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Summary. A problem that is frequently encountered in many areas of scientific research is
that of estimating the effect of a non-randomized binary intervention on an outcome of interest
by using time series data on units that received the intervention (‘treated’) and units that did
not (‘controls’). One popular estimation method in this setting is based on the factor analysis
(FA) model. The FA model is fitted to the preintervention outcome data on treated units and
all the outcome data on control units, and the counterfactual treatment-free post-intervention
outcomes of the former are predicted from the fitted model. Intervention effects are estimated as
the observed outcomes minus these predicted counterfactual outcomes. We propose a model
that extends the FA model for estimating intervention effects by jointly modelling the multiple
outcomes to exploit shared variability, and assuming an auto-regressive structure on factors to
account for temporal correlations in the outcome. Using simulation studies, we show that the
method proposed can improve the precision of the intervention effect estimates and achieve
better control of the type I error rate (compared with the FA model), especially when either the
number of preintervention measurements or the number of control units is small. We apply our
method to estimate the effect of stricter alcohol licensing policies on alcohol-related harms.
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1. Introduction

In this work, we consider the problem of estimating the causal effect of an intervention on an
outcome of interest in the setting where
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(a) the intervention is binary,
(b) assignment of the sample units to the intervention is non-randomized,
(c) only a small number of units are treated and
(d) there are multiple measurements of the outcome both before and after the intervention

occurs.

This problem is frequently encountered in various fields of scientific research, including econo-
metrics, epidemiology, marketing, public health and political science. For example, Card (1990)
studied the effect that the mass migration in 1980 of Cubans to Miami had on Miami’s labour
market, by treating Miami as having received the ‘intervention’ of mass Cuban migration and
comparing it with other US states that were not subject to such migrations; Cavallo et al. (2013)
assessed the effect that large-scale natural disasters, such as earthquakes and storms, had on the
gross domestic product of a country by comparing countries that are subject to such natural
disasters (the ‘intervention’) with countries not experiencing such disasters; de Vocht (2016)
investigated whether the increased use of mobile phones (the ‘intervention’) led to an increase
in incidences of certain types of brain cancer in England.

A general difficulty when estimating the causal effect of an intervention from observational
data is the potential existence of confounding variables. These are variables which affect both
the outcome of interest and the probability of being assigned to the intervention. Failure to
account for confounding can lead to biased estimation of causal effects. When the number of
units receiving the intervention is large, propensity score methods (Robins et al., 2000) can be
used. However, when few units receive the intervention, there is not enough information to fit
propensity score models. For this reason, several new methodologies for causal inference in the
setting where conditions (a)–(d) apply have recently been proposed. For a recent review, see
Samartsidis et al. (2019).

Many of these methods, including those of Abadie et al. (2010), Hsiao et al. (2012),
Gobillon and Magnac (2016), Chan and Kwok (2016) and Xu (2017), build on the factor analysis
(FA) model. FA is a natural way to adjust for confounding. The model allows for unobserved
confounders that remain constant over time but have a time-varying effect on the outcome.
However, current methodologies based on the FA model have shortcomings. Firstly, they can
be applied to only a single outcome at a time. When there is more than one correlated out-
come, it might be more efficient to model them jointly. Secondly, none of the aforementioned
methods explicitly models the temporal correlation between the multiple measurements of the
outcome. Modelling auto-correlation may improve efficiency. Thirdly, when the total number
of units is small, it is difficult to perform inference for the causal effects by using the existing
methods. Finally, some of the approaches above require specifying the number of factors in the
model. Although guidance is provided for how to use the data to choose this number, inference
using these methods does not account for this data-dependent choice and hence tends to be
anticonservative.

In this paper, we attempt to address these shortcomings. We consider extensions of the FA
model that can exploit the correlation between different outcomes and the temporal correlation
within each outcome, leading to more efficient estimates. Also, by taking a Bayesian approach,
we can obtain credible intervals for the causal effects that account for the uncertainty in the
number of factors. We contribute to the literature on causal inference in the setting where con-
ditions (a)–(d) apply, in three ways. Firstly, we develop a novel approach that uses multivariate
outcomes. An alternative multivariate model was suggested by Robbins et al. (2017). However,
their method is designed for high dimensional data and its utility in a small data setting is
unclear. Secondly, our method is one of the few that model temporal correlation within each
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outcome. Brodersen et al. (2015) recently proposed the causal impact method to account for
such correlation. However, causal impact can be applied to only a single treated unit and single
outcome at a time. Thirdly, our use of the Bayesian approach enables more inference on the
causal effects of interest in comparison with other FA-based approaches.

Our method has connections with various applications of FA in contexts other than causal
inference. More specifically, this is not the first time that a multivariate factor model has been
used in practice. De Vito et al. (2018a, b) and Avalos-Pacheco et al. (2018) demonstrated the
benefits of taking a multivariate approach in genomic applications when dealing with multiple
studies rather than multiple outcomes. Assuming a temporal structure in the FA model is also
not uncommon; see, for example, McAlinn et al. (2019) for a recent application in macro-
economics. However, to our knowledge, this is the first time that either of these extensions
(joint outcome modelling and explicit modelling of the temporal correlation) to the standard
FA model has been implemented in a causal inference problem and the benefits of using them
demonstrated. Our methodology, together with other causal inference methodologies based on
FA, is related to the latent class analysis (LCA) causal inference approach (Lanza et al., 2013;
Bartolucci et al., 2016; Tullio and Bartolucci, 2019). In LCA, there is a fixed number of classes
(the analogue of factors in FA) and the distribution of the outcomes on each unit and at each
time point depends on the unobserved class of that unit at that time point. Hence, both LCA
and FA attempt to model the variability in the outcome by using latent variables. A difference
between LCA and FA is that classes are discrete whereas factors are continuous. Despite being
similar in spirit to FA approaches, LCA-based causal inference methods cannot be used in the
setting where conditions (a)–(d) apply, mainly because they require estimation of the propensity
score, which is problematic when the number of treated units is small. Moreover, these methods
focus on the causal effect of the intervention on the probability that an individual belongs to a
certain class, whereas in our problem the interest is in the effect of the intervention directly on
the outcomes.

The paper is structured as follows. Section 2 introduces our motivating example. Section 3.1
introduces the notation and causal framework. The standard FA model is formulated in Sec-
tion 3.2. Section 3.3 presents the methodology proposed. Section 3.4 describes how our method
accounts for the uncertainty regarding the true number of factors. Prior distributions and pos-
terior sampling are discussed in Section 3.5. Section 3.6 describes how point estimates and
inferences are obtained for the causal effects of interest. In Section 4 we perform a series of sim-
ulation studies to evaluate the utility of the methodology, using the standard FA model as our
benchmark. Section 5 describes the application of methods to our motivating data set. Finally,
Section 6 contains a discussion and suggests some possible directions for future research.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from https://osf.io/4d7c6/.

2. Motivating example

Alcohol consumption has an adverse effect on society, being responsible for some harmful
health conditions and behaviours. National policy makers have long focused on the develop-
ment of effective strategies to limit these negative effects. For example, the 2003 Licensing Act
(http://www.legislation.gov.uk/ukpga/2003/17/contents) in England and
Wales enables local authorities to develop cumulative impact policies (CIPs) i.e. to reject auto-
matically new licensing applications unless these are supported by evidence that granting will
not negatively impact on surrounding premises.

In a recent study, de Vocht et al. (2017) assessed the effect that CIPs had on alcohol-related
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harms. They collected data on four alcohol-related outcomes: hospital admission rate per 10000
people, violent crimes rate per 1000 people, sexual crime rate per 1000 people and antisocial
behaviour incidence rate per 1000 people. The data on each outcome were collected quarterly
for the period from mid-2009 to 2015. de Vocht et al. (2017) defined intervention sites as local
councils implementing a CIP in 2012, and control sites as local councils that did not adopt a
CIP at any time during the study period. They identified five treated and 86 control sites in
England and Wales.

In Section 5, we demonstrate our proposed methodology by using a subset of data in de
Vocht et al. (2017). We exclude data from one treated site (Tyneside) because the intervention
was implemented earlier in this site and from nine control sites because of missing values in
some of the outcomes. Finally, we use data only up to mid-2013, because trends in the following
months might be due to changes in the way that crimes were reported (de Vocht et al., 2017).
Fig. 1 shows the data.

3. Model specifications

3.1. Notation and causal framework
We have observations yitk, where i=1, : : : , n indexes the units, t =1, : : : , T indexes the time points
and k =1, : : : , K indexes the outcomes. The units are ordered so that the first n1 are the controls,
i.e. units that do not receive the intervention during the course of the study. For the remaining
n2 =n−n1 units, there is a time point T1 after which they all receive the intervention. We refer to
these units as the treated units. Let ri be a binary indicator of whether unit i is treated. The study
can be split into two periods: the preintervention period consisting of the first T1 time points
when none of the n units has the intervention, and the post-intervention period consisting of
the remaining T2 =T −T1 time points when the intervention is in place for the n1 treated units.

In this paper, we adopt the Rubin causal model (Rubin, 1974; Holland, 1986). This means that
for each treated unit i (i>n1), time t after intervention (i.e. t>T1) and outcome k there are two
potential outcomes y

.0/
itk and y

.1/
itk ; y

.0/
itk represents the outcome that would have been observed

if the intervention had not been applied and y
.1/
itk is the outcome that would be observed if the

intervention were applied. Hence, the causal effect of the intervention for any i>n1, t>T1 and
k is given by

θitk =y
.1/
itk −y

.0/
itk : .1/

We are further interested in the average treatment effect on outcome k at time t in the treated
units, ϑtk, defined as

ϑtk = 1
n2

n∑
i=n1+1

θitk: .2/

For treated units before intervention (i.e. i>n1 and t �T1) and for control units at all times (i.e.
i�n1 and all t), y

.0/
itk =yitk for all k, and so is observed. We do not observe y

.0/
itk for treated units

after intervention, and so causal effects (1) and (2) are not observed. Our approach is to assume
a model for y

.0/
itk , to use this to obtain predictions ŷ

.0/
itk for the counterfactuals y

.0/
itk for i>n1 and

t > T1, and then to estimate equations (1) and (2) as θ̂itk = y
.1/
itk − ŷ

.0/
itk and ϑ̂tk = .1=n2/Σn

i=n1+1
θ̂itk respectively.

3.2. Factor analysis model for a single outcome
For time series observational data, a model that is frequently used for y

.0/
itk is the FA model,
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which is also known as the interactive fixed effects model (Bai, 2009). Gobillon and Magnac
(2016), Chan and Kwok (2016) and Xu (2017) used the FA model for causal inference in the
setting that we are investigating, i.e. that where conditions (a)–(d) apply. Abadie et al. (2010)
and Hsiao et al. (2012) showed that their proposed estimators of the counterfactuals y

.0/
itk (i>n1

and t>T1) are unbiased when the FA model is the data-generating mechanism.
The FA model for the kth outcome assumes that

y
.0/
itk =γT

ikstk + "itk, .3/

where γik = .γik1, : : : ,γikp1/T is the p1-vector of unobserved unit-specific loadings for outcome k,
stk = .stk1, : : : , stkp1/T ∼Np1.0, I/ is the p1-vector of unobserved time-specific factors for outcome
k and "itk ∼ N.0,ψ2

ik/ is the error term. One can view the loadings γik as unit characteristics
that remain constant over time and the factors stk as their time-varying effect on the potential
outcome. Xu (2017) refered to stk as ‘shocks’; γik describe the magnitude of the effect that these
shocks have on unit i’s outcome k. Variables that are predictive of y

.0/
itk but are not affected by the

intervention can be incorporated as covariates xit in the FA model by replacing equation (3) with

y
.0/
itk =γT

ikstk +βT
k xit + "itk: .4/

Such variables may include observed confounders measured before time T1. For simplicity, we
shall omit such covariates until Section 3.5.

We note in passing that a special case of the FA model is the difference-in-differences model
(Angrist and Pischke, 2009; Jones and Rice, 2011). This is the FA model with p1 =2, stk1 =1 and
γik2 =1, i.e. fixed effects for units and time points. The difference-in-differences model assumes
that the ‘shocks’ at each time point affect all the units in the same way. This model is frequently
used for causal inference with time series observational data.

Recall that the potential outcome y
.0/
itk is observed at all times (i.e. t =1, : : : , T ) for control units

(ri = 0) but at only the preintervention times (i.e. t = 1, : : : , T1) for treated units (ri = 1). Model
(3) is fitted to these observed data, considering the post-intervention outcomes y

.0/
itk on treated

units as missing. The resulting estimator θ̂itk of the intervention effect on unit i and outcome k

at time t is asymptotically unbiased as n1 →∞ and T1 →∞, provided that ri is independent of
"i1k, : : : , "iTk (and assuming regularity conditions) (Xu, 2017).

There are two intuitive ways to understand why this asymptotic unbiasedness holds. First,
as n1 and T1 become larger (assuming fixed n−n1 and T −T1), the amount of data for learn-
ing about the factors stk and the loadings γik increases, so that the factors and loadings (and
hence the expectation of y

.0/
itk ) are increasingly accurately estimated. Second, by letting y.0/

tk =
.y

.0/
1tk, : : : , y

.0/
ntk/T, definingΓk as the n×p1 matrix with ith rowγik, and lettingεtk =.ε1tk, : : : , εNtk/T,

equation (3) implies that

y.0/
tk =Γkstk +εtk, .5/

for all t and k. From this, marginally, i.e. integrating out the factors and error terms, we have
that

cov.y.0/
tk /=ΓkΓT

k +Ψk, .6/

whereΨk =diag.ψ2
1k, : : : ,ψ2

nk/. Hence, the FA model assumes that the covariance of the potential
(treatment-free) outcomes of the n units is the same at all time points. The preintervention data
are used to learn about this covariance which is then used to predict the (counterfactual) potential
outcomes of the treated units after intervention from the (observed) potential outcomes of the
control units after intervention. The larger are n1 and T1, the more information is available to
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estimate Γk and Ψk, and hence the more accurately we can estimate them (and, from them, the
expectation of y

.0/
itk ).

It is worth noting that the FA model allows for a certain form of unmeasured confounding.
This is because the aforementioned asymptotic unbiasedness property of θ̂itk does not require
ri to be independent of γik. If γik is indeed associated with ri then, because it is also associated
with y

.0/
itk (see equation (3)), it is an (unobserved) confounder.

3.3. Extending the factor analysis model
Our proposed model involves two extensions to the FA model: joint outcome modelling and
temporal dependence. We present these two extensions separately, although the model that we
finally propose, ‘MVFA+AR’, includes both extensions.

3.3.1. Joint outcome modelling
The classical FA model considers each of the K different outcomes independently; it makes no
assumptions about correlations between outcomes k and k′ (k′ �=k). In situations where the dif-
ferent outcomes are measures of, or are influenced by, a common underlying process, this may
be an inefficient way to estimate intervention effects. For example, the outcomes gross domestic
product and employment rate can be considered to be two measures of the underlying health
of an economy; and rates of hospital admission, violent crime, sexual crime and antisocial be-
haviour are all influenced by problematic alcohol use. In these situations, part of the variability
of the different outcomes is shared. Such shared variability can be modelled by using a multi-
variate FA model. As we explain below, the multivariate FA model enables the counterfactual
post-intervention kth outcomes of the treated units to be estimated by using the data on all K

outcomes, rather than (as in the FA model) just the data on the kth outcome. This makes it
possible to estimate these counterfactual outcomes—and hence the intervention effects—more
precisely.

The multivariate FA model assumes that

y
.0/
itk =γT

ikstk +λT
i ftk + "itk, .7/

where γik and stk are as defined earlier (i.e. they are unit-specific loadings and time-specific
factors, both of which are specific to the kth outcome), λi is the p2-vector of unit-specific
loadings that are shared across outcomes, ftk ∼Np2.0, I/ is a p2-vector of time-specific factors
for λi, and "itk ∼N.0,ψ2

ik/ is the error term. Again, covariates can be included in the model by
adding the term βT

k xit to the right-hand side of equation (7).
The interpretation of the multivariate FA model follows that of the FA model. More specif-

ically, as well as γik, we now have λi, which can be thought of as unit-specific unobserved
variables that affect all outcomes; their effect on outcome k at time t is quantified by the factor
ftk. One way to think about the benefit of jointly modelling the outcomes when estimating the
counterfactual outcomes is by appreciating that the joint model learns about λi, the unit-specific
loadings that are common to all the outcomes, from the data on all the outcomes. This means
that γT

ikstk +λT
i ftk, the expectation of the counterfactual kth outcome, is more accurately esti-

mated than in the case when modelling the outcomes independently. An alternative way to think
about this benefit is to consider the covariance matrix for y.0/

ik . For the FA model, this is given
by equation (6). For the multivariate FA model, we have that

cov.y.0/
tk /=ΓkΓT

k +ΛΛT +Ψk,
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for each k and t, where Λ is the n × p2 matrix with ith row λi. By modelling the outcomes
jointly, this covariance can be estimated more accurately, because the part that is attributable
to the shared factors, i.e. ΛΛT, is estimated by using data from all the K outcomes. Since this
covariance is used to predict the (counterfactual) potential outcomes of the treated units after
the intervention, estimating it more accurately should lead to more accurate estimation of those
outcomes.

We expect the benefit of jointly modelling the outcomes to be greatest when T1 is small. In this
situation, there are little data to learn the unit-specific loadings, and so the gain from learning
about some of them (specifically λi) by using all the outcomes is likely to be most marked. Also,
the greater is the proportion of factors that are common, i.e. the larger the p2=p1, the greater
is likely to be the benefit from using the multivariate FA model. Note that joint modelling of
multiple outcomes should be beneficial in terms of improving the precision of the estimate of the
causal effect even when the effect of intervention on only one of the K outcomes is of interest.
Also note that time-dependent variables that are predictive of y

.0/
itk but which are affected by the

intervention cannot be included as covariates in the multivariate FA model (as in equation (4)).
However, they can be used as additional outcomes in the multivariate FA model.

3.3.2. Modelling temporal dependence
The effect of the unit-specific loading γik (or λi) on the outcomes at times t and t′ is represented
by stk and st′k (or ftk and ft′k). It may be reasonable to believe that this effect is likely to be
more similar at two nearby times than at two distant times; for example stk and st+1,k are
likely to be more similar than stk and st+10,k. Neither the FA nor the multivariate FA model
described above takes this time ordering into account. We can take into account the time ordering
by assuming that, for each outcome k, the factors are generated by an auto-regressive AR(1)
process. Specifically, we assume that, for each k and j =1, : : : , p1 +p2, we have that

stkj =ρkjst−1,kj +ηtkj, .8/

where stkj = ftk,j−p1 for p1 < j � p1 + p2, ρkj ∈ .−1, 1/ are persistent parameters and ηtkj ∼
N.0, 1/.

Assuming that factors are generated by an AR(1) process may improve prediction of the
counterfactual outcomes y

.0/
itk (i>n1, t>T1) and hence increase the precision of the intervention

effect estimates. This can become clear as follows. By integrating out the factors and error terms,
we find that, for t′ �= t,

cov.y.0/
tk , y.0/

t′k /=Γkcov.stk, st′k/ΓT
k +Λcov.ftk, ft′k/ΛT: .9/

Equation (9) shows that, by assuming an AR(1) prior for the factors, an a priori correlation
both between yitk and yit′k is allowed, as well as between yitk and yi′t′k, where i �= i′. If these
correlations are strong, the sharing of information across time points can lead to more accurate
estimates of the counterfactuals. This does not happen in the standard FA model which assumes
that ρkj =0, and therefore the right-hand side of equation (9) reduces to 0.

We expect that assuming an AR structure for the factors will increase efficiency in settings
where n1 is small and T1 large. In these settings, there are few observations per time point and
therefore factors cannot be estimated accurately. By assuming an AR(1) structure, we allow for
the sharing of information between nearby time points. When T1 is small, there may be less
advantage, because there is then less information to estimate ρkj.

We call the FA model with this AR(1) structure ‘FA+AR’ and the multivariate FA model
with AR(1) structure MVFA+AR.
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3.4. Choosing the number of factors
One of the challenges when implementing FA is choosing the total number of factors in the
model. Many researchers have proposed solutions for this problem; for example, Bai and Ng
(2002) proposed some criteria to choose the number of factors; Lopes and West (2004) devel-
oped a reversible jump Markov chain Monte Carlo (MCMC) algorithm to estimate the number
of factors; Carvalho et al. (2008) took an evolutionary stochastic model search approach; Sri-
vastava et al. (2017) used a continuous shrinkage prior on the loadings. In this work, we account
for the uncertainty in p1 and p2 by assuming a multiplicative gamma process shrinkage (MGPS)
prior (Bhattacharya and Dunson, 2011) on the loadings.

We use the MGPS prior for both the outcome-specific loadings γik and shared loadings λi. We
shall describe how this prior works for the outcome-specific loadings; for the shared loadings,
the specifications are analogous. Let the loading vector γik be of dimension p1 = ∞. MGPS
assumes that for each j =1, : : : , ∞ we have

γikj ∼N

(
0,

1
φikjτkj

)
, .10/

where φikj and τkj (both greater than 0) are the local and global shrinkage parameters respec-
tively, such that

τkj =
j∏

l=1
δkj: .11/

For appropriately chosen priors on φikj and δkj, the product φikjτkj increases, thus encouraging
the magnitude of the elements of γik to decrease progressively towards 0. Hence, although the
number of columns in each matrix Γk is infinite there will be a column such that all columns
after this column have an L1-norm of almost 0, indicating that no more factors are required for
the data set under consideration.

In practice, it is not possible to carry out computations when loadings are infinite dimensional.
So, we let γik be of dimension k1 (and k2 for the shared loadings), where k1 is sufficiently large.
This approach can be computationally wasteful when p1 is much smaller than the specified k1.
However, one can easily detect this through a pilot run of the algorithm that is used to simulate
from the posterior; if most of the columns of Γik have an L1-norm that is very low, then it is
recommended to decrease k1 in the final run. Alternatively, an adaptive way to determine k1
was discussed by Bhattacharya and Dunson (2011).

The MGPS prior can be used to perform inference on the number of factors. At iteration
l of the MCMC algorithm (which we use to draw samples from the posterior), let d.l/ denote
the total number of columns in Γk whose absolute elements |γ1kj|, : : : , |γnkj| are all below a
prespecified threshold m. The effective number of factors at iteration l is k1 − d.l/. Therefore,
one can use the posterior distribution of k1 −d.l/ to estimate the total number of factors in the
model (e.g. as the posterior median of this distribution) and to construct credible intervals (by
using the quantiles). This approach is sensitive to the choice of threshold m.

The reasons that we use the MGPS prior instead of the other methods that we mention
are twofold. Firstly, MGPS allows for a conjugate formulation of the model, which simplifies
posterior sampling. Secondly, it has been shown that this method performs well in a wide range
of applications (e.g. Montagna et al. (2012), Montagna, Irincheeva and Tokdar (2018) and
Montagna, Wager, Barrett, Johnson and Nichols (2018)).

3.5. Prior distributions and Markov chain Monte Carlo algorithm
The prior distributions are as follows. For all i and k, we let the variance parameters ψ2

ik ∼
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InverseGamma.0:001, 0:001/. For the AR parameters, ρkj ∼uniform.−1, 1/ for all k and j. For
the shrinkage parameters, we follow recommendations by Bhattacharya and Dunson (2011) and
let φikj ∼gamma. 3

2 , 3
2 / for all i, k and j, δk1 ∼gamma.2:1, 1/ for all k, and δkj ∼gamma.3:1, 1/

for j > 1. If covariates xit are included in MVFA+AR, we let the regression coefficients βk ∼
N.0, 103I/ for all k.

The posterior distribution resulting from the MVFA+AR model of equations (7), (8), (10) and
(11) and the prior distributions that are stated in this section is analytically intractable. We there-
fore use MCMC sampling to draw samples from it. In particular, we propose a hybrid Gibbs sam-
pler where each parameter (or block of parameters) is sampled from its full conditional given the
remaining parameters, using either Gibbs or Metropolis–Hastings steps. The main challenge is to
simulate from high dimensional normal full conditionals. More specifically, the vector of factors
fk = .sT

1k, fT
1k, : : : , sT

Tk, fT
Tk/T for each outcome is drawn from a T.k1 +k2/-dimensional normal dis-

tribution, and the vector of loadings λ̃i = .λT
i , γT

i1, : : : , γT
iK/T for each unit is drawn from a .Kk1 +

k2/-dimensional normal distribution. We perform both these updates with good computational
efficiency by using the method of Rue (2001). The update of AR hyperparameters ρjk is also
challenging, because these parameters have bounded support and it is not possible to simulate
them directly from their full conditionals. To overcome this issue, we updateρjk with Metropolis–
Hastings steps by using the proposals that were developed by Kastner and Frühwirth-Schnatter
(2014). The remaining model parameters βk, φikj, δkj and ψ2

ik can be easily drawn from their
full conditionals. For full details of the MCMC algorithm, see section A of the web-based sup-
plementary material, where we also provide a sketch of the sampler. Similar MCMC algorithms
can be used to draw from the posterior distribution of the FA, FA+AR and MVFA models.

We emphasize that the factors and loadings are not identifiable. Since we are not interested
in interpreting these parameters but only in the counterfactuals (which are identifiable), we
choose not to impose any identifiability constraints. Users who are interested in interpreting
these parameters can resort to one of the existing approaches for ensuring identifiability; see for
example section 12.1.3 of Murphy (2012) for a fairly recent overview. One method is to restrict
the loading matrix to the class of lower diagonal matrices (Geweke and Zhou, 1996).

3.6. Point estimation and inference
Samples from the posterior distribution are used to obtain samples from the posterior distribu-
tion of the causal effect θitk. First, we simulate from the posterior predictive distribution of the
counterfactual outcomes

y
.0,l/
itk = .γ

.l/
ik /Ts.l/

tk + .λ
.l/
i /Tf .l/

tk + "
.l/
itk .i>n1, t>T1/, .12/

where "
.l/
itk ∼N{0, .ψ2

ik/.l/} and l indexes the MCMC draw. Then, samples θ.l/
itk from the posterior

of the individual effect θitk are readily available as θ.l/
itk =yitk −y

.0,l/
itk . Similarly, samples ϑ.l/

tk from
the posterior of the average treatment effect ϑtk are obtained as ϑ.l/

tk = .1=n2/Σn
i=n1+1θ

.l/
itk. We can

use these to calculate point estimates and to perform inference. For instance, the point estimate
of ϑtk will be .1=L/ΣL

l=1ϑ
.l/
tk , where L is the number of MCMC samples and the 95% credible

interval for ϑtk will be given by the 2.5% and 97.5% percentiles of the ϑ.l/
tk . To test for a positive

intervention effect, one can estimate the posterior probability thatϑtk >0 as .1=L/ΣL
l=1I.ϑ

.l/
tk >0/,

where I.·/ is the indicator function.

4. Simulation studies

4.1. Setting
We performed a series of simulation studies to answer the question of whether we can obtain
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estimates of ϑtk that are more precise than those obtained from the standard FA model by

(a) modelling multiple outcomes jointly,
(b) assuming an AR(1) structure for the factors and
(c) doing both simultaneously.

Each data set (from a total of 10000) was simulated as follows. We used MVFA+AR to
generate data on n = 35 units with T1 = 40 preintervention and T2 = 5 post-intervention time
points. There were K=3 outcomes, p1 =2 outcome-specific loadings and p2 =4 shared loadings,
and the persistent parameters of the factors were ρkj =0:9 for all k and j. (We set the variance
of the error terms ηtkj in equation (8) to 1=.1−ρjk/ for all k and j, so that stkj ∼N.0, 1/ for all t,
j and k.) s0kj were drawn from an N.0, 1/ distribution. For each k, i and j, we drew the loadings
from an N.0, 1/ distribution. Finally, for each k and i, we set ψ2

ik = 1
3 .

We randomly chose n2 =5 treated units from these 35 units by using the expected values on
the first outcome. To introduce unobserved confounding, each unit had selection probability
proportional to

expit

{
κ

45∑
t=41

.γT
i1st1 +λT

i ft1/

}

of being selected to be a treated unit, where expit.·/=exp.·/={1+exp.·/}. The value ofκ controls
the degree of unobserved confounding; κ= 0 means no unobserved confounding, and κ> 0
means that units with larger expected values of the post-intervention (possibly counterfactual)
treatment-free first outcome are more likely to be treated. We chose κ=0:75 because we found
that a simple t-test comparing Y1 = {y

.0/
1,41,1, : : : , y

.0/
30,41,1} and Y2 = {y

.0/
31,41,1, : : : , y

.0/
35,41,1} had

a roughly 17.5% rejection rate (this would be around 5% if the elements of Y1 and Y2 were
exchangeable). This procedure gave us data sets of n1 =30 control units and n2 =5 treated units
(set-up I), and T1 =40 and T2 =5.

We expected the answers to questions (a)–(c) to depend on T1 and n1. To obtain data sets with
fewer than 40 preintervention time points and/or fewer than 30 control units, we discarded the
data in the first 40−T1 preintervention time points and/or randomly discarded 30−n1 control
units. The values of .T1, n1/ in set-ups II–IX are .40, 30/, .40, 15/, .40, 5/, .20, 30/, .20, 15/,
.20, 5/, .10, 30/, .10, 15/ and .10, 5/ respectively. The total number of treated units (n2 =5) and
post-intervention observations (T2 =5) were common to all set-ups.

The point estimate of the ϑtk is

ϑ̂tk = 1
n2

n∑
i=n1+1

.y
.1/
itk − ŷ

.0/
itk /=ϑtk + 1

n2

n∑
i=n1+1

.y
.0/
itk − ŷ

.0/
itk /:

So, if the average (over simulated data sets and over treated units) value of ŷ
.0/
itk (i > n1 and

t > T1) is equal to the average (over simulated data sets and over treated units) of y
.0/
itk , then

ϑ̂tk will be unbiased for any value of θitk. Similarly, if the credible interval for Σn
i=n1+1y

.0/
itk contains

the true value of this sum, then the credible interval for ϑtk will also contain the true value of
the ϑtk for any θitk. Thus, it sufficed to study the case where θitk =0.

We fit the following models to all data sets: FA, FA+AR, MVFA and MVFA+AR. Note that
all these models were correctly specified for the data that we generated. For all methods, we
ran the MCMC algorithm for 31250 iterations, applied a thinning factor of 25 to obtain a total
of 1250 posterior draws, discarded the first 250 as a burn-in and used the remaining 1000 for
inference. FA and FA+AR are designed for univariate outcomes and hence we applied these to
each of the outcomes in turn. For all models, we used the MGPS prior, setting k1 = k2 = 12.
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Table 1. Results of the simulation study for the first outcome k D1 and post-intervention time points tDT1 C1
and t DT†

Model Results for the following set-ups:

I II III IV V VI VII VIII IX

T1

40 40 40 20 20 20 10 10 10

n1

30 15 5 30 15 5 30 15 5

Results for k =1 and t =T1 +1
Bias
MVFA+AR 0.017 0.030 0.119 0.034 0.056 0.155 0.072 0.103 0.195
MVFA 0.035 0.075 0.327 0.055 0.105 0.332 0.100 0.158 0.357
FA+AR 0.026 0.043 0.126 0.065 0.090 0.166 0.126 0.146 0.209
FA 0.044 0.087 0.324 0.082 0.131 0.330 0.144 0.186 0.351

Standard error
MVFA+AR 0.314 0.354 0.480 0.347 0.388 0.508 0.396 0.440 0.539
MVFA 0.322 0.383 0.684 0.355 0.418 0.669 0.406 0.470 0.666
FA+AR 0.330 0.371 0.492 0.387 0.424 0.526 0.460 0.494 0.569
FA 0.335 0.398 0.691 0.392 0.449 0.677 0.466 0.517 0.680

Mean credible interval width
MVFA+AR 1.245 1.394 1.904 1.370 1.548 2.055 1.628 1.833 2.286
MVFA 1.262 1.471 2.429 1.386 1.618 2.450 1.653 1.912 2.614
FA+AR 1.309 1.465 1.934 1.539 1.707 2.104 1.902 2.045 2.357
FA 1.317 1.517 2.425 1.532 1.736 2.462 1.898 2.076 2.634

False positive rate
MVFA+AR 0.050 0.047 0.052 0.053 0.051 0.051 0.048 0.046 0.050
MVFA 0.054 0.055 0.085 0.059 0.058 0.088 0.051 0.056 0.074
FA+AR 0.048 0.049 0.052 0.051 0.049 0.057 0.049 0.050 0.057
FA 0.052 0.059 0.090 0.058 0.064 0.089 0.054 0.062 0.081

Results for k =1 and t =T
Bias
MVFA+AR 0.014 0.032 0.208 0.043 0.074 0.263 0.113 0.170 0.333
MVFA 0.035 0.084 0.370 0.069 0.133 0.409 0.152 0.241 0.481
FA+AR 0.033 0.057 0.217 0.100 0.140 0.282 0.225 0.259 0.357
FA 0.054 0.107 0.372 0.121 0.186 0.420 0.246 0.308 0.490

Standard error
MVFA+AR 0.326 0.375 0.676 0.374 0.437 0.737 0.484 0.569 0.800
MVFA 0.331 0.398 0.780 0.383 0.467 0.825 0.496 0.606 0.877
FA+AR 0.355 0.414 0.703 0.465 0.538 0.784 0.640 0.703 0.861
FA 0.358 0.433 0.800 0.469 0.554 0.858 0.642 0.717 0.913

Mean credible interval width
MVFA+AR 1.284 1.485 2.483 1.485 1.746 2.660 1.913 2.216 2.931
MVFA 1.283 1.498 2.456 1.459 1.714 2.533 1.874 2.163 2.789
FA+AR 1.392 1.607 2.518 1.812 2.052 2.722 2.454 2.626 3.023
FA 1.373 1.574 2.462 1.728 1.920 2.570 2.341 2.471 2.863

(continued)
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Table 1 (continued )

Model Results for the following set-ups:

I II III IV V VI VII VIII IX

T1

40 40 40 20 20 20 10 10 10

n1

30 15 5 30 15 5 30 15 5

False positive rate
MVFA+AR 0.050 0.050 0.066 0.049 0.049 0.078 0.052 0.058 0.084
MVFA 0.055 0.062 0.125 0.060 0.076 0.147 0.067 0.086 0.141
FA+AR 0.052 0.054 0.076 0.053 0.063 0.089 0.065 0.072 0.099
FA 0.057 0.074 0.133 0.070 0.091 0.159 0.082 0.102 0.155

†The table presents the bias of the point estimates of ϑt1, the standard error of the point estimates, the mean
width of the 95% credible intervals and the false positive rate. All results are based on 10000 simulated data sets
from MVFA+AR.

We used the posterior mean as the point estimate of the ϑtk; credible intervals were obtained by
using the 2.5% and 97.5% quantiles of the posterior distribution.

We compared the performance of the models in terms of the bias and standard error of the
point estimates for the ϑtks, and mean width and false positive rate of the 95% credible intervals
of the ϑtks. As a measure of ‘power’, we used the probability of detecting an intervention effect
when the true ϑtk was not equal to 0. Here, we defined ‘detection’ as a credible interval that
excludes zero. For convenience, we assumed that θitk was the same for all units, times and
outcomes.

4.2. Results
The results for the first outcome (k = 1) are summarized in Table 1 and Figs 2 and 3. Table 1
presents the bias, standard error, mean credible interval width and false positive rate for .k, t/=
.1, T1 + 1/ and .k, t/ = .1, T/. Figs 2 and 3 show power for .k, t/ = .1, T1 + 1/ and .k, t/ = .1, T/

respectively. In section B of the web-based supplementary material, we present results for .k, t/=
.2, T1 +1/ (Table 1 and Fig. 1), and for .k, t/= .3, T/ (Table 1 and Fig. 2).

To answer question (a), we compare the results that were obtained from MVFA+AR and
MVFA with the results that were obtained from FA+AR and the FA model respectively. In
settings where T1 < 40 and n1 �15 (i.e. set-ups IV, V, VII and VIII), we see that joint modelling
of outcomes leads to considerable gains in precision: MVFA+AR and MVFA decrease the
standard error of the point estimates and the mean credible interval width in these settings (see
Table 1 and Table 1 of the web-based supplementary material section B). The gains in efficiency
are also apparent from the power: Figs 2 and 3 and 1 and 2 of web-based supplementary
material section B show that the use of a multivariate model instead of a univariate model can
substantially improve the chance of detecting an intervention effect. For example, for .k, t/ =
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Fig. 2. Results of the simulation study for the first outcome k D 1 and first post-intervention time point
t D T1 C 1 (the figure presents the probability of detecting an intervention effect (y-axis) as a function of
ϑT1C1,1 (x-axis) in set-ups I–IX; all results are based on 10000 data sets simulated from MVFA+AR ( ))
( , 5%, the desired detection rate when the intervention ϑT1C1,1 D 0; , MVFA; , FA+AR;

, FA): (a) set-up I, T1 D 40, n1 D 30; (b) set-up II, T1 D 40, n1 D 15; (c) set-up III, T1 D 40, n1 D 5; (d)
set-up IV, T1 D20, n1 D30; (e) set-up V, T1 D20, n1 D15; (f) set-up VI, T1 D20, n1 D5; (g) set-up VII, T1 D10,
n1 D30; (h) set-up VIII, T1 D10, n1 D15; (i) set-up IX, T1 D10, n1 D5
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Fig. 3. Results of the simulation study for the first outcome k D1 and last post-intervention time point t DT
(the figure presents the probability of detecting an intervention effect (y-axis) as a function of ϑT ,1 (x-axis) in
set-ups I–IX; all results are based on 10000 data sets simulated from MVFA+AR ( )) ( , 5%, the
desired detection rate when the intervention ϑT ,1 D 0; , MVFA; , FA+AR; , FA): (a) set-up
I, T1 D40, n1 D30; (b) set-up II, T1 D40, n1 D15; (c) set-up III, T1 D40, n1 D5; (d) set-up IV, T1 D20, n1 D30;
(e) set-up V, T1 D 20, n1 D 15; (f) set-up VI, T1 D 20, n1 D 5; (g) set-up VII, T1 D 10, n1 D 30; (h) set-up VIII,
T1 D10, n1 D15; (i) set-up IX, T1 D10, n1 D5
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.1, T/ and set-up VII, we find that, when ϑT1+1,1 = 1:2, the intervention effect is detected by
MVFA with probability 78% whereas it is detected by the FA model with probability 66%. The
power curves for .k, T/= .2, T1 +1/ and .k, t/= .3, T/ (web-based supplementary material section
B) reveal a similar pattern. We find no settings in which the univariate models outperform the
corresponding multivariate models for any of the performance measures that we consider.

To answer question (b), we compare the results that were obtained from MVFA+AR and
FA+AR with those obtained from MVFA and the FA model respectively. We find that the
inclusion of the AR component leads to either improved or unchanged performance. The im-
provements occur mainly in settings where n1 =5 (i.e. set-ups III, VI and IX). In these settings
with few control units, the FA and MVFA models perform very poorly in terms of bias and
false positive rate for outcome k = 1 (see Table 1). FA+AR and MVFA+AR offer significant
improvements in terms of both bias and false positive rate compared with the FA and MVFA
models. For example, for .k, t/= .1, T/ and set-up VI, the false positive rate is 8.9% for the FA
model whereas it is 5.7% for MVFA+AR. Note that, for outcomes k = 2 and k = 3, the bias
and false positive rate in set-ups III and VI are not as high as for outcome k = 1 (see Table 1
of web-based supplementary material section B). The reason is that we have chosen the treated
units by using the expected outcomes on k =1 and therefore the effect of confounding is greater
for k =1. The inclusion of the AR component also leads to gains in efficiency in set-ups III and
VI, as it reduces both the standard error of the point estimates and the mean credible interval
width (Table 1). The gains in power can be moderate. For example, for .k, t/= .1, T/ and set-up
III, the intervention effect is detected with probability 90% by FA+AR and 83% by the FA
model when ϑT1+1,1 =1:5 (Fig. 2). The improvement in power is more prominent for outcome
k =2 (because the bias of all methods is close to 0 for this outcome). For instance, in set-up III,
a ϑT1+1,3 = 1:5 is detected with probability 86% by FA+AR and 72% by the FA model (Fig. 1
of web-based supplementary material section B).

We find no set-ups in which MVFA+AR performs better than both MVFA and FA+AR. The
reason is that, as we explained earlier in Section 3.3, the two proposed extensions (joint outcome
modelling and the AR(1) prior on factors) improve on FA in very different settings: the former
when T1 is small and n1 is large; the latter when T1 is large and n1 is small. In contrast, we find
no settings where either FA+AR or MVFA outperforms MVFA+AR. Therefore, the advantage
of MVFA+AR is that it can be used in all settings. For this reason, we suggest that this is the
model that should be used in practice.

The gains in efficiency that are obtained by using either FA+AR, MVFA and MVFA+AR will
depend not only on T1 and n1 but also on the total number of outcomes K, the number of factors
p1 +p2 and the ratio p1=p2. As K increases, λi will be estimated with higher precision. As the
total number of factors p1 +p2 increases, the total number of model parameters that need to be
estimated increases. Hence, sharing of information (either between outcomes by using MVFA
or MVFA+AR or between time points by using FA+AR or MVFA+AR) is more important
for larger values of p1 + p2. Finally, MVFA and MVFA+AR are well suited to applications
where the ratio p1=p2 is low, i.e. where the number of shared loadings is large compared with
the number of outcome-specific loadings.

5. Application to the motivating data set

5.1. Model details
In this section we apply the proposed methodology to the alcohol licensing data set that was
introduced in Section 2. The data set consists of data on K =4 outcomes relating to the harms
of alcohol consumption in society. For each outcome, there are n1 = 72 control and n2 = 4
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(a) (b)

(c) (d)

Fig. 4. Analysis of the alcohol licensing data set by using the proposed MVFA model (the figure presents
posterior boxplots of Σn

iD1jγikj j, the L1-norm of the jth column of the loadings matrix; the boxplots are based
on an MCMC sample of size 2500; factors 1–20 are outcome specific whereas factors 21–30 are shared
across outcomes): (a) antisocial behaviour; (b) violent crimes; (c) hospital admissions; (d) sexual crimes

treated units. There are T = 16 observations per unit per outcome, T1 = 10 of which are in the
preintervention period. The objectives of the analysis are threefold. Firstly, we are interested
in assessing the evidence for the existence of common factors underlying the four outcomes.
Secondly, we are aiming to investigate the effect of the intervention on each of the four treated
units (Derby, Enfield, Kingston upon Thames and Southwark) individually. Thirdly, we wish
to assess the evidence for a non-zero average intervention effect ϑtk (t> 10).

To achieve these goals, we fit our proposed model MVFA+AR. We set k1 = 20 and k2 = 10.
We run the MCMC algorithm for 1500000 iterations (this took approximately 9 h on a Linux
machine with an Intel i7-6700 3.4-GHz central processor unit); the first 250000 samples are
discarded as a burn-in and we apply a thinning factor of 500 to the remaining draws. Therefore
our MCMC sample consists of 2500 draws from the joint posterior of the model parameters.
Convergence is assessed by visual inspection of posterior trace plots for some randomly chosen
shrinkage parameters δjk, variance parameters ψ2

ik and the counterfactuals y
.0/
itk (i > 72 and

t > 10). These indicate that the chain has reached its stationary distribution. Further, we run
an additional nine chains and compare the posterior densities of these parameters with those
obtained from the first chain. No major differences are found. Therefore, we conclude that the
chain has converged.

For each outcome, we also fit the univariate FA model with the MGPS prior and k1 = 20.
However, the conclusions that we reached regarding the effect of the intervention are very
similar (except for minor losses in precision of the causal effect estimates) to those obtained
from MVFA+AR. Thus, the results from the FA model are not discussed further.

5.2. Results
Fig. 4 summarizes the posterior distribution of Σn1+n2

i=1 |γikj|, i.e. the L1-norm of the jth column
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Fig. 5. Results of the real data analysis for (a)–(d) Derby and (e)–(h) Enfield ( , observed data; ,
posterior mean of y.0/

itk obtained by fitting MVFA+AR; , 95% credible intervals of y.0/
itk obtained from the same

model; , 95% credible intervals for y.0/
itk obtained by analysing each outcome in turn with the FA model):

(a), (e) antisocial behaviour; (b), (f) violent crimes; (c), (g) hospital admissions; (d), (h) sexual crimes
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Fig. 6. Results of the real data analysis for (a)–(d) Kingston and (e)–(h) Southwark ( , observed data;
, posterior mean of y.0/

itk obtained by fitting MVFA+AR; , 95% credible intervals of y.0/
itk obtained from

the same model; , 95% credible intervals for y.0/
itk obtained by analysing each outcome in turn with the

FA model): (a), (e) antisocial behaviour; (b), (f) violent crimes; (c), (g) hospital admissions; (d), (h) sexual
crimes
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Table 2. Estimated average (over units) treatment effect for each outcome and post-intervention time point
(with 95% posterior credible intervals in parentheses) and average (over units) observed values for each
outcome and post-intervention time point

t Results for Results for Results for Results for
antisocial behaviour violent crimes hospital admissions sexual crimes

Estimates of ϑtk
11 −0:09 [−0:26, 0:07] −0:1 [−0:29, 0:09] −1:2 [−13:1, 9:8] −0:003 [−0:013, 0:007]
12 −0:04 [−0:27, 0:19] −0:12 [−0:44, 0:21] −5:6 [−18:6, 6:7] −0:003 [−0:018, 0:011]
13 −0:04 [−0:36, 0:28] −0:22 [−0:63, 0:23] −6:9 [−20:9, 7:2] −0:008 [−0:026, 0:011]
14 0.11 [−0:32, 0:52] −0:22 [−0:7, 0:27] −12:9 [−27:9, 1:2] −0:008 [−0:028, 0:012]
15 0.26 [−0:19, 0:73] −0:09 [−0:6, 0:45] −9:8 [−25:1, 5] −0:01 [−0:031, 0:012]
16 0.36 [−0:12, 0:86] −0:06 [−0:58, 0:49] −11:2 [−26:6, 3:2] −0:009 [−0:029, 0:013]

Mean observed values
11 2.50 5.73 159.4 0.170
12 2.50 5.66 150.8 0.169
13 2.49 5.47 147.3 0.158
14 2.53 5.35 144.4 0.149
15 2.56 5.35 145.3 0.147
16 2.58 5.26 142.2 0.148

of the loadings matrix, where γikj =λik,j−k1 for j > k1. We see that the norm quickly decreases
with j for both outcome-specific and shared factors, demonstrating the shrinkage effects of
the MGPS prior. Inference on the number of non-negligible factors can be done as described
in Section 3.4. If we use m = 0:1, then the median posterior number of non-negligible shared
factors is 2 (95% credible interval [2,4]) and the median posterior number of factors specific to
outcomes 1–4 is 6 (95% credible interval [4,7]), 4 (95% credible interval [3,5]), 14 (95% credible
interval [10,19]) and 11 (95% credible interval [9,14]) respectively.

There is not enough evidence in the data to support a significant intervention effect in each
unit individually. This is evident in Figs 5 and 6 which show estimated counterfactuals along with
their 95% credible intervals for Derby and Enfield, and Kingston and Southwark respectively.
We see that, for all treated units and outcomes, the estimated counterfactuals do not appear
to be systematically higher than observed values. Further, the 95% credible intervals of the
counterfactuals contain the observed values yitk for most of the combinations of i (i > 72),
t (t>10) and k. This suggests that the data are compatible with what would have been observed
if intervention had not taken place.

The point estimates ofϑtk, the average (over units) intervention effect, for all post-intervention
time points 11–16 and outcomes, along with their 95% credible intervals, are shown in Table 2.
We see that the credible intervals for antisocial behaviour, violent crimes and sexual crimes are
nearly symmetrical about zero. Therefore we conclude that there is no evidence for an effect
of the intervention on these outcomes. For hospital admissions, the point estimates are all
negative (a negative value means that admissions would be higher with no intervention). One of
the advantages of the Bayesian approach is that it enables us to estimate many interesting causal
quantities directly from the posterior distribution of the counterfactuals. Here we focus on the
probability that ϑtk >0, which for hospital admissions and time points 11–16 is 0.41, 0.18, 0.16,
0.04, 0.10 and 0.07 respectively. Some of these values are low, suggesting that the intervention
succeeded in reducing the rate of hospital admissions. However, most of them are higher than
5% and therefore the evidence is inconclusive.
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6. Discussion

In this work, we have introduced the model MVFA+AR for evaluating the effect of a dichoto-
mous intervention from time series observational data. Our model extends in two ways the FA
model that is frequently used for causal inference in this setting. First, it models multiple cor-
related outcomes jointly. Second, it accounts for auto-correlation within each of the outcomes.
Both of these extensions enable more efficient estimation of the effect of an intervention on all,
or any one, of the multiple outcomes. An important facet of the model proposed is that it pro-
vides posterior credible intervals for the causal effects of interest that account for the uncertainty
about the number of factors.

The ability to make inference is inherent in the Bayesian framework and therefore in our
method. This gives it an advantage over many existing approaches for causal inference using time
series observational data, including frequentist approaches based on the FA model (Gobillon
and Magnac, 2016; Chan and Kwok, 2016; Xu, 2017; Li, 2018) and synthetic control-type
approaches (Abadie et al., 2010; Hsiao et al., 2012; Doudchenko and Imbens, 2016; Ben-Michael
et al., 2018). The reason is that, to allow for inference, these methods require assumptions that
might be unlikely to hold in some applications and therefore may yield confidence intervals
that do not reflect the true uncertainty in the estimates of the causal effect. For example, the
parametric bootstrap approach of Xu (2017) relies on the assumption that the error terms in
the FA model are homoscedastic at each time point. For the approaches of Abadie et al. (2010)
and Hsiao et al. (2012), inference is typically done with a ‘placebo test’: a procedure that is akin
to a permutation test. However, the validity of this test is debatable unless we are willing to
assume that the unit that received the intervention was chosen at random (Ben-Michael et al.,
2018). These assumptions are not essential for our method, suggesting that it can be a useful
alternative in applications where they are unlikely to hold.

Our simulation studies indicate that the estimates of intervention effects obtained from
MVFA+AR are more precise than those obtained from the standard FA model. This can
lead to considerable gains in power for detecting an intervention effect. Further, we found
that MVFA+AR has better type I error rate control compared with the standard FA model.
Both these gains occur when either the total number of preintervention time points or the total
number of control units is relatively small. This is so in many practical problems.

We applied our methodology to estimate the effect of CIPs on alcohol-related harms. We
found evidence for the existence of common factors driving the outcomes that we considered.
We identified no major effect of CIPs on the rate of antisocial behaviour incidents, violent crimes
or sexual crimes. The analysis provides some evidence that the intervention has led to a decrease
in the rate of alcohol-related hospital admissions. However, the effect is not significant, i.e. the
95% credible intervals contain zero.

There are limitations to the method proposed. Our model allows for loadings that are shared
across all outcomes. However, with K>2 outcomes there is the possibility that there are loadings
which are shared between only k of them, where 2�k�K−1. There may be a benefit in extending
the model to allow for loadings that are common only to a subset of the outcomes. Another
extension that may be useful would replace the AR(1) structure that we assume with a more
general auto-regressive moving average process. However, this may not be feasible, given the
length of the time series that is encountered in many practical applications.

Several possible directions for future research exist. The model proposed does not make use
of the geographical location of the units. Such information may be of value, since we expect
the outcomes of units with spatial proximity to be correlated. It may be worth extending the
model to account for this. Lopes et al. (2008) achieved this by assuming a spatial model for
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the loadings. Finally, although our model should perform well when the normality assumption
holds approximately, it cannot be used when the data drastically deviate from this assumption,
e.g. when the outcomes are dichotomous. Therefore, it is important to develop a model for
mixed outcomes. We shall consider such extensions in our future research.
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