Repository logo
 

Motion dazzle and the effects of target patterning on capture success.


Type

Article

Change log

Authors

Hughes, Anna E 
Troscianko, Jolyon 
Stevens, Martin 

Abstract

BACKGROUND: Stripes and other high contrast patterns found on animals have been hypothesised to cause "motion dazzle", a type of defensive coloration that operates when in motion, causing predators to misjudge the speed and direction of object movement. Several recent studies have found some support for this idea, but little is currently understood about the mechanisms underlying this effect. Using humans as model 'predators' in a touch screen experiment we investigated further the effectiveness of striped targets in preventing capture, and considered how stripes compare to other types of patterning in order to understand what aspects of target patterning are important in making a target difficult to capture. RESULTS: We find that striped targets are among the most difficult to capture, but that other patterning types are also highly effective at preventing capture in this task. Several target types, including background sampled targets and targets with a 'spot' on were significantly easier to capture than striped targets. We also show differences in capture attempt rates between different target types, but we find no differences in learning rates between target types. CONCLUSIONS: We conclude that striped targets are effective in preventing capture, but are not uniquely difficult to catch, with luminance matched grey targets also showing a similar capture rate. We show that key factors in making capture easier are a lack of average background luminance matching and having trackable 'features' on the target body. We also find that striped patterns are attempted relatively quickly, despite being difficult to catch. We discuss these findings in relation to the motion dazzle hypothesis and how capture rates may be affected more generally by pattern type.

Description

Keywords

Animals, Color, Computer Simulation, Humans, Learning, Models, Biological, Motion, Predatory Behavior, Visual Perception

Journal Title

BMC Evol Biol

Conference Name

Journal ISSN

1471-2148
1471-2148

Volume Title

14

Publisher

Springer Science and Business Media LLC
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/G022887/1)
AEH received a studentship from the BBSRC and a CASE award from Dstl, Portsdown West, UK. MS and JT were supported by a Biotechnology and Biological Sciences Research Council, David Phillips Research Fellowship (BB/G022887/1).