Repository logo
 

Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation.


Change log

Authors

Brenneis, Christian 
Sisignano, Marco 
Coste, Ovidiu 
Altenrath, Kai 
Fischer, Michael J 

Abstract

BACKGROUND: Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation. RESULTS: In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH(-/-) mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH(-/-) mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice. CONCLUSION: Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects.

Description

RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.

Keywords

8,11,14-Eicosatrienoic Acid, Animals, Blotting, Western, Calcitonin Gene-Related Peptide, Calcium, Cells, Cultured, Chromatography, Liquid, Epoxide Hydrolases, Ganglia, Spinal, Hyperalgesia, Immunohistochemistry, Inflammation, Mice, Mice, Inbred C57BL, Mice, Knockout, TRPA1 Cation Channel, Tandem Mass Spectrometry, Transient Receptor Potential Channels

Journal Title

Mol Pain

Conference Name

Journal ISSN

1744-8069
1744-8069

Volume Title

Publisher

SAGE Publications