity becomes23

singular as the porosity vanishes. This singularity is logarithmic, a weaker singularity24

than typically assumed in geodynamic models. The presence of a small amount of melt25

(0.1% porosity) causes the effective shear viscosity to approximately halve. For Coble26

creep, previous modelling work has argued that a very small amount of melt may lead27

to a substantial, factor of 5, drop in the shear viscosity. Here, a much smaller, factor of28

1.4, drop is obtained for tetrakaidecahedrons. Owing to a Cauchy relation symmetry, the29

Coble creep bulk viscosity is a constant multiple of the shear viscosity when melt is present.30

1 Introduction31

Dynamical models are often highly dependent on assumptions about the rheology32

of the material being deformed. In many situations in the Earth Sciences, this rheology33

is poorly known, and this is particularly true of the polycrystalline rocks in the partially34

molten regions of the Earth’s mantle. There are two main approaches to making progress35

towards a better understanding of rheology: One approach is to perform deformation ex-36

periments on materials in the laboratory, and parametrise the results of these experiments37

into empirical laws (e.g. Mei, Bai, Hiraga, and Kohlstedt (2002)). A second approach38

is to produce models of the microscale physics and upscale these models to produce rhe-39

ological laws suitable for use at larger scales (e.g. Cooper & Kohlstedt, 1984; Takei &40

Holtzman, 2009a). This study follows the second approach.41

One of the remarkable features of the Earth’s mantle is its ability to flow on long42

time scales, despite being solid for the most part. This flow is only possible because the43

solid is fairly close to its melting temperature, which enables creep by the diffusive trans-44
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port of matter in the solid phase. Diffusion creep comes in two main types: Nabarro-Herring45

creep (Herring, 1950; Nabarro, 1948), where diffusion takes place through the bodies of46

grains, and Coble creep (Coble, 1963), where diffusion takes place along the boundaries47

between grains. Due to the different activation enthalpies and grain-size dependencies48

of the two diffusion mechanisms, Nabarro-Herring creep dominates for large grains and49

high temperatures; Coble creep for small grains and low temperatures.50

A pure solid material resists shear, and that resistance to shear is characterised by51

a shear viscosity, which for diffusion creep can be calculated from simple mathematical52

models of the diffusive transport of matter (Coble, 1963; Herring, 1950; Lifshitz, 1963).53

A partially molten material allows an additional mode of deformation, compaction, whereby54

grains are packed closer together and melt is expelled under an isotropic stress. The re-55

sistance to this kind of deformation can be described in terms of an effective bulk vis-56

cosity (McKenzie, 1984), which can also be determined using microscale models of dif-57

fusion (Arzt, Ashby, & Easterling, 1983; Cocks, 1996; Cocks & Searle, 1990; Takei & Holtz-58

man, 2009a).59

In partially molten materials undergoing diffusion creep, the presence of melt causes60

a reduction in the effective shear viscosity of the material compared to the melt-free sit-61

uation. One reason for this is that diffusion in the melt phase is typically much faster62

than in the solid phase (Cooper & Kohlstedt, 1984; Takei & Holtzman, 2009a). Since63

the rate of diffusion creep is dependent on the rate at which material can be transported64

from one part of a grain to another, the presence of fast melt pathways speeds up the65

overall rate of creep for a given stress. How large this effect is depends crucially on the66

geometry of the melt at the grain scale. The simplest model of melt geometry at the grain67

scale is that of textural equilibrium, a state which minimises surface energy. Calcula-68

tions of such melt geometries have recently been presented for a tessellation of tetrakaidec-69

ahedral unit cells (Rudge, 2018). The aim of this manuscript is to explore the effect of70

melt on creep viscosities using these geometries.71

This work can be seen as a direct extension of the work by Takei and Holtzman72

(2009a). That study presented a detailed account of the effect of melt on viscosity dur-73

ing Coble creep, but made a series of approximations to the geometry (spherical grains74

with circular contact patches) to allow analytical solutions to be obtained for the rel-75

evant diffusion problems. Here, the diffusion problems are solved numerically by the fi-76
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nite element method using the full geometries. Moreover, in this study, both Nabarro-77

Herring creep and Coble creep are considered.78

The manuscript is organised as follows. The next section presents an overview of79

the governing equations of diffusion creep, both for Nabarro-Herring creep and Coble creep.80

Section 3 gives results of the creep calculations for the textural equilibrium geometries.81

To build insight, for each type of diffusion creep the case of a 2D hexagonal array of grains82

is considered first before examining the 3D case. Discussion and conclusions sections fol-83

low that compare these results to those in the wider literature. Detailed mathematical84

derivations are given in the appendices.85

2 Governing equations86

The basic governing equations of diffusion creep are well-established and can be87

found in many previous studies (e.g. Cocks (1996); Cocks and Searle (1990); Herring (1950);88

Lifshitz (1963); Nabarro (1948); Takei and Holtzman (2009a) ). These equations estab-89

lish the relationship between the macroscale stress and strain tensors, which can be writ-90

ten in terms of a fourth-rank effective viscosity tensor. The presentation of the equations91

given below largely follows Lifshitz (1963) in expressing all relationships in tensor form,92

and follows Cocks and Searle (1990) and Takei and Holtzman (2009a) in its treatment93

of the melt phase.94

2.1 Nabarro-Herring (volume diffusion) creep95

Let the concentration of vacancies (number of vacancies per unit volume) in the

solid grain be c. Fick’s law describes the motion of vacancies within the grain, with flux

jv = −Dv∇c, (1)

where Dv is the diffusivity of vacancies. There is a corresponding flux j = −jv of atoms.

Conservation of vacancies within the grain (∇·jv = 0, assuming a quasi-static approx-

imation) yields Laplace’s equation for the concentration of vacancies

∇2c = 0. (2)

The grain changes shape because of the flux of vacancies to the boundaries of the grain,

which are assumed to act as perfect sources and sinks for vacancies. The shape change

is described by the plating rate ṙ, which quantifies the rate at which a boundary grows,

–4–



manuscript submitted to JGR: Solid Earth

and is given by

ṙ = −Ωjv · n (3)

where Ω is the atomic volume, and n is the normal outward to the grain. For the reg-

ular tessellations of identical grains considered here, we will assume grain boundaries are

perpendicular to lines connecting neighbouring grain centres. Addition or loss of mate-

rial at the grain boundaries leads to a change of shape of the grain, which manifests as

a macroscopic strain rate ė. To maintain compatability between grains during deforma-

tion, the assumption will be made that the polyhedral grain remains polyhedral (all grain

boundaries remain flat). Thus the plating rate ṙ will be a constant on each planar face

of the grain (Cocks & Searle, 1990). Coordinates are chosen such that the centre of mass

of the grain is the origin, and it will be assumed this point is fixed. The plating rate ṙ

on the planar grain boundaries can then be related to the strain rate tensor ė by

n · ė · n =
ṙ

x · n
, (4)

where x·n is the perpendicular distance of the plane from the centre of the grain, and

x is the position vector of a point on the plane. Gradients in vacancy concentration are

created because the grain is under stress, and this changes the equilibrium concentra-

tion of vacancies at the grain boundaries, which depends on the normal stress on those

boundaries. Unlike the plating rate, the normal stress varies over each grain boundary.

A linearised relationship between the concentration of vacancies and the normal stress

is given by (Herring, 1950)

c = c0

(
1 +

Ω

kT
n · σs · n

)
on S, (5)

where S is the surface of the grain, c0 is the equilibrium concentration of vacancies, k

is the Boltzmann constant, and T is temperature. For a partially molten system, the sur-

face of the grain can be divided into two types: a section of grain–grain contact (Sss) and

a section of grain–liquid contact (Ssl). On areas of contact with the liquid it will be as-

sumed that

σs · n = −P ln on Ssl, (6)

where P l is the liquid pressure (surface tension across the solid–liquid interface is ne-

glected). Implicit in this boundary condition is an assumption that all the melt pores

are connected and at the same pressure. Conservation of momentum inside the grain is

∇ · σs = 0. (7)
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It will be assumed that grains can slide freely at grain-boundaries (Lifshitz, 1963; Raj

& Ashby, 1971), and thus the corresponding shear stresses are relaxed,

t · σs · n = 0 on Sss, (8)

where t is a vector tangential to the boundary plane. The main quantity of interest is

the mean stress inside the grain, defined by

σs ≡ 1

Vs

∫
σs dV, (9)

where Vs is the volume of the grain. The ultimate aim of the creep calculations is to re-

late this mean stress σs to the macroscopic strain rate ė. This can be done without ex-

plicitly solving for the stress inside the grain, because the mean stress inside the grain

can be related to the boundary tractions σs · n by∫
σs dV =

∫
σs +

(
∇ · σs

)
x dV =

∫
∇ ·
(
σsx

)
dV =

∫
xσs · n dS (10)

where the first equality exploits the conservation of momentum (7), and the final equal-

ity exploits the divergence theorem and the symmetry of the stress tensor. Furthermore,

because the boundaries are assumed to be free-slipping (8), the boundary tractions are

purely normal, and can be written σs · n = (n · σs · n)n. Hence,

σs =
1

Vs

∫
(n · σs · n) x n dS (11)

In turn, n·σs·n can be related directly to the concentration of vacancies through (5).96

2.1.1 Scaling97

The equations above can be simplified by scaling to produce dimensionless govern-

ing equations. All lengths can be scaled on a characteristic length scale d (a measure of

grain size). It is useful to introduce the self-diffusion coefficient D = Dvc0Ω, and scale

all times with the diffusive timescale τ = d2/D. A natural scale for stresses (and thus

pressure) is given from (5) as P0 = kT/Ω. It follows that a natural scale for viscosi-

ties is P0τ = kTd2/DΩ, which is the classic scaling of Nabarro-Herring creep, with vis-

cosities proportional to the square of grain size. For the concentration of vacancies it is

useful to introduce a scaled variable as

c′ =
c

c0
− 1 + P l′ (12)
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where P l′ = P l/P0 is the scaled liquid pressure. The dimensionless governing equations

are then

∇2c = 0 in Vs, (13)

c = 0 on Ssl, (14)

∂c

∂n
=
(
n · ė · n

)
x · n on Sss, (15)

σs = −P lI +
1

Vs

∫
cx n dS. (16)

where primes have been dropped on the dimensionless variables for ease of reading. The98

Laplace’s equation of (13) follows directly from (2). The Dirichlet boundary condition99

on the solid–liquid interfaces (14) follows from combining (5) and (6). The Neumann bound-100

ary condition (15) results from combining (1), (3), and (4). The mean stress expression101

(16) results from (11) and (5), and I is the identity tensor. Given a desired macroscopic102

strain rate ė, (13), (14), and (15) can be solved to determine c, which can then be sub-103

stituted into (16) to determine the mean stress that needs to be applied to produce that104

strain rate.105

Another way of writing (16) is in terms of the total stress tensor,

σ = φσl + (1− φ)σs, (17)

where φ is the porosity (volume fraction of melt). φ ≡ Vl/Vcell where Vl is the volume

of liquid melt and Vcell is the volume of a unit cell (when considering a tessellation of

unit cells). In the calculations that follow it will be assumed that as porosity varies, the

volume of the cell remains fixed. (16) can be written in terms of total stress as

σ = −P lI +
1

Vcell

∫
cx n dS. (18)

Since (13), (14), (15) are linear equations, the vacancy concentration c is linearly related

to the strain rate tensor ė. As a consequence, the results of the calculations can be writ-

ten in suffix notation as

σij = −P lδij + Cijklėkl (19)

where δij is the Kronecker delta and Cijkl is the viscosity tensor. It is possible to write

a single statement of the problem for this viscosity tensor. The linear relationship be-

tween c and ė can be written as c = γij ėij where γij is a symmetric second rank ten-
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sor that satisfies

∇2γij = 0 in Vs, (20)

γij = 0 on Ssl, (21)

∂γij
∂n

= xpnpninj on Sss, (22)

Cijkl =
1

Vcell

∫
γklxinj dS. (23)

2.2 Coble (grain-boundary diffusion) creep106

The governing equations for Coble creep are very similar to those outlined above

for Nabarro-Herring creep. The only differences that arise from those in section 2.1 are

in changes to equations (1), (2), and (3). In Coble creep, diffusion only transports mat-

ter on the boundaries of the grains. The corresponding Fick’s law becomes

jv = −Dgb
v ∇⊥c, (24)

where Dgb
v is the diffusivity of vacancies along the grain boundary, and ∇⊥ is the per-

pendicular gradient operator, defined by

∇⊥ ≡ (I − nn) · ∇, (25)

where n is the outward normal to the grain. Conservation of mass relates the divergence

of the flux to the plating rate

1
2Ωδ∇⊥ · jv = ṙ, (26)

where δ is the grain boundary thickness. The factor of 1/2 arises because each grain bound-

ary borders two grains. Note that some authors, such as Takei and Holtzman (2009a),

use the symbol δ to denote the grain-boundary half-width. Here δ denotes the full-width,

as used by Cocks and Searle (1990) and Raj and Ashby (1971). As before, the plating

rate ṙ is constant on each planar face of the grain. Combining (26) and (24) leads to a

Poisson equation for the concentration of vacancies

− 1
2ΩδDgb

v ∇2
⊥c = ṙ on Sss. (27)

An additional subtlety arises in Coble creep, in that boundary conditions also need

to be specified on the grain edges. When melt is present on the grain edges, this con-

dition is simply that c is constant on the edges. When melt is not present, c must be con-

tinuous across the grain edges, and flux must be conserved, which implies that∑
m

νm · ∇⊥c = 0 on Γ, (28)
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where Γ represents the contact line where grain boundaries meet, m is an index iden-107

tifying each grain boundary, and νm is the outward-pointing co-normal to each surface108

at the contact line (i.e. νm is perpendicular to both the normal to the surface and a vec-109

tor in the direction of the contact line).110

2.2.1 Scaling111

As for Nabarro-Herring creep, the governing equations can be simplified by scal-

ing. The scaling for length and stresses are the same, but (27) motivates a slightly dif-

ferent choice of timescale, τ = d3/δDgb where Dgb = Dgb
v c0Ω is the self-diffusion co-

efficient for grain-boundary diffusion. The natural viscosity scale is then kTd3/δDgbΩ,

proportional to the third power of grain-size. The dimensionless equations are

−∇2
⊥c = 2

(
n · ė · n

)
x · n on Sss, (29)

c = 0 on Ssl, (30)

σ = −P lI +
1

Vcell

∫
cx n dS. (31)

As for Nabarro-Herring creep, we may write c = γij ėij to get a single statement of the

problem for the viscosity tensor as

−∇2
⊥γij = 2xpnpninj on Sss, (32)

γij = 0 on Ssl, (33)∑
m

νm · ∇⊥γij = 0 on Γ, (34)

Cijkl =
1

Vcell

∫
γklxinj dS. (35)

3 Results112

3.1 Nabarro-Herring (volume diffusion) creep113

3.1.1 2D: Tiling of hexagons114

The simplest and most natural two-dimensional geometry one can consider is a tiling115

of hexagonal grains. The hexagonal symmetry demands that the fourth-rank viscosity116

tensor is isotropic, and hence can be described by just two numbers: the shear viscos-117

ity η and the bulk viscosity ζ.118
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Figure 1. Illustration of the hexagonal unit cell undergoing a) isotropic bulk deformation

and b) pure shear. Regions of melt are shown in grey. The colour scale inside the solid grain is

used to show concentration of vacancies. Black lines show the paths of vacancy flux. Under bulk

compression material is transported from the grain–grain boundaries to the melt pores, resulting

in shrinking of the melt pores and overall compaction.

130

131

132

133

134

In the absence of melt, only shear is possible, with shear viscosity given in dimen-

sional form as

η0 =
kTd2

36DΩ
, (36)

where d is the perpendicular distance between opposite sides of the hexagon, and the sub-119

script 0 is used to denote the absence of melt. The dimensional factors in (36) are ob-120

tained by scaling, and the numerical prefactor of 1/36 results from a calculation. Remark-121

ably, this numerical prefactor can be obtained from a simple geometrical integral, with-122

out the need to explicitly solve Laplace’s equation (see appendix A.2 for the derivation).123

(36) is identical to the formula attributed to Gibbs by Raj and Ashby (1971). A slightly124

different numerical prefactor for hexagonal grains of 1/30.2 was obtained by Beeré (1976).125

The 1/36 factor given here is exact, and Beeré (1976)’s results only differ due to approx-126

imations he made to the geometry in order to get an analytic expression for the solu-127

tion of Laplace’s equation. The 1/36 prefactor is not that different from that for a cir-128

cle of diameter d, which is 1/32.129

Our principal interest here is the effect of melt on the viscosity, which requires as-135

sumptions about how the melt is organised at the grain scale. For the hexagonal tiling136

we assume that melt lies at the vertices of the hexagons, and takes the form of a tex-137
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turally equilibrated geometry (minimum surface energy). This implies that the solid–138

melt interfaces are simply arcs of circles, which meet the solid–solid (grain–grain) con-139

tacts at the dihedral angle (German, Suri, and Park (2009)). There are thus two param-140

eters that describe the effect of melt: the porosity (volume fraction of melt) φ and the141

dihedral angle θ.142

The geometry of the hexagonal unit cell with melt present is illustrated in Figure143

1. The governing equations in (20)-(23) have been solved numerically using the FEniCS144

software (Logg, Mardal, & Wells, 2012; Logg & Wells, 2010) to obtain the bulk and shear145

viscosities, presented in Figure 2. Such finite element calculations have been performed146

previously for circular pores by Cocks (1996), and the calculations here extend Cocks’s147

analysis to a wider range of pore shapes.148

Figure 2a shows the bulk viscosity (scaled by the reference shear viscosity η0 in the

absence of melt), which becomes singular as the porosity vanishes. As apparent from the

plot, this singularity is logarithmic in the porosity. This singularity arises because very

small melt pores act like point sources/sinks of vacancies at the vertices of the hexagon.

In two-dimensions, point-source solutions of Laplace’s equations are proportional to the

logarithm of distance away from the source. Thus at very small porosities, the vacancy

concentration grows logarithmically approaching the vertices of the hexagon; this man-

ifests in a logarithmic singularity in the bulk viscosity. The behaviour at small poros-

ity can be obtained formally by matched asymptotics (appendix A.3.1) as

ζ

η0
∼ −9

√
3

4π
log φ− 3.92922− 9

√
3

2π
log κ(θ), (37)

which is plotted as the dotted lines in Figure 2. The leading order term, proportional158

to log φ, is independent of the shape of melt pores. Hence all curves in Figure 2a approach159

the same slope as porosity tends towards zero. The melt pore shape affects the next or-160

der, constant term, which is expressed in terms of the logarithmic capacity κ(θ) of the161

pore shape, which in turn depends on the dihedral angle θ. Figure 3 plots the logarith-162

mic capacity κ(θ) calculated using the capacity routine of the Schwarz-Christoffel Tool-163

box (Driscoll, 2002; Driscoll & Trefethen, 2002). For a fixed porosity, the bulk viscos-164

ity increases with increasing dihedral angle. The full numerical solutions start to depart165

significantly from the asymptotic solutions once φ & 0.3%. The bulk viscosity vanishes166

once all the grain boundaries have been wetted, which happens for larger porosities at167

larger dihedral angles.168
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Figure 2. Bulk and shear viscosities for Nabarro-Herring creep of hexagonal grains with melt.

Solid lines show the finite element calculations for different dihedral angles as indicated in the

legend. Dotted lines show the asymptotic results for small porosity. Porosity is shown on a loga-

rithmic scale on the horizontal axis. On the vertical axes are shown a) scaled bulk viscosity ζ/η0,
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equilateral triangle), 90◦, 120◦, 150◦, and 180◦ (a circle). The scaling is such that each pore has
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The shear viscosity (again scaled by the reference shear viscosity η0 in the absence

of melt) is plotted in Figure 2b. The shear viscosity is not singular as the porosity van-

ishes, and tends to η0. However, just a small amount of melt can cause a notable drop

in the shear viscosity – for a 0.1% porosity, the shear viscosity is around 63 to 68% of

the melt-free value, depending on the dihedral angle. The approach of the shear viscos-

ity to η0 as porosity vanishes is proportional to the reciprocal of the logarithm of φ. Matched

asymptotics (appendix A.3.2) yields the small-porosity expression,

η

η0
∼ 1 +

2πF√
3 (log(εκ(θ)) + 2πR)

(38)

where F = 0.319889078 and R = 0.150237305 are numerical constants, and ε is re-

lated to φ by

ε =

(√
3φ

4π

)1/2

. (39)

Similar to the bulk viscosity, at higher porosities the shear viscosity vanishes on wetting169

of the grain boundaries. Figure 2c shows the ratio ζ/η of bulk to shear viscosity, which170

also demonstrates a logarithmic singularity at small porosities. At larger porosities the171

ratio ζ/η tends to 2.172

3.1.2 3D: Tessellation of tetrakaidecahedrons173

A natural generalisation of the tiling of hexagonal grains in 2D is a tessellation of

tetrakaidecahedrons (truncated octahedrons) in 3D. The tetrakaidecahedron has 14 faces,

6 of which are squares, 8 of which are hexagons. In the tessellation, three grains meet

along grain edges, and four grains meet at the vertices. The tetrakaidecahedron has cu-

bic symmetry. Unlike in the 2D case of hexagons, this symmetry does not lead to isotropy

of the fourth-rank viscosity tensor. However, it does reduce the fourth rank tensor to three

independent components, which can expressed in Voigt notation as

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


=



ζ + 4
3η1 ζ − 2

3η1 ζ − 2
3η1 0 0 0

ζ − 2
3η1 ζ + 4

3η1 ζ − 2
3η1 0 0 0

ζ − 2
3η1 ζ − 2

3η1 ζ + 4
3η1 0 0 0

0 0 0 η2 0 0

0 0 0 0 η2 0

0 0 0 0 0 η2


,

(40)
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for a bulk viscosity ζ and two shear viscosities η1 and η2. Here we will define the co-ordinates174

of the tetrakaidecahedron such that the x, y, and z axes are aligned with the normals175

to the square faces.176

In the absence of melt, only shear deformation is permitted, and the two shear vis-

cosities can be calculated by a geometric integral (appendix A.2) over the grain as

η10 =
23

1536

kTd2

DΩ
, η20 =

31

1536

kTd2

DΩ
, (41)

where d is the distance between opposite square faces of the tetrakaidecahedron, and ze-

ros are again used to indicate the absence of melt. The anisotropy is apparent, and can

expressed by the Zener ratio A ≡ η2/η1 = 31/23 ≈ 1.35. Shear is easiest when the

principal axes of shear are aligned with the square faces. The Voigt-average over all of

the viscosities in (41) is

η0 ≡
2

5
η10 +

3

5
η20 =

139

7680

kTd2

DΩ
, (42)

and will be used as a reference quantity in what follows. The Voigt-average is obtained177

by averaging the viscosity tensor Cijkl over all possible orientations of the grain. The178

numerical prefactor 139/7680 ≈ 0.0181 is reasonably similar to the numerical prefac-179

tor for a sphere of diameter d, which is 1/40 = 0.025 (Herring, 1950). The prefactor180

139/7680 is also similar to another calculation for the tetrakaidecahedron by Shah and181

Chokshi (1998), which yielded a prefactor of 1/54 = 0.0185, but that study did not con-182

sider the inherent anisotropy of the shape.183

In three-dimensions, determining the textural equilibrium melt geometries is rather199

more involved than in 2D. Such calculations have recently been presented in Rudge (2018),200

and examples of these melt geometries are shown in Figure 4. Figures 5 and 6 plot the201

bulk and shear viscosities for a tessellation of tetrakaidecahedral unit cells with melt present,202

using the calculated geometries of Rudge (2018). The viscosities are again a function of203

two parameters: the porosity φ and the dihedral angle θ. As discussed in Rudge (2018),204

there are different topologies of the melt network depending on these two parameters.205

When the dihedral angle is less than 60◦ and the porosity small, melt lies along the triple206

lines where three grains meet, and forms a connected network. For small porosities, and207

dihedral angles greater than 60◦, melt resides in isolated pockets and does not form a208

connected network. The effect of melt on viscosity has only been calculated here for the209

cases where the melt forms a connected network (so that it is possible to expel melt by210

compaction).211
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Figure 4. Examples of two melt topologies around tetrakaidecahedral grains. Both examples

have a dihedral angle of 30◦ (Rudge, 2018). a) shows the connected or “c” topology for a poros-

ity of 0.03. b) shows the square-wetted or “s” topology for a porosity of 0.12. The melt network

is shown in yellow, and the grain faces are in a colour scale showing vacancy concentration during

bulk deformation for Coble creep.

184

185

186

187

188

The topology that has melt connected along the grain edges (termed “c” for con-212

nected) is shown as thin lines on Figures 5 and 6. At higher porosities, melt starts to213

wet the square faces of the tetrakaidecahedrons, forming a different melt topology (termed214

“s” for square-wetted). This topology is shown as the thicker lines on Figures 5 and 6.215

For dihedral angles less than 60◦, the “c” topologies have a logarithmic singular-

ity in the bulk viscosity. The reason for this logarithmic singularity is similar to the 2D

case, with melt tubules acting as line sources/sinks of vacancies along grain edges when

the porosity is small. An asymptotic analysis (appendix A.4) yields the small porosity

behaviour

ζ

η0
∼ −160

√
2

139π
log φ, (43)

which is plotted as the black dotted line in Figure 5. The next term in the asymptotic216

analysis is a constant term, and depends on the details of the melt geometry. This ge-217

ometry is nontrivial to determine in 3D for an infinitesimal amount of melt. Neverthe-218

less, the leading order term in (43) seems to provide a good match to the slope of the219

numerical results at low porosity. The slope in 3D (-0.518) is rather less than the slope220

in 2D (-1.240). More broadly, the predicted variations in the ratio of bulk to shear vis-221

cosity are relatively modest, unless the porosity becomes extremely small: ζ/η varies from222
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Figure 5. a) Scaled bulk viscosity and b) scaled ratio of bulk to shear as a function of poros-

ity for a tessellation of tetrakaidecahedral unit cells undergoing Nabarro-Herring creep. Thin lines

show “c” topologies (connected along the grain edges, Figure 4a), thick lines show “s” topolo-

gies (where the square faces are wetted, Figure 4b). The dashed black line shows the expected

slope from the asymptotic analysis for small porosities (the intercept of the line has been chosen

arbitrarily).
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Figure 7. Two distinct conceptual models for Coble creep in the absence of melt for hexago-
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from one grain to another through the network of grain boundaries. Pure shear is applied, and
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235

236

237

238

239

around 4.0 at a porosity of φ ∼ 10−3 to a limiting value of 5/3 ≈ 1.67 at higher porosi-223

ties.224

Figure 6 plot the shear viscosities, both the individual η1 and η2, along with the225

Voigt-average η = 2
5η1 + 3

5η2. One notable feature of this plot is the vanishing of η1226

when wetting of the square faces occurs. The presence of melt along the square faces al-227

lows easy shearing in pure shear with principal axes aligned with the normals to the square228

faces. The general trend of shear viscosity against porosity for small porosity is similar229

to that seen in 2D. However, there is a greater overall reduction in the shear viscosity230

with porosity. For example, even a small porosity of 0.1% is expected to have a Voigt-231

average shear viscosity approximately half that of the melt-free value.232

3.2 Coble (grain-boundary diffusion) creep233

3.2.1 2D: Tiling of hexagons234

Analysis of Coble creep is generally simpler than that of Nabarro-Herring creep,240

because diffusion takes place over manifolds of dimension one lower than that of the space241
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(e.g. over lines in 2D, planes in 3D). Coble creep in the absence of melt for hexagonal242

grains is illustrated in Figure 7. An additional subtlety arises for Coble creep, in that243

the shear viscosity one obtains depends crucially on assumptions about what happens244

at the triple points where three grains meet. Two possible assumptions are shown in Fig-245

ure 7: In the first case, the grain is considered isolated, and grain-boundary diffusion is246

restricted to an individual grain (this is the assumption made by Takei and Holtzman247

(2009a)). In the second case, it is assumed that all grain boundaries are connected such248

that matter can be transported from one grain to neighbouring grains through the net-249

work of grain boundaries (this is the assumption made by Spingarn and Nix (1978)). When250

considering a tessellation of identical grains, it is more reasonable to make the networked251

assumption as there is no physical process that would be expected to restrict diffusion252

to an individual grain.253

If the grain is assumed isolated, the shear viscosity is given by (appendix B.1)

η0,isolated =
7

432

kTd3

δDgbΩ
, (44)

where d is the distance between opposite sides of the hexagon. The numerical prefac-

tor of 7/432 ≈ 0.0162 is very similar to that for a circle of diameter d, which is 1/64 ≈

0.0156 (Takei & Holtzman, 2009a). When the grain-boundaries are networked, the vis-

cosity is significantly less, and is given by

η0,networked =
1

144

kTd3

δDgbΩ
, (45)

as found by Spingarn and Nix (1978). The viscosity for the networked case is lower by254

a factor of 3/7 ≈ 0.43. Under the networked assumption, each vertex of the hexagon255

is identical, and therefore must be at the same chemical potential (note that each of the256

triple junctions in Figure 7 has the same pattern of fluxes). The vertices are not iden-257

tical in the isolated case, where the four vertices at the top and bottom of the hexagon258

in Figure 7 are at a different chemical potential to the two on the far left and right. The259

networked case is weaker because there is a shorter effective diffusion distance from one260

part of the hexagon to another, provided by the “short-circuiting” at the triple points.261

Takei and Holtzman (2009a) and Holtzman (2016) have argued that the presence262

of a very small amount of melt can radically reduce the shear viscosity. They argue this263

is due to the “short-circuiting” nature of the melt, which acts as a fast path for diffu-264

sion. Whether such a reduction is seen for the hexagonal configuration here depends on265
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whether the “isolated” or “networked” assumption is made for the situation without melt.266

In fact, adding an infinitesimal amount of melt at the triple junctions of the networked267

example makes no difference, because all triple junctions are already at the same chem-268

ical potential. Hence in this case there is no weakening effect of a small amount of melt.269

However, if the situation without melt is assumed isolated, then there is a drop by a fac-270

tor of 3/7 when melt is introduced.271

The effect of melt pores on a hexagonal array of grains has been discussed by Cocks

and Searle (1990), who find for the same geometry of melt pores as depicted in Figure

1 that

η

η0,shorted
=

(
Ass

Acell

)3

(46)

where Ass/Acell is the fraction of the boundary of the unit cell that is grain–grain con-

tact (Ass = Acell with no melt present, Ass = 0 when complete wetting occurs). η0,shorted

is the viscosity in the presence of an infinitesimal amount of melt, equal to the networked

result given in (45). The fraction Ass/Acell is related to porosity φ and dihedral angle

θ by an expression of the form

Ass

Acell
= 1−

√
φ

φd(θ)
(47)

where φd(θ) is the porosity at which disaggregation occurs (i.e. complete wetting of the

grain boundaries). φd(θ) as a function of dihedral angle is given explicitly in appendix

B.2.1. Hence

η

η0,shorted
=

(
1−

√
φ

φd(θ)

)3

, (48)

which is plotted in Figure 8. Once melt is present, bulk deformation is possible. Owing274

to a symmetry of the governing equations known as the Cauchy relation, bulk and shear275

viscosity are linked by ζ = 2η in 2D (see appendix B.2). As consequence, both bulk and276

shear viscosity show the same behaviour with porosity for Coble creep.277

3.2.2 3D: Tessellation of tetrakaidecahedrons278

As in 2D, the viscosity of tetrakaidecahedrons in 3D depends on assumptions about282

the behaviour at the triple lines where three grains meet. Figure 9 depicts three possi-283

bilities: 1, Isolated, where grain-boundary diffusion is restricted to an individual grain;284

2, Networked, where the grain shown is one grain of an infinite tessellation of grains, and285

grain-boundary diffusion can move matter from one grain to neighbouring grains; 3, Shorted,286

where an infinitesimal amount of melt is assumed to lie along the grain edges forming287
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Figure 9. Vacancy concentrations under pure shear for Coble creep of tetrakaidecahedrons

with three different assumptions (isolated, networked, or shorted). The principal axes of shear are

aligned with the square faces of the tetrakaidecahedron.
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η10 η20 η0

isolated 0.0043178 0.0077000 0.0063471

networked 0.0012242 0.0034715 0.0025726

shorted 0.0005491 0.0026965 0.0018376

Table 1. Shear viscosities of tetrakaidecahedrons for Coble creep under three different assump-

tions (isolated, networked, shorted). The numerical prefactors above should be multiplied by

kTd3/δDgb to give the dimensional viscosity.

293

294

295

a fast path for diffusion. The corresponding viscosities for these three situations are given288

in Table 1. The numerical prefactor for the Voigt-average viscosity for the isolated case,289

0.0063471, is fairly similar to that for a sphere of diameter d, which is 1/120 ≈ 0.0083333290

(Takei & Holtzman, 2009a). The anisotropy in viscosity is larger than seen for Nabarro-291

Herring creep, with Zener ratios η2/η1 given by 1.78, 2.84, and 4.91 for the three cases.292

As in 2D, the networked configuration has a significantly reduced viscosity com-296

pared to the isolated configuration (in terms of the Voigt-average, the viscosity is reduced297

by a factor of 0.40, a similar factor to that seen for the hexagonal case). A key differ-298

ence is that in 3D, unlike in 2D, the shorted and networked configurations are not iden-299

tical. The shorted configuration reduces the viscosity by a factor of 0.71 compared to300

the networked configuration, and is a factor of 0.29 lower than the isolated configura-301

tion.302

The effect of melt on the viscosities is plotted in Figure 10. The anisotropy is clear,308

and arises largely from the smaller contact areas of the square faces compared to the hexag-309

onal faces. As for Nabarro-Herring creep, the shear viscosity η1 vanishes when the square310

faces become wetted. Owing to the Cauchy relation symmetry, the bulk viscosity is a311

constant multiple of the Voigt-average shear viscosity, given by ζ = 5
3η (appendix B.2).312

The main behaviour of viscosity as a function of porosity in 3D for Coble creep can

be understood from the simple theory developed by Cooper and Kohlstedt (1984, 1986)

and Takei and Holtzman (2009a). In the study by Takei and Holtzman (2009a) the grain

geometry is simplified to be a sphere with circular contact patches. With these simpli-

fications, the shear viscosity with melt present can be related to the area of solid–solid
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contact by

η

η0,shorted
≈
(
Ass

Acell

)2

, (49)

where Ass/Acell is the fraction of the boundary of the unit cell that is grain–grain con-

tact. The exact relationship between shear viscosity and contact areas for the more com-

plex geometry considered here is given in appendix B.2, and is a weighted sum of squares

of the individual contact areas. The expression above does not take account of the dif-

ferences between the different contacts (i.e. the differences in both shape and area of the

square and hexagonal contacts, and the differences in distances of the contacts from the

grain center). Nevertheless, (49) provides a useful approximation. In turn, the contact

areas can be approximately related to porosity by

Ass

Acell
≈ 1−

√
φ

φd(θ)
(50)

where φd(θ) is a function of dihedral angle (Rudge, 2018; von Bargen & Waff, 1986). This

is a good approximation for a tube-like melt geometry (see (B14) of Rudge (2018)). Hence

for φ > 0 (Takei & Holtzman, 2009a)

η

η0,shorted
≈

(
1−

√
φ

φd(θ)

)2

, (51)

which differs from the 2D result in (48) only in the exponent of 2 rather than 3.316

The broad validity of the approximation in (51) is illustrated in Figure 11, which317

plots the square root of the scaled shear viscosity against the square root of porosity. On318

this plot, an expression of the form (51) should give a straight line. Certainly for low porosi-319

ties and connected topologies, the approximation appears to be good. For a 40◦ dihe-320

dral angle typical of basaltic melts, and porosities less than 10%, this implies a φd of around321

0.24 (just slightly larger than φd of 2.3−2 ≈ 0.19 suggested by Takei and Holtzman (2009a)322

for the olivine–basalt system). Unlike the 2D case, φd now does not represent exactly323

the porosity at which disaggregation occurs, because the relationship in (51) is only ap-324

proximate. Instead φd represents where disaggregation would be expected to occur if one325

extrapolates the approximate linear relationship seen at low porosities in Figure 11 to326

higher porosities.327

The full calculations show that the shear viscosity η2 is proportional to the areas328

of the hexagonal contacts squared, and η1 the same for the square contacts (appendix329

B.2). Thus the main trends in Figure 10a and b mimic those in Figures 16 and 17 of Rudge330

(2018) which plot the relevant areas against porosity.331
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Figure 11. A plot of the same data for Coble creep of tetrakaidecahedrons as in Figure 10c,

except axes now show the square root of scaled, Voigt-average shear viscosity against the square

root of porosity to reveal a near-linear trend.
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The broad agreement of the Coble creep calculations presented here with those of337

previous studies is illustrated in Figure 12. Shown in the figure is the calculated vari-338

ation in average shear viscosity for a dihedral angle of 40◦, along with model curves from339

the studies of Takei and Holtzman (2009a) and Cooper et al. (1989). The curves marked340

Takei and Holtzman (2009a) are given by equation (51), where two values of φd are shown.341

The first (φd = 0.19) is that directly suggested by Takei and Holtzman (2009a) as ap-342

propriate for olivine-basalt; the second (φd = 0.24) is the value which better fits the343

creep calculations presented here for a dihedral angle of 40◦ at small porosities. With344

the appropriate choice of φd the law given in (51) clearly provides a very good approx-345

imation to the numerical calculations up to porosities of about φ ∼ 0.1, as can also be346

seen in the near linear nature of the curves in Figure 11 up to
√
φ ∼ 0.3. The depar-347

ture of the calculations here from the approximate law of (51) arises from the assump-348

tion of an isotropic grain model by Takei and Holtzman (2009a), whereas the model here349

has considerable anisotropy arising from the differences between the square and hexag-350

onal contacts.351

Figure 12 also shows the expected behaviour from the model of Cooper et al. (1989),352

which closely approximates the calculations presented here for a wide range of porosi-353

ties. The model of Cooper et al. (1989) is also based on tetrakaidecahedrons, but the ge-354

ometry is simplified by assuming that melt lies in uniform tubes along the grain edges.355

Cooper et al. (1989) argue that the dominant contribution to the average shear viscos-356

ity comes from the hexagonal faces, and thus approximate that the viscosity scales with357

the fourth power of the distance from the centre of a hexagonal face to the melt. This358

is a reasonable approximation to have made – while we have shown here that the aver-359

age shear viscosity depends on a weighted sum of squares of the areas of both the square360

and hexagonal contacts, it is indeed the hexagonal contacts that form the dominant con-361

tribution. For example, in the absence of melt, the hexagonal faces contribute 88% of362

the total sum in the estimation of the average shear viscosity. The remaining differences363

between the Cooper et al. (1989) calculations and the model presented here arise due364

to the more accurate computation of the melt geometry here (i.e. not approximating by365

tubes), and the direct calculation of the contributions from both the square and hexag-366

onal faces.367
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4 Discussion368

Perhaps the most useful outcome of this work is the expressions relating the bulk369

and shear viscosities to porosity, given for Coble creep by (51), and for Nabarro-Herring370

creep by (A.63) and (A.64) in appendix A.5. These expressions can be used in larger-371

scale geodynamic calculations, such as those models based on the compaction equations372

of McKenzie (1984).373

There are important differences between the rheological laws proposed here and374

those in common use by the geodynamics community. Perhaps the most important dif-375

ference concerns the bulk viscosity. Here, the bulk viscosity either has a logarithmic sin-376

gularity at small porosity (Nabarro-Herring creep), or is a constant multiple of the shear377

viscosity (Coble creep). In large-scale geodynamic models, bulk viscosity is usually given378

by a law with a singularity proportional to 1/φ (e.g. Bercovici, Ricard, and Schubert (2001);379

Hewitt and Fowler (2008); Schmeling, Kruse, and Richard (2012); Scott and Stevenson380

(1986); Simpson, Spiegelman, and Weinstein (2010); Sleep (1988)). The reason these stud-381

ies have a different singular behaviour is ultimately due to a different conception of the382

physics at the scale of individual grains. In these studies, the grain itself is treated as383

a Newtonian viscous fluid, so that the governing equations at the microscale are those384

of Stokes flow. In the present study, the physics of the individual grain is described in385

terms of diffusion. As shown in section 2, only at the macroscale does the medium act386

like a Newtonian viscous fluid. The different singular behaviour at small porosity is ul-387

timately a consequence of the different PDEs that are solved at the grain scale: here,388

Laplace’s or Poisson’s equation; in the previous studies, Stokes flow. The rheological laws389

determined here are likely to better represent the viscosities of partially molten rocks390

because they better reflect the true microscale physics.391

In fact, a logarithmic singularity of the bulk viscosity was originally advocated by392

McKenzie (1984) (see his Figure 6 and (C12)). His equation (C12) arises from a model393

of Coble creep with spherical pores, as discussed by Arzt et al. (1983) and Pan and Cocks394

(1994). Here, the results for Coble creep do not show a logarithmic singularity, and this395

is due to the different melt geometry – here melt lies in tubes along the grain edges for396

dihedral angles less than 60◦, whereas Arzt et al. (1983)’s model assumes spherical pores.397

Another key point of difference from previous studies is the effect of a very small398

amount of melt on the shear viscosity. Takei and Holtzman (2009a) argued that during399
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Coble creep the shear viscosity is 20% that of the melt-free case when a small amount400

of melt is present, due to the short-circuiting effect of the melt pathways. The results401

here suggest the effect of the short-circuiting may be much more modest, since even in402

the absence of melt, diffusion may be able to take place through the complete network403

of grain boundaries rather than being restricted to a single grain as Takei and Holtzman404

(2009a) assume. For Coble creep, the shear viscosity with a very small amount of melt405

is then 71% of the melt-free value. During Nabarro-Herring creep there is no sudden drop406

in the shear viscosity at the onset of melting, but there is a very rapid decrease as the407

porosity increases: At just 0.1% porosity the shear viscosity is halved from the melt-free408

value. Experimental studies have produced mixed results as to whether there is a sud-409

den drop in the shear viscosity at the onset of melting. Drops in the shear viscosity have410

been reported for both the organic borneol system (McCarthy & Takei, 2011) and olivine-411

basaltic melt systems (Faul & Jackson, 2007), but more recent work on borneol has not412

identified a drop (Yamauchi & Takei, 2016).413

It is important to bear in mind the simplifications that have made in this study.414

Importantly, there has been no exploration here of the effects of chemistry, which is likely415

to play an important role in the polyphase, polycrystalline, partially molten mantle. Here416

all crystals have been treated as being the same phase, and all grain-boundaries are those417

between identical grains. In a polyphase system, there are a series of different grain bound-418

aries depending on the combinations of different mineral phases that meet (Ford & Wheeler,419

2004). Thus matter may be transported more easily across some boundaries than oth-420

ers. This may mean that the short-circuiting effect of melt might be greater in a polyphase421

system than one with a single solid phase. Moreover, each grain-boundary has been treated422

as freely slipping, and the calculations here could be extended by considering a finite vis-423

cosity for the grain boundaries (Lifshitz, 1963). The inclusion of grain boundary viscos-424

ity will be particularly important for modelling short-timescale transient deformation425

(e.g. that associated with seismic attenuation). However, the freely-slipping assumption426

is likely to be good for modelling the long-timescale deformation associated with man-427

tle convection and melt transport.428

The melt geometries on which this study is based are textural equilibrium geome-429

tries assuming isotropic surface energies. Anisotropy is likely to play an important role430

in wetting some grain boundaries, and in turn reducing the shear viscosity. Moreover,431

the geometry of the melt network must evolve with finite deformation, and more work432
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needs to be done to explore with interactions between effective rheology and finite de-433

formation.434

This study is also based on an assumption of an infinite diffusivity in the melt phase.435

Finite melt diffusivity will mean the effect of melt-weakening is not as strong as calcu-436

lated here. The effect of finite diffusivity has been explored by Takei and Holtzman (2009b),437

and similar calculations could be performed for the more complex geometries considered438

here. As Takei and Holtzman (2009b) point out, the effects of finite melt diffusivity are439

most important at very small porosities. Moreover, at large porosities, the rheological440

laws produced here will also breakdown as they do not consider the finite viscosity of441

the melt phase. At very large porosities one has a suspension of isolated crystals within442

a melt, which is described by a very different rheological law.443

The precise behaviour of bulk viscosity as a function of porosity can have impor-444

tant consequences for larger-scale dynamics. An important example of this has been given445

recently by Rees Jones and Katz (2018) and concerns the reaction-infiltration instabil-446

ity (RII), an instability that may be responsible for localising melt transport during man-447

tle melting. Rees Jones and Katz (2018) have demonstrated that a bulk viscosity which448

varies strongly with porosity is more likely to suppress the RII than one which does not.449

The rheological laws derived here have consequences for the rate at which melt bands454

develop during shear (Holtzman, Groebner, Zimmerman, Ginsberg, & Kohlstedt, 2003;455

Spiegelman, 2003; Stevenson, 1989). Linear stability analysis shows that melt bands are456

expected to initially grow at a rate proportional to a weakening factor α = d log η/dφ457

(Spiegelman, 2003; Stevenson, 1989), which is plotted as a function of porosity for the458

rheologies considered here in Figure 13. Modelling work on this instability (e.g. Bercovici459

and Rudge (2016); Katz, Spiegelman, and Holtzman (2006); Rudge and Bercovici (2015);460

Takei and Katz (2015)) has typically used an empirical rheological law of the form η ∝461

exp(αφ), with constant α ∼ −26, based on a fit to experimental data by Mei et al. (2002).462

As pointed out by Takei and Holtzman (2009a) for Coble creep, the microscale calcu-463

lations predict a weakening factor α which varies with porosity. For porosities around464

3% as used in experiments (Holtzman et al., 2003), a weakening factor around α = −17465

is predicted for Coble creep (Figure 13). The growth-rate of melt bands also depends466

on the ratio of bulk to shear viscosity. The rheological laws here suggest the bulk vis-467

cosity is comparable in magnitude to the shear viscosity, as also recently argued by Al-468
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Figure 13. A plot of the porosity-weakening exponent α = d log η/dφ against porosity for

Nabarro-Herring and Coble creep and a dihedral angle of 40◦. The thin lines shows the connected

“c” topology and the thick lines the square-wetted “s” topology. Shown as a black horizontal line

is the corresponding result for the empirical exponential law proposed by Mei et al. (2002).
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isic, Rhebergen, Rudge, Katz, and Wells (2016) on the basis of a comparison of numer-469

ical models of melt bands with the laboratory experiments by Qi, Zhao, and Kohlstedt470

(2013). A bulk viscosity comparable to the shear viscosity was also inferred in four-point471

bending experiments by Cooper (1990), who found ζ/η = 1.9, not too dissimilar the472

value of ζ/η = 5
3 = 1.67 predicted for Coble creep.473

5 Conclusions474

This study represents one step towards a better understanding of the rheology of475

partially molten materials. The effective viscosity tensor has been obtained as a func-476

tion of porosity and dihedral angle for diffusion creep, both assuming body diffusion (Nabarro-477

Herring creep) and surface diffusion (Coble creep). The 3D calculations were based on478

an assumption of a melt geometry that is in textural equilibrium, with a tessellation of479

identical tetrakaidecahedral (truncated octahedral) unit cells. For Coble creep, the bulk480

viscosity was shown to be a constant multiple of the shear viscosity, whereas Nabarro-481

Herring creep has a logarithmic singularity in the bulk viscosity for small porosities. An482

important challenge for the future is to develop a model of finite deformation which al-483

lows the melt geometry to evolve with time, and to be out of textural equilibrium. An484

additional challenge is to explore other forms of deformation, such as dislocation creep.485

Such models will undoubtedly provide important insights into the dynamics of melt ex-486

traction from the Earth’s mantle.487
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A Nabarro-Herring creep analytical solutions499

A.1 Decomposition into trace and symmetric trace-free components500

It is helpful to decompose equations (20-23) for Nabarro-Herring creep into trace501

and symmetric trace-free components, by writing γij as502

γij =
γ

N
δij + γ̃ij (A.1)

where the symbol γ without subscripts is used to represent the trace part (γ ≡ γkk),503

and γ̃ij is the symmetric trace-free part (γ̃kk = 0). N is the dimension of the space (N =504

2 for the hexagons, N = 3 for the tetrakaidecahedrons). The trace part of the decom-505

position is associated with bulk deformation, and the symmetric trace-free part is asso-506

ciated with shear.507

The viscosity tensor can be decomposed as

Cijkl = Bijδkl + C̃ijkl, (A.2)

where the tensors Bij and C̃ijkl can be obtained from two separate problems, one for bulk

deformation:

∇2γ = 0 in Vs, (A.3)

γ = 0 on Ssl, (A.4)

∂γ

∂n
= xpnp on Sss, (A.5)

Bij =
1

NVcell

∫
γxinj dS, (A.6)

and one for shear:

∇2γ̃ij = 0 in Vs, (A.7)

γ̃ij = 0 on Ssl, (A.8)

∂γ̃ij
∂n

= xpnpÑij on Sss, (A.9)

C̃ijkl =
1

2Vcell

∫
γ̃kl

∂X̃ij

∂n
dS. (A.10)

The tensors Ñij and X̃ij are the trace-free parts of the outer product of the normal vec-

tor n with itself, and the position vector x with itself respectively, i.e.

Ñij ≡ ninj −
δij
N
, (A.11)

X̃ij ≡ xixj − xpxp
δij
N
. (A.12)
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Note that (23) has been simplified to (A.10) using the identity

nixj + njxi =
∂

∂n
(xixj) . (A.13)

A.1.1 Isotropy508

For situations where the fourth-rank tensor Cijkl is isotropic, the expressions in (A.6)

and (A.10) can be simplified further and written in terms of bulk (ζ) and shear (η) vis-

cosities. Assuming isotropy, the tensors Bij and C̃ijkl can be written as

Bij = ζδij , (A.14)

C̃ijkl = η

(
δikδjl + δilδjk −

2

N
δijδkl

)
, (A.15)

where expressions for the bulk and shear viscosities can be simplified to

ζ =
1

N2Vcell

∫
γxknk dS, (A.16)

η =
1

2Vcell(N + 2)(N − 1)

∫
γ̃kl

∂X̃kl

∂n
dS, (A.17)

using the relationship C̃klkl = η(N + 2)(N − 1) from (A.15).509

A.2 Pure solid510

When the melt phase is absent, the equations of Nabarro-Herring creep simplify

considerably. Only shear deformation is permissible, and hence it suffices to consider only

the problem for C̃ijkl, which is given by (A.7-A.10). The boundary condition (A.8) is

no longer needed as there is no melt phase. Since both γ̃ij and X̃ij satisfy Laplace’s equa-

tion, Green’s second identity allows us to rewrite (A.10) as

C̃ijkl =
1

2Vcell

∫
X̃ij

∂γ̃kl
∂n

dS. (A.18)

For a pure solid, the boundary condition (A.9) applies to the whole boundary of the grain.

Substituting (A.9) into (A.18) yields

C̃ijkl =
1

2Vcell

∫
xpnpX̃ijÑkl dS, (A.19)

where Ñkl and X̃ij are given by (A.11) and (A.12). The above expression is a key re-511

sult, as it enables one to calculate the viscosity tensor for Nabarro-Herring creep for a512

pure solid without explicitly solving Laplace’s equation: all one needs to do is evaluate513

the geometric integral in (A.19).514

–35–



manuscript submitted to JGR: Solid Earth

A.2.1 Isotropic examples515

If the fourth rank tensor Cijkl is isotropic, then the result in (A.19) can be writ-

ten in terms of a shear viscosity as

η =
1

2(N + 2)(N − 1)Vcell

∫ (
(x · n)

2 − 1

N
(x · x)

)
x · n dS. (A.20)

As a simple example of the use of this formula, consider the unit sphere embed-

ded in N dimensional space (N = 3 corresponds to an ordinary sphere, N = 2 cor-

responds to a circle). In this case x = n on the surface of the sphere, and x · x = 1.

The integral reduces to

η =
S

2VcellN(N + 2)
, (A.21)

where S is the surface area. S/Vcell for the unit sphere is N , and hence

η =
1

2(N + 2)
. (A.22)

For an ordinary sphere (N = 3), η = 1/10, which is Herring (1950)’s classic result.516

The corresponding result for a circle (N = 2) is η = 1/8. The formula in (A.20) can517

be used to directly obtain the shear viscosity for any grain geometry that leads to an isotropic518

viscosity tensor, including the case of hexagonal grains.519

A.2.2 An anisotropic example: orthorhombic grains520

For geometries where the viscosity tensor is anisotropic (such as tetrakaidecahe-

drons), the expression in (A.19) should be used to calculate the viscosity tensor. As an

example, consider an orthorhombic grain (a cuboid), with side lengths A1, A2, and A3.

The fourth rank tensor C̃ijkl has orthotropic symmetry. The integrals in (A.19) yield

C̃1111 =
1

108

(
4A2

1 +A2
2 +A2

3

)
, (A.23)

C̃1122 =
1

108

(
−2A2

1 − 2A2
2 +A2

3

)
, (A.24)

C̃1212 = 0, (A.25)

where the remaining components of C̃ijkl can be found by appropriate relabelling of in-

dices and the orthotropic symmetry. The above results agree with those found previously

by Lifshitz (1963) and Greenwood (1985), but were determined without explicitly solv-

ing Laplace’s equation. An important special case of the orthorhombic grain is the unit

cube, which has A1 = A2 = A3 = 1. As in (40), the tensor C̃ijkl with cubic symme-
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try can then be written in terms of two shear viscosities, given by

η1 =
1

24
, η2 = 0. (A.26)

As discussed by Lifshitz (1963), the vanishing of η2 arises from a degeneracy in the as-521

sumed packing of grains, which allows the array of grains to be freely sheared in some522

directions without the need for diffusive transport of matter. Note that Greenwood (1992)523

argues for a non-zero η2 for cubic grains, but this is based on an erroneous assumption524

that no minima in the creep strength occurs for principal axes of shear between those525

parallel to the principal axes of the orthorhombic grain. The packing of tetrakaideca-526

hedral grains considered here has no such degeneracy, and both η1 and η2 are non-zero.527

A.3 Asymptotics for small porosity and hexagonal grains528

A.3.1 Bulk viscosity529

For the case of hexagonal grains, it is possible to make further analytical progress530

when the porosity is non-zero, but small. This can be done through matched asymptotics,531

and the analysis presented here closely follows a related analysis for the Poisson equa-532

tion by Ward and Kropinski (2010).533

To determine an asymptotic expansion for bulk viscosity, we need to analyse (A.3),534

(A.4), (A.5) and (A.16) in the limit of infinitesimally small pores (vanishing porosity).535

The problem can be divided into two parts: First, an outer problem which gives a de-536

scription at the grain scale, where the pores can be treated as point sources/ point sinks537

at the vertices of the hexagon. Second, an inner problem, which zooms in on the pore538

scale behaviour. A matching procedure then joins the two problems in an asymptotically539

consistent manner.540

Dimensionless units are chosen so that the distance between opposite sides of the

hexagon is 1. This leads to an area Vcell =
√

3/2, perimeter S = 2
√

3, side length a =

1/
√

3, and perpendicular distance x · n = 1/2 around the edges of the hexagon. The

outer problem can be stated as

∇2ψ =

6∑
k=1

q δ
(
x− x(k)

)
in Vhex, (A.27)

∂ψ

∂n
=

1

2
on Shex, (A.28)

ζ ∼ 1

4
√

3

∫
ψ dS. (A.29)
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(A.27) is the equivalent of (A.3), except that point sources have been introduced at the541

vertices of the hexagon to represent the infinitesimally small pores. Each source has strength542

q (to be determined), and the vector x(k) gives the position vector of the kth vertex of543

the hexagon (k = 1, 2, . . . , 6). (A.28) follows directly from (A.5), and (A.29) follows di-544

rectly from (A.16).545

q can be determined from a balance of flux. The total flux out of the sides of the

hexagon is given by integrating (A.28) over the boundary. This flux must be matched

by the flux produced by the point sources at the vertices, and hence q =
√

3/2. Since

the outer problem involves only Neumann boundary conditions, its solution is unique

only up to a constant. This constant will be determined by an appropriate matching to

the inner problem, by considering the asymptotic behaviour in the neighbourhood of the

point sources. This asymptotic behavior is given for the outer problem by

ψ(x(k)) ∼ q

2π
log
∣∣∣x− x(k)

∣∣∣+ qr (A.30)

where the constant r will be determined by matching to the inner solution. The prob-

lem in (A.27-A.29) can be solved numerically to yield

ζ ∼ qr

2
+B (A.31)

where the numerical constant B = −0.177431.546

The inner problem arises from a rescaling of the governing equations. Near x =

x(k) we introduce the inner variable

y =
x− x(k)

ε
(A.32)

where the length scale ε is chosen such that the area of an individual pore is π in the in-

ner co-ordinates. For a dihedral angle of 180◦, ε is equal to the radius of the circular pore.

The length scale ε is related to the porosity by

ε =

(√
3φ

4π

)1/2

. (A.33)

The inner problem is

∇2
yϕ = 0 in V, (A.34)

ϕ = 0 on Ssl, (A.35)

ϕ ∼ α log |y| , as |y| → ∞. (A.36)
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(A.34) follows from (A.3), and (A.35) from (A.4). We seek solutions that have a loga-

rithmic singularity in the far-field (A.36) in order to match with the outer solution. The

unique solution of inner problem has the following far-field asymptotic behaviour:

ϕ ∼ α log |y| − α log κ(θ) + · · · as |y| → ∞ (A.37)

where κ(θ) is known as the logarithmic capacity. The logarithmic capacity is a function547

of the shape of the pore, and hence here is a function of the dihedral angle θ (Figure 3).548

Matching inner (A.37) and outer (A.30) solutions implies that α = q/(2π) and

r = − 1

2π
log εκ(θ). (A.38)

Substituting (A.38) into (A.31) yields the small ε asymptotic behaviour of the bulk vis-

cosity,

ζ ∼ −
√

3

8π
log εκ(θ)− 0.177431. (A.39)

Using the relationship (A.33) between ε and porosity φ, (A.39) can also be rewrit-

ten in terms of porosity as

ζ ∼ −
√

3

16π
log φ− 0.109145−

√
3

8π
log κ(θ). (A.40)

A.3.2 Shear viscosity549

A similar matched asymptotic analysis as performed above for the bulk viscosity550

can be performed for the shear viscosity. A key difference in the analysis is that while551

the bulk viscosity is singular as the porosity vanishes, the shear viscosity is finite. In-552

deed the shear viscosity in the absence of melt can be obtained directly from the inte-553

gral expression (A.20) to give a value without melt of η0 = 1/36. In this section we ob-554

tain the next term in the asymptotic expansion, for a small, but finite, amount of melt.555

The analysis proceeds as in the previous section by dividing the problem up into556

two parts: an outer problem for a tensor ψ̃ij and and inner problem for a tensor ϕ̃ij . Fur-557

thermore, it is helpful to subdivide the outer problem as ψ̃ij = W̃ij + S̃ij , where W̃ij558

is the solution for a pure solid, and S̃ij is the singular perturbation due to the melt pores.559

Similarly, the shear viscosity can be subdivided as η = η0 + ηS , where ηS represents560

the singular perturbation to the shear viscosity.561
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The problem for the pure solid is

∇2W̃ij = 0 in Vhex, (A.41)

∂W̃ij

∂n
= xpnpÑij on Shex, (A.42)

where (A.41) follows from (A.7), and (A.42) follows from (A.9). As mentioned above,

to determine η0 is not necessary to solve for W̃ij , but for the asymptotics that follows

it is necessary to determine the values of W̃ij at the vertices of the hexagon. The val-

ues at the kth vertex x(k) can be obtained numerically as

W̃ij

(
x(k)

)
= FX̃

(k)
ij (A.43)

where

X̃
(k)
ij ≡ x

(k)
i x

(k)
j − x

(k)
p x(k)p

δij
N

(A.44)

and the numerical constant F = 0.319889078.562

The singular part of the outer problem is

∇2S̃ij =

6∑
k=1

qX̃
(k)
ij δ

(
x− x(k)

)
in Vhex, (A.45)

∂S̃ij
∂n

= 0 on Shex, (A.46)

ηS =
1

4
√

3

∫
S̃kl

∂X̃kl

∂n
dS. (A.47)

Similar to the bulk viscosity problem, (A.45) is simply (A.7) with the addition of a se-563

ries of point sources of strength qX̃
(k)
ij at the vertices of the hexagon. The choice of ten-564

sorial form X̃
(k)
ij is motivated by solution of the regular part of the problem at the ver-565

tices. (A.46) follows from (A.9), and (A.47) from (A.17). Unlike the outer problem for566

the bulk viscosity, the problem for S̃ij is unique if q is given, since the tensor must have567

zero trace (S̃kk = 0). But in this case, the prefactor q must be determined by match-568

ing to the inner solution.569

Green’s second identity can be used to simplify (A.47) to

ηS = − q

12
√

3

6∑
k=1

X̃klX̃kl = − q

36
√

3
, (A.48)

and hence the viscosity can be determined once q is determined. The asymptotic behaviour

of S̃ij near the vertices is

S̃ij(x
(k)) ∼

qX̃
(k)
ij

2π
log
∣∣∣x− x(k)

∣∣∣+ qRX̃
(k)
ij (A.49)
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where R is determined by numerical computation as R = 0.150237305.570

The inner problem uses the same scaled variable y given in (A.32), and is

∇2
yϕ̃ij = 0 in V, (A.50)

ϕ̃ij = 0 on Ssl, (A.51)

ϕ̃ij ∼ αX̃(k)
ij log |y| , as |y| → ∞. (A.52)

The unique solution of inner problem has far-field asymptotic behaviour

ϕ̃ij ∼ αX̃(k)
ij log |y| − αX̃(k)

ij log κ(θ) + · · · as |y| → ∞ (A.53)

Matching between the inner (A.53) and outer ((A.43) and (A.49)) solutions yields

α =
q

2π
, (A.54)

F + qR = −α log εκ(θ), (A.55)

and hence

q = − 2πF

2πR+ log εκ(θ)
. (A.56)

Substituting (A.56) into (A.48) yields the asymptotic expression for the shear viscosity

for small ε,

η ∼ 1

36
+

2πF

36
√

3 (2πR+ log εκ(θ))
, (A.57)

where the numerical constants are F = 0.319889078 and R = 0.150237305.571

A.4 Leading-order bulk viscosity asymptotics for general grain shapes572

Part of the asymptotic analysis given in section A.3.1 for hexagonal grains can be

applied in three-dimensions to obtain the leading-order behaviour of the bulk viscosity

for more general grain shapes. Instead of the outer problem consisting of point sources

of strength q at the vertices of the hexagon, we now consider line sources of strength q

along grain edges in 3D. This assumes melt forms a connected network along the grain

edges at vanishing porosity, which will only be true for dihedral angles less than 60◦. In-

tegration of (A.5) around the surface of the grain gives the net flux out of the grain faces

as Q = NVcell. This must match the flux produced by the line sources, Q = qL, where

L is the total length of edges for the unit cell (an effective length accounting for the fact

that each edge is shared by more than one grain). Hence

q =
N

λ
, (A.58)
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where λ ≡ L/Vcell is the edge length per unit volume in the tiling of grains. For tetrakaidec-573

ahedrons, λ = 6
√

2 in units where the distance between opposite square faces of the574

tetrakaidecahedrons is 1. The equivalent measure for hexagonal grains in 2D is the den-575

sity of vertices per unit area, where λ = 4/
√

3 in units where the distance between op-576

posite sides of the hexagons is 1.577

The asymptotic behaviour in the neighbourhood of the line sources in 3D will take

the same form as (A.30), with bulk viscosity given in N -dimensions as

ζ ∼ qr

N
(A.59)

to leading order (this is the N -dimensional counterpart to (A.31)). A similar matching

to that in (A.38) yields

r ∼ − 1

4π
log φ (A.60)

at leading order. Substituting (A.60) into (A.59) gives the leading order asymptotics

ζ ∼ − 1

4πλ
log φ (A.61)

where the next term in the asymptotic expansion will depend on the exact geometry of

the melt. For the specific case of tetrakaidecahedrons with distance 1 between square

faces,

ζ ∼ − 1

24π
√

2
log φ. (A.62)

A.5 Parametrisation of Nabarro-Herring creep578

It is useful to have a simple parametrisation of viscosity as a function of porosity

which can be used in larger-scale models. What follows is a suggested parametrisation

for Nabarro-Herring creep, which provides a close approximation to the tetrakaidecahe-

dron calculations here for a dihedral angle of 40◦ (appropriate for basaltic melts) and

porosities up to around 10%, where melt exists as a connected network along the grain

edges. The formulas below are least-squares polynomial fits in terms of a variable ν ≡

−1/ log φ, where this choice of variable has been motivated by the asymptotic analysis

above. The leading-order term in the fits is provided the leading-order asymptotics for

small porosity. The higher-order terms have been found by fitting the numerical results
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shown in Figures 5 and 6. The parametrisation is

η

η0
= 1 + a1ν + a2ν

2 + a3ν
3, (A.63)

ζ

η
=

160
√

2

139π

1

ν
+ b1 + b2ν + b3ν

2, (A.64)

where the fitting constants are

a1 = −4.28207265, a2 = 7.36988663, a3 = −4.98396638, (A.65)

b1 = 0.97736898, b2 = −1.76154195, b3 = 2.63720462. (A.66)

B Coble creep analytical solutions579

B.1 Pure solid, Hexagonal grains580

Simple analytical solutions exist for Coble creep in arrays of regular hexagons (Cocks

& Searle, 1990; Spingarn & Nix, 1978). The Poisson equation for the tensor γ in (32)

can be written in co-ordinates along a single edge of the hexagon as

−∇2
⊥γ =

0 0

0 1

 (B.1)

where the horizontal co-ordinate is along an edge and the vertical coordinate is perpen-

dicular to the edge (i.e. the normal vector is n = (0, 1)). Since the edge is straight the

surface Laplacian operator ∇2
⊥ becomes d2/ds2 where s measures distance along an edge.

s is chosen to be zero in the middle of an edge, and equal to h at one end and −h at the

other end. In the absence of melt h = 1/(2
√

3) with lengths scaled such that the dis-

tance between opposite sides of the hexagon is 1. (B.1) can be integrated as

γ =

a11 + b11s a12 + b12s

a12 + b12s a22 + b22s− 1
2s

2

 (B.2)

for constants aij and bij that will be determined by the boundary conditions.581

(B.2) can be simplified immediately by the mirror symmetry of the hexagon along

a plane through the middle of an edge, which yields

γ =

 a11 b12s

b12s a22 − 1
2s

2

 . (B.3)

By the rotational symmetry of the hexagon, the solution for γ on the other 5 edges is582

the same, up to a suitable rotation of the coordinates. Thus in what follows we find the583

solution just for one edge of the hexagon, exploiting the symmetry to match this solu-584

tion to the solutions on the other edges.585
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B.1.1 Isolated grain586

In the absence of melt, what the effective viscosity is depends very much on the

nature of the assumed boundary conditions. Since there is no melt present, the medium

is incompressible, and this restricts the discussion to the trace-free part of γ, which is

denoted as γ̃. Following on from (B.3), this can be written in terms of just two constants,

a and b,

γ̃ =

−a+ 1
4s

2 bs

bs a− 1
4s

2

 (B.4)

where the constants will be determined by the choice of boundary condition. Given the

rotational symmetry of the hexagon, it is helpful to describe the boundary conditions

using the rotation matrix

R
θ

=

cos θ − sin θ

sin θ cos θ

 . (B.5)

If one considers each individual grain to be isolated, and grain-boundary diffusion to be

restricted to each individual grain (as Takei and Holtzman (2009a) do), then at each cor-

ner of the grain we must have continuity of vacancies (chemical potential) and continu-

ity of flux. Continuity of vacancies can be written as

γ̃(s = h) = R
−π/3

· γ̃(s = −h) ·RT

−π/3
(B.6)

which simply ensures that the concentration at the end of one edge matches the start

of the next. By symmetry the solution on one edge is related to the solution on another

edge simply by a rotation of co-ordinates. Continuity of flux is

dγ̃

ds
(s = h) = R

−π/3
·

dγ̃

ds
(s = −h) ·RT

−π/3
, (B.7)

since the flux is given by the derivative of concentration along each edge. (B.6) and (B.7)

determine the constants in (B.4) as

a =
5

144
, b =

1

12
. (B.8)

B.1.2 Networked587

Alternatively, if the grain boundaries form a connected network along which dif-

fusion can occur, then the boundary conditions are slightly different. Continuity of va-

cancies is unchanged and given by (B.6), but continuity of flux becomes

dγ̃

ds
(s = h) = R

−π/3
·

dγ̃

ds
(s = −h) ·RT

−π/3
+R

π/3
·

dγ̃

ds
(s = −h) ·RT

π/3
(B.9)
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because the flux balance is now between the three edges that meet at each triple junc-

tion (Figure 7). (B.6) and (B.9) determine the constants in (B.4) as

a =
1

48
, b = 0. (B.10)

Once γ̃ is determined it is straightforward to integrate (35) to find the relevant vis-

cosities. For the matrix given in (B.4), the shear viscosity is

η =
a

2
+

b

36
− 1

288
, (B.11)

and hence η = 7/432 for a pure solid under the isolated assumption and η = 1/144588

for a pure solid under the networked assumption.589

B.2 Coble creep with melt590

In the presence of melt, the equations of Coble creep can be further simplified. The

solution to (32) can be broken down into a series of isolated Poisson problems on each

individual grain–grain contact. Moreover, since we are assuming the boundaries are pla-

nar, we can write these individual Poisson problems in terms of a single scalar variable

ϕ, since the normal vector n is a constant over each grain–grain contact. Writing γij =

ϕninj , (32) and (35) become

−∇2
⊥ϕ = 2xpnp, (B.12)

Cijkl =
1

Vcell

∫
ϕxinjnknl dS. (B.13)

The tensor Cijkl satisfies the following symmetry, known as the Cauchy relation,

Cijkl = Cikjl. (B.14)

As a consequence of the above symmetry, for isotropic cases the following relationship

holds between the bulk and shear viscosities,

ζ

η
=
N + 2

N
, (B.15)

so ζ = 2η in 2D, and ζ = 5
3η in 3D.591

The integral in (B.13) can be further simplified by considering the integral as a sum

over the contributions from each grain–grain contact,

Cijkl =
1

Vcell

∑
f

nfi n
f
j n

f
kn

f
l df

∫
ϕ dS, (B.16)
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where f is an index used to denote the individual grain–grain contacts, and nf are the592

corresponding normals to those contacts. df are the perpendicular distances of the con-593

tacts from the origin. (B.16) has been obtained from (B.13) by pulling out the njnknl594

factor in front of the integral sign, which can be done because n is constant on each con-595

tact. What remains in the integrand of (B.13) is then ϕxi, which yields a vector quan-596

tity for the integral. However, provided the contact face has at least one non-trivial sym-597

metry (e.g. symmetric under reflection or rotation), this vector quantity must be pro-598

portional to the normal vector, and hence a factor of ni can also be pulled in front of599

the integral to yield the final scalar integral expression in (B.16).600

The right hand side of (B.12) is constant over each contact, equal to twice the per-

pendicular distance from the origin. Hence the procedure for calculating Cijkl consists

of solving a series of Poisson problems with constant right-hand side for each face, and

then integrating the resulting solution over the contact. This is identical to the prob-

lem of finding the hydraulic resistance in Hagen-Poiseuille flow in a pipe of given cross-

sectional shape (Bazant, 2016; Mortensen, Okkels, & Bruus, 2005). The hydraulic re-

sistance depends both on the cross-sectional area and the particular cross-sectional shape

of the pipe. The same is true here of the effective viscosity tensor for Coble creep, which

depends both on the areas of the contact patches and their shapes. The two effects can

be separated by introducing the following scaled problem on each contact face,

−∇2
⊥wf = 1, (B.17)

χf =
1

A
(N+1)/(N−1)
f

∫
wf dS, (B.18)

where χf is a shape factor, defined such that it is independent of the area of the con-

tact. On each contact ϕ = 2dfwf . The viscosity tensor can then be written

Cijkl =
2

Vcell

∑
f

nfi n
f
j n

f
kn

f
l d

2
fχfA

(N+1)/(N−1)
f . (B.19)

For the tetrakaidecahedral geometry considered here the contact faces go from being squares601

and hexagons at zero porosity, to being more circular at higher porosity. For a circle χ =602

1/(8π) = 0.0397887, for a hexagon χ = 0.0383503, and for a square χ = 0.0351443. χ603

is very similar for all three end-member shapes, so the shape effects on the viscosity are604

likely to be modest. The principal control on the viscosity tensor is contact area. In 3D,605

the viscosity is proportional to A2
f and in 2D, the viscosity is proportional to A3

f . This606

agrees with the results of Cooper and Kohlstedt (1984) and Takei and Holtzman (2009a),607
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and indeed, (B.19) is a generalisation of (42) of Takei and Holtzman (2009a) to a more608

general geometry.609

The bulk viscosity can be obtained from (B.19) as

ζ =
2

N2Vcell

∑
f

d2fχfA
(N+1)/(N−1)
f . (B.20)

B.2.1 Hexagonal grains610

For the hexagon in 2D, N = 2, Vcell =
√

3/2, df = 1/2, χf = 1/12, and Af =

ρ/
√

3, where ρ ≡ Ass/Acell is the fraction of the unit cell boundary which is grain–grain

contact. The bulk viscosity is given by (B.20) as ζ = ρ3/72, in agreement with Cocks

and Searle (1990). From (B.15), the shear viscosity η = ζ/2 = ρ3/144. Some straight-

forward trigonometry can be used to relate ρ to θ and φ by

φ = (1− ρ)2φd (θ) (B.21)

where

φd (θ) =
1

8
√

3
csc
(
π
6 −

θ
2

) (
4
√

3 cos θ2 − (π − 3θ) csc
(
π
6 −

θ
2

))
. (B.22)

B.2.2 Tetrakaidecahedral grains611

For tetrakaidecahedrons, (B.19) can be simplified to give the two shear viscosities

as

η1 =
1

3Vcell

∑
squares

d2fχfA
2
f , (B.23)

η2 =
2

9Vcell

∑
hexagons

d2fχfA
2
f , (B.24)

where η1 is given in terms of a sum over the square faces only, and η2 is terms of a sum

over the hexagonal faces only. The bulk viscosity is given by ζ = 5
3η = 2

3η1 + η2. In

coordinates where the distance between opposite square faces is 1, Vcell = 1/2, dsq =

1/2, and dhex =
√

3/4. When there is only an infinitesimal amount of melt present, Asq =

1/8 and Ahex = 3
√

3/16, and hence

η10 =
χsq

64
, (B.25)

η20 =
9χhex

128
, (B.26)

and these are the values given in the shorted row of Table 1.612
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