Repository logo
 

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation


Type

Thesis

Change log

Authors

Booij, Wilfred Edwin 

Abstract

The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can result in the formation of a Josephson junction. The conditions required for the formation of these Josephson junctions in YBa2Cu3O7-d and related compounds are discussed as well as the physical properties of the irradiated material. From electrical transport measurements of individual Josephson junctions it was found that these junctions have a Superconductor/Normal/Superconductor (SNS) nature. Low temperature anneal studies indicate that Josephson junctions with optimum properties can be obtained by a combination of a high electron dose and subsequent low temperature anneal. Extremely high electron doses resulted in the formation of a purely resistive region. The electrical transport in such regions with a dimension of 200 nm in the direction of current transport is shown to be compatible with variable range hopping (VRH). Barriers with the same length but a finite superconducting transition temperature showed a low bias resistance that is significantly lowered due to proximity coupling. Using purely resistive regions in combination with Josephson junctions, devices consisting of two closely spaced Josephson junctions with a third terminal connected to the shared electrode were fabricated and characterised (minimum separation 20 nm). The distinct behaviour of the Josephson critical current with applied magnetic field (Ic(B)) of these devices was found to be well described by a newly developed model, which incorporates the effect of the static redistribution current in the shared electrode on the phase distribution of the Josephson junctions. An important finding is that the behaviour of the high critical current with applied magnetic field of two closely spaced junctions was found to be consistent with a model system consisting of a closely spaced Josephson junction and a resistive barrier. A three terminal device with Josephson junctions at small separations was found to have a significantly increased transresistance when compared with the individual resistance of the Josephson junctions it constituted of. A number of illustrative examples of device structures realised with the focused electron beam irradiation technique are also included.

Description

Date

Advisors

Keywords

Josephson Junctions, Superconducting Electronics, superconductivity, Electron Beam Irradiation, Devices

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
EPSRC