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ABSTRACT

Much of the recent progress in cosmology has come from studying the power spectrum of the

cosmic microwave background (CMB). The latest results from the Planck satellite confirmed that

the inflationary paradigm with the ΛCDM six-parameter model provides a very good description of

the observed structures in the Universe. Even so, additional parameters, such as cosmic defects, are

still allowed by current observational data. Additionally, many of the inflationary models predict a

significant departure from Gaussianity in the distribution of primordial perturbations. Higher order

statistics, such as the bispectrum, are required to test and constrain such models. The late-time

distribution of matter in the Universe - large-scale structure (LSS) - contains much more information

than the CMB that has not yet been used. In this thesis, we look at both problems: the effects of

cosmic defects, in particular cosmic strings and domain walls on the CMB power spectrum through

numerical simulations, and the dark matter bispectrum of large-scale structure. Topological defects

are predicted by most inflationary theories involving symmetry breaking in the early Universe. In

this thesis we study the effects of cosmic strings and domain walls on the CMB by determining

their power spectrum. We use Nambu-Goto and field theory simulations for cosmic strings and

domain walls respectively, and we determine the power spectra they produce with a modified Einstein-

Boltzmann solver sourced by unequal time correlators from components of the energy-momentum

tensor of the defects. We use these spectra together with CMB likelihoods to obtain constraints on

the energy scales of formation of the cosmic defects, finding Gµ/c2 < 1.29× 10−7 and η < 0.93

MeV (at 95% confidence level) for cosmic strings and domain walls respectively, when using the

Planck satellite likelihoods. For the matter bispectrum of LSS, we compare different perturbative and

phenomenological models with measurements from N-body simulations by using shape and amplitude

correlators and we determine on which scales and for which redshifts they are accurate. We propose

a phenomenological ‘three-shape’ model, based on the fundamental shapes we have observed by

studying the halo model that are also present in the simulations. When calibrated on the simulations,

this model accurately describes the bispectrum on all scales and redshifts considered, providing a

prototype bispectrum HALOFIT-like methodology that could be used to describe and test parameter

dependencies.
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CHAPTER 1

INTRODUCTION

Although cosmological ideas have always fascinated people, the development of modern
cosmology is associated with the general theory of relativity at the beginning of the twentieth
century which made possible the creation of the first mathematical model describing the
whole observed Universe [10]. The starting point was the Cosmological principle stating that
the Universe is homogeneous and isotropic on large scales. The formulation of the Big-Bang
model began with Georges Lemaître and his “primordial atom” in the 1920s [11] and it
was developed more quantitatively in the 1940s with the work of George Gamow and his
collaborators [12].

New ideas and building blocks have appeared since then, such as dark energy, dark matter
and the hot early Universe. Since the discovery of the Cosmic Microwave Background (CMB)
radiation by Penzias and Wilson in 1965 [11], cosmology began to progress more rapidly
[13]. This started with a much better theoretical understanding of the phenomena in the
very early Universe, which have been confirmed by observations. The key elements for this
groundbreaking progress are associated with particle physics, specifically the development
of the gauge theories of electromagnetic, weak and strong interactions. These have allowed
researchers to investigate the properties of matter at densities 80 orders of magnitude greater
than the nuclear density, at times as early as 10−10 seconds after the Big Bang. At such
early times the three fundamental interactions are expected to be unified, which shows how
important cosmology can be to particle physics as well.

The 1980s saw the development of another extraordinary model, the inflationary theory
[14]. This theory assumes that the Universe underwent an accelerated (exponential) expansion
phase, called inflation, just after its formation and that all elementary particles were formed at
the end of this rapid expansion. This inflationary phase is also responsible for the creation of
the large scale structure in the Universe (LSS), such as galaxies. Small quantum fluctuations
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Fig. 1.1 Temperature anisotropies in the sky as viewed by the Planck satellite with galaxy
contributions obscuring the equatorial region (at 143 GHz). The figure is reproduced from
Ref. [6].

created during inflation can get amplified, eventually generating the large-scale structures
that are observed today. Moreover, this model also solves many cosmological puzzles, such
as the flatness problem, the homogeneity problem and the isotropy problem.

A powerful method for testing this theory is the study of the anisotropy in the CMB.
Temperature anisotropies are produced by the quantum fluctuations generated during the
inflationary phase, The first confirmation of the model appeared from the results of the COBE

satellite (launched in November 1989) [15]. More recent probes have greatly increased the
precision of these observation: WMAP (launched 2001) [16] and Planck (launched 2009)
[17, 18].

The scientific results of the Planck collaboration offer a robust support for the standard,
six parameter ΛCDM model of cosmology. These parameters are: the baryon density Ωbh2,
the cold dark matter density Ωch2, the optical depth to reionisation τ , the acoustic scale θ ,
the amplitude As, and the spectral index of density fluctuations ns. Improved measurements
for the parameters defining this model were recently released [6, 7]. In Fig. 1.1, the 143 GHz
CMB map measured by the Planck satellite is presented.
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In the meantime, the results mentioned in the previous paragraphs have been enhanced
by more classical methods. The age of the Universe has been estimated using the spectra
of thorium and uranium in the atmospheres of old stars and the Hubble Space Telescope
(launched in 1990) has given an accurate estimate of the Hubble constant [19]. Supernovae
measurements established that the Universe is accelerating [20, 21], a fact confirmed later
by precision CMB results, i.e. that the energy density of the Universe is dominated by a
cosmological constant or ‘dark energy’.

These empirical results have given rise to the so called Standard Cosmological Model

[22]. The precision of the measurements of its cosmological parameters has been greatly
increased in the last couple of years, notably using Planck satellite results.

1.1 The standard cosmological model

Consider a space-time metric gµν with line element expressed as ds2 = gµνdxµdxν . Through-
out this thesis, the following metric convention is used: (−,+,+,+) and we also consider
units such that c = 1.

Einstein showed that using the Postulates of General relativity the field equations satisfy
the following equation:

Gµν = 8πGTµν +Λgµν , (1.1)

where Gµν is the Einstein tensor describing the geometric properties of spacetime, Tµν is
the energy-momentum tensor which describes the properties of matter and Λ is a constant,
called the cosmological constant. To express the Einstein tensor in terms of the metric, one
must define the Christoffel symbols:

Γ
µ

νρ =
1
2

gµσ
(
∂ρgσν +∂νgσρ −∂σ gνρ

)
, (1.2)

the Ricci tensor Rµν and Ricci scalar R:

Rµν = ∂ρΓ
ρ

µν −∂νΓ
ρ

µρ +Γ
σ
σρΓ

ρ

µν −Γ
ρ

µσ Γ
σ
νρ , (1.3)

R = gµνRµν , (1.4)

with partial derivative ∂ρ ≡ ∂

∂xρ . The Einstein tensor has the following expression:

Gµν ≡ Rµν −
1
2

Rgµν . (1.5)
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When considering small particle velocities v satisfying v ≪ c and weak fields, equation (1.1)
reduces to

∇
2
φ = 4πGρ (1.6)

in the absence of the cosmological constant, where g00 = 1−2φ , thus recovering the usual
Poisson equation of Newtonian mechanics.

The most general spacetime metric of a homogeneous and isotropic expanding universe
that is path connected can be expressed as [23]

ds2 =−dt2 +a(t)2
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)] , (1.7)

where k is a constant that can be fixed to the values −1, 0 and 1 by suitable rescaling of
the variables (if the universe is open, flat, or closed respectively) and a(t) is the scale factor
of the Universe. This is called the Friedmann-Lemaître-Robertson-Walker (FLRW) metric
[24, 25].

We are interested however in the matter content of the Universe, rather than the simple
vacuum solution. This can be treated as a perfect fluid, which has an energy-momentum
tensor of the form

T µ

ν = (ρ + p)uµuν + pδ
µ

ν , (1.8)

where ρ and p represent the density and pressure of the fluid, and uµ is its 4-velocity vector.
In the case of an universe consisting of multiple particle species, these quantities are the sum
of the counterparts from each species. By using isotropy and homogeneity considerations, it
can be shown that the matter energy-momentum tensor has a simple diagonal form,

T µ

ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.9)

The Christoffel symbols (1.2) can be used to define the covariant derivative:

∇µT νρ = ∂µT νρ +Γ
ν
µσ T σρ +Γ

ρ

µσ T νσ . (1.10)

As the Einstein tensor is covariantly conserved (Bianchi identity),

∇νGµν = 0 (1.11)



1.1 The standard cosmological model 5

and from the Einstein Equation (1.1) we deduce that the energy-momentum tensor is also
conserved:

∇νT µν = 0 . (1.12)

In order to solve the Einstein Equation we first need to calculate the Einstein tensor in this
metric (1.7). By calculating the Christoffel symbols (1.2), we determine the Ricci tensor
(1.3) and scalar (1.4) in this coordinate system. Its non-vanishing components are:

R00 =−3
ä
a
, (1.13)

R11 =
aä+2ȧ2 +2k

1− kr2 , (1.14)

R22 = r2(aä+2ȧ2 +2k) , (1.15)

R33 = r2(aä+2ȧ2 +2k)sin2
θ , (1.16)

R =
6
a2 (aä+ ȧ2 + k) . (1.17)

By considering the µ = 0 component of Eq. (1.12) and substituting the expression for the
energy momentum tensor (1.9), the conservation equation for a cosmological fluid is obtained,

ρ̇ =−3
ȧ
a
(ρ + p) . (1.18)

By considering the 00 and i j components of Eq. (1.1), we obtain the Friedmann equations
[14]: (

ȧ
a

)2

+
k
a2 =

8πG
3

ρ +
Λ

8πG
, (1.19)

ä
a
=−4πG

3
(ρ +3p)+

Λ

8πG
. (1.20)

Eq. (1.20) is also called the Raychaudhuri equation, and it can also be trivially derived from
Eqs. (1.18) and (1.19).

The Hubble parameter H and the conformal time τ are defined as

H =
ȧ
a
, (1.21)

dτ

dt
=

1
a
. (1.22)

Then the conformal Hubble parameter is given by
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H =
a′

a
= aH , (1.23)

where the dot denotes differentiation with respect to proper time, and the prime differentiation
with respect to conformal time. Static solutions of Eqs. (1.19)-(1.20) correspond to ȧ = ä = 0,
and various solutions have been proposed: the Einstein Universe (K = 1, p = 0), the de
Sitter Universe (K = ρ = p = 0) [26] and others proposed by Alexander Friedmann [24],
and Georges Lemaître [25].

The observed expansion of the Universe [27–29] made cosmologists to abandon the static
solutions. By introducing an equation of state

p = wρ , (1.24)

where w is a constant, in the case of K = Λ = 0, the solutions to the Friedmann equations
take a simple form [10]

ρ =
ρ0

a3w+1 , (1.25)

a =

(
t
t0

)2/(3w+1)

. (1.26)

The radiation-dominated era corresponds to w = 1/3 and the matter-dominated one to w = 0,
yielding the following solutions for the scale-factor:

a(t) ∝ t1/2
∝ τ( radiation era) , (1.27)

a(t) ∝ t2/3
∝ τ

2( matter era) . (1.28)

1.2 The formation of structures

In Subchapter 1.1, we have derived the Friedmann equations in a homogeneous universe. This
is however not the case in reality and moreover we are interested in analysing the formation
and evolution of large-scale structures within the expanding universe. In this Subchapter, we
discuss how small fluctuations around the homogeneous background described in Subchapter
1.1 can produce large-scale structures through gravitational instability. Here, we use a full
general-relativistic approach, although some of the results can be derived in the more intuitive
Newtonian approximation. In the Newtonian approximation, results are only valid on scales
smaller than the Hubble radius, and moreover they are not valid for relativistic fluids, such



1.2 The formation of structures 7

as photons and neutrinos. We start with the flat FLRW metric (k = 0) expressed in terms of
conformal coordinates:

ds2 = a2(τ)
(
−dτ

2 +δi jdxidx j) . (1.29)

For this flat metric, the Friedmann Equations (1.19) and (1.20) can be re-written in terms of
conformal time coordinates

H 2 =
1
3
(ρ +8πGΛ) , (1.30)

Ḣ =
1
3

a2 [Λ−8πG(ρ +3p)] . (1.31)

We consider small perturbations around this metric (1.29), which in the most general case
produce the line element

ds2 = a2 [−(1+2A)dτ
2 −2Bidxidτ +(δi j +hi j)dxidx j] , (1.32)

where A, Bi and hi j are functions of time and position and we denote with gµν the resulting
metric tensor. Moreover, the linear perturbation degrees of freedom can be decomposed
further, into scalar, vector and tensor parts (SVT decomposition):

Bi = ∂iB+BV
i , (1.33)

hi j = 2Cδi j +

(
∂i∂ j −

1
3

δi j∇
2
)

E +
1
2
(∂iEV

j +∂ jEV
i )+ET

i j , (1.34)

where B, C and E are scalar components, BV
i and EV

i are vector components and ET
i j are

tensor components and ∂ iBV
i = ∂ iEV

i = ∂ iET
i j = 0 and E iT

i = 0. We note that there are 10
degrees of freedom, out of which there are 4 scalars (A, B, C and E), 4 vectors and 2 tensors
(in the case of vectors and tensors there were 6 and 6 degrees of freedom respectively, but
these were reduced by using symmetry, divergenceless and traceless properties).

These perturbations introduce unphysical degrees of freedom which must be dealt with.
We start by studying how the perturbation variables transform under a small change of
coordinate system. These transformations are called gauge transformations.
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1.2.1 Gauge transformations

We consider two coordinate systems for the same spacetime, with metrics gµν and g̃µν , and
with coordinates X and X̃ respectively, such that

X̃ µ = X µ +ξ
µ , (1.35)

where ξ 0 ≡ T and ξ i ≡ Li = ∂ iL+LiV are functions of space and time and ∂iLiV = 0. Then
the line element is the same in both frames and therefore the spacetime can be expressed as

ds2 = gµν(X)dX µdXν = g̃µν(X̃)dX̃ µdX̃ν , (1.36)

and the transformation law between the frames is

gµν(X) =
∂ X̃α

∂X µ

∂ X̃β

∂Xν
g̃αβ (X̃) . (1.37)

By considering the perturbed metric of Eq. (1.32) and its tilded counterpart and plugging
them both in Eq. (1.37), and then considering the 00, 0i and i j components of the equations
at first order, we obtain the gauge transformations of the perturbations:

Ã = A−T ′−H T , (1.38)

B̃i = Bi +∂iT −L′
i , (1.39)

h̃i j = hi j −∂iL j −∂ jLi −2H T δi j . (1.40)

The SVT-decomposed quantities transform as:

B̃ = B+T −L′ , (1.41)

B̃V
i = BV

i −LV ′
i , (1.42)

C̃ =C−H T − 1
3

∇
2L , (1.43)

Ẽ = E −L , (1.44)

ẼV
i = EV

i −LV
i , (1.45)

ẼT
i j = ET

i j . (1.46)

One procedure for solving the redundancy in the number of degrees is called gauge fixing.
Two popular gauge choices that are used for studying linear perturbations in cosmology are:
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The synchronous gauge
This gauge is characterised by A = Bi = 0, i.e. the only perturbations are in the spatial
part of the metric. This is achieved in the tilded basis by solving the differential equation
(1.38) for T and then by solving Eqs. (1.41) and (1.42) for L and LV

i respectively. This
gauge is the most widespread and has been used in numerical codes such as CMBFAST
[30] and CAMB [31, 32]. With the synchronous gauge, we must be careful because
not all gauge modes are fixed.

The conformal Newtonian gauge
The conformal Newtonian gauge is characterised by setting the scalar B and E terms
to 0. This can be achieved by considering in the gauge transformation equations
(1.38)-(1.46), L = E, T = L′−B. Then in the tilded basis, Ẽ = B̃ = 0. The canonical
form of the metric for scalar perturbations in this gauge is obtained by taking ψ = A

and φ =−C:

ds2 = a2(τ)
[
−(1+2ψ)dτ

2 +(1−2φ)δi jdxidx j] . (1.47)

After the gauge has been set, the perturbations in both the matter and the metric have to
be included. Another possibility is to choose gauge-invariant perturbation variables such that
they remain unchanged by gauge transformations. This idea was first proposed by Bardeen
in Ref. [33]. In subsequent parts of this thesis, we choose to fix the gauge to the synchronous
gauge and study the cosmological perturbations there.

1.2.2 Synchronous gauge perturbations

By choosing the synchronous gauge, the line element (1.32) is given by

ds2 = a2 [−dτ
2 +(δi j +hi j)dxidx j] . (1.48)

As the metric is already perturbed, we have to consider perturbations to the energy-
momentum tensor (1.9). Starting from the energy-momentum tensor of a fluid (1.8) and
perturbing the density ρ , pressure p and velocity uµ , we find

δT µ

ν = (δρ +δ p)uµuν +(ρ + p)(uµ
δuν +δuµuν)+δ pδ

µ

ν +Σ
µ

ν , (1.49)

where Σ
µ

ν is the anisotropic stress, which can be taken to have only spatial components and
be traceless Σ0

0 = Σi
0 = Σ0

i = Σi
i = 0. In the unperturbed metric, the fluid velocity of a
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comoving observer is

uµ =

(
1
a
,0,0,0

)
. (1.50)

In the perturbed frame, the 4-velocity vector uµ +δuµ must still be a unit 4-vector, i.e. it must
satisfy (uµ +δuµ)(uµ +δuµ) = 1 and hence at linear order δuµ has to have the following
form:

δuµ =

(
0,

1
a

vi

)
, (1.51)

where vi ≡ dxi

dτ
represents the coordinate velocity. Then Eqs. (1.9) and (1.49) together with

Eqs. (1.50) and (1.51) yield the energy-momentum tensor in the perturbed frame:

T 0
0 =−ρ̄(1+δρ)≡−ρ̄(1+δ ) , (1.52)

T i
0 =−(ρ + p)vi , (1.53)

T i
j = (p̄+δ p)δ i

j +Σ
i
j . (1.54)

Here each of the quantities on the right side of the equation represent the matter perturbations
of all the matter in the Universe. Before trying to solve the Einstein Equation (1.1), it is
useful to first convert the equations into Fourier space and then decompose all the tensors
involved into scalar, vector and tensor parts, similarly to the real-space decomposition (1.34).
The advantage of such a procedure is that in Fourier space the equations describing each of
the three types of perturbations decouple and can be treated separately. A general tensor Tµν

can be split as

Ti j =
1
3

δi jT +

(
k̂ik̂ j −

1
3

δi j

)
T S +

(
k̂iTV

j + k̂ jTV
i
)
+T T

i j , (1.55)

with T and T S being the scalar parts of the perturbation - the trace and the anisotropic
scalar respectively, while TV

i is the vector part and T T
i is the tensor part respectively. The

vector components are transverse, i.e. kiTV
i = 0, and the tensor components are traceless and

transverse kiT T
i j = k jT T

i j = 0 and T Ti
i = 0.

By considering only up to first order perturbations to the Einstein Equation (1.1) we
obtain at 0th order the Friedmann Equations (1.30)-(1.31), while at first order we derive the
evolution equations for the metric perturbations,

h′′+
a′

a
h′ =−8πGa2(δρ +3δ p) , (1.56)

hS′′+2
a′

a
hS′+

1
3

k2(h−hS) = 16πGa2 pΣ
S , (1.57)
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hV ′′
i +2

a′

a
hV ′

i = 16πGa2 pΣ
V
i , (1.58)

hT ′′
ε +2

a′

a
hT ′

ε + k2hT
ε = 16πGa2 pΣ

T
ε , (1.59)

where the index i in the case of the vectors and ε for the tensor modes correspond to the two
possible polarisations. Because the synchronous gauge is not completely specified, there are
also constraint equations, given by

k2(h−hS)+3
a′

a
h′ = 24πGa2

δρ , (1.60)

k2(h−hS′) =−24πGa2(ρ + p)θ , (1.61)

khV ′
i = 16πG(PV

i −a2(ρ + p)vV
i ) , (1.62)

where θ is the velocity divergence. By considering the energy momentum conservation
∇νTµν = 0,

δ
′ =−(1+w)

(
θ +

h′

2

)
−3

a′

a

(
δ p
δρ

−w
)

δ , (1.63)

θ
′ =−a′

a
(1−3w)θ − w′

1+w
θ +

δ p/δρ

1+w
k2

δ +
2
3

w
1+w

k2
Σ

S , (1.64)

vV ′
i =−a′

a
(1−3w)vV

i − w′

1+w
vV

i − w
1+w

kΣ
V
i . (1.65)

The equations above are valid for uncoupled fluids and therefore they have to evaluated
for each of the components of interest. In order to solve numerically for the perturbation
equations described here, they need to be coupled to the moments of the brightness function,
which are described in Subchapter 1.3.

We will discuss in what follows the evolution of the cold dark matter (CDM) fluctuations
in the radiation, matter and Λ epochs and how structures are formed. We consider a universe
where the cosmological constant has been included in the density and pressure terms and
does not appear explicitly in the Friedmann equations (1.30)-(1.31).

1.2.3 Growth of structure

For simplicity, we consider a universe consisting of only radiation and CDM. We use the
subscripts r and c to refer to radiation and CDM quantities respectively. The CDM particles
are considered to be pressureless dust (wc = c2

s(c) = 0) with no peculiar velocity (θc = ΣS
c = 0).
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Then, Eq. (1.63) becomes simply

δ
′
c =−h′

2
. (1.66)

Radiation is characterised by wr = c2
s(r) = 1/3 and, by neglecting the shear stress (ΣS

r = 0)
we can combine Eqs. (1.63)-(1.64) into

δ
′′
r +

k2

3
δr +

2
3

h′′ = 0 . (1.67)

Eqs. (1.66)-(1.67) then yield

δ
′′
r +

k2

3
δr −

4
3

δ
′′
c = 0 . (1.68)

By using the Friedmann Equation (1.30), Eq. (1.56) for the scalar perturbation can be
expressed in terms of the density fractions Ωi of the various components i of the universe as

h′′+
a′

a
h′ =−3H 2

∑
i

Ωi(1+3wi)(1+δi) , (1.69)

where
Ωi =

8πGρi

3H2 . (1.70)

Then the differential equation for h in this two-component universe becomes

h′′+
a′

a
h′ =−3

(
a′

a

)2

(2Ωrδr +Ωcδc) . (1.71)

CDM perturbations in the radiation era

In the radiation era the density of radiation dominates over the CDM density and hence Ωr ≈ 1
and a ∝ τ (Eq. (1.27)). Moreover, on super-horizon scales (kτ ≪ 2π) the perturbations are
chosen to be adiabatic (as predicted by single-field inflationary models), and therefore the
radiation and CDM perturbations satisfy the relation

δr =
4
3

δc . (1.72)

Hence, from Eq. (1.71) together with Eq. (1.66), we obtain the following equation for the
CDM,
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δ
′′
c +

1
τ

δ
′
c −

4
τ2 δc = 0 , (1.73)

which has power-like solutions of the form

δc(k,τ) = A(k)
(

τ

τi

)2

+B(k)
(

τ

τi

)−2

, (1.74)

where A and B are arbitrary functions of k and τi is a constant conformal time. The first
term represents CDM perturbations modes that are growing in the radiation era on very large
scales, δc ∝ a2, while the second term is quickly decaying.

On sub-horizon scales, where kτ ≫ 2π , pressure effects make the third term of Eq. (1.68)
negligible with respect to the second one, and therefore we have to solve a harmonic oscillator
equation for δr. This has oscillatory solutions of the form

δr(k,τ) =C(k)cos(kτ/
√

3)+D(k)sin(kτ/
√

3) . (1.75)

These oscillations are rapid with respect to the gravitational collapse time of CDM and they
average to 0. The CDM perturbations can be treated separately. From Eq. (1.71), combined
with Eq. (1.66), we find the equation for the evolution of the CDM:

δ
′′
c +

1
τ

δc = 0 , (1.76)

with solutions of the form

δc(k,τ) = E(k) log
(

τ

τi

)
+F(k) . (1.77)

This growth is much slower than the expansion of the universe and therefore, in the radiation
era there is only very mild growth on sub-horizon scales.

CDM perturbations in the matter era

During this epoch, the CDM component of the universe dominates over radiation (Ωc ≈ 1),
and by using Eqs. (1.66) and (1.71), we obtain the time evolution equation of CDM as

δ
′′
c +

a′

a
δ
′
c −

3
2

(
a′

a

)2

δc = 0 . (1.78)
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Considering the growth rate a ∝ τ2 (Eq. 1.28)) in the matter era, the above equation has
solutions of the form

δc(k,τ) = A(k)
(

τ

τi

)2

+B(k)
(

τ

τi

)−3

. (1.79)

The first term represents the growing mode solution δc ∝ a, while the second term is a
decaying mode that can be safely neglected. In this case, the solutions are valid on all scales.

CDM perturbations in the cosmological constant era

During the cosmological constant era, a ∝ exp(H0t) and the CDM is diluted away. Then,
the last term of Eq. (1.78) is negligible compared to the other two and we are left with the
perturbation equation

δ
′′
c +

a′

a
δ
′
c = 0 , (1.80)

which has solutions of the form:

δc(k,τ) = A(k)+B(k)exp(−2H0t) . (1.81)

This result shows that linear perturbations do not grow during this fast expansion era. Hence,
in the linear theory, matter perturbations grow in the radiation era, on super-horizon scales,
and in the matter era on all scales.

1.3 The Boltzmann Equation

The primordial fluctuations were created in the early Universe, but we can only observe
their implications today. Therefore, we consider the trajectories of photons from the early
Universe until today. We denote the photon trajectory by the unit vector n̂. We consider the
seven-dimensional phase space defined by the position 4-vector xµ and momentum pµ = dxµ

dλ
,

such that pµ pµ = 0, called the phase space. The particle position vector satisfies the geodesic
equation,

d2xµ

dλ 2 +Γ
µ

νρ

dxν

dλ

dxρ

dλ
= 0 , (1.82)

and the momentum pµ satisfies

d pµ

dλ
+Γ

µ

νρ pν pρ = 0. (1.83)
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By considering a comoving observer with velocity uµ = (1/a,0) (Eq. (1.50)), orthogonal to
the hypersurface given by (xµ , pµ), the number of worldlines intersecting the volume dV is
given by

dN = f (x, p)(−uµ pµ)dV dVp , (1.84)

where the function f is the phase space distribution of the particles and dV and dVp represent
the volume elements in real and momentum space respectively. The function f is invariant
under canonical transformations, and the zeroth order phase distribution is given by the
Fermi-Dirac and Bose-Einstein distributions. These distributions are given by the following
expressions:

f0(ε) =
gs

h3
1

eε/kBT0 ±1
, (1.85)

where the plus sign corresponds to the Fermi-Dirac distribution and the minus sign corre-
sponds to the Bose-Einstein distribution, ε is the energy of the state, gs is the spin degeneracy,
h and kB are the Planck and Boltzmann constants, T0 = aT is the temperature of the particles
today. The Boltzmann equation describes the distribution of particles in phase space,

d f
dλ

=
∂ f
∂λ

+
dxi

dλ

∂ f
∂xi +

dq
dλ

∂ f
∂q

+
dn̂i

dλ

∂ f
∂ n̂i

=C[ f ] (1.86)

where C[ f ] is a term quantifying the interactions. In the absence of collisions, i.e. when
C[ f ] = 0, the phase space distribution of particles is conserved.

For photons with direction of propagation n̂, the 4-momentum can be expressed as

pµ = (p0, |p|n̂i) . (1.87)

Using Eqs. (1.50) and (1.87), the energy of such a photon is given by:

E =−uµ pµ = ap0 ≡ p . (1.88)

The photon spectrum is given by the Bose-Einstein distribution (1.85), which is isotropic. It
is helpful to define a new variable,

q ≡ ap = a2 p0 , (1.89)

such that the isotropic Planck spectrum can be simply expressed as f0(q).
From the geodesic equation (1.83) it can be shown that



16 Introduction

dq
dτ

=−1
2

qh′i jn̂in̂ j , (1.90)

dn̂i

dτ
= O(h) . (1.91)

Using the Planck spectrum described above, a general (non-isotropic) distribution can be
split into the isotropic part f0 and a remainder part f1 which has temporal and directional
dependencies:

f (x, p,τ)≡ f (x,q, n̂,τ) = f0(q)+ f1(x,q, n̂,τ) . (1.92)

By substituting Eqs. (1.92), (1.90) and (1.91) into the collisionless Boltzmann equation
(1.86), and neglecting second-order terms, we obtain a partial differential equation for f1:

∂ f1

∂τ
+ n̂i ∂ f1

∂xi =
1
2

q
d f0

dq
h′i jn̂in̂ j , (1.93)

which in Fourier-space satisfies the equation

∂ f1

∂τ
+ ikµ f1 =

1
2

q
d f0

dq
h′i jn̂in̂ j , (1.94)

where µ = k̂ · n̂.

We consider a local inertial frame for the particle. In this frame, the metric is locally flat,
and the momentum of the particle is given by

p̃µ = (p̃0, p̃) =
(

ap0,a
(

δi j +
1
2

hi j p j
))

. (1.95)

The spatial and temporal magnitudes are the same, i.e., p̃0 = |p̃|= p (from Eq. (1.88)). As
the volume element dVp is frame-invariant, we can express it in terms of this new variable in
the local inertial frame

dVp =
1
a2 qdqdΩ , (1.96)

where dΩ represents the angular variables of integration.

The energy-momentum tensor of the photons can be expressed in terms of the distribution
function in phase space,

T µν =
∫

pµ pν f (x, p,τ)dVp . (1.97)
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Then using Eqs. (1.50) and (1.96), the energy density becomes

ρ = u0u0T 00 =
1
a4

∫
q3( f0 + f1)dqdΩ ≡ ρ̄γ(1+δγ) , (1.98)

where ρ̄γ and δγ represent the background energy density of photons and a perturbation to it
respectively; they have the following expressions:

ρ̄γ =
4π

a4

∫
q3 f0dq , (1.99)

δγ =
1

a4ρ̄γ

∫
q3 f1dqdΩ . (1.100)

Also,
T 0i =

1
a6

∫
q3n̂i f1dqdΩ =

1
a2

4
3

ρ̄γ ikiθγ . (1.101)

We note that in Eq. (1.94) there is no term ∂ f1/∂q and so we consider an ansatz for the
solution of the form

f (x,p,τ) = f0

(
p

T (x, n̂,τ)

)
= f0

(
T̄ q
T

)
= f0

(
q

1+∆T/T

)
≈ f0(q)−q

d f0

dq
∆T
T

(x, n̂,τ)

= f0 + f1 . (1.102)

Integrating this equation for f1 by parts with respect to q and using Eq. (1.99) we obtain

∫
f1q3dq = 4

∆T
T

∫
f0q3dq = 4

∆T
T

a4ρ̄γ

4π
. (1.103)

By defining the brightness as ∆ ≡ 4∆T
T and integrating in a similar fashion Eq. (1.94), together

with (1.103) and (1.99) we obtain a differential equation for ∆:

∆
′+ ikµ∆ =−2h′i jn̂

in̂ j , (1.104)

which is the brightness equation for photons in the absence of collisions. In order to obtain
the full evolution equation for the brightness ∆ we must consider photon collisions. Before
decoupling, the photons interact with electrons and baryons via Compton scattering. These
interactions modify Eq. (1.104) to

∆
′+ ikµ∆ =−2h′i jn̂

in̂ j +aσT ne(δγ +4n̂ ·ve −∆) , (1.105)
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where σT is the Thomson scattering cross-section (and is constant), ne is the density of free
electrons and ve is the velocity of electrons. This equation can be solved directly by first
multiplying it by eikτ and observing that the left hand side becomes a total derivative. Then
the solution can be expressed as

∆(k,µ,τ0) =
∫

τ0

τa

dτe−κe−ikµ(τ0−τ)

[
|κ̇|
(

1
4

δγ(k,τ)+4µk ·ve

)
−2h′i jn̂

in̂ j
]
, (1.106)

where
κ(τ) =

∫
τ0

τ

aneσT dτ
′ (1.107)

is the optical depth and τa is a sufficiently early time, τa ≪ τdec.

When the optical depth falls to zero sufficiently rapidly through τdec compared to the
perturbation length scale 1/k, |κ̇|e−κ ≈ δD(τ − τdec), and by ignoring the quadrupole at last
scattering and then converting to real space, we obtain the Sachs-Wolfe formula for the
anisotropies today

∆T
T

(x, n̂) =
1
4

δγ(x,τdec)+ n̂ ·ve(x,τdec)−
1
2

∫
τ0

τdec

h′i jn̂
in̂ jdτ . (1.108)

The first term represents the intrinsic photon density fluctuations, the second one the Doppler
shifts and the integral is the integrated Sachs-Wolfe effect.

The brightness function can be expanded into moments ∆l using Legendre polynomials
Pl as

∆(k,µ,τ) = ∑
l
(−i)l(2l +1)∆l(k,µ,τ)Pl(µ) . (1.109)

The recurrence differential equations for the moments are obtained by using the recurrence
relation for Legendre polynomials, together with the expansion (1.109) and the differential
equation (1.105). The moments are thus obtained by using the orthogonality properties of
the Legendre polynomials:

∆l(k,µ,τ) =
il

4π

∫
∆(k,µ,τ)Pl(µ)dΩ . (1.110)

Hence the first three moments yield

∆0 = δγ , (1.111)

∆1 =
4
3

ik̂ ·v =−4
3

kθγ , (1.112)

∆2 = 2σγ . (1.113)
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By considering only scalar perturbations for the metric and using Eqs. (1.111)-(1.113)
the recurrence relations for the metric take the form

δ
′
γ −

4
3

k2
θγ =−2

3
h′ , (1.114)

θ
′
γ +

1
4

δγ −σγ =−aneσT
θγ −θb

k2 , (1.115)

σ
′
γ +

4
15

k2
θγ +

3
10

k∆3 =
2

15
h′s −aneσT σγ , (1.116)

∆
′
l =

k
2l +1

[l∆l−1 − (l +1)∆l+1]−aneσT ∆l , for l ≥ 3 . (1.117)

The moments ∆l can be used to calculate the Cosmic Microwave Background (CMB)
power spectrum, which will be treated in the next subchapter.

1.4 The Cosmic Microwave Background

One of the most important discoveries of cosmology is the CMB by Penzias and Wilson
[34, 35] in 1964 with a temperature of around 3K. It has been predicted by Gamow [12] and
is produced by photons interacting electromagnetically and gravitationally with the other
species which travel freely across space after they decoupled. Thus they were produced from
recombination, and provide us with an image of the Universe at redshift 1000. At that time,
the level of inhomogeneity in the Universe was around one part in 105. In fact, observations
of the CMB frequency spectrum and its anisotropies in both temperature and polarisation
channels have played a very important role in the development of modern cosmology and of
our understanding of the early Universe. In order to characterise mathematically the general
temperature anisotropies in the sky one decomposes them in terms of spherical harmonics
using the parametrisation of a unit vector n̂ = (θ ,φ) [36, 37],

∆T
T

(θ ,φ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ ,φ) . (1.118)

The properties of the spherical harmonic functions can be used to express the coefficients
alm:

alm =
∫

∆T
T

Y ∗
lm(n̂)dΩ . (1.119)

Due to statistical isotropy they satisfy the relation

⟨alma∗l′m′⟩=Clδll′δmm′ , (1.120)
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where Cl is the angular power spectrum. Then, the ensemble average power is given by

Cl = ⟨|alm|2⟩. (1.121)

Because we only have one realisation of the Universe, an estimator of the angular power
spectrum becomes

Ĉl =
1

2l +1

l

∑
m=−l

|alm|2 . (1.122)

Then the multipoles Cl can be recast into a simple form,

Cl =
2
π

∫
dkk2P(k)

∣∣∣∣∆l(k,η0)

δ (k)

∣∣∣∣2 , (1.123)

where
⟨δ (k)δ ∗(k′)⟩= P(k)δD(k−k′) . (1.124)

Here δD is the Dirac delta function and P(k) is the power spectrum. Eq. (1.108) can be
integrated by parts and recast in Fourier space into

∆T
T

(k,µ,τ0) =

[
1
4

δγ +
3iµ
4k

δ
′
γ −

iµ
2k

(h′−h′s)−
h′′s
2k2

]
τ=τdec

e−ikµ(τ0−τdec)

−
∫

τ0

τdec

dτeikµ(τ−τ0)

[
1
6
(h′−h′s)−

h′′′s
2k2

]
. (1.125)

On large scales (k → 0), in a matter dominated universe:

h− = h−hs = const. , (1.126)

hs ∝ τ
2 , (1.127)

δγ ∝ k2 . (1.128)

Hence, using the growing mode solution from Eq. (1.79), the only non-vanishing term in Eq.
(1.125) is

− h′′s
2k2 =

δc

k2 ≡ 2A
(kτi)2 . (1.129)

It follows that the large-angle temperature fluctuations can be written as a Fourier expansion

∆T
T

(x, n̂) =
∫ d3k

(2π)3
2A(k)
(kτi)2 eik·n̂τ0 , (1.130)



1.4 The Cosmic Microwave Background 21

0

1000

2000

3000

4000

5000

6000

D
T
T

`
[µ

K
2
]

30 500 1000 1500 2000 2500
`

-60
-30
0
30
60

∆
D
T
T

`

2 10
-600
-300

0
300
600

Fig. 1.2 Temperature power spectrum as measured by the Planck Collaboration (blue data
points) with the maximum likelihood temperature power spectrum (top panel). The bottom
panel represents residuals with respect to the red curve. This plot is Fig. 1 of Ref. [7].

where we have used τ0 − τdec ≈ τ0. By using the relations between Legendre polynomials Pl ,
spherical harmonics Ylm and spherical Bessel functions jl ,

Pl(n̂ · n̂′) =
4π

2l +1 ∑
m

Ylm(n̂)Y ∗
lm(n̂

′) , (1.131)

eik·n̂τ = ∑ il(2l +1) jl(kτ)Pl(k̂ · n̂) , (1.132)

we obtain the following expression for the alm at small l:

alm = 8π

∫ d3k
(2π)3

A(k)
(kτi)2 il jl(kτ0)Y ∗

lm(k) . (1.133)

Assuming a scale invariant power spectrum P ∝ k, the power spectrum multipoles can be
expressed as
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Cl =
4B

πl(l +1)
, (1.134)

where B is a constant representing the primordial power spectrum amplitude. Hence, on large
scales l(l+1)Cl is constant, and represents the Sachs-Wolfe plateau. On small angular scales,
corresponding to l > 200, we use the flat-sky approximation: k ∝ l. The main contributions
are given by:

• intrinsic photon density fluctuations σI ∼ k3

2π2 ⟨
∣∣1

4δγ

∣∣2⟩ ;

• Sachs-Wolfe plateau σS−W ∼ k3

2π2 ⟨
∣∣∣ h′′s

2k2

∣∣∣2⟩ ;

• Doppler effects σV ∼ k3

2π2 ⟨
∣∣∣3iµδ ′

γ

4k

∣∣∣2⟩ .

Qualitatively, on superhorizon scales, only the Sachs-Wolfe term is important (σS−W ),
while on subhorizon scales, corresponding to l > 400,

σI ≈
8π2

9
Bcos2

(
kτ√

3

)
exp
(
−2k2

k2
D

)
, (1.135)

σV ≈ 8π2

9
Bsin2

(
kτ√

3

)
exp
(
−2k2

k2
D

)
, (1.136)

where kD is the diffusion wavenumber. In Figure 1.2 we have plotted the temperature
exhibiting these features, as measured by the Planck Collaboration.

1.5 Outline of the Thesis

In this thesis we analyse two classes of cosmological topics constrained by observations of
the CMB and large-scale structure. In the first part (Chapters 2-4), we discuss anisotropies
produced by topological defects, in particular cosmic strings (Chapter 3) and domain walls
(Chapter 4). These topological features are predicted at cosmological phase transitions and
so are relevant to many inflationary models. In the last few decades more and more stringent
bounds have been determined for the cosmic strings parameters, but in many cases these
bounds have relied on using a string power spectrum calculated by using an implementation
of a simple phenomenological model (unconnected segment model). In this thesis, we
develop the formalism for determining the CMB power spectrum of cosmic strings using
accurate unequal-time correlators (UETCs) directly obtained from the energy-momentum
tensor of an evolving defect simulation. We use this formalism to calculate the CMB power
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spectrum of Nambu-Goto cosmic strings from simulations. We then use this power spectrum
to find constraints on the cosmic string tension in different inflationary scenarios. This
allows us to explore degeneracies between the cosmic string tension and various non-minimal
parameters (running of the spectral index, sterile neutrinos, Neff, primordial tensor modes).

We modify the formalism developed for cosmic strings in order to be able to calculate the
CMB power spectrum obtained from domain wall networks and we use the power spectrum
to determine the first-ever quantitative constraint on the energy scale of formation of domain
walls. The detailed calculation provides a basis for the original Zel’dovich bound [38].

The second major topic of the thesis is represented by the matter bispectrum of LSS
(Chapters 5-6). In Chapter 5, we provide a review of the different LSS models from
the literature, split into perturbative approaches (standard perturbation theory, effective
field theory, renormalised perturbation theory, resummed Lagrangian perturbation theory)
and phenomenological models (standard halo model, improved halo model). We also
calculate for the first time the two-loop bispectrum in the renormalised perturbation theory
(MPTBREEZE approach) by moving all the leading divergences in the integrals to a single
point. In Chapter 6, we compare the predictions of the different models considered with
N-body numerical simulations for low redshifts and we show on which scales and for
which redshifts each of them is accurate. We identify the shapes that characterise the three
components of the halo model with the flat, squeezed and constant bispectrum shapes. We
show that all the perturbative theories (up to one-loop) have a flattened shape as the tree-level
bispectrum. Moreover, we develop a new phenomenological model, based on the above-
mentioned shapes, that provides a very good fit to the numerical simulations by calibrating
a few parameters, pointing towards a simple quantitative ‘HALOFIT’ approach for future
bispectrum measurements and comparisons.





CHAPTER 2

COSMIC DEFECTS

2.1 Introduction

Topological defects were first proposed by Skyrme [39] in the context of particle excitations,
but it was realised that they appear during the spontaneous symmetry breaking of fields. This
idea has been applied to cosmology: in the early Universe, during the cooling-down phase,
the Universe experiences a series of phase transitions, where field symmetries describing
the Universe are spontaneously broken. Then, topological defects may form: textures,
monopoles, strings, and domain walls (for a review see Ref. [40]). Their characteristics and
evolution have been studied in analogy with condensed matter physics [41] and particularly
solid state physics [42].

In cosmology, the production of topological defects is associated with the cooling of
the Universe. They are not predicted by the Standard Model of particle physics, but defects
appear in many of its extensions, notably in unified theories. Initially, the temperature of
the Universe was high enough so that it was in an unbroken symmetry state. As it cooled
down, the Universe suffered a series of phase transitions where topological defects may have
formed. The symmetry breaking phases are associated with the formation of matter and with
the separation of the fundamental forces: the electromagnetic force, the weak nuclear force,
the strong nuclear force and gravity. The energy scale when the symmetry breaking phase
occurs imprints different characteristics to the topological defects, and has observational
consequences as well. If the broken symmetry is a global one, the defects are called global

defects, while if the symmetry is local involving a gauge vector field they are called local

defects.

Apart from being predicted by grand unification theories, the popularity of defects was
influenced by the possibility of explaining the anisotropies in the CMB with cosmic strings.
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Indeed, in the 1980s theories have been developed where the galaxies were formed from
cosmic string seeds [43, 44]. A more recent motivation comes from fundamental theory
where the cosmic strings stretching across the Universe could be superstrings, that is, direct
relics from a higher-dimensional epoch in the early history of the Universe [45].

A simple model illustrating the symmetry breaking process has been studied by Goldstone
[46]. We consider a complex field φ with complex conjugate φ̄ and a Mexican-hat potential
V (φ) with two real positive parameters λ and η :

V (φ) =
1
4

λ (φ̄φ −η
2)2 . (2.1)

This has the Lagrange density

L = ∂µ φ̄∂
µ

φ −V (φ) , (2.2)

which is invariant under the global gauge transformation:

φ(x)→ eiα
φ(x) . (2.3)

The minima of the potential V (φ) lie on a circle defined by |φ |= η . Therefore, the theory
has an infinite number of vacuum states characterised by

⟨0|φ |0⟩= ηeiθ , (2.4)

where θ is an arbitrary phase. However, by considering the global gauge transformation
(2.3), the ground state of Eq. (2.4) changes to ηei(θ+α), which signifies that the symmetry is
broken under such a transformation. However, as all the vacua are equivalent, we are free
to choose the most convenient one, corresponding to θ = 0. Then we can also perform a
change of variable and re-express the field φ by deviations from the vacuum state η , in terms
of two real fields φ1 and φ2, which have 0 expectations values

φ = η +
1√
2
(φ1 + iφ2) , (2.5)

φ̄ = η +
1√
2
(φ1 − iφ2) . (2.6)

Substituting the above expressions into Eq. (2.2), the Lagrangian becomes

L =
1
2
(∂µφ1)

2 − 1
2

λη
2
φ

2
1 +

1
2
(∂µφ2)

2 +O(φ 3
1 ,φ

3
2 ) . (2.7)
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Thus, we have now expressed the Lagrangian system as a sum of the contributions of the
Lagrangians corresponding to two scalar fields, φ1 and φ2 respectively, the first (radial) of
which carries a mass

√
λη and the second (azimuthal) is massless and has periodic symmetry.

The cosmic string solution is due to a nontrivial winding in this second massless field.

Classes of defects

Let M be a manifold. The topology of the manifold can be characterised by the homotopy

group. If we consider maps from the n-sphere Sn to the manifold M having a common base
point x0, then two maps that can be continuously deformed into one another are considered
topologically equivalent. Thus, the set of maps Sn →M can be split into equivalence classes,
such that the maps in each class are topologically equivalent. These equivalence classes form
a group, the homotopy group πn. The topological defects can be classified in terms of their
homotopy group. In Table 2.1, we show the four main types of topological defects, their
homotopy groups and their dimensionality.

Table 2.1 Classification of topological defects by homotopy group of the manifold and
dimensionality.

Topological defect Homotopy group Dimensionality

Domain walls π0(M ) 2

Strings π1(M ) 1

Monopoles π2(M ) 0

Textures π3(M ) −

In the next part of this Chapter, we will summarize the basic properties of each of the
defects, and analyse their cosmological consequences.

2.2 Domain walls

Domain walls are the simplest cosmological defects, as they can be described by a single
scalar field φ . A comprehensive introduction to this class of cosmic defects can be found in
Refs. [40, 47]. One starts with the Lagrangian describing a discrete broken symmetry, that
can be written as

L =
1

4π

[
1
2

φ,αφ
,α −V (φ)

]
, (2.8)
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where the field φ is real and the potential V has at least two degenerate minima [48]. A very
simple model in one spatial dimension and one time dimension is obtained by considering φ

to be a real field in one dimension, with a potential given in the Goldstone model (Eq. 2.1).
The potential V (φ) is plotted in Fig. 2.1 and has minima at φ =±η . The discrete symmetry
of the system is φ →−φ , with V (φ) =V (−φ).

-η η
ϕ

V (ϕ )

Fig. 2.1 Potential V (φ) characterising the formation of domain walls.

The equation of motion obtained from the Lagrangian (2.8),

∂ 2φ

∂ t2 − ∂ 2φ

∂x2 +λ (φ 2 −η
2)φ = 0 (2.9)

has trivial solutions φ = ±η which have zero energy and are therefore stable. From the
symmetry of the system one can see that these two solutions are equally preferred. Hence
there would be regions in the Universe (sufficiently far apart in space such that they would not
be in causal contact), which would choose one of the minima and others which would choose
the other one [47, 49]. However, as the field must be a continuous function, φ has to be
interpolated between the regions with different zero-energy solutions. Such an interpolating
solution is given by

φ(x) = η tanh(
√

λ/2ηx) , (2.10)

which represents a Z2 kink around x = 0 and is plotted in left panel of Fig. 2.2.

By looking at the energy density of this system (right panel of Fig. 2.2), we see that in
order to pass from one minimum to the other, the field must go through a point where φ = 0,
corresponding to the maximum of the potential. The “jump” from one minimum to the other
is represented by the domain wall, which stores the energy of the system. As the two regions
are disconnected, the domain wall must be infinite.
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x

-η

η

ϕ

x

ρ

Fig. 2.2 Static solution of Eq. (2.9) illustrating the formation of domain walls (left) and
energy density of this solution (right).

A generalisation of this simple model is obtained by considering a potential with N

minima,

V (φ) =
1
4

λ (φ̄φ −η
2)2 −2m2

η
2 cos(Nθ)−1

N2 , (2.11)

where φ is a complex field of phase θ . In this theory, there are N vacua, corresponding to the
minima of the potential, which can be separated by domain walls.

As we shall see in Chapter 4 for domain wall scaling solutions, the energy density of
walls grows faster than that of the background radiation and matter as the Universe expands.
Eventually the walls will become the dominant part of the energy of the Universe making
the evolution highly anisotropic [38, 50]. For this reason, their symmetry breaking scale is
believed to be constrained to around 1 MeV because of the effect on the CMB. Nevertheless,
their existence is predicted by various cosmological models which have discrete broken
symmetries [51, 52]. In Chapter 4, we will derive a quantitative bound on the energy scale of
formation of the domain walls using current CMB measurements.

2.3 Cosmic strings

Cosmic strings are one-dimensional line-like defects, characterised by their tension µ . Their
existence was first proposed by Kibble [53], in analogy with the symmetry breaking which
occurs in ferromagnets. Of the topological defects considered, cosmic strings are the most
studied because they appear in a wide class of theories arising from string and supersymmetric
theories.

The formation of cosmic strings can be explained in a similar way to that of domain walls.
The Mexican hat potential described in Eq. (2.1) is illustrated in Fig. 2.3.
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Fig. 2.3 Mexican hat potential V (φ) characterising the formation of cosmic strings.

Similarly to the case of domain walls, for strings the different states of minimum energy
described in Eq. (2.4) can appear randomly in different patches of the Universe [49, 54].
By considering a loop in space, in which the phase of the minimum is modified by 2π , by
continuity of the field, there must be a point inside the loop where φ = 0 – that is the core of
the cosmic string. As in the case of domain walls, it corresponds the fact that φ must pass
over the maximum of the potential.

From a historical point of view, cosmic strings were once considered to be the primary
source of anisotropies in the CMB [40, 55] that generated the growth of structures. However,
it has been shown that the characteristics of the power spectrum they produce does not match
the one observed in the CMB using the COBE mission and Boomerang [56], WMAP and
Planck probes. The cosmic string temperature power spectrum is smooth and has a unique
peak, and hence it does not match the observed CMB power spectrum. In the meantime, a
good agreement in the power spectrum has been obtained from the inflationary scenarios,
effectively ruling out topological defects as the primary source of anisotropies [9]. Cosmic
strings can nevertheless still be present and models of brane inflation predict their formation
[57, 58]. Current observational data allow a maximum of 3% of the observed power to be
due to cosmic strings [9]. Initially it was expected that the energy scale of formation of the
strings was in the region of η ∼ 1016 GeV, which is the Grand Unification Theory scale,
which corresponds to Gµ/c2 ∼ 10−6 via

Gµ

c2 =

(
η

mplc2

)2

. (2.12)
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Such high energy is impossible to probe with terrestrial experiments, and identifying the
existence of cosmic strings at these energies would offer a very interesting connection with
particle physics. It would be possible to test particle collision patterns at very high energies
and to identify signatures of extra dimensions from string theory [9, 59].

More recent studies in string theory have shown that their tension could in fact be as low
as the electroweak scale [60]. In this case, the allowed limit for the string tension would
be 10−11 < Gµ/c2 < 10−6 [45]. The more recent work is based on superstring theories
and new methods of string compactification with large extra dimensions and/or large warp
factors. These ideas are presented in detail in Refs. [61, 62]. Another option, which relies on
supersymmetry, is presented in Ref. [63].

Very recently, various cosmic string models [2, 64, 65] have been discussed in trying to
explain the BB polarisation obtained by the BICEP2 experiment [66] as well as large-scale
anomalies in the CMB, such as the cold spot [67].

String networks are formed of long strings and finite loops. When long strings intersect,
there are two possibilities: they either pass through one another as if there were no collision,
or they disconnect and reconnect again in a different way. Loops can be formed in the latter
case. When a string self-intersects, the reconnection probability is one for classical cosmic
strings [68]. They then collapse inward and decay. During the decay process, their energy
is converted into gravitational waves. The recent detection of gravitational waves from the
merger of two black holes [69] represents a significant milestone and revives the possibility
that these could be measured from the effects of cosmic strings in the future.

There are two approaches for studying the evolution of cosmic strings: the Abelian-Higgs
field theory model and the Nambu-Goto effective action. A detailed study of cosmic strings
can be found in Refs. [40, 70] and a recent short review of the field in Ref. [54]. We will
present the approaches for both cases in Chapter 3.

Macroscopically, cosmic strings are characterised by their energy per unit length, µ .
Its large value is expected to give rise to observable effects, such as gravitational lensing
and gravitational waves. They induce temperature linelike discontinuities, thus giving
a characteristic signature in the cosmic microwave background (CMB) power spectrum
[71, 72].

2.4 Monopoles

Monopoles are point-like defects and they arise when a sphere of infinite radius cannot be
smoothly contracted to a point. Their existence was first proposed by Dirac [73] as magnetic
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monopoles. In the context of symmetry breaking, an example of monopole production is
through the SU(2)→U(1) phase transition [74, 75]. The Lagrangian density for a triplet of
real fields φ

L = Dµφ ·Dµ
φ − 1

4
Gµν ·Gµν −V (φ) (2.13)

is considered with the potential

V (φ) =
1
4

λ (φ a
φ

a −η
2)2 , (2.14)

where

Gµν = ∇
µWν −∇

νWµ − eWµ ∧Wν , (2.15)

Dµ
φ = ∇

µ
φ − eWµ ∧φ (2.16)

and Wµ is the gauge potential. Then the monopole solution is given by

φ
a = ηh(r)

xa

r
, (2.17)

with the gauge field satisfying

Aa
0 = 0 , (2.18)

Aa
i =−(1−K(r))εai j x j

er2 , (2.19)

and the functions h and K satisfy h(0) = 0, K(0) = 1 and h(∞) = 1 and K(∞) = 0.

The production of such magnetic monopoles is a generic prediction of GUT theories
and they are expected to have a typical mass of ten times the GUT scale. This can be used
to predict the density of the monopoles. However, this is in complete disagreement with
observational bounds. This discrepancy is solved by inflation, as monopoles which have
formed before inflation are diluted away and those being produced later in the form of
monopole-antimonopole pairs are suppressed by a Boltzmann factor.

2.5 Textures

Textures represent more complicated field configurations and can only be stable in at least
four dimensions [76]. An example of a model where textures can form in four dimensions is
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given by the Lagrangian [40]

L =
1
2

∂µφi∂
µ

φi −
1
4

λ (φiφi −η
2) . (2.20)

In this case there is a SO(4) symmetry broken to SO(3). One can parametrise this three-
sphere representing the vacuum manifold with three angular variables

φi = η(sinζ sinξ cosγ,sinζ sinξ sinγ,sinζ cosξ ,cosζ ) . (2.21)

The Lagrangian (2.20) with the parametrisation (2.21) gives rise to the effective action

S =
1
2

η
2
∫

d4x
√−g

[
(∂µζ )2 + sin2

ζ
[
(∂µξ )2 + sin2

ξ (∂µγ)2]] . (2.22)

A spherically symmetric texture would correspond to

ζ = ζ (t,r) , (2.23)

ξ = θ , (2.24)

γ = φ , (2.25)

with ζ a continuous function and ζ (r = 0) = 0 and ζ (r = ∞) = π . By considering a flat
spacetime, and using the above spherically symmetric ansatz for the texture, one can simplify
the action (2.22), yielding a very simple solution for ζ :

ζ = 2cot−1(−t/r), t < 0 . (2.26)

Cosmologically, textures are expected to create temperature anisotropies and to be seen as
cold or hot points on the sky. Attempts have been made to explain the cold spot of the CMB
with textures [77] and an analysis with the WMAP data has shown that at most six textures
can be present in the sky [78]. Textures have also been proposed as sources of the structure
in the Universe by using their instability to generate fluctuations that eventually grow into
structures [79].





CHAPTER 3

COSMIC STRINGS

3.1 Cosmic string models

The CMB is a powerful method for distinguishing between early Universe models. Results
from the Planck Collaboration [17] provide strong constraints on cosmic strings, instead
giving robust support for a nearly scale-invariant inflationary model with the standard
six parameters. At present, however, cosmic string constraints are determined not from
direct Nambu-Goto string simulations but from either a phenomenological string model, the
unconnected segment model (USM) [80], or from field theory simulations of the Abelian-
Higgs model of increasing, but still limited, resolution [81]. The resulting CMB constraints
are different, so there is good motivation for determining the Nambu-Goto results directly,
which can also improve the calibration of the USM model.

A different approach for detecting cosmic strings has also been investigated, which is
based on detecting non-Gaussian signatures generated by cosmic strings through CMB maps
using higher-order correlation functions such as the bispectrum [82–84]. These methods
have yielded weaker constraints on the cosmic strings tension so far.

In addition, pulsar timings have been used to constrain the gravitational wave background,
which in turn places stringent constraints on cosmic strings [85, 86]. These methods provide
an independent bound on the cosmic string tension to the CMB one, and in the future they
can be significantly improved by new constraints on gravitational waves.

In this Subchapter we present the two different models mentioned above for studying
the evolution of cosmic strings: the Abelian-Higgs field theory model and the Nambu-Goto
effective action.



36 Cosmic Strings

3.1.1 Abelian-Higgs model

The Abelian-Higgs model is the relativistic extension of the Ginsburg-Landau theory and has
the action [40]

S =
∫

d4y(∂µ + ieAµ)φ̄(∂
µ − ieAµ)φ − 1

4
FµνFµν − 1

4
λ (|φ |2 −η

2)2 , (3.1)

where φ is a complex scalar field, λ and e are coupling constants, and Aµ is a four-dimensional
U(1) gauge field satisfying Fµν = ∂µAν − ∂νAµ . Using Dµ = ∂µ − ieAµ , the equations of
motion become

DµDµ
φ =−λφ

2
(|φ |2 −η

2) , (3.2)

∂νFνµ = 2eℑ(φ⋆Dµ
φ) . (3.3)

The action described in Eq. (3.1) has vortex-type solutions [87, 88], which are static and
cylindrically symmetric,

φs(r) = einθ f (r) , (3.4)

Asa(r) = εabxb
n

er2 α(r) , (3.5)

with a,b = 1,2 representing two Cartesian coordinates and ε being an antisymmetric tensor.
Fixing suitable boundary conditions, the large r asymptotic solutions to these equations can
be obtained in terms of modified Bessel functions of the second kind,

α(r) = 1− rK1

(√
2er
)
, (3.6)

f (r) = 1−K0

(√
λ r
)
. (3.7)

In the case of a curved string, one can express any point near the string world sheet in terms
of tangent vectors to the world sheet and normal vectors

yµ(ξ ) = xµ(ζ )+ρ
Anµ

A(ζ ) , (3.8)

where nµ

A are the normal vectors, xµ
,a are the tangent vectors, yµ is a point near the world

sheet and ξ µ = (ζ a,ρA). The approximate solution is thus

φ (y(ξ )) = φs(r) , (3.9)
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Aµ (y(ξ )) = nµ

B(ζ )AsB(r) , (3.10)

where r2 = (ρ1)2 +(ρ2)2. When rewriting the action in terms of these new coordinates, one
needs to calculate the Jacobian of the transformation from the y to ξ coordinates. This is
given by the square root of the modulus of the determinant of the world sheet metric Mαβ ,
which can be expressed as

Mαβ = diag(γab,−δAB +O(r/R)) , (3.11)

where
γab = gµνxµ

,axν
,b (3.12)

and R is the curvature radius of the string. The integration over the normal coordinates ρA

can be performed, yielding just the constant µ . The asymptotic solutions (3.7) decaying
exponentially, the correction is reduced to O(δ/R). Hence, if one considers the string
thickness to be small with respect to its curvature radius, the Nambu-Goto action is obtained
as the first-order approximation [40]. It will be discussed in the next subchapter.

3.1.2 Nambu-Goto model

A one-dimensional reduction of the Abelian-Higgs action gives rise to the Nambu-Goto
action, described below (see Refs. [40, 70]). Hence, the Nambu-Goto strings have just
one dimension (zero width) and live in a two-dimensional space-time parametrised by
X µ = X µ(ζ a) with a = 0,1 . The physical motivation for using this approximation is that
higher-order corrections are small when strings are considered to be long enough compared
to their width [89]. Nambu-Goto strings are solutions of the Nambu-Goto action

S =−µ

∫ √−γd2
ζ , (3.13)

where γab = gµν∂aX µ∂bXν is the two-dimensional world sheet metric and γ = det(γµν)

[same as Eq. (3.12), with xµ → X µ ].

(ζ 0, ζ 1) is an arbitrary parametrisation of the string world sheet, with one of the parame-
ters timelike and the other spacelike. Hence, in an expanding universe, one may choose to
take ζ 0 ≡ τ (conformal time) and ζ 1 ≡ σ (the spacelike parameter of the string).

Simulations usually start with Vachaspati-Vilenkin initial conditions [90], which will be
discussed in Subchapter 3.2. When two strings segments meet, they split and then reconnect
the other way (intercommutation). In this process, loops are being formed and they decay and
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radiate energy. In the time evolution of the cosmic string network, the strings are expected
to reach a scaling solution, i.e. the number of cosmic strings crossing each horizon volume
is fixed [91]. This energy loss mechanism in fact makes cosmic strings cosmologically
viable (otherwise cosmic strings would eventually dominate the Universe) [53] and also the
initial conditions considered for the simulations become less important. In Fourier space, the
energy-momentum tensor arising from action (3.13) can be expressed as

Θµν(k,τ) =
∫

d3xeik.x
Θµν(x,τ) = µ

∫
dσeik.X(σ ,τ)

(
εẊµẊν − ε

−1X′µX′ν) , (3.14)

where the prime denotes differentiation with respect to σ and dot denotes differentiation with
respect to τ and ε =

√
X′2/(1− Ẋ2) represents the energy density along the string. For the

Nambu-Goto strings, a good phenomenological model is given by the velocity-dependent
one-scale (VOS) model [92–94]. This model assumes that the string population is formed by
long strings (denoted by ∞) and small loops (denoted by l). The long strings are characterised
by the correlation length L and by the root-mean-square velocity v,

v2 =

∫
Ẋ2εdσ∫

εdσ
. (3.15)

The averaged energy density of the long strings is

ρ∞ =
µ

L2 (3.16)

and the parameter c̃ is a constant which expresses the loop production rate and is defined by
the following formula:

dρ∞

dt
= c̃v

ρ∞

L
. (3.17)

The evolution equations for the correlation length L and for the velocity of long strings v
can be derived from the microscopic equations of motion and Newton’s second law:

2
dL
dt

= 2HL(1+v2)+ c̃v (3.18)

dv∞

dt
= (1−v)

(
k
L
−2Hv

)
, (3.19)

where k is a parameter which characterises the small scale structure of the string network and
which expresses the loop production rate [92],
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k =
⟨(1− ẋ)(ẋ ·u)⟩

v(1−v2)u
, (3.20)

with u the curvature radius vector. For the relativistic regimes considered in the case of
cosmic strings, a suitable asymptotic ansatz is

krel =
2
√

2
π

· 1−8v6

1+8v6 , (3.21)

while in the nonrelativistic limit a consistent asymptotic limit is found [94]:

knon-rel =
2
√

2
π

. (3.22)

Numerical simulations have fixed c̃ = 0.23 regardless of epoch. Scale-invariant solutions,
which are characterised by v = constant and L ∝ t exist only when the scale factor is evolving
as a power law.

Phenomenological unconnected segment model

For Nambu-Goto strings, the USM model has been devised, as described in Refs. [80, 95–97].
In the this model, the cosmic string network is described by a Brownian network which is
formed from a set of independent, uncorrelated straight segments with random velocities. All
segments are produced early in the evolution of the Universe, and then, at each epoch, part of
the strings decay such that scaling is preserved throughout the history of the Universe. Each
segment has comoving length equal to the correlation length, and its position is randomly
chosen, in such a way such that the equations of motion (3.18) and (3.19) are satisfied for
each particular string segment. Hence, the magnitude of the velocity is determined by these
equations, but its orientation is arbitrary and is taken from a flat distribution.

As the model is made from straight segments, the small scale structure of the strings
is not taken into account. This has been adjusted phenomenologically, by adding a new
“wiggliness” parameter α [98], which, however, describes only the macroscopic evolution of
the strings. This modifies the energy momentum tensor (3.14) to

Θµν(k,τ) = µ

∫
dσeik.X(σ ,τ)

(
εαẊµẊν − 1

εα
X′µX′ν

)
. (3.23)

The string segment decay is realised through a function T off that is a smooth approxima-
tion to the Heaviside function, such that after a certain time the particular string segment



40 Cosmic Strings

disappears and similarly for the appearance of the segment through a similar function T on.
The total stress-energy tensor is calculated as the sum of the individual components for the
segments,

Θµν(k,τ) = ∑
m

Θ
m
µν(k,τ)T

off
(

τ,τoff
m

)
T on (τ,τon

m ) . (3.24)

The energy-momentum tensor of one segment is of the form of Eq. (3.23):

Θµν(k,τ) = µ

∫ l/2

−l/2
dσeik·X(εαẊ µ Ẋν − 1

εα
X ′µX ′ν) , (3.25)

where l is the comoving correlation length l = L/a. The number of string segments N at each
particular time satisfies

N(τ) ∝
1
τ3 (3.26)

and hence scaling is preserved [96]. However, in this case in order to have one string segment
today, one would need at least 1012 initial string segments, which is not possible numerically.
The problem was overcome by considering only one of the segments decaying at each
particular time and multiplying it by a suitable weighting function, chosen such that scaling
is preserved. An equation for the evolution of the wiggliness parameter α is used [91]:

α(τ) = 1+
0.9
Hτ

, (3.27)

such that it satisfies the expected behaviour in the radiation, matter and cosmological constant
eras.

As the equations describing the matter perturbations and the power spectra do not depend
on the direction of the wave-vector k, this can be taken to be along the k3 = kz axis. Thus,
the energy-momentum tensor components become

Θ00 =
µα√
1−v2

sin(kX̂ ′
3l/2)

kX̂ ′
3/2

cos(k ·X0 + k ˆ̇X3vτ) (3.28)

Θi j =

[
v2 ˆ̇Xi

ˆ̇X j −
(1−v2)

α2 X̂ ′
i X̂ ′

j

]
Θ00 , (3.29)

while Θ0i can be expressed using the conservation of the stress-energy tensor Θµν . With this
choice of the wave vector, the components required for the Boltzmann integrator CMBACT
[99], which in turn is based on CMBFAST [30] are:

Θ
S = (2Θ33 −Θ11 −Θ22)/2 , (3.30)
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Θ
V = Θ

V
1 = Θ13 , (3.31)

Θ
T = Θ

T
12 = Θ12 , (3.32)

Θ = Θii , (3.33)

Θ
D = Θ03 . (3.34)

These are the anisotropic scalar, the vector component, the tensor component, the trace and
the velocity field.

This model has been used to mimic the behaviour of Abelian-Higgs strings, by tuning its
parameters. The results are in good agreement with the field theory simulations [59].

CMB comparison for Abelian-Higgs and Nambu-Goto simulations

As described in the previous subchapters, field theory simulations have a much lower
dynamical range than Nambu-Goto simulations. They are, however, able to resolve scales
of sizes comparable to the string width, and the decay products appear naturally out of the
simulation. For Nambu-Goto simulations, the intersection of two different strings forms a
loop. This must be specified in the simulation algorithm, such that the loop is cut off from
the long strings, which then reconnect again [40]. In the case of Nambu-Goto simulations,
loops are clearly visible, but in field theory simulations, energy moves directly into massive
modes of the fields because of the limited dynamical range. A comparison between the two
types of simulations appears in Fig. 1 of Ref. [8] and is reproduced in Fig. 3.1.

Fig. 3.1 Comparison of AH (left) and Nambu-Goto (right) cosmic string simulations, taken
from Ref. [8].
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This can be illustrated by the different shapes and amplitudes of the temperature power
spectra determined from these two models, as it can be seen in Fig. 3 of Ref. [9]. These
plots were created with the standard parameters from the code CMBACT [99] for the USM
(Nambu) and AH mimic and with field theory simulations for the Abelian-Higgs cosmic
strings. A similar comparison is shown later in the Chapter (Fig. 3.14).

The difference may be due to the fact that the USMs are not able to model the velocity
correlations between the strings, but also to the fact that the field theory simulations rely on
extrapolation over many orders of magnitude [81]. Even though extensive simulations have
been performed for the Abelian-Higgs model, the Nambu-Goto strings have mostly been
described using the simplified USM model.

3.2 Cosmic string simulations

In order to analyse the consequences of cosmic strings on the CMB, we had to first determine
the power spectrum they produce from Nambu-Goto simulations. We have used the Allen
and Shellard code [100] to generate the string networks with Vachaspati-Vilenkin initial
conditions [40, 90] and to evolve them in time in different epochs of the Universe.

At the initial time of the simulation, the cubic simulation box is discretised as a lattice.
For each of the vertices of this lattice, the magnitude of the field φ is assumed to be constant,
while its phase takes one of three distinct values, which are randomly assigned. At most
one string is allowed to pass through the face of a cubic cell. Whether this happens or not is
determined by looking at the winding number of the phase of the field around the centre of
the cell - if it is nonzero, then a string is passing through it. By applying this procedure to the
whole box, the strings segments can form long strings (which have ends on the faces of the
exterior of the lattice) or closed loops.

To obtain an accurate prediction for the cosmic string power spectrum, we have used
three simulations, covering in total a redshift range from 5900 to 0 as follows. The first
simulation (Simulation 1) starts deep into the radiation era, goes through radiation-matter
transition, and ends in the matter era, corresponding to redshifts from 5900 to 700. The
second simulation lies entirely in the matter era, with redshifts from 860 to 37. The third
simulation starts in the matter era (redshift 48) and goes into the cosmological constant future,
to z = 0. All three simulations had earlier initial times, but we have removed around 1.5%
of the time steps of each of them in order to remove the excessive correlations in the initial
conditions. The important quantity in this context is the dynamical range of the simulations.
After removing these initial time steps, we decrease the dynamical range of each of the
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Fig. 3.2 Evolution of the string network in the simulation covering the matter era (redshift
range 945 to 37.2, from left to right).

simulations by roughly 15%. In Fig. 3.2 the time evolution of the string network simulation
covering the matter epoch is shown by plotting the energy component for the strings at three
time steps corresponding the first, middle and last time used in the calculation of the UETCs.
The density of strings is decreasing with the expansion of the Universe, such that scaling is
preserved during the evolution of the simulation. The scaling behaviour of the simulations
has been shown in detail in Ref. [101]. The simulations have an initial string resolution of
24 points per correlation length and have been evolved at fixed comoving resolution. The
background cosmology for the evolution of the networks has been taken to be the ΛCDM,
with WMAP 5-year best-fit parameters: Ωc = 0.214, Ωb = 0.044, ΩΛ = 0.742, H0 = 71.9.
These simulation have also been used in a different context in Ref. [102].

The three simulations cover the entire cosmological history of the Universe which is of
interest when determining the CMB power spectrum. One can see that the network is initially
very dense (Fig. 3.2) in each of the simulations, and Vachaspati-Vilenkin initial conditions
are used.

Large loops are kept in the simulation and contribute to the total energy-momentum tensor
of the network. In a physical context, small loops decay into gravitational radiation. Those
that are smaller than the resolution of the simulation are not resolved and hence could be
treated as point mass sources. Their effect on the overall string network is negligible in linear
theory and therefore are neglected in practice because it accelerates the network simulation
to remove very small nonintersecting loops. These tiny loops were also found to have a small
effect in Refs. [103, 104]. By ignoring these small loops, we obtain a conservative bound on
cosmic strings. An alternative simulation technique has been developed in Refs. [105, 106]
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where the evolution of these small loops can be more efficiently continued during network
evolution.

The string code outputs the cosmic string parameters for all the points from the string
network at each time. Another code is used to read in all the parameters for all points at a
particular time step, evaluate the local energy-momentum tensor using the real-space version
of Eq. (3.14) and then interpolate it on a three dimensional grid of chosen size. The outcome
of this is an energy-momentum tensor for the whole network at a specific time evaluated on a
3D grid. This is Fast Fourier Transformed, and it is then decomposed into scalar, vector, and
tensor parts (SVT decomposition) in order to determine the components required [107].

The first code treats each time step separately. It reads the coordinates of each point and
the data required to calculate the energy-momentum tensor at that particular place according
to Eq. (3.14). This energy-momentum tensor is interpolated on a given grid, user-specified
according to the resolution required, using a triangular cloud-in-cell interpolation method.
This method interpolates each of the given points onto the 27 closest neighbours on the
three-dimensional grid (weighted appropriately according to the distance to each point and
ensuring energy conservation in this process), and the results are added up. Thus, the full
stress-energy tensor is created on the grid at that particular time in real space. Then the full
3D matrix is converted to Fourier space using a Fast Fourier Transform routine. The new
grid, now in Fourier space, is smoothed out by multiplying it with a Gaussian and then the
energy-momentum tensor is split into scalar, vector, and tensor parts. For the scalar parts, we
have chosen to output the Θ00 (energy density) and ΘS (anisotropic scalar) components, but
other choices can be made according to what one needs; for the vector parts, we have output
two of the vector components and similarly for tensors.

3.3 Unequal-time correlator approach

Cosmic strings are active sources. This means that unlike primordial perturbations, which
are seeded at the end of inflation, cosmic strings continuously seed perturbations throughout
the history of the Universe [108]. The presence of cosmic strings modifies the usual energy-
momentum tensor of the radiation and matter contents of the Universe, by adding a term
corresponding to the cosmic strings. We consider uniform energy density and space curvature
as initial conditions in the Einstein-Boltzmann equations (1.56)-(1.59) and (1.114)-(1.117).
In this case, to first order in perturbation theory, by integrating the full Boltzmann equations
with these initial conditions one we obtain directly the string multipoles Cstring

l , decoupled
from the power spectrum of the other components of the Universe. This is due to the fact
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that the active sources are uncorrelated with the primordial fluctuations and thus the total
angular power spectrum can be expressed as

Cl =Cinflationary
l +Cstring

l . (3.35)

In the present case, we are only interested in calculating the power spectrum from the cosmic
defects, as the inflationary power spectrum is already precisely determined (Ref. [17]).

To do the integration, there are two methods: (1a) ignore the full Boltzmann hierarchy and
use Green’s functions (e.g. Refs. [82, 109]) or (1b) use a first-order equivalent to Greens’s
functions and treat the full Boltzmann hierarchy (Ref. [107]); and (2) use UETCs. Indeed,
Eqs. (1.56)-(1.59) are linear and their homogeneous part only depends on the magnitude of
the wave vector, which makes it possible to use the UETC approach.

In general, to calculate the CMB power spectrum [110] from active sources, one has to
solve an equation of the form

DX = ST , (3.36)

where D is a differential operator and ST is the active source. The power spectrum is then a
quadratic quantity which has the general form

〈
Xi (τ0,k)X∗

j
(
τ0,k′)〉 . (3.37)

This can be expressed in terms of Green’s functions G as follows:

〈
Xi (τ0,k)X∗

j
(
τ0,k′)〉= τ0∫

τin

dτGim (τ,k)

τ0∫
τin

dτ
′G∗

jn
(
τ
′,k′
)〈

Sm (τ,k)S∗n
(
τ
′,k′)〉 (3.38)

where τin is some initial time. Hence, to calculate the influence of strings on the CMB power
spectrum, only the following quantity is needed:

〈
Sm (τ,k)S∗n

(
τ ′,k′)〉, which is called the

UETC of the sources. In particular, the string energy-momentum tensor UETC can be written
as

⟨Θµν(k,τ)Θρσ (−k,τ ′)⟩= Xµν ,ρσ (k,τ,τ ′)δD(0) . (3.39)

Using scaling, one can re-express this correlation function as [109]

Xµν ,ρσ (k,τ,τ ′) =
cµν ,ρσ (kτ,kτ ′)√

ττ ′
. (3.40)
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This new UETC matrix cµν ,ρσ (kτ,kτ ′) is obtained as the expectation value of a squared
quantity and hence is positive definite [108]. It is thus diagonalisable and can be expressed
in terms of its eigenvalues and eigenvectors [111, 112],

cµν ,ρσ (kτ,kτ
′) = ∑

i
λiv

(i)
µν(kτ)v(i)Tρσ (kτ

′) , (3.41)

where vi are the a set of orthonormal eigenvectors of the matrix c.

The eigenmodes are coherent [111] and hence each of them can be fed individually into
a Boltzmann equation solver yielding the angular power spectrum C(i)

l and then the total
angular power spectrum can be expressed as

Cstring
l = ∑

i
λiC

(i)
l . (3.42)

As the unequal time correlators have been multiplied by
√

ττ ′, the source terms in the
Boltzmann equation are substituted as

Θ(kτ)→ v(i)(kτ)√
τ

. (3.43)

To calculate the power spectrum of the cosmic strings, one has to modify the source of
the energy-momentum tensor of the Einstein equations by adding the contribution from the
strings as sources [107]:

Tµν → Tµν +Θµν . (3.44)

The contribution to the total energy-momentum tensor due to the active sources is considered
small compared to stress-energy tensor of the background and hence by considering the
cosmic string sources as perturbations to the matter terms, the perturbations to Eqs. (1.52)-
(1.54) are modified to

δT 0
0 =−δρ +Θ

0
0 , (3.45)

δT 0
i = (ρ +P)vi +Θ

0
i , (3.46)

δT i
j = δPδ

i
j + pΣ

i
j +Θ

i
j . (3.47)

Using the Einstein equation (1.1) and its conservation ∇νGµν = 0, the equations for
the perturbations (1.56)-(1.59), as well as the constraints (1.60)-(1.62) are modified to
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accommodate the energy-momentum tensor of cosmic strings to:

h′′+
a′

a
h′ =−8πG[a2(δρ +3δ p)+Θ00 +Θ] , (3.48)

kη̄
′ = 4πGa2

∑
i
(ρi + pi)vi −

4πG
k

Θ
D , (3.49)

hS′′+2
a′

a
hS′−2k2

η = 16πG
(

a2 pΣ
S +Θ

S
)
, (3.50)

hV ′′
i +2

a′

a
hV ′

i = 16πG
(
a2 pΣ

v
i +Θ

v
i
)
, (3.51)

hT ′′+2
a′

a
hT ′+ k2hT = 16πG

(
a2 pΣ

T +Θ
T) , (3.52)

where η̄ = h−hS

6 and an additional constraint equation for ΘD is

Θ
D′ = Θ

D
(
−2

a′

a
− k2a

3a′

)
− k2

3

(
2Θ

S −Θ00 −
aΘ′

00
a′

)
. (3.53)

The metric variables used for the actual computation are taken to be η̄ , hS, hV and hT and
hence equations (3.49)-(3.52) have been implemented into a Boltzmann solver (CMBFAST),
by modifying the relevant equations to accommodate the cosmic string sources. The energy-
momentum tensor of the cosmic strings needed to be substituted with the relevant eigenvector,
as described in Eq. (3.43).

For the scalar part of the power spectrum, one requires the components Θ00 and ΘS. In
this situation, it is not possible to diagonalise each of the UETC matrices corresponding to
⟨Θ00Θ00⟩ and ⟨ΘSΘS⟩ separately because the cross-correlator ⟨Θ00ΘS⟩ is nonzero. One has
to build the block matrix (

⟨Θ00Θ00⟩ ⟨Θ00ΘS⟩
⟨ΘSΘ00⟩ ⟨ΘSΘS⟩

)
(3.54)

and to diagonalize it. The first half of each of the eigenvectors would correspond to Θ00, and
the second half would correspond to ΘS. The eigenvalues are common to both.

In the case of vectors and tensors, the situation is different. The two vector modes ΘV 1

and ΘV 2 evolve independently, but their autocorrelators are the same,

⟨ΘV
Θ

V ⟩ ≡ ⟨ΘV 1
Θ

V 1⟩= ⟨ΘV 2
Θ

V 2⟩ (3.55)

and their cross-correlators vanish ⟨ΘV 1ΘV 2⟩= 0, due to statistical isotropy [81]. The same
is true for the two tensor modes. Furthermore, the mixed scalar/vector, scalar/tensor and
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vector/tensor UETCs also vanish. We will discuss the results that we obtained using this
method in Subchapter 3.6.

We have used the decomposition section of the Landriau and Shellard code [107] to
calculate the energy-momentum components of the UETCs. The energy-momentum tensor
of the string network has been interpolated on a 3D grid in Fourier space, and it has been
decomposed into scalar, vector and tensor parts. The relevant UETCs described in the
previous paragraphs were then calculated.

3.4 Evolution of the UETCs and resolution effects

The most important aspect when calculating the UETCs is to make sure that the resolution
considered is high enough so that it can capture all the physical scales of relevance for
sourcing the main CMB signal. A first step in order to achieve this was to analyse the energy
density of the string network in real space at a given time for a range of grid resolutions.
Boxes of 1283, 2563, 5123, 7683, 10243, and 15363, respectively, points have been chosen. In
Fig. 3.3 the energy density of the string network for time 384 out of 1536 for the simulation
in the radiation era has been plotted for these resolutions, for cubes of a quarter of the side of
the simulation box.

For the lowest two resolutions considered, important information is smoothed out, and the
strings do not have a threadlike appearance. As the resolution is increased, the strings become
thinner as one would expect with better grid sampling. However, one cannot increase the
resolution indefinitely because, after getting in the vicinity of the resolution of the simulation
itself, the network would appear as made up of disconnected bulbs. The effect of resolution
on a string network is especially apparent at earlier times (as shown in Fig. 3.3), when the
string density is much higher. However, when one is interested in ray tracing through the
simulation, e.g. to compute CMB maps [102], the difference in resolution does not affect
the results at early times because of the very high string density but will cause the late-time
features to have increasing levels of sharpness; however, as we shall now show, adequate
resolution is critical for the accurate computation of UETCs.

Even though in recent years the computational capacity has radically increased, it is still
challenging to go to very high resolutions in simulations. Increasing by a factor of 2 the
linear grid resolution increases each file size by a factor of 8 and the time required by a
similar amount. Due to these time and disk space considerations, we chose to use a grid size
of 10243 for the simulations. The huge grid size limits, however, our possibility of using
a very high time resolution as well, and for each of the simulations, we use around 100



3.4 Evolution of the UETCs and resolution effects 49

Fig. 3.3 Energy density component of the string network in real space evaluated at time 384
out of 1536 for the simulation in the radiation era for the six resolutions considered: 1283,
2563, 5123, 7683, 10243 and 15363 points.

time steps. We have checked that the time sampling does not modify the UETCs noticeably.
To ensure the symmetry of the UETCs, we are using the same sampling for τ1 and τ2 for
the computations. An alternative approach is being developed, which uses a lower spatial
resolution but a greater time resolution. To obtain the full UETCs at a resolution of 10243,
a total CPU time of approximately 20000 h is required using 200 Intel Xeon processors
with a clock speed of 2.6GHz. We have performed all the calculations on the COSMOS
supercomputer. Typical UETCs obtained at resolution of 10243 are plotted in Figs. 3.4 and
3.5 from the simulation covering the matter era.

At resolutions greater than or equal to 5123, spurious peaks appear in the UETCs if the
first 1% of the time steps of the simulation is considered. This is due to the appearance of
loops over the length scale of the resolution size, i.e. excessive correlation in the Vachaspati-
Vilenkin initial conditions. In Fig. 3.6, we have represented the initial appearance of the
string network, both as a 3D view and a projection of the energy density to illustrate the
correlation between the segments forming the string network. To get accurate predictions for
the UETCs, the first time steps should be discarded, as they represent only the effect of the
initial conditions and not of the physics involved.
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Fig. 3.4 Scalar UETCs obtained from a grid resolution of 10243: the figures of the left repre-
sent oblique 3D views of the three scalar UETCs (⟨Θ00Θ00⟩(kτ,kτ ′) - top, ⟨ΘSΘS⟩(kτ,kτ ′)
- middle and ⟨Θ00ΘS⟩(kτ,kτ ′) - bottom), the top right plot represents a contour plot of
⟨Θ00Θ00⟩ in linear scale and two bottom right plots represent the three scalar equal time
correlators in linear and logarithmic scales.

Another important feature that needs to be checked is the scale invariance of the UETCs.
This can be checked by verifying whether the shape of the UETC depends on which part of
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Fig. 3.5 Vector and tensor UETC components obtained from a grid resolution of 10243:
oblique 3D views of ⟨ΘV ΘV ⟩(kτ,kτ ′) and ⟨ΘT ΘT ⟩(kτ,kτ ′) (left) and the corresponding
equal time correlators (right).

the simulation is used (after discarding the initial conditions). The UETCs in Figs. 3.4-3.5
are scale-invariant. They are almost independent of the starting time of the simulation. We
have illustrated this behaviour by plotting the ⟨Θ00Θ00⟩ UETC between three times (64, 140,
and 220) and all times between 32 and 223 and 64 and 223 (Fig. 3.7). The plots have been
zoomed in around the peak in order to show the scale invariance.

In the case of the 3D plot, the differences in terms of starting time are imperceptible, and
hence only the one with the starting time 32 is represented. When correlating components
of the energy-momentum tensor from early times with all the corresponding components
from a certain time until the end of the simulation, there appears to be a small difference
in the UETC corresponding to that starting point. If we choose, however, a later time to
correlate with all the others, the difference becomes imperceptible. This is due to the fact
that for earlier times there is more information in the string network due to the higher string
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Fig. 3.6 Network correlation in the initial conditions from the simulation covering the matter
era: left - oblique 3D view, right - front view.

density. The string network becomes less dense with the expansion of the Universe. This
can be seen in the fact that the correlators in Fig. 3.7 have slightly lower amplitudes from
top to bottom as the time used for correlations increases. Nevertheless, scale invariance
is a good approximation just throughout each of the simulations; the string network is not
scale-invariant throughout the history of the Universe, as the UETCs are not identical in the
three simulations.

Resolution convergence

We have studied the convergence of both the shape and the amplitude of the UETCs in terms
of the resolution of the grid. To illustrate this, we have chosen the simulation in the matter
era. In Fig. 3.8, we have plotted the equal time correlator (diagonal component of the UETC)
of the energy density for the various resolutions considered, from 1283 until 12803. The peak
is still increasing as the resolution is increased, but one can observe that relative differences
from consecutive resolutions are getting smaller. However, technical constraints do not allow
us yet to increase the resolution further and get the results in a reasonable amount of time.
Currently the full simulation at a resolution of 1280 takes around 40000 CPU hours on Intel
Xeon processors with a clock speed of 2.6GHz on the COSMOS supercomputer.

From Fig. 3.8 it can be seen that the two lowest resolutions do not give accurate results.
This was expected since the string network is not properly resolved at this resolution (see Fig.
3.3). The behaviour of the other correlators that were calculated is similar and has not been
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Fig. 3.7 ⟨Θ00Θ00⟩ UETCs calculated between one snapshot of the simulation and the whole
simulation from different starting point, exhibiting scale invariance. In the bottom two rhs
plots, the two plotted curves are indistinguishable. Scaling can be observed between the
figures despite the correlation time used.

plotted. We have used the UETCs obtained at resolutions of 1283, 2563, 5123, 7683, 10243

and 12803 and we have determined the correlations between them in terms of the shape and
amplitude correlators defined by the two formulae



54 Cosmic Strings

0 5 10 15 20 25
0

5

10

15

20

〈Θ
00

Θ
00

〉

kτ/2π

 

 

1283

2563

5123

7683

10243

12803

10
0

10
1

10
2

10
−10

10
−5

10
0

〈Θ
00

Θ
00

〉

kτ/2π

 

 

1283

2563

5123

7683

10243

12803

Fig. 3.8 ⟨Θ00Θ00⟩ equal time correlators at different resolutions.

s(c)A,B =
∑i ∑ j UA(i, j)UB(i, j)√

∑i, j(UA(i, j))2
√

∑i, j(UB(i, j))2
, (3.56)

r(c)A,B =

√
∑i, j(UA(i, j))2√
∑i, j(UB(i, j))2

, (3.57)

where (c) is taken to be ⟨Θ00Θ00⟩, ⟨ΘSΘS⟩, ⟨Θ00ΘS⟩, ⟨ΘV ΘV ⟩, and ⟨ΘT ΘT ⟩, respectively.
These represent measures of the goodness of fit between the different simulations considered
in terms of their shapes and amplitudes respectively. We have taken A to be the simulation at
a resolution of 12803, and for B we took in turn each of the simulations from resolutions of
1283, 2563, 5123, 7683, and 10243 respectively. The results obtained are shown in Table 3.1,
and the convergence trend is displayed in Fig. 3.9.

As the grid resolution is increased to 12803, Fig. 3.9 and Table 3.1 show very good
convergence in both the shape and the amplitude for all the UETCs. The shape correlator
is better than 99.6% for the 10243 resolution for all the correlators considered, while the
difference in the amplitude correlators is better than 8%. The convergence at approximately
5% is limited by numerical constraints. However, from Fig. 3.8, one can see that, although
we are approaching convergence with the correlators, this has not been yet achieved. Between
70 < kτ < 80, the energy density UETC decays by 2 to 3 orders of magnitude compared
to kτ = O(1) and hence it would make a comparatively small contribution to the power
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Table 3.1 Shape and amplitude correlators of the UETCs at different simulation resolutions
and the UETC at resolution 12803

UETC Correlator 1283 2563 5123 7683 10243

⟨Θ00Θ00⟩ Shape 0.6048 0.7783 0.9735 0.9939 0.9991
Amplitude 3.0939 2.4376 1.2889 1.1123 1.0384

⟨ΘSΘS⟩ Shape 0.5628 0.6026 0.9192 0.9750 0.9952
Amplitude 3.7040 2.6621 1.5079 1.2220 1.0831

⟨Θ00ΘS⟩ Shape 0.6072 0.6377 0.949 0.9851 0.9971
Amplitude 5.7650 4.1559 1.4993 1.1968 1.0696

⟨ΘV ΘV ⟩ Shape 0.6587 0.7381 0.9335 0.9795 0.9962
Amplitude 2.4435 1.8765 1.3244 1.1524 1.0593

⟨ΘT ΘT ⟩ Shape 0.5632 0.6011 0.9180 0.9772 0.9961
Amplitude 3.5414 2.8519 1.5209 1.2278 1.0833
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Fig. 3.9 Evolution of the averaged shape and amplitude correlators.

spectrum. For the region kτ < 70, there is a definite sign that the graphs are approaching
convergence, though it is not completely achieved.

3.5 Analytic UETC model

An analytic model for the calculation of UETCs based on the phenomenological USM model
for Nambu-Goto strings has been developed in Ref. [97]. The correlation length can be
expressed in terms of a new parameter ξ defined as ξ = L

aτ
.

Using Eqs. (3.28) and (3.29), as well as the SVT decomposition, the relevant UETCs are
obtained analytically by integrating over the string network, separately for each stress-energy
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component of interest:

⟨Θ(k,τ1)Θ(k,τ2)⟩=

=
2 f (τ1,τ2,ξ ,L f )

16π3

∫ 2π

0
dφ

∫
π

0
sinθ dθ

∫ 2π

0
dψ

∫ 2π

0
dχ Θ(k,τ1)Θ(k,τ2) , (3.58)

where the function f quantifies the decrease in the number of segments by string decay. The
four angles of integration represent: ξ the orientation of one string segment with respect to
the kz axis, θ and φ the usual position angles in spherical polar coordinates and ψ the angle
between the position vector and the velocity vector. The anisotropic scalar, vector and tensor
components are given in this case by Eqs. (3.30)-(3.32). The UETCs that are computed are
compared with simulations produced with the CMBACT code for different values of the
parameters.

The final results have only three free parameters: v, α , and ξ . They can be obtained by
integrating Eq. (3.58) and depend on integral expressions Ii,

⟨Θ(k,τ1)Θ(k,τ2)⟩=
f (τ1,τ2,ξ ,L f )µ

2

k2 (1−v2)

6

∑
i=1

Ai [Ii(x−,ρ)− Ii(x+,ρ)] , (3.59)

where ρ = k|τ1 − τ2|v, x± = kξ (τ1 ± τ2)/2 and the expressions Ai depend again on the three
parameters and can be found together with the expressions for Ii in the Appendix of Ref.
[97].

Fit to the analytic model

To be able to compare the simulated UETCs with the analytical ones from Ref. [97], we have
added the two vector and two tensor components and we have obtained the five functions
used in Ref. [97]. The analytical model depends on three parameters, v, α , and ξ . The
parameters have the following ranges: v varies between 0 and 1, α is in the interval [1, 2] and
ξ is positive. We use again the shape [see Eq. (3.56)] and amplitude correlators [Eq. (3.57)],
this time with A representing the analytical UETC and B representing the simulated one. The
s’s and r’s have been tabulated for parameters in the permitted ranges and the values of the
shape correlators have been maximised. The amplitude correlators have been chosen to be as
close to one another as possible (due to different normalisation factors).

The best-fit parameters are as follows: ξ = 0.2 for the first two simulations and ξ = 0.3
for the third; while v is 0.5, 0.1, and 0.6, respectively; and α is 1.5, 1.3, and 1.3. The
best results obtained for the three simulations for the shape and amplitude correlators are
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presented in Table 3.2. We note that the mixed scalar correlator ⟨Θ00ΘS⟩ exhibits poor
correlation between the UETCs calculated from the USM model and the simulated ones.
This happens because the USM is unable to capture all the physical correlations between
the strings, due to the oversimplified model. Hence the position of the peak of the USM
UETC is both shifted and is too low with respect to the simulated one. We will show a
comparison between these “best fit” power spectra and the ones that we have obtained using
the eigenvectors in Subchapter 3.6.

Table 3.2 Shape and amplitude correlators for UETCs in the three simulations

Simulation Correlator ⟨Θ00Θ00⟩ ⟨ΘSΘS⟩ ⟨Θ00ΘS⟩ ⟨ΘV ΘV ⟩ ⟨ΘT ΘT ⟩

Radiation era
Shape 0.710 0.841 0.188 0.815 0.738

Amplitude 1.009 0.985 0.338 0.656 0.932

Matter era
Shape 0.667 0.801 0.132 0.744 0.663

Amplitude 1.000 0.978 0.343 0.693 1.086

Matter + Λ eras
Shape 0.751 0.820 0.212 0.803 0.718

Amplitude 0.998 1.094 0.365 0.746 0.928
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Fig. 3.10 Comparison between the TT power spectrum for USM , Abelian-Higgs and Nambu-
Goto simulated strings. Simulation 1 covers the radiation era, Simulation 2 the matter era,
and Simulation 3 matter and cosmological constant eras. The USM and Abelian-Higgs
power spectra are the standard results used in the Planck cosmic defects paper [9]. All power
spectra are normalised to Cstrings

10 = 1.

We have updated CMBACT with the Planck parameters [18] of the 2013 data release,
and we have taken Gµ = 2.07×10−6, as in Ref. [97]. We then ran the code with 500 string
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segments and 400 realisations with the parameters found for the best fit. We have obtained
these values of the parameters by fixing the values of v, α , and ξ on all scales. Otherwise,
the parameters are just initial conditions for the differential equations in the VOS model, and
hence the results vary only weakly with them. The cosmological parameters chosen were the
Planck+WP+high L+BAO parameters from the 2013 Planck results [17]. For comparison, we
have also run the default CMBACT [99] with default initial parameters (v = 0.65, α = 1.9,
ξ = 0.13) with Planck cosmology. We have taken the Abelian-Higgs power spectrum data
from Ref. [113], and we have plotted in Fig. 3.10 all three power spectra from simulations
on the same graph in terms of the multipole l, in logarithmic scales, together with the USM
and Abelian-Higgs ones.

The power spectrum for the Nambu-Goto strings, obtained from simulations, is situated
between the power spectra of the USM and the Abelian-Higgs models. This was expected, as
the USM model is unable to capture very accurately the entire small scale behaviour of the
cosmic strings, while the Abelian-Higgs model does not have enough dynamic range. It can
be seen that the position of the peak corresponds to approximately the same l in all cases and
that the power spectrum in the three cases is very similar for l < 30. The matter era spectrum
has a smaller peak amplitude and is straighter for large l. The CMB power spectra obtained
from the simulations are very similar because of the fact that we are only using CMBACT
with different parameters to obtain them. In the next subchapter we will describe the power
spectrum obtained using UETCs directly.

3.6 Power spectrum obtained from eigendecomposition of
UETCs

Using the formulae in Subchapter 3.3, we have run our code and we have computed the
power spectra from the three simulations that span the whole cosmological time. The power
spectra have been calculated first by using each of the individual simulations and extending
their validity to the whole cosmological time by assuming scaling. For example, even though
we have determined the UETCs using just cosmic strings that have evolved in the radiation
era, we assume that the UETCs would be valid for all times. The matrices corresponding
to them have been diagonalised, and their corresponding eigenvectors have been sorted in
terms of the magnitude of their eigenvalues (from largest to lowest). We determined the
power spectra from each of the eigenvectors and then we summed up the results. Although
in principle all the eigenvectors have to be used in order to obtain an exact result, in practice
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using Eq. (3.42) it can be noticed that for very small eigenvalues the contribution to the
overall angular power spectra becomes insignificant. We have analysed this problem in detail
and it turns out that for all four power spectra considered using roughly 200 eigenvectors
gives a very good convergence for the power spectra. We have checked this in all our results.
This is illustrated in Fig. 3.11 with the power spectra that we have obtained in the radiation
era. The power spectra obtained from the scalar, vector and tensor components have been
plotted on separate figures, and the convergence in terms of the number of eigenvectors used
has been shown. In the case of the vectors, for the TT and TE power spectra we get excellent
convergence using just 100 eigenvectors. For the EE and BB vector power spectra as for all
tensor components we need 200 eigenvectors to get a very good convergence.

Later (see Fig. 3.13), we will show a comparison between the results that we have
obtained by assuming scale invariance throughout the history of the Universe vs. scale
invariance in each of the cosmological eras (radiation, matter, and Λ domination).

From the comparison of the results obtained from the simulations with the ones found by
fitting the three parameters in CMBACT we notice that, unfortunately, the fits do not match
the results from the simulations very well. The comparison between the simulations and the
fits in the case of the temperature power spectrum is illustrated in Fig. 3.12. The standard
USM and Abelian-Higgs power spectra are also plotted for comparison.

We used the three simulations separately, assuming their validity in the redshift range in
which they were run, and we calculated the relevant Cl’s in each case, and then we added
the results up. We will show the methodology used for combining the results from the three
simulations for calculating the total combined angular power spectrum in the following
paragraph.

Combining the simulations

We consider the collisional Boltzmann equation for the brightness (1.105), derived in Sub-
chapter 1.3 for the cosmic defects. In this case we have to analyse separately the scalar, vector
and tensor equations of the brightness. We assume that the cosmic string energy-momentum
tensor (in this case the corresponding eigenvector) is nonzero only in a conformal time
interval (τ(A),τ(B)). We will show that the time derivative of hα tends to zero outside this
interval. Equations. (3.49)-(3.52) are linear and their initial conditions are hα = ḣα = 0 at
τ = 0, with α corresponding to the scalars, vectors, and tensors. Hence, hα(τ) = ḣα(τ) = 0
for τ < τ(A). For τ > τ(B), there is no longer any source present, and hence h(α) would at
most remain constant while its time derivative would quickly decay. Hence, ∆ = 0 in the
absence of cosmic strings (due to the suitable initial conditions). We denote S = S(ḣα) be
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Fig. 3.11 Power spectra of the cosmic strings obtained from the simulations in the radiation
era assuming scale invariance. From left to right: scalar, vector, and tensor power spectra;
from top to bottom: TT, EE, TE, and BB power spectra (Gµ = 1.5×10−7). The numbers in
the legend represent the number of eigenvectors used. The colours in the tensor spectra plots
represent different numbers of eigenvectors used compared to the scalar and vector spectra.

the source function due to strings in each of the cases above and we consider the moments of
the Boltzmann equation (1.110) and we use the integral identities involving the Legendre
polynomials and the spherical Bessel functions:
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∫ 1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn (3.60)

il

2

∫ 1

−1
Pl(µ)eikµ(τ−τ0)dµ = jl(k(τ0 − τ)) (3.61)

to obtain
∆l(k,τ0) =

∫
τ0

0
dτS(k,τ) jl(k(τ0 − τ)) . (3.62)

The angular power spectrum for this source term can be expressed as in Eq. (1.123).
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Fig. 3.12 Comparison between the TT power spectra obtained through the best fit method
and using eigenvectors (Gµ = 2.07×10−6).

Each of the simulations considered is valid in a different time range. In the previous
subchapter we have extended the validity of the simulations by assuming scaling. However,
scaling is not perfect throughout the history of Universe, as can be seen from the power
spectra that we have obtained by making this assumption (Fig. 3.13). If scaling were perfect,
the power spectra from the three simulations would have to be identical. We express the
energy-momentum tensor in the three epochs considered as follows:

Θ(k,τ)→


vradiation(kτ)√

τ
if τ ∈ radiation era

vmatter(kτ)√
τ

if τ ∈ matter era
vmatter+Λ(kτ)√

τ
if τ ∈ Λ era

. (3.63)
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Equation (1.105) is a differential equation which is linear in the cosmic string sources
and hence Eq. (3.62) has the same property for all values of l. This shows that splitting the
sources into three parts, computing the moments ∆l separately, and then summing up the
results would not change the integral. We will now consider that the string sources only act
in the time interval where they are defined and we will split the calculation into three parts,
corresponding to each of the epochs. For example, for the radiation era, we shall take the
energy momentum-tensor from Eq. (3.63) as

Θ(k,τ)→
{ vradiation(kτ)√

τ
if τ ∈ radiation era

0 if τ ̸∈ radiation era
. (3.64)

In the general case, an arbitrary source S from Eq. (3.62) can be written in terms of its
constituents as

S(k,τ) = ∑Si(k,τ) , (3.65)

where each of the S′is is defined on an interval (τ(A)i ,τ
(B)
i ). These intervals are disjoint. This is

possible because the differential involved for ∆l and h are linear. However, in the expression
for Cl there is a square of ∆l . So we can re-express Eq. (1.123) as

Cl = ∑
i

Ci
l +

4
π

∑
i< j

∫
∞

0
dkk2

∫
τ0

0
dτ1

∫
τ0

0
dτ2Si(k,τ1)S j(k,τ2) jl(k(τ0 − τ1)) jl(k(τ0 − τ2)) ,

(3.66)
where Ci

l represents the contribution to the angular power spectrum obtained only from
source i (e.g. only radiation era). We will now show that the last sum of integrals from Eq.
(3.66) is negligible compared to each of the terms in the first sum. We note that the sources S

oscillate much less in k compared to the Bessel functions and hence, after changing the order
of integration, a typical integral term from this sum can be written as∫

τ0

0
dτ1

∫
τ0

0
dτ2Si(k,τ1)S j(k,τ2)

∫
∞

0
dkk2 jl(k(τ0 − τ1)) jl(k(τ0 − τ2))

∼
∫

τ0

0
dτ1

∫
τ0

0
dτ2Si(k,τ1)S j(k,τ2)δ (τ2 − τ1) =

∫
τ0

0
dτ1 Si(k,τ1)S j(k,τ1) (3.67)

by using the properties of the spherical Bessel functions. We now assume i < j and we take
into account that the cosmic strings only source the perturbation equations in the intervals
(τ

(A)
i ,τ

(B)
i ) and (τ

(A)
j ,τ

(B)
j ). The contribution from the first source will only start at τ

(A)
i and

end at τ
(B)
i . Hence, S1 will be zero before τ

(A)
i and start decaying after τ

(B)
i . The decay of

the sources after there are no strings is exponential in time. A similar behaviour is expected
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from the second cosmic string region. Hence, the integral (3.67) will only have a nonzero
contribution in the region where the contribution of the first source has not completely
decayed and the second source has an increasing contribution. As this contribution is
suppressed due to the time decay of the sources Si, this last integral will give a very small
contribution and we will neglect it.

The results that we obtained show that, in the TT spectrum, the cosmological constant
era contributes at l < 100 with a peak at l = 30, the matter era contributes in the range
50 < l < 400, and the radiation simulation for l > 200, as expected. The total power
spectrum converges to the matter and Λ era result for low l and the radiation era one at high
l. The final results resemble most the extrapolated matter era simulation, in agreement with
the results reported in Ref. [110]. The other three spectra (TE, EE, and BB) exhibit a similar
behaviour but the signal is dominated by the one from the radiation era. The individual
results are shown in Fig. 3.13. We have used 200 eigenvectors for each of the lines in the
plots.

In Fig. 3.14 we show the final TT power spectrum obtained from the three Nambu-Goto
simulations (combined), together with the USM and Abelian-Higgs ones. In addition, we
also plot the results obtained with the fourth version of the code CMBACT [99], in which
the author has corrected various bugs but also updated the VOS model. This new version
gives a lower amplitude for the temperature power spectrum and its overall shape resembles
more the Abelian-Higgs one. Using our simulations, we obtain an even lower amplitude for
the power spectrum. The peak remains at roughly the same position as in the USM case. The
shape of our TT power spectrum is more similar in terms of amplitude to the USM result, but
its shape resembles more the Abelian-Higgs spectrum.

3.7 String tension constraints

3.7.1 Background on methods

In this subchapter we discuss the implications of the presence of the cosmic strings on the
CMB, at the level of the power spectrum. In the previous subchapter we have calculated the
power spectrum induced by the cosmic strings on their own, but we are also interested in the
way the other parameters describing the Universe may be modified by the presence of cosmic
strings. The most straightforward way is to consider the standard 6-parameter ΛCDM model,
together with a parameter quantifying the presence of cosmic strings. In addition to this
very simple scenario, in this subchapter we consider the degeneracies that can be induced be
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Fig. 3.13 Power spectra of the cosmic strings obtained by using each of the three sets of
UETCs and assuming scaling for the whole history of the Universe. The red, green, and blue
show the power spectra considering the extrapolation of the results obtained in the radiation,
matter, and matter + Λ epochs. The contributions from the UETCs from just the time interval
where they are valid are plotted in the yellow, cyan, and magenta curves, and their sum is in
black. The black curve represents the final overall power spectrum obtained. From left to
right: The scalar, vector, and tensor power spectra; from top to bottom the TT, EE, TE, and
BB power spectra (Gµ = 1.5×10−7).
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Fig. 3.14 Comparison between the TT power spectra obtained using the three simulations
and the USM, Abelian-Higgs (standard results) and CMBACT version 4. In the left plot, the
string tension is Gµ = 2.07×10−6, showing that the USM and the Nambu-Goto strings have
different amplitudes compared to the Abelian-Higgs ones; in the right plot, amplitudes are
normalised to Cstrings

10 = 1, emphasising the similar shapes of the power spectra considered.

considering various non-minimal cosmological parameters, such as tensor modes, running
of the spectral index, increasing the number of effective degrees of freedom and adding a
massive sterile neutrino. Part of this detailed analysis has been motivated by the claims of
the BICEP2 Collaboration of the discovery of tensor modes [66]. To constrain the power
spectrum contribution from the Nambu-Goto string simulations, we have used a Markov
chain Monte Carlo method, using a modified version of the COSMOMC code [114, 115].
This method involves evaluating the power spectrum each time the parameters are modified,
by calling an instance of the code CAMB [32]. The total power spectrum is obtained from
the sum between the inflationary spectrum and the one obtained from cosmic strings because
the cosmic string sources, which are active sources, are uncorrelated with the primordial
perturbations [116]. This would in principle require the calculation of the cosmic string power
spectrum many thousands of times, for each choice of cosmological parameters, which is not
feasible because calculating the cosmic string power spectrum by itself requires several hours
of computational work. Fortunately it has been suggested [80, 95] that it evolves much slower
as a function of the parameters compared to its inflationary counterpart. In Ref. [117] it has
been explicitly shown that by varying the cosmological constant, the string tension allowed
by the data Gµ/c2 changes with less than 10%. The cosmic strings are expected to contribute
less than 5% in the total power spectrum, so as the cosmological parameters are varied in the
allowed regions, the string power spectrum does not vary more than 20% [118, 119]. This
gives overall better than 1% accuracy for the contribution of cosmic strings. Hence we have
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calculated the cosmic string power spectrum for a particular set of cosmological parameters
and we only allow the overall string contribution to vary, through the parameter f10, which
represents the fractional power of the cosmic strings compared to the inflationary power at
the tenth multipole [9, 59],

f10 =
Cstring

10

Ctotal
10

. (3.68)

We also use the relation f10 ∝ (Gµ)2 to relate the new parameter to the string tension [120].
For this analysis, we have used the March 2014 version of the COSMOMC code. In the next
subchapter, after a short introduction to the BICEP2 experiment, we analyse the degeneracies
and the constraints on the cosmic string tension as well as on other cosmological parameters
in two scenarios: by considering only the Planck likelihood (with WMAP polarisation) and
adding the BICEP2 results as well.

In order to asses the likelihoods of each of the cosmological parameters considered in a
model, the marginalised distributions are usually determined, where the full N-dimensional
parameter space is projected onto the one-dimensional space of the parameter of interest –
this can be obtained approximately from the number of samples in each parameter bin. By
applying the projection, the information about the shape of the distribution in the marginalised
directions is lost, and in particular whether the distribution is Gaussian or not. To check
this, one can plot the mean likelihood of the samples at each value of the parameter. If
the distribution is Gaussian, then the marginalised distributions and the mean likelihoods
would be identical. If the two quantities are significantly different, then either the likelihood
distribution is non-Gaussian or prior volume effects are important [115].

3.7.2 BICEP2 experiment

The BICEP2 announcement of the discovery of the B-mode polarisation [66] has created a
huge interest in the cosmology community. This is because this discovery potentially opens
a new window on the Universe, especially if the signal has a primordial origin. Such a signal
cannot be explained by the standard ΛCDM cosmology, thus requiring additional parameters.

One of the simplest additions to the minimal ΛCDM is primordial tensor modes generated
by inflation at a high energy scale. The BICEP2 Collaboration estimates a tensor-to-scalar
ratio around r = 0.20 (r = 0.16 after foreground subtraction), but the results are in tension
with the standard ΛCDM model which is also used in Planck papers [17]. This could
suggest that additional degrees of freedom are required in order to relieve this tension [66],
possibly by allowing for a scale-dependent spectral index, the running of the spectral index
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(nrun = dns/dlnk). Many different cosmological scenarios have been proposed to relieve this
tension: the curvature of the Universe [121], the number of effective degrees of freedom, the
sum of the neutrino masses, the Helium abundance and a sterile neutrino mass [122], running
of the spectral index and dust [123].

A different type of solution to explain the B-mode polarisation is a signal from topological
defects. Defects generate both vector and tensor modes in the B channel [99, 116, 124]
and hence they are a natural candidate for reconciling the tension between the datasets.
Many inflationary models involve a phase transition in the early Universe where cosmic
strings can be formed naturally [40, 125]. Both the groups working on strings generated
through the phenomenological unconnected segment model (USM) [80, 95, 97, 99] and the
Abelian-Higgs cosmic strings [81, 118, 123] have analysed the possibility of using cosmic
strings to explain the polarisation signal form the BICEP2 probe [64, 65]. These authors
have evaluated the implications of the presence of cosmic strings and have concluded that
they cannot alone explain the whole signal in the B-mode polarisation, though they could
make some contribution.

After a lengthy debate about the origin of the signal detected by the BICEP2 Collaboration,
a joined analysis with the Planck Collaboration has shown that all of the BICEP signal could
be produced by dust and there is no strong evidence for any primordial B-mode polarization.
[126].

3.7.3 Results for the Planck likelihood

In this simplest case, we have added the cosmic string coefficient f10 to the six ΛCDM
parameters, together with the various nuisance parameters, thus performing a full likelihood
calculation. We have found the constraints: Gµ < 1.49×10−7 and f10 < 0.0193 at 95% con-
fidence level, which are comparable with the results obtained by the Planck Collaboration [9].
The improvement in the fit after including cosmic strings is small. There are few degeneracies
with cosmic strings, and ΛCDM parameters change very little after the introduction of cosmic
strings. In Figure 3.15 we plot the marginalised likelihoods in the f10 −Ωbh2, f10 −H0 and
f10 − ns planes. Here, the two-dimensional plot is similar to Figure 10 of Ref. [9]. The
constraint that we have obtained is very close to the Planck one (Gµ/c2 < 1.5×10−7) [9].
We have validated our formalism by obtaining the constraint for the unconnected segment
model power spectrum. Therefore, we have concluded that this is due to the fact that our
power spectrum has a different shape and more power at low multipoles.
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Fig. 3.15 Marginalised likelihoods in the Planck + WP & strings model.

In order to show the way the constraints on the parameters change due to the presence of
cosmic strings, we have performed the same likelihood calculation without the defects. The
comparison between the two scenarios is shown in Table 3.3.

Table 3.3 Constraints on the fitted cosmological parameters, together with 1σ error bars in
a full likelihood analysis (with all relevant nuisance parameters) with and without cosmic
strings in the case of Planck and WMAP polarisation

Planck + WP

Parameter No strings Strings

Gµ/c2 (95% upper limit) - 1.49×10−7

Gµ/c2 (best fit) - 4.99×10−8

H0 67.20±1.16 67.42±1.20

100Ωbh2 2.202±0.027 2.209±0.029

Ωch2 0.120±0.003 0.119±0.003

τ 0.089±0.013 0.087±0.013

100θMC 1.0412±0.0006 1.0412±0.0006

ln(1010As) 3.088±0.025 3.078±0.026

ns 0.959±0.007 0.958±0.007

The constraint on Gµ/c2 in this standard scenario is slightly weaker compared to the one
expected from the USM model but tighter compared to that from the Abelian-Higgs model.

Apart from this simple scenario we have also considered adding different non-minimal pa-
rameters to the model and we have looked at the degeneracies that appeared. The parameters
we have considered adding are the following:
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• r, which is the tensor-to-scalar ratio evaluated at k = 0.002 Mpc−1. This also enforces
the relation nt =−r/8 for the tensor spectral index nt ;

• running of the spectral index;

• Neff, the effective number of neutrino-like relativistic degrees of freedom. The minimal
case corresponds to Neff=3.046 and the additional degrees of freedom are quantised by
the parameter ∆Neff = Neff −3.046;

• meff
ν ,sterile, the mass of a sterile neutrino. The sterile neutrinos are motivated by the

discovery of neutrino oscillations (e.g. Ref. [127]).

The most interesting results that we have obtained are shown in Tables 3.4-3.5.

We have observed that Neff is in most cases very degenerate with cosmic strings and
hence it allows it to attain huge values. For example, looking just at the second row of
Table 3.4, we observe that the preferred values for Neff increase after adding cosmic strings,
to ∆Neff > 1. The error bar also increases, suggesting the fact that there is a degeneracy
appearing after adding the parameter f10. The error bar also increases considerably on the
baryon contribution, H0 and ns. The value of the Hubble constant is increased massively from
the ΛCDM result. We have explored ways in order to fix this, by adding additional likelihoods.
We first added SPT/ACT (HighL), which didn’t change the values of the parameters much
and didn’t reduce the error bars either. Adding in addition BAO reduced the error bars and
shifted the values of the parameters back to the values prior to the introduction of cosmic
strings and Neff. This however reduced the allowed contribution from cosmic strings as well.

In terms of the degeneracies that appear, the most interesting case is the one with Neff

and tensor modes. In this case the data suggest as a best fit r = 0.12±0.09, so it is non-zero
at 1σ level. The Hubble constant is increased as well to H0 = 80.59±6.57. This is in fact
due to the degeneracies introduced by cosmic strings, which are illustrated in Figure 3.16.
The allowed value of the string tension is quite large as well, Gµ/c2 < 2.49×10−7. This
degeneracies disappear however after adding BAO, reducing the cosmic string contribution
to Gµ/c2 < 1.69×10−7 at 95% confidence level.

The same situation is true when adding other parameters such as running parameter
in addition to Neff and strings. This also allows the contribution from cosmic strings to
increase, up to Gµ/c2 = 2.49×10−7 in the Neff & r option. The results with just Neff added
(and no strings) can be restored by adding HighL and BAO data. In this case, from the
one-dimensional likelihood plots we see that the cosmic strings contribution is reduced, but a
non-zero value is favoured (Figure 3.17). The values of the cosmological parameters which
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Table 3.4 Values of the cosmological parameters when considering only the Planck likeli-
hoods with 1σ error bars, obtained by considering a full likelihood analysis (all cases also
include the Planck nuisance parameters)

Parameter strings, nrun strings, r, Neff Neff (Planck)
Gµ/c2 (95% upper
limit)

1.88×10−7 2.49×10−7 -

Gµ/c2 (best fit) 8.23×10−8 1.09×10−8 -
nrun −0.020±0.010 - -
r - 0.12±0.09 -
∆Neff - 1.574±0.748 0.563±0.316
H0 67.46±1.22 80.59±6.57 71.34±2.66
100Ωbh2 2.237±0.034 2.354±0.077 2.243±0.037
Ωch2 0.120±0.003 0.135±0.008 0.127±0.0047
τ 0.098±0.016 0.100±0.016 0.095±0.015
100θMC 1.0413±0.0007 1.0402±0.0007 1.0405±0.0007
ln(1010As) 3.101±0.032 3.123±0.033 3.117±0.031
ns 0.952±0.008 1.017±0.027 0.980±0.014
−lnL 4902.0 4902.5 4902.0
Parameter strings, Neff (Planck) strings, Neff (Planck +

HighL)
strings, Neff (Planck +
HighL + BAO)

Gµ/c2 (95% upper
limit)

2.28×10−7 1.80×10−7 1.58×10−7

Gµ/c2 (best fit) 7.35×10−8 1.77×10−7 1.34×10−7

∆Neff 1.072±0.564 1.186±0.528 0.658±0.304
H0 75.96±4.84 76.46±4.45 71.51±1.95
100Ωbh2 2.305±0.062 2.302±0.054 2.243±0.030
Ωch2 0.132±0.006 0.134±0.07 0.129±0.05
τ 0.098±0.015 0.097±0.015 0.090±0.013
100θMC 1.0404±0.0007 1.0402±0.0007 1.0404±0.0007
ln(1010As) 3.117±0.034 3.121±0.033 3.104±0.029
ns 0.996±0.020 0.997±0.019 0.976±0.010
−lnL 4902.6 5255.3 5256.1
Parameter nrun (Planck) nrun, Neff, strings

(Planck)
nrun, Neff, strings
(Planck + HighL)

Gµ/c2 (95% upper
limit)

- 2.28×10−7 2.06×10−7

Gµ/c2 (best fit) - 1.03×10−7 1.75×10−7

nrun −0.015±0.009 −0.054±0.015 −0.008±0.015
∆Neff - 0.935±0.713 0.969±0.733
H0 67.00±1.20 74.84±5.87 74.73±5.92
100Ωbh2 2.215±0.030 2.300±0.062 2.294±0.058
Ωch2 0.121±0.027 0.130±0.008 0.131±0.008
τ 0.097±0.015 0.099±0.016 0.099±0.016
100θMC 1.0412±0.0006 1.0405±0.0008 1.0404±0.0008
ln(1010As) 3.108±0.030 3.117±0.034 3.122±0.033
ns 0.954±0.008 0.989±0.028 0.986±0.028
−lnL 4901.7 4902.2 5255.6
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Table 3.5 Values of the cosmological parameters when considering only the Planck and WP
likelihoods with 1σ error bars, obtained by considering a full likelihood analysis

Parameter nrun, Neff, strings
(Planck + HighL +
BAO)

strings, r strings, r, running

Gµ/c2 (95% upper
limit)

1.95×10−7 1.42×10−7 1.99×10−7

Gµ/c2 (best fit) 3.57×10−8 5.09×10−8 8.39×10−9

nrun −0.014±0.011 - −0.029±0.012
r - 0.039±0.036 0.11±0.09
∆Neff 0.386±0.289 - -
H0 70.21±1.87 67.59±1.21 67.92±1.31
100Ωbh2 2.258±0.032 2.211±0.029 2.254±0.038
Ωch2 0.125±0.005 0.119±0.003 0.119±0.003
τ 0.097±0.015 0.087±0.013 0.101±0.016
100θMC 1.0408±0.0007 1.0413±0.0006 1.0415±0.0007
ln(1010As) 3.108±0.031 3.077±0.025 3.105±0.032
ns 0.967±0.012 0.960±0.007 0.953±0.009
−lnL 5257.8 4903.2 4902.0
Parameter Neff (Planck + HighL) Neff (Planck + HighL

+ BAO )
Neff, meff

ν ,sterile

∆Neff 0.669±0.323 0.531±0.255 0.535±0.306
meff

ν ,sterile [eV] - - 0.261±0.222
H0 71.86±2.76 70.61±1.68 69.14±2.74
100Ωbh2 2.241±0.038 2.227±0.028 2.233±0.035
Ωch2 0.129±0.005 0.128±0.004 0.127±0.005
τ 0.095±0.015 0.092±0.013 0.095±0.015
100θMC 1.0404±0.0007 1.0405±0.0007 1.0405±0.0007
ln(1010As) 3.120±0.032 3.112±0.027 3.117±0.032
ns 0.980±0.014 0.974±0.010 0.975±0.014
−lnL 5255.3 5258.58 4902.5

Parameter strings, Neff, meff
ν ,sterile strings, r, Neff,

meff
ν ,sterile

strings, Neff, r (Planck
+ HighL + BAO)

Gµ/c2 (95% upper
limit)

2.36×10−7 2.57×10−7 1.56×10−7

Gµ/c2 (best fit) 9.17×10−8 1.44×10−7

r - 0.11±0.90 0.05±0.04
∆Neff 1.055±0.535 1.522±0.725 0.696±0.308
meff

ν ,sterile [eV] 0.36±0.32 0.38±0.35 -
H0 72.71±4.79 76.69±6.48 71.79±2.00
100Ωbh2 2.293±0.058 2.338±0.078 2.244±0.030
Ωch2 0.132±0.007 0.136±0.008 0.130±0.005
τ 0.097±0.015 0.099±0.016 0.089±0.012
100θMC 1.0402±0.0008 1.0399±0.0008 1.0403±0.0007
ln(1010As) 3.111±0.033 3.120±0.027 3.103±0.028
ns 0.989±0.020 1.010±0.027 0.978±0.010
−lnL 4902.6 4902.3 5259.6
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Fig. 3.16 Marginalised likelihoods obtained when adding cosmic strings, Neff and tensor
modes (r).

became very large drop considerably after adding the SPT/ACT likelihoods and the BAO. This
one-dimensional plot is illustrative for the influence of the BAO in returning cosmological
parameters close to their standard ΛCDM + Neff values by suppressing degeneracies. Hence,
in the simplest ΛCDM & strings model, the degeneracies between cosmic strings and other
parameters are small, and BAO has a very small influence on cosmic strings. The same
outcome appears when we additionally add tensor modes. For all the scenarios with Neff the
values of the parameters increase massively after adding cosmic strings. The case with Neff,
r and strings is a bit different compared to the others allowing additional degrees of freedom,
in the sense that after adding BAO the contribution from cosmic strings is again consistent
with zero, just as in the ΛCDM + strings scenario. The process of the increase of the values
of the parameters in a scenario with additional degrees of freedom is illustrated in Figure
3.18.

The degeneracies between Neff and cosmic strings have been studied in the context of the
Abelian-Higgs cosmic string model [128] and the authors have obtained a similar conclusion.

3.7.4 Results for the Planck & BICEP2 likelihoods

After the release of the BICEP2 data, we have tried to explain the signal that has been detected
using our Nambu-Goto cosmic strings. However, due to the amplitude of the signal, if one
would try to fit the data only with cosmic strings would require a tension of Gµ = 8.8×10−7.
Such a high value of Gµ is not allowed by the stronger constraints from the TT power
spectrum [9] and is at the limit of the constraints from the bispectrum. However, with the
new BICEP2 data the allowed contribution from the cosmic strings is increased compared to
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Fig. 3.17 Mean likelihoods of the samples (red dotted lines) and marginalised probabilities
(blue solid lines) for parameter f10 in the following situations (from left to right and top
to bottom): Planck & strings; Planck & strings & Neff; Planck & strings & r; Planck &
strings & Neff & r, Planck & Neff & running & cosmic strings. The green and cyan curves
respectively represent the mean likelihoods and marginalised probabilities of the samples
after the introduction of HighL & BAO.

using Planck data alone, because these are a source of BB polarisation. Using full likelihood
calculations, we have found an increase of about 16% in the string tension by adding the
BICEP2 likelihoods compared to using only Planck data (but without adding additional
parameters), to Gµ to 1.74×10−7. The other cosmological parameters are not significantly
affected by the inclusion of cosmic strings (see later), but the BB power spectrum is not fitted
very well, as it can be observed in Figure 3.19.

We have considered various possibilities of fitting the data without tensor modes (r = 0),
but the fit values did not improve. The easiest option was to introduce the tensor modes
together with cosmic strings. In that situation we have obtained a value of r = 0.15±0.04
and Gµ < 1.44×10−7 with f10 < 0.026 at 95% confidence level. In this case, the tensor-
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Fig. 3.18 Two-dimensional marginalised likelihoods in the f10-Neff, H0-Neff and ns-Neff
planes in the following cases (top to bottom): Neff only (no strings), Neff and cosmic strings,
Neff, running and cosmic strings, Neff, running and cosmic strings, with SPT/ACT and BAOs.
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Fig. 3.19 Marginalised likelihoods in the f10-Ωbc2 plane (left) and best fit of the BB power
spectrum using the Planck and BICEP2 likelihoods with cosmic strings at Gµ = 1.74×10−7

(right) and ΛCDM.

to-scalar ratio is decreased compared to the best-fit obtained by the BICEP2 team, but it
is closer to value they have obtained after subtracting the dust foregrounds. There is no
sign of degeneracy with any of the parameters. The data is fitted much better, but the string
contribution is small (Figure 3.20).
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Fig. 3.20 Marginalised likelihoods in the f10-Ωbc2 and f10-r planes for BICEP2 likelihoods
with strings and tensor modes (left) and best fit of the BB power spectrum using the Planck
and BICEP2 likelihoods with cosmic strings at Gµ = 1.44×10−7, ΛCDM and r (right).

In Table 3.6, we present the results that we have obtained using the Planck, WMAP
polarisation and BICEP2 likelihoods, with and without tensor modes and with and without
cosmic strings.
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Table 3.6 Values of the cosmological parameters in the Planck + WP + BICEP2 likelihoods
case with 1σ error bars, obtained by considering a full likelihood analysis (all cases also
include the Planck nuisance parameters) obtained when considering tensor modes and cosmic
strings

Parameter ΛCDM strings r strings, r
Gµ/c2 (95%
upper limit)

- 1.74×10−7 - 1.44×10−7

Gµ/c2 (best fit) - 8.46×10−8 - 8.30×10−8

r - - 0.16±0.04 0.15±0.04
H0 66.26±1.15 66.76±1.20 67.72±1.10 67.95±1.20
100Ωbh2 2.183±0.27 2.197±0.030 2.203±0.028 2.210±0.029
Ωch2 0.122±0.003 0.121±0.003 0.119±0.003 0.118±0.003
τ 0.093±0.013 0.090±0.013 0.089±0.013 0.088±0.013
100θMC 1.041±0.0006 1.0411±0.0007 1.0413±0.0006 1.0414±0.0007
ln(1010As) 3.101±0.00255 3.084±0.027 3.085±0.025 3.075±0.025
ns 0.954±0.0070 0.953±0.007 0.964±0.007 0.964±0.007
−lnL 4946.7 4946.1 4926.5 4926.6
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Fig. 3.21 Mean likelihoods of the samples (red dotted lines) and marginalised probabilities
(blue solid lines) for parameter f10 in the following situations (from left to right and top to
bottom): Planck & BICEP & strings; Planck & BICEP & strings & r; Planck & BICEP &
strings & Neff & r, Planck & BICEP & Neff & running & r & cosmic strings. The green and
cyan curves respectively represent the mean likelihoods and marginalised probabilities of the
samples after the introduction of HighL & BAO.

We note that in the absence of tensor modes a non-zero contribution from cosmic strings
is favoured, but this disappears as soon as r is introduced. This is due to the fact that although
cosmic strings cannot explain the BB polarisation signal by having the wrong shape (even if
we allow arbitrary large Gµ/c2) they are still able to help fitting the BICEP2 data point in
the absence of tensor modes. As the tensor modes are introduced, they take over the string
contribution by giving the correct shape in the polarisation domain. This is illustrated clearly
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by the one-dimensional likelihood plots for f10 in the two left plots of Figure 3.21. Baryon
acoustic oscillations do not change the result significantly in the case with tensors. However,
for the string-only one, they fix the contribution from strings to a non-zero value.

Table 3.7 Values of the cosmological parameters in the Planck + WP + BICEP2 likelihoods
case with 1σ error bars, obtained by considering a full likelihood analysis (all cases also
include the Planck nuisance parameters)

Parameter Neff, r Neff, r, strings
(Planck)

Neff, r, strings
(Planck +
HighL)

Neff, r, strings
(Planck + HighL
+ BAO)

Gµ/c2 (95%
upper limit)

- 2.72×10−7 2.47×10−7 1.70×10−7

Gµ/c2 (best fit) - 1.96×10−7 1.68×10−7 1.43×10−7

nrun - - - -
r 0.20±0.05 0.23±0.06 0.22±0.06 0.16±0.04
∆Neff 1.1061±0.42 2.19±0.69 2.234±0.637 0.908±0.331
H0 76.14±3.52 85.86±6.06 85.72±5.42 73.21±2.11
100Ωbh2 2.287±0.044 2.408±0.073 2.398±0.062 2.255±0.031
Ωch2 0.132±0.006 0.141±0.007 0.143±0.007 0.133±0.006
τ 0.101±0.015 0.135±0.016 0.104±0.016 0.089±0.013
100θMC 1.0403±0.0007 1.0400±0.0007 1.0399±0.0007 1.0401±0.0007
ln(1010As) 3.136±0.033 3.132±0.034 3.137±0.034 3.107±0.028
ns 1.006±0.017 1.039±0.023 1.037±0.022 0.986±0.011
−lnL 4923.15 4922.6 5275.4 5279.0
Parameter nrun, r r, nrun, strings r, nrun, Neff,

strings
r, nrun, Neff,
strings (Planck +
HighL + BAO)

Gµ/c2 (95%
upper limit)

- 2.07×10−7 2.65×10−7 1.88×10−7

Gµ/c2 (best fit) - 9.42×10−8 1.28×10−7 1.08×10−7

nrun −0.028±0.010 −0.036±0.011 −0.012±0.02 −0.031±0.012
r 0.19±0.04 0.22±0.05 0.23±0.06 0.22±0.05
∆Neff - - 1.426±0.927 0.448±0.310
H0 67.72±1.23 68.27±1.28 82.03±7.61 70.79±1.98
100Ωbh2 2.234±0.315 2.262±0.037 2.384±0.077 2.271±0.031
Ωch2 0.119±0.003 0.119±0.003 0.136±0.010 0.126±0.005
τ 0.104±0.016 0.103±0.016 0.105±0.017 0.102±0.1053
100θMC 1.0414±0.0007 1.0420±0.0007 1.0403±0.0008 1.0409±0.0007
ln(1010As) 3.121±0.031 3.108±0.033 3.131±0.035 3.121±0.032
ns 0.958±0.008 0.954±0.008 1.020±0.033 0.967±0.012
−lnL 4922.9 4922.8 4922.0 5276.5
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Table 3.8 Values of the cosmological parameters in the Planck + WP + BICEP2 likelihoods
case with 1σ error bars, obtained by considering a full likelihood analysis

Parameter nrun, strings r, Neff, nrun,
strings (Planck +
HighL)

Neff, strings,
meff

ν ,sterile

r, Neff, strings,
meff

ν ,sterile

Gµ/c2 (95%
upper limit)

2.25×10−7 2.41×10−7 2.99×10−7 2.85×10−7

Gµ/c2 (best fit) 1.56×10−8 1.96×10−7 2.36×10−7 1.53×10−7

nrun −0.025±0.010 −0.012±0.017 - -
r - 0.23±0.06 - 0.22±0.06
∆Neff - 1.703±0.910 1.87±0.67 2.21±0.073
meff

ν ,sterile [eV] - - 0.20±0.19 0.30±0.25
H0 66.92±1.28 81.61±7.31 80.00±5.92 83.15±6.62
100Ωbh2 2.236±0.036 2.373±0.067 2.369±0.072 2.402±0.076
Ωch2 0.122±0.003 0.137±0.010 0.142±0.008 0.142±0.008
τ 0.100±0.016 0.106±0.016 0.103±0.016 0.103±0.016
100θMC 1.0413±0.0007 1.0403±0.0008 1.0397±0.0007 1.0397±0.0007
ln(1010As) 3.104±0.033 3.137±0.034 3.127±0.035 3.129±0.034
ns 0.944±0.008 1.017±0.033 1.013±0.022 1.035±0.024
−lnL 4943.6 5275.7 4943.1 4922.2

The most interesting cases are described in Tables 3.7-3.8. As in the Planck case,
interesting degeneracies appear due to Neff and a similar outcome can also be observed.

The cosmic strings contribution is very large with the Planck & BICEP2 likelihoods,
but the Hubble constant and Neff are also very big (see Table 3.7 and Figure 3.22). Adding
ACT/SPT and BAO recovers the ΛCDM values for the cosmological parameters and reduces
the contribution from cosmic strings. Nevertheless, a non-zero contribution is still preferred
(two right panels of Figure 3.21). In both the scenarios of cosmic strings & Neff & r and
cosmic strings & Neff & r & nrun the preferred value of f10 is non-zero and the distribution is
wide. Adding SPT/ACT and BAO reduces the preferred value for f10, but also narrows the
distribution. This can be compared to Figure 3.17, but here the BICEP2 polarisation data
favours more a non-zero contribution of cosmic strings.

When considering the scenario with cosmic strings, Neff and meff
ν ,sterile, we obtain a non-

zero best-fit value for the cosmic string parameter. The best fit value is Gµ/c2 = 2.36×10−7

and the constraint is Gµ/c2 < 2.99×10−7 at 2σ level. Both the Hubble constant and Neff

have big values and the fit is not very good not having tensor modes.
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Fig. 3.22 Two-dimensional marginalised likelihoods in the f10-Neff, H0-Neff and ns-Neff
planes in the following cases (top to bottom): Neff only (no strings), Neff and cosmic strings,
Neff, running and cosmic strings, Neff, running and cosmic strings, with SPT/ACT and BAOs.
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3.8 Discussion and conclusions

In this Chapter we have studied the consequences of Nambu-Goto cosmic strings on the
CMB, through the power spectrum. We have used high-resolution Nambu-Goto cosmic
string simulation obtained from the Allen and Shellard code and we have used them to
determine the energy-momentum tensor of the string network. We have decomposed the
energy-momentum tensor of the network into its corresponding scalar, vector and tensor
parts and we have used these to determine the UETCs for the three epochs of interest: the
radiation era, the matter era and matter to cosmological constant era. We have performed
eigendecompositions of the UETCs thus obtained and we have used the eigenvectors as
sources for an Einstein-Boltzmann solver. We have modified the standard CMBFAST code
to incorporate the sources generated by the cosmic strings. We have determined the power
spectra from each of the three epochs and we have devised a method to combine them
together to obtain an overall power spectrum.

We have used the obtained power spectrum to constrain the string tension magnitude
by adding cosmic strings to the standard 6-parameter ΛCDM model [17]. In this simplest
model, we obtained a string tension constraint of Gµ/c2 < 1.49×10−7 (95% confidence),
using the Planck likelihood and WMAP polarisation. This result is comparable to the value
obtained by the Planck team [9]. In this case, the string tension Gµ/c2 does not introduce
extra degeneracies between ΛCDM parameters. However, by allowing Neff to vary, the string
constraint gets much weaker (Gµ/c2 < 2.28×10−7) and the Hubble constant increases to
H0 = 75.96, with a significant degeneracy between f10 and H0. This degeneracy disappears
however by adding BAOs and HighL contributions. In that case, the string tension reverts
close to its previous value, Gµ/c2 < 1.58×10−7. We note that BAOs are the key ingredient
for breaking the degeneracies as HighL data cannot alone solve the problem. The same
behaviour is observed when allowing tensor modes in addition to Neff, where the constraint
on Gµ/c2 shifts from 2.49×10−7 to 1.56×10−7 with BAOs. These degeneracies can be
more easily interpreted visually (see Figs. 3.15 and 3.16). By adding running in addition to
cosmic strings, the string constraint becomes slightly weaker (Gµ/c2 < 1.88×10−7), but
does not induce significant degeneracies. In addition, we have also analysed the contribution
of an additional sterile neutrino and we have found no significant differences to the parameter
values.

We have performed a similar analysis by considering the BICEP2 data in addition to
Planck likelihoods and WMAP polarisation. In this case, the string tension constraints
loosen, but the new polarisation signal cannot be explained solely by cosmic strings with no
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contribution from primordial tensor modes. This is due to the fact that cosmic strings are
tightly constrained by the temperature data. Hence, in a pure ΛCDM and strings scenario,
the 95% confidence level constraint on the string tension only rises to Gµ/c2 < 1.74×10−7

(Figure 3.19). By adding tensor modes, we note that the model prefers a value of r = 0.15
and Gµ/c2 < 1.44× 10−7 and strings are not favoured. Adding additionally Neff greatly
increases the allowed amount of cosmic strings to 2.72×10−7, but the values of r, of the
Hubble constant and of ∆Neff are increased as well, 0.20 to 85.86 and 2.19 respectively. This
is due to the same degeneracies that appear. BAOs and SPT/ACT likelihoods again revert the
situation to ΛCDM with Gµ/c2 < 1.70×10−7, r = 0.16 ∆Neff = 0.908 and H0 = 73.21. We
note again that the SPT/ACT likelihoods make little difference to the results (Table 3.7). By
also allowing for a non-zero running of the spectral index we see from Table 3.7 that running
in itself allows for more cosmic strings (Gµ/c2 < 2.07×10−7) and tensor modes (r = 0.22)
but the degeneracies are modest and the Hubble constant keeps its usual value (H0 = 68.27).
Neff, when added to this model, induces huge degeneracies and shifts the Hubble parameter
but again this problem is cured with BAOs.

For the time being, the CMB power spectrum represents the most powerful method
for constraining extensions to the 6-parameter ΛCDM model. The current data does not
presently exclude the presence of cosmic strings, but they are severely constrained. Because
the fluctuations generated by cosmic strings are non-Gaussian, their signal can be detected in
principle using higher order correlations, such as the bispectrum and trispectrum [84, 102,
129, 130], but the constraints are not yet competitive with the power spectrum ones. The
constraints obtained in this work could be drastically improved in the future using different
approaches. The 21 cm hydrogen line [131] is expected to improve the constraints with at
least three orders of magnitude compared to the CMB power spectrum, gravitational waves
[86, 132] and lensing surveys [133] with two orders of magnitude.





CHAPTER 4

DOMAIN WALLS

4.1 Domain walls equations of motion

As discussed in Chapter 2, domain walls are the simplest cosmological defects, as they can
be described by a single scalar field φ . One starts with the Lagrangian (2.8), describing
a discrete broken symmetry, with a potential having al least two degenerate minima [48].
The energy-momentum tensor of the walls network can then be expressed in terms of this
Lagrangian as follows:

Θµν =
1

4π

[
φ,µφ,ν −gµν

[
1
2

φ,αφ
,α +V (φ)

]]
. (4.1)

We consider a flat FLRW metric [Eq. (1.7)], with scale factor a, as described in Chapter
1, where the 0th dimension corresponds to conformal time. With respect to this metric, the
components of the energy-momentum tensor become

Θ00 =
1

4π

[
1
2

φ
′2 +

1
2
(∇φ)2 +a2V (φ)

]
, (4.2)

Θ0i =
1

4π

[
φ
′
∂iφ
]
, (4.3)

Θi j =
1

4π

[
∂iφ∂ jφ +δi j

(
1
2

φ
′2 − 1

2
(∇φ)2 −a2V (φ)

)]
, (4.4)

where prime denotes a derivative with respect to conformal time and the gradients are with
respect to comoving coordinates. By applying the standard variational technique,

1√−g
∂µ

(
√−g

∂L

∂
(
∂µφ

))=
∂L

∂φ
(4.5)
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for the Lagrange density (2.8), the equation of motion for φ is obtained:

∂ 2φ

∂τ2 +2
(

dlna
dlnτ

)
1
τ

∂φ

∂τ
−∇

2
φ =−a2 ∂V

∂φ
, (4.6)

where τ is the conformal time. In the case of a constant power-law expansion of the Universe,
a ∝ tλ and dlna

dlnτ
= λ

1−λ
has the value 1 in the radiation era and 2 in the matter era.

In order to calculate the stress-energy tensor components one has to first solve equation of
motion (4.6) and then to substitute the solution into the corresponding equations (4.2)-(4.4).
However in the comoving coordinates described above, the thickness of the walls decreases
as a−1 and, as Eq. (4.6) has to be solved numerically on a grid, the wall thickness quickly
becomes smaller than the grid spacing. This problem can be overcome [48] by modifying Eq.
(4.6) to

∂ 2φ

∂τ2 +α

(
dlna
dlnτ

)
1
τ

∂φ

∂τ
−∇

2
φ =−aβ ∂V

∂φ
. (4.7)

The unmodified equation of motion corresponds to α = β = 2. However, taking the coeffi-
cients to be α = 3 and β = 0, one solves the problem of wall thinning, as the walls would
have constant thickness in comoving coordinates (by modifying β ) and would also maintain
energy-momentum conservation (by modifying α as well). The procedure is called the
Press-Ryden-Spergel (PRS) algorithm, after the names of the authors in [48].

In practical terms, the main effect of the PRS algorithm is to change the wall thickness.
We know on physical grounds that the physical thickness of the walls can’t affect their
dynamics (at least once they are formed and reasonably well separated from each other),
since a wall’s integrated surface density and surface tension are independent of the thickness
- see for example chapter 13 of Ref. [40].

Moreover, the original PRS paper [48] shows that this algorithm preserves the behaviour
of two key dynamical effects in the evolution of wall networks: the rate at which the Hubble
damping localises the scalar field into the minima of the potential, and the momentum
conservation law (describing how a wall slows down due to the Hubble flow). More recently,
these results have been confirmed by additional analytic arguments [134] and by extensive
numerical tests [135]. We are therefore confident that the algorithm retains the relevant
dynamics.

Equation (4.7) can now be solved numerically on a grid using a finite difference scheme
as follows:
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δ ≡ 1
2

α
∆τ
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2
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φ̇
n+ 1

2
i jk =

(1−δ ) φ̇
n− 1

2
i jk +∆τ

(
∇2φ n

i jk −aβ ∂V
∂φ n

i jk

)
1+δ

, (4.10)

φ
n+1
i jk = φ

n
i jk +∆τφ̇

n+ 1
2

i jk . (4.11)

These equations use the assumption that the domain walls always have a small contribu-
tion on the overall energy density of the Universe. This assumption is based on the fact that
no direct signs of domain walls have been observed. Hence their contribution to the matter
perturbations can be treated as a first order approximation in perturbation theory. Therefore,
at this order, their evolution does not significantly affect the expansion of the Universe and
hence we can safely use a power law expansion rate for radiation and matter epochs.

4.2 Formalism for calculating the power spectrum

In order to calculate the power spectrum of fluctuations generated by domain walls, we
proceed in a similar manner to the case of cosmic strings, described in detail in Chapter 3.
We first solve Eqs. (4.8)-(4.11) numerically to obtain the field φ and its time derivative, and
then we use Eqs. (4.2)-(4.4) to calculate the energy-momentum tensor. We project it onto a
three-dimensional grid as in Chapter 3 and we decompose it into its scalar, vector and tensor
parts, and as in the case of the strings. The components chosen are the same as in the case of
cosmic strings.

As it is the case of cosmic strings, domain walls are active sources, and they continuously
source the metric perturbations. As domain walls have a different scaling law compared to
cosmic strings, the UETCs computed directly are non-scaling even in a purely radiation or
matter epoch. Therefore, in order to be able to use them in a Boltzmann code, we have to fix
the scaling. In each epoch, the scaling behaviour is achieved by considering the quantity

C (kτ1,kτ2)δD(0) =
1√
τ1τ2

⟨Θ∗(k,τ1)Θ(k,τ2)⟩ , (4.12)
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where Θ corresponds to a generic component of the energy-momentum tensor. For the cases
considered, these are positive definite functions, and hence they can be expressed in terms of
their eigenvectors and positive eigenvalues as follows:

C (kτ1,kτ2) = ∑
i

λivi(kτ1)
T vi(kτ2) = ∑

i
wi(kτ1)

T wi(kτ2) , (4.13)

with wi =
√

λivi. Then one would have to substitute the energy-momentum tensor component
with

Θ(k,τ)→
√

τwi (kτ) =
√

τ

√
λivi (kτ) (4.14)

due to the fact that we have divided by
√

τ in Eq. (4.12). Hence, we have arrived at an
equation which is analogous to Eq. (3.43) for cosmic strings. We now proceed in exactly the
same way as for cosmic strings, with the only difference being in the sources.

We determine the UETCs and then the corresponding power spectra in similar fashion to
the cosmic strings, by using two simulations - one in the radiation era and one in the matter
era. In order to obtain an overall power spectrum, we use the summing procedure that we
have explained in Chapter 3, but we also need to make the assumption that the matter era
UETCs are also valid after the end of the matter era, i.e. during the fast expansion rate of
the Universe in the cosmological constant epoch. This is not entirely satisfactory, because
we know that the energy density of the domain walls is greater than the background and
therefore their power spectrum will be dominated by the late-time contribution. On the other
hand, in the cosmological constant era we cannot use the exponential expansion directly,
because the expansion rate does not have a simple form as in the radiation and matter eras.
Therefore, we propose an approximation to the cosmological constant epoch by considering
the Universe to be expanding with an effective power law, and we determine the power λ of
an expansion rate a ∝ tλ that has the same slope today, as the actual expansion rate of the
Universe. We then create a simulation with this expansion rate and we then include it in our
formalism. We use both the two- and three-era calculations to determine the constraints on
the domain walls, and then show that the change due to the last epoch is small.
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4.3 Simulations

For our domain wall numerical simulations we use a code based on the PRS algorithm [48]
with the diagnostic tools introduced in [136]. This has been successively parallelised and
optimised to exploit recent high-performance computing developments; the more recent
version of the code is described in [135], and a forthcoming publication will describe further
developments.

In order to solve Eqs. (4.8)-(4.11), we assume the following numerical values of the
parameters involved:

α = 3 , (4.15)

β = 0 , (4.16)

V (φ) =
π2

50
(
φ

2 −1
)2

. (4.17)

This corresponds to an initial wall thickness of W0 = 10. The evolution of such a domain
wall network is illustrated in Fig. 4.1, by plotting the energy density component at different
times of the evolution of the Universe. Initially, the network is very dense due to the random
initial conditions in the code. As the Universe is expanding, the effect of the initial conditions
is no longer important. At the end of simulation, the walls disappear completely.

The grid spacing is taken to be ∆x = 1 and the initial conditions are such that φ is
taking random values on the grid between -1 and 1 and φ̇ = 0 everywhere. We ran 3 three-
dimensional simulations, with a box size of 10243 points, one in radiation era (λ = 1/2), one
in the matter era (λ = 2/3) and one in late-time Λ-dominated era.

The energy-momentum tensor of the domain wall network can be evaluated at any time,
but we are only interested in the scaling regime of the simulation for the calculation of UETCs.
The regime where the network exhibits such behaviour has been investigated in detail in
[135, 137]. In Figure 4.2 we show the peaks of the ⟨Θ00Θ00⟩ unequal time correlators (i.e.

the value of the maximum of the equal-time correlator) calculated using Eq. (4.12), with
each of them centred around the value on the x-axis. This shows how good the scaling is in
this regime.

In Figure 4.3 we have plotted four 2-dimensional slices through the domain wall network
at different times of the simulation, and these show how the network becomes less dense
over time.

For the Λ-era, taking into account that the contribution today would be the most important,
we consider a simulation with λ = H0t0, where t0 is the age of the Universe and H0 is the
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Fig. 4.1 Three-dimensional plots of the energy density component of the energy-momentum
tensor of the domain wall network at five times through the simulation (left to right and top
to bottom).

Hubble expansion rate today. Using the values of the cosmological parameters from Ref.
[17], we take an average value of λ = 0.95 between various likelihoods.

In a universe with a ∝ tλ , the scalefactor can be expressed as

a =
ct

(1−λ )τ
. (4.18)
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Fig. 4.2 Scaling behaviour of the UETC in the radiation (blue) and matter (green) eras.

Then, if A is the comoving area of the walls, V is the volume of the simulation box and σ is
the surface tension of the domain walls (i.e. energy per area), the physical density of domain
walls can be expressed as

ρ =
σAa2

Va3 = (1−λ )

(
Aτ

V

)
σ

ct
. (4.19)

The numerical value of the product of the first two brackets in Eq. (4.19) is obtained directly
from the simulations. The domination of the power spectrum by the contribution from the
matter era makes it possible to safely use λ = 2

3 without introducing significant errors. In
the matter era, for the scaling regime we took Aτ

V = 1.93. Using Eq. (4.19) and the fact
that the background density of the Universe is given by ρ̄ = 1

6πGt2 , the numerical coefficient
required to multiply the power spectrum today in order to restore physical units is given by(

6πGt0σ

c

)2
.

4.4 Results

We have calculated the power spectra for the domain walls in the temperature and polarisation
channels for the radiation and matter era simulations separately and then by combining the
two simulations together. We have also realised this in the three-simulations scenario.
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Fig. 4.3 Two-dimensional slices through the domain wall network showing the energy density
of the walls in the matter era during the scaling regime of the simulation. The four panels
represent snapshots taken at roughly equal conformal time steps between the beginning
and end of the simulation (from left to right and top to bottom). The colour bars show the
magnitude of the energy density of the network in the units of the simulation.

The results show that the radiation era contribution has a subdominant effect. This was
expected, because the growth of the density of domain walls over time would mean that their
most significant contribution is at late times. Indeed, as the matter era results completely
dominate the power spectra, the errors from the procedure of combining the simulations
become completely negligible. In Figure 4.4 we have plotted separately the contributions
from the radiation and matter epochs to the power spectra in the temperature and polarisation
channels showing how the matter era dominates on all the scales of interest. Only in the
scalar TE plot one can see a more important effect of the radiation era. Hence, a simulation
with a higher expansion rate than the one in the matter epoch is desirable, because this would
be a much better approximation to the expansion rate today.
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Fig. 4.4 Power spectra of domain walls showing the individual results from the radiation
(in blue) and matter (in green) eras as well as total power spectra for scalars, vectors and
tensors in the temperature and polarisation (EE, TE and BB) channels. In the case of the TE
polarisation we have plotted the negative parts with dashed lines in the same colours as their
positive counterparts. In the plots σ/t0 = 1.5×10−7.

By adding the late-time simulation, the peak of the curves at l = 2 drops by about one
third in all four power spectra considered (Fig. 4.5). In that case, the expansion rate of the
Universe is faster than the growth of the domain wall density and hence the power is leaking
to intermediate scales, keeping an approximately constant integrated power spectrum. As a
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consequence there is only a small change in the CMB constraint on domain walls in the two
scenarios.
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Fig. 4.5 Comparison between the domain walls power spectra from radiation & matter eras
and radiation, matter & Λ eras. In the plots σ/t0 = 1.5×10−7.

4.5 CMB constraints on domain walls

We used the March 2014 version of the COSMOMC code [115] which is based on a Markov
chain - Monte Carlo method to obtain constraints on the allowed contribution of the domain
walls to the CMB power spectrum. We had to modify the code to accommodate the power
spectrum from the domain walls. As the domain wall matter perturbations are uncorrelated
to the primordial fluctuations, their power spectrum can be calculated separately. This is
very helpful, because although their spectrum would depend on the cosmological parameters,
the relative change to the inflationary spectrum would be small, as it happens for cosmic
strings. Domain walls are tightly constrained by their TT power spectrum shape and hence
the parameter variation impact would not be very significant. We have used the standard
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ΛCDM six-parameter model, together with a parameter quantifying the amplitude of the
spectrum of the walls together with the Planck likelihoods of the 2013 data release.

We have analysed the radiation and matter scenarios, and also one involving a late-time
cosmological constant epoch. For the radiation and matter scenario, we have obtained a
constraint on the surface density of the domain walls of σ < 4.22× 10−9 kg/m2 (at 95%
confidence level), which corresponds to an energy scale of formation for domain walls of
0.96 MeV [40].

By considering in addition the cosmological constant era, the constraints become σ <

3.85×10−9 kg/m2 and 0.93 MeV. Both are in very good agreement with very rough obser-
vational constraints based just on the anisotropy constraint δT/T ≤ 10−5, which suggest
that their energy scale should be less then 1 MeV (the original Zel’dovich bound) [38].

Even though intuitively one may expect the constraint to weaken by adding the cosmo-
logical constant era (due to the fact that there is less power on very large scales), this does
not happen because there is additional power on intermediate scales. There are large error
bars for small l and beyond l = 10 the integrated power spectra are almost equivalent.
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Fig. 4.6 Comparison between the CMB power spectrum (from Planck) and the power
spectrum from domain walls (normalised at the 2σ value of the energy scale) in the two
scenarios considered.

The values of the ΛCDM parameters do not shift significantly from the standard best fit
ΛCDM Planck values, without domain walls. This is illustrated in Table 4.1. This is due to
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the fact that the allowed contribution of domain walls is very small, because of the different
shape of their temperature power spectrum.

Table 4.1 Constraints on the fitted cosmological parameters, together with 1σ error bars in a
full likelihood analysis (with all relevant nuisance parameters) with and without domain walls
in the case of Planck and WMAP polarisation in the two domain walls scenarios considered.

Parameter No Walls Walls (radiation & matter) Walls (radiation, matter & Λ)

σ < (95%) - 0.96 0.93

H0 67.20±1.16 67.25±1.18 67.31±1.18

100Ωbh2 2.202±0.027 2.201±0.028 2.203±0.028

Ωch2 0.120±0.003 0.119±0.003 0.119±0.003

τ 0.089±0.013 0.088±0.013 0.088±0.013

100θMC 1.0412±0.0006 1.0412±0.0006 1.0412±0.0006

ln(1010As) 3.088±0.025 3.085±0.025 3.086±0.024

ns 0.959±0.007 0.960±0.007 0.960±0.007

Using these values of the energy scale, we have plotted on the same graph in logarithmic
scale the standard CMB Planck power spectrum [17] and the domain walls power spectra,
normalised at the 95% confidence level for its surface density (Fig. 4.6). The plot shows that
indeed the domain walls only contribute on large scales as their power spectrum is quickly
decaying in l-space.

4.6 Conclusions

In this Chapter we have used high-resolution simulations based on the PRS algorithm to
evaluate the energy-momentum tensor of a network of domain walls in an expanding universe,
covering the radiation, matter and late-time Λ-domination eras. We have analysed how the
wall network scales and we have seen that the scaling law is different to cosmic strings. We
have then evaluated its unequal time correlator components in each epoch. We have used
the rescaled eigenvectors and eigenvalues obtained from these correlators as sources into an
Einstein-Boltzmann solver and we have thus determined the power spectrum of the domain
wall network. The temperature power spectrum of the domain walls is quickly decreasing
as a function of l and has its maximum where the CMB measurements have large error
bars. This allows the presence of some domain walls even though the shape of their power
spectrum is completely different to the one of the CMB.
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We have analysed two scenarios: one where only radiation and matter eras are considered
and one which involves in addition a fast-expansion rate. We have shown that although
there are noticeable changes in the obtained power spectra, the CMB constraints vary
insignificantly.

We have used the CMB power spectrum to find the first precise quantitative constraint on
the domain wall surface density, with an energy scale of 0.93 MeV at the 95% CL for the
standard Λ-cosmology. It is interesting to note that the result we have obtained is very close
to the qualitative Zel’dovich bound [38].





CHAPTER 5

PERTURBATIVE AND HALO MODELS FOR THE LARGE SCALE

STRUCTURE OF THE UNIVERSE

5.1 Introduction

In the previous Chapters we have been studying topological defects and their effects on the
CMB. We have seen that, due to the ever-increasing accuracy of CMB experiments, cosmic
defects have been severely constrained. The ΛCDM model has so far been successful in
describing the properties of the Universe, as recently confirmed by the latest Planck satellite
results [6, 7]. The initial conditions of this model are based on the assumption that all the
structure in the Universe was generated by quantum fluctuations at primordial times, during
an inflationary phase [138, 139]. The physics of inflation has been extensively studied in
recent years and many scenarios have been proposed [140–144]; distinguishing between the
numerous existing models is one of the ultimate goals of cosmology. This problem can be
tackled observationally by studying the properties of the perturbations at later times: the
cosmic microwave background (CMB) and the large-scale structure of the Universe (LSS).

CMB anisotropies have provided in the past two decades a wealth of cosmological
information, which has been exploited with increasing efficiency by subsequent observational
campaigns, up to the exquisite accuracy of the latest results from the Planck satellite [7].
The CMB has also provided some of the strongest constraints on inflation. On the one hand,
the shape of the CMB two-point statistics (power spectrum) is directly related to the power
spectrum of perturbations at the end of inflation, whose parameters and features can thus
be accurately constrained [145]. On the other hand, many inflationary models predict a
significant non-Gaussian component in the distribution of primordial perturbations [146]:
higher-order statistics of the CMB anisotropies, such as the three-point correlation function
(bispectrum) have provided strict constraints on such models [147].
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Nevertheless, the CMB can primarily supply only two-dimensional data from the surface
of last scattering due to its projected nature, which in temperature has been already almost
fully exploited to the limit of cosmic variance by Planck. The LSS, traced by current and
upcoming galaxy surveys, contains much more information than the CMB, due to its three-
dimensional nature (the late time matter distribution as a function of redshift), and it can
thus provide further complementary insight on cosmology across cosmic time. In principle,
there is roughly a 1000-fold increase in the number of modes available compared to the
CMB [148], but this information is more challenging to extract due to the more limited
theoretical understanding of the LSS physics in the low-redshift Universe, where additional
complexity is added by non-linear structure formation, the relationship between dark and
visible matter (galaxy bias), and redshift-space effects [149]. Nonetheless, galaxy surveys
like SDSS [150] and BOSS [151, 152] have dramatically increased our understanding of
the Universe. On-going and future surveys, like DES [153, 154], LSST [155], Euclid [156],
DESI [157], WFIRST [158] and the proposed SPHEREX mission [159] are expected to
increase the precision of the measurements even further.

To date, most cosmological implications from large-scale structure data have been drawn
from the power spectrum of the density fluctuations. At linear level, this observable encodes
all the information available if the primordial random fluctuations are Gaussian. The power
spectrum is also sensitive to some classes of primordial non-Gaussianity (PNG) via the
scale-dependent galaxy bias [160, 161], which has been widely used to obtain competitive
PNG constraints [162–167].

However, in order to fully exploit the LSS information and to test all types of PNG, it
is important to also study higher-order statistics, such as the bispectrum [168–174]. Even
for Gaussian initial conditions, where the primordial bispectrum is zero, non-linear coupling
between Fourier modes produces a non-zero bispectrum due to gravitational collapse [175].
This gravitational bispectrum must be well understood in order to be able to separate the
primordial component and to constrain the physics of inflation. At the same time, it can
provide additional cosmological information [176], for example on the growth of structure
[177–179], and bias parameters [177, 180–185].

Modelling the evolution of matter density perturbations beyond linear scales is a complex
problem. On relatively large scales, in the quasi-linear regime, significant progress has
been made using perturbative methods. Arguably, the most common procedure is Eulerian
standard perturbation theory (SPT) [186–189], where the growth of structure is described by
a set of differential equations in terms of the present-time density perturbations, expanded
to the desired order. Alternatively, in Lagrangian perturbation theory (LPT) [190–196] the
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fluid equations are written in terms of the initial density perturbations via a displacement
field, which reduces to the Zel’dovich approximation at linear order [197]. Both methods
have advantages and shortcomings [198–201]; in particular, SPT has a narrow range of
validity at low redshift, and its series expansion shows poor convergence properties. LPT
has the additional drawback that its perturbative approach can not predict clustering beyond
shell crossing. For these reasons, the recent years have seen a proliferation of further
developments: SPT has been re-formulated in the language of field theory by Ref. [202–
207], re-organising the series expansion in terms of vertices and propagators, and improving
its convergence properties (renormalised perturbation theory, RPT); this has been later
simplified to the MPTBREEZE scheme [208]. Related developments include the large-N
expansion [209], the closure theory [210], and renormalisation group approaches [211,
212]. A resummation technique in Lagrangian space (RLPT) was developed by Ref. [213];
subsequent extensions were developed by Refs. [213–220]. Most recently, the effective
field theory of LSS (EFTofLSS) has been developed by Refs. [148, 221–228], based on the
idea that the contribution of small-scale physics to the quasi-linear perturbations can be
encapsulated into an set of additional, unknown source terms in the equations of motion,
whose value can be fixed by comparison with N-body simulations.

In the fully non-linear regime, perturbation theories necessarily break down and numerical
N-body simulations have to be used to calibrate phenomenological models of gravitational
clustering, such as the halo model [229–231]. This formalism is based on the approximation
that all matter in the Universe is in the form of halos, and it can be used to describe the
matter power spectrum and bispectrum relatively accurately (typically better than 10% at
k < 1h/Mpc at z = 0) [232]. It is however difficult to significantly improve the halo model
accuracy beyond the limits set by its underlying assumptions, especially on intermediate
scales. For this reason, Refs. [218, 233, 234] combined a revised version of the halo model,
valid on small scales, with perturbative recipes that are more accurate on quasi-linear scales.
A more drastic approach was introduced by Refs. [235, 236], where the physically-motivated
small-scale one-halo term was replaced with a series expansion in the even powers of k,
with free parameters to be calibrated on N-body simulations. It is possible to extend these
ideas even further into the direction of phenomenology at the cost of a reduced physical
understanding: the HALOFIT method [237, 238] achieves a higher accuracy matter power
spectrum by combining halo model-inspired templates with numerous heuristic parameters
fit to N-body simulations while, in the ultimate numerical and agnostic approach, matter
clustering is directly calculated by interpolating over a grid of N-body simulations spanning
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a range of different cosmologies [239]. No bispectrum counterpart exists to date for these
numerical methods.

At the same time, there has been progress in N-body simulations studies and bispec-
trum estimators [173, 176, 240–243]. In contrast with the standard brute-force method of
measuring the bispectrum for all possible triangular configurations, Refs. [242, 244] ap-
plied to the LSS the modal decomposition of the bispectrum introduced for CMB studies
by Refs. [173, 245], thus developing a significantly faster and more efficient estimator. A
simplified version tailored to estimating the projection of the simulation bispectrum on the
tree-level prediction was presented in Ref. [243].

Relatively few measurements of the bispectrum from galaxy surveys exist [246–253]. The
state of the art results have recently been obtained by Ref. [254, 255] from the BOSS luminous
red galaxies. These data have been used to improve the power spectrum constraints on galaxy
bias and structure growth; however, to date no primordial non-Gaussianity constraints exist
from the LSS bispectrum.

In the literature various models for describing the LSS on mildly non-linear scales have
been proposed. There are perturbative methods that try to expand the solutions of the
differential equations around the linear solution. They perform well close to the linear regime,
but are expected to diverge soon after.

Based on the perturbative methods, there have been various approaches that have tried to
solve the problems appearing in the standard perturbation theory methods, related to poorly
converging perturbative series, ultraviolet divergences etc., and that have managed to improve
the range of validity of the perturbative methods.

A completely different model is the halo model, which is a phenomenological model
based on the spherical gravitational collapse model. This model is only moderately accurate
on large scales, but it is expected to give reliable results on smaller scales, as it models the
physical phenomena involved.

In this Chapter, various models will be introduced, and their prediction for the mat-
ter power spectrum and bispectrum will be discussed, in the absence of primordial non-
Gaussianity.

5.2 Perturbation theory models of Large Scale Structure

Although the structures that we observe today in the Universe are clearly not homogeneous or
isotropic, on very large scales the matter density becomes almost uniform in space and hence,
on these scales, a good approximation can be made by considering small perturbations to the
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density and velocity fields (as discussed in Subchapter 1.2). These very large scales where
structures are homogeneous represent the linear regime, and by considering perturbations to
these quantities we are able to predict the matter evolution outside these regime. These meth-
ods are therefore very useful on certain scales, but eventually the perturbative expansions are
no longer valid and we have to rely on either using N-body simulations, or phenomenological
models calibrated to simulations in order to be able to describe the observations. A first step
for the perturbative approaches is represented by the Eulerian standard perturbation theory
(SPT), which is discussed in the next subchapter.

5.2.1 Standard Perturbation Theory

As the equations governing the growth of structure are non-linear and hence very difficult to
solve, the perturbative approach has been developed. It consists of linearising the equations
involved and then considering small perturbations around these linearised solutions. The
cosmological model assumes that the large-scale structure in the Universe today is obtained
as a result of the growth of primordial fluctuations through gravitational instability. These
particles are non-relativistic on scales much smaller than the Hubble radius and hence they
obey Newtonian equations of motion. It is also assumed that the distribution of particles is
described by the Boltzmann equation. For deriving the various properties of dark matter,
the following notation will be used: δD for the Dirac-delta function, H for the conformal
Hubble constant. A detailed description and derivation of the perturbation theory formalism
can be found in Ref. [189].

The density contrast δ and the peculiar velocity u are defined in terms of the average
density ρ̄ and velocity v as

ρ (x,τ) = ρ̄ (τ) [1+δ (x,τ)] , (5.1)

v(x,τ) = H x+u(x,τ) . (5.2)

Then the cosmological gravitational potential Φ satisfies the Poisson equation

∇
2
Φ(x,τ) =

3
2

Ωm (τ)H 2 (τ)δ (x,τ) . (5.3)

The particle number density in phase space f (x,p,τ) satisfies the Vlasov equation
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d f
dτ

=
∂ f
∂τ

+
p

ma
·∇ f −am∇Φ · ∂ f

∂p
= 0 , (5.4)

where p is the momentum.

In order to obtain the spatial distribution of the particles, the moments of Eq. (5.4) can be
taken by appropriate integration in momentum space. The first three momenta of interest are:∫

d3p f (x,p,τ) = ρ (x,τ) , (5.5)∫
d3p

p
am

f (x,p,τ) = ρ (x,τ)u(x,τ) , (5.6)∫
d3p

pi p j

am
f (x,p,τ) = ρ (x,τ)ui (x,τ)u j (x,τ)+σi j (x,τ) . (5.7)

Eq. (5.5) gives the continuity equation and Eqs. (5.6)-(5.7) give the Euler equation, in
analogy to fluid mechanics [256]:

∂δ (x,τ)
∂τ

+∇ · [(1+δ (x,τ))u(x,τ)] = 0 , (5.8)

∂u(x,τ)
∂τ

+H u(x,τ)+u(x,τ) ·∇u(x,τ) =−∇Φ(x,τ)− 1
ρ

∇ j
(
ρσi j

)
. (5.9)

On large scales, the Universe is expected to be smooth and hence Eqs. (5.8) and (5.9) can be
linearised. By defining the divergence and vorticity of the velocity field as

θ (x,τ) = ∇ ·u(x,τ) , (5.10)

w(x,τ) = ∇×u(x,τ) , (5.11)

they satisfy the following differential equations:

∂δ (x,τ)
∂τ

+θ (x,τ) = 0 , (5.12)

∂θ (x,τ)
∂τ

+H (τ)θ (x,τ)+
3
2

Ωm (τ)H 2 (τ)δ (x,τ) = 0 , (5.13)

∂w(x,τ)
∂τ

+H (τ)w(x,τ) = 0 , (5.14)

in the absence of velocity dispersion or pressure, which is the case for cold dark matter
(σi j = 0). The vorticity quickly decays in time due to the expansion of the Universe and
hence it can be ignored.
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In SPT, the assumption made is that the density and velocity fluctuations can be expanded
in terms of the linear solution as

δ (x,τ) =
∞

∑
n=1

δ
(n) (x,τ) , (5.15)

θ (x,τ) =
∞

∑
n=1

θ
(n) (x,τ) , (5.16)

where δ (n) and θ (n) are functions of the nth power of δ and θ respectively.

Taking the Fourier Transform of Eqs. (5.8) and (5.9) (and the divergence for the latter
with Eq. (5.10)) and using the expansions (5.15) and (5.16), the following equations are
obtained:

∂ δ̃ (k,τ)
∂τ

+ θ̃ (k,τ) =−
∫

d3k1k2δD (k−k12)α (k1,k2) θ̃ (k1,τ) δ̃ (k2,τ) , (5.17)

∂ θ̃ (k,τ)
∂τ

+H θ̃ (k,τ)+
3
2

ΩmH 2
δ̃ (k,τ) =

−
∫

d3k1k2δD (k−k12)β (k1,k2)θ̃ (k1,τ) θ̃ (k2,τ) , (5.18)

where k12 = k1 +k2 and

α (k1,k2) =
k12 ·k1

k2
1

, (5.19)

β (k1,k2) =
k12 (k1 ·k2)

2k2
1k2

2
. (5.20)

In a ΛCDM universe, Eqs. (5.17) and (5.18) can be solved with the expansions

δ̃ (k,τ) =
∞

∑
n=1

Dn (a)δn (k) , (5.21)

θ̃ (k,τ) =−H
∞

∑
n=1

Dn (a)θn (k) , (5.22)

with D(a) the linear growth factor and δn and θn given in terms of the expansions:

δn (k) =
∫

d3q1 · · ·
∫

d3qnFn (q1 · · ·qn)δ1 (q1) · · ·δ1 (qn)δD(k−q1 −·· ·−qn) , (5.23)

θn (k) =
∫

d3q1 · · ·
∫

d3qnGn (q1 · · ·qn)δ1 (q1) · · ·δ1 (qn)δD(k−q1 −·· ·−qn) . (5.24)
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The time dependence of Eqs. (5.21) and (5.22) is only exact in an Einstein-de Sitter Universe,
with Ωm = 1 and ΩΛ = 0. Nevertheless, the approximation is still accurate within a few
percent for a more realistic universe [189]. In what follows, D(a) and D(z) will be used
interchangeably, using the relation between the scalefactor and redshift 1+ z = 1

a . The
functions Fn and Gn are called kernels. They are homogeneous functions of the wavevectors
and are given in terms of Eqs. (5.19) and (5.20) in the following recurrence relations:

F1 = 1 , (5.25)

G1 = 1 , (5.26)

Fn (q1, · · · ,qn) =
n−1

∑
m=1

Gm (q1, · · · ,qm)

(2n+3)(n−1)

× [(2n+1)α (k1,k2)Fn−m (qm+1, · · · ,qn)+ 2β (k1,k2)Gn−m (qm+1, · · · ,qn)] , (5.27)

Gn (q1, · · · ,qn) =
n−1

∑
m=1

Gm (q1, · · · ,qm)

(2n+3)(n−1)

× [3α (k1,k2)Fn−m (qm+1, · · · ,qn)+ 2nβ (k1,k2)Gn−m (qm+1, · · · ,qn)] , (5.28)

with k1 = q1 + · · ·+qm and k2 = qm+1 + · · ·+qn. For the correlation functions, the sym-
metrised versions of these functions are required,

F(s)
n (q1, · · · ,qn) =

1
n! ∑

permutations
Fn (q1, · · · ,qn) . (5.29)

In up to one-loop calculations for the power and bispectrum, only the expressions up to n = 4
for Fn are required. The explicit expressions for F3 and F4 are given in Ref. [187]. For F2,
the expression is:

F(s)
2 (q1,q2) =

5
7
+

1
2

q1 ·q2
q1q2

(
q1

q2
+

q2

q1

)
+

2
7
(q1 ·q2)

2

q2
1q2

2
. (5.30)

F(s)
2 kernel calculation

Here we show how the expression for the kernel F(s)
2 can be derived from first principles.

Considering a matter-only universe, with Ωm = 1, a = τ2 and H = 2
τ
, Eqs. (5.17, 5.18)

become

δ
′+θ =−I1[δ ,θ ] , (5.31)
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θ
′+

2
τ

θ +
6
τ2 δ =−I2[δ ,θ ] , (5.32)

where I1 and I2 are the expressions on the r.h.s. of Eqs. (5.17, 5.18). Expanding δ and θ to
second order, one obtains the following equations:

δ = τ
2
δ1 + τ

4
δ2 , (5.33)

δ
′ = 2τδ1 +4τ

3
δ2 , (5.34)

θ =−2τθ1 −2τ
3
θ2 , (5.35)

θ
′ =−2θ1 −6τ

2
θ2 . (5.36)

For n = 1, I1 and I2 are second-order quantities and hence Eqs. (5.31, 5.32) are solved by
θ1 = δ1. For n = 2, one has to use the first-order solutions for the integrals on the r.h.s. of
the expressions, and the following equations are obtained:

4τ
3
δ2 −2τ

3
θ2 =−I1[τ

2
δ1,−2τδ1] , (5.37)

−10τ
2
θ2 +6τ

2
δ2 =−I2[τ

2
δ1,−2τδ1] . (5.38)

By solving the above equations for δ2 and substituting the integral expressions I1 and I2 and
α (Eq. 5.19) and β (Eq. 5.20), one finds the integral expression

δ2(k) =
∫

d3q1

∫
d3q2δD(k−q1 −q2)

[
5
7
+

2
7
(q1 ·q2)

2

q2
1q2

2
+

q1 ·q2
7

(
6
q2

1
+

1
q2

2

)]
. (5.39)

The expression of F(s)
2 from Eq. (5.30) is finally obtained by symmetrisation over the

arguments q1 and q2.

One-loop power spectrum and bispectrum contributions

The 2- and 3-point correlation functions are defined as

⟨δ (k1)δ (k2)⟩= (2π)3
δD (k1 +k2)P(k) , (5.40)

⟨δ (k1)δ (k2)δ (k3)⟩= (2π)3
δD (k1 +k2 +k3)B(k1,k2,k3) . (5.41)

In order to obtain the required contributions to the power spectrum and bispectrum, one
needs to plug in the expansion (5.23) into (5.21) and then the final result into Eq. (5.40)
and (5.41) respectively. The full expansion is then grouped according to the number of δ1’s
involved. The loop expansion is in analogy with the loop diagrams from quantum field theory.
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It represents an intuitive manner of determining all the contributions at each order in the
expansion. In this diagrammatic expansion, the exterior lines represent the arguments of the
correlation function, vertices where n lines meet are the kernels Fn, and the interior lines
represent wavevectors which are integrated over. As usual, the sum of wavevectors into any
vertex should be 0 and numerical factors in front of each diagram represents its symmetry.
The numbers appearing in the name of each contribution represents the number of interior
lines in each of its vertices. In the next few paragraphs, we show the expressions for the
power spectrum and bispectrum up to one loop, in the absence of primordial non-Gaussianity.

In the case of the power spectrum, the one-loop contribution has been obtained in Ref.
[188]. The 0-loop contribution is simply the linear power spectrum,

P0-loop (k,z) = P11 (k,z) = D2 (z)Plin (k) . (5.42)

It can be evaluated by evolving the primordial fluctuations through the Boltzmann equations
through codes such as CAMB [31]. The 1-loop contribution can be obtained from two
diagrams and has the following expansion:

P1-loop (k,z) = P13 (k,z)+P22 (k,z) , (5.43)

where the two contributions have the following expressions:

P13 (k,z) = D4 (z)
∫ d3q

(2π)3 6Plin (k)Plin (q)F(s)
3 (k,q,−q) , (5.44)

P22 (k,z) = D4 (z)
∫ d3q

(2π)3 2Plin (q)Plin (|k−q|)
[
F(s)

2 (q,k−q)
]2

. (5.45)

For the 2-loop power spectrum there are 4 terms, which involve kernels up to F5. The
expressions involved are shown in detail in Refs. [224, 257].

For the bispectrum, the lowest order contribution, corresponding to no loops is called the
tree-level bispectrum and has the following expression:

Btree (k1,k2,k3) = D4 (z)Plin (k1)Plin (k2)F(s)
2 (k1,k2)+2 permutations . (5.46)

For the 1-loop bispectrum, there are 4 diagrams that can be drawn,

B1-loop = B222 +B(I)
321 +B(II)

321 +B411 . (5.47)
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These have the following expressions:

B222 (k1,k2,k3) = 8D6 (z)
∫

q
Plin (q)Plin (|k2 −q|)

×Plin (|k3 +q|)F(s)
2 (−q,k3 +q)F(s)

2 (k3 +q,k2 −q)F(s)
2 (k2 −q,q) , (5.48)

B(I)
321 (k1,k2,k3) = 6D6 (z)Plin (k3)

∫
q

Plin (|k2 −q|)

×Plin (q)F(s)
3 (−q,−k2 +q,−k3)F(s)

2 (k2 −q,q)+5 permutations , (5.49)

B(II)
321 (k1,k2,k3) = 6D6 (z)Plin (k2)Plin (k3)F(s)

2 (k2,k3)

×
∫

q
Plin (q)F(s)

3 (k3,q,−q)+5 permutations , (5.50)

B411 (k1,k2,k3) = 12D6 (z)Plin (k2)Plin (k3)

×
∫

q
Plin (q)F(s)

4 (q,−q,−k2,−k3)+2 permutations , (5.51)

where
∫

q =
∫ d3q

(2π)3 . The actual numerical evaluation of the integrals (5.44)-(5.51) is non-
trivial because the kernels may diverge. It has been shown [258, 259] that the divergences
exactly cancel each other when summing the whole one-loop contributions together, both in
the power spectrum and bispectrum, provided that the linear power spectrum grows slowly
enough on very large scales. However, for the numerical evaluation, a method to remove the
divergences must be used. For the power spectrum at one loop only, a convenient split of the
integration regions has been used in Ref. [188] which solves the divergence problems. More
recently, both the power spectrum and bispectrum divergences have been eliminated in Refs.
[223, 224, 260]. Their method will be briefly explained in the next paragraphs.

For Eqs. (5.44)-(5.51) it can be easily seen that the divergences appear at 0 and ±ki. The
basic idea of the method is to first perform a convenient change of variable in order to first
move all the divergences to 0 and then, as the variable of integration spans all space, to do a
symmetrisation in q ↔−q. For the power spectrum, this method yields

P1-loop (k,z) = D4 (z)
∫ d3q

(2π)3

[
6Plin (k)Plin (q)F(s)

3 (k,q,−q)

+2Plin (q)Plin (|k−q|)
[
F(s)

2 (q,k−q)
]2

Θ(|k−q|−q)

+ 2Plin (q)Plin (|k+q|)
[
F(s)

2 (−q,k+q)
]2

Θ(|k+q|−q)
]
, (5.52)
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where Θ is the Heaviside step function. For the bispectrum, B(II)
321 and B411 only have

divergences at 0 and hence do not need any change of variable. The integrand b222 of B222

needs to be re-expressed in the following manner [260]:

b(k3>k1)
222 =8Plin(q)Plin(|k2 −q|)Plin(|k3 +q|)F(s)

2 (−q,k3 +q)F(s)
2 (k3 +q,k2 −q)

×F(s)
2 (k2 −q,q)Θ(|k2 −q|−q)Θ(|k3 +q|−q)

+8Plin(|k3 +q|)Plin(|−k1 +q|)Plin(q)F
(s)
2 (k3 +q,−q)F(s)

2 (−q,−k1 +q)

×F(s)
2 (−k1 +q,−q−k3)Θ(|−k1 +q|− |k3 +q|)Θ(|k3 +q|−q)

+8Plin(|k2 −q|)Plin(q)Plin(|k1 +q|)×F(s)
2 (−k2 +q,−k1 −q)F(s)

2 (−k1 −q,q)

×F(s)
2 (q,k2 −q)Θ(|k2 −q|−q)Θ(|k1 +q|− |k2 −q|)

+8Plin(|k2 −q|)Plin(q)Plin(|k1 +q|)F(s)
2 (−k2 +q,−k1 −q)

×F(s)
2 (−k1 −q,q)F(s)

2 (q,k2 −q)Θ(|k2 −q|−q)Θ(|k2 −q|− |k1 +q|) (5.53)

b(k3<k1)
222 = b(k3>k1)

222

∣∣∣
k1↔k3

, (5.54)

with the note that this expression is only valid under the integral sign due to the various
remapping. Similarly, bI

321 becomes:

bI
321 → 2bI

321Θ(|k2 −q|−q) . (5.55)

The sum of the 4 contributions is then calculated by performing the integrals directly.
They can be calculated numerically fast using the multi-dimensional integrator CUBA [261].

5.2.2 Effective Field Theory

The SPT approach has so far been successful in describing the evolution of perturbations
close to the linear scale at just 1- and 2-loop level. However, going to a higher number of
loops may not allow us to go more into the non-linear regime. At non-linear level the Fourier
modes no longer evolve independently, and hence small scale fluctuation can influence much
larger scales. Moreover, the SPT expansion can only be expected to work when the density
contrast is small, |δ |≪ 1. Even when this condition is not satisfied, the gravitational potential
is still small and can be used to produce a valid perturbative expansion. In order to cure
these issues, the Effective Field Theory of LSS (EFTofLSS) has been developed in Refs.
[148, 221].
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The method consists of adding an effective stress-energy tensor τµν , induced by short
wavelength modes. This has the effect of adding corrections to the fluid equations, with
terms corresponding to the speed of sound, viscosity and stochastic pressure. The equations
governing this effective field theory are obtained by considering the collisionless Boltzmann
equation in an expanding universe and smoothing it on a lengthscale Λ−1. Hence, the theory
is determined by the equations of motion of the long-wavelength modes, sourced by a stress-
energy tensor. In the absence of the stress-energy tensor, the SPT equations (5.12)-(5.14) are
recovered.

The linearised equations of motion become:

∇
2
φl =

3
2

H2
0 Ωm

δl

a
, (5.56)

δ̇l =−1
a

∂i
[
(1+δl)vi

l
]
, (5.57)

v̇i
l +Hvi

l +
1
a

v j
l ∂ jvi

l +
1
a

∂
i
φl =−1

a
(∂τ)i

ρl
, (5.58)

where (∂τ)i
ρl
= 1

δl
∂ jτ

i j. The velocity field vl is however not the physical field, and is sensitive
to short distance physics. Therefore it has to be renormalised by adding suitable counterterms,
otherwise correlation functions involving it may get arbitrary large contributions.

In order to simplify the calculation, it is convenient to decompose the velocity into its
divergence (θ ) and curl (ωi) parts,

vi =
∂ i

∂ 2 θ − ε
i jk ∂ j

∂ 2 ωk . (5.59)

By re-expressing the velocity using Eq. (5.59) in Eqs. (5.56)-(5.58), it is shown that the
linear solution for ω decays in time as the scale factor, and hence it can be safely ignored.
By expressing the equations in Fourier space and the derivatives in terms of the scale factor
a, the equations became:

aH δ
′(a,k)+θ(a,k) =−

∫ d3q
(2π)3 α(q,k−q)δ (a,k−q)θ(a,q) , (5.60)

aH θ
′(a,k)+H θ(a,k)+

3
2
H 2

0 Ωm
1
a

δ (a,k) =

−
∫ d3q

(2π)3 β (q,k−q)θ(a,k−q)θ(a,q)− iki(∂τ)i
ρl
(k) , (5.61)

where the functions α and β are the ones from Eqs. (5.19)-(5.20). By writing the term
involving ∂τ using the Poisson equation, full details being given in Refs. [148, 224, 260],
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these equations can be solved similarly to their SPT counterparts:

δ (a,k) =
∞

∑
n=1

Dn(a)δ (n)(k)+
∞

∑
n=1

Dn+ζ (a)δ̃ (n)(k) , (5.62)

θ (a,k) =
∞

∑
n=1

Dn(a)θ (n)(k)+
∞

∑
n=1

Dn+ζ (a)θ̃ (n)(k) , (5.63)

where δ (n) and θ (n) can be expressed in terms of the kernels Fn and Gn (Eqs. 5.23-5.28),
while the tilded expressions can be expressed similarly, but F̃n and G̃n satisfy slightly more
complicated expressions:

F̃1 = 1 , (5.64)

G̃1 = 1 , (5.65)

F̃n (q1, · · · ,qn) =
1

(n−1+ζ )(n+ 3
2 +ζ )

×
{
−ξ c̄nk2Fn (q1, · · · ,qn)+

n−1

∑
m=1

[(
n+

1
2
+ζ

)
α (k1,k2)Am (q1, · · · ,qn)+ β (k1,k2)Bm (q1, · · · ,qn)]} , (5.66)

G̃n (q1, · · · ,qn) =
1

(n−1+ζ )(n+ 3
2 +ζ )

×
{
−ξ (n+ζ )c̄nk2Fn (q1, · · · ,qn)+

n−1

∑
m=1

[
3
2

α (k1,k2)Am (q1, · · · ,qn)+ (n+ζ )β (k1,k2)Bm (q1, · · · ,qn)]} , (5.67)

where the functions Am and Bm are given recursively by

Am(q1, · · · ,qm) = G̃m(q1, · · · ,qm)Fn−m(qm+1, · · · ,qn)

+Gm(q1, · · · ,qm)F̃n−m(qm+1, · · · ,qn) , (5.68)

Bm(q1, · · · ,qm) = G̃m(q1, · · · ,qm)Gn−m(qm+1, · · · ,qn)

+Gm(q1, · · · ,qm)G̃n−m(qm+1, · · · ,qn) (5.69)

and c̄n, ζ and ξ are constants. ξ is a multiplicative factor for c̄n and hence it can be set to
a convenient value, while the numerical value of ζ can be chosen on physical grounds. In
order to keep the theory local in time, c̄n = c̄1 for all n, which is proportional to the sound
speed c2

s(1). The lowest level counterterm that appears in the matter power spectrum is the
2-point correlation function between δ (1) and δ̃ (1). Setting ξ = ζ (ζ +5/2), this lowest
order counterterm can be expressed in terms of a single free parameter, the sound speed c2

s(1).
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The linear and SPT 1-loop contribution remain, and one term is added [224],

−2(2π)c2
s(1)

k2

k2
NL

D2+ζ (z)Plin (k) . (5.70)

The free parameter is fixed by fitting the 1-loop EFT power spectrum to the non-linear power
spectrum at a low value of k, where the SPT result is still valid, while ζ is fixed by looking
at the redshift-evolution of the power spectrum, and a value of ζ = 3.1 is found to best fit
simulations as well as scaling properties of the Universe.

For the bispectrum, the coefficient described in the previous paragraph describes the tree
level counter-term, which has the following expression:

Bcs (k1,k2,k3) = D(z)2+ζ
[
2Plin (k1)Plin (k2) F̃(s)

2 (k1,k2)+2 permutations

−2c̄1k2
1Plin (k1)Plin (k2)F(s)

2 (k1,k2)+5 permutations
]
, (5.71)

where c̄1 = 2π
c2

s(1)
kNL

.

5.2.3 Renormalised Perturbation Theory

Formalism

The Renormalized perturbation theory (RPT) model has been developed in Refs. [203–208].
The method uses the formalism of the SPT and re-organises the infinite expansion differently
using an idea presented in Ref. [202]. SPT is not a classical type of perturbation theory, as
its coupling constant may be large, and hence the range of scales where it is valid depends on
number of factors, such as the redshift, the primordial perturbation spectrum and the order
of the correlation functions of interest. Hence, using the notation from SPT and defining
η = loga(τ), the following 2-component vector is defined:

Ψ(k,η) = (δ (k,η) ,−θ (k,η)/H ) . (5.72)

Then Eqs. (5.17)-(5.18) can be recast in the following matrix notation:

∂ηΨa (k,η)+ΩabΨb (k,η) = γ
(s)
abc (k,k1,k2)Ψb (k1,η)Ψc (k2,η) , (5.73)
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where repeated Fourier arguments (here k1 and k2) are integrated over,

Ωab =

(
0 −1/2

−3/2 1/2

)
(5.74)

and γ
(s)
abc is a symmetrised vertex matrix which has the following non-zero components:

γ
(s)
121 (k,k1,k2) = δD (k−k1 −k2)α (k1,k2)/2 , (5.75)

γ
(s)
112 (k,k1,k2) = δD (k−k1 −k2)α (k2,k1)/2 , (5.76)

γ
(s)
222 (k,k1,k2) = δD (k−k1 −k2)β (k1,k2) , (5.77)

and the following symmetry:

γ
(s)
abc

(
k,ki,k j

)
= γ

(s)
acb

(
k,k j,ki

)
. (5.78)

A solution to Eq. (5.73) can be given in terms of an inverse Laplace transform,

Ψa (k,η) = gab (η)φb (k)+
∫

η

0
dη

′gab
(
η −η

′)
γ
(s)
bcd (k,k1,k2)Ψc

(
k1,η

′)
Ψd
(
k2,η

′) ,
(5.79)

where
φa(k)≡ Ψa(k,η = 0) (5.80)

and

σab (ω) =
1

(2ω +3)(ω −1)

(
2ω +1 2

3 2ω

)
(5.81)

and gab is the linear propagator, defined for positive η as

gab (η) =
∮ c+i∞

c−i∞

dω

2πi
σab (ω)eωη =

eη

5

(
3 2
3 2

)
− e−3η/2

5

(
−2 2
3 −3

)
(5.82)

and gab (η) = 0 for η < 0 and gab (η) → δab as η → 0+. The initial field φa (k) can be
expressed in terms of a two-component vector ua as

φa (k) = uaδ (k,η = 0) , (5.83)
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corresponding to the usual case where θ (k,η = 0) ∝ δ (k,η = 0). The first part of the
solution depends on initial conditions. The second (integral) term corresponds to the nonlinear
interactions. Then Eq. (5.79) is solved as a series expansion

Ψa (k,η) =
∞

∑
n=1

Ψ
(n)
a (k,η) , (5.84)

where

Ψ
(n)
a (k,η) =

∫
δD (k−k1···n)F

(n)
aa1···an (k1, · · · ,kn;η)φa1(k1) · · ·φan(kn) (5.85)

and k1···n = k1 + · · ·kn. The kernel function F satisfies recurrence relations that are analo-
gous to Eqs. (5.27) and (5.28), and indeed for the growing mode solutions these are obtained.
By using the expressions for F

(n)
a s it is possible to obtain the solutions for Ψ

(n)
a s. This is

how the solutions are obtained in SPT. Here, the ingredients from the theory are represented
by Feynman diagrams, easing the calculation of the Ψ

(n)
a s and allowing for a simplified

formalism. The basic rules are described in detail in Ref. [203]. The solutions thus expressed
permit the calculation of the correlation function between Ψ

(i)
a s for any number of loops.

Non-linearities modify however both the linear propagator (5.82) and the vertex function
(5.75)-(5.77). Thus the fully non-linear propagator is defined as

Gab (k,η)δD
(
k−k′)=〈δΨa(k,η)

δφb(k′)

〉
. (5.86)

This represents the response of the final density and velocity fields to variations in initial
conditions. Using the series expansion (5.84) it can be expressed in terms of the linear
propagator as

Gab (k,η) = gab (k,η)+
∞

∑
n=2

〈
δΨ

(n)
a (k,η)

δφb(k′)

〉
. (5.87)

The symmetric full vertex function is defined in terms of the fully non-linear propagator by〈
δ 2Ψa(k,η)

δφe(k1)δφ f (k2)

〉
= 2

∫
η

0
ds
∫ s

0
ds1

∫ s

0
ds2Gab (η − s)

×Γ
(s)
bcd (k,s;k1,s1;k2,s2)Gce(s1)Gd f (s2) . (5.88)

Hence, the vertex function γ(s) is the first term in an expansion of Γ. Now both the vertex
function and the non-linear propagator can be expanded and also expressed in terms of
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Feynman diagrams. For the nonlinear propagator, Dyson’s formula is thus obtained,

Gab (k,η) = gab (η)+
∫

η

0
ds1

∫ s1

0
ds2gac (η − s1)Σcd (k,s1,s2)Gdb (k,s2) , (5.89)

where Σ represents the sum of the principal path irreducible diagrams (diagrams that cannot
be split into disjoint pieces by removing a linear propagator from the principal path).

In the small-scale limit, the infinite series for the propagator can be resummed after a
lengthy computation to [204]

Gab(k,a) = gab(a)exp
(
−k2σ2

d
2

)
, (5.90)

where σ2
d = (a−1)2

3
∫ d3q

2π3
Plin
q2 .

This method permits the calculation of the n-point correlation function in the RPT for
arbitrary number of loops. Explicit expressions for the power spectrum and bispectrum
are showed in Ref. [206]. Compared to SPT, this method has the advantage that all the
contributions involved are positive and the resummation of the propagator terms gives a
well-defined perturbative expansion in the non-linear regime. However, the expressions
involved are complicated and the solutions are computationally demanding, requiring to
solve numerically a set of integro-differential equations. Moreover, more than one loop is
required to obtain an accurate result, even on mildly non-linear scales.

In order to solve these problems, in Refs. [206, 208] the authors propose a method
that simplifies the calculation dramatically. The scheme is called MPTBREEZE and in this
formalism only the late time propagator is calculated and hence no time integrations are
required. First, the nonlinear propagator is generalised to an arbitrary number of points. The
(p+1)-point propagator Γ(p) has been defined as:

1
p!

〈
δ pΨa (k,a)

δφb1(k1) · · ·δφbp(kp)

〉
= δD

(
k−k1···p

)
Γ
(p)
ab1···bp

(k1, · · · ,kp,a) , (5.91)

where k1···p = k1 + · · ·+kp. In this framework, the power spectrum can be expressed as

P(k,z) = ∑
r≥1

r!
∫

δD (k−q1···r)
[
Γ
(r) (q1, · · · ,qr,z)

]2
Plin(q1) · · ·Plin(qr)d3q1 · · ·d3qr .

(5.92)
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In the two limits of interest, of small and large ks, the multi-point propagator behaves as

Γ
(n)
a ∼ an (Fn (k1, · · · ,kn) ,Gn (k1, · · · ,kn)) as k → 0 ,

Γ
(n)
a → F n

a exp
(
−1

2
k2

σ
2
d

)
as k → ∞ . (5.93)

For intermediate scales an integral solution is obtained for each propagator. If only the
growing mode initial conditions are considered, the following very simple expression for the
growing mode solutions is obtained,

Γ
(n)
δ

(k1, · · · ,kn;z) = Dn
+ (z)F(s)

n (k1, · · · ,kn)exp
[

f (k)D2
+(z)

]
, (5.94)

where the function f depends only on the linear power spectrum today:

f (k) =
∫ d3q

(2π)3
Plin (q,z = 0)

504k3q5

[
6k7q−79k5q3 +50q5k3

−21kq7 +
3
4
(
k2 −q2)3 (

2k2 +7q2) log
|k−q|2
|k+q|2

]
. (5.95)

This method agrees very well with the results of the more exact method RegPT [262].

Using this formalism, the power spectrum up to two loops can be expressed as follows:

Ptree (k,z) =
[
Γ
(1) (k;z)

]2
Plin (k) , (5.96)

P1-loop (k,z) =2
∫ d3q

(2π)3

[
Γ
(2) (k−q,q;z)

]2
Plin (|k−q|)Plin (q) , (5.97)

P2-loop (k,z) =6
∫ d3q1

(2π)3

∫ d3q2

(2π)3

[
Γ
(3) (k−q12,q1,q2;z)

]2
Plin (|k−q12|)Plin (q1)Plin (q2) .

(5.98)

Using Eq. (5.94) and Eqs. (5.42) and (5.45) from Subchapter 5.2.1 and Eq. (97) from Ref.
[224] , the MPTBREEZE contributions can be expressed in terms of their SPT counterparts
as follows:

PMPTbreeze
tree (k,z) = P11 (k,z)exp

[
2 f (k)D2

+(z)
]
, (5.99)

PMPTbreeze
1-loop (k,z) = P22 (k,z)exp

[
2 f (k)D2

+(z)
]
, (5.100)

PMPTbreeze
2-loop (k,z) = PII

22 (k,z)exp
[
2 f (k)D2

+(z)
]
. (5.101)
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The bispectrum contributions can be treated in a similar manner [207], and the result up to
one loop is (5.48), (5.49)

BMPTbreeze (k1,k2,k3,z) =
(
Btree +B222 +BI

321
)
(k1,k2,k3,z)

× exp
[
( f (k1)+ f (k2)+ f (k3))D2

+(z)
]
. (5.102)

This prescription allows a very easy computation of the power spectrum and bispectrum
for this method once the SPT counterparts have been determined, as only one integral function
( f ) needs to be evaluated, the other terms being calculated in SPT. Unfortunately, this theory
is only expected to give a reliable prediction for the bispectrum up to kmax = 0.15Mpc−1.
Therefore, it is desirable to go to the 2-loops in order to increase the range of ks. This has
not been calculated so far, not even at the theory level, due to the lengthy computation.

Two-loop bispectrum calculation

The tree-level and one-loop bispectrum in this theory have been discussed above, and hence
we proceed directly to the two-loop terms. The generating function for the RPT bispectrum
is given by Eq. (59) of Ref. [206]. At two loops, using the notation from Ref. [206], we need
to take r+ s+ t = 4. As only one of these numbers can be 0, there are only three choices for
r, s and t (plus permutations) giving non-vanishing contributions, which we will treat in turn:

(a) r = 3, s = 1, t = 0 (+ 5 perms.);

(b) r = 2, s = 2, t = 0 (+2 perms.);

(c) r = 1, s = 1, t = 2 (+2 perms.).

In all these three cases, the expressions involved will depend on the functions Γ(n) only
up to Γ(4), which in turn can be expressed in terms of the corresponding kernel functions
F(s)

n through Eq. (5.94). Even though the expressions that we obtained for the MPTBREEZE

two-loop bispectra are relatively simple, they cannot be integrated directly because they
have various poles where at least one of the arguments of F(s)

n vanishes. However, we know
that the divergences between the various terms must cancel exactly after performing the
integration, but numerically this is an issue because the divergent parts are expected to be
much bigger than the finite result and thus the numerical result may not be reliable. In order
to solve this problem, we will use the methods developed in Refs. [223, 260, 263]. Compared
to SPT, where some of the terms involve the kernel F(s)

6 , the expressions appearing in this
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method represent a significant simplification. We note that from Eq. (5.94) all expressions
will have a prefactor

D8(z)exp
[
( f (k1)+ f (k2)+ f (k3))D2(z)

]
, (5.103)

and therefore in the following paragraphs we will omit this factor because it does not affect
the calculation. We will denote the three integrals by Ba, Bb and Bc and the integrands with
the corresponding lowercase letters. Then the final two-loop MPTBREEZE bispectrum is

BMPTbreeze
2-loop (k1,k2,k3,z) = D8(z)exp

[
( f (k1)+ f (k2)+ f (k3))D2(z)

]
× [Ba(k1,k2,k3)+Bb(k1,k2,k3)+Bc(k1,k2,k3)] . (5.104)

The expressions for the three bispectra are as follows:

Ba(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3 F(s)
4 (q1,q2,−k3 −q1 −q2,−k2)

×F(s)
3 (−q1,−q2,k3 +q1 +q2)Plin(q1)Plin(q2)Plin(k3)Plin(|q1 +q2 +k3|) , (5.105)

Bb(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3 F(s)
4 (q1,k3 −q1,q2,−k2 −q2)F

(s)
2 (−q2,k2 +q2)

×F(s)
2 (−q1,k3 +q1)Plin(q1)Plin(q2)Plin(|q1 +k3|)Plin(|q2 +k2|) , (5.106)

Bc(k1,k2,k3) = 36
∫ d3q1

(2π)3

∫ d3q2

(2π)3 F(s)
3 (q1,q2,k1 −q1 −q2)

×F(s)
2 (−k1 +q1 +q2,−k3 −q1 −q2)F

(s)
3 (k3 +q1 +q2,−q1,−q2)

×Plin(q1)Plin(q2)Plin(|k1 −q1 −q2|)Plin(|k3 +q1 +q2|) . (5.107)

We will treat each of them in turn and show how to remove the singularities before the
integration.

BBBaaa The expression for Ba has singularities when q1 = 0, q2 = 0 and q1 +q2 = −k3. By
considering the variable q3 = −q1 −q2 −k3, Ba can be re-expressed in terms of a triple
integral by adding a Dirac-delta function:

Ba(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3

∫ d3q3

(2π)3 F(s)
4 (q1,q2,q3)F

(s)
3 (−q1,−q2,−q3)

×δD(q1 +q2 +q3 +k3)Plin(q1)Plin(q2)Plin(k3)Plin(q3) . (5.108)
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This expression is now completely symmetric in q1 ↔ q2 ↔ q3 and hence all ordering of
the magnitudes of these three wavevectors are equivalent after a suitable relabelling of the
variables. As there are six possible permutations of q1, q2 and q3,

Ba =
∫ ∫ ∫ d3q1d3q2d3q3

(2π)9 bb6Θ(q3 −q2)Θ(q2 −q1) . (5.109)

Hence, the delta function and q3 can now be eliminated and the final expression is obtained,

Ba(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3 F(s)
4 (q1,q2,−k3 −q1 −q2,−k2)

×F(s)
3 (−q1,−q2,k3 +q1 +q2)Plin(q1)Plin(q2)Plin(k3)

×Plin(|q1 +q2 +k3|)×6Θ(|q1 +q2 +k3|−q2)Θ(q2 −q1) . (5.110)

The expression of Eq. (5.110) has a leading divergence when q1 = q2 = 0 and a subleading
divergence when q1 = 0, q2 fixed. The two divergences corresponding to q1 +q2 =−k3 and
q2 = 0, at fixed q1, have disappeared because the Heaviside functions evaluate to 0 in those
limits. In order to eliminate all divergences at the integrand level, we can also symmetrise in
q1,2 ↔−q1,2:

ba(q1,q2)→
1
4
[ba(q1,q2)+ba(−q1,q2)+ba(q1,−q2)+ba(−q1,−q2)] . (5.111)

We will use this symmetrisation for the b and c terms as well.

BBBbbb The Bb term has divergences for q1 = 0, q1 = −k3, q2 = 0 and q2 = −k1. We note
that bb is symmetric under the transformations q1 ↔−k3 −q1 and q2 ↔−k2 −q2. We can
exploit the three symmetries that now appear in the integrand by restricting the integration
region to q1 < |k3 +q1| and q2 < |k1 +q2| and introducing two Heaviside functions and a
factor of 22,

Bb(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3 F(s)
4 (q1,k3 −q1,q2,−k2 −q2)F

(s)
2 (−q2,k2 +q2)

×F(s)
2 (−q1,k3 +q1)Plin(q1)Plin(q2)Plin(|q1 +k3|)Plin(|q2 +k2|)

×4Θ(|k2 +q2|−q2)Θ(|k3 +q1|−q1) . (5.112)

This expression is not symmetric in q1 ↔ q2, but we can symmetrise it by symmetrising the
whole integrand (including the delta functions):
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bb(q1,q2)→
1
2
[bb(q1,q2)+bb(q2,q1)] . (5.113)

After the symmetrisation, we aim to restrict the integration range to q1 < q2, and we achieve
this by adding an additional Θ-function, thus obtaining the final answer,

Bb(k1,k2,k3) = 24
∫ d3q1

(2π)3

∫ d3q2

(2π)3 Θ(q2 −q1)×[
F(s)

4 (q1,k3 −q1,q2,−k2 −q2)F
(s)
2 (−q2,k2 +q2)F

(s)
2 (−q1,k3 +q1)Plin(q1)Plin(q2)

×Plin(|q1 +k3|)Plin(|q2 +k2|)×4Θ(|k2 +q2|−q2)Θ(|k3 +q1|−q1)

+F(s)
4 (q2,k3 −q2,q1,−k2 −q1)F

(s)
2 (−q1,k2 +q1)F

(s)
2 (−q2,k3 +q2)Plin(q1)Plin(q2)

×Plin(|q2 +k3|)Plin(|q1 +k2|)×4Θ(|k2 +q1|−q1) Θ(|k3 +q2|−q2)] . (5.114)

Hence all the leading and subleading divergences have been moved to q1 = q2 = 0 and q1 = 0,
at q2 fixed. For all the other poles in the kernels, the Heaviside functions vanish.

BBBccc The expression for Bc has only one direct symmetry q1 ↔ q2, but this is not enough.
Therefore we introduce the following notation:

q3 = k1 −q1 −q2 , (5.115)

q4 = k1 +k2 −q1 −q2 , (5.116)

and we then add two additional integrations over q3 and q4 and two Dirac delta functions
imposing the above constraints. The integral becomes

Bc(k1,k2,k3) = 36
∫ ∫ ∫ ∫ d3q1d3q2d3q3d3q4

(2π)12 F(s)
3 (q1,q2,q3)

×F(s)
2 (−q3,q4)F

(s)
3 (−q4,−q1,−q2)

×Plin(q1)Plin(q2)Plin(q3)Plin(q4)δD(k1 −q1 −q2 −q3)δD(k2 +q3 −q4) . (5.117)

This expression is already symmetric in q1 ↔ q2, and we symmetrise it in all the other
variables, obtaining 12 possible permutations and a fully symmetric expression. We can
now introduce an ordering of the four variables in terms of their magnitude (e.g. q4 ≥ q3 ≥
q2 ≥ q1), knowing that all the other orderings can be obtained by a suitable re-labelling
of the variables. There are 4! = 24 permutations of the four variables and, keeping only
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one of the permutations, we need to multiply it by the product of Heaviside functions
24Θ(q4 −q3)Θ(q3 −q2)Θ(q2 −q1).

There are now 12 summands, and each of them involves integrals over q1, q2, q3 and q4,
three Heaviside functions and two delta functions. The aim is now to perform two of the
integrations, in order to eliminate the delta functions. In ten of the terms, it turns out that it is
possible integrate over q3 and q4. In the other two, q3 and q4 appear in the same combination
in both delta functions. For those terms we integrate over q2 and q4, and then relabel q3 → q2.
The final expression that we thus obtain only has divergences for q1 = q2 = 0 and q1 = 0,
with q2 fixed as required:

bc(k1,k2,k3) = 36
[
2F(s)

2 (k2 −q1,q1)F
(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)

×F(s)
3 (q1 −k2,k1 +k2 −q1 −q2,q2)Plin(q1)Plin(|q1 −k2|)Plin(|k1 +k2 −q1 −q2|)

×Plin(q2)Θ(|k1 +k2 −q1 −q2|− |q1 −k2|)Θ(|q1 −k2|−q2|)Θ(q2)−q1)

+2F(s)
2 (−q1,k2 +q1)F

(s)
3 (−k2 −q1,−q2,−k1 +q1 +q2)F

(s)
3 (q1,k1 −q1 −q2,q2)

×Plin(q1)Plin(|k2 +q1|)Plin(|k1 −q1 −q2|)Plin(q2)

×Θ(|k1 −q1 −q2|)−|k2 +q1|)Θ(|k2 +q1)|−q2)Θ(q2 −q1)

+2F(s)
2 (−q1,k2 +q1)F

(s)
3 (−k2 −q1,−q2,−k1 +q1 +q2)F

(s)
3 (q1,k1 −q1 −q2,q2)

×Plin(q1)Plin(|k2 +q1|)Plin(|k1 −q1 −q2|)Plin(q2)

×Θ(|k2 +q1|− |k1 −q1 −q2|)Θ(|k1 −q1 −q2|−q2)Θ(q2 −q1)

+2F(s)
2 (k1 +k2 −q1 −q2,−k1 +q1 +q2)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)

×F(s)
3 (q1,k1 −q1 −q2,q2)Plin(q1)Plin(|k1 −q1 −q2|)Plin(|k1 +k2 −q1 −q2|)Plin(q2)

×Θ(|k1 +k2 −q1 −q2|− |k1 −q1 −q2|)Θ(|k1 −q1 −q2|−q2)Θ(q2 −q1)

+2F(s)
2 (k2 −q1,q1)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)F

(s)
3 (q1 −k2,k1 +k2 −q1 −q2,q2)

×Plin(q1)Plin(|q1 −k2|)Plin(|k1 +k2 −q1 −q2|)Plin(q2)

×Θ(|q1 −k2|)−|k1 +k2 −q1 −q2|)Θ(|k1 +k2 −q1 −q2|−q2)Θ(q2 −q1)

+2F(s)
2 (k1 +k2 −q1 −q2,−k1 +q1 +q2)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)

×F(s)
3 (q1,k1 −q1 −q2,q2)Plin(q1)Plin(|k1 −q1 −q2|)Plin(|k1 +k2 −q1 −q2|)Plin(q2)

×Θ(|k1 −q1 −q2|− |k1 +k2 −q1 −q2|)Θ(|k1 +k2 −q1 −q2|−q2)Θ(q2 −q1)

+2F(s)
2 (k2 −q2,q2)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)F

(s)
3 (q1,k1 +k2 −q1 −q2,q2 −k2)

×Plin(q1)Plin(|k1 +k2 −q1 −q2|)Plin(q2)Plin(|q2 −k2|)
×Θ(|k1 +k2 −q1 −q2|−q2)Θ(|q2 −k2|− |k1 +k2 −q1 −q2|)Θ(q2 −q1)
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+2F(s)
2 (k2 −q2,q2)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)F

(s)
3 (q1,k1 +k2 −q1 −q2,q2 −k2)

×Plin(q1)Plin(|k1 +k2 −q1 −q2|)Plin(q2)Plin(|q2 −k2|)
×Θ(|k1 +k2 −q1 −q2|− |q2 −k2|)Θ(|q2 −k2|−q2)Θ(q2 −q1)

+2F(s)
2 (−q2,k2 +q2)F

(s)
3 (−q1,−k2 −q2,−k1 +q1 +q2)F

(s)
3 (q1,k1 −q1 −q2,q2)

×Plin(q1)Plin(|k1 −q1 −q2|)Plin(q2)Plin(|k2 +q2|)
×Θ(|k1 −q1 −q2|−q2)Θ(|k2 +q2|− |k1 −q1 −q2|)Θ(q2 −q1)

+2F(s)
2 (−q2,k2 +q2)F

(s)
3 (−q1,−k2 −q2,−k1 +q1 +q2)F

(s)
3 (q1,k1 −q1 −q2,q2)

×Plin(q1)Plin(|k1 −q1 −q2|)Plin(q2)Plin(|k2 +q2|)
×Θ(|k1 −q1 −q2|− |k2 +q2|)Θ(|k2 +q2|−q2)Θ(q2 −q1)

+2F(s)
2 (k2 −q1,q1)F

(s)
3 (−q1,−q2,−k1 −k2 +q1 +q2)F

(s)
3 (q1 −k2,k1 +k2 −q1 −q2,q2)

×Plin(q1)Plin(|q1 −k2|)Plin(|k1 +k2 −q1 −q2|)Plin(q2)

×Θ(|q1 −k2|−q1)Θ(|k1 +k2 −q1 −q2|−q2)Θ(q2 −|q1 −k2|)
+2F(s)

2 (−q1,k2 +q1)F
(s)
3 (−k2 −q1,−q2,−k1 +q1 +q2)F

(s)
3 (q1,k1 −q1 −q2,q2)

×Plin(q1)Plin(|k2 +q1|)Plin(|k1 −q1 −q2|)Plin(q2)Θ(|k2 +q1|−q1)

×Θ(|k1 −q1 −q2|−q2) Θ(q2 −|k2 +q1|)] . (5.118)

The three long expressions can be added together with their corresponding permutations
to obtain the final two-loop result, which is then free of any divergences before the integration.

Going to two-loops and estimating perturbation residuals

We present in Fig. 5.1 three triangle configurations: equilateral, squeezed and flattened, also
with a comparison between all the tree-level and one-loop perturbative methods at z = 0. The
EFT bispectrum is expected to be accurate up to higher k than one-loop RPT, as discussed
by Ref. [260] and as shown in Chapter 6; therefore, knowing that the RPT approach is a
convergent expansion with the precision increasing as the number of loops is increased, we
can estimate the range of validity of the one-loop and two-loop MPTBREEZE results by
comparison with EFT.

In Fig. 5.1, we observe that the two-loop MPTBREEZE bispectrum closely follows the
EFT prediction for an extra 0.04h/Mpc more than the one-loop bispectrum in the equilateral
and flattened cases, while the squeezed limit shows a more modest improvement. It is
therefore clear that extending MPTBREEZE to two loops in the quantitative comparisons
of Chapter 6 would significantly improve its range of validity, but we decide not to pursue
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Fig. 5.1 Equilateral (left), squeezed (middle) and flattened bispectra (right) from perturbation
theories at z = 0. We show the theoretical predictions of the tree-level bispectrum, SPT, EFT
and the one- and two-loop MPTBREEZE bispectra. For this last model, we observe that the
wavenumber at which the theory starts decaying increases significantly when adding the
two-loop terms in the case of the equilateral and flattened configurations, closely following
the EFT model down to smaller scales, while for the squeezed configuration the improvement
is negligible. Bispectra are plotted in units of (Mpc/h)6 throughout the LSS chapters.

this for consistency with the other PT methods, and because of the huge analytic and
numerical challenges which seem to be entailed. Controlled perturbative expansions become
increasingly accurate as the number of loops is increased, so a criterion for determining where
perturbation theory at a given order breaks down is to calculate the next-order contribution
and find where they become significant. In Table 5.1 we show the value of the wavenumber
where the higher order expansion deviates by more than 10% (20%) from the lower order.
Hence, we compare SPT with tree-level, the MPTBREEZE at one loop to the tree-level and
the two-loop MPTBREEZE bispectrum to its one-loop counterpart. For completeness, we
also determine the effect of the counter-term in EFT which corrects SPT. At one-loop we
evaluate deviations with the total correlator T , but at two-loop order we determine the worst
case amongst the three limiting configurations evaluated.

Table 5.1 indicates that the tree-level bispectrum is in fact valid only for small wavenum-
bers k ≲ 0.1Mpc−1 at z = 0 and k ≲ 0.2Mpc−1 at z = 2, with one-loop contributions ap-
parently offering only a small incremental improvement. However, the comparison of SPT
results with the EFT controlled expansion indicates that it may be possible to extrapolate
perturbative expansions considerably further. As we shall see in Chapter 6, there is an
unexpectedly good correspondence between some perturbative bispectra and the results of
numerical simulations, going well beyond the thresholds estimated in Table 5.1.
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Table 5.1 Domain of validity for perturbation theory: wavenumber k∗max where the two
perturbative expansions being compared show relative deviations greater than 10% (20%).

Perturbation theories
Threshold 10% (20%) k∗max [h/Mpc]

Theory z = 0 z = 1 z = 2
SPT/Tree-level 0.07 (0.08) 0.08 (0.12) 0.12 (0.14)

EFT/SPT 0.12 (0.41) 0.41 (0.93) 0.77 (1.52)
RPT 1-loop/Tree 0.08 (0.10) 0.09 (0.14) 0.13 (0.20)

RPT 2-loops/1-loop 0.09 (0.11) 0.13 (0.16) 0.19 (0.23)

5.2.4 Resummed Lagrangian perturbation theory

Alternatively, perturbation theory can be derived as a function of the Lagrangian coordinates
q, which are related to their Eulerian counterparts x by the displacement field ΨΨΨ,

x(q, t) = q+ΨΨΨ(q, t) . (5.119)

Under the assumption that the density perturbations at initial times are negligible, Eulerian
and Lagrangian coordinates are related by the continuity equation: ρ(x)d3x = ρ̄d3q, in terms
of comoving densities. Using the properties of the Dirac δD distribution, this leads to

δ (x) =
∫

d3qδD [x−q−ΨΨΨ(q)]−1 , (5.120)

whose Fourier transform is [264]

δ (k) =
∫

d3qe−ik·q
[
e−ik·ΨΨΨ(q)−1

]
. (5.121)

This expression can be used to derive the observable power spectrum in Eulerian space
[213, 264, 265]:

P(k) =
∫

d3
∆∆∆12 e−ik·∆∆∆12

{
⟨e−ik·[ΨΨΨ(q1)−ΨΨΨ(q2)]⟩−1

}
, (5.122)

where ∆∆∆i j ≡ qi −q j, and the expectation value only depends on the separation ∆∆∆12 due to
homogeneity. Likewise, the bispectrum can be written as [217]
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B(k1,k2,k3) =
∫

d3
∆∆∆12

∫
d3

∆∆∆13 e−ik·(∆∆∆12+∆∆∆13)

×
{
⟨e−ik2·[ΨΨΨ(q1)−ΨΨΨ(q2)]−ik3·[ΨΨΨ(q1)−ΨΨΨ(q3)]⟩−1

}
; (5.123)

also here the expectation value only depends on the separations ∆∆∆12,∆∆∆13. Eqs. (5.122, 5.123)
relate the observable (Eulerian) density polyspectra to the displacement field ΨΨΨ. We follow
Ref. [213] and use the cumulant expansion theorem,

⟨e−iX⟩= exp

[
∞

∑
N=1

(−i)N

N!
⟨XN⟩c

]
, (5.124)

where ⟨XN⟩c represents the cumulant of the random variable X [189]. By applying the
cumulant expansion to Eqs. (5.122, 5.123), and expanding the powers of N with the binomial
theorem, two types of terms are obtained: those depending on ΨΨΨ at one point, and those
depending on ΨΨΨ at two different points. Refs. [213, 217] demonstrated that, if both sets
of terms are expanded to the same order, the LPT results are identical to those obtained in
SPT for both power spectrum and bispectrum. However Ref. [213] found that, for large
separations, the terms depending on ΨΨΨ at one point are much larger than those depending
on ΨΨΨ at two points, so that the first set of terms should be kept as it is, and only the second
set should be expanded. This renormalised approach is called renormalised Lagrangian
perturbation theory, RLPT.

In order to derive explicit expressions for the matter power spectrum and bispectrum,
we need to expand the displacement field as a function of the matter overdensity δ . The
displacement field follows the equation of motion:

d2ΨΨΨ

dt2 +2H
dΨΨΨ

dt
=−∇xφ [q+ΨΨΨ(q)] , (5.125)

where φ is the gravitational potential. The polyspectra of ΨΨΨ can be calculated by expanding
it as a series of the density field:

ΨΨΨ
(n)(p) =

iDn

n!

∫ d3 p1

(2π)3 ...
d3 pn

(2π)3 δD

(
n

∑
j=1

p j −p

)
L(n)(p1, ...,pn)δ1(p1)...δ1(pn) , (5.126)

where δ1 indicates the linear density perturbation at present times, and the perturbative kernels
L(n) are the analogues of the SPT kernels Fn,Gn, and are also obtained from a recursion
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relation [189]. As before, the growth rate Dn is only approximate in a non-Einstein-de Sitter
Universe.

This expansion leads to the RLPT power spectrum [213], and to the bispectrum [217]:

PRLPT(k) = exp
[
− k2

6π2

∫
d pPlin(p)

]
×
[

Plin(k)+PSPT
1-loop(k)+

k2

6π2 Plin(k)
∫

d pPlin(p)
]
, (5.127)

BRLPT(k1,k2,k3) = exp
[
−k2

1 + k2
2 + k2

3
12π2

∫
d pPlin(p)

]
×
[

BSPT
tree +BSPT

1-loop +
k2

1 + k2
2 + k2

3
12π2 BSPT

tree

∫
d pPlin(p)

]
, (5.128)

where PSPT
1-loop is the one-loop SPT term (without the tree-level term). From Eqs. (5.127,

5.128) it is evident that the RLPT power spectrum and bispectrum reduce back to SPT if
the exponential prefactor is expanded to first order. Furthermore, this prefactor is similar to
the RPT results: in both cases, the theory decays rapidly to zero outside its range of validity.
Thus this method is not expected to yield realistic predictions in the fully non-linear regime
where the exponential cut-off dominates, but only on quasi-linear scales.

5.2.5 Nine-parameter model

The tree-level prediction is the simplest model for the bispectrum. As its simpler counterpart,
the linear power spectrum, it is only accurate for very low values of the wavevectors. One
very simple improvement to this would be to substitute the linear with the non-linear power
spectrum in Eq. (5.46) and another one is to modify the kernel F(s)

2 in order to better fit
simulations to Feff

2 . This idea has been proposed in Ref. [266] and here we discuss a more
elaborate version of it, which fits the simulation even better, from Ref. [267]. The bispectrum
in this theory can then be expressed as

B9-parameter (k1,k2,k3) = PNL (k1,z)PNL (k2,z)Feff
2 (k1,k2)+2 permutations . (5.129)

Each of the three terms of the kernel (5.30) is modified with a function, as follows:
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Feff
2 (q1,q2) =

5
7

a(n1,k1)a(n2,k2)+
1
2

q1 ·q2
q1q2

(
q1

q2
+

q2

q1

)
b(n1,k1)b(n2,k2)

+
2
7
(q1 ·q2)

2

q2
1q2

2
c(n1,k1)c(n2,k2) . (5.130)

The functions a(n,k), b(n,k), c(n,k) below can be expressed in terms of 9 coefficients that
are determined numerically (a1, · · ·an):

a(n,k) =
1+σ

a6
8 (z)[0.7Q3(n)]1/2(qa1)

n+a2

1+(qa1)n+a2
, (5.131)

b(n,k) =
1+0.2a3(n+3)(qa7)

n+3+a8

1+(qa7)n+3.5+a8
, (5.132)

c(n,k) =
1+4.5a4/[1.5+(n+3)4](qa5)

n+3+a9

1+(qa5)n+3.5+a9
. (5.133)

The functions n(k), Q3(n) and q are defined as:

n(k) =
d logPlin(k)

d logk
, (5.134)

Q3(n) =
4−2n

1+2n+1 , (5.135)

q =
k

kNL
, (5.136)

where kNL is the nonlinear scale defined as the solution to the equation:

k3
NLPlin(kNL) = 2π

2 . (5.137)

The parameters have been calibrated to give a maximum of 10% error in the matter bispectrum
for z ∈ [0,1.5] and k ≤ 0.4h/Mpc and they are: a1 = 0.484, a2 = 3.740, a3 = −0.849,
a4 = 0.392, a5 = 1.013, a6 =−0.575, a7 = 0.128, a8 =−0.722 and a9 =−0.926.
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5.3 Phenomenological halo models

5.3.1 Standard halo model

The halo model of large-scale structure is a relatively simple phenomenological model for
describing the non-linear distribution of dark matter. It assumes that the dark matter in the
Universe is clustered into dense regions called halos. This model allows us to describe the
n-point correlation functions of LSS. A comprehensive review of the halo model can be found
in Ref. [232]. The first use of a similar model was in Ref. [268], where the authors were
interested in the distribution of galaxies. The linear and mildly non-linear scales have so far
been successfully described by perturbative-type approaches, but using such methods to go
further into the non-linear regime has proved to be difficult, as standard perturbation theory
breaks down after a certain scale. The halo model goes further into the non-linear regime
than the perturbative approaches because it models the physical phenomena happening on
those scales rather than just solving the equations.

The halo model can also be used in structure formation models, as the dark matter halos
could be the seeds of galaxy creation [229, 269].

In order to describe the correlation functions using this model, one has first to describe the
basic properties of the halos. One starts by assuming that all the dark matter of the Universe
is contained in one of the halos. Non-linear objects are assumed to have been created by
spherical collapse. The spherical collapse model was first discussed in Ref. [270]. The model
assumes that initially overdense regions of the Universe become less and less dense due to
the expansion of the Universe until a point where they collapse due to gravitational instability.
The object virialises to a sphere of radius Rv, which is non-zero. Moreover, the virialised
halos are ∆v times denser than the background and hence, in terms of this parameter, the halo
mass can be expressed as

m =
4π

3
R3

v∆vρ̄. (5.138)

If the object collapses today, it must have had a critical value of the overdensity,

δsc =
3
5

(
3π

2

)2/3

. (5.139)

By denoting the number density of halos at mass m and redshift z with n(m,z) and the
background density of the Universe with ρ̄ , the halo density is expressed in terms of a new



128 Perturbative and Halo Models for the Large Scale Structure of the Universe

variable ν , called the peak height, as [229, 271]:

m
ρ̄

n(m,z)dm = f (ν)dν , (5.140)

where the function f is a universal function, (i.e. independent of redshift) and ν is defined in
Eq. (5.144) below.

The function f is chosen in order to fit simulations. We will describe here the Sheth-
Tormen [272] & Tinker [273, 274] functions.

In order to define the peak height in terms of the halo mass, the Fourier transform of the
top-hat filter and the variance of the linear power spectrum are required:

W (x) =
3(sin(x)− xcos(x))

x3 , (5.141)

σ
2 (m,z) =

∫
∞

0

dk
2π2 k2W 2 (kR)D2 (z)Plin (k) . (5.142)

The radius R is the radius of a sphere of mass m and uniform density ρ̄: R =
(

3m
4πρ̄

) 1
3 , D(z)

is the growth function normalised to 1 today and Plin (k) is the linear power spectrum of
fluctuations today such that the linear power spectrum at redshift z is

Plin (k,z) = D2 (z)Plin (k) . (5.143)

The peak function is then expressed as

ν =
δ 2

sc
σ2 (m,z)

. (5.144)

The internal structure of halos has been extensively studied. A widely used halo profile
is the Navarro-Frenk-White (NFW) profile [275], which can be expressed in terms of two
parameters, ρs(m) and rs(m), and has the following expression:

ρ (r|m) =
ρs(

r
rs

)(
1+ r

rs

)2 . (5.145)

In terms of this density, the halo mass can be expressed as

m =
∫ Rv

0
4πr2

ρ (r|m) . (5.146)
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Defining a further quantity, the concentration parameter c(m) = Rv
rs

, for the NFW profile the
mass can be re-expressed as

m = 4πρsr3
s

[
log(1+ c)− 1

1+ c

]
. (5.147)

Hence, ρs and rs can now be specified in terms of the concentration parameter and the
overdensity parameter and only the concentration parameter needs to be specified:

ρs =
1
3

∆vρ̄
c3

log(1+ c)− 1
1+c

, (5.148)

rs =

(
3m

4πc(m)3∆vρ̄

)1/3

. (5.149)

The concentration parameter can be defined using a fitting function obtained from the Bolshoi
simulation [276, 277], where M⊙ is the Solar mass:

c(m,z) = 9.2κ (z)D(z)1.3
(

m
1012h−1M⊙

)−0.09

×[
1+0.013

(
m

1012h−1M⊙
D(z)−

1.3
0.09

)0.25
]
, (5.150)

with κ (z) = 1.26 at z = 0 and κ (z) = 0.96 at z ≥ 1. The final ingredient required is the
normalised Fourier transform of the dark matter distribution. In the case of a spherically
symmetric halo, this has the expression

u(k|m) =
∫ Rv

0
dr4πr2 sin(kr)

kr
ρ (r|m)

m
. (5.151)

In the case of the NFW profile (Eq. 5.145), the integral can be calculated analytically yielding

u(k|m) =
4πρsr3

s
m

{sin(krs) [Si((1+ c)krs)−Si(krs)]−
sin(krs)

(1+ c)krs
+ cos(krs) [Ci((1+ c)krs)−Ci(krs)]

}
, (5.152)
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where Si(x) and Ci(x) are the sine and cosine integral functions defined by:

Si(x) =
∫ x

0

sin(t)
t

dt , (5.153)

Ci(x) =−
∫

∞

x

cos(t)
t

dt . (5.154)

The overdensity of halos, denoted δh is only equal to the matter overdensity δ as a zeroth
order approximation. In order to have a more accurate relation between the two quantities,
one must expand δh in terms of powers of δ using perturbation theory:

δh (m,z) = ∑
i>0

bi (m,z)
i!

δ
i . (5.155)

The coefficients bi in front of the powers of δ are called bias coefficients. As this is a Taylor
series in δ , it is expected to be accurate only on large scales.

These expressions assume Gaussian initial conditions. If primordial non-Gaussianity
is considered, the bias coefficients will also depend on the scale k. This expansion can be
plugged back into the expression of the density field,

ρ = ρ̄ (1+δ ) =
∫

dmmn(m) [1+δh (m)] =
∫

dmmn(m)

[
1+∑

i>0

bi (m)

i!
δ

i (m)

]
.

(5.156)

Identifying coefficients in the integral expressions, the following consistency conditions are
obtained: ∫

dm
m
ρ̄

n(m) = 1 , (5.157)∫
dm

m
ρ̄

n(m)b1 (m) =
∫

dν f (ν)b1 (ν) = 1 , (5.158)∫
dm

m
ρ̄

n(m)bi (m) =
∫

dν f (ν)bi (ν) = 0 (5.159)

for all i > 1.

Sheth-Tormen mass function

The function from Ref. [272] gives a good fit with simulations of gravitational clustering,
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f (ν) = A(p)
(

1+
(
qν

2)−p
)√qν2

2π
exp
(
−qν

2/2
)

(5.160)

and ∆v depends weakly on the cosmology through the parameter Ω(z) = Ωc(1+z)3

Ωc(1+z)3+ΩΛ

, with
Ωc the density of CDM and baryons today and ΩΛ the dark energy density [278, 279]. Then,

∆v =
18π2 +82(Ω(z)−1)−39(Ω(z)−1)2

Ω(z)
. (5.161)

The 3 parameters are chosen in order to fit simulations [280]: p = 0.3, A(p) = 0.3222,
q = 0.75.

In terms of the variable ν and the coefficients defined earlier in this subchapter (p, q), the
first two bias coefficients are [272, 281, 282]:

b1 (ν) = 1+
qν2 −1

δsc
+

2p
δsc
(
1+(qν2)

p) , (5.162)

b2 (ν) =
8

21
[b1 (ν)−1]+

qν2

δsc

qν2 −3
δsc

+

(
1+2p

δsc
+2

qν2 −1
δsc

)
2p

δsc
(
1+(qν2)

p) .
(5.163)

Tinker mass function

The Tinker mass function can be expressed in terms of the variable ν as follows:

f (ν) = α

[
1+(βν)−2φ

]
ν

2η exp(−γν
2/2) , (5.164)

where ∆ = 200 and the coefficients β , γ , η and φ have the following redshift dependence:

β = β0(1+ z)0.20 , (5.165)

γ = γ0(1+ z)−0.01 , (5.166)

η = η0(1+ z)0.27 , (5.167)

φ = φ0(1+ z)−0.08 (5.168)

and α = 0.368, β0 = 0.589, γ0 = 0.864, η0 =−0.243 and φ0 =−0.729.

The first two bias coefficients are:

b1(ν) =
2φ

δ ((βν)2φ +1)
+

γν2 +δ −2η −1
δ

, (5.169)
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b2(ν) =
2
(
42γν2φ +8δφ −84ηφ +42φ 2 −21φ

)
21δ 2 ((βν)2φ +1)

+
21γ2ν4 +8γδν2 −84γην2 −63γν2

21δ 2 +
−16δη −8δ +84η2 +42η

21δ 2 . (5.170)

In the numerical implementation however, the normalisation conditions (5.157)-(5.159)
are not exactly satisfied, because in Eq. (5.140), n(m) ̸→ 0 as ν → 0. In practice this is not a
problem, since the halo masses won’t be anyway that small and hence the normalisation is
fixed by adding a numerical value to the smallest mass bin considered [283].

All these ingredients discussed so far can be used to calculate the correlation functions in
the halo model. In the case of the 2-point correlation function, the power spectrum can be
expressed in terms of 2 contributions, the 1-halo and 2-halo terms, which correspond to the
situations where the 2 points considered belong to the same halo (1-halo) and to different
halos (2-halo) respectively. Thus, the power spectrum can be expressed as

P(k) = P1h (k)+P2h (k) , (5.171)

with the 1- and 2-halo contributions given by:

P1h (k,z) =
∫

dmn(m)

(
m
ρ̄

)2

u(k|m)2 , (5.172)

P2h (k,z) =
∫

dm1n(m1)

(
m1

ρ̄

)
u(k|m1)

∫
dm2n(m2)

(
m2

ρ̄

)
u(k|m2)Phh (k|m1,m2) ,

(5.173)

where the z-dependence in n and u is implicit and Phh is the halo-halo power spectrum, which
can be approximated at first order by:

Phh (k|m1,m2) = b1 (m1)b1 (m2)D2 (z)Plin (k) . (5.174)

Using Eqs. (5.173) and (5.174), the following expression is obtained for the 2-halo term:

P2h (k,z) =
[∫

dmn(m)

(
m
ρ̄

)
b1 (m,z)u(k|m)

]2

D2 (z)Plin (k) . (5.175)

For the bispectrum, the halo model consists of three contributions, corresponding to the
situations where the 3 points from the correlation function are all in the same halo (1-halo
term), 2 in one halo and one in another one (2-halo term) and all 3 in different halos (3-halo
term). Hence, the total bispectrum in this model, assuming no primordial non-Gaussianity
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becomes

B(k1,k2,k3) = B1h (k1,k2,k3)+B2h (k1,k2,k3)+B3h (k1,k2,k3) . (5.176)

All three contributions can be again described using the quantities defined earlier:

B1h (k1,k2,k3) =
∫

dmn(m)

(
m
ρ̄

)2 3

∏
i=1

u(ki|m) , (5.177)

B2h (k1,k2,k3) =

[∫
dm1n(m1)

(
m1

ρ̄

)
u(k1|m1)×∫

dm2n(m2)

(
m2

ρ̄

)2

u(k2|m2)u(k3|m2) Phh (k1|m1,m2)]+2 cyc. , (5.178)

B3h (k1,k2,k3) =
3

∏
i=1

[∫
dmin(mi)

(
mi

ρ̄

)2

u(ki|mi)

]
×
{

b1 (m1)b1 (m2)b1 (m3)D4 (z)Btree (k1,k2,k3,z = 0)+[
b1 (m1)b1 (m2)b2 (m3)D4 (z)Plin (k1)Plin (k2)

]
+2 cyc.

}
, (5.179)

where Btree is the tree-level bispectrum at z = 0 (defined in Subchapter 5.2.1).

5.3.2 Combined halo-PT model

When considering the large scale halo power spectrum, k → 0, it would be expected that
all the contribution would come from the 2-halo term (the points considered in the 2-point
correlation function are far apart, and hence they must be in different halos). Indeed,

lim
k→0

u(k|m) = 1 . (5.180)

Using Eq. (5.175) and the normalisation condition (5.158),

lim
k→0

P2h (k,z) = D2 (z)Plin (k) , (5.181)

as expected. However, from Eq. (5.172),

lim
k→0

P1h (k,z) =
∫

dmn(m)

(
m
ρ̄

)2

̸= 0 . (5.182)

This same phenomenon happens in the 1- and 2-halo bispectra, while the 3-halo bispectrum
matches the tree-level one on large scales. This shows that the power spectrum and bispectrum
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in the standard halo model is overestimated on linear scales. This is not satisfactory, since it
is known that on very large scales the linear power spectrum and the tree-level bispectrum
should be very accurate. This problem has been discussed in the literature: [232, 284, 285]
and various solutions to it have been proposed: [205, 232–234, 237]. The solution from Refs.
[233, 234] is described in this subchapter and its consequences are predicted.

It has been shown that the halo model matches simulations well at higher wavenumbers
than perturbative methods for the power spectrum [232, 237, 286, 287]. Based on the
observations of the above paragraph and the fact that perturbative methods work very well
exactly at small wavenumbers, the authors of Refs. [233, 234] have presented a method to
combine the perturbative and halo methods such that the combined theory would take the
best of the perturbative theory (large scales) and halo model (mildly non-linear scales).

Working in a Lagrangian formalism, a particle trajectory is defined as x(q, t), where q is
the initial Lagrangian coordinate. Then the power spectrum can be expressed as [264, 288]:

P(k) =
∫

d3q⟨eik·∆x − eik·q⟩ , (5.183)

where
∆x = x(q)−x(0) (5.184)

and ⟨· · · ⟩ represents statistical average.

The probability that a particle q1 belongs to a halo with mass in [m,m+dm] is

dF = f (ν)dν . (5.185)

Assuming that qm is the Lagrangian radius of a halo with density ρ̄ and mass m, the probability
that a particle q2, at a distance q = |q2 −q1| is situated in the same halo can be expressed as

Fm(q) =


(2qm−q)2(4qm+q)

16q3
m

if 0 ≤ q ≤ 2qm

0 if q > qm

.

Then the probability that the pair [q1,q2] belongs to a single halo is

F1H (q) =
∫

∞

νq/2

dν f (ν)Fm (q) , (5.186)
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where f is the Sheth-Tormen function (5.160). Therefore, the probability that the points
belong to different halos is

F2H (q) = 1−F1H (q) . (5.187)

Hence, the 1- and 2-halo contribution can be expressed as:

P1H (k) =
∫

d3qF1H(q)⟨eik·∆x − eik·q⟩1H , (5.188)

P2H (k) =
∫

d3qF2H(q)⟨eik·∆x − eik·q⟩2H , (5.189)

where in this case the averages are conditional on the fact that the set of points must be in
exactly one of the terms. The terms described in Eqs. (5.188)-(5.189) are the 1- and 2-halo
terms from the halo model (Subchapter 5.3.1). By thinking of the perturbative expansions
and of the expected physical behaviour of the 2 terms, F1H ≡ 0 on all levels of perturbation
theory. Hence F2H ≡ 1 and the 2-halo contribution is completely perturbative.

At a perturbative level, the function F2H(q) is approximated by a typical value F2H(
1
k )

and also the conditional average of the particles belonging to 2 halos is taken to be the value
of the functions evaluated in perturbation theory. Hence,

P2H new (k) = F2H (1/k)PPT (k) . (5.190)

For the 1-halo contribution, it is assumed that the halos are fully virialised, and hence

⟨eik·∆x⟩m = u(k|m)2 , (5.191)

with u(k|m) given in Eq. (5.151). Substituting back the result (5.191) into (5.188) and
changing the order of integration, the following expression is obtained:

P1h new (k) =
∫

dmn(m)

(
m
ρ̄

)2(
u(k|m)2 −W (kqm)

2
)
, (5.192)

where W (x) is the filter function defined in Eq. (5.141). This equation is very similar to
Eq. (5.172), with the difference that the integral over the filter function is subtracted. This
ensures that the 1-halo term would not contribute in the limit k → 0 and also that it tends to
P1h for larger k. The perturbative power spectrum in Eq. (5.190) can be any power spectrum
from perturbation theory. One can start by taking various perturbative methods like SPT and
EFT and check how the result is improved.
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This method can be expanded in a similar fashion to the bispectrum, though there are
some differences that arise [234]. As for the power spectrum, on very large scales the only
term that should contribute to the bispectrum is the 3-halo term. Hence, that is the only
perturbative contribution and the 1- and 2-halo terms are non-perturbative.

In the Lagrangian formalism, the 3-point correlation function is expressed as

⟨δ (k1)δ (k2)δ (k3)⟩= ⟨
∫

d3q1

∫
d3q2

∫
d3q3

3

∏
j=1

(
e−ik j·x j − e−ik j·q j

)
⟩ , (5.193)

which is then split into the 1- , 2- and 3-halo contributions. The 1-halo contribution can be
expressed as:

⟨δ (k1)δ (k2)δ (k3)⟩1H =
∫

d3qc
∫

dm
ρ̄

m
n(m)⟨

∫
Vm

3

∏
j=1

d3q j

(
e−ik j·x j − e−ik j·q j

)
⟩qc,m ,

(5.194)

where the average is conditional on the three particle positions corresponding to wavevectors
k j belonging to the same halo of centre qc, mass m and Lagrangian volume Vm. By denoting
the displacement of the centre of mass of the halo with Ψc = xc−qc, the 1-halo term becomes

⟨δ (k1)δ (k2)δ (k3)⟩1H =
∫

d3qc
∫

dm
ρ̄

m
n(m)

(
m
ρ̄

)3

×

e−i(k1+k2+k3)·qc
3

∏
j=1

d3q j

(
e−ik j·Ψc

u
(
k j|m

)
−W (k jqm)

)
. (5.195)

By performing the integration over qc and by neglecting the displacement of the halos
(Ψc = 0), the 1-halo bispectrum becomes:

B1h (k1,k2,k3) =
∫

dmn(m)

(
m
ρ̄

)3 3

∏
i=1

[u(ki|m)−W (kiqm)] . (5.196)

This function has the correct behaviour on large scales.
For the 2-halo bispectrum, proceeding in a similar fashion the following expression is

obtained:
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B2h (k1,k2,k3) =

[∫
dm1n(m1)×

(
m1

ρ̄

)
[u(k1|m1)−W (k1qm1)]

∫
dm2n(m2)×(

m2

ρ̄

)2

[u(k2|m2)−W (k2qm2)] [u(k3|m2)−W (k3qm3)]Phh (k1|m1,m2)]+2 cyc . (5.197)

This result is however not satisfactory, because it scales as k2
1P(k1) as k1 → 0 and a scaling

P(k1) was expected. It means that the approximation Ψc = 0 is not good enough. An
approximation that scales in the correct fashion has been proposed, by taking the biases to
b1 (m) = 1 and by removing the first bracket of u(k1|m1)−W (k1qm1). Hence,

Phh (k|m1,m2)≈ Plin (k) (5.198)

and the 2-halo term becomes

B2h new (k1,k2,k3) =Plin(k1)
∫

dmn(m)

(
m
ρ̄

)2

[u(k2|m)−W (k2qm)]

× [u(k3|m)−W (k3qm)]+2 cyc . (5.199)

As previously discussed, the 3-halo bispectrum is obtained by a perturbative approach. In
a similar fashion to the 2-halo power spectrum, this contribution should match the tree-level
bispectrum on very large scales. The probability that the 3 wavevectors belong to different
halos can be approximated by

F3H (k1,k2,k3) =
∫

νk1

0
dν1

∫
νk1

0
dν3

∫
νk1

0
dν3 f (ν1) f (ν2) f (ν3) . (5.200)

This new model for the bispectrum is expected to work better than the standard halo
model and also than the perturbative approaches on the scales of interest.





CHAPTER 6

COMPARISON BETWEEN THEORETICAL LARGE SCALE

STRUCTURE BISPECTRUM MODELS AND N-BODY

SIMULATIONS

6.1 Introduction and correlators

6.1.1 Shape and amplitude correlators

In order to compare the observed or simulated bispectra with the corresponding theoretical
predictions, we define the signal-to-noise weighted scalar product between two bispectrum
shapes i and j [244, 289]:

⟨Bi,B j⟩ ≡
V
π

∫
VB

dVk
k1k2k3 Bi(k1,k2,k3)B j(k1,k2,k3)

P(k1)P(k2)P(k3)
, (6.1)

where the integration domain VB is the tetrahedral region of volume V satisfying the triangle
condition on the wavenumbers k1, k2 and k3 (such that k1 +k2 +k3 = 0), together with a
chosen resolution limit k1,k2,k3 < kmax. The bispectrum domain is the union of a tetrahedron
with a triangular pyramid on top (denoted the ‘tetrapyd’) and is illustrated in Fig. 6.1. The
inner product Eq. (6.1) provides a natural definition for the signal-to-noise (SN) weighted
bispectrum,

BSN
i (k1,k2,k3)≡

√
k1k2k3

P(k1)P(k2)P(k3)
Bi(k1,k2,k3) , (6.2)

where we use the measured (or HALOFIT) power spectrum PNL(k) for wavenumbers in
the quasilinear and nonlinear regimes (rather than the linear power spectrum Plin). The
SN-weighted bispectrum BSN

i is the relevant quantity observationally if the matter bispectrum
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k3

k2

k10

(0, kmax, kmax)

(kmax, 0, kmax)

(kmax, kmax, kmax)

(kmax, kmax, 0)

kmax

kmax

Fig. 6.1 The tetrapyd bispectrum domain consists of a tetrahedral region (blue) defined by
the wavevector triangle condition in Eq. (5.41), together with a pyramidal region (green)
bounded by the resolution limit kmax. For the autocorrelator bispectrum this has a sixfold
symmetry, so to illustrate the internal structure of the bispectrum (equilateral limit) we will
split the tetrapyd across the vertical plane given by the red-dashed lines, removing the front
half as shown in Fig. 6.2.

could be measured directly, providing optimal forecasts for an ideal survey (i.e. one without
experimental noise or systematics). To develop an intuitive understanding of the distinct
gravitational bispectrum contributions, we will plot the SN-weighted bispectrum in three
dimensions on half the tetrapyd domain as shown in Fig. 6.2. Although the full tetrapyd
has a sixfold symmetry for the isotropic bispectrum of Eq. (5.41), leaving this redundancy
allows us to view BSN

i from equilateral, flattened and squeezed limits simultaneously. (Future
work will include bispectrum cross-correlators, e.g., the matter-matter-halo bispectrum where
Fig. 6.2 shows the complete domain, as for recent CMB polarisation results [147].)

Based on the scalar product of Eq. (6.1), we define the shape correlator (or cosine) by:

S
(
Bi,B j

)
≡ ⟨Bi,B j⟩√

⟨Bi,Bi⟩⟨B j,B j⟩
, (6.3)

which is restricted to −1 ≤S ≤ 1. In the following, we will typically calculate the shape cor-
relators between theoretical and simulated bispectra, to which the shapes i, j will correspond
respectively.
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K=constant
cross-sectionk 1
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k 1
+k

2
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k 3
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= 
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Fig. 6.2 The split 3D tetrapyd region used to illustrate the SN-weighted bispectrum showing
only the back half with k1 < k2. Colour-coded regions show the location of the ‘squeezed’
(red), ‘flattened’ (green) and ‘equilateral’ or ‘constant’ (blue) shape signals. In the bispectrum
ansatz Eq. (6.9) the shape S(k1,k2,k3) is defined on the K ≡ k1 + k2 + k3 = const. cross-
sectional planes, while the scale-dependence f (K) is given along the dashed diagonal
k1 = k2 = k3.

In order to measure how well the magnitude of the theoretical bispectra i fit the (simulated)
data j, we define the amplitude correlator as:

A
(
Bi,B j

)
≡
√

⟨Bi,Bi⟩
⟨B j,B j⟩

. (6.4)

We can thus introduce a single quantity that combines the shape and amplitude information,
the total correlator, defined as:

T
(
Bi,B j

)
≡ 1−

√
⟨B j −Bi,B j −Bi⟩

⟨B j,B j⟩
(6.5)

= 1−
√

1−2S
(
Bi,B j

)
A
(
Bi,B j

)
+A 2

(
Bi,B j

)
. (6.6)

This total correlator offers an excellent means by which to determine the overall goodness of
fit as we essentially measure the magnitude of the residual Bi −B j relative to the measured
bispectrum |B j|. If Bi = B j, this is zero and the total correlator is T = 1. If Bi and B j are
misaligned (S < 1) or differ in amplitude (A ̸= 1), the residual Bi −B j is non-zero and
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the total correlator T < 1. For increasing relative bispectrum residual, the total correlator
always decreases. (Note that this is a more stringent test than the shape correlator of Eq. (6.3)
alone because S appears under a square root in Eq. (6.6)).

It is possible to relate the total correlator T to the χ2 goodness of fit determined between
the theoretical bispectrum Bi and the estimated (or simulated) bispectrum B j, as [290]:

χ
2 = ∑

k1,k2,k3

[
B j(k1,k2,k3)−Bi(k1,k2,k3)

]2
var(Bi)

= ⟨B j −Bi, B j −Bi⟩ , (6.7)

so that χ2 and the total correlator T are simply linked by:

χ
2 =

[
1−T (Bi,B j)

]2 ⟨B j,B j⟩ . (6.8)

As we are using a small number of simulations of limited resolution, in the following we
will consider the total correlator T together with its uncertainty as a measurement of the
goodness of fit of each model. In principle, the use of χ2/d.o.f. may be more suitable than
T to distinguish overfitting (χ2/d.o.f. < 1) from poor model performance (χ2/d.o.f. > 1).
However, our focus here is to determine the kmax at which the model starts to become a poor
description of our present simulations, which corresponds to the kmax where T becomes
significantly smaller than unity (given the estimated errors between simulations).

The three correlators here, S , A and T , are all cumulative functions of kmax, which is
the resolution cut-off used in the scalar product of Eq. (6.1). We therefore obtain an overall
integrated measure of how well a particular theory matches simulations (or observations) up
to kmax.

6.1.2 Three canonical shape functions

We are able to obtain an accurate global description of the non-linear gravitational bispectrum
from a sum over a limited number of simple bispectrum shapes, provided that we have the
flexibility to modify an overall scale-dependent amplitude. For this reason, we consider the
following non-trivial bispectrum ansatz:

B(k1,k2,k3) = f (K)S(k1,k2,k3) , (6.9)
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where K ≡ k1+k2+k3, and the ‘shape function’ S is taken, in turn, to be a separable function
of the form

S(k1,k2,k3) = A(k1)B(k2)C(k3)+perms . (6.10)

This separation between transverse K = const. slices and the K-dependent diagonal is illus-
trated in Fig. 6.2.

The separable ansatz (Eq. 6.9) is motivated in part by comparison with primordial non-
Gaussian models, for which we define the shape function S by taking out an overall scaling
(k1k2k3)

−2 after which S is (almost) scale-invariant, that is, independent of the summed
wavenumber K along the tetrapyd diagonal. For this reason, most primordial bispectra
depend only on the two degrees of freedom transverse to the diagonal and can be completely
defined by the shape S on the triangular surface K = const.

At late times, this simple separation of variables (Eq. 6.9) may not apply accurately
because of the scale-dependent transfer functions, which means that perturbations with
different wavenumbers ki receive different amplifications. Nevertheless, this is encoded in
the turnover of the late-time linear matter power spectrum Plin(k), which can still be used
to create a separable (though scale-dependent) ‘shape function’, e.g. as we will see for the
tree-level gravitational bispectrum. For this reason, the separable description (Eq. 6.9) can
still prove very useful if physically well-motivated shapes S(k1,k2,k3) are chosen and an
overall scaling dependence f (K) is allowed.

The three basic separable bispectrum shape functions S(k1,k2,k3) we shall employ are
the constant shape [291], the squeezed (or local) shape [146, 292, 293] and the tree-level (or
flattened) shape from standard perturbation theory discussed earlier. These three functions are
essentially weighting functions for specific triangular configurations, that is, constant treats
all triangles equally across the tetrapyd, squeezed favours those along the edges, and flattened
those near the faces, as illustrated in Fig. 6.2 (qualitatively encompassing the commonly
discussed equilateral, local and orthogonal shapes respectively). The constant shape is simply
given by

Sconst(k1,k2,k3) = 1(Mpc/h)6. (6.11)

Physically, the constant bispectrum is produced by a random set of point sources, together
with an appropriate scaling dependence f (K). It is our first approximation to the bispectrum
of the non-linear virialised end products of gravitational collapse assumed in halo models,
with a SN-weighted version illustrated in Fig. 6.3(a).
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(a) (b)

Fig. 6.3 (a) The SN-weighted ‘constant’ bispectrum of Eq. (6.11) with a broadly equilateral
signal shown together with (b) the ‘squeezed’ or local model (Eq. 6.12) with high signal at
the edges near ki ≈ 0 (shown at redshift z = 0). Note that the plotted ‘constant’ bispectrum
does not have a constant cross-sectional shape because of the non-uniform signal-to-noise
weighting (Eq. 6.2) particularly near the edges; here Sconst. in Eq. (6.11) is multiplied by
f (K) = K3 (the colour scale is normalised).

The second shape is ‘squeezed’ and we shall define it as

Ssqueez (k1,k2,k3) =
1
3 [Plin(k1)Plin(k2)+Plin(k2)Plin(k3)+Plin(k3)Plin(k1)] , (6.12)

which incorporates the scale dependence of the transfer functions within the linear power
spectrum Plin(k). It is illustrated in Fig. 6.3(b). This squeezed shape is motivated by ‘local’
non-Gaussianity in which perturbation fields are simply squared, and where the leading
contribution has a large wavelength mode affecting non-linearity on small scales (i.e., for
‘squeezed’ triangles with k1 ≪ k2,k3). However, Eq. (6.12) regularises the related scale-
invariant primordial local shape,

Slocal (k1,k2,k3) =
1
3

(
k2

1
k2k3

+
k2

2
k3k1

+
k2

3
k1k2

)
, (6.13)

which behaves poorly because it diverges for very squeezed triangles.

Finally, the third flattened shape is the tree-level gravitational bispectrum given by [186]

Stree(k1,k2,k3) = 2Plin(k1)Plin(k2)F
(s)
2 (k1,k2)+2 perms. , (6.14)
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(a) (b)

Fig. 6.4 Flattened shapes: (a) The SN-weighted tree-level bispectrum of Eq. (6.14) compared
with (b) the nonlinear tree-level model (Eq. 6.15), both shown at redshift z = 2. Note that this
flattened shape is dominated by signal on the outer tetrapyd face (front left) where k1+k2 ≈ k3
(see Fig. 6.2 for the geometry). The nonlinear tree-level amplitude is substantially higher
than the tree-level, but they share an excellent binned shape correlation (Eq. 6.17), which
always remains above 99%.

where the kernel F(s)
2 is defined in Eq. (5.30), which, although not immediately apparent,

is also a separable shape of the form of Eq. (6.10). Eq. (6.14) represents the leading-order
gravitational non-Gaussianity generated by non-linear terms in the equations of motion. As
we shall see, the scaling dependence f (K) in Eq. (6.9) allows us to approximately incorporate
higher-order perturbative corrections. However, the actual gravitational bispectrum is more
closely approximated if the tree-level shape (Eq. 6.14) is modified by employing the non-
linear power spectrum [266], given by the HALOFIT method [237, 238]:

StreeNL(k1,k2,k3) = 2PNL(k1)PNL(k2)F
(s)
2 (k1,k2)+2 perms. . (6.15)

For this reason, we will generally employ this improved flattened bispectrum as the third
shape in our subsequent modelling. Both the tree-level (Eq. 6.14) and the nonlinear tree-level
(Eq. 6.15) shapes are illustrated in Fig. 6.4.
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6.1.3 Scale-dependent or ‘sliced’ correlators

Having given the key shapes Si that we will use to describe gravitational non-Gaussianity
using the separable ansatz Eq. (6.9), we must also define a scale-dependent correlator that
can be used to test the accuracy of this approximation. To determine this we need a more
‘localised’, binned (or ‘sliced’) correlator, which only integrates over the transverse degrees
of freedom on the K = constant surfaces, modifying Eq. (6.1) to have the restricted domain
of integration,

⟨Bi,B j⟩S
K ≡ V

π

∫
∆VB

dVk
k1k2k3Bi(k1,k2,k3)B j(k1,k2,k3)

Pδ (k1)Pδ (k2)Pδ (k3)
, (6.16)

such that the integral is now evaluated in a specific thin slice of the tetrahedron with

K < k1 + k2 + k3 < K +∆K ,

and where the index ‘S’ denotes slice. Substituting the localised inner product definitions in
the correlators Eq. (6.3-6.6), this allows us to define the sliced correlators S S, A S and T S;
for example, the binned shape correlator becomes

S S(K)≡ ⟨Bi,B j⟩S
K√

⟨Bi,Bi⟩S
K⟨B j,B j⟩S

K

. (6.17)

Importantly, if we find a good binned shape correlation SS(K)≈ 1 between our target model
(or simulation) and the canonical shapes above (Eqs. 6.11, 6.12, 6.14), then we can use the
binned amplitude correlation T S to determine the overall scale-dependence f (K) in our
separable ansatz of Eq. (6.9). Later in Subchapter 6.4 we will combine these in a “three-
shape benchmark” model and establish that it can achieve an excellent fit to simulations, thus
dramatically reducing the number of degrees of freedom required to accurately describe the
matter bispectrum.

6.2 Shapes of the theoretical models

6.2.1 Shapes of the perturbative bispectrum models

We conclude this subchapter by describing the shapes of the various terms appearing in
the different perturbative approaches using the binned shape correlator S S, defined on
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K = const. slices in Eq. (6.16). We determine S S for each perturbative model against the
tree-level, squeezed and constant shapes in Subchapter 6.1.2. The results of this comparison
are illustrated in Fig. 6.5. In the SPT and EFT bispectra, the tree-level term is always present,
and so inevitably the ‘flat’ tree-level shape dominates the large-scale results. For this reason,
we restrict our attention to an analysis of the one-loop SPT terms and EFT counterterms
separately, in order to achieve a better understanding of the underlying shape corrections.
This also simplifies the figures, because in this way there is no mixture of different powers of
the growth factor and it is sufficient to test the shapes of these terms at z = 0. The left panel of
Fig. 6.5 shows the shape correlators in scale-invariant slices of K ≡ k1 + k2 + k3 = constant
for the sum of the positive one-loop terms of SPT (thick lines) and the negative contributions
(thin lines). The central panel represents the EFT counterterm for the tree level, −Bcs , and
the right panel shows the shapes of the MPTBREEZE bispectrum. Figure 6.5 shows strong
correlations with the tree-level shape in the range 0.1h/Mpc < k < 0.5h/Mpc and beyond,
with only the exponential cut-off in the MPTBREEZE affecting the correlation.
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Fig. 6.5 Shapes of the perturbation theory bispectra. For each of the theoretical bispectra
considered, we show the shape correlators in k slices S S (Eq. 6.16) with respect to the
constant, squeezed and tree-level shapes (Eqs. 6.11-6.14). The left panel shows the one-loop
SPT shape correlators, the central panel shows the EFT counterterm (−Bcs) shapes, and the
right panel refers to the MPTBREEZE one-loop shapes. All panels refer to z = 0. In the case
of SPT (left), the thick lines represent the sum of the positive terms of the one-loop expansion
(B222 and B(I)

321), while the thin lines refer to the sum of the negative terms (B(II)
321 and B411).

Since the tree-level shape correlator is so dominant with respect to the others, we conclude
that the perturbative approaches are indistinguishable in shape from the tree-level shape
Eq. (6.14) in each scale-invariant K-bin. This is for the relevant range of scales probed by
this analysis, with the possible exception of some small deviations appearing in the one-loop
SPT terms at small k. Overall, Fig. 6.5 implies these one-loop correction terms are not
adding any qualitatively new shape degrees of freedom, thus perturbative methods can be
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well-approximated in terms of the tree-level shape using the separable ansatz:

BPT(k1,k2,k3) = f (K)Stree(k1,k2,k3) , (6.18)

where K = k1 + k2 + k3 and f (K) is an appropriate scale-dependent function defined in
Eq. (6.9). We will use this result in the construction of the phenomenological benchmark
model in Subchapter 6.3 below.

6.2.2 Halo model shapes

By analogy with the shape investigation of perturbation theory bispectra we described in
Subchapter 6.2.1, we characterise here the shapes of the distinct halo model contributions,
each of which has been evaluated numerically for a specific set of cosmological parameters
(see Subchapter 6.3). In Fig. 6.6 we show the binned shape correlator results S S (Eq. 6.16),
by projecting the three halo model bispectrum components onto the canonical constant,
squeezed and tree-level shapes (Eqs. 6.11-6.14), defined on slices of K = k1 + k2 + k3 =

constant, for redshifts z = {0,2}. The respective panels of Fig. 6.6 showing the one-, two-,
and three-halo terms demonstrate that they are maximally correlated with the constant,
squeezed, and tree-level shapes respectively, on all scales, and independently of redshift. This
clear observation confirms the accuracy of the separable ansatz (Eq. 6.9) and the completeness
of our canonical three shapes (Eqs. 6.11-6.14) when characterising the degrees of freedom
needed to describe the standard halo bispectrum. This motivates us to find simple fitting
functions fi(K) for each of the three halo model components.

One-halo term

Given the excellent shape correlation between the one-halo bispectrum (Eq. 5.177) and
the constant shape (Eq. 6.11) that we observe in Fig. 6.6, we note that this term can be
approximated by:

B1h(k1,k2,k3) = f1h(K)Sconst(k1,k2,k3) , (6.19)

where K ≡ k1 + k2 + k3. Because of the constant cross-sectional form of Eq. (6.19), without
loss of generality we can focus exclusively on the equilateral case to find a good fit. In Fig. 6.7
(top panel) we illustrate the equilateral one-halo bispectrum obtained from Eq. (5.177) at
z = {0,1,2,3}, compared with the following square-Lorentzian fitting function we introduce:

f1h(K) =
A

[1+bK2]
2 , (6.20)
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Fig. 6.6 Shapes of the halo model bispectrum. We show the correlation of the three compo-
nents of the halo model with the constant, squeezed and tree-level shapes at redshifts z = 0
(upper panels) and z = 2 (lower panels). The left panels show that the one-halo term has a
constant shape (Eq. 6.11), the central panels demonstrate that the two-halo term is nearly
fully correlated with the squeezed shape (Eq. 6.12), and the right panels indicate that the
three-halo term has the same shape as the tree-level bispectrum (Eq. 6.14). These results
hold independent of scale and redshift.

where A and b are functions of redshift z through the perturbation growth factor D(z). We
first fit A,b for each redshift separately, and then we obtain two overall redshift-dependent
fitting functions, taking account of the growth factors in the following form:

A =
2.45×106 D(z)8

0.8+0.2D(z)−3 (6.21)

b = 0.054D(z)2.2 h−2Mpc2 . (6.22)

We can see in Fig. 6.7 (top panel) for the equilateral case, and in Fig. 6.8 over the full 3D
domain that this is a good approximation of the full one-halo term.

While this phenomenological fit may not be particularly well-motivated physically, it
does illustrate that once the one-halo shape has been identified, then a relatively simple
combination of growth factors can be used to describe the scale-dependent amplitude for the
relevant wavenumber range around K ∼ 1h/Mpc. Alternatively, it is sufficient to model the
one-halo bispectrum directly by evaluating Eq. (5.177) for equilateral values only k1 = k2 = k3.
More significantly, knowing empirically that ansatzes like Eq. (6.20) are accurate may
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Fig. 6.7 Equilateral one-halo (top panel) and two-halo (bottom panel) bispectra at z =
{0,1,2,3} (solid lines, from top to bottom), compared with the corresponding fitting function
from Eqs. (6.20, 6.24) (dashed lines). The dotted lines refer to the corrected two-halo fitting
function of Eq. (6.25).

offer insight which leads to a much simpler mathematical derivation of the individual halo
contributions.

Two-halo term

As seen in Fig. 6.6, the two-halo bispectrum (Eq. 5.178) is strongly correlated on all K = const.
slices with the squeezed shape Ssqueez(k1,k2,k3) constructed from products of the power
spectrum defined in Eq. (6.12). This means that we can write:

B2h(k1,k2,k3) = f2h(K)Ssqueez(k1,k2,k3) . (6.23)

In order to obtain a phenomenological fit, we consider again the equilateral configuration,
which we show in Fig. 6.7 (bottom panel). From this simple analysis, we find that a useful
fitting function valid for the redshift range considered is:

f2h(K) =
155

1+26.2h2Mpc−2 D(z)−8/3 K−2
, (6.24)
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(a) (b)

Fig. 6.8 The SN-weighted one-halo bispectrum of Eq. (5.177) (upper panel) compared at
z = 0 with the one-halo constant shape ansatz of Eq. (6.19) with scale-dependence f1h(K)
given by Eqs. (6.20, 6.22) (lower panel). This fit is visually hard to distinguish reflecting
the high total correlation achieved over all lengthscales (and redshifts). The cross-sectional
shape does not appear constant because of the SN-weighting (Eq. 6.1).

where it should be noted that the squeezed shape form already includes a D4(z) redshift
dependence from the linear power spectrum in Eq. (6.12).

However, as discussed above in Subchapter 5.3.2, the standard two-halo term causes
some large-scale power excess in the full bispectrum, because it does not decay appropriately
as k → 0; thus the full bispectrum does not recover the tree-level form on large scales. We
can modify our fitting function in order to solve this issue, by considering the functional
form:

f2h(K) =
C

(1+DK−1)3 . (6.25)

This function is chosen to decay more rapidly on very large scales, as in that regime there
should be no contribution from the two-halo term. By fitting the full two-halo term at
different redshifts and considering the halo-PT VN-model, we obtain:

C = 240 (6.26)

D = 2.5hMpc−1 D(z)−4/3 . (6.27)
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Fig. 6.9 The SN-weighted two-halo bispectrum of Eq. (5.178) at z = 0, showing the strongly
squeezed signal. Like the one-halo bispectrum shown in Fig. 6.8, an excellent fit to this
model can be obtained with the separable ansatz of Eq. (6.23) using the standard ‘squeezed’
shape (Eq. 6.12).

We can see in Fig. 6.7 (bottom panel) for the equilateral case, and in Fig. 6.9 over the full
3D domain that this is a good approximation of the two-halo bispectrum term.

Nevertheless, despite this improvement at z = 0 as k → 0 we will show later that the two-
halo model does not predict the appropriate growth rates at redshifts z > 0 when compared to
simulations.

Three-halo term

The three-halo term (Eq. 5.179) has a good shape correlation with the tree-level bispectrum
(Eq. 6.14), because it is essentially constructed out of this solution or its one-loop extensions,
all of which share the same highly-correlated flattened shape (as discussed in Subchap-
ter 6.2.1). Hence, as we have discussed previously, the three-halo term can be expressed
again with a simple fitting function (Eq. 6.18) using the tree-level shape Stree. The standard
halo model effectively identifies the three-halo term with the tree-level bispectrum so we can
take the fitting function to be unity. Extensions taking a perturbative result with one-loop
corrections can also be described at high accuracy with Eq. (6.18) but with non-trivial scaling
f (K) (e.g. to simplify the halo-PT VN-model which uses BEFT). Since the closely-related
nonlinear tree-level bispectrum StreeNL given in Eq. (6.15) provides a better approximation to
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the perturbative models, we can more conveniently use this as our base tree-level ansatz:

B3h(k1,k2,k3) = f3h(K)StreeNL(k1,k2,k3) . (6.28)

Both tree-level and non-linear tree-level shapes are plotted in Fig. 6.4. We will employ
Eq. (6.28) when developing the phenomenological three-shape model in Subchapter 6.3.

6.3 Polyspectra from simulations

6.3.1 N-body simulations

We use the N-body simulations with Gaussian initial conditions described in detail in
Ref. [242]. The simulations contain 5123 particles that are evolved from an initial redshift
of z = 49 until today using the N-body GADGET-3 code [294, 295]. The simulations are
run using a flat ΛCDM universe with the following WMAP7 [296] parameters: baryon
energy density Ωbh2 = 0.0226, dark matter energy density Ωch2 = 0.11, cosmological
constant energy density ΩΛ = 0.734, dimensionless Hubble constant h = 0.71, optical
depth τ = 0.088, amplitude of primordial perturbations ∆2

R(k0) = 2.43× 10−9 and scalar
spectral index ns(k0) = 0.963, where k0 = 0.002hMpc−1. We use simulations of three
different box sizes of 1600, 400 and 100 Mpc/h respectively; the first one has glass Gaussian
initial conditions and the other two have regular grid initial conditions. We denote the
simulations using their names from Ref. [242]: G512g, G512

400, G512
100. Given the fixed number of

particles, the three box sizes lead to the following wavenumber ranges: [0.0039,0.5]h/Mpc,
[0.016,2.0]h/Mpc and [0.062,8.0]h/Mpc respectively. For each box size, three independent
realisations are available.

We combine the power spectra and bispectra from the different simulation boxes as
follows. As it can be seen in Fig. 6 of Ref. [242], where the matter power spectra from
the three simulations considered are compared to the HALOFIT model, at any redshift
z > 0 the power spectrum of simulation G512g only follows the HALOFIT model up to
kmax ≃ 0.2h/Mpc; however, for k ≳ 0.1h/Mpc, the simulation G512

400 matches HALOFIT more
closely. The same behaviour is seen at larger k for the G512

400 and G512
100 boxes. Therefore, we

combine the power spectra and bispectra from the simulations in order to use each simulation
in the range of scales where its results are the closest to HALOFIT, and we apply a smooth
transition between the different boxes. We define a smoothing function H(k) in the range
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k ∈ [ks,ke] of the form:

H(k) =
1− sin

(
π

k−ke/2−ks/2
ke−ks

)
2

. (6.29)

As we have three realisations for each of the simulations, we match each realisation i = 1,2,3
from each simulations with the same i realisation in the other simulations, thus obtaining
three combined realisations of the power spectra and bispectra over the full k range we
consider. We have checked that modifying the smoothing function has only a small impact
on the overall results.

6.3.2 Power spectrum

We estimate the power spectrum of the simulations in each k-bin by averaging the squared
absolute value of the matter overdensity |δq|2 over all modes that fall into the shell with
distance k from the origin (i.e. over q with |q|−∆k/2 ≤ k < |q|+∆k/2, where ∆k is the bin
width). We compare in Fig. 6.10 the power spectrum measured from the simulations with the
models that we consider: linear theory, the non-linear power spectrum from HALOFIT, EFT,
MPTBREEZE and RLPT at one loop, the halo model and the combined halo-PT model (based
on EFT). The lower panels of Fig. 6.10 show the power spectrum residuals with respect to
the HALOFIT model.

Focusing first on the perturbative methods, we note that they increase their range of
validity to higher k modes as the redshift is increased, as expected. We confirm that SPT
presents excess power in the quasi-linear regime, departing from the simulations by more
than 10% at k ≃ 0.15h/Mpc at z = 0. The SPT excess power is however reduced at higher
redshifts, as expected given that the one-loop corrections have a higher growth rate compared
to the tree level. The EFT method can extend the range of validity by subtracting the SPT
excess power. However, the scale range over which EFT is accurate strongly depends on
which simulations were used to calibrate the counterterm, and over which range of scales and
redshifts. In the present case, the c2

s counterterm we are using was calibrated by Ref. [260]
with the G512g simulation box we are presenting at z = 0; therefore, there is no guarantee
that this same counterterm will be accurate at higher k over the smaller-box simulations
G512

400, G512
100, and at z > 0. Indeed, it is likely that a re-fitting of c2

s over the combined range of
simulations we are using would improve the EFT model accuracy over an extended range of
k and z. The MPTBREEZE and RLPT approaches include an exponential cut-off: this reduces
the range in which the model is accurate to 10% to k < 0.10h/Mpc at z = 0; nonetheless,
these models feature an improved accuracy in the mildly non-linear regime before the cut-off
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Fig. 6.10 Overview of the matter power spectra predicted by the range of theoretical models
we consider, compared with data measured from N-body simulations. The data points are
combined from N-body simulations with three different box sizes. The upper and lower rows
refer to perturbation theories and halo models respectively. The columns refer to z = 0, 1 and
2 from left to right; in each plot, the main upper panel shows the power spectra comparison,
while the smaller lower panel shows the residuals with respect to the HALOFIT prediction.

sets in, although the precision of our N-body simulations does not allow detailed quantitative
statements at the percent level.

We then consider the halo models: we see that at z = 0 this formalism provides a good de-
scription of the matter power spectrum on small scales and in the range k ∈ [0.01,0.2]h/Mpc,
after which we find the well-known power deficit in the transition region between the one and
two-halo terms. The model performs again better at smaller scales (k ≳ 2h/Mpc at z = 0),
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reaching an accuracy of ∼ 10%. On very large scales, the halo model amplitude exceeds
the simulations, as the one-halo term does not decay to zero as it physically should. By
moving to higher redshifts, we see that at z = 2 the halo model provides a worse description
of the simulations at intermediate and small scales, as the power deficit in the transition
region is exacerbated. This is because the total fraction of dark matter particles that belong to
collapsed structures is drastically reduced at this redshift, which undermines the assumptions
underlying the halo model approach. On large scales on the other hand, the excess power
nearly disappears at high redshift, due to the quick decay of the one-halo term as a function
of z.

The combined halo-PT model based on EFT succeeds in removing the excess power seen
on large scales at z = 0; as we discuss below, this excess will appear even more evidently
in the bispectrum. This model is also partly successful in reducing the power deficit on
intermediate scales, thanks to the extra power that is added there from the perturbative term.
However, due to the negative counterterm, the EFT power spectrum prediction becomes
negative on small scales (k ≳ 1h/Mpc at z = 0). After this point, we base the halo-PT model
on the SPT prediction: this is the reason of the cusp we see in the halo-PT model residuals in
the non-linear regime.

We finally note the results from the simulations are in good agreement with the non-
linear HALOFIT power spectrum, as they are within 10% accuracy over the entire k-range
considered at all z.

6.3.3 Modal bispectrum methodology

We next follow the modal decomposition method to reconstruct the dark matter bispectrum,
using the method developed by Refs. [244, 245, 297]. In this approach, the full 3D bispectrum
B(k1,k2,k3) is expanded on an orthonormal basis defined on the same tetrapyd domain
Qn(k1,k2,k3), with n = 0, ...,nmax. In this way, the full bispectrum information is encoded in
the expansion coefficients β

Q
n , and the bispectrum estimator B̂ can be written as

B̂(k1,k2,k3)
√

k1k2k3√
P(k1)P(k2)P(k3)

=
nmax−1

∑
n=0

β
Q
n Qn(k1,k2,k3) . (6.30)

We note that the left-hand-side is the signal-to-noise weighted bispectrum BSN
i (k1,k2,k3)

defined in Eq. (6.2). The accuracy of this estimator is regulated by the dimension of the
expansion basis, nmax; for the smooth bispectra that are typical of the LSS, Ref. [242]
demonstrated that the choice nmax ∼ 100 suffices to achieve a convergence of the total
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bispectrum signal-to-noise, i.e. considering higher nmax has negligible effect on the matter
bispectrum. This highlights the benefits of the modal method: once the basis Qn is chosen,
the entire three-dimensional bispectrum information can be simply compressed in a set of
∼ 100 numbers.

Ref. [245] tested several different choices of the basis Qn, demonstrating that the modal
method successfully reconstructs the bispectrum in all cases. The most suitable choice for
Qn is however built from a set of tetrahedral polynomials qp(x), which are analogues of the
Legendre polynomials on the unit interval. In more detail, the basis Qn can be written as

Qn(x,y,z) =
1
6
[qr(x)qs(y)qt(z)+qr(x)qt(y)qs(z)+qs(x)qr(y)qt(z)

+qs(x)qt(y)qr(z)+qt(x)qr(y)qs(z)+qt(x)qs(y)qr(z)] , (6.31)

where n = r+ s+ t and the order of the permutations is taken as in Ref. [245]. The polyno-
mials qp are obtained using the following procedure. By defining an integral of a function
f (k1,k2,k3) with weighting w(k1,k2,k3) over the tetrapyd domain defined by the triangle
conditions on the wavevectors: k1 + k2 ≥ k3, k2 + k3 ≥ k1 and k3 + k1 ≥ k2 with I [ f ], we
note (Ref. [245]) that it can be expressed in terms of an integral on a cubic domain by a
suitable change of coordinates

I [ f ] = K3

[∫ 1
2

0
dy
∫ 1−y

y
dx
∫ x+y

x−y
dzFW +

∫ 1
2

0
dx
∫ 1−x

x
dy
∫ x+y

y−x
dzFW

+
∫ 1

1
2

dx
∫ x

1−x
dy
∫ 1

x−y
dzFW +

∫ 1

1
2

dy
∫ y

1−y
dx
∫ 1

y−x
dzFW

]
(6.32)

where K = kmax, F(x,y,z) = f (Kx,Ky,Kz) and W (x,y,z) = w(Kx,Ky,Kz). By considering
a function f (x,y,z)≡ f (x), i.e. independent of y and z with K = 1 and performing the y and
z integrals in Eq. (6.32), the following weighting function is obtained:

W (x) =
1
2

x(4−3x) . (6.33)

Then the tetrahedral polynomials of order n can be generated by taking the determinant
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qn(x) =
1

Nn

∣∣∣∣∣∣∣∣∣∣∣∣∣

w0 w1 · · · wn

w1 w2 · · · wn+1
...

... . . . ...
wn−1 wn · · · w2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6.34)

where
wn = I [xn] =

n+6
2(n+3)(n+2)

, (6.35)

and the normalisation Nn is chosen so that the polynomials qn(x) are orthonormal with
respect to the product, with the weight specified in Eq. (6.33):

⟨qn,qm⟩=
∫ 1

0
qn(x)qm(x)

1
2

x(4−3x)dx = δnm . (6.36)

To see that Eq. (6.34) indeed generates orthogonal polynomials, we note that the function
produces polynomials of degree n trivially and we only have to show the orthogonality
property. We consider the product ⟨qn,xk⟩ for k ≤ n and we expand the determinant by the
last row, calculate the products ⟨· · · ⟩ and then we regroup everything again as a determinant
to get

⟨qn,xk⟩= 1
Nn

∣∣∣∣∣∣∣∣∣∣∣∣∣

w0 w1 · · · wn

w1 w2 · · · wn+1
...

... . . . ...
wn−1 wn · · · w2n−1

wk wk+1 · · · wk+n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.37)

For k < n this determinant is trivially 0, as two rows would be identical, and hence the result
follows. Therefore, ⟨qn,qk⟩= 0 for k < n and the full result is obtained by induction.

6.3.4 Bispectrum reconstruction from simulations

A modal reconstruction for the matter bispectrum BSN
i (k1,k2,k3) (Eq. 6.30) was obtained

using the mode functions (Eq. 6.34) for the full array of simulations described in Subchap-
ter 6.3.1. This decomposition and its validation were described in detail in Ref. [242]: a
relatively small number of modes were sufficient to recover the full bispectrum at the required
resolutions, that is, using 120 modes for the G512g simulations and 50 modes for the other
two simulations. We focus attention here on the low-redshift regime z ≤ 3 where the bispec-
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trum is accessible to current and future galaxy surveys and where non-linearities become
important. To obtain the full bispectrum across the widest range of scales we combined and
averaged all the simulation bispectra, interpolating in overlapping regions using the same
prescription as that described for the power spectrum. Error bars for bispectrum correlators
were estimated by determining variances from the different simulations.

In Fig. 6.11 we plot the full three-dimensional matter bispectrum we have obtained
across the tetrapyd domain for 0.02h/Mpc ≤ k ≤ 2h/Mpc and at four different redshifts
z = {0, 1, 2, 3}. The colour scheme is scaled using the growth factor D(z) such that the
tree-level bispectrum would appear constant in the perturbative regime. These plots range
from quasi-linear to highly nonlinear regions and several qualitative observations about the
nature and evolution of the matter bispectrum are immediately apparent.

At the higher redshifts z = 2, 3 shown in Fig. 6.11(a,b), a flattened signal is dominant up
to K ≡ ∑i ki ≲ 4, 3.5h/Mpc respectively (i.e. the tetrahedron region). This is consistent with
the flattened tree-level shape (Eq. 6.14) which is shown in Fig. 6.4(a) at z = 2, but at much
lower amplitude on a more sensitive scale. This means the flattened signal extrapolates with
growing amplitude well beyond the perturbative regime at these redshifts (e.g. from Table 5.1
K ≲ 0.6h/Mpc at z = 2). We focus further on the perturbative regime with K ≲ 1h/Mpc
in Subchapter 6.5.1. For larger K, the bispectrum is dominated by a nearly uniform signal
associated with halo formation (i.e. the top pyramidal region with K ≳ 4h/Mpc). Also
in Fig. 6.11(a,b), we note that a significant squeezed signal is visible for 1h/Mpc ≲ K ≲

4h/Mpc (on the left and bottom tetrapyd edges), which can be compared with Fig. 6.9.

At the lower redshifts z = 0, 1 in Fig. 6.11(c,d), the strong halo signal grows to become
completely dominant for K ≳ 1h/Mpc (saturating the colour scheme with BSN

max ≈ 350).
At z = 0, this ‘constant’ halo signal is so large the other contributions seem to be absent
(compare with Fig. 6.8). However, this apparent suppression of flattened and squeezed signals
at z = 0 is only relative, due to the signal-to-noise weighting (Eq. 6.2) with the nonlinear
power spectrum PNL(k). This deeply nonlinear nature of perturbations today is reflected in
the greater difficulty of matching phenomenological models to simulations at low redshift.

6.4 Towards a three-shape bispectrum benchmark model

In this subchapter we analyse the measured bispectrum to identify the shape degrees of
freedom required for its accurate construction. We study the growth rates of each of these
contributions, highlighting differences with the standard halo model particularly for the
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(a) z=3 (b) z=2

(c) z=1 (d) z=0

Fig. 6.11 Evolution of the SN-weighted 3D bispectrum from N-body simulations into the
nonlinear regime with ki ≤ 2h/Mpc at redshifts (a) z = 3, (b) z = 2, (c) z = 1, and (d) z = 0.
The bispectrum colour scheme is scaled with the growth factor D(z) and the tetrahedral
geometry of the bispectrum domain is illustrated in Fig. 6.2. Note the presence of both a
strong flattened and squeezed signal shape at redshifts z = 2, 3 (front left face of tetrapyd and
lower edge respectively in panels a, b). At lower redshift this is overtaken by a strong uniform
or one-halo signal throughout the interior region for k ≳ 1h/Mpc (front right face in panel d).
The colour scale is fixed at z = 3 in (a) to encompass all values up to the maximum. It is then
scaled with the growth rate expected for the tree-level signal to aid physical interpretation
and reveal non-linear growth rates. This means at small scales in (d) at z = 0 the colour scale
is saturated, which is useful to highlight features at intermediate scales.
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squeezed shape. We use these results to guide the development of simple phenomenological
bispectrum models: the two-halo boost model and the three-shape benchmark model.

6.4.1 Simulation bispectrum shapes

We first analyse the shapes of the bispectra measured from N-body simulations, in analogy
with the investigation of the perturbative and halo model shapes we presented in Figs. 6.5,
6.6 above. We calculate the sliced or binned shape correlators S S(K) between the N-body
matter bispectrum and the tree-level (Eq. 6.14), squeezed (Eq. 6.12), and constant (Eq. 6.11)
shapes to determine whether, in combination, these three canonical shapes are sufficient to
describe the actual bispectrum. The panels of Fig. 6.12 show a consistent behaviour across
the range of redshifts considered. We know that, on large scales, perturbations approach
linearity and therefore the tree-level bispectrum is expected to be a good approximation to the
N-body data. The plots show that this is indeed the case, as on these scales (K ≲ 0.5h/Mpc
at z = 0) there is a high correlation between the simulated bispectrum and the tree-level
shape. The scales up to which the bispectrum is completely dominated by the tree-level
shape move significantly to larger values of K as the redshift increases, as expected. On
small scales, Fig. 6.12 shows that deep into the non-linear regime (K ≳ 3h/Mpc at z = 0)
the constant shape dominates, which closely corresponds to the one-halo model discussed in
Subchapter 6.5 (and as shown previously in Ref. [242]). On intermediate scales, there are
several competing contributions of comparable magnitude in the transition between constant
and flattened regimes. Nevertheless, Fig. 6.12 reveals that at all redshifts there is a range
of wavenumbers where the squeezed shape exhibits the highest correlation, which is a new
result. These quantitative shape correlation results confirm the qualitative picture developed
from the evolution of the 3D bispectrum reconstructions shown in Fig. 6.11.

These observations can be interpreted using the halo model formalism for which the basic
underlying physical assumptions appear to be corroborated qualitatively. On large scales,
the three-halo term is dominant because in this regime the particle triplets over which the
bispectrum is estimated should typically be in different halos, thus reflecting the large-scale
quasi-linear bispectrum predicted by perturbation theory. As shown in Subchapter 6.2.2, at
small K the tree-level shape is the most important contribution to the observed bispectrum.
On small scales, the three particles are typically in the same nonlinear virialised halo, and
hence the one-halo component dominates; this has a constant shape, which we confirm to be
the leading observed bispectrum shape in the high-K limit. The two-halo term contributes
over intermediate lengthscales, where two particles are in one halo and the third particle is
elsewhere; this corresponds to the squeezed shape, which indeed we find to be dominating the
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Fig. 6.12 Sliced shape correlations of the measured N-body bispectrum with the three
canonical shapes: constant (Eq. 6.11), squeezed (Eq. 6.12) and tree-level (Eq. 6.14) shown
at redshifts z = {0,1,2} (upper to lower panels). The sliced or binned shape correlator on a
given K = k1 + k2 + k3 slice is defined in Eq. (6.17).

bispectrum on intermediate scales (though with a larger contribution for z > 0 than expected
in the standard halo model).

As a further illustration, we show in Fig. 6.13 the equilateral bispectrum (k1 = k2 = k3) of
the halo model at z = 0 and z = 2 compared with the measured equilateral N-body bispectrum.
Here we can see more clearly the three terms contributing to the halo model and how the



6.4 Towards a three-shape bispectrum benchmark model 163

two-halo term provides the most significant contribution at intermediate scales at z = 0.
However, a deficit emerges relative to N-body simulations at z = 2 where the predicted
two-halo term no longer dominates over the one- and three-halo terms.
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Fig. 6.13 Equilateral configuration of the halo model bispectrum at z = 0 (top panel) and
z = 2 (bottom panel), showing the contributions of the three components of the halo model,
contrasted with the measurements from N-body simulations (cyan points). Note the emerging
deficit on intermediate scales at z = 2.

6.4.2 Two-halo boost model

Based on the observation that the halo model has a deficit at intermediate scales, which
is found for bispectrum slices in different configurations and becomes more severe as the
redshift increases, we have explored simple phenomenological ways of improving the model.
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The two-halo term of the halo model has its highest and most important contribution where
the deficit is worst.

As a first simple method to improve the agreement between the model and the simulations,
we increase the contribution of the two-halo term at higher redshifts in order to compensate
for the deficit. We find that a ‘boosted’ two-halo term can provide a much better fit to
numerical simulations for redshifts z > 0 by multiplying the existing two-halo term by the
heuristic factor D(z)−1.7. We determine this ‘best-fit’ factor by computing the total correlator
T of Eq. (6.6) between the model and the simulations separately at each redshift, and then
obtaining the scaling law by maximising the correlator T . We show in Fig. 6.14 that the
function D(z)−1.7 describes well the numerical values found over the relevant redshift range.
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Fig. 6.14 Best-fit boost coefficient to simulations for the two-halo term compared to D(z)−1.7.

This simple method solves the power deficit in the intermediate regime but we discussed
previously how the halo model already has an excess of power as k → 0, driven by the
combination of one- and two-halo terms (for z > 0). Therefore, there is a quantitative
problem with simply boosting the two-halo term because it increases the excess on very large
scales. In Subchapter 6.5.2, we will make direct comparisons with the standard halo and
other models.

6.4.3 Two-shape time-shift model

In Ref. [242] using tree-level and constant bispectrum shapes it was already recognised that
simple phenomenological models of the bispectrum could be constructed; this was motivated
by explaining the different growth rates of primordial non-Gaussian shapes in terms of an
initial time offset. This time-shift model relies on the fact that in the non-linear regime
the matter bispectrum can be approximated by the constant bispectrum using the following
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ansatz (consistent with Eq. 6.9):

Bconst (k1,k2,k3) = c1D(z)nhKν , (6.38)

with two free parameters, an amplitude c1 and a growth rate nh determined from simulations,
plus a scale-dependence ν ≈−1.7 for equilateral configurations in the one-halo model [234,
284]. This two-shape model was further improved by replacing the tree-level bispectrum
(Eq. 6.14) with the non-linear tree-level bispectrum (Eq. 6.15), i.e. the tree-level bispectrum
calculated with the non-linear power spectrum from simulations:

BT -shift (k1,k2,k3) = c1D(z)nhKν +StreeNL (k1,k2,k3) . (6.39)

While this model produced a reasonable description of the matter bispectrum in terms of the
shape correlation S (see Ref. [242]), our more detailed analysis here with the binned shape
correlator S S has revealed the possibility of further improvement on intermediate scales by
extending the model with the additional squeezed shape of Eq. (6.12).

6.4.4 Three-shape bispectrum model

Based on the three shapes we identified in the halo model in Subchapter 6.2.2, we propose
a more general benchmark model that incorporates the physical behaviour of all these
components, but with rescaled growth factors to provide an improved quantitative fit to
simulations. As shown in Fig. 6.6, the one-, two- and three-halo terms have a high shape
correlation with the constant, squeezed and tree-level shapes respectively on slices of constant
K ≡ k1 + k2 + k3. Since these shapes also describe the measured matter bispectrum (see
Fig. 6.12), we can construct it as a scale-dependent sum of three templates:

B3-shape(k1,k2,k3) =
3

∑
i=1

fi(K)Si(k1,k2,k3)

= f1h(K)Sconst(k1,k2,k3)+ f2h(K)Ssqueez(k1,k2,k3)+ f3h(K)StreeNL(k1,k2,k3),

(6.40)

where the non-linear tree-level, squeezed, and constant shapes StreeNL,Ssqueez,Sconst are
defined in Eqs. (6.11), (6.12) and (6.15) respectively, and the amplitudes f1h, f2h, f3h were
discussed in Subchapter 6.2.2 in the context of the halo model.1

1An even simpler three-shape model can be obtained substituting the linear tree level (Eq. 6.14) for the
flattened three-halo shape; it provides a satisfactory fit to the simulations. In this simple scenario, the fitting
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We know that the one-halo term provides an adequate description of the matter bispectrum
on small scales, so we fix the amplitude f1h to the simple functional fit of Eq. (6.20) for the
one-halo model presented in Subchapter 6.2.2. On the largest scales, where the three-halo
term is dominant, we know that the tree-level shape (Eq. 6.28) provides an excellent fit to
simulations. However, on intermediates scales, while the shape correlation remains good
beyond the strictly perturbative regime (see Fig. 6.12), its amplitude is insufficient, as can be
seen by comparing Fig. 6.4 with Fig. 6.11). For this reason, we have chosen the nonlinear
tree-level form (Eq. 6.15) instead because of its higher amplitude and the fact that it is a
better approximation to one-loop perturbative expansions. Nevertheless, it is well known
that introducing the nonlinear power spectra into halo models generically causes excess
power at low redshifts z ≈ 0, so we need a prescription for cutting off the flattened shape
in nonlinear regions (see, for example, the discussion about the combined halo-PT model
in Subchapter 5.3.2 or the discussion of halo exclusion in Ref. [298]). In order to keep this
three-halo suppression as simple as possible we take an exponential form:

f3h = exp(−K/E) , (6.41)

where we fit E to simulations at several redshifts to obtain an appropriate amplitude and
growth rate; in principle, it should be linked to the nonlinear scale kNL satisfying

k3
NLPlin(kNL,z) = 2π

2 . (6.42)

Finally, for the squeezed shape scaling f2h we do not use the two-halo model amplitude,
but instead the prescription of Eq. (6.25) with the two free parameters C and D obtained
from simulations (see discussion in Subchapter 6.2.2). By matching f2h to the excess in the
measured bispectrum at redshifts z = {0,1,2,3}, together with the cutoff scale in f3h, we
obtain the following approximate fit for the coefficients C, D and E:

C = 140D(z)−5/4

D = 1.9hMpc−1 D(z)−3/2 (6.43)

E = 7.5kNL(z) .

functions f1h (Eq. 6.20) and f3h = 1 are given by the standard halo model, while for the two-halo term we allow
an improved fit and growth scaling (Eq. 6.25) with coefficients C = 240D(z)−1 and D = 2.35hMpc−1 D(z)−1.
However, the three-shape model of Eq. (6.40) above provides an improved fit in the flattened limit in the
quasi-nonlinear regime.
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We emphasise that this is different from the previous two-halo fits of Eqs. (6.26-6.27), because
these were obtained by fitting to the two-halo model predictions, which underestimate power
for z > 0. This is illustrated starkly at z = 2 in Fig. 6.15, where we compare the standard
two-halo model prediction with the squeezed shape of Eq. (6.25) with best fit simulation
parameters of Eq. (6.43). We also note that for redshifts z > 1, the lengthscale E moves
rapidly to large K ≫ 1h/Mpc, so the exponential suppression f3h term (Eq. 6.41) acts
primarily to reduce power in the z = 0 bispectrum and is less relevant elsewhere.

(a) (b)

Fig. 6.15 The SN-weighted two-halo bispectrum (Eq. 5.178) (left panel) at z = 2 compared
to the best-fit two-halo squeezed shape ansatz (Eq. 6.23); this allows the ‘three-shape’
benchmark model to accurately match the simulation data shown in Fig. 6.11. The two-halo
model clearly exhibits a large deficit and does not describe squeezed contributions adequately
at higher redshift.

In Fig. 6.16 we plot the value of the binned amplitude |B|S(K) for the three-shape model
of Eq. (6.40), which we compare directly to the measured bispectrum from simulations;
we also show the binned shape S S and amplitude A S correlators between model and N-
body bispectrum. The plots show a good fit using the three-shape model across all scales
k > 0.1h/Mpc and all redshifts. The shape correlations in this range are approximately
99% or higher and the amplitude correlator is within 10% of the measured bispectrum
(consistent given present simulation uncertainties). These correlation results are in line with
expectations for a good fit for an nmax = 50 eigenfunction decomposition (Eq. 6.30) (see
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validation discussions in Ref. [242]). We note that given the high shape correlations, we
could introduce additional degrees of freedom in f1h, f3h to improve this quantitative fit
further, but our purpose first is to demonstrate the efficacy of this simple approach.
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Fig. 6.16 Comparison between the measured N-body matter bispectrum and the three-shape
model. The left panel shows the binned amplitude |B|S(K) from the simulations (points and
dashed lines) and from the fitted three-shape model (solid lines) at redshifts z = {0,1,2,3}.
The top and bottom right panels show a relative comparison between the simulations and the
benchmark model, using the binned shape and amplitude correlators, S S and A S. These
results demonstrate that the three-shape model exhibits a high shape correlation on all scales
and describes the simulated data well.

Employing this new three-shape model as a benchmark has several advantages over
using the simulated bispectra directly, though we will use both in subsequent discussions.
First, it smooths out any systematic discontinuities appearing where the simulations are
joined together. Secondly, it allows direct comparisons with theoretical models without
performing eigenfunction decompositions on the latter, so residual offsets do not have to
be subtracted. And finally the model is simple, capturing the most important features of
the halo model without requiring computationally costly re-evaluations at all wavenumber
combinations (k1,k2,k3), and thus it can be seen as an initial step towards a full HALOFIT-
style phenomenological model of the matter bispectrum.
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6.4.5 Directions for further improvement

The three-shape benchmark model achieves a high degree of correlation with the full bispec-
trum from N-body simulations, however undoubtedly further improvements of this model
can be achieved in future, not least by deriving some key results from first principles, such as
the modified two-halo growth rates. In principle, showing that the matter bispectrum is well
approximated by the separable form of Eq. (6.40) should considerably simplify mathematical
modelling.

One improvement that can be incorporated into the model is to replace the nonlinear
tree-level shape (Eq. 6.15) with specific one- and two-loop perturbative expansions. However,
while this approach could extend the tree-level shape further into the non-linear regime, it
requires prescriptions for suppressing the two- and one-halo terms more strongly to avoid
over-prediction. This is similar in spirit to the suppression of the perturbative bispectrum
contribution in the halo-PT model by Ref. [234]; but it is clear that an exponential cut-off
where the perturbative expansion breaks down is likely too aggressive, since Fig. 6.12 shows
that the tree-level shape is present up to relatively high k ∼ 1h/Mpc.

Clearly further improvement of the three-shape model can be achieved through more
extensive comparisons with higher-resolution N-body simulations, over a finer grid of scales
and redshifts. The quality of fits obtained in the squeezed and flattened limits are constrained
in accuracy by the restricted ansatzes chosen, allowing only three redshift-dependent pa-
rameters. The likely outcome is a finer tuning of a larger number of phenomenological free
parameters, again in the spirit of the HALOFIT method, with extensive surveys required to
uncover dependencies on cosmological parameters.

A final point of interest is the question whether the three-shape model we introduced
satisfies well-known constraints in the squeezed limit. For example, Ref. [299] derived
a consistency relation between the integrated squeezed-limit bispectrum and a response
function derived from the power spectrum. In the case of our three-shape model (Eq. 6.40),
the tree-level shape term satisfies the consistency relation automatically, as was demonstrated
by Ref. [299] for tree-level SPT. We know that the squeezed- and constant-shape terms of
the benchmark model are similar to two- and one-halo terms of the standard halo model;
furthermore, as we show in Subchapter 6.5 below, our model performs well compared with
the N-body simulations in the squeezed limit over the configurations we have tested, so that
it is unlikely that there is any large inconsistency. However, a more quantitative test of the
consistency relation would require a full numerical evaluation of the integrated bispectrum,
which we leave for future investigation.
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6.5 Bispectrum model comparison with simulations

We next use the N-body simulations to compare the accuracy of the different theoretical bis-
pectrum models described in the previous subchapters, both perturbative and non-perturbative.
We present this model comparison in two ways: we first directly compare the simulated
and theoretical bispectra over a range of representative triangular configurations (equilateral,
squeezed, and flattened), and we then use the full three-dimensional amplitude and shape
correlators presented in Subchapter 6.1.2.

At high redshift, all models are expected to perform well over an extended range of
scales, as the fluctuations are nearly linear, the power spectrum is linear and the bispectrum
can be described by the tree-level expression. At lower redshifts, non-linearities become
more important and significant differences appear between the models. In the comparisons,
we concentrate on redshifts z = {0,1,2}, as these span the observable redshift range of
most current and future observations from galaxy surveys. We investigate the perturbative
methods and the halo models separately, because the perturbative methods decay quickly
in the non-linear regime and therefore their predictions for high k are of no interest; we
present the comparison of PT models on scales k ≤ 0.4h/Mpc only. On the other hand, the
phenomenological models, which are either based on or at least inspired by halo models,
are expected to perform well even in the fully non-linear regime; in this case we extend
the model comparison up to the smallest scales accessible to the present simulations, i.e.

k ≤ 7.8h/Mpc.

6.5.1 Testing alternative perturbative approaches

We first qualitatively compare perturbative bispectrum predictions with the matter bispectrum
measured from simulations. In Fig. 6.17 we plot most of these predictions at redshift z = 2
in three dimensions for wavenumbers 0.02h/Mpc < k < 0.6h/Mpc, together with the actual
N-body bispectrum (upper left). We choose z = 2 so that the perturbative models decay at
higher k, and more of the signal is visible, but the overall behaviour is comparable at lower z.

The N-body bispectrum shows a dominant flattened signal over the whole domain, which
grows in amplitude as k increases. Qualitatively, this measured signal matches well the
one-loop SPT and EFT models, as well as the nonlinear tree-level bispectrum, in regions well
beyond the strictly perturbative regime. However, the tree-level and MPTBREEZE predictions
are appreciably lower for large k ≈ 1h/Mpc (with the latter exponentially suppressed for
large k by prescription).
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N-body
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Fig. 6.17 Comparison at redshift z = 2 of the SN-weighted bispectrum for perturbative
models with the simulation data (top left): the perturbative models are respectively tree-level
bispectrum (top centre), non-linear tree-level (top right), standard one-loop perturbation the-
ory SPT (bottom left), one-loop effective field theory EFT (bottom centre) and renormalised
perturbation theory MPT (bottom right); RLPT is not plotted as it appears very similar to
MPT. Note that all perturbation theories have signal concentrated at flattened triangles (front
left face), and so are highly correlated with the tree-level bispectrum shape of Eq. (6.14),
when using the binned shape correlator (Eq. 6.17). The N-body bispectrum also exhibits a
squeezed signal for k ≳ 0.4h/Mpc. We have chosen z = 2 so that the PT models decay at
higher k and there is more signal to display, but the general behaviour is similar at lower z.

We confirm these observations for three specific limiting cases in Fig. 6.18 with a
comparison of PT bispectra amplitudes with measured values: from top to bottom we
show the equilateral, squeezed, and flattened triangle configurations. In addition to the
bispectrum amplitudes, in each case we also plot residuals with respect to the tree-level
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model. Figure 6.18 demonstrates that all models converge to the tree level for k ≲ 0.1h/Mpc
at z = 0 in agreement with simulations; the range of validity of the tree-level theory increases
for higher redshift and for flatter shapes. For the phenomenological models, we note that
both the simple non-linear tree-level model and the nine-parameter tree-level fit both increase
the range over which there is agreement with simulations. For z ≥ 1 these two cases are
nearly indistinguishable and both show a similar deficit in power for larger k. In principle
the nine-parameter model does provide a better match to the z = 0 bispectrum, however, it
also exhibits large oscillations which originate through the slope parameter n for a power
spectrum with BAO features, as noted and circumvented in Ref. [267]. While it is possible to
remove these unwanted oscillations of n with a spline smoothing, we do not apply this extra
processing step here for simplicity.

For the one-loop perturbative models plotted in Fig. 6.18, all approaches agree in the
strictly perturbative regime at z = 0. However, beyond this regime for larger k, SPT generally
overestimates the bispectrum, while the RLPT and RPT MPTBREEZE models underestimate
it. The EFT approach lies in between the SPT and RLPT curves, and typically extends the
range of agreement with simulations. This trend is also apparent at higher redshift with the
exception of the squeezed limit where even SPT falls below the measured bispectrum in the
quasilinear regime.

Given these interesting observations, we have undertaken a comprehensive quantitative
comparative analysis using the integrated amplitude correlator A (Eq. 6.4) and the shape
correlator S (Eq. 6.3), the results of which are plotted in Fig. 6.19. This corresponds to a
signal-to-noise weighted integration over all triangular configurations up to a given resolution
kmax, rather than the specific limiting configurations Fig. 6.18. Here, we directly compare
the theoretical predictions B j

theory to the three-shape benchmark model B3-shape given in
Eq. (6.40) with parameters given in Eq. (6.43), which provides an excellent fit and a smoother
representation of the actual bispectrum from simulations (see Subchapter 6.4.4).

We estimate the uncertainties on the correlators as follows. From each simulation reali-
sation i, we obtain the amplitude and shape correlators A (Bi

sim,B3-shape), S (Bi
sim,B3-shape)

as a function of kmax. For each value of kmax, we can thus derive mean and standard de-
viation of the correlators: µA , σA , and similarly for the shape. As we are comparing all
theoretical models with the benchmark three-shape model, the total uncertainty σtot on the
correlators between each model j and the benchmark, A (B j

theory,B3-shape), will be larger than
the variance σA obtained from the scatter of A (Bi

sim,B3-shape); this is because of the small
k-dependent discrepancy that exists between the simulations and the smooth benchmark
model. The grey shaded areas in Fig. 6.19 represent two different estimates of σtot, as follows.
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Fig. 6.18 Comparison of perturbation theory models of the matter bispectrum with N-body
simulations, at redshifts 0, 1, 2 (left to right), for the equilateral, squeezed, and flattened
configurations (top to bottom). The lower panels show the residuals with respect to the
tree-level model.
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The light grey area represents a conservative error estimate obtained by adding the error
bars of the simulation to the deviation from one of the mean of the correlator, i.e. assuming
σtot = |µA −1|+σA , while the darker grey area represents the part of the benchmark model
outside the 1σA error bars, i.e. assuming

σtot =


0 if 1 ∈ [µA −σA ,µA +σA ]

µA −σA −1 if µA −σA > 1

1−µA −σA if µA +σA < 1 .

(6.44)

The same reasoning applies to the shape correlators S , with the difference that µS ≤ 1.

From Fig. 6.19, we note that there are always high shape correlations well beyond the
perturbative regime. For example, at z = 0 all theories have a shape correlation greater
than 99% up to k < 0.2h/Mpc, even when there are variations of O(20%) in the amplitude
correlator. These remarkably high shape correlations imply that bispectrum estimators that
measure the projection of the full bispectrum on these theoretical shapes (like in Ref. [243])
should yield a high proportion of the total bispectrum signal-to-noise. Since the shape
correlator is not as discerning a tool for distinguishing between different perturbative models,
we focus most attention on amplitude deviations.

We also employ the total correlator T , which combines the information of amplitude and
shape, in order to directly estimate the range of validity of each model as a function of redshift.
In Table 6.1 we give the maximum wavenumber k∗max at which the total correlator between
each model and the benchmark model deviates from unity by more than a fixed threshold
of 10% (and 5%). While we show results at the three redshifts considered, z = {0,1,2},
an important caveat is that the comparison at z = 0 is more approximate, due to the less
than perfect match between the simulations and the benchmark model; we therefore do not
report the 5% results at z = 0, and choose to focus primarily on the results at z = {1,2} in
the following discussion. A striking feature of Table 6.1 is the wide range of wavenumbers
for which there is good correspondence between theoretical predictions and the measured
bispectrum, well beyond expectations for the limits of the perturbative regime estimated
in Table 5.1. This shows that even where these theories are no longer expected to be
accurate, they can nevertheless be successfully extrapolated into the nonlinear regime for
phenomenological modelling.

The tree-level (Eq. 6.14) and the non-linear tree-level (Eq. 6.15) models are the simplest
approximations to the matter bispectrum, and their range of validity can be verified from
Fig. 6.19: at z = 1 we find k∗max = 0.22h/Mpc for the tree level and k∗max = 0.30h/Mpc for
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Table 6.1 Wavenumber k∗max where the total correlator T (Eq. 6.6) between the perturbative
theory and the benchmark model deviates by more than 10% (5%) from unity. In the case of
z = 0, we only report the 10% results, as the accuracy of the benchmark model is lower.

Perturbation theories
Threshold 10% (5%) k∗max [h/Mpc]

Theory z = 0 z = 1 z = 2
Tree-level 0.13 0.22 (0.17) 0.27 (0.20)

NL tree-level 0.17 0.30 (0.22) 0.42 (0.31)
SPT 0.11 0.37 (0.14) 0.66 (0.49)
EFT 0.29 0.45 (0.36) 0.60 (0.50)

MPTBREEZE 0.16 0.24 (0.21) 0.32 (0.28)
RLPT 0.15 0.22 (0.19) 0.30 (0.26)

the non-linear tree level (at 10%). The non-linear bispectrum improves faster than the linear
one at higher redshifts: the tree-level increases by roughly 0.05h/Mpc at each redshift, while
the non-linear tree-level increases by > 0.1h/Mpc.

The one-loop SPT bispectrum adds four extra terms to the tree-level shape. Two of
them give positive contributions and the other two negative contributions. As seen in
Fig. 6.19, at low redshift the additional SPT contributions tend to overshoot the measured
bispectrum, apparently lowering the value of k∗max up to which predictions are accurate (see
Table 6.1). However, at z = 2 the overshoot remains within bounds, extending the fit as
far as k < 0.66h/Mpc in the case of the 10% threshold (almost accidentally at this specific
redshift, possibly because of additional squeezed contributions in the measured bispectrum).
In general, SPT predicts an excess of power on quasi-linear scales, before finally decaying in
the fully non-linear regime. This overshoot phenomenon appears because the loop integrals
involved require integrating momenta over an infinite range, a regime in which the basic
assumption δ ≪ 1 is no longer valid. Despite this problem, the shape correlation is excellent
up to k ∼ 0.3h/Mpc, improving significantly over the tree-level result. We also note that
evidence for the amplitude overshoot is not very strong from our simulations because they
have rather large uncertainty on A , especially at z = 0.

The one-loop EFT bispectrum includes one counterterm, which increases the accuracy
of the model due to the one free parameter that is introduced and fitted at the level of the
power spectrum. In Fig. 6.19 we observe that this method provides substantially improved
agreement with the simulations, albeit at the cost of an extra parameter, which was calibrated
on the power spectrum of N-body simulations, assuming a specific cosmological model.
This counterterm effectively removes excess power provided by SPT in the quasi-linear
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Fig. 6.19 The amplitude A (top row) and shape S (bottom row) correlators at redshifts 0,
1, 2 for the perturbative methods, obtained by comparing with the benchmark model. The
shaded areas represent error estimates between the benchmark model and the simulations
and are explained in the main body of the text.

regime and the results that we obtain from the three-dimensional comparison are consistent
with the improved agreement found in Ref. [260]. The EFT method appears to work well
up to k∗max = 0.45h/Mpc at z = 1 and k∗max = 0.60h/Mpc at z = 2. However, we must
proceed cautiously before using such projections because the detailed correspondence in
the equilateral and squeezed limits shown in Fig. 6.18 is not as encouraging. (We also
observe additional correlated squeezed signals emerging on these scales in the measured
bispectrum which require more sophisticated joint fitting.) At higher redshift, the contribution
of the counterterm becomes less significant, because the growth rate of the term is ∝ D7.1(z)

compared to ∝ D6(z) from the one-loop SPT terms. Although one can in principle add
another three additional counterterms for the one-loop EFT bispectrum, we have found that
the improvement in the accuracy is modest relative to the cost of introducing these further
free parameters.
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The RPT approach (MPTBREEZE formalism) at one loop solves the SPT excess by
cutting off terms appropriately with an exponential function, as can be seen in Fig. 6.19.
Compared to SPT, all terms are positive to any number of loops, and so this is a convergent
expansion. With accuracy increasing with number of loops, the amplitude on all scales
should always approach the measured bispectrum from below. We see in Table 6.1 that
the RPT method appears to be accurate to 10% at k < 0.24h/Mpc at z = 1, improving to
k < 0.32h/Mpc at z = 2. The main improvement of MPTBREEZE compared with the other
methods arises on large scales, before the exponential damping begins. The disadvantage of
this suppression is that it precludes any extrapolations into the nonlinear regime.

The RLPT results we have obtained are similar to RPT, although the validity range is
marginally smaller due to the increased power suppression; in this case we find k∗max =

0.22h/Mpc at z = 1, and k∗max = 0.30h/Mpc at z = 2.
We conclude that all one-loop perturbative methods match simulations at present precision

within the expected perturbative regime. In terms of phenomenological extrapolation into
the nonlinear regime, the EFT method goes furthest (once the counter-term coefficient has
been appropriately fitted). Both RLPT and RPT undershoot the measured bispectrum in
this regime by construction, while SPT generically overshoots. On the other hand, the
nonlinear tree-level bispectrum Eq. (6.15) provides a useful projection to larger k which has
the advantage of being much simpler to calculate.

6.5.2 Testing phenomenological halo models

By analogy with the discussion of the PT methods above, we first make qualitative com-
parisons of the phenomenological halo models with the measured bispectrum. In Fig. 6.20,
we plot these bispectra in three dimensions at two redshifts z = 0,2. While the standard
halo model provides a reasonable fit at z = 0, it reveals a large deficit on intermediate scales
k ∼ 1h/Mpc. This is corrected in the three-shape model by using the nonlinear tree-level
bispectrum and adopting a different growth rate for the squeezed signal at higher redshift. In
Fig. 6.21 we offer a more detailed picture in the limiting equilateral, squeezed and flattened
configurations, also showing residuals relative to the standard halo model.

From Fig. 6.20, we can see that for all configurations the standard halo model provides
a good match to the N-body data on both linear and fully non-linear scales, while a more
significant mismatch appears in the transition regime at redshifts z > 0. The problem may be
due in part to questionable assumptions in the halo model about all the matter in the Universe
being in collapsed halos; it is an issue acknowledged in the literature both for the power
spectrum and the bispectrum [233, 234, 298, 300]. We confirm that this mismatch becomes
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Fig. 6.20 Comparison between N-body simulation bispectrum (left panels) with the standard
halo bispectrum model Eqs. (5.177-5.179) (centre panels) and the ‘three-shape’ benchmark
model Eq. (6.40) (right panels) shown at two redshifts z = 0,2. The standard halo model is
effectively normalised to fit the measured bispectrum at z = 0, which is also achieved well by
the phenomenological ‘three-shape’ model (upper panels). However, at higher redshift z = 2
the halo model exhibits the wrong growth rates for the flattened three-halo and squeezed
two-halo configurations, yielding a substantial deficit (lower panel centre); the measured
bispectrum behaviour can be accommodated in the three-shape benchmark model (lower
panel right).

more severe at higher redshift: for example, at z = 2 there is up to a factor of three mismatch
on these intermediate scales.

The other phenomenological models we consider attempt to improve the behaviour
in the transition region in different ways, and with varying degrees of success; they are
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also plotted in Fig. 6.21. The combined halo-PT model provides some improvement at
z = 0 for flattened configurations, but it fails to significantly improve the situation at higher
redshifts and especially in the squeezed limit. The phenomenological two-halo boost and
three-shape benchmark models improve the N-body results over a broader range of redshifts
and configurations, largely by increasing the relative amplitude of the two-halo term at z > 0.
The three-shape benchmark, in particular, achieves a satisfactory fit in all limits and at all
redshifts using only the restricted ansatz (Eq. 6.40) by also increasing power in the flattened
limit with the non-linear tree-level bispectrum.

We now turn to a full three-dimensional analysis with the amplitude (A ) and shape (S )
correlators plotted in Fig. 6.22 for redshifts z = 0,1,2; as in the previous subchapter, we
again compare to the three-shape benchmark model with best-fit parameters of Eq. (6.43).
We also determine where the accuracy of different phenomenological models and fits break
down in Table 6.2.

It is apparent from Fig. 6.22 that the standard halo model offers an insightful description
of the matter bispectrum in the non-linear regime at redshift z = 0; the shape correlation
is above 99% everywhere investigated and the amplitude deviates less than 15% from the
measured simulation bispectrum over the range 0.4h/Mpc < k < 8h/Mpc. Nevertheless, we
observe some excess power on large scales, e.g. at kmax ∼ 0.1h/Mpc, which is a well-known
problem of the standard halo model, due to the one-halo term approaching a constant and the
two-halo term not vanishing as k → 0. The large-scale excess is less important as the redshift
is increased. However, we see in Fig. 6.22 that there is a new problem on intermediate
scales where an amplitude deficit emerges, which increases significantly as a function of
redshift: in the transition regime, the amplitude correlator decreases from 0.9 at z = 0 to 0.65
at z = 1, and 0.45 at z = 2. As discussed in previous subchapters, this is primarily due to an
underprediction of the two-halo component (squeezed shape) in this k-range. Moreover, the
lowest point in the transition regime shifts to higher k at higher redshift, from k ≈ 0.5h/Mpc
at z = 0 to k ≈ 1.5h/Mpc at z = 2 (see Fig. 6.7 for an illustration of this in the equilateral
configuration). In the strongly non-linear regime, after the two-halo component has decayed
and the one-halo term becomes dominant, the halo model again approaches the simulations.
As we discussed above in Subchapter 6.3, a possible way of solving this problem is by
boosting the two-halo component, which peaks exactly in the regime of interest; this leads to
the two-halo boost model also shown in Fig. 6.22, which entails a minimal cost of introducing
additional power on large scales.

The power excess produced on linear scales by the standard halo model is corrected in
the combined halo-PT model of Subchapter 5.3.2. As this model can use any perturbative
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Fig. 6.21 Comparison of phenomenological non-linear models of the matter bispectrum with
N-body simulations, at redshifts 0, 1, 2 (left to right), for the equilateral, squeezed, and
flattened configurations (top to bottom). The lower panels show the substantial residuals
with respect to the standard halo model for z > 0, demonstrating that the simple three-shape
benchmark model provides a good fit to the N-body matter bispectrum for all three limits
and redshifts.
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Fig. 6.22 The amplitude A (top row) and shape S (bottom row) correlators at redshifts 0,
1, 2 for the phenomenological halo models, obtained by comparing with the three-shape
benchmark model. The shaded areas represent error estimates between the three-shape
benchmark model and the simulations and are explained in Subchapter 6.5.1.

theory on linear scales, we choose to use EFT, because we found it in the previous subchapter
to offer the most extended range of validity. In this prescription, the two- and three-halo
terms of the halo model are switched on as the perturbation theory is decaying. Hence, at
z = 0, this model provides the best fit across all scales considered; in the strongly non-linear
regime, the model converges towards the standard halo model result, because on small scales
the improved two-halo and the improved one-halo terms are the same as their standard
counterparts. Nonetheless, for z > 0, the combined halo-PT model has the same problem
as the standard halo model, as there is a deficit in the transition regime, though marginally
weaker. In this model, the improved one- and especially the two-halo terms are heavily
suppressed on large and intermediate scales. This is not visible in Fig. 6.22 because most of
the signal comes from EFT on these scales, making it more challenging to solve the deficit
by a simple boost of the improved two-halo term.
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Table 6.2 Wavenumber k∗max where the amplitude deviation for phenomenological halo
models is greater than 20% when compared to the three-shape benchmark model matched to
simulations. (The small k excess problem of the standard halo model is ignored.) At z = 0
all models agree within 20% over the entire range of scales.

Phenomenological halo models
Threshold 20% k∗max [h/Mpc]

Theory z = 0 z = 1 z = 2
Standard halo model > 8 0.47 0.51

Combined halo-PT model > 8 0.48 0.68
9-parameter fit > 8 0.82 0.90

The nine-parameter fit, which is based on the simple tree-level model, fitted to k ≤
0.4h/Mpc and for z ≤ 1.5 is fairly accurate when extrapolated across the full domain at
z = 0. (In principle, improvements could be obtained by re-fitting the parameters to higher
redshifts and further into the non-linear regime, though the model does not naturally include
the squeezed and constant shapes required.) Spurious peaks appearing at z = 0 are produced
by the BAO features of the power spectrum, as discussed previously. However, at z = 1,2
this model becomes increasingly inaccurate at large k with its amplitude decreasing in a
similar fashion to the non-linear tree level bispectrum. Nevertheless, the nine-parameter
model produces an accurate result up to kmax ∼ 0.8h/Mpc for all the redshifts considered.

As for perturbation theories, in Table 6.2 we present the maximum value of the wavenum-
ber k∗max for which the phenomenological halo models show good agreement, that is, by
considering the point where the amplitude correlator deviates by more than 20% from unity.
The numerical results of the table confirm the general trends discussed above. In contrast to
the PT case, here the agreement between models and simulated data becomes worse at higher
redshift, as the basic assumptions underlying the halo model become less valid. At higher
redshifts, a secondary range of validity exists at high k after the transition region, which is
visible from Fig. 6.22 but not reported in the table.

Among the alternative phenomenological models we tested, we conclude that the com-
bined halo-PT model based on EFT is the most accurate, offering a physically well-motivated
attempt to solve problems of the standard halo model. Nevertheless, like the standard halo
model, it also does not exhibit appropriate growth rates for the two-halo contribution at
high redshift and, further, the prescription for transitioning between EFT and the other halo
contributions deserves closer scrutiny. From a phenomenological point of view there is
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a straightforward means to improve the theory by boosting the two-halo term at higher
redshifts, as in the three-shape benchmark model.

6.6 Conclusions

The bispectrum of large-scale structure has so far been a relatively neglected observable, due
to the high cost of measuring it with most current sub-optimal estimators, and the relative
complexity of its modelling and interpretation. This is however bound to change in the
current age of precision cosmology and ever-larger galaxy surveys, as the combination of
two- and three-point statistics can improve the constraining power of the upcoming data, by
breaking the existing degeneracies between cosmological and astrophysical parameters. The
ultimate goal of large-scale structure bispectrum measurements is its potential to constrain
models of the early Universe via their non-Gaussian contribution to the primordial density
perturbations, thus complementing and improving existing CMB constraints [171, 182].

Achieving these ambitious objectives will require efforts on multiple fronts. A first issue
shared with power spectrum analysis is the endeavour to improve the theoretical modelling
as far as possible into the non-linear regime; other outstanding points include making the
bispectrum estimation faster and more efficient, and developing a comprehensive method for
comparing bispectrum predictions with observations.

In this work we have made progress on all these fronts. Firstly, we studied how accurately
different theoretical models for the matter bispectrum work on different scales, by comparing
them with N-body simulations and introducing a new simplified phenomenological model
based on three canonical bispectrum shapes. Secondly, we have used for our study the
efficient modal bispectrum estimator by Ref. [242], which allowed us to reconstruct the
full three-dimensional bispectrum information based on ∼ 100 modes only. Thirdly, we
have introduced the amplitude, shape, and total correlators as instruments to estimate the
overall goodness of match between a bispectrum model and measurements across its full
three-dimensional domain, thus greatly simplifying the process of model comparison and
parameter estimation.

The different bispectrum models we considered can be divided into two categories:
methods based on perturbation techniques, and phenomenological models based on or
inspired by the halo model. The perturbative methods assume a small departure from linear
scales, when the density fluctuations are small, and therefore have limited range of validity.
Multiple approaches exist for increasing the scales of validity of perturbative theories, such
as effective field theories, and resummed perturbation theories. We have confirmed that such
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one-loop recipes manage to accurately model non-linearities up to kmax ≃ 0.15h/Mpc at
z = 0 for the matter bispectrum and further at higher redshift (kmax ≃ 0.4h/Mpc at z = 2).
This is already beyond the expectations for the strictly perturbative regime, but some methods
appear to be amenable for even more ambitious extrapolations into the nonlinear regime,
with effective field theory predictions apparently showing good agreement to k ≃ 0.3h/Mpc
at z = 0, though at the cost of introducing free extra parameters calibrated to simulations.
The much simpler nonlinear tree-level bispectrum also offered useful nonlinear projections
out to kmax ≃ 0.17h/Mpc at z = 0.

In addition, we have derived for the first time the expressions of the two-loop MPT-
BREEZE bispectrum in an infrared-safe manner, demonstrating that it is analytically and
numerically tractable, even if computationally challenging. We have shown the improvement
in the wavenumber range over the one-loop calculation for three triangle shape configurations.

From a different perspective, the halo models rely on models of matter collapse in order
to describe non-linearities from a phenomenological point of view. In that sense, they are
valid much further beyond the scales that can be modelled by perturbation theories, and can
match simulations reasonably well in the strongly non-linear regime at z = 0. The combined
halo-PT model [234] represents a compromise between the two approaches. It relies on
a perturbative method on large scales, chosen here to be the EFT, where the halo model
is not accurate, while relying on the halo model on non-linear scales. For these reasons,
we found that the halo-PT model gives the most accurate predictions on all scales at z = 0.
Nevertheless, at higher redshifts, a significant deficit appears at intermediate scales for all
halo models.

We have found that a simple way to solve this halo deficit problem is to increase the
contribution of the squeezed or two-halo shape at z > 0, which we have found dominates
in the transition regime. Driven by the observations from N-body simulations, we have
generalised this idea, thus developing a simple phenomenological ‘three-shape’ model that
fits the simulations well over the full range of scales and redshifts considered. This benchmark
model is based on the fundamental shapes of the halo model — tree-level, squeezed and
constant shapes, corresponding to the three-, two- and one-halo terms respectively. This
model can be seen as a first step towards the development of an accurate phenomenological
model calibrated on N-body simulations, translating the idea behind the HALOFIT method to
the bispectrum domain. This will be observationally relevant for weak gravitational lensing
which is sensitive to the matter bispectrum.

Solving this two-halo deficit problem motivates our new benchmark model but it uncovers
a more serious misconception in the standard halo approach built as it is on a hierarchical
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picture of structure formation. The basic premise that nonlinear halos form first and then
to use these to classify and calculate non-Gaussian structures is not appropriate. This is
clear already from the tree-level bispectrum, which is present at high redshifts z > 30 long
before any halos form; fundamentally it is associated with the initial stage of gravitational
collapse in the first dimension which causes ‘pancake-like’ structures to form. The three-halo
term accommodates this a posteriori by noting that the large-scale tree-level signal will be
imprinted on the halo distribution. In the same manner, there will be a squeezed signal from
the formation of filamentary structures (due to the onset of collapse in the second dimension),
which again precedes halos on any given lengthscale. At present the two-halo model is
flawed by assuming a hierarchical origin for this squeezed bispectrum contribution, and so
it does not capture the appropriate growth rate at higher redshift. Our investigations here
present quantitative bispectrum data in the relevant intermediate regime, which shows clear
pathways ahead for improving the halo model (see also Ref. [218]), as well as mathematical
simplifications due to the approximate separability of the underlying bispectrum.

Future developments of this work will on the one hand lead to a more comprehensive
and accurate phenomenological model of the matter bispectrum, fitted on higher-resolution
simulations, which will provide a bispectrum counterpart to the HALOFIT method. On the
other hand, we will extend the modelling and the comparison to the case of biased tracers,
i.e. dark matter halos and galaxies, to bridge the gap between modelling and observations
by galaxy surveys. Finally, we plan to include the effects of primordial non-Gaussianity of
different types to determine how it is amplified through gravitational collapse and how it can
be optimally identified.





CHAPTER 7

CONCLUSIONS

In this thesis we have studied two major topic in cosmology: the effects of topological defects
on the CMB and the matter bispectrum of large-scale structure. In this Chapter, we will
summarise the most important results obtained.

7.1 Effects of topological defects on CMB

The production of topological defects (cosmic strings, domain walls, monopoles, textures) is
predicted by most cosmological models involving symmetry breaking in the early Universe.
Of the topological defects, the most popular have been cosmic strings because they were
considered to be possible seeds for the large-scale structure in the Universe, until it was shown
that the power spectrum they produce does not match the one observed by high-precision
cosmological probes, such as COBE, WMAP and Planck. In the meantime, fluctuations
generated from inflation have provided a better match to current observations. Even so, their
presence is not ruled out by current observations, and they have become more popular again
because such defects are predicted in string theories of inflation and, in particular, they can
be produced at the end of brane inflation. Although they have not been detected so far, their
observable effects offer the hope that they may be discovered in the near future. They have
also been used to explain CMB anomalies, such as the ‘cold spot’ [67]. Moreover, the recent
detection of gravitational waves from black hole mergers represents an encouraging sign of
possible observations of gravitational waves from the decay of cosmic string loops in the
future [69].

In order to analyse the cosmological predictions of strings, we have used three high
resolution simulations describing the evolution of cosmic string networks, covering the period
from recombination until the late-time cosmological constant epoch, to determine their CMB
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power spectrum. Constraints on the cosmic string density parameter of Gµ/c2 < 1.29×10−7

were obtained using Planck data using a Markov chain-Monte Carlo method.

Contrary to cosmic strings, domain walls are severely constrained by observations up to
an energy of η < 1 MeV (the Zel’dovich bound) and are therefore unlikely to play a major
cosmological role except perhaps for large-angle CMB anomalies. Nevertheless, finding a
precise constraint on the energy scale of formation of these defects was long overdue. We
have run three field theory walls simulations based on the Press-Ryden-Spergel algorithm in
the radiation, matter and cosmological constant eras and we have adapted the formalism that
we have developed for cosmic strings to the case of domain walls, finding a constraint of
η < 0.93 MeV, which is surprisingly close to the Zel’dovich bound of 1 MeV. 1

7.2 Matter bispectrum of large-scale structure

The late-time matter distribution in the Universe contains a wealth of information that has
not yet been fully exploited. Compared to the CMB, which only contains information from
last scattering and is thus two-dimensional in nature, the LSS encodes data from different
times as well and therefore the number of available modes is significantly increased over the
CMB. The perturbation information extracted corresponding to galaxy clustering is related
to the matter fluctuations through biasing. Current data extracted from LSS is still consistent
with the hypothesis that the primordial fluctuations are Gaussian, but a possible detection of
primordial non-Gaussianity by galaxy surveys would open new windows on inflation and
would provide important information on the early Universe. This requires the study of the
three-point correlation function, or bispectrum of density fluctuations.

To be able to distinguish between different cosmological scenarios, it is useful to under-
stand the advantages and limitations of models in the literature. In this thesis, we have made a
comprehensive review of perturbative models in the literature: Eulerian standard perturbation
theory at one loop which extends the linear power spectrum and tree-level bispectrum, the
effective field theory at one loop, the renormalised perturbation theory where we have also
derived for the first time the two-loop bispectrum, the resummed Lagrangian perturbation
theory and a simple phenomenological model based on the tree-level bispectrum. In addition
we have looked with a critical eye at the halo model and on a combination of the halo model
and perturbation theory.

1At the time Zel’dovich made this serendipitously accurate walls estimate, cosmology was far from being a
precision science. He was often quoted as saying "What’s a factor of two in cosmology!". Times have changed.
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We have compared the models described above with results from N-body simulations
for the bispectum for k ≤ 7.8h/Mpc and z < 3, showing the scales and redshifts where they
are valid. Thus, for perturbation theories, we have shown that standard perturbation theory
predicts excess power on mildly nonlinear scales, while the other theories only decay after a
certain scale. At redshift z = 0, the effective field theory of LSS is within 10% of the N-body
simulation bispectrum up to k = 0.29h/Mpc, while all the other theories considered can
only reach k = (0.11−0.17)h/Mpc (though they are parameter-free). For halo models, we
have identified a significant missing squeezed component on intermediate scales, where the
two-halo term is the most important, which worsens as the redshift is increased.

We have developed a model based on the shapes of the components of the halo model:
constant for the 1-halo term, squeezed for the 2-halo term and flattened for the 3-halo term,
that provides a very good fit to the numerical simulations after suitable parameter calibration.
Moreover, we have shown that all the perturbative theories at one loop have a similar shape
to the tree-level bispectrum, i.e. flattened. This points towards a simple ‘HALOFIT’-style
treatment of the bispectrum for future quantitative modelling and measurement, which is also
being developed for modelling the growth of primordial non-Gaussianity.

Our work presented here using the dark matter distribution has a direct application for
investigating the bispectrum of weak gravitational lensing and it can be developed further
to study halos and galaxy distributions. If properly harnessed with sophisticated modelling
and efficient estimators, it will expand the constraining power of upcoming surveys by
breaking the degeneracies between cosmological parameters and galaxy bias. There is the
strong prospect of improving upon the CMB constraints on primordial non-Gaussianity with
significant discovery potential. Future galaxy surveys, such as LSST, Euclid, DESI and
WFIRST will provide an unprecedented amount of new data and the study of non-Gaussianity
will open new windows on the Universe.
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